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Abstract

Variational and Dynamical Perspectives On Learning and Optimization

by

Andre Yohannes Wibisono

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael Jordan, Chair

The problem of learning from data is prevalent in the modern scientific age, and optimiza-
tion provides a natural mathematical language for describing learning problems. We study
some problems in learning and optimization from variational and dynamical perspectives, by
identifying the optimal structure in the problems and leveraging the parallel results between
continuous and discrete-time problems.

We begin by studying the class of accelerated methods in optimization from a continuous-
time perspective. We show that there is a Lagrangian functional that we call the Bregman
Lagrangian, which generates a family of dynamics via the variational principle of least action,
and these dynamics are related via speeding up time. Furthermore, we provide a systematic
methodology for discretizing the dynamics into the family of accelerated higher-order algo-
rithms with matching convergence rates in discrete time. Our work illuminates two classes
of natural dynamics for optimization, the gradient and Lagrangian dynamics.

Next, we study the problem of approximate inference in graphical models. We analyze
reweighted Kikuchi approximation for estimating the log partition function, which approxi-
mates the entropy in the variational representation with a region graph decomposition. We
establish sufficient conditions for the concavity of the objective function in terms of weight
assignments in the Kikuchi expansion, and characterize the polytope of concavity in terms
of the cycle structure of the region graph. We also provide an algorithm to find the global
optimum and simulations to demonstrate the advantages of the reweighted Kikuchi approach.

Finally, we study the problem of minimax option pricing as an online learning game
between Nature and an Investor. Whereas the classical Black-Scholes model assumes the
price fluctuates continuously following the geometric Brownian motion, we consider a worst-
case model in which Nature chooses a sequence of price fluctuations under a cumulative
quadratic volatility constraint, possibly with jumps, while the Investor makes a sequence
of hedging decisions. We show that even in this adversarial, non-stochastic framework, the
value of the game converges to the Black-Scholes option price, and the Black-Scholes hedging
strategy is near-optimal for the Investor.
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Chapter 1

Introduction

The problem of learning from data is prevalent and essential in the current era of Big Data.
Recent advances in measurement techniques, as well as the increasingly significant parts of
our lives that are conducted online, have resulted in the proliferation of massive, complex
data sets. This leads to an exciting array of possibilities, because with this deluge of data
comes—in principle—a wealth of information. Thus, for example, we now have attempts
to decode the functionalities of brain regions from neuron connectivity patterns; to discover
evidence of new particles from collision data in experimental physics; to decipher the social
network structure of billions of people online; to extract contextual understanding from real-
time sensory inputs to enable autonomous vehicles; to understand weather patterns at scale
to predict climate change more accurately; etc. In particular, the field of machine learning
(and data science more generally) has experienced a rapid growth in the development of
both theoretical and computational tools in order to tackle the challenges introduced by the
increasing amount of data.

In recent years, optimization has emerged as a natural language for learning problems.
Indeed, to evaluate the quality of a learning strategy we typically compare its outputs or
predictions against ground truth, and we measure these comparisons via a cost function.
Thus, the problem of learning can be abstractly formulated as optimizing a certain objective
function (which encodes the goals of learning as well as constraints from data), and learning
strategies correspond to optimization algorithms. This formulation of learning as optimiza-
tion has introduced a shift in research perspective. Whereas previously learning problems
were studied via the lens of complexity theory (e.g., via the notions of Kolmogorov complex-
ity, VC dimension [66], or the framework of PAC-learning [65]), the emphasis now is on the
development of fast practical algorithms for optimization. The synthesis of optimization and
machine learning has been a very active research area with rapid progress, resulting in the
development of a wide array of algorithms for various problem settings that arise in practice
along with some understanding of their theoretical guarantees (see, e.g., [59] for a review).

In this thesis, we study some problems in learning and optimization from variational and
dynamical perspectives. Here, a variational perspective means we cast our problem instance
as part of a larger optimization structure, and we choose our action (algorithm) as the optimal
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answer to the variational problem. This provides a certificate of optimality for our action,
and it also serves a guiding principle for designing algorithms. A dynamical perspective
means we view our problem or algorithm in discrete time as a version (discretization) of
a corresponding problem or dynamics in continuous time. The two time domains often
have matching parallel structures, so we can use results from continuous time to guide the
development in discrete time, or vice versa.

We elaborate further on these points below, which also serves as a brief summary and
context for the remainder of this thesis. In particular, we demonstrate that the synthesis
of both variational and dynamical perspectives provides a rich prism to understand the
structure of learning and optimization problems.

1.1 On accelerated methods in optimization

In convex optimization, there is a phenomenon of acceleration in which we can boost the
convergence rates of certain algorithms. This is first observed in the accelerated gradient
descent algorithm proposed by Nesterov in 1983, and has since been extended to various
settings. Accelerated methods achieve faster convergence rates than gradient methods and
indeed, under certain conditions, they achieve optimal rates. However, accelerated methods
are not descent methods and remain somewhat of a conceptual mystery. Furthermore, while
many interpretations of Nesterov’s acceleration technique have been proposed, it is not yet
clear what is the natural scope of the acceleration concept.

In Chapter 2, we propose a variational, continuous-time framework for understanding
accelerated methods. We show that there is a Lagrangian functional that we call the Breg-
man Lagrangian which generates a large family of second-order dynamics in continuous time
via the principle of least action. We provide a systematic methodology for converting the
dynamics in continuous time to accelerated higher-order methods in discrete time. Further-
more, we show that the continuous-time limit of all of these methods correspond to traveling
the same curve in spacetime at different speeds. From this perspective, Nesterov’s technique
and many of its generalizations can be viewed as a systematic way to go from the continuous-
time dynamics generated by the Bregman Lagrangian to a family of discrete-time algorithms.
This chapter is adapted from the work published as [75].

Our work illuminates a new class of Lagrangian dynamics which may be useful for design-
ing better algorithms for optimization. Furthermore, our work also provides an interesting
perspective on the problem of optimization in continuous time. Whereas there is a clear
complexity theory of optimization in discrete time governing the trade-off between conver-
gence rates and problem assumptions (e.g., [44, 48]), it is a priori unclear if there is a similar
theory of optimization in continuous time. Indeed, the naive definition of the optimization
problem—to find dynamics that optimizes a function as fast as possible—suffers from the
problem of speeding-up time. Namely, once we have a curve (dynamics) that works to min-
imize the function in continuous time, then we can speed it up to get any arbitrarily fast
rate, so there is no notion of a “fastest” algorithm.
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Nevertheless, our results in Chapter 2 give evidence that there is a structure of optimiza-
tion in continuous time, which is interestingly tied to the matching structure of optimization
in discrete time. Indeed, since our ultimate interest is in discrete-time algorithms (that
we can implement in computers), our notion of continuous-time dynamics needs to be con-
strained by being implementable as a discrete-time algorithm with a matching convergence
guarantee. From this perspective, our results demonstrate that we have two natural classes
of dynamics for optimization. First, we have the class of gradient dynamics, which are
first-order differential equations, and have simple variational interpretations as greedy steep-
est descent flows that are locally optimal in space. Second, we have the class of Bregman
Lagrangian dynamics, which are second-order Euler-Lagrange equations, and have more
complicated variational interpretations as the locally optimal curve in spacetime via the
principle of least action. Both families have the nice property of being implementable in
discrete time: Gradient dynamics give rise to the family of higher-order gradient methods,
while Lagrangian dynamics give rise to the family of accelerated higher-order methods, both
with matching convergence rates under increasingly strict assumptions. Furthermore, while
the gradient dynamics are related by changing how we measure space, the Lagrangian dy-
namics are related by changing how we measure time. Thus, these two families have many
nice properties for optimization, both in continuous and discrete time, and we conjecture
that they are the optimal dynamics for optimization.

1.2 Kikuchi approximation for graphical models

When we have complex data with many covariates, we may wish to build a model to incorpo-
rate the structure of the data into our learning problem. Probabilistic graphical models are
a familiar framework with diverse application domains including computer vision, statistical
physics, coding theory, social science, and epidemiology. Graphical models capture the de-
pendency structure of the covariates as a graph, where nodes represent variables and absent
edges represent conditional independence. In this setting, the problem of learning from data
becomes the problem of inferring some states or parameters of the joint distribution.

A crucial step in probabilistic inference is to compute the log partition function of the
distribution based on the potential functions and the structure of the graph. However,
computing the log partition function either exactly or approximately is NP-hard in general.
An active area of research involves finding accurate approximations of the log partition
function and characterizing the graph structures for which such approximations work well.
A key technique is variational inference, which uses the variational representation of the log
partition function as the dual function of the negative entropy, and replaces some terms in
the variational problem with more tractable approximations [70]. In particular, the Kikuchi
approximation method replaces the entropy term in the variational representation with an
expression that decomposes with respect to a region graph. Kikuchi approximations were
previously introduced in the physics literature and have been reformalized in the language
of graphical models. The special case when the region graph has only two layers is known as
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the Bethe approximation, which has been studied extensively, and there is a tree-reweighted
version [69] that provides an upper bound on the true log partition function.

In Chapter 3, we analyze a reweighted version of the Kikuchi approximation, which gen-
eralizes the standard Kikuchi approximation by assigning arbitrary weights to individual
terms in the Kikuchi entropy expansion. We establish necessary and sufficient conditions
under which this class of objective functions is concave, so a global optimum may be found
efficiently. Our theoretical results synthesize known results on Kikuchi and Bethe approxi-
mations, and our main theorem concerning concavity conditions for the reweighted Kikuchi
entropy recovers existing results when specialized to the unweighted Kikuchi or reweighted
Bethe case. Furthermore, we provide a valuable converse result in the reweighted Bethe case,
showing that when our concavity conditions are violated, the entropy function cannot be con-
cave over the whole feasible region. As demonstrated by our experiments, a message-passing
algorithm designed to optimize the Kikuchi objective may terminate in local optima for
weights outside the concave region. Furthermore, generating weight vectors in the Kikuchi
region of concavity may yield closer approximations to the log partition function. In the
reweighted Bethe setting, we also present a useful characterization of the concave region of
the Bethe entropy function in terms of the geometry of the graph. This chapter is adapted
from the work published as [39].

1.3 Minimax option pricing meets Black-Scholes

We now consider a popular problem in finance, option pricing, via the lens of online learning.
An option is a contract that gives the right—but not the obligation—to buy an asset (e.g., a
stock) for a given price on a given date. This allows firms to hedge against risk exposure, and
the problem of option pricing is to determine the fair price for an option, namely, one that
provides no opportunity for arbitrage (risk-free profit). This question is inherently difficult
because while we know the asset’s previous prices, we are uncertain as to its future price.

The classical model of Black-Scholes option pricing from 1973 assumes that the under-
lying asset’s price fluctuates continuously following the geometric Brownian motion (GBM)
stochastic process in continuous time, which means the firm should be able to buy and sell
continuously until the option’s expiration date. This is not true in practice, as the stock
market is open only eight hours per day, and stock prices can make significant jumps even
during regular trading. Nevertheless, the Black-Scholes model provides a very useful baseline
model that allows fast and explicit calculations based on the properties of GBM.

In [1], we have studied the option pricing problem from the lens of regret minimization
in online learning, by modeling option pricing as a sequential (“discrete-time”) zero-sum
game being played between an Investor, who is attempting to replicate the option payoff,
and Nature, who is sequentially setting the price changes of the underlying asset. The value
of this game is the minimax option price, since it is what the Investor should pay for the
option against an adversarially chosen price path. Our main result in [1] was to show that
the game value approaches the Black-Scholes option price as the Investor’s trading frequency
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increases (i.e., in the continuous-time limit). Thus, the minimax price tends to the option
price under the GBM assumption; this result lends further credibility to the Black-Scholes
model, as it suggests that the GBM assumption may already be a “worst-case model” in a
certain sense.

In Chapter 4, we study a generalization of the minimax option pricing problem with
weaker constraints. We consider a worst-case model, in which Nature chooses a sequence
of price fluctuations under a cumulative quadratic volatility constraint, and allowing price
jumps, while the Investor can make a sequence of hedging decisions to try to replicate the
option payoff. The cumulative volatility constraint means the price path of Nature no longer
converges to GBM. However, we show that the value of the proposed game, which is the
regret of the hedging strategy, still converges to the Black-Scholes option price. Furthermore,
we show that the Black-Scholes hedging strategy is near-optimal for the Investor, even in
this non-stochastic framework. This chapter is adapted from the work published as [2].
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Chapter 2

A Variational Perspective on
Accelerated Methods in Optimization

Optimization lies at the core of many fields concerned with data analysis. It provides a
mathematical language in which both computational and statistical concepts can be ex-
pressed and it delivers practical data analysis algorithms that can scale to the enormous
data sets that are increasingly the norm in science and technology. The recent literature on
data analysis and optimization has focused on gradient-based optimization methods, given
their low per-iteration cost and the relative ease with which they can be deployed on parallel
and distributed processing architectures. Establishing that such methods do indeed address
the scalability problems inherent in large-scale data analysis raises fundamental questions
concerning the convergence rate of gradient-based methods, the extent to which those rates
can be increased systematically and whether there are upper bounds on achievable rates.

In the body of theory and practice built up to answer such questions, the phenomenon
of acceleration plays a key role. In 1983, Nesterov introduced acceleration in the context
of gradient descent for convex functions [45], showing that it achieves an improved con-
vergence rate with respect to gradient descent, and moreover that it achieves an optimal
convergence rate under an oracle model of optimization complexity [44]. The acceleration
idea has since been extended to a wide range of other settings, including composite optimiza-
tion [47, 64, 11], stochastic optimization [25, 34], nonconvex optimization [20, 37], and conic
programming [35]. There have been generalizations to non Euclidean optimization [49, 33]
and higher-order algorithms [46, 9], and there have been numerous applications that further
extend the reach of the idea [27, 28, 29, 43].

Despite this compelling evidence of the value of the idea of acceleration, it remains
something of a conceptual mystery. Derivations of accelerated methods do not flow from a
single underlying principle, but tend to rely on case-specific algebra [30]. The basic Nesterov
technique is often explained intuitively in terms of momentum, but this intuition does not
easily carry over to non-Euclidean settings [4]. In recent years, the number of explanations
and interpretations of acceleration has increased [4, 6, 18, 36, 14], but these explanations
have been focused on restrictive instances of acceleration, such as first-order algorithms, the
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Euclidean setting, or cases in which the objective function is strongly convex or quadratic.
It is not yet clear what the natural scope of the acceleration concept is and indeed whether
it is a single phenomenon.

In this chapter we study acceleration from a continuous-time, variational point of view.
We build on recent work by [61], who show that the continuous-time limit of Nesterov’s
accelerated gradient descent is a second-order differential equation, and we take inspiration
from continuous time analysis of mirror descent [44]. In our approach, rather than starting
from existing discrete-time accelerated gradient methods and deriving differential equations
by taking limits, we take as our point of departure a variational formulation in which we
define a functional on continuous-time curves that we refer to as a Bregman Lagrangian.
Next, we calculate and discretize the Euler-Lagrange equation corresponding to the Breg-
man Lagrangian. It turns out that naive discretization (the Euler method) does not yield a
stable discrete-time algorithm that retains the rate of the underlying differential equation;
rather, a more elaborate discretization involving an auxiliary sequence is necessary. This
auxiliary sequence is essentially that used by Nesterov in his constructions of accelerated
mirror descent [49] and accelerated cubic-regularized Newton’s method [46], and later gen-
eralized by Baes [9]. Thus, from our perspective, Nesterov’s approach can be viewed as
a methodology for the discretization of a certain class of differential equations. Given the
complexities associated with the discretization of differential equations, it is perhaps not
surprising that it has been difficult to perceive the generality and scope of the acceleration
concept in a discrete-time framework.

The Bregman-Lagrangian framework permits a systematic understanding of the match-
ing rates associated with higher-order gradient methods in discrete and continuous time. In
the case of gradient descent, Su et al. show that the discrete and continuous-time dynamics
have convergence rates of O(1/(εk)) and O(1/t), respectively, and that these match using the
identification t = εk; for accelerated gradient descent, the convergence rates are O(1/(εk2))
and O(1/t2) respectively, which match using the identification t =

√
εk [61]. This result

has been extended to the non-Euclidean case by Krichene et al. [33]. Higher-order gradient
descent is a descent method which minimizes a regularized (p− 1)-st order Taylor approxi-
mation of the objective function f , generalizing gradient descent (p = 2) and Nesterov and
Polyak’s cubic-regularized Newton’s method (p = 3) [50]. The p-th order gradient algorithm
with a constant step size ε has convergence rate O(1/(εkp−1)) when ∇p−1f is (1/ε)-Lipchitz
and, in continuous time, as ε → 0, this algorithm corresponds to the p-th rescaled gradient
flow, which is a first-order differential equation with a matching convergence rate O(1/tp−1).
Thus, the p-th order gradient algorithm can be seen as a discretization t = δk of the rescaled
gradient flow with time step δ = ε1/(p−1). Similarly, we show that the accelerated higher-
order gradient algorithm achieves an improved convergence rate O(1/(εkp)) under the same
assumption (i.e., ∇p−1f is (1/ε)-Lipschitz). In continuous time, as ε→ 0, this corresponds to
the second-order Euler-Lagrange curve of the Bregman Lagrangian with a matching conver-
gence rate O(1/tp). Thus, the p-th order accelerated algorithm can be seen as a discretization
t = δk of the Euler-Lagrange equation of the Bregman Lagrangian with time step δ = ε1/p.

In addition to its value in relating continuous-time and discrete-time acceleration, the



CHAPTER 2. A VARIATIONAL PERSPECTIVE ON ACCELERATED METHODS 8

study of the Bregman Lagrangian can provide further insights into the nature of acceler-
ation. For instance, it is noteworthy that the Bregman Lagrangian is closed under time
dilation. This means that if we take an Euler-Lagrange curve of a Bregman Lagrangian and
reparameterize time so we travel the curve at a different speed, then the resulting curve is
also the Euler-Lagrange curve of another Bregman Lagrangian, with appropriately modified
parameters. Thus, the entire family of accelerated methods correspond to a single curve in
spacetime and can be obtained by speeding up (or slowing down) any single curve. Another
insight is obtained by noting that from the discrete-time point of view, an interpretation
of acceleration starts with a base algorithm, which we can accelerate by coupling with a
suitably weighted mirror descent step. From the continuous-time point of view, however,
it is the weighted mirror descent step that is important since the base gradient algorithm
operates on a smaller time scale. Thus, Nesterov’s accelerated gradient methods are but
one possible implementation of second-order Bregman-Lagrangian curves as a discrete-time
algorithm.

The remainder of the chapter is organized as follows. In Section 2.1, we introduce the gen-
eral family of Bregman Lagrangians and study its properties. In Section 2.2, we demonstrate
how to discretize the Euler-Lagrange equations corresponding to the polynomial subfamily
of Bregman Lagrangians to obtain discrete-time accelerated algorithms. In particular, we
introduce the family of higher-order gradient methods which can be used to complete the
discretization. In Section 2.3, we discuss additional properties of the Bregman Lagrangian,
including gauge-invariance properties, connection to classical gradient flows, and the corre-
spondence with a functional that we refer to as a Bregman Hamiltonian. Finally, we end in
Section 2.4 with a brief discussion.

Problem setting

We consider the optimization problem

min
x∈X

f(x),

where X ⊆ Rd is a convex set and f : X → R is a continuously differentiable convex function.
To simplify the presentation in this chapter we focus on the case X = Rd. We also assume
f has a unique minimizer, x∗ ∈ X , satisfying the optimality condition ∇f(x∗) = 0. We use
the inner product norm ‖x‖ = 〈x, x〉1/2.

We consider the general non-Euclidean setting in which the space X is endowed with
a distance-generating function h : X → R that is convex and essentially smooth (i.e., h is
continuously differentiable in X , and ‖∇h(x)‖∗ →∞ as ‖x‖ → ∞). The function h can also
be used to define an alternative measure of distance in X via its Bregman divergence:

Dh(y, x) = h(y)− h(x)− 〈∇h(x), y − x〉,
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which is nonnegative since h is convex. When x and y are nearby the Bregman divergence
is an approximation to the Hessian metric,

Dh(y, x) ≈ 1

2
〈y − x,∇2h(x)(y − x)〉 :=

1

2
‖y − x‖2

∇2h(x).

The Euclidean setting is obtained when h(x) = 1
2
‖x‖2, in which case the Bregman divergence

and Hessian metric coincide since ∇2h(x) is the identity matrix.
In continuous time, the Hessian metric is generally studied rather than the more general

Bregman divergence; this is the case, for instance, in the case of natural gradient flow, which
is the continuous-time limit of mirror descent [5, 54]. By way of contrast, we shall see that
our continuous-time, Lagrangian framework crucially employs the Bregman divergence.

In this chapter we denote a discrete-time sequence in lower case, e.g., xk with k ≥ 0 an
integer. We denote a continuous-time curve in upper case, e.g., Xt with t ∈ R. An over-dot
means derivative with respect to time, i.e., Ẋt = d

dt
Xt.

2.1 The Bregman Lagrangian

We define the Bregman Lagrangian

L(x, ẋ, t) = eαt+γt
(
Dh(x+ e−αtẋ, x)− eβtf(x)

)
(2.1)

which is a function of position x ∈ X , velocity ẋ ∈ Rd, and time t ∈ T, where T ⊆ R
is an interval of time. The functions α, β, γ : T → R are arbitrary smooth (continuously
differentiable) functions of time that determine the weighting of the velocity, the potential
function, and the overall damping of the Lagrangian. We also define the following ideal
scaling conditions :

β̇t ≤ eαt (2.2a)

γ̇t = eαt ; (2.2b)

these conditions will be justified in the following section.

Convergence rates of the Euler-Lagrange equation

In this section we show that—under the ideal scaling assumption (2.2)—the Bregman La-
grangian (2.1) defines a variational problem the solutions to which minimize the objective
function f at an exponential rate.

Given a general Lagrangian L(x, ẋ, t), we define a functional on curves {Xt : t ∈ T} via
integration of the Lagrangian: J(X) =

∫
T L(Xt, Ẋt, t)dt. From the calculus of variations, a

necessary condition for a curve to minimize this functional is that it solve the Euler-Lagrange
equation:

d

dt

{
∂L
∂ẋ

(Xt, Ẋt, t)

}
=
∂L
∂x

(Xt, Ẋt, t). (2.3)
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Specifically, for the Bregman Lagrangian (2.1), the partial derivatives are

∂L
∂x

(x, ẋ, t) = eγt+αt
(
∇h(x+ e−αtẋ)−∇h(x)− e−αt∇2h(x) ẋ− eβt∇f(x)

)
(2.4a)

∂L
∂ẋ

(x, ẋ, t) = eγt
(
∇h(x+ e−αtẋ)−∇h(x)

)
. (2.4b)

Thus, for general functions αt, βt, γt, the Euler-Lagrange equation (2.3) for the Bregman
Lagrangian (2.1) is a second-order differential equation given by

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αtẊt)

]−1

∇f(Xt)

+ eαt(γ̇t − eαt)
[
∇2h(Xt + e−αtẊt)

]−1

(∇h(Xt + e−αtẊt)−∇h(Xt)) = 0.
(2.5)

We now impose the ideal scaling condition (2.2b). In this case the last term in (2.5)
vanishes, so the Euler-Lagrange equation simplifies to

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αtẊt)

]−1

∇f(Xt) = 0. (2.6)

In (2.6), we have assumed the Hessian matrix∇2h(Xt+e
−αtẊt) is invertible. But we can also

write the equation (2.6) in the following way, which only requires that ∇h be differentiable,

d

dt
∇h(Xt + e−αtẊt) = −eαt+βt∇f(Xt). (2.7)

To establish a convergence rate associated with solutions to the Euler-Lagrange equation—
under the ideal scaling conditions—we take a Lyapunov function approach. Defining the
following energy functional:

Et = Dh

(
x∗, Xt + e−αtẊt

)
+ eβt(f(Xt)− f(x∗)), (2.8)

we immediately obtain a convergence rate, as shown in the following theorem.

Theorem 2.1. If the ideal scaling (2.2) holds, then solutions to the Euler-Lagrange equa-
tion (2.7) satisfy

f(Xt)− f(x∗) ≤ O(e−βt).

Proof. The time derivative of the energy functional is

Ėt = −
〈
d

dt
∇h(Xt + e−αtẊt), x

∗ −Xt − e−αtẊt

〉
+ β̇te

βt(f(Xt)− f(x∗)) + eβt〈∇f(Xt), Ẋt〉.

If Xt satisfies the Euler-Lagrange equation (2.7), then the time derivative simplifies to

Ėt = −eαt+βtDf (x
∗, Xt) + (β̇t − eαt)eβt(f(Xt)− f(x∗))
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where Df (x
∗, Xt) = f(x∗)−f(Xt)−〈∇f(Xt), x

∗−Xt〉 is the Bregman divergence of f . Note
that Df (x

∗, Xt) ≥ 0 since f is convex, so the first term in Ėt is nonpositive. Furthermore, if
the ideal scaling condition (2.2a) holds, then the second term is also nonpositive, so Ėt ≤ 0.
Since Dh(x

∗, Xt + e−αtẊt) ≥ 0, this implies that for any t ≥ t0 ∈ T, eβt(f(Xt) − f(x∗)) ≤
Et ≤ Et0 . Thus, f(Xt)− f(x∗) ≤ Et0e−βt = O(e−βt), as desired.

For a given αt, which determines γt by (2.2a), the optimal convergence rate is achieved by
setting β̇t = eαt , resulting in convergence rate O(e−βt) = O(exp(−

∫ t
t0
eαs ds)). In Section 2.2

we study a subfamily of Bregman Lagrangians that have a polynomial convergence rate, and
we show how we can discretize the resulting Euler-Lagrange equations to obtain discrete-
time methods that have a matching, accelerated convergence rate. In Section 2.3 we study
another subfamily of Bregman Lagrangians that have an exponential convergence rate, and
discuss its connection to a generalization of Nesterov’s restart scheme. In the Euclidean
setting, our derivations simplify. We present these derivations at the end of Section 2.12,
and comment on the insight that they provide into the question posed by Su et al. [61] on
the significance of the value 3 in the damping coefficient for Nesterov’s accelerated gradient
descent.

Time dilation

A notable property of the Bregman Lagrangian family is that it is closed under time dilation.
This means if we take the Euler-Lagrange equation (2.5) of the Bregman Lagrangian (2.1)
and reparameterize time to travel the curve at a different speed, the resulting curve is
also the Euler-Lagrange equation of a Bregman Lagrangian with a suitably modified set of
parameters.

Concretely, let τ : T → T′ be a smooth (twice-continuously differentiable) increasing
function, where T′ = τ(T) ⊆ R is the image of T. Given a curve X : T′ → X , we consider
the reparameterized curve Y : T→ X defined by

Yt = Xτ(t). (2.9)

That is, the new curve Y is obtained by traversing the original curve X at a new speed of
time determined by τ . If τ(t) > t, then we say that Y is the sped-up version of X, because
the curve Y at time t has the same value as the original curve X at the future time τ(t).

For clarity, we let Lα,β,γ denote the Bregman Lagrangian (2.1) parameterized by α, β, γ.
Then we have the following result whose proof is provided in Section 2.5.

Theorem 2.2. If Xt satisfies the Euler-Lagrange equation (2.5) for the Bregman Lagrangian
Lα,β,γ, then the reparameterized curve Yt = Xτ(t) satisfies the Euler-Lagrange equation for
the Bregman Lagrangian Lα̃,β̃,γ̃, with modified parameters

α̃t = ατ(t) + log τ̇(t) (2.10a)

β̃t = βτ(t) (2.10b)

γ̃t = γτ(t). (2.10c)



CHAPTER 2. A VARIATIONAL PERSPECTIVE ON ACCELERATED METHODS 12

Furthermore, α, β, γ satisfy the ideal scaling (2.2) if and only if α̃, β̃, γ̃ do.

We note that in general, when we reparameterize time by a time-dilation function τ(t),

the Lagrangian functional transforms to L̃(x, ẋ, t) = τ̇(t)L
(
x, 1

τ̇(t)
ẋ, τ(t)

)
. Thus, another

way of stating the result in Theorem 2.2 is to claim that

Lα̃,β̃,γ̃(x, ẋ, t) = τ̇(t)Lα,β,γ
(
x,

1

τ̇(t)
ẋ, τ(t)

)
, (2.11)

which we can easily verify by directly substituting the definition of the Lagrangian (2.1) and
the modified parameters α̃, β̃, γ̃ (2.10).

In Section 2.2, we show that the Bregman Lagrangian generates the family of higher-
order accelerated methods in discrete time. Thus, the time-dilation property means that the
entire family of curves for accelerated methods in continuous time corresponds to a single
curve in spacetime, which is traveled at different speeds. This suggests that the underlying
solution curve has a more fundamental structure that is worth exploring further.

2.2 Polynomial convergence rates and accelerated

methods

In this section, we study a subfamily of Bregman Lagrangians (2.1) with the following choice
of parameters, indexed by a parameter p > 0,

αt = log p− log t (2.12a)

βt = p log t+ logC (2.12b)

γt = p log t, (2.12c)

where C > 0 is a constant. The parameters α, β, γ satisfy the ideal scaling condition (2.2)
(with an equality on the first condition (2.2a)). The Bregman Lagrangian (2.1) becomes

L(x, ẋ, t) = ptp−1

(
Dh

(
x+

t

p
ẋ, x

)
− Ctp−2f(x)

)
. (2.13)

Its Euler-Lagrange equation (2.6) is given by

Ẍt +
p+ 1

t
Ẋt + Cp2tp−2

[
∇2h

(
Xt +

t

p
Ẋt

)]−1

∇f(Xt) = 0 (2.14)

and, by Theorem 2.1, it has an O(1/tp) rate of convergence. As direct result of the time-
dilation property (Theorem 2.2), the entire family of curves (2.14) can be obtained by speed-
ing up the curve in the case p = 2 by the time-dilation function τ(t) = tp/2. In Section 2.5
we discuss the issue of the existence and uniqueness of the solution to the differential equa-
tion (2.14).
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The case p = 2 of the equation (2.14) is the continuous-time limit of Nesterov’s accelerated
mirror descent [49], and the case p = 3 is the continuous-time limit of Nesterov’s accelerated
cubic-regularized Newton’s method [46]. The case p = 2 has also been derived independently
in a recent work of Krichene et al. [33]; in the Euclidean case, when the Hessian ∇2h is the
identity matrix, we recover the differential equation of Su et al. [61].

Naive discretization

We now turn to the challenge of discretizing the differential equation in (2.14), with the goal
of obtaining a discrete-time algorithm whose convergence rate matches that of the underlying
differential equation. As we show in this section, a naive Euler method is not able to match
the underlying rate. To match the rate a more sophisticated approach is needed, and it is
at this juncture that Nesterov’s three-sequence idea makes its appearance.

We first write the second-order equation (2.14) as the following system of first-order
equations:

Zt = Xt +
t

p
Ẋt (2.15a)

d

dt
∇h(Zt) = −Cptp−1∇f(Xt). (2.15b)

Now we discretize Xt and Zt into sequences xk and zk with time step δ > 0. That is, we
make the identification t = δk and set xk = Xt, xk+1 = Xt+δ ≈ Xt + δẊt and zk = Zt,
zk+1 = Zt+δ ≈ Zt + δŻt. Applying the forward-Euler method to (2.15a) gives the equation
zk = xk + δk

p
1
δ
(xk+1 − xk), or equivalently,

xk+1 =
p

k
zk +

k − p
k

xk. (2.16)

Similarly, applying the backward-Euler method to equation (2.15b) gives 1
δ
(∇h(zk)−∇h(zk−1)) =

−Cp(δk)p−1∇f(xk), which we can write as the optimality condition of the following weighted
mirror descent step:

zk = arg min
z

{
Cpkp−1〈∇f(xk), z〉+

1

ε
Dh(z, zk−1)

}
, (2.17)

with step size ε = δp. In principle, the two updates (2.16), (2.17) define an algorithm that
implements the dynamics (2.15) in discrete time. However, we cannot establish a conver-
gence rate for the algorithm (2.16), (2.17); indeed, empirically, we find that the algorithm is
unstable. Even for the simple case in which f is a quadratic function in two dimensions, the
iterates of the algorithm initially approach and oscillate near the minimizer, but eventually
the oscillation increases and the iterates shoot off to infinity.
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A rate-matching discretization

We now discuss how to modify the naive discretization scheme (2.16), (2.17) into an al-
gorithm whose rate matches that of the underlying differential equation. Our approach
is inspired by Nesterov’s constructions of accelerated mirror descent [49] and accelerated
cubic-regularized Newton’s method [46], which maintain three sequences in the algorithms
and use the estimate sequence technique to prove convergence. Indeed, from our point of
view, Nesterov’s methodology can be viewed as a rate-matching discretization methodology.

Specifically, we consider the following scheme, in which we introduce a third sequence yk
to replace xk in the updates,

xk+1 =
p

k + p
zk +

k

k + p
yk (2.18a)

zk = arg min
z

{
Cpk(p−1)〈∇f(yk), z〉+

1

ε
Dh(z, zk−1)

}
, (2.18b)

where k(p−1) := k(k + 1) · · · (k + p − 2) is the rising factorial. A sufficient condition for the
algorithm (2.18) to have an O(1/(εkp)) convergence rate is that the new sequence yk satisfy
the inequality

〈∇f(yk), xk − yk〉 ≥Mε
1
p−1‖∇f(yk)‖

p
p−1
∗ , (2.19)

for some constant M > 0. Note that in going from (2.16) to (2.18a) we have replaced the
weight p

k
by p

k+p
; this is only for convenience in the proof given below, and does not change

the asymptotics since p
k

= Θ( p
k+p

) as k → ∞. Similarly, we replace kp−1 in (2.17) by the

rising factorial k(p−1) in (2.18b) to make the algebra easier, but we still have k(p−1) = Θ(kp−1).
The following result also requires a uniform convexity assumption on the distance-generating

function h. Recall that h is σ-uniformly convex of order p ≥ 2 if its Bregman divergence is
lower bounded by the p-th power of the norm,

Dh(y, x) ≥ σ

p
‖y − x‖p. (2.20)

The case p = 2 is the usual definition of strong convexity. An example of a uniformly convex
function is the p-th power of the norm, h(x) = 1

p
‖x−w‖p for any w ∈ X , which is σ-uniformly

convex of order p with σ = 2−p+2 [46, Lemma 4].

Theorem 2.3. Assume h is 1-uniformly convex of order p ≥ 2, and the sequence yk satisfies
the inequality (2.19) for all k ≥ 0. Then the algorithm (2.18) with the constant C ≤Mp−1/pp

and initial condition z0 = x0 ∈ X has the convergence rate

f(yk)− f(x∗) ≤ Dh(x
∗, x0)

Cεk(p)
= O

(
1

εkp

)
. (2.21)
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The proof of Theorem 2.3 uses a generalization of Nesterov’s estimate sequence technique,
and can be found in Section 2.5. We note that with the scaling ε = δp as in the previous
section, the convergence rate O(1/(εkp)) matches the O(1/tp) rate in continuous time for the
differential equation (2.14). We also note that the result in Theorem 2.3 does not require
any assumptions on f beyond the ability to construct a sequence yk satisfying (2.19). In the
next section, we will see that we can satisfy (2.19) using the higher-order gradient method,
which requires a higher-order smoothness assumption on f ; the resulting algorithm is then
the accelerated higher-order gradient method.

Higher-order gradient method

We study the higher-order gradient update, which minimizes a regularized higher-order Tay-
lor approximation of the objective function f .

Recall that for an integer p ≥ 2, the (p− 1)-st order Taylor approximation of f centered
at x ∈ X is the (p− 1)-st degree polynomial

fp−1(y;x) =

p−1∑
i=0

1

i!
∇if(x)(y − x)i

= f(x) + 〈∇f(x), y − x〉+ · · ·+ 1

(p− 1)!
∇p−1f(x)(y − x)p−1.

We say that f is L-smooth of order p−1 if f is p-times continuously differentiable and ∇p−1f
is L-Lipschitz, which means for all x, y ∈ X ,

‖∇p−1f(y)−∇p−1f(x)‖∗ ≤ L‖y − x‖. (2.22)

For a constant N > 0 and step size ε > 0, we define the update operator Gp,ε,N : X → X
by

Gp,ε,N(x) = arg min
y

{
fp−1(y;x) +

N

εp
‖y − x‖p

}
. (2.23)

When f is smooth of order p − 1, the operator Gp,ε,N has the following property, which
generalizes [46, Lemma 6]. We provide the proof in Section 2.5.

Lemma 2.4. Let x ∈ X , y = Gp,ε,N(x), and N > 1. If f is L = (p−1)!
ε

-smooth of order p−1,
then

〈∇f(y), x− y〉 ≥ (N2 − 1)
p−2
2p−2

2N
ε

1
p−1‖∇f(y)‖

p
p−1
∗ . (2.24)

Furthermore,

(N2 − 1)
p−2
2p−2

2N
ε

1
p−1‖∇f(y)‖

1
p−1
∗ ≤ ‖x− y‖ ≤ 1

(N − 1)
1
p−1

ε
1
p−1‖∇f(y)‖

1
p−1
∗ . (2.25)
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The inequality (2.24) means that we can use the update operator Gp,ε,N to produce a se-
quence yk satisfying the requirement (2.19) under a higher-order order smoothness condition
on f . We state the resulting algorithm in the next section.

Higher-order gradient method. In this section, we study the following higher-order
gradient algorithm defined by the update operator Gp,ε,N :

xk+1 = Gp,ε,N(xk). (2.26)

The case p = 2 is the usual gradient descent algorithm, and the case p = 3 is Nesterov and
Polyak’s cubic-regularized Newton’s method [50].

If f is smooth of order p−1, then the algorithm (2.26) is a descent method. Furthermore,
we can prove the following rate of convergence, which generalizes the results for gradient
descent and the cubic-regularized Newton’s method. We provide the proof in Section 2.5.

Theorem 2.5. If f is (p−1)!
ε

-smooth of order p− 1, then the algorithm (2.26) with constant
N > 0 and initial condition x0 ∈ X has the convergence rate

f(xk)− f(x∗) ≤ pp−1(N + 1)Rp

εkp−1
= O

(
1

εkp−1

)
, (2.27)

where R = supx : f(x)≤f(x0) ‖x−x∗‖ is the radius of the level set of f from the initial point x0.

Rescaled gradient flow. We can take the continuous-time limit of the higher-order gradi-
ent algorithm as the step size ε→ 0. The resulting curve is a first-order differential equation
that is a rescaled version of gradient flow. We show that it minimizes f with a matching con-
vergence rate. In the following, we take N = 1 in (2.26) for simplicity (the general N simply
scales the vector field by a constant). We provide the proof of Theorem 2.6 in Section 2.5.

Theorem 2.6. The continuous-time limit of the algorithm (2.26) is the rescaled gradient
flow

Ẋt = − ∇f(Xt)

‖∇f(Xt)‖
p−2
p−1
∗

, (2.28)

where we define the right-hand side to be the zero if ∇f(Xt) = 0. Furthermore, the rescaled
gradient flow has convergence rate

f(Xt)− f(x∗) ≤ (p− 1)p−1Rp

tp−1
= O

(
1

tp−1

)
, (2.29)

where R = supx : f(x)≤f(X0) ‖x − x∗‖ is the radius of the level set of f from the initial point
X0.
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Equivalently, we can interpret the higher-order gradient algorithm (2.26) as a discretiza-

tion of the rescaled gradient flow (2.28) with time step δ = ε
1
p−1 , so t = δk = ε

1
p−1k. With

this identification, the convergence rates in discrete time, O(1/(εkp−1)), and in continuous
time, O(1/tp−1), match. The convergence rate for the continuous-time dynamics does not
require any assumption beyond the convexity and differentiability of f (as in the case of
the Lagrangian flow (2.6)), whereas the convergence rate for the discrete-time algorithm re-
quires the higher-order smoothness assumption on f . We note that the limiting case p→∞
of (2.28) is the normalized gradient flow, which has been shown to converge to the minimizer
of f in finite time [15]. We also note that unlike the Lagrangian flow, the family of rescaled
gradient flows is not closed under time dilation.

Accelerated higher-order gradient method

By the result of Lemma 2.4, we see that we can use the higher-order gradient update Gp,ε,N

to produce a sequence yk satisfying the inequality (2.19), to complete the algorithm (2.26)
that implements the polynomial family of the Bregman-Lagrangian flow (2.14). Explicitly,
the resulting algorithm is as follows,

xk+1 =
p

k + p
zk +

k

k + p
yk (2.30a)

yk = arg min
y

{
fp−1(y;xk) +

N

εp
‖y − xk‖p

}
(2.30b)

zk = arg min
z

{
Cpk(p−1)〈∇f(yk), z〉+

1

ε
Dh(z, zk−1)

}
. (2.30c)

By Theorem 2.3 and Lemma 2.4, we have the following guarantee for this algorithm.

Corollary 2.7. Assume f is (p−1)!
ε

-smooth of order p − 1, and h is 1-uniformly convex of

order p. Then the algorithm (2.30) with constants N > 1 and C ≤ (N2− 1)
p−2
2 /((2N)p−1pp)

and initial conditions z0 = x0 ∈ X has an O(1/(εkp)) convergence rate.

The resulting algorithm (2.30) and its convergence rate recovers the results of Baes [9],
who studied a generalization of Nesterov’s estimate sequence technique to higher-order algo-
rithms. We note that the convergence rate O(1/(εkp)) of algorithm (2.30) is better than the
O(1/(εkp−1)) rate of the higher-order gradient algorithm (2.26), under the same assumption
of the (p− 1)-st order smoothness of f . This gives the interpretation of the algorithm (2.30)
as “accelerating” the higher-order gradient method. Indeed, in this view the “base algo-
rithm” that we start with is the higher-order gradient algorithm in the y-sequence (2.30b),
and the acceleration is obtained by coupling it with a suitably weighted mirror descent step
in (2.30a) and (2.30c).

However, from the continuous-time point of view, where our starting point is the poly-
nomial Lagrangian flow (2.14), we see that the algorithm (2.30) is only one possible im-
plementation of the flow as a discrete-time algorithm. As we saw previously, it is only the
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x- and z-sequences (2.30a) and (2.30c) that play a role in the correspondence between the
continuous-time dynamics and its discrete-time implementation, and the requirement (2.19)
in the y-update is only needed to complete the convergence proof. Indeed, the higher-order
gradient update (2.30b) does not change the continuous-time limit, since from (2.25) in

Lemma 2.4 we have that ‖xk − yk‖ = Θ(ε
1
p−1 ), which is smaller than the δ = ε

1
p time step

in the discretization of (2.14). Therefore, the x and y sequences in (2.30) coincide in con-
tinuous time as ε → 0. Thus, from this point of view, Nesterov’s accelerated methods (for
the cases p = 2 and p = 3) are one of possibly many discretizations of the polynomial La-
grangian flow (2.14). For instance, in the case p = 2, Krichene et al. [33, Section 4.1] show
that we can use a general regularizer in the gradient step (2.30b) under some additional
smoothness assumptions. If there are other implementations, it would be interesting to see
if the higher-gradient methods have some distinguishing property, such as computational
efficiency.

2.3 Further explorations of the Bregman Lagrangian

In addition to providing a unifying framework for the generation of accelerated gradient-based
algorithms, the Bregman Lagrangian has mathematical structure that can be investigated
directly. In this section we briefly discuss some of the additional perspective that can be
obtained from the Bregman Lagrangian. We elaborate on these results in Sections 2.6–2.12.

Hessian vs. Bregman Lagrangian. It is important to note the presence of the Bregman
divergence in the Bregman Lagrangian (2.1). In the non-Euclidean setting, intuition might
suggest using the Hessian metric ∇2h to measure a “kinetic energy,” and thereby obtain
a Hessian Lagrangian. This approach turns out to be unsatisfying, however, because the
resulting differential equation does not yield a convergence rate and the Euler-Lagrange
equation involves the third-order derivative ∇3h, posing serious difficulties for discretization.
As we have seen, the Bregman Lagrangian, on the other hand, readily provides a rate
of convergence via a Lyapunov function; moreover, the resulting discrete-time algorithm
in (2.30) involves only the gradient ∇h via the weighted mirror descent update.

Gradient vs. Lagrangian flows. In the Euclidean case, it is known classically that we
can view gradient flow as the strong-friction limit of a damped Lagrangian flow [67, p. 646].
We show that the same interpretation holds for natural gradient flow and rescaled gradient
flow. In particular, we show in Section 2.8 that we can recover natural gradient flow as the
strong-friction limit of a Bregman Lagrangian flow with an appropriate choice of parameters.
Similarly, we can recover the rescaled gradient flow (2.28) as the strong-friction limit of a
Lagrangian flow that uses the p-th power of the norm as the kinetic energy. Therefore,
the general family of second-order Lagrangian flows is more general, and includes first-order
gradient flows in its closure. From this point of view, a particle with gradient-flow dynamics
is operating in the regime of high friction. The particle simply rolls downhill and stops at the
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equilibrium point as soon as the force −∇f vanishes; there is no oscillation since it is damped
by the infinitely strong friction. Thus, the effect of moving from a first-order gradient flow
to a second-order Lagrangian flow is to reduce the friction from infinity to a finite amount;
this permits oscillation [51, 61, 33], but also allows faster convergence.

Bregman Hamiltonian. One way to understand a Lagrangian is to study its Hamilto-
nian, which is the Legendre conjugate (dual function) of the Lagrangian. Typically, when
the Lagrangian takes the form of the difference between kinetic and potential energy, the
Hamiltonian is the sum of the kinetic and potential energy. The Hamiltonian is often easier
to study than the Lagrangian, since its second-order Euler-Lagrangian equation is trans-
formed into a pair of first-order equations. In our case, the Hamiltonian corresponding to
the Bregman Lagrangian (2.1) is the following Bregman Hamiltonian,

H(x, p, t) = eαt+γt
(
Dh∗

(
∇h(x) + e−γtp, ∇h(x)

)
+ eβtf(x)

)
which indeed has the form of the sum of the kinetic and potential energy. Here the kinetic
energy is measured using the Bregman divergence of h∗, which is the convex dual function
of h.

Gauge invariance. The Euler-Lagrange equation of a Lagrangian is gauge-invariant,
which means it does not change when we add a total time derivative to the Lagrangian. For
the Bregman Lagrangian with the ideal scaling condition (2.2b), this property implies that
we can replace the Bregman divergence Dh(x+e−αtẋ, x) in (2.1) by its first term h(x+e−αtẋ).
This might suggest a different interpretation of the role of h in the Lagrangian, one that is
more symmetric to f .

Natural motion. The natural motion of the Bregman Lagrangian (i.e., the motion when
there is no force, −∇f ≡ 0) is given by Xt = ae−γt + b, for some constants a, b ∈ X . Notice
that even though the Bregman Lagrangian still involves the distance-generating function h,
its natural motion is actually independent of h. Thus, the effect of h is felt only via its
interaction with f—this can also be seen in (2.6) where h and f only appear together in the
final term. Furthermore, assuming eγt →∞, the natural motion always converges to a limit
point, which a priori can be anything. However, as we see from Theorem 2.1, as soon as we
introduce a convex potential function f , all motions converge to the minimizer x∗ of f .

Exponential convergence rate via uniform convexity In addition to the polynomial
family in Section 2.2, we can also study the subfamily of Bregman Lagrangians that have
exponential convergence rates O(e−ct), c > 0. As we discuss in Section 2.6, in this case the
link to discrete-time algorithms is not as clear. Using the same discretization technique as
in Section 2.2 suggests that to get a matching convergence rate, constant progress is needed
at each iteration.
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From the discrete-time perspective, we show that the higher-order gradient algorithm (2.26)
achieves an exponential convergence rate when the objective function f is uniformly con-
vex. Furthermore, we show that a restart scheme applied to the accelerated method (2.30)
achieves a better dependence on the condition number; this generalizes Nesterov’s restart
scheme for the case p = 3 [46, Section 5].

It is an open question to understand if there is a better connection between the discrete-
time restart algorithms and the continuous-time exponential Lagrangian flows. In particular,
it is of interest to consider whether a restart scheme is necessary to achieve exponential
convergence in discrete time; we know it is not needed for the special case p = 2, since
a variant of Nesterov’s accelerated gradient descent [48] that incorporates the condition
number also achieves the optimal convergence rate.

2.4 Discussion

In this chapter, we have presented a variational framework for understanding accelerated
methods from a continuous-time perspective. We presented the general family of Bregman
Lagrangian, which generates a family of second-order Lagrangian dynamics that minimize
the objective function at an accelerated rate compared to gradient flows. These dynamics are
related to each other by the operation of speeding up time, because the Bregman Lagrangian
family is closed under time dilation. In the polynomial case, we showed how to discretize
the second-order Lagrangian dynamics to obtain an accelerated algorithm with a matching
convergence rate. The resulting algorithm accelerates a base algorithm by coupling it with
a weighted mirror descent step. An example of a base algorithm is a higher-order gradient
method, which in continuous time corresponds to a first-order rescaled gradient flow with
a matching convergence rate. Our continuous-time perspective makes clear that it is the
mirror descent coupling that is more important for the acceleration phenomenon rather
than the base algorithm. Indeed, the higher-order gradient algorithm operates on a smaller
timescale than the enveloping mirror descent coupling step, so it makes no contribution in
the continuous-time limit, and in principle we can use other base algorithms.

Our work raises many questions for further research. First, the case p = 2 is worthy
of further investigation. In particular, the assumptions needed to show convergence of the
discrete-time algorithm (∇p−1f is Lipschitz) are different than those required to show ex-
istence and uniqueness of solutions of the continuous-time dynamics (∇f is Lipschitz). In
the case p = 2 however, these assumptions match. This suggests a strong link between the
discrete- and continuous-time dynamics that might help us understand why several results
seem to be unique to the special case p = 2. Second, in discrete time, Nesterov’s accelerated
methods have been extended to various settings, for example to the stochastic setting. An
immediate question is whether we can extend our Lagrangian framework to these settings.
Third, we would like to understand better the transition from continuous-time dynamics to
discrete-time algorithms, and whether we can establish general assumptions that preserve
desirable properties (e.g., convergence rate). In Section 2.2 we saw that the polynomial
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convergence rate requires a higher-order smoothness assumption in discrete time, and in
Section 2.3 we discussed whether the exponential case requires a uniform convexity assump-
tion. Finally, our work to date focuses on the convergence rates of the function values rather
than the iterates. Recently there has been some work extending [61] to study the conver-
gence of the iterates [8] and some perturbative aspects [7]; it would be interesting to extend
these results to the general Bregman Lagrangian.

At an abstract level, the general family of Bregman Lagrangian has a rich mathematical
structure that deserves further study; we discussed some of these properties in Section 2.3.
We hope that doing so will give us new insights into the nature of the optimization problem in
continuous time, and help us design better dynamics with matching discrete-time algorithms.
For example, we can study how to use some of the appealing properties of the Hamiltonian
formalism (e.g., volume preservation in phase space) to help us discretize the dynamics. We
also wish to understand where the Bregman Lagrangian itself comes from, why it works so
well, and whether there are other Lagrangian families with similarly favorable properties.

2.5 Proofs of results

Proof of Theorem 2.2

The velocity and acceleration of the reparameterized curve Yt = Xτ(t) are given by

Ẏt = τ̇(t) Ẋτ(t)

Ÿt = τ̈(t) Ẋτ(t) + τ̇(t)2 Ẍτ(t).

Inverting these relations, we get

Ẋτ(t) =
1

τ̇(t)
Ẏt (2.31a)

Ẍτ(t) =
1

τ̇(t)2
Ÿt −

τ̈(t)

τ̇(t)3
Ẏt. (2.31b)

By assumption, the original curve Xt satisfies the Euler-Lagrange equation (2.5) for the
Bregman Lagrangian Lα,β,γ. At time τ(t), this equation reads

Ẍτ(t) + (eατ(t) − α̇τ(t))Ẋτ(t) + e2ατ(t)+βτ(t)

[
∇2h(Xτ(t) + e−ατ(t)Ẋτ(t))

]−1

∇f(Xτ(t))

+ eατ(t)(γ̇τ(t) − eατ(t))
[
∇2h(Xτ(t) + e−ατ(t)Ẋτ(t))

]−1

(∇h(Xτ(t) + e−ατ(t)Ẋτ(t))−∇h(Xτ(t))) = 0.

We now use the relations (2.31). After multiplying by τ̇(t)2 and collecting terms, we get

Ÿt +

(
τ̇(t)eατ(t) − τ̇(t)α̇τ(t) −

τ̈(t)

τ̇(t)

)
Ẏt + τ̇(t)2e2ατ(t)+βτ(t)

[
∇2h

(
Yt +

e−ατ(t)

τ̇(t)
Ẏt

)]−1

∇f(Yt)

+ τ̇(t)2eατ(t)(γ̇τ(t) − eατ(t))
[
∇2h

(
Yt +

e−ατ(t)

τ̇(t)
Ẏt

)]−1(
∇h
(
Yt +

e−ατ(t)

τ̇(t)
Ẏt

)
−∇h(Yt)

)
= 0.
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Finally, with the definition of the modified parameters α̃, β̃, γ̃ (2.10), we can write this
equation as

Ÿt + (eα̃t − ˙̃αt)Ẏt + e2α̃t+β̃t
[
∇2h(Yt + e−α̃tẎt)

]−1

∇f(Yt)

+ eα̃t( ˙̃γt − eα̃t)
[
∇2h(Yt + e−α̃tẎt)

]−1

(∇h(Yt + e−α̃tẎt)−∇h(Yt)) = 0,

which we recognize as the Euler-Lagrange equation (2.5) for the Bregman Lagrangian Lα̃,β̃,γ̃.
Furthermore, suppose α, β, γ satisfy the ideal scaling (2.2). Then

˙̃βt =
d

dt
βτ(t) = τ̇(t)β̇τ(t)

(2.2a)

≤ τ̇(t)eατ(t) = eατ(t)+log τ̇(t) = eα̃t

˙̃γt =
d

dt
γτ(t) = τ̇(t)γ̇τ(t)

(2.2b)
= τ̇(t)eατ(t) = eατ(t)+log τ̇(t) = eα̃t ,

which means that the modified parameters α̃, β̃, γ̃ also satisfy the ideal scaling (2.2). The
converse follows by considering the inverse function τ−1(t) in place of τ(t).

Existence and uniqueness of solution to the polynomial family

In this section we discuss the existence and uniqueness of solution to the differential equa-
tion (2.14) arising from the polynomial family of Bregman Lagrangian. We begin by writing
the second-order equation (2.14) as the pair of first-order equations (2.15). We also write
Wt = ∇h(Zt), so we can write (2.15) as

Ẋt =
p

t
(∇h∗(Wt)−Xt) (2.32a)

Ẇt = −Cptp−1∇f(Xt). (2.32b)

Here h∗ : X ∗ → R is the Legendre conjugate function of h, defined by

h∗(w) = sup
z∈X
{〈w, z〉 − h(z)} , (2.33)

where X ∗ is the dual space of X , i.e., the space of all linear functionals over X . Under the
assumption that h be essentially smooth, the supremum in (2.33) is achieved by z = ∇h∗(w),
and we have the relation that ∇h and ∇h∗ are inverses of each other, i.e., z = ∇h∗(w) ⇔
w = ∇h(z). Thus, with the definition Wt = ∇h(Zt), we can write Zt = ∇h∗(Wt), which
gives us (2.32).

Now assume ∇f and ∇h∗ are Lipschitz continuous functions. Then over any bounded
time intervals [t0, t1] with 0 < t0 < t1, the right-hand side of (2.32) is a Lipschitz contin-
uous vector field. Thus, by the Cauchy-Lipschitz theorem, for any given initial conditions
(Xt0 ,Wt0) = (x0, w0) at time t = t0, the system of differential equations (2.32) has a unique
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solution over the time interval [t0, t1]. Furthermore, the solution does not blow up in any
finite time, since from Theorem 2.1 we know that the energy functional Et (2.8) is non-
increasing, so in particular, the Bregman divergence Dh(x

∗, Xt + t
p
Ẋt) is bounded above by

a constant. Since t1 is arbitrary, this shows that (2.32) has a unique maximal solution, i.e.,
t1 can be extended to t1 → +∞.

In the above argument we have started at time t0 > 0, because the vector field in (2.32)
has a singularity at t = 0. For p = 2, Su et al. [61] and Krichene et al. [33] treat the case
when we start at t = 0 with initial condition (X0,W0) = (x0,∇h(x0)), so that Ẋ0 = 0. In
that case, they show that the system (2.32) still has a unique solution for all time [0,∞), by
replacing the p/t coefficient by the approximation p/max{t, δ} for δ > 0 and letting δ → 0.
We can adapt this technique to the more general case (2.32); alternatively, we can appeal
to the time dilation property and state that since the general system (2.32) is the result of
speeding up the p = 2 case by time dilation function τ(t) = tp/2, once we know a unique
solution exists for p = 2, we can also conclude that it exists for all p > 0.

Proof of Theorem 2.3

We define the following function, which is a generalization of Nesterov’s estimate function
from [46],

ψk(x) = Cp
k∑
i=0

i(p−1)
[
f(yi) + 〈∇f(yi), x− yi〉

]
+

1

ε
Dh(x, x0). (2.34)

The estimate function ψk arises as the objective function that the sequence zk is optimizing
in (2.18b). Indeed, the optimality condition for the zk update (2.18b) is

∇h(zk) = ∇h(zk−1)− εCpk(p−1)∇f(yk).

By unrolling the recursion, we can write

∇h(zk) = ∇h(z0)− εCp
k∑
i=0

i(p−1)∇f(yi),

and since x0 = z0, we can write this equation as ∇ψk(zk) = 0. Since ψk is a convex function,
this means zk is the minimizer of ψk. Thus, we can equivalently write the update for zk as

zk = arg min
z

ψk(z). (2.35)

For proving the convergence rate for the algorithm (2.18), we have the following property.

Lemma 2.8. For all k ≥ 0, we have

ψk(zk) ≥ Ck(p)f(yk). (2.36)
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Proof. We proceed via induction on k ≥ 0. The base case k = 0 is true since both sides
equal zero. Now assume (2.36) holds for some k ≥ 0; we will show it also holds for k + 1.

Since h is 1-uniformly convex of order p, the rescaled Bregman divergence 1
ε
Dh(x, x0) is

(1
ε
)-uniformly convex. Thus, the estimate function ψk (2.34) is also (1

ε
)-uniformly convex of

order p. Since zk is the minimizer of ψk, ∇ψk(zk) = 0, so for all x ∈ X we have

ψk(x) = ψk(zk) +Dψk(x, zk) ≥ ψk(zk) +
1

εp
‖x− zk‖p.

Applying the inductive hypothesis (2.36) and using the convexity of f gives us

ψk(x) ≥ Ck(p)
[
f(yk+1) + 〈∇f(yk+1), yk − yk+1〉

]
+

1

εp
‖x− zk‖p.

We now add Cp(k + 1)(p−1)[f(yk+1) + 〈∇f(yk+1), x− yk+1〉] to both sides of the equation to
obtain

ψk+1(x) ≥ C(k + 1)(p)
[
f(yk+1) +

〈
∇f(yk+1), xk+1 − yk+1 + τk(x− zk)

〉]
+

1

εp
‖x− zk‖p,

(2.37)

where τk = p(k+1)(p−1)

(k+1)(p)
= p

k+p
, and where we have also used the definition of xk+1 as a convex

combination of yk and zk with weight τk (2.18a).
Note that the first term in (2.37) gives our desired inequality (2.36) for k+1. So to finish

the proof, we have to prove the remaining terms in (2.37) are nonnegative. We do so by
applying two inequalities. We first apply the inequality (2.19) to the term 〈∇f(yk+1), xk+1−
yk+1〉, so from (2.37) we have

ψk+1(x) ≥ C(k + 1)(p)f(yk+1) + C(k + 1)(p)Mε
1
p−1 ‖∇f(yk+1)‖

p
p−1
∗

+ Cp(k + 1)(p−1)〈∇f(yk+1), x− zk〉 +
1

εp
‖x− zk‖p.

(2.38)

Next, we apply the Fenchel-Young inequality [46, Lemma 2]

〈s, u〉+
1

p
‖u‖p ≥ −p− 1

p
‖s‖

p
p−1
∗ (2.39)

with the choices u = ε−
1
p (x− zk) and s = ε

1
pCp(k + 1)(p−1)∇f(yk+1). Then from (2.38), we

obtain

ψk+1(x) ≥ C(k + 1)(p)

[
f(yk+1) +

(
M − p− 1

p
p

p
p−1 C

1
p−1
{(k + 1)(p−1)}

p
p−1

(k + 1)(p)

)
ε

1
p−1 ‖∇f(yk+1)‖

p
p−1
∗

]
.

Notice that {(k + 1)(p−1)}
p
p−1 ≤ (k + 1)(p). Then from the assumption C ≤Mp−1/pp, we see

that the second term inside the parentheses is nonnegative. Hence we conclude the desired
inequality ψk+1(x) ≥ C(k + 1)(p)f(yk+1). Since x ∈ X is arbitrary, it also holds for the
minimizer x = zk+1 of ψk+1, finishing the induction.
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With Lemma 2.8 in hand, we can complete the proof of Theorem 2.3.

Proof of Theorem 2.3. Since f is convex, we can bound the estimate sequence ψk by

ψk(x) ≤ Cp

k∑
i=0

i(p−1)f(x) +
1

ε
Dh(x, x0) = Ck(p)f(x) +

1

ε
Dh(x, x0).

This holds for all x ∈ X , and in particular for the minimizer x∗ of f . Combining the bound
with the result of Lemma 2.8, and recalling that zk is the minimizer of ψk, we get

Ck(p)f(yk) ≤ ψk(zk) ≤ ψk(x
∗) ≤ Ck(p)f(x∗) +

1

ε
Dh(x

∗, x0).

Rearranging and dividing by Ck(p) gives us the desired convergence rate (2.21).

Proof of Lemma 2.4

We follow the approach of [46, Lemma 6]. Since y solves the optimization problem (2.23), it
satisfies the optimality condition

p−1∑
i=1

1

(i− 1)!
∇if(x) (y − x)i−1 +

N

ε
‖y − x‖p−2 (y − x) = 0. (2.40)

Furthermore, since∇p−1f is (p−1)!
ε

-Lipschitz, we have the following error bound on the (p−2)-
nd order Taylor expansion of ∇f ,∥∥∥∥∥∇f(y)−

p−1∑
i=1

1

(i− 1)!
∇if(x) (y − x)i−1

∥∥∥∥∥
∗

≤ 1

ε
‖y − x‖p−1. (2.41)

Substituting (2.40) to (2.41) and writing r = ‖y − x‖, we obtain∥∥∥∥∇f(y) +
Nrp−2

ε
(y − x)

∥∥∥∥
∗
≤ rp−1

ε
. (2.42)

Squaring both sides, expanding, and rearranging the terms, we get the inequality

〈∇f(y), x− y〉 ≥ ε

2Nrp−2
‖∇f(y)‖2

∗ +
(N2 − 1)rp

2Nε
. (2.43)

Note that if p = 2, then the first term in (2.43) already implies the desired bound (2.24).
Now assume p ≥ 3. The right-hand side of (2.43) is of the form A/rp−2 + Brp, which is a

convex function of r > 0 and minimized by r∗ =
{

(p−2)
p

A
B

} 1
2p−2

, yielding a minimum value of

A

(r∗)p−2
+B(r∗)p = A

p
2p−2B

p−2
2p−2

[(
p

p− 2

) p−2
2p−2

+

(
p− 2

p

) p
p−2

]
≥ A

p
2p−2B

p−2
2p−2 .
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Substituting the values A = ε
2N
‖∇f(y)‖2

∗ and B = 1
2Nε

(N2 − 1) from (2.43), we obtain

〈∇f(y), x− y〉 ≥
( ε

2N
‖∇f(y)‖2

∗

) p
2p−2

(
1

2Nε
(N2 − 1)

) p−2
2p−2

=
(N2 − 1)

p−2
2p−2

2N
ε

1
p−1‖∇f(y)‖

p
p−1
∗

which proves (2.24).
To obtain the first inequality of (2.25), we use Cauchy-Schwarz inequality on (2.24),

(N2 − 1)
p−2
2p−2

2N
ε

1
p−1‖∇f(y)‖

p
p−1
∗ ≤ 〈∇f(y), x− y〉 ≤ ‖∇f(y)‖∗ ‖x− y‖

and cancel out ‖∇f(y)‖∗ from both sides. For the second inequality of (2.25), we use triangle
inequality on the left hand side of (2.42),

Nrp−1

ε
− ‖∇f(y)‖∗ ≤

∥∥∥∥∇f(y) +
Nrp−2

ε
(y − x)

∥∥∥∥
∗
≤ rp−1

ε
.

Rearranging the terms and taking the (p− 1)-st root of both sides gives us the result (2.25).

Proof of Theorem 2.5

This proof follows the approach in the proof of [46, Theorem 1]. We first prove the following
lemma. Here δk = f(xk)− f(x∗) ≥ 0 denotes the residual value at iteration k.

Lemma 2.9. Under the setting of Theorem 2.5, we have

δk+1 ≤ δk −
(p− 1)

p
·
(

εδpk
(N + 1)Rp

) 1
p−1

. (2.44)

Proof. Since f is (p−1)!
ε

-smooth of order p− 1, by the Taylor remainder theorem we have the
bound

|fp−1(x;xk)− f(x)| ≤ 1

εp
‖x− xk‖p.

Then from the definition of xk+1 (2.26), we have

f(xk+1) = min
x∈X

{
fp−1(x;xk) +

N

εp
‖x− xk‖p

}
≤ min

x∈X

{
f(x) +

N + 1

εp
‖x− xk‖p

}
. (2.45)

Plugging in x = xk on the right-hand side of (2.45) shows that f(xk+1) ≤ f(xk); that is, the
algorithm (2.26) is a descent method. In particular, for all k ≥ 0 we have ‖xk − x∗‖ ≤ R,
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where R = supx : f(x)≤f(x0) ‖x − x∗‖ is the radius of the level set as defined in Theorem 2.5.
Moreover, plugging in x = x∗ on the right-hand side of (2.45) gives us

f(xk+1)− f(x∗) ≤ N + 1

εp
‖xk − x∗‖p ≤

N + 1

εp
Rp. (2.46)

Now for any λ ∈ [0, 1], consider the midpoint

xλ = x∗ + (1− λ)(xk − x∗) = λx∗ + (1− λ)xk.

By Jensen’s inequality, f(xλ) ≤ λf(x∗)+(1−λ)f(xk). We also have ‖xλ−xk‖ = λ‖xk−x∗‖ ≤
λR. Plugging in the point xλ to the right-hand side of (2.45) gives

f(xk+1) ≤ f(xλ) +
N + 1

εp
‖xλ − xk‖p ≤ λf(x∗) + (1− λ)f(xk) +

N + 1

εp
Rpλp.

With the notation δk = f(xk)− f(x∗), we can write the last inequality as

δk+1 ≤ (1− λ)δk +
N + 1

εp
Rpλp. (2.47)

The right-hand side is a convex function of λ, which is minimized at λ∗ =
{

ε
N+1

δk
Rp

} 1
p−1 .

Note that λ∗ ∈ [0, 1] by (2.46). Plugging in λ∗ to (2.47) yields the desired bound (2.44).

With Lemma 2.9, we can complete the proof of Theorem 2.5.

Proof of Theorem 2.5. Define the energy functional ek = δ
− 1
p−1

k . We can write

ek+1 − ek =
1

δ
1
p−1

k+1

− 1

δ
1
p−1

k

=
δ

1
p−1

k − δ
1
p−1

k+1

δ
1
p−1

k+1 · δ
1
p−1

k

=
δk − δk+1

δ
1
p−1

k+1 · δ
1
p−1

k

· 1(∑p−2
i=0 δ

i
p−1

k · δ
p−2−i
p−1

k+1

) . (2.48)

Since δk+1 ≤ δk, we can upper bound the summation in the denominator of (2.48) by

(p− 1)δ
p−2
p−1

k . We use Lemma 2.9 to lower bound δk − δk+1, obtaining

ek+1 − ek ≥
(p− 1)

p
·
(

εδpk
(N + 1)Rp

) 1
p−1

· 1

δ
2
p−1

k

· 1

(p− 1)δ
p−2
p−1

k

=
1

p
·
(

ε

(N + 1)Rp

) 1
p−1

.

(2.49)

Summing (2.49) and telescoping the terms, we get

1

(f(xk)− f(x∗))
1
p−1

= ek ≥ ek − e0 ≥
k

p
·
(

ε

(N + 1)Rp

) 1
p−1

which gives us the desired conclusion (2.27).
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Proof of Theorem 2.6

We write the higher-order gradient algorithm (2.26) (with N = 1) as

xk+1 − xk = arg min
u

{
f(xk) + 〈∇f(xk), u〉+ · · ·+ 1

(p− 1)!
∇p−1f(xk)u

p−1 +
1

εp
‖u‖p

}
.

(2.50)

Our goal is to express the sequence xk as a discretization xk = Xt, xk+1 = Xt+δ ≈ Xt + δẊt

of some continuous-time curve Xt with time step δ > 0, which will be a function of ε. To
that end, we write u = δv, so (2.50) becomes

xk+1 − xk
δ

= arg min
v

{
f(xk) + δ〈∇f(xk), v〉+ · · ·+ δp−1

(p− 1)!
∇p−1f(xk)v

p−1 +
δp

εp
‖v‖p

}
.

Eliminating the constant term f(xk) from the right-hand side, which does not change the
minimizer, and canceling a factor of δ, we get

xk+1 − xk
δ

= arg min
v

{
〈∇f(xk), v〉+

δ

2
∇2f(xk)v

2 + · · ·+ δp−2

(p− 1)!
∇p−1f(xk)v

p−1 +
δp−1

εp
‖v‖p

}
.

We see that the first term in the objective function does not depend on δ. As ε→ 0, for the
equation to have a meaningful limit, we have to set δp−1 = ε, so the last term in the objective
function becomes a constant. On the other hand, the middle terms all have dependence on

δ = ε
1
p−1 , so as ε→ 0, those terms vanish. Thus, the limit as ε→ 0 is

Ẋt = arg min
v

{
〈∇f(Xt), v〉+

1

p
‖v‖p

}
. (2.51)

Equivalently, Ẋt satisfies the optimality condition

∇f(Xt) + ‖Ẋt‖p−2Ẋt = 0. (2.52)

This gives us the relation ‖∇f(Xt)‖∗ = ‖Ẋt‖p−1, so we can also write (2.52) as

Ẋt = −∇f(Xt)

‖Ẋt‖p−2
= − ∇f(Xt)

‖∇f(Xt)‖
p−2
p−1
∗

,

which is the rescaled gradient flow as claimed in (2.28).
We note that the rescaled gradient flow (2.28) is a descent method, since

d

dt
f(Xt) = 〈∇f(Xt), Ẋt〉 = −‖∇f(Xt)‖

p
p−1
∗ ≤ 0.
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Now to establish the convergence rate of the rescaled gradient flow (2.28), we consider the
energy functional

Et = (f(Xt)− f(x∗))−
1
p−1 (2.53)

which is the same energy functional as in the discrete-time convergence proof in Section 2.5.
The energy functional Et has time derivative

Ėt = − 1

(p− 1)

〈∇f(Xt), Ẋt〉
(f(Xt)− f(x∗))

p
p−1

.

If Xt satisfies the rescaled gradient flow equation (2.28), then Ėt simplifies to

Ėt =
1

(p− 1)

(
‖∇f(Xt)‖∗

f(Xt)− f(x∗)

) p
p−1

. (2.54)

By the convexity of f and the Cauchy-Schwarz inequality, we have

0 ≤ f(Xt)− f(x∗) ≤ 〈∇f(Xt), Xt − x∗〉 ≤ ‖∇f(Xt)‖∗ ‖Xt − x∗‖.

Since the rescaled gradient flow is a descent method, we have ‖Xt − x∗‖ ≤ R. Therefore,
from (2.54) we get the bound

Ėt ≥
1

(p− 1)

1

‖Xt − x∗‖
p
p−1

≥ 1

(p− 1)R
p
p−1

.

This means that Et increases at least linearly, so

1

(f(Xt)− f(x∗))
1
p−1

= Et ≥ E0 +
t

(p− 1)R
p
p−1

≥ t

(p− 1)R
p
p−1

,

which gives us the desired result (2.29).

Remark: From the proof above, we see that rescaled gradient flow (2.28) is a generalization
of the usual gradient flow (the case p = 2) which is obtained by replacing the squared norm
by the p-th power of the norm in the variational formulation (2.51). It turns out that when
the objective function is the p-th power of the norm, f(x) = 1

p
‖x‖p, the rescaled gradient

flow (2.28) reduces to an explicit equation. Specifically, in this case we have ∇f(x) =
‖x‖p−2x, so ‖∇f(x)‖∗ = ‖x‖p−1. Therefore, the rescaled gradient flow equation (2.28)
becomes

Ẋt = − ∇f(Xt)

‖∇f(Xt)‖
p−2
p−1
∗

= −‖Xt‖p−2Xt

‖Xt‖p−2
= −Xt,

which is now independent of p, and has an explicit solution Xt = e−tX0.
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Alternative proof of convergence rate. In the proof above, we can also use the follow-
ing alternative energy functional,

Ẽt = tp(f(Xt)− f(x∗)). (2.55)

Its time derivative is

˙̃Et = ptp−1(f(Xt)− f(x∗)) + tp〈∇f(Xt), Ẋt〉
≤ ptp−1〈∇f(Xt), Xt − x∗〉+ tp〈∇f(Xt), Ẋt〉 (2.56a)

= ptp−1〈∇f(Xt), Xt − x∗〉 − tp‖∇f(Xt)‖
p
p−1
∗ , (2.56b)

where (2.56a) follows from the convexity of f , and in (2.56b) we have substituted the rescaled
gradient flow dynamic (2.28). We now apply the Fenchel-Young inequality (2.39) with s =
tp−1∇f(Xt) and u = −(p− 1)(Xt − x∗), to obtain

˙̃Et ≤
1

p− 1
‖(p− 1)(Xt − x∗)‖p ≤ (p− 1)p−1Rp, (2.57)

where in the last step we have used the fact that ‖Xt− x∗‖ ≤ R since rescaled gradient flow
is a descent method. Integrating (2.57) and plugging in the definition of Ẽt (2.55), we obtain

f(Xt)− f(x∗) ≤ (p− 1)p−1Rp

tp−1
,

which is exactly the same bound as claimed in (2.29).

2.6 Exponential convergence rate via uniform

convexity

Similar to the polynomial case in Section 2.2, in this section we study the subfamily of
Bregman Lagrangian (2.1) with the following choice of parameters, parameterized by c > 0,

αt = log c (2.58a)

βt = ct (2.58b)

γt = ct. (2.58c)

The parameters (2.58) satisfy the ideal scaling condition (2.2), with an equality on the first
condition (2.2a). The Bregman Lagrangian (2.1) becomes

L(x, ẋ, t) = cect
(
Dh

(
x+

1

c
ẋ, x

)
− ectf(x)

)
. (2.59)
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The Euler-Lagrange equation (2.6) in this case is given by

Ẍt + cẊt + c2ect
[
∇2h

(
Xt +

1

c
Ẋt

)]−1

∇f(Xt) = 0, (2.60)

and by Theorem 2.1, it has an O(e−ct) rate of convergence. Thus, whereas the polynomial
Lagrangian flow (2.14) has a polynomial rate of convergence, the exponential Lagrangian
flow (2.60) has an exponential rate of convergence. Furthermore, from the time-dilation
property in Theorem 2.2, we see that we can obtain the exponential curve (2.60) by speeding
up the polynomial curve (2.14) using a time-dilation function τ(t) = ect/p.

However, unlike the polynomial Lagrangian flow (2.14), the process of discretizing the
exponential Lagrangian flow (2.60) is not as straightforward. Following the same approach
as the polynomial family, we write the second-order equation (2.60) as the following pair of
first-order equations:

Zt = Xt +
1

c
Ẋt (2.61a)

d

dt
∇h(Zt) = −cect∇f(Xt). (2.61b)

Now we discretize Xt and Zt into sequences xk and zk with time step δ > 0, so that t = δk
as before. In doing so, we can write (2.61) as the following discrete-time equations similar
to (2.16) and (2.17):

xk+1 = cδzk + (1− cδ)xk (2.62a)

zk+1 = arg min
z

{
cecδk〈∇f(xk), z〉+

1

δ
Dh(z, zk)

}
. (2.62b)

Note that the weight in (2.62a) is independent of time, but depends on δ, and (2.62b) suggests
the step size ε = δ in the algorithm. If our analogy between continuous and discrete-time
convergence holds, then given the O(e−ct) convergence rate in continuous time, we expect a
matching O(1

ε
e−ck) convergence rate in discrete time. However, it is not clear how to obtain

that rate via (2.62). If we try to adapt the proof of Theorem 2.3, we find that in order to
conclude a convergence rate O(δe−cδk), we need to introduce a sequence yk satisfying the
following analog of inequality (2.19) (with the ideal choice p =∞):

〈∇f(yk), xk − yk〉 ≥ M‖∇f(yk)‖∗. (2.63)

Notice that the rates are consistent if we set ε = δ = 1. However, the condition (2.63) means
we need to make a constant improvement in each iteration from xk to yk, although we are
also free on how we choose to construct yk and impose any assumptions on f .

In the remainder of this section, we approach this problem from a discrete-time per-
spective, and study the performance of the higher-order gradient algorithm (2.26) and its
accelerated variant (2.30) when f is uniformly convex.
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Exponential convergence rate of higher-order gradient algorithm

In this section we show that the higher-order gradient algorithm (2.26) has an exponential
convergence rate when the objective function f is uniformly convex of order p ≥ 2; this
generalizes the results in [46, Section 5] for the case p = 3, and the classical result of
gradient descent for the case p = 2 [48].

Specifically, we have the following result. Recall the definition of smoothness in (2.22),
and the definition of uniform convexity in (2.20).

Theorem 2.10. Suppose f is (p−1)!
ε

-smooth of order p− 1, and σ-uniformly convex of order
p. Then the p-th order gradient algorithm (2.26) with N > 1 has convergence rate

f(xk+1)− f(x∗) ≤ (N + 1)‖x0 − x∗‖p

εp
(
1 + Lκ

1
p−1
)k = O

(
1

ε
exp(−Lκ

1
p−1k)

)
, (2.64)

where L = (N2−1)
p−2
2p−2/(2N), and κ = εσ is the inverse condition number (which we assume

is small).

Proof. By inequality (2.24) from Lemma 2.4, we know that since f is (p−1)!
ε

-smooth of order
p− 1,

〈∇f(xk+1), xk − xk+1〉 ≥ Lε
1
p−1‖∇f(xk+1)‖

p
p−1
∗ ,

where L = (N2−1)
p−2
2p−2/(2N). Since f is convex, we have f(xk)−f(xk+1) ≥ 〈∇f(xk+1), xk−

xk+1〉. Furthermore, since f is σ-uniformly convex of order p, from [46, Lemma 3] we also
have

‖∇f(xk+1)‖
p
p−1
∗ ≥ p

p− 1
σ

1
p−1 (f(xk+1)− f(x∗)) ≥ σ

1
p−1 (f(xk+1)− f(x∗)). (2.65)

Combining these inequalities and recalling the definition κ = εσ gives us

f(xk)− f(xk+1) ≥ Lκ
1
p−1 (f(xk+1)− f(x∗)),

or equivalently,

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)

1 + Lκ
1
p−1

≤ f(x1)− f(x∗)(
1 + Lκ

1
p−1
)k . (2.66)

Note that by the smoothness of f , as in (2.45), we can write f(x1) ≤ minx{f(x) + N+1
εp
‖x−

x0‖p} ≤ f(x∗)+ N+1
εp
‖x0−x∗‖p. Furthermore, since we assume the inverse condition number

κ = εσ is small, we can write 1 + Lκ
1
p−1 ≈ exp(Lκ

1
p−1 ). Therefore, (2.66) yields the desired

convergence rate (2.64).

Notice that the result of Theorem 2.10 matches the desired convergence rate O(1
ε
e−ck)

discussed above, with c = Lκ
1
p−1 .
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Exponential convergence rate of rescaled gradient flow

As a side remark, we note that the rescaled gradient flow also has an exponential convergence
rate when the objective function f is uniformly convex. However, notice that the following
continuous-time convergence rate only depends on the uniform convexity constant of f ,
whereas the discrete-time convergence rate above also depends on the Lipschitz constant for
the higher-order smoothness of f .

Theorem 2.11. If f is σ-uniformly convex of order p, then the rescaled gradient flow (2.28)
has convergence rate

f(Xt)− f(x∗) ≤ (f(X0)− f(x∗)) exp
(
−σ

1
p−1 t

)
. (2.67)

Proof. As we saw in (2.65), the uniform convexity of f implies the inequality

‖∇f(Xt)‖
p
p−1
∗ ≥ σ

1
p−1 (f(Xt)− f(x∗)).

Using this inequality and plugging in the rescaled gradient flow equation (2.28), we have

d

dt
(f(Xt)− f(x∗)) = 〈∇f(Xt), Ẋt〉 = −‖∇f(Xt)‖

p
p−1
∗ ≤ −σ

1
p−1 (f(Xt)− f(x∗)).

Dividing both sides by f(Xt) − f(x∗) and integrating, we get the desired convergence
rate (2.67).

Exponential convergence rate of accelerated method with restart
scheme

We now show that a variant of the accelerated gradient method (2.30) with a restart scheme
also attains an exponential convergence rate, with a better dependence on the condition
number κ than the higher-order gradient method as in the previous section.

Specifically, we consider the following variant of the accelerated gradient method (2.30),

xk+1 =
p

k + p
zk +

k

k + p
yk (2.68a)

yk = arg min
y

{
fp−1(y;xk) +

2

εp
‖y − xk‖p

}
(2.68b)

zk = arg min
z

{
p

(4p)p

k∑
i=0

i(p−1)〈∇f(yi), z〉+
2p−2

εp
‖z − x0‖p

}
. (2.68c)

In (2.68), for simplicity we have explicitly set the constant N in (2.30b) to be N = 2, and set

C in (2.30c) to be C = 1/(4p)p, which satisfies the condition C ≤ (N2 − 1)
p−2
2 /((2N)p−1pp).
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Furthermore, for the z-update (2.68c) we have used the equivalent version (2.35) where we un-
roll the recursion, and we have also replaced the Bregman divergence in the z-update (2.30c)
by the rescaled p-th power dp(z) = 2p−2

p
‖z − x0‖p, which is 1-uniformly convex of order p.

The proof of Theorem 2.3 still holds in this case, so we have the guarantee

f(yk)− f(x∗) ≤ (4p)p · 2p−2‖x0 − x∗‖p

εpk(p)
≤ 23p−2pp−1‖x0 − x∗‖p

εkp
. (2.69)

Then we define the following restart scheme, which proceeds by running the accelerated
method (2.68) for some number of iterations at each step,

x̂k =
(
the output ym of running (2.68) for m iterations with input x0 = x̂k−m

)
. (2.70)

Our main result is the following.

Theorem 2.12. Suppose f is (p−1)!
ε

-smooth of order p− 1, and σ-uniformly convex of order

p. Let x̂k be the output of running the restart scheme (2.70) for k/m times with m = 8p/κ
1
p ,

where κ = εσ is the inverse condition number, and let ŷk = Gp,ε,2(x̂k) be the output of running
one step of the gradient update (2.23) with input x̂k. Then we have the convergence rate

f(ŷk)− f(x∗) ≤ 3‖x̂0 − x∗‖p

εp ek/m
= O

(
1

ε
exp

(
−κ

1
pk

8p

))
. (2.71)

Proof. Since f is σ-uniformly convex of order p, and by the bound (2.69), we have

σ

p
‖x̂k − x∗‖p ≤ f(x̂k)− f(x∗) ≤ 23p−2pp−1‖x̂k−m − x∗‖p

εmp
≤ σ

pe
‖x̂k−m − x∗‖p, (2.72)

where the last inequality follows from our choice of m. Thus, an execution of (2.70) with m
iterations of the accelerated method reduces the distance to optimum by a factor of at least
1/e. Iterating (2.72), we obtain ‖x̂k−x∗‖p ≤ e−k/m‖x̂0−x∗‖p. To convert this into a bound
on the function value, we use the smoothness of f . As noted in (2.45), since ŷk is the output
of one step of the gradient update (2.23) with input x̂k, we have f(ŷk)−f(x∗) ≤ 3

εp
‖x̂k−x∗‖p.

This gives the desired bound (2.71).

The result of Theorem 2.12 matches the desired convergence rate O(1
ε
e−ck) as discussed

in Section 2.6 with c = 1
8p
κ

1
p . Note that this convergence rate has a better dependence

on the inverse condition number κ = εσ than the higher-order gradient algorithm as in

Theorem 2.10, because κ
1
p > κ

1
p−1 for small κ. This generalizes the conclusion of [46,

Section 5] for the case p = 3. However, as noted previously, the link to continuous time is
not as clear as that of the polynomial family.
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2.7 Hessian vs. Bregman Lagrangian

In a Hessian manifold, the metric is generated by the Hessian ∇2h of the distance-generating
function h. So for example, the gradient flow equation in the Euclidean case, Ẋt = −∇f(Xt),
which can be written as

Ẋt = arg min
ẋ

{
〈∇f(Xt), ẋ〉+

1

2
‖ẋ‖2

}
,

in general becomes the natural gradient flow Ẋt = −[∇2h(Xt)]
−1∇f(Xt), or equivalently,

Ẋt = arg min
ẋ

{
〈∇f(Xt), ẋ〉+

1

2
‖ẋ‖2

∇2h(Xt)

}
,

which is obtained by replacing the Euclidean squared norm ‖v‖2 = 〈v, v〉 by the Hessian
metric

‖v‖2
∇2h(x) := 〈∇2h(x)v, v〉.

At the Lagrangian level, recall that a starting point of our work is the differential equation
Ẍt + 3

t
Ẋt +∇f(Xt) = 0 for accelerated gradient descent [61], which we observe is the Euler-

Lagrange equation for the damped Lagrangian

L(x, ẋ, t) = t3
(

1

2
‖ẋ‖2 − f(x)

)
. (2.73)

How should we generalize this Lagrangian to the non-Euclidean case? From our discussion
on natural gradient flow, a natural guess is to replace the Euclidean metric in (2.73) by the
Hessian metric. Thus, we are led to consider the following family of Hessian Lagrangians :

LHess(x, ẋ, t) = eγt
(

1

2
‖ẋ‖2

∇2h(x) − eβtf(x)

)
(2.74)

where we have also introduced arbitrary weighting functions βt, γt ∈ R ((2.73) is the Eu-
clidean case with βt = 0, γt = 3 log t). However, the Hessian Lagrangian (2.74) turns out to
be unsuitable for our optimization purposes. This is because the Euler-Lagrange equation
for the Hessian Lagrangian (2.74),

1

2
∇3h(Xt) Ẋt Ẋt + ∇2h(Xt)

(
Ẍt + γ̇t Ẋt

)
+ eβt∇f(Xt) = 0, (2.75)

involves the third-order derivative ∇3h (which comes from being the derivative of the metric
tensor ∇2h). This makes the analysis difficult, preventing us from obtaining a convergence
rate for (2.75). Furthermore, the presence of ∇3h in the equation makes it difficult to
implement as an efficient discrete-time algorithm.
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On the other hand, our work shows that the “correct” way to generalize (2.73) to the non-
Euclidean case is to use the Bregman divergence, rather than Hessian metric. This results
in the general Bregman Lagrangian family (2.1), which requires an additional parameter
αt controlling the amount of interaction between the position x and velocity ẋ. When the
parameters are coupled in an ideal scaling, the Bregman Lagrangian produces dynamics that
converge at a provable rate. This is achieved via the design of a corresponding Lyapunov
function (the energy functional Et (2.8)), whose form is intimately tied to the use of the
Bregman divergence in the Lagrangian. Furthermore, for the polynomial family, we can
discretize the resulting dynamics as a discrete-time algorithm (2.30) that does not require
the Hessian ∇2h, but only the gradient ∇h.

It is interesting to consider whether the Hessian Lagrangian (2.74) has useful properties,
and how it relates to the Bregman Lagrangian. For a small displacement ε > 0 we know
that Bregman divergence approximates the Hessian metric, i.e., D(x+ εv, x) ≈ ε2

2
‖v‖2

∇2h(x).

Setting ε = e−αt , this suggests that the Bregman Lagrangian (2.1) is approximating the Hes-

sian Lagrangian LHess(x, ẋ, t) = eγt−αt
(

1
2
‖ẋ‖2

∇2h(x) − e2αt+βtf(x)
)

. However, this argument

assumes ε is small, whereas in our particular case of interest (the polynomial subfamily in
Section 2.2) the value of ε = e−αt = t

p
is growing over time.

2.8 Gradient vs. Lagrangian flows

In the Euclidean case, we can think of gradient flow as describing the behavior of a damped
Lagrangian system “in an asymptotic regime in which dissipative effects play such an im-
portant role, that the effects of forcing and dissipation compensate each other” [67, p. 646].
That is, the gradient flow equation Ẋt = −∇f(Xt) can be seen as the strong-friction limit
λ→∞ of the equation Ẍt + λẊt + λ∇f(Xt) = 0.

This is perhaps more apparent if we define m = 1/λ to be the “mass” of the fictitious
particle, so the equation of motion becomes

mẌt + Ẋt +∇f(Xt) = 0, (2.76)

which is the Euler-Lagrange equation of the damped Lagrangian

L(x, ẋ, t) = et/m
(m

2
‖ẋ‖2 − f(x)

)
, (2.77)

where the damping factor et/m also scales with m. In the massless limit m → 0, we indeed
recover gradient flow from (2.76). In the following, we show that this result also holds more
generally, both for natural gradient flow (as the massless limit of a Bregman Lagrangian
flow) and for the rescaled gradient flow (as the massless limit of a Lagrangian flow which
uses the p-th power of the norm).

However, notice that in all these cases, the momentum variable p = ∂L
∂ẋ

becomes infinite
as m→ 0. For instance, p = met/mẋ for (2.77), and met/m →∞. This means as m→ 0, the
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particle also becomes more massive and has more inertia. Thus, gradient flow is the limiting
case where the infinitely massive particle simply rolls downhill and stops at the minimum x∗

as soon as the force −∇f vanishes, without oscillation (which is damped by the infinitely
strong friction). In this view, moving from a first-order gradient algorithm to a second-order
Lagrangian (accelerated) algorithm does not amount to preventing oscillation; rather, it is
the opposite, by unwinding the curve to finite momentum where it can travel faster, albeit
now with some oscillation.

Natural gradient flow as massless limit

Consider the following Lagrangian

L(x, ẋ, t) =
et/m

m
(Dh(x+mẋ, x)−mf(x)) , (2.78)

which is the Bregman Lagrangian (2.1) with parameters αt = − logm, βt = logm, and
γt = t/m (which satisfy the ideal scaling (2.2)). Note that (2.78) recovers (2.77) in the
Euclidean case. The Euler-Lagrange equation (2.6) for the Lagrangian (2.78) is given by

Ẍt +
1

m
Ẋt +

1

m

[
∇2h(Xt +mẊt)

]−1

∇f(Xt) = 0.

Multiplying the equation by m and letting m→ 0, we recover

Ẋt +
[
∇2h(Xt)

]−1∇f(Xt) = 0,

which is the natural gradient flow equation. In this case the momentum variable is p = ∂L
∂ẋ

=
et/m(∇h(x+mẋ)−∇h(x)) ≈ met/m∇2h(x)ẋ, so we still have p→∞ as m→ 0.

Rescaled gradient flow as massless limit

Consider the following Lagrangian

L(x, ẋ, t) = et/m
(
m

p
‖ẋ‖p − f(x)

)
, (2.79)

where we use the p-th power of the norm to measure the kinetic energy. Note that (2.79)
recovers (2.77) in the case p = 2. The Euler-Lagrange equation is

‖Ẋt‖p−2
(
mẌt + Ẋt

)
+m(p− 2)‖Ẋt‖p−4〈Ẍt, Ẋt〉 Ẋt +∇f(Xt) = 0.

So as m→ 0, this equation recovers

‖Ẋt‖p−2Ẋt +∇f(Xt) = 0 (2.80)

which is equivalent to the rescaled gradient flow (2.28). In this case the momentum variable
is p = ∂L

∂ẋ
= met/m‖ẋ‖p−2ẋ, which still goes to infinity as m→ 0.
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2.9 Bregman Hamiltonian

In this section we define and compute the Bregman Hamiltonian corresponding to the Breg-
man Lagrangian. In general, given a Lagrangian L(x, ẋ, t), its Hamiltonian is defined by

H(x, p, t) = 〈p, ẋ〉 − L(x, ẋ, t) (2.81)

where p = ∂L
∂ẋ

is the momentum variable conjugate to position.
For the Bregman Lagrangian (2.1), the momentum variable is given by

p =
∂L
∂ẋ

= eγt
(
∇h(x+ e−αtẋ)−∇h(x)

)
. (2.82)

We can invert this equation to solve for the velocity ẋ,

ẋ = eαt
(
∇h∗(∇h(x) + e−γtp)− x

)
, (2.83)

where h∗ is the conjugate function to h (recall the definition in (2.33)), and we have used
the property that ∇h∗ = [∇h]−1. So for the first term in the definition (2.81) we have

〈p, ẋ〉 = eαt
〈
p, ∇h∗(∇h(x) + e−γtp)− x

〉
.

Next, we write the Bregman Lagrangian L(x, ẋ, t) in terms of (x, p, t). We can directly
substitute (2.83) to the definition (2.1) and calculate the result. Alternatively, we can use the
property that the Bregman divergences of h and h∗ satisfy Dh(y, x) = Dh∗(∇h(x),∇h(y)).
Therefore, we can write the Bregman Lagrangian (2.1) as

L(x, ẋ, t) = eαt+γt
(
Dh∗

(
∇h(x), ∇h(x+ e−αtẋ)

)
− eβtf(x)

)
= eαt+γt

(
Dh∗

(
∇h(x), ∇h(x) + e−γtp

)
− eβtf(x)

)
= eαt+γt

(
h∗(∇h(x))− h∗(∇h(x) + e−γtp) + e−γt〈∇h∗(∇h(x) + e−γtp), p〉 − eβtf(x)

)
,

where in the second step we have used the relation∇h(x+e−αtẋ) = ∇h(x)+e−γtp from (2.82),
and in the last step we have expanded the Bregman divergence.

Substituting these calculations into (2.81) and simplifying, we get the Hamiltonian

H(x, p, t) = eαt+γt
(
h∗(∇h(x) + e−γtp)− h∗(∇h(x))− 〈x, e−γtp〉+ eβtf(x)

)
.

Since x = ∇h∗(∇h(x)), we can also write this result in terms of the Bregman divergence of
h∗,

H(x, p, t) = eαt+γt
(
Dh∗(∇h(x) + e−γtp, ∇h(x)) + eβtf(x)

)
. (2.84)

We call the Hamiltonian (2.84) the Bregman Hamiltonian. Notice that whereas the Breg-
man Lagrangian takes the form of the difference between the kinetic and potential en-
ergy, the Bregman Hamiltonian takes the form of the sum of the kinetic and potential
energy. (However, note that the kinetic energy is slightly different: it is Dh∗(∇h(x) +
e−γtp, ∇h(x)) = Dh(x, x + e−αtẋ) in the Hamiltonian (2.84), while it is Dh(x + e−αtẋ, x) in
the Lagrangian (2.1).)
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Hamiltonian equations of motion

The second-order Euler-Lagrange equation of a Lagrangian can be equivalently written as a
pair of first-order equations

Ẋt =
∂H
∂p

(Xt, Pt, t), Ṗt = −∂H
∂x

(Xt, Pt, t). (2.85)

For the Bregman Hamiltonian (2.84), the equations of motion are given by

Ẋt = eαt
(
∇h∗(∇h(Xt) + e−γtPt)−Xt

)
(2.86a)

Ṗt = −eαt+γt∇2h(Xt)
(
∇h∗(∇h(Xt) + e−γtPt)−Xt

)
+ eαtPt − eαt+βt+γt∇f(Xt). (2.86b)

Notice that the first equation (2.86a) recovers the definition of momentum (2.82). Further-
more, when γ̇t = eαt , by substituting (2.86a) to (2.86b) we can write (2.86) as

d

dt

{
∇h(Xt) + e−γtPt

}
= ∇2h(Xt) Ẋt − γ̇te−γtPt + e−γtṖt = −eαt+βt∇f(Xt).

Since∇h(Xt)+e−γtPt = ∇h(Xt+e
−αtẊt) by (2.86a), this indeed recovers the Euler-Lagrange

equation (2.7).
A Lyapunov function for the Hamiltonian equations of motion (2.86) is the following,

which is simply the energy functional (2.8) written in terms of (Xt, Pt, t),

Et = Dh∗
(
∇h(Xt) + e−γtPt, ∇h(x∗)

)
+ eβt(f(Xt)− f(x∗)).

The Hamiltonian formulation of the dynamics has appealing properties that seem worthy
of further exploration. For example, Hamiltonian flow preserves volume in phase space
(Liouville’s theorem); this property has been used in the context of sampling to develop
the technique of Hamiltonian Markov chain Monte-Carlo, and may also be useful to help
us design better algorithms for optimization. Furthermore, the Hamilton-Jacobi-Bellman
equation (which is a reformulation of the Hamiltonian dynamics) is a central object of study
in the field of optimal control theory, and it would be interesting to study the Bregman
Hamiltonian framework from that perspective.

2.10 Gauge invariance

The Euler-Lagrange equation of a Lagrangian is gauge-invariant, which means it does not
change when we transform the Lagrangian by adding a total time derivative,

L′(Xt, Ẋt, t) = L(Xt, Ẋt, t) +
d

dt
G(Xt, t) (2.87)

for any smooth function G. We can show this by directly checking that the Euler-Lagrange
equation of L′ is the same as that of L. Alternatively, this follows from the formulation
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of the principle of least action, where we fix two points (x0, t0) and (x1, t1), and ask for
a curve X joining the two endpoints (Xt0 = x0 and Xt1 = x1) that minimizes the action
J(X) =

∫ t1
t0
L(Xt, Ẋt, t)dt. Thus, when the Lagrangian transforms as (2.87), the action only

changes to J ′(X) = J(X)+
∫ t1
t0

d
dt
G(Xt, t)dt = J(X)+G(x1, t1)−G(x0, t0). Since (x0, t0) and

(x1, t1) are fixed, this means the new action only differs from the old action by a constant;
this implies that the optimal least action curve—namely, the Euler-Lagrange equation—does
not change.

In our case, under the ideal scaling condition γ̇t = eαt (2.2b), this property implies that
the Bregman Lagrangian (2.1) is equivalent to the following Lagrangian

L′(x, ẋ, t) = eγt+αt
(
h(x+ e−αtẋ)− eβtf(x)

)
, (2.88)

where we have replaced the Bregman divergenceDh(x+e−αtẋ, x) by its first term h(x+e−αtẋ).
Indeed, we can check that the difference between the Bregman Lagrangian (2.1) and the
reduced form (2.88) is a total time derivative,

L′(Xt, Ẋt, t)− L(Xt, Ẋt, t) = eγt+αt
(
h(Xt) + 〈∇h(Xt), e

−αtẊt〉
)

=
d

dt
{eγth(Xt)}

where the last step follows from the ideal scaling eαt = γ̇t.
The reduced Lagrangian (2.88) is slightly simpler than the Bregman Lagrangian (2.1),

and in a sense it makes the roles of h and f more symmetric. It also suggests that the role of
h is not so much as measuring the distance via the Hessian metric or Bregman divergence,
but rather, as evaluating the extrapolated future point Xt + e−αtẊt.

2.11 Natural motion

A natural motion is the motion of a particle when it experiences no force. In the physical
world, the natural motion of a particle is a straight-line motion with constant velocity. But
for the Bregman Lagrangian, which describes a dissipative system, the natural motion always
converges.

Specifically, the Bregman Lagrangian (2.1) in the case of zero (or constant) potential
function f ≡ 0 is L(x, ẋ, t) = eαt+γtDh(x + e−αtẋ, x). Assuming the ideal scaling γ̇t =
eαt (2.2b), its Euler-Lagrange equation is given by (2.7), which in this case is

d

dt
∇h(Xt + e−αtẊt) = 0. (2.89)

This means ∇h(Xt + e−αtẊt) is a constant, say ∇h(Xt + e−αtẊt) = ∇h(b) for some b ∈ X .
Applying ∇h∗ = [∇h]−1 to both sides gives us Xt + e−αtẊt = b. Since eαt = γ̇t, we can write
this as

d

dt
{eγt(Xt − b)} = eαt+γt(Xt − b) + eγtẊt = 0.
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This means eγt(Xt− b) is a constant, say eγt(Xt− b) = a for some a ∈ X . Thus, we conclude
that the natural motion of the Bregman Lagrangian is

Xt = ae−γt + b. (2.90)

Notice that the natural motion is independent of h, although the Lagrangian still depends on
h. Furthermore, in contrast with the straight-line motion, the natural motion (2.90) always
converges; in particular, if we assume eγt →∞ as t→∞, then Xt → b.

The natural motion (2.90) has simple explicit invariance and symmetry properties. In-
deed, (2.89) states that ∇h(Xt + e−αtẊt) is a conserved quantity, which is always equal
to ∇h(b). By Noether’s theorem, any conservation law corresponds to a symmetry of the
Lagrangian. In our case, the corresponding symmetry is the transformation

X ′t = Xt + e−γtu, (2.91)

for any u ∈ X . Under this transformation, Ẋt changes to Ẋ ′t = Ẋt− γ̇te−γtu. Since γ̇t = eαt ,
this implies X ′t + e−αtẊ ′t = Xt + e−αtẊt. This means the reduced Lagrangian L(Xt, Ẋt, t) =
eγt+αth(Xt + e−αtẊt) is invariant under the transformation (2.91). Therefore, the Bregman
Lagrangian (which is gauge-equivalent to the reduced Lagrangian) is also invariant. So
indeed (2.91) is a symmetry of the Bregman Lagrangian when f = 0.

2.12 The Euclidean case

In the Euclidean case many of our results and equations simplify, as we summarize in this
section. When h is the squared Euclidean norm, h(x) = 1

2
‖x‖2, the Bregman divergence is

also the squared norm and it coincides with the Hessian metric, Dh(y, x) = 1
2
‖y − x‖2 =

1
2
‖y − x‖2

∇2h(x). Furthermore, h∗ = h and both ∇h,∇h∗ are the identity function.

In the Euclidean case, the Bregman Lagrangian (2.1) becomes

L(x, ẋ, t) = eγt−αt
(

1

2
‖ẋ‖2 − e2αt+βtf(x)

)
.

For general αt, βt, γt, the Euler-Lagrange equation (2.5) is given by

Ẍt + (γ̇t − α̇t)Ẋt + e2αt+βt∇f(Xt) = 0.

When the ideal scaling γ̇t = eαt (2.2b) holds, this equation becomes

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt∇f(Xt) = 0, (2.92)

which we can equivalently write as d
dt

(Xt + e−αtẊt) = −eαt+βt∇f(Xt). The energy func-
tional (2.8) for proving the rate of convergence becomes

Et =
1

2
‖Xt + e−αtẊt − x∗‖2 + eβt(f(Xt)− f(x∗)).
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The Bregman Hamiltonian (2.84) becomes

H(x, p, t) = eαt−γt
(

1

2
‖p‖2 + e2γt+βtf(x)

)
,

where the momentum variable (2.82) is given by p = eγt−αtẋ. The Hamiltonian equations of
motion (2.86) simplify to

Ẋt = eαt−γtPt (2.93)

Ṗt = −eαt+βt+γt∇f(Xt). (2.94)

In particular, for the polynomial case with the parameters (2.12), the Euler-Lagrange
equation (2.92) is given by

Ẍt +
p+ 1

t
Ẋt + Cp2tp−2∇f(Xt) = 0, (2.95)

with an O(1/tp) rate of convergence. For p = 2, this recovers the differential equation
Ẍt +

3
t
Ẋt +∇f(Xt) = 0 corresponding to Nesterov’s accelerated gradient descent, as derived

in [61].
Su et al. [61] observed that the generalized equation Ẍt + r

t
Ẋt + ∇f(Xt) = 0 still has

convergence rate O(1/t2) whenever r ≥ 3, and they posed the question on the significance
of the threshold r = 3. Our results give the following perspective: The equation Ẍt + r

t
Ẋt +

∇f(Xt) = 0 is the case of (2.92) with parameters αt = log(r − 1)− log t, γt = (r − 1) log t,
and βt = 2 log t − 2 log(r − 1). These parameters satisfy the ideal scaling condition (2.2)
when r ≥ 3, so Theorem 2.1 guarantees a convergence rate of O(e−βt) = O(1/t2). However,
for a fixed r > 3, the choice of βt = 2 log t− 2 log(r − 1) is suboptimal, since from the ideal
scaling condition β̇t ≤ eαt we know we can increase βt up to (r− 1) log t. This will introduce
a factor of tr−3 on the force term, as in (2.95), but it will also yield a faster convergence rate
of O(1/tr−1).
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Chapter 3

Concavity of Reweighted Kikuchi
Approximation

Undirected graphical models are a familiar framework in diverse application domains such
as computer vision, statistical physics, coding theory, social science, and epidemiology. In
certain settings of interest, one is provided with potential functions defined over nodes and
(hyper)edges of the graph. A crucial step in probabilistic inference is to compute the log
partition function of the distribution based on these potential functions for a given graph
structure. However, computing the log partition function either exactly or approximately is
NP-hard in general [10, 56]. An active area of research involves finding accurate approxi-
mations of the log partition function and characterizing the graph structures for which such
approximations may be computed efficiently [76, 69, 22, 62, 72, 57].

When the underlying graph is a tree, the log partition function may be computed exactly
via the sum product algorithm in time linear in the number of nodes [53]. However, when the
graph contains cycles, a generalized version of the sum product algorithm known as loopy
belief propagation may either fail to converge or terminate in local optima of a nonconvex
objective function [73, 63, 26, 42].

In this chapter, we analyze the Kikuchi approximation method, which is constructed
from a variational representation of the log partition function by replacing the entropy with
an expression that decomposes with respect to a region graph. Kikuchi approximations were
previously introduced in the physics literature [31] and reformalized by Yedidia et al. [77,
76] and others [3, 52] in the language of graphical models. The Bethe approximation, which
is a special case of the Kikuchi approximation when the region graph has only two layers,
has been studied by various authors [12, 77, 24, 72]. In addition, a reweighted version
of the Bethe approximation was proposed by Wainwright et al. [69, 55]. As described in
Vontobel [68], computing the global optimum of the Bethe variational problem may in turn
be used to approximate the permanent of a nonnegative square matrix.

The particular objective function that we study generalizes the Kikuchi objective appear-
ing in previous literature by assigning arbitrary weights to individual terms in the Kikuchi
entropy expansion. We establish necessary and sufficient conditions under which this class of
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objective functions is concave, so a global optimum may be found efficiently. Our theoretical
results synthesize known results on Kikuchi and Bethe approximations, and our main the-
orem concerning concavity conditions for the reweighted Kikuchi entropy recovers existing
results when specialized to the unweighted Kikuchi [52] or reweighted Bethe [69] case. Fur-
thermore, we provide a valuable converse result in the reweighted Bethe case, showing that
when our concavity conditions are violated, the entropy function cannot be concave over the
whole feasible region. As demonstrated by our experiments, a message-passing algorithm
designed to optimize the Kikuchi objective may terminate in local optima for weights out-
side the concave region. Watanabe and Fukumizu [71, 72] provide a similar converse in the
unweighted Bethe case, but our proof is much simpler and our result is more general.

In the reweighted Bethe setting, we also present a useful characterization of the concave
region of the Bethe entropy function in terms of the geometry of the graph. Specifically, we
show that if the region graph consists of only singleton vertices and pairwise edges, then the
region of concavity coincides with the convex hull of incidence vectors of single-cycle forest
subgraphs of the original graph. When the region graph contains regions with cardinality
greater than two, the latter region may be strictly contained in the former; however, our result
provides a useful way to generate weight vectors within the region of concavity. Whereas
Wainwright et al. [69] establish the concavity of the reweighted Bethe objective on the
spanning forest polytope, that region is contained within the single-cycle forest polytope,
and our simulations show that generating weight vectors in the latter polytope may yield
closer approximations to the log partition function.

The remainder of the chapter is organized as follows: In Section 3.1, we review back-
ground information about the Kikuchi and Bethe approximations. In Section 3.2, we provide
our main results on concavity conditions for the reweighted Kikuchi approximation, includ-
ing a geometric characterization of the region of concavity in the Bethe case. Section 3.3
outlines the reweighted sum product algorithm and proves that fixed points correspond to
global optima of the Kikuchi approximation. Section 3.4 presents experiments showing the
improved accuracy of the reweighted Kikuchi approximation over the region of concavity.
Technical proofs and additional simulations are contained in Sections 3.6–3.10.

3.1 Background and problem setup

In this section, we review basic concepts of the Kikuchi approximation and establish some
terminology to be used in the chapter.

Let G = (V,R) denote a region graph defined over the vertex set V , where each region
r ∈ R is a subset of V . Directed edges correspond to inclusion, so r → s is an edge of G if
s ⊆ r. We use the following notation, for r ∈ R:

A(r) := {s ∈ R : r ( s} (ancestors of r)

F(r) := {s ∈ R : r ⊆ s} (forebears of r)

N(r) := {s ∈ R : r ⊆ s or s ⊆ r} (neighbors of r).
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For R′ ⊆ R, we define A(R′) =
⋃
r∈R′ A(r), and we define F(R′) and N(R′) similarly.

We consider joint distributions x = (xs)s∈V that factorize over the region graph; i.e.,

p(x) =
1

Z(α)

∏
r∈R

αr(xr), (3.1)

for potential functions αr > 0. Here, Z(α) is the normalization factor, or partition function,
which is a function of the potential functions αr, and each variable xs takes values in a finite
discrete set X . One special case of the factorization (3.1) is the pairwise Ising model, defined
over a graph G = (V,E), where the distribution is given by

pγ(x) = exp
(∑
s∈V

γs(xs) +
∑

(s,t)∈E

γst(xs, xt)− A(γ)
)
, (3.2)

and X = {−1,+1}. Our goal is to analyze the log partition function

logZ(α) = log
{ ∑
x∈X |V |

∏
r∈R

αr(xr)
}
. (3.3)

Variational representation

It is known from the theory of graphical models [52] that the log partition function (3.3)
may be written in the variational form

logZ(α) = sup
{τr(xr)}∈∆R

{∑
r∈R

∑
xr

τr(xr) log(αr(xr)) +H(pτ )
}
, (3.4)

where pτ is the maximum entropy distribution with marginals {τr(xr)} and

H(p) := −
∑
x

p(x) log p(x)

is the usual entropy. Here, ∆R denotes the R-marginal polytope; i.e., {τr(xr) : r ∈ R} ∈ ∆R

if and only if there exists a distribution τ(x) such that τr(xr) =
∑

x\r
τ(xr, x\r) for all r. For

ease of notation, we also write τ ≡ {τr(xr) : r ∈ R}. Let θ ≡ θ(x) denote the collection of
log potential functions {log(αr(xr)) : r ∈ R}. Then equation (3.4) may be rewritten as

logZ(θ) = sup
τ∈∆R

{〈θ, τ〉+H(pτ )} . (3.5)

Specializing to the Ising model (3.2), equation (3.5) gives the variational representation

A(γ) = sup
µ∈M
{〈γ, µ〉+H(pµ)} , (3.6)

which appears in Wainwright and Jordan [70]. Here, M ≡ M(G) denotes the marginal
polytope, corresponding to the collection of mean parameter vectors of the sufficient statistics
in the exponential family representation (3.2), ranging over different values of γ, and pµ is
the maximum entropy distribution with mean parameters µ.
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Reweighted Kikuchi approximation

Although the set ∆R appearing in the variational representation (3.5) is a convex polytope,
it may have exponentially many facets [70]. Hence, we replace ∆R with the set

∆K
R =

{
τ : ∀t, u ∈ R s.t. t ⊆ u,

∑
xu\t

τu(xt, xu\t) = τt(xt) and ∀u ∈ R,
∑
xu

τu(xu) = 1
}

of locally consistent R-pseudomarginals. Note that ∆R ⊆ ∆K
R and the latter set has only

polynomially many facets, making optimization more tractable.
In the case of the pairwise Ising model (3.2), we let L ≡ L(G) denote the polytope ∆K

R .
Then L is the collection of nonnegative functions τ = (τs, τst) satisfying the marginalization
constraints ∑

xs
τs(xs) = 1, ∀s ∈ V,∑

xt
τst(xs, xt) = τs(xs) and

∑
xs
τst(xs, xt) = τt(xt), ∀(s, t) ∈ E.

Recall that M(G) ⊆ L(G), with equality achieved if and only if the underlying graph G
is a tree. In the general case, we have ∆R = ∆K

R when the Hasse diagram of the region
graph admits a minimal representation that is loop-free (cf. Theorem 2 of Pakzad and Anan-
tharam [52]).

Given a collection of R-pseudomarginals τ , we also replace the entropy term H(pτ ), which
is difficult to compute in general, by the approximation

H(pτ ) ≈
∑
r∈R

ρrHr(τr) := H(τ ; ρ), (3.7)

where Hr(τr) := −
∑

xr
τr(xr) log τr(xr) is the entropy computed over region r, and {ρr : r ∈

R} are weights assigned to the regions. Note that in the pairwise Ising case (3.2), with
p := pγ, we have the equality

H(p) =
∑
s∈V

Hs(ps)−
∑

(s,t)∈E

Ist(pst)

when G is a tree, where Ist(pst) = Hs(ps) +Ht(pt)−Hst(pst) denotes the mutual information
and ps and pst denote the node and edge marginals. Hence, the approximation (3.7) is exact
with

ρst = 1, ∀(s, t) ∈ E, and ρs = 1− deg(s), ∀s ∈ V.

Using the approximation (3.7), we arrive at the following reweighted Kikuchi approxima-
tion:

B(θ; ρ) := sup
τ∈∆K

R

{〈θ, τ〉+H(τ ; ρ)}︸ ︷︷ ︸
Bθ,ρ(τ)

. (3.8)
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Note that when {ρr} are the overcounting numbers {cr}, defined recursively by

cr = 1−
∑
s∈A(r)

cs, (3.9)

the expression (3.8) reduces to the usual (unweighted) Kikuchi approximation considered in
Pakzad and Anantharam [52].

3.2 Main results and consequences

In this section, we analyze the concavity of the Kikuchi variational problem (3.8). We derive
a sufficient condition under which the function Bθ,ρ(τ) is concave over the set ∆K

R , so global
optima of the reweighted Kikuchi approximation may be found efficiently. In the Bethe
case, we also show that the condition is necessary for Bθ,ρ(τ) to be concave over the entire
region ∆K

R , and we provide a geometric characterization of ∆K
R in terms of the edge and cycle

structure of the graph.

Sufficient conditions for concavity

We begin by establishing sufficient conditions for the concavity of Bθ,ρ(τ). Clearly, this is
equivalent to establishing conditions under which H(τ ; ρ) is concave. Our main result is the
following:

Theorem 3.1. If ρ ∈ R|R| satisfies∑
s∈F(S)

ρs ≥ 0, ∀S ⊆ R, (3.10)

then the Kikuchi entropy H(τ ; ρ) is strictly concave on ∆K
R .

The proof of Theorem 3.1 is presented in Section 3.6, and makes use of a generalization
of Hall’s marriage lemma for weighted graphs (cf. Lemma 3.8 in Section 3.6).

The condition (3.10) depends heavily on the structure of the region graph. For the
sake of interpretability, we now specialize to the case where the region graph has only two
layers, with the first layer corresponding to vertices and the second layer corresponding to
hyperedges. In other words, for r, s ∈ R, we have r ⊆ s only if |r| = 1, and R = V ∪ F ,
where F is the set of hyperedges and V denotes the set of singleton vertices. This is the
Bethe case, and the entropy

H(τ ; ρ) =
∑
s∈V

ρsHs(τs) +
∑
α∈F

ραHα(τα) (3.11)

is consequently known as the Bethe entropy.
The following result is proved in Section 3.6:
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Corollary 3.2. Suppose ρα ≥ 0 for all α ∈ F , and the following condition also holds:∑
s∈U

ρs +
∑

α∈F : α∩U 6=∅

ρα ≥ 0, ∀U ⊆ V. (3.12)

Then the Bethe entropy H(τ ; ρ) is strictly concave over ∆K
R .

Necessary conditions for concavity

We now establish a converse to Corollary 3.2 in the Bethe case, showing that condition (3.12)
is also necessary for the concavity of the Bethe entropy. When ρα = 1 for α ∈ F and
ρs = 1 − |N(s)| for s ∈ V , we recover the result of Watanabe and Fukumizu [72] for the
unweighted Bethe case. However, our proof technique is significantly simpler and avoids the
complex machinery of graph zeta functions. Our approach proceeds by considering the Bethe
entropy H(τ ; ρ) on appropriate slices of the domain ∆K

R so as to extract condition (3.12) for
each U ⊆ V . The full proof is provided in Section 3.7.

Theorem 3.3. If the Bethe entropy H(τ ; ρ) is concave over ∆K
R , then ρα ≥ 0 for all α ∈ F ,

and condition (3.12) holds.

Indeed, as demonstrated in the simulations of Section 3.4, the Bethe objective function
Bθ,ρ(τ) may have multiple local optima if ρ does not satisfy condition (3.12).

Polytope of concavity

We now characterize the polytope defined by the inequalities (3.12). We show that in the
pairwise Bethe case, the polytope may be expressed geometrically as the convex hull of
single-cycle forests formed by the edges of the graph. In the more general (non-pairwise)
Bethe case, however, the polytope of concavity may strictly contain the latter set.

Note that the Bethe entropy (3.11) may be written in the alternative form

H(τ ; ρ) =
∑
s∈V

ρ′sHs(τs)−
∑
α∈F

ραĨα(τα), (3.13)

where Ĩα(τα) := {
∑

s∈αHs(τs)}−Hα(τα) is the KL divergence between the joint distribution
τα and the product distribution

∏
s∈α τs, and the weights ρ′s are defined appropriately.

We show that the polytope of concavity has a nice geometric characterization when ρ′s = 1
for all s ∈ V , and ρα ∈ [0, 1] for all α ∈ F . Note that this assignment produces the expression
for the reweighted Bethe entropy analyzed in Wainwright et al. [69] (when all elements of F
have cardinality two). Equation (3.13) then becomes

H(τ ; ρ) =
∑
s∈V

(
1−

∑
α∈N(s)

ρα

)
Hs(τs) +

∑
α∈F

ραHα(τα), (3.14)
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and the inequalities (3.12) defining the polytope of concavity are∑
α∈F : α∩U 6=∅

(|α ∩ U | − 1)ρα ≤ |U |, ∀U ⊆ V. (3.15)

Consequently, we define

C :=
{
ρ ∈ [0, 1]|F | :

∑
α∈F : α∩U 6=∅

(|α ∩ U | − 1)ρα ≤ |U |, ∀U ⊆ V
}
.

By Theorem 3.3, the set C is the region of concavity for the Bethe entropy (3.14) within
[0, 1]|F |.

We also define the set

F := {1F ′ : F ′ ⊆ F and F ′ ∪N(F ′) is a single-cycle forest in G} ⊆ {0, 1}|F |,

where a single-cycle forest is defined to be a subset of edges of a graph such that each
connected component contains at most one cycle. (We disregard the directions of edges in
G.) The following theorem gives our main result. The proof is presented in Section 3.8.

Theorem 3.4. In the Bethe case (i.e., the region graph G has two layers), we have the
containment conv(F) ⊆ C. If in addition |α| = 2 for all α ∈ F , then conv(F) = C.

The significance of Theorem 3.4 is that it provides us with a convenient graph-based
method for constructing vectors ρ ∈ C. From the inequalities (3.15), it is not even clear
how to efficiently verify whether a given ρ ∈ [0, 1]|F | lies in C, since it involves testing 2|V |

inequalities.
Comparing Theorem 3.4 with known results, note that in the pairwise case (|α| = 2 for

all α ∈ F ), Theorem 1 of Wainwright et al. [69] states that the Bethe entropy is concave
over conv(T), where T ⊆ {0, 1}|E| is the set of edge indicator vectors for spanning forests of
the graph. It is trivial to check that T ⊆ F, since every spanning forest is also a single-cycle
forest. Hence, Theorems 3.3 and 3.4 together imply a stronger result than in Wainwright et
al. [69], characterizing the precise region of concavity for the Bethe entropy as a superset of
the polytope conv(T) analyzed there. In the unweighted Kikuchi case, it is also known [3,
52] that the Kikuchi entropy is concave for the assignment ρ = 1F when the region graph
G is connected and has at most one cycle. Clearly, 1F ∈ C in that case, so this result is
a consequence of Theorems 3.3 and 3.4, as well. However, our theorems show that a much
more general statement is true.

It is tempting to posit that conv(F) = C holds more generally in the Bethe case. However,
as the following example shows, settings arise where conv(F) ( C. Details are contained in
Section 3.8.

Example 3.5. Consider a two-layer region graph with vertices V = {1, 2, 3, 4, 5} and factors
α1 = {1, 2, 3}, α2 = {2, 3, 4}, and α3 = {3, 4, 5}. Then (1, 1

2
, 1) ∈ C\ conv(F).
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In fact, Example 3.5 is a special case of a more general statement, which we state in the
following proposition. Here, F := {F ′ ⊆ F : 1F ′ ∈ F}, and an element F ∗ ∈ F is maximal if
it is not contained in another element of F.

Proposition 3.6. Suppose (i) G is not a single-cycle forest, and (ii) there exists a maximal
element F ∗ ∈ F such that the induced subgraph F ∗ ∪N(F ∗) is a forest. Then conv(F) ( C.

The proof of Proposition 3.6 is contained in Section 3.8. Note that if |α| = 2 for all α ∈ F ,
then condition (ii) is violated whenever condition (i) holds, so Proposition 3.6 provides a
partial converse to Theorem 3.4.

3.3 Reweighted sum product algorithm

In this section, we provide an iterative message passing algorithm to optimize the Kikuchi
variational problem (3.8). As in the case of the generalized belief propagation algorithm
for the unweighted Kikuchi approximation [77, 76, 40, 52, 41, 74] and the reweighted sum
product algorithm for the Bethe approximation [69], our message passing algorithm searches
for stationary points of the Lagrangian version of the problem (3.8). When ρ satisfies con-
dition (3.10), Theorem 3.1 implies that the problem (3.8) is strictly concave, so the unique
fixed point of the message passing algorithm globally maximizes the Kikuchi approximation.

Let G = (V,R) be a region graph defining our Kikuchi approximation. Following Pakzad
and Anantharam [52], for r, s ∈ R, we write r ≺ s if r ( s and there does not exist t ∈ R
such that r ( t ( s. For r ∈ R, we define the parent set of r to be P(r) = {s ∈ R : r ≺ s}
and the child set of r to be C(r) = {s ∈ R : s ≺ r}. With this notation, τ = {τr(xr) : r ∈ R}
belongs to the set ∆K

R if and only if
∑

xs\r
τs(xr, xs\r) = τr(xr) for all r ∈ R, s ∈ P(r).

The message passing algorithm we propose is as follows: For each r ∈ R and s ∈ P(r), let
Msr(xr) denote the message passed from s to r at assignment xr. Starting with an arbitrary
positive initialization of the messages, we repeatedly perform the following updates for all
r ∈ R, s ∈ P(r):

Msr(xr)← C


∑
xs\r

exp
(
θs(xs)/ρs

) ∏
v∈P(s)

Mvs(xs)
ρv/ρs

∏
w∈C(s)\r

Msw(xw)−1

exp
(
θr(xr)/ρr

) ∏
u∈P(r)\s

Mur(xr)ρu/ρr
∏

t∈C(r)
Mrt(xt)−1


ρr

ρr+ρs

. (3.16)

Here, C > 0 may be chosen to ensure a convenient normalization condition; e.g.,
∑

xr
Msr(xr) = 1.

Upon convergence of the updates (3.16), we compute the pseudomarginals according to

τr(xr) ∝ exp

(
θr(xr)

ρr

) ∏
s∈P(r)

Msr(xr)
ρs/ρr

∏
t∈C(r)

Mrt(xt)
−1, (3.17)

and we obtain the corresponding Kikuchi approximation by computing the objective func-
tion (3.8) with these pseudomarginals. We have the following result, which is proved in
Section 3.9:
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Theorem 3.7. The pseudomarginals τ specified by the fixed points of the messages {Msr(xr)}
via the updates (3.16) and (3.17) correspond to the stationary points of the Lagrangian
associated with the Kikuchi approximation problem (3.8).

As with the standard belief propagation and reweighted sum product algorithms, we
have several options for implementing the above message passing algorithm in practice. For
example, we may perform the updates (3.16) using serial or parallel schedules. To improve
the convergence of the algorithm, we may damp the updates by taking a convex combination
of new and previous messages using an appropriately chosen step size. As noted by Pakzad
and Anantharam [52], we may also use a minimal graphical representation of the Hasse
diagram to lower the complexity of the algorithm.

Finally, we remark that although our message passing algorithm proceeds in the same
spirit as classical belief propagation algorithms by operating on the Lagrangian of the objec-
tive function, our algorithm as presented above does not immediately reduce to the general-
ized belief propagation algorithm for unweighted Kikuchi approximations or the reweighted
sum product algorithm for tree-reweighted pairwise Bethe approximations. Previous authors
use algebraic relations between the overcounting numbers (3.9) in the Kikuchi case [77, 76,
40, 52] and the two-layer structure of the Hasse diagram in the Bethe case [69] to obtain a
simplified form of the updates. Since the coefficients ρ in our problem lack the same alge-
braic relations, following the message-passing protocol used in previous work [40, 77] leads
to more complicated updates, so we present a slightly different algorithm that still optimizes
the general reweighted Kikuchi objective.

3.4 Experiments

In this section, we present empirical results to demonstrate the advantages of the reweighted
Kikuchi approximation that support our theoretical results. For simplicity, we focus on the
binary pairwise Ising model given in equation (3.2). Without loss of generality, we may take
the potentials to be γs(xs) = γsxs and γst(xs, xt) = γstxsxt for some γ = (γs, γst) ∈ R|V |+|E|.
We run our experiments on two types of graphs: (1) Kn, the complete graph on n vertices,
and (2) Tn, the

√
n×
√
n toroidal grid graph where every vertex has degree four.

Bethe approximation. We consider the pairwise Bethe approximation of the log partition
function A(γ) with weights ρst ≥ 0 and ρs = 1 −

∑
t∈N(s) ρst. Because of the regularity

structure of Kn and Tn, we take ρst = ρ ≥ 0 for all (s, t) ∈ E and study the behavior of the
Bethe approximation as ρ varies. For this particular choice of weight vector ~ρ = ρ1E, we
define

ρtree = max{ρ ≥ 0: ~ρ ∈ conv(T)},

and
ρcycle = max{ρ ≥ 0: ~ρ ∈ conv(F)}.
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It is easily verified that for Kn, we have ρtree = 2
n

and ρcycle = 2
n−1

; while for Tn, we have

ρtree = n−1
2n

and ρcycle = 1
2
.

Our results in Section 3.2 imply that the Bethe objective functionBγ,ρ(τ) in equation (3.8)
is concave if and only if ρ ≤ ρcycle, and Wainwright et al. [69] show that we have the bound
A(γ) ≤ B(γ; ρ) for ρ ≤ ρtree. Moreover, since the Bethe entropy may be written in terms of
the edge mutual information (3.13), the function B(γ; ρ) is decreasing in ρ. In our results
below, we observe that we may obtain a tighter approximation to A(γ) by moving from the
upper bound region ρ ≤ ρtree to the concavity region ρ ≤ ρcycle. In addition, for ρ > ρcycle,
we observe multiple local optima of Bγ,ρ(τ).

Procedure. We generate a random potential γ = (γs, γst) ∈ R|V |+|E| for the Ising model (3.2)
by sampling each potential {γs}s∈V and {γst}(s,t)∈E independently. We consider two types
of models:

Attractive: γst ∼ Uniform[0, ωst],

and
Mixed: γst ∼ Uniform[−ωst, ωst].

In each case, γs ∼ Uniform[0, ωs]. We set ωs = 0.1 and ωst = 2. Intuitively, the attractive
model encourages variables in adjacent nodes to assume the same value, and it has been
shown [57, 62] that the ordinary Bethe approximation (ρst = 1) in an attractive model
lower-bounds the log partition function. For ρ ∈ [0, 2], we compute stationary points of
Bγ,ρ(τ) by running the reweighted sum product algorithm of Wainwright et al. [69]. We
use a damping factor of λ = 0.5, convergence threshold of 10−10 for the average change
of messages, and at most 2500 iterations. We repeat this process with at least 8 random
initializations for each value of ρ. Figure 3.1 shows the scatter plots of ρ and the Bethe
approximation Bγ,ρ(τ). In each plot, the two vertical lines are the boundaries ρ = ρtree and
ρ = ρcycle, and the horizontal line is the value of the true log partition function A(γ).

Results. Figures 3.1a–3.1d show the results of our experiments on small graphs (K5 and
T9) for both attractive and mixed models. We see that the Bethe approximation with
ρ ≤ ρcycle generally provides a better approximation to A(γ) than the Bethe approximation
computed over ρ ≤ ρtree. However, in general we cannot guarantee whether B(γ; ρ) will give
an upper or lower bound for A(γ) when ρ ≤ ρcycle. As noted above, we have B(γ; 1) ≤ A(γ)
for attractive models.

We also observe from Figures 3.1a–3.1d that shortly after ρ leaves the concavity region
{ρ ≤ ρcycle}, multiple local optima emerge for the Bethe objective function. The presence
of the point clouds near ρ = 1 in Figures 3.1a and 3.1c arises because the sum product
algorithm has not converged after 2500 iterations. Indeed, the same phenomenon is true for
all our results: in the region where multiple local optima begin to appear, it is more difficult
for the algorithm to converge. See Figure 3.2 and the accompanying text in Section 3.10
for a plot of the points (ρ, log10(∆)), where ∆ is the final average change in the messages at
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Figure 3.1: Values of the reweighted Bethe approximation as a function of ρ.

termination of the algorithm. From Figure 3.2, we see that the values of ∆ are significantly
higher for the values of ρ near where multiple local optima emerge. We suspect that for these
values of ρ, the sum product algorithm fails to converge since distinct local optima are close
together, so messages oscillate between the optima. For larger values of ρ, the local optima
become sufficiently separated and the algorithm converges to one of them. However, it is
interesting to note that this point cloud phenomenon does not appear for attractive models,
despite the presence of distinct local optima.

Simulations for larger graphs are shown in Figures 3.1e–3.1h. If we zoom into the region
near ρ ≤ ρcycle, we still observe the same behavior that ρ ≤ ρcycle generally provides a better
Bethe approximation than ρ ≤ ρtree. Moreover, the presence of the point clouds and multiple
local optima are more pronounced, and we see from Figures 3.1c, 3.1g, and 3.1h that new
local optima with even worse Bethe values arise for larger values of ρ. Finally, we note that
the same qualitative behavior also occurs in all the other graphs that we have tried (Kn for
n ∈ {5, 10, 15, 20, 25} and Tn for n ∈ {9, 16, 25, 36, 49, 64}), with multiple random instances
of the Ising model pγ.

3.5 Discussion

In this chapter, we have analyzed the reweighted Kikuchi approximation method for esti-
mating the log partition function of a distribution that factorizes over a region graph. We
have characterized necessary and sufficient conditions for the concavity of the variational
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objective function, generalizing existing results in literature. Our simulations demonstrate
the advantages of using the reweighted Kikuchi approximation and show that multiple local
optima may appear outside the region of concavity.

An interesting future research direction is to obtain a better understanding of the ap-
proximation guarantees of the reweighted Bethe and Kikuchi methods. In the Bethe case
with attractive potentials θ, several recent results [69, 62, 57] establish that the Bethe ap-
proximation B(θ; ρ) is an upper bound to the log partition function A(θ) when ρ lies in the
spanning tree polytope, whereas B(θ; ρ) ≤ A(θ) when ρ = 1F . By continuity, we must have
B(θ; ρ∗) = A(θ) for some values of ρ∗, and it would be interesting to characterize such values
where the reweighted Bethe approximation is exact.

Another interesting direction is to extend our theoretical results on properties of the
reweighted Kikuchi approximation, which currently depend solely on the structure of the
region graph and the weights ρ, to incorporate the effect of the model potentials θ. For
example, several authors [63, 23] present conditions under which loopy belief propagation
applied to the unweighted Bethe approximation has a unique fixed point. The conditions for
uniqueness of fixed points slightly generalize the conditions for convexity, and they involve
both the graph structure and the strength of the potentials. We suspect that similar results
would hold for the reweighted Kikuchi approximation.

3.6 Proofs for the sufficient condition

Proof of Theorem 3.1

We use the proof technique of Theorem 1 in Pakzad and Anantharam [52] for the unweighted
Bethe entropy, together with Lemma 3.8 in Section 3.6, which provides a generalization of
Hall’s marriage lemma for weighted bipartite graphs.

We construct a bipartite graph according to

V1 := {r ∈ R : ρr < 0}, and V2 := {r ∈ R : ρr > 0},

where (s, t) ∈ E for s ∈ V1 and t ∈ V2 when s ⊂ t. Let weights w be defined such that
w(s) = −ρs for s ∈ V1 and w(s) = ρs for s ∈ V2. We claim that condition (3.19) of Lemma 3.8
is satisfied. Indeed, for U ⊆ V1, we have

w(U) = −
∑
s∈U

ρs ≤
∑

s∈A(U)

ρs =
∑

s∈A(U):ρs>0

ρs +
∑

s∈A(U):ρs<0

ρs ≤
∑

s∈A(U):ρs>0

ρs = w(N(U)),

where the first inequality is a direct application of the assumption (3.10). Hence, by
Lemma 3.8, we have a saturating edge labeling γ.

For each t ∈ V2, define

ρ′t := ρt −
∑
s∈N(t)

γst ≥ 0.
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We may then write

H(τ ; ρ) =
∑
s∈V1

ρsHs(τs) +
∑
t∈V2

ρtHt(τt)

=
∑

(s,t)∈E

γst {−Hs(τs) +Ht(τt)}+
∑
t∈V2

ρ′tHt(τt)

=
∑

(s,t)∈E

γst

{∑
xs

τs(xs) log τs(xs)−
∑
xt

τt(xt) log τt(xt)

}
+
∑
t∈V2

ρ′tHt(τt)

=
∑

(s,t)∈E

γst
∑
xt

τt(xt) log

(
τs(xs)

τt(xt)

)
+
∑
t∈V2

ρ′tHt(τt), (3.18)

where we have used the fact that
∑

xt\s
τt(xs, xt\s) = τs(xs), since τ ∈ ∆K

R , to obtain the last

equality.
Note that for each pair (s, t), we have∑

xt

τt(xt) log

(
τs(xs)

τt(xt)

)
= −DKL(τt‖τs),

which is strictly concave in the pair (τt, τs). Furthermore, each term Ht(τt) is concave in τt.
It follows by the expansion (3.18) that H(τ ; ρ) is strictly concave, as wanted.

Generalization of Hall’s marriage lemma

In this section, we prove a generalization of Hall’s marriage lemma, which is useful in proving
concavity of the Bethe entropy function H(τ ; ρ).

Let G = (V1∪V2, E) be a bipartite graph, where each vertex v ∈ V := V1∪V2 is assigned
a weight w(v) > 0. For a set U ⊆ V , define

w(U) :=
∑
s∈U

w(s).

Also define the neighborhood set

N(U) :=
⋃
s∈U

N(s),

where N(s) := {t : (s, t) ∈ E} is the usual neighborhood set of a single node.

We say that an edge labeling γ = (γst : (s, t) ∈ E) ∈ R|E|≥0 saturates V1 if the following
conditions hold:

1. For all s ∈ V1, we have
∑

t∈N(s) γst = w(s).
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2. For all t ∈ V2, we have
∑

s∈N(t) γst ≤ w(t).

Lemma 3.8. Suppose
w(U) ≤ w(N(U)), ∀U ⊆ V1. (3.19)

Then there exists an edge labeling γ that saturates V1.

Proof. We prove the lemma in stages. First, assume w(v) ∈ Q for all v ∈ V and con-
dition (3.19) holds. With an appropriate rescaling, we may assume that all weights are
integers. Call the new weights w′. We then construct a graph G′ such that each node v ∈ V
is expanded into a set Uv of w′(v) nodes, and edges of G′ are constructed by connecting all
nodes in Us to all nodes in Ut, for each (s, t) ∈ E. By the usual version of Hall’s marriage
lemma [21], there exists a matching of G′ that saturates V ′1 :=

⋃
v∈V1 Uv. Indeed, it follows

immediately from condition (3.19) that

w′(U) ≤ w′(N(U)), ∀U ⊆ V1.

Suppose T ′ ⊆ V ′1 , and let T := {s ∈ V1 : Us ∩ T ′ 6= ∅}. Then

|T ′| ≤

∣∣∣∣∣⋃
s∈T

Us

∣∣∣∣∣ = w′(T ) ≤ w′(N(T )) = |N(T ′)|,

so the sufficient condition of Hall’s marriage lemma is met, implying the existence of a
matching. The edge labeling γ is obtained by setting

γst = {# of edges between Us and Ut in matching}

and rescaling.
Next, suppose w(v) ∈ R for all v ∈ V and condition (3.19) holds with strict inequality;

i.e.,
w(U) < w(N(U)), ∀U ⊆ V1. (3.20)

We claim that there exists an edge labeling γ that saturates V1. Indeed, let

ε := min
U⊆V1
{w(N(U))− w(U)} > 0.

Define a new weighting w′ with only rational values, such that

w′(s) ∈
[
w(s), w(s) +

ε

2 · deg(G)

)
, ∀s ∈ V1,

w′(t) ∈
(
w(t)− ε

2 · deg(G)
, w(t)

]
, ∀t ∈ V2,

where deg(G) = |E| is the number of edges in G. It is clear that Hall’s condition (3.19) still
holds for w′. Hence, by the result of the last paragraph, there exists an edge labeling γ′ that
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saturates V1 with respect to w′. Observe that by decreasing the weights of γ′ slightly, we
easily obtain an edge labeling γ that saturates V1 with respect to the original weighting w.

Finally, consider the most general case: condition (3.19) holds and w(v) ∈ R for all v ∈ V .
Note that the problem of finding an edge labeling that saturates V1 may be rephrased as
follows. Let b1 ∈ R|V1| be the vector of weights (w(s) : s ∈ V1). Then for an appropriate
choice of the matrix A1 ∈ {0, 1}|V1|×|E|, the conditions∑

t∈N(s)

γst = w(s), ∀s ∈ V1,

may be expressed as a system of linear equations,

A1γ = b1. (3.21)

Similarly, letting b2 = (w(t) : t ∈ V2) ∈ R|V2|, the conditions∑
s∈N(t)

γst ≤ w(t), ∀t ∈ V2,

may be expressed in the form
A2γ ≤ b2, (3.22)

where A2 ∈ {0, 1}|V2|×|E|. A saturating edge labeling exists if and only if there exists γ ∈ R|E|≥0

that simultaneously satisfies conditions (3.21) and (3.22). Now consider a sequence of weight
vectors {bn1}n≥1, such that bn1 → b1 and the convergence is from below and strictly monotone
for each component. Let wn = (bn1 , b2) denote the full sequence of weights. Then

wn(U) < w(U) ≤ w(N(U)) = wn(N(U)), ∀U ⊆ V.

It follows by the result of the previous paragraph that there exists an edge labeling γn ∈ R|E|≥0

such that
A1γ

n = bn1 , and γn ∈ D :=
{
γ ∈ R|E|≥0 : A2γ ≤ b2

}
.

Clearly, D is a closed set; furthermore, it is easy to see that the constraint A2γ ≤ b2 implies
that each component of γ is bounded from above, since A2 contains only nonnegative entries.
It follows that the sequence {γn}n≥1 has a limit point γ∗ ∈ D. By continuity of the linear
map A1, we must have

A1γ
∗ = lim

n→∞
A1γn = lim

n→∞
bn1 = b1.

Hence, γ∗ is a valid edge labeling that saturates V1.
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Proof of Corollary 3.2

By Theorem 3.1, H(τ ; ρ) is strictly concave provided condition (3.10) holds. Note that

F(α) = {α}, ∀α ∈ F,

whereas
F(s) = {s} ∪N(s), ∀s ∈ V.

Condition (3.10) applied to the set S = {α} gives the inequality

ρα ≥ 0, ∀α ∈ F. (3.23)

For a subset U ⊆ V , we can write

F(U) =
⋃
s∈U

F(s) = U ∪N(U) = U ∪ {α ∈ F : α ∩ U 6= ∅},

so (3.10) translates into ∑
s∈U

ρs +
∑

α∈F : α∩U 6=∅

ρα ≥ 0, ∀U ⊆ V, (3.24)

which is condition (3.12). It is easy to see that conditions (3.23) and (3.24) together also
imply the validity of condition (3.10) for any other set of regions S ⊆ R.

3.7 Proofs for the necessary condition

Proof of Theorem 3.3

Our result relies on the property that if the Bethe entropy H(τ ; ρ) is concave over ∆K
R , then

H(τ ; ρ) is also concave over any subset ∆′ ⊆ ∆K
R . In particular, it is sufficient to assume that

X is binary, say X = {−1,+1}; the general multinomial case |X | > 2 follows by restricting
the distribution of Xs to be supported on only two points.

The first lemma shows that ρα ≥ 0 for all α ∈ F . The proof is given in the next section.

Lemma 3.9. If the Bethe entropy H(τ ; ρ) is concave over ∆K
R , then ρα ≥ 0 for all α ∈ F .

To establish the necessity of condition (3.12), consider a nonempty subset U ⊆ V and
the corresponding sub-region graph RU = U ∪ FU , where FU = {α ∩ U : α ∈ F, α ∩ U 6= ∅}.
From the original weights ρ ∈ R|V |+|F |, construct the sub-region weights ρU ∈ R|U |+|FU | given
by

ρUs = ρs, ∀s ∈ U, and ρUα∩U = ρα, ∀α ∩ U ∈ FU .

For simplicity, we consider RU to be a multiset by remembering which factor α ∈ F each
β = α ∩ U ∈ FU comes from; we can equivalently work with RU as a set by defining the
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weights ρU to be the sum over the pre-images of the factors in RU . Consider the set of locally
consistent RU -pseudomarginals ∆K

RU
. Define a map that sends τ̃ ∈ ∆K

RU
to τ ∈ ∆K

R defined
by

τs(xs) =

{
τ̃s(xs) if s ∈ U,
1
2

otherwise,

τα(xα) =

{
τ̃α∩U(xα∩U) ·

∏
s∈α\U τs(xs) if α ∩ U 6= ∅ (so α ∩ U ∈ FU),∏

s∈α τs(xs) otherwise.

Let ∆U denote the image of ∆K
RU

under the mapping above, and note that ∆U ⊆ ∆K
R .

Therefore, H(τ ; ρ) is concave over ∆U . Now let τ ∈ ∆U and let τ̃ ∈ ∆K
RU

be a pre-image of
τ . With this construction, we have the following lemma:

Lemma 3.10. The entropy H(τ ; ρ) differs from HU(τ̃ ; ρU) by a constant, where HU(τ̃ ; ρU)
is the Bethe entropy defined over the sub-region graph RU .

Finally, we have a lemma showing that we can extract condition (3.12) for U = V . The
proof is provided below.

Lemma 3.11. If the Bethe entropy H(τ ; ρ) is concave over ∆K
R , then∑

s∈V

ρs +
∑
α∈F

ρα ≥ 0.

By Lemma 3.10, the concavity of H(τ ; ρ) over ∆U implies the concavity of HU(τ̃ ; ρU)
over ∆K

RU
. Then by Lemma 3.11 applied to RU , we have∑

s∈U

ρs +
∑

α∈F : α∩U 6=∅

ρα =
∑
s∈U

ρUs +
∑
β∈FU

ρUβ ≥ 0,

finishing the proof.

Proof of Lemma 3.9

Fix α ∈ F , and let ∆α be the set of pseudomarginals τ ∈ ∆K
R with the property that

for all s ∈ V and β ∈ F \ {α}, τs and τβ are uniform distributions over Xs and Xβ,
respectively, while τα is an arbitrary distribution on Xα with uniform single-node marginals.
Then H(τ ; ρ) is concave over ∆α. On the other hand, note that for τ ∈ ∆α, Hs(τs) = log 2
and Hβ(τβ) = |β| log 2 are constants for s ∈ V and β ∈ F \ {α}, so we can write

H(τ ; ρ) = ραHα(τα) + constant.

Since Hα(τα) is concave in τα, this implies ρα ≥ 0, as claimed.
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Proof of Lemma 3.10

By construction, for s ∈ V \ U , we have Hs(τs) = log 2; and for α ∈ F with α ∩ U = ∅, we
have Hα(τα) = |α| log 2. Moreover, for α ∈ F with α ∩ U 6= ∅, we have

Hα(τα) = Hα∩U(τ̃α∩U) +
∑
s∈α\U

Hs(τs) = Hα∩U(τ̃α∩U) + |α \ U | log 2.

Therefore, for τ ∈ ∆U , we can write

H(τ ; ρ) =
∑
s∈V

ρsHs(τs) +
∑
α∈F

ραHα(τα)

=
∑
s∈U

ρsHs(τ̃s) +
( ∑
s∈V \U

ρs

)
log 2

+
∑

α∈F : α∩U 6=∅

ρα

(
Hα∩U(τ̃α∩U) + |α \ U | log 2

)
+

∑
α∈F : α∩U=∅

ρα|α| log 2

=
∑
s∈U

ρUs Hs(τ̃s) +
∑
β∈FU

ρUβHβ(τ̃β) + constant

= HU(τ̃ ; ρU) + constant,

as wanted.

Proof of Lemma 3.11

Given mo,me ∈ R, we define a pseudomarginal τ = (τs, τα) by

τs(xs) =
1 + xsmo

2
, ∀s ∈ V, xs ∈ X = {−1,+1},

and for α ∈ F with |α| = k,

τα(xα) =


2−k

(
1 + 2k−1mo + (2k−1 − 1)me

)
if xα = (1, . . . , 1),

2−k
(
1− 2k−1mo + (2k−1 − 1)me

)
if xα = (−1, . . . ,−1),

2−k(1−me) otherwise.

Notice that the definition of τ above is equivalent to imposing the conditions

Eτα
[∏

s∈β
Xs

]
= mo if |β| is odd

and
Eτα
[∏

s∈β
Xs

]
= me if |β| is even,

for all α ∈ V ∪ F and ∅ 6= β ⊆ α.
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It is easy to see that
∑

xs
τs(xs) =

∑
xα
τα(xα) = 1, and that τs is the single-node marginal

of τα. Thus, for τ to lie in ∆K
R , we only need to ensure that τs(xs) ≥ 0 and τα(xα) ≥ 0, or

equivalently,

−1 ≤ mo ≤ 1,
1 + 2k−1|mo|

2k−1 − 1
≤ me ≤ 1, ∀ 2 ≤ k ≤ K,

where K = max{|α| : α ∈ F}. Let M denote the set of (mo,me) satisfying the constraints
above, and let ∆M denote the set of pseudomarginals τ [mo,me] ∈ ∆K

R given by the construc-
tion above for each (mo,me) ∈M .

Observe that the function (mo,me) 7→ τ [mo,me] is additive for convex combinations; i.e.,

for (m
(1)
o ,m

(1)
e ), . . . , (m

(j)
o ,m

(j)
e ) ∈M and λ1, . . . , λj ≥ 0 with λ1 + · · ·+ λj = 1, we have

j∑
i=1

λiτ [m(i)
o ,m

(i)
e ] = τ

[ j∑
i=1

λim
(i)
o ,

j∑
i=1

λim
(i)
e

]
.

Since M is convex, this shows that ∆M is a convex subset of ∆K
R . Therefore, H(τ ; ρ) is

concave over ∆M , and the additivity property above implies that the function

ζ(mo,me) := H(τ [mo,me]; ρ)

is concave over M . We now compute the Hessian of ζ and show how it relates to the required
quantity that we want to prove is nonnegative.

Fix (mo,me) ∈M , and note that τ ≡ τ [mo,me] has the property that τα = τβ whenever
|α| = |β|. Therefore, we can collect the terms inH(τ ; ρ) based on the cardinality of α ∈ V ∪F .
The single-node entropy is, as a function of mo,

ζ1(mo) := Hs(τs) = −η
(

1 +mo

2

)
− η

(
1−mo

2

)
,

where η(t) := t log t. For α ∈ F with |α| = k ≥ 2, the entropy corresponding to τα is

ζk(mo,me) := Hα(τα) = −η
(

1 + 2k−1mo + (2k−1 − 1)me

2k

)
− η

(
1− 2k−1mo + (2k−1 − 1)me

2k

)
− (2k − 2) η

(
1−me

2k

)
.

The Bethe entropy can then be written as

ζ(mo,me) = H(τ ; ρ) = c1ζ1(mo) +
K∑
k=2

ckζk(mo,me),

where c1 =
∑

s∈V ρs and ck =
∑

α∈F : |α|=k ρα for k ≥ 2.
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Let us compute the Hessian matrix of ζ(mo,me) along the axis mo = 0. The function
ζ1 has second derivative ζ ′′1 (mo) = −1/(1−m2

o), so at mo = 0, the contribution of ζ1 to the
Hessian of ζ is

∇2ζ1(0,me) =

(
−1 0
0 0

)
.

For k ≥ 2, the first partial derivatives of ζk are

∂ζk
∂mo

= −1

2

{
log
(
1 + 2k−1mo + (2k−1 − 1)me

)
− log

(
1− 2k−1mo + (2k−1 − 1)me

)}
,

∂ζk
∂me

= −(2k−1 − 1)

2k
{

log
(
1 + 2k−1mo + (2k−1 − 1)me

)
+ log

(
1− 2k−1mo + (2k−1 − 1)me

)
−2 log

(
1−me

)}
.

The Hessian ∇2ζk at mo = 0 is then given by

∇2ζk(0,me) =

−
2k−1

1 + (2k−1 − 1)me

0

0 − 2k−1 − 1

(1 + (2k−1 − 1)me)(1−me)

 .

Therefore, the Hessian of ζ at mo = 0 is the diagonal matrix

∇2ζ(0,me) =


−c1 −

K∑
k=2

2k−1ck
1 + (2k−1 − 1)me

0

0 −
K∑
k=2

(2k−1 − 1)ck
(1 + (2k−1 − 1)me)(1−me)

 .

In particular, the eigenvalues of ∇2ζ(0,me) are its diagonal entries. Taking me → 1, we see
that the eigenvalue corresponding to the first diagonal entry satisfies

lim
me→1

λ1(me) = lim
me→1

{
−c1 −

K∑
k=2

2k−1ck
1 + (2k−1 − 1)me

}
= −

K∑
k=1

ck.

Since (0,me) ∈ M as me → 1 and ζ(mo,me) is concave over M , we see that the eigenvalue
above is nonpositive, which implies

∑
s∈V

ρs +
∑
α∈F

ρα =
K∑
k=1

ck ≥ 0,

as desired.
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3.8 Proofs for the polytope of concavity

Proof of Theorem 3.4

We first show that conv(F) ⊆ C in the general Bethe case. Since C is convex, it suffices to
show that F ⊆ C, so consider 1F ′ ∈ F. We need to show that inequality (3.15) holds for
ρ = 1F ′ .

Let W1, . . . ,Wm denote the connected components of F ′ ∪ N(F ′) in G. Consider an
arbitrary U ⊆ V , and define Ui := Wi ∩ U for 1 ≤ i ≤ m, and U0 := U\{U1, . . . , Um}. Then
each Wi has at most one cycle. Furthermore, we may write

∑
α∈F :
α∩U 6=∅

(|α ∩ U | − 1)ρα =
∑
α∈F ′ :
α∩U 6=∅

(|α ∩ U | − 1) =
m∑
i=1

{ ∑
α∈Wi :
α∩Ui 6=∅

(|α ∩ Ui| − 1)
}
. (3.25)

We claim that ∑
α∈Wi : α∩Ui 6=∅

(|α ∩ Ui| − 1) ≤ |Ui|, ∀1 ≤ i ≤ m. (3.26)

Indeed, consider the induced subgraph W ′
i of Wi with vertex set

Vi := Ui ∪ {α ∈ Wi : α ∩ Ui 6= ∅}.

Since Wi has at most one cycle, W ′
i has at most one cycle, as well. Furthermore, the number

of edges of W ′
i is given by

|E(W ′
i )| =

∑
α∈Wi : α∩Ui 6=∅

|α ∩ Ui|,

and the number of vertices is |Vi| = |Ui|+ |{α ∈ Wi : α ∩ Ui 6= ∅}|.
We have the following simple lemma:

Lemma 3.12. A connected graph G has at most one cycle if and only if

|E(U)| ≤ |U |, ∀U ⊆ V.

Proof. First suppose G has at most one cycle. For any subset U ⊆ V , the induced subgraph
H clearly also contains at most one cycle. Hence, we may remove at most one edge to obtain
a graph H ′ which is a forest. Then

|E(H ′)| ≤ |V (H ′)| − 1 = |U | − 1. (3.27)

Furthermore, |E(U)| ≤ |E(H ′)|+ 1. It follows that |E(U)| ≤ |U |.
Conversely, if G is a connected graph with more than one cycle, we may pick U to be the

union of vertices in the two cycles, along with a path connecting the two cycles (in case the
cycles are disconnected). It is easy to check that condition (3.27) is violated in this case.
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Applying Lemma 3.12 to the graph W ′
i and rearranging then yields inequality (3.26).

Combining with equation (3.25) then yields

∑
α∈F : α∩U 6=∅

(|α ∩ U | − 1)ρα ≤
m∑
i=1

|Ui| = |U | − |U0| ≤ |U |,

proving the condition (3.15).
We now specialize to the case where |α| = 2 for all α ∈ F . Note that in this case, we

may identify the region graph with an ordinary graph Ḡ = (V,E), where the edge set E is
given by F . It is easy to check that 1F ′ ∈ F if and only if the subgraph of Ḡ with edge set
F ′ is a single-cycle forest. In the following argument, we abuse notation and refer to Ḡ as
G.

Recall that a rational polyhedron is a set of the form {x ∈ Rp : Ax ≤ b}, such that A and
b have rational entries. Clearly, C is a rational polyhedron. Furthermore, a polyhedron is
integral if all vertices are elements of the integer lattice Zp. The following result is standard
in integer programming:

Lemma 3.13. [Theorem 5.12, [32]] Let P be a rational polyhedron. Then P is integral if and
only if max{cTx : x ∈ P} is attained by an integral vector for each c for which the maximum
is finite.

We have already established that 1F ′ ∈ C for all 1F ′ ∈ F. Furthermore, any lattice point
in C is of the form 1H , where H ⊆ E. By Lemma 3.12, each connected component of H
must contain at most one cycle, implying that H is a single-cycle forest. Hence, 1H ∈ F,
as well. We then combine Lemma 3.13 with the following proposition to obtain the desired
result.

Proposition 3.14. Let G = (V,E) be a graph. For any set of weights c = (cst) ∈ R|E|, the
LP

max
∑

(s,t)∈E

cstxst (3.28)

s.t.
∑

(s,t)∈E(U)

xst ≤ |U |, ∀U ⊆ V, (3.29)

0 ≤ xst ≤ 1, ∀(s, t) ∈ E,

attains its maximum value at an integral vector x∗.

Proof. We first argue that it suffices to consider rational weights c ∈ Q|E|. Let X denote
the feasible set of the LP, and let F (c) = maxx∈X c

>x denote the maximum value of the LP.
Note that F (c) is continuous in c.

Suppose the claim in the proposition holds for c ∈ Q|E|. Given c ∈ R|E|, let x∗ ∈
arg maxx∈X c

Tx. Let (c(n))n≥1 be a sequence of weights in Q|E| converging to c elementwise
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as n → ∞. Given ε > 0, choose n sufficiently large such that ‖c(n) − c‖1 < ε and |F (c) −
F (c(n))| < ε. Applying our hypothesis, we know there exists an integral vector z∗ ∈ X such
that F (c(n)) = (c(n))>z∗. Then

|F (c)− c>z∗| ≤ |F (c)− F (c(n))|+ |(c(n) − c)>z∗| ≤ ε+ ‖c(n) − c‖1 ‖z∗‖∞ ≤ 2ε.

Thus, we can find an integral vector z∗ ∈ X that achieves the objective function that is
within 2ε from the optimal value. Since ε > 0 is arbitrary, we conclude by continuity that we
may find an integral vector in X arbitrarily close to x∗. This implies that x∗ is an integral
vector.

It now remains to prove the claim in the proposition for c ∈ Q|E|. If cst < 0 for some
(s, t) ∈ E, then any optimal solution x∗ will have x∗st = 0. If cst = 0, then we can set x∗st = 0
without changing the objective value. Thus, we can assume cst > 0 for all (s, t) ∈ E. By
scaling the weights, we can further assume that cst ∈ {1, . . . , K} for all (s, t) ∈ E, for some
K ∈ N.

We first upper-bound the objective function. For 1 ≤ i ≤ K, let Ei = {(s, t) ∈ E : cst ≥ i}
denote the set of edges with weights at least i, and let Vi denote the set of vertices in Ei. By
construction, we have

V = V1 ⊃ · · · ⊃ VK , and E = E1 ⊃ · · · ⊃ EK .

Suppose the subgraph Gi = (Vi, Ei) is decomposed into connected components

Gi = Ti1 ∪ · · · ∪ Tiαi ∪Hi1 ∪ · · · ∪Hiβi , (3.30)

where each Tij = (V (Tij), E(Tij)) is a tree and each Hi` = (V (Hi`), E(Hi`)) is a connected
graph with at least one loop. Thus, we have the disjoint partitions

Vi =

αi⋃
j=1

V (Tij) ∪
βi⋃
`=1

V (Hi`),

and

Ei =

αi⋃
j=1

E(Tij) ∪
βi⋃
`=1

E(Hi`).

Then we can write the objective function of the LP as

∑
(s,t)∈E

cstxst =
K∑
i=1

∑
(s,t)∈Ei

xst =
K∑
i=1

 αi∑
j=1

∑
(s,t)∈E(Tij)

xst +

βi∑
`=1

∑
(s,t)∈E(Hi`)

xst

 . (3.31)

For i = 1, . . . , K and j = 1, . . . , αi, since Tij is a tree, we have∑
(s,t)∈E(Tij)

xst ≤ |E(Tij)| = |V (Tij)| − 1, ∀x ∈ X. (3.32)
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For ` = 1, . . . , βi, note that the set E(Hi`) of edges in Hi` is contained within the set
E(V (Hi`)) of edges in the subgraph of G induced by V (Hi`). Thus, by inequality (3.29), we
have ∑

(s,t)∈E(Hi`)

xst ≤
∑

(s,t)∈E(V (Hi`))

xst ≤ |V (Hi`)|. (3.33)

Plugging in the bounds (3.32) and (3.33) to inequality (3.31), we arrive at the upper bound

∑
(s,t)∈E

cstxst ≤
K∑
i=1

(
αi∑
j=1

{
|V (Tij)| − 1

}
+

βi∑
`=1

|V (Hi`)|

)
=

K∑
i=1

(|Vi| − αi) . (3.34)

We now prove the claim in the proposition by explicitly constructing an integral vector
x∗ that achieves the upper bound (3.34). Since x∗ ∈ {0, 1}|E|, it is the indicator vector of a
subset E∗ ⊆ E.

Our approach is to construct, for each 1 ≤ i ≤ K, a spanning single-cycle forest Fi =
(Vi, Ci) of Gi = (Vi, Ei) with the following properties:

1. The restriction of Fi to Vi+1 ⊆ Vi is equal to Fi+1 = (Vi+1, Ci+1), or equivalently,
Ci ∩ Ei+1 = Ci+1. By induction, this implies C1 ∩ Ei = Ci, for 1 ≤ i ≤ K.

2. For 1 ≤ i ≤ K, we have |Ci| = |Vi| − αi.

Suppose we can construct such Fi’s. Setting E∗ = C1, we see that this construction yields a
vector x∗ = 1E∗ satisfying

∑
(s,t)∈E

cstx
∗
st =

K∑
i=1

∑
(s,t)∈Ei

x∗st =
K∑
i=1

∑
(s,t)∈Ei

1{(s, t) ∈ C1}

=
K∑
i=1

|C1 ∩ Ei| =
K∑
i=1

|Ci| =
K∑
i=1

(
|Vi| − αi

)
,

so x∗ achieves the bound (3.34), as desired.
It now remains to construct the Fi’s. We start by taking FK to be a spanning single-cycle

forest of GK . Specifically, for each connected component H of GK , we do the following: If H
is a tree, we take H to be in FK . If H contains at least one loop, then we take an arbitrary
spanning single-cycle subgraph (i.e., a spanning tree with an additional edge to form one
cycle) of H to be in FK . Then FK = (VK , CK) satisfies |CK | = |VK | − αK , since there are
αK trees among the connected components of GK .

Suppose that for some 1 ≤ i ≤ K − 1, we have constructed a spanning single-cycle forest
Fi+1 satisfying the desired properties. Now considerGi = (Vi, Ei), and construct Fi = (Vi, Ci)
as follows: Consider each connected component of Gi in the decomposition (3.30).
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(a) For each tree Tij = (V (Tij), E(Tij)), for all 1 ≤ j ≤ αi, take Tij to be in Fi. This
component of Fi is clearly consistent with Fi+1, and the contribution to the total
number of edges |Ci| is

αi∑
j=1

|E(Tij)| =
αi∑
j=1

(
|V (Tij)| − 1

)
=

αi∑
j=1

|V (Tij)| − αi.

(b) Consider Hi` = (V (Hi`), E(Hi`)), for some 1 ≤ ` ≤ βi, so Hi` has at least one loop.
There may be several connected components of Fi+1 in Hi`; suppose there are γi` trees
and δi` single-cycle graphs from Fi+1 in Hi`. From each of the δi` single-cycle graphs,
remove one edge to reduce it to a tree, and complete the γi` + δi` trees into a spanning
tree of Hi`. Add the δi` edges back, so the spanning tree now has δi` cycles. Remove
δi` − 1 edges to break this graph into δi` connected components, such that each of
the original δi` single-cycle graphs is in a separate connected components, and the
last connected component is a tree. Set this new graph to be in Fi. It is clear by
construction that this component of Fi is consistent with Fi+1 since we keep all the
edges from Fi+1. Moreover, its contribution to the total number of edges Ci is precisely

βi∑
`=1

(
{|V (Hi`)| − 1}+ δi` − {δi` − 1}

)
=

βi∑
`=1

|V (Hi`)|.

Combining the two cases above, for each 1 ≤ i ≤ K we have constructed a spanning
single-cycle forest Fi that is consistent with Fi+1 and satisfies |Ci| =

∑αi
j=1 |V (Tij)| − αi +∑βi

`=1 |V (Hi`)| = |Vi| − αi, as desired. This completes the proof of the proposition.

Details for Example 3.5

It is easy to check that F = {0, 1}3\(1, 1, 1). Hence, (1, 1
2
, 1) /∈ conv(F). By enumerating the

inequalities defining the boundary of C for different values of U ⊆ V , one may check that
the only inequalities that are not trivially satisfied by ρ ∈ [0, 1]3 are

ρ1 + 2ρ2 + ρ3 ≤ 3,

2ρ1 + 2ρ2 + ρ3 ≤ 4,

ρ1 + 2ρ2 + 2ρ3 ≤ 4,

2ρ1 + 2ρ2 + 2ρ3 ≤ 5.

The first inequality together with the condition ρ ∈ [0, 1]3 implies the remaining three
inequalities, so

C =
{
ρ ∈ [0, 1]3 : ρ1 + 2ρ2 + ρ3 ≤ 3

}
.

Clearly, (1, 1
2
, 1) ∈ C.
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Proof of Proposition 3.6

The first condition implies F /∈ F. In particular, F ∗ 6= F and we can find α∗ ∈ F \F ∗. Since
F ∗ is maximal, F̃ = F ∗ ∪ {α∗} /∈ F. This means 1F ∗ ∈ F but 1F̃ = 1F ∗ + 1{α∗} /∈ F. Define

ρ = 1F ∗ + ε1{α∗}, with ε =
1

|α∗| − 1
∈ (0, 1).

We claim that ρ ∈ C, which will give us the desired conclusion since ρ /∈ conv(F).
To show ρ ∈ C, since we already know that 1F ∗ ∈ F ⊆ C, we only need to verify

inequality (3.15) for U ⊆ V with U ∩ α∗ 6= ∅. Given such a subset U , note that since
F ∗ ∪N(F ∗) is a forest, the subgraph induced by the nodes U ∪ {α ∈ F ∗ : α ∩U 6= ∅} is also
a forest, so ∑

α∈F ∗ : α∩U 6=∅

(|α ∩ U | − 1) ≤ |U | − 1.

Therefore,∑
α∈F : α∩U 6=∅

(|α ∩ U | − 1)ρα =
∑

α∈F ∗ : α∩U 6=∅

(|α ∩ U | − 1) +
|α∗ ∩ U | − 1

|α∗| − 1
≤ |U | − 1 + 1 = |U |,

verifying condition (3.15), as desired.

3.9 Proof of Theorem 3.7

For r ∈ R and s ∈ P(r), let λsr(xr) be a Lagrange multiplier associated with the consistency
constraint

∑
xs\r

τs(xr, xs\r) = τr(xr). We enforce the nonnegativity constraint τr(xr) ≥ 0

and normalization constraint
∑

xr
τr(xr) = 1 explicitly. Then the Lagrangian associated

with the optimization problem (3.8) is

Lθ,ρ(τ ;λ) =
∑
r∈R

∑
xr

τr(xr)θr(xr)−
∑
r∈R

ρr
∑
xr

τr(xr) log τr(xr)

+
∑
r∈R

∑
t∈C(r)

∑
xt

λrt(xt)

τt(xt)−∑
xr\t

τr(xt, xr\t)

 .

(3.35)

Setting the partial derivatives of Lθ,ρ with respect to the Lagrange multipliers equal to zero
recovers the consistency constraints. Taking the derivative of Lθ,ρ with respect to τr(xr) and
setting it equal to zero yields

log τr(xr) = C +
θr(xr)

ρr
+
∑
s∈P(r)

λsr(xr)

ρr
−
∑
t∈C(r)

λrt(xt)

ρr
,
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where C is a constant that enforces the normalization condition
∑

xr
τr(xr) = 1. Defining

the messages by

logMsr(xr) =
λsr(xr)

ρs
,

we can write the equation above as

τr(xr) ∝ exp

(
θr(xr)

ρr

) ∏
s∈P(r) Msr(xr)

ρs/ρr∏
t∈C(r) Mrt(xt)

,

recovering equation (3.17).
For s ∈ R and r ∈ C(s), enforcing the consistency condition

∑
xs\r

τs(xr, xs\r) = τr(xr)

gives us

exp

(
θr(xr)

ρr

)
Msr(xr)

ρs/ρr
∏

u∈P(r)\sMur(xr)
ρu/ρr∏

t∈C(r) Mrt(xt)

∝
∑
xs\r

exp

(
θs(xs)

ρs

) ∏
v∈P(s) Mvs(xs)

ρv/ρs

Msr(xr)
∏

w∈C(s)\rMsw(xw)
.

Rearranging the equation to collect Msr(xr) on the left hand side and taking the (1+ρs/ρr)-th
root on both sides gives us the update equation (3.16).

From the derivation above, it is clear that if {Msr(xr)} is a fixed point of the update
equation (3.16), then the collection τ of pseudomarginals defined by (3.17) is a stationary
point of the Lagrangian (3.35), since it sets the derivatives of Lθ,ρ equal to zero.

3.10 Additional simulation results

In this section, we provide additional plots to better illustrate the observations that we make
in Section 3.4. For convenience, Figures 3.2a–3.2d and Figures 3.2i–3.2l show the same plots
as in Figure 3.1. Figures 3.2e–3.2h show the plots of (ρ, log10(∆)) for the Ising models in
Figures 3.2a–3.2d, and similarly for Figures 3.2m–3.2p. Here, ∆ is the final average change
of the messages in the sum product algorithm at termination; i.e., either when ∆ ≤ 10−10

or after 2500 iterations of the algorithm with parallel updates.
For ρ ≤ ρcycle, in which the Bethe variational problem (3.8) is concave, there is a unique

optimal value for the Bethe approximation. The values of ∆ in this region are slightly
higher than the convergence threshold, which means sum product has not converged after
2500 iterations, but the final value of ∆ is sufficiently small that the messages have stabilized.

Shortly after ρ becomes larger than ρcycle, the curve of the Bethe values splits into multiple
lines, which indicates that the Bethe objective function has multiple local optima. These lines
are evidently distinct local optima since the values of ∆ are at the convergence threshold,
which means sum product converges and yields stationary points of the Lagrangian.
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In the models with mixed potentials, we observe that for the values of ρ where the
multiple local optima begin to emerge, the values of ∆ are significantly higher and sum
product does not converge. This behavior is reflected in the presence of the point cloud in
the plots of the Bethe values. As noted in Section 3.4, we suspect that this behavior arises
because distinct local optima are initially close together, so messages oscillate between them.
For larger values of ρ, however, the local optima are sufficiently separated, so sum product
converges and there are multiple lines in the graphs of the Bethe values.
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Figure 3.2: Values of the reweighted Bethe approximation and the final log10(∆) as a
function of ρ.
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Chapter 4

How to Hedge an Option Against an
Adversary: Black-Scholes Pricing is
Minimax Optimal

An option is a financial contract that allows the purchase or sale of a given asset, such
as a stock, bond, or commodity, for a predetermined price on a predetermined date. The
contract is named as such because the transaction in question is optional for the purchaser of
the contract. Options are bought and sold for any number of reasons, but in particular they
allow firms and individuals with risk exposure to hedge against potential price fluctuations.
Airlines, for example, have heavy fuel costs and hence are frequent buyers of oil options.

What ought we pay for the privilege of purchasing an asset at a fixed price on a future
expiration date? The difficulty with this question, of course, is that while we know the
asset’s previous prices, we are uncertain as to its future price. In a seminal paper from 1973,
Fischer Black and Myron Scholes introduced what is now known as the Black-Scholes Option
Pricing Model, which led to a boom in options trading as well as a huge literature on the
problem of derivative pricing [13]. Black and Scholes had a key insight that a firm which
had sold/purchased an option could “hedge” against the future cost/return of the option
by buying and selling the underlying asset as its price fluctuates. Their model is based on
stochastic calculus and requires a critical assumption that the asset’s price behaves according
to a Geometric Brownian Motion (GBM) with known drift and volatility.

The GBM assumption in particular implies that (almost surely) an asset’s price fluctuates
continuously. The Black-Scholes model additionally requires that the firm be able to buy
and sell continuously until the option’s expiration date. Neither of these properties are true
in practice: the stock market is only open eight hours per day, and stock prices are known to
make significant jumps even during regular trading. These and other empirical observations
have led to much criticism of the Black-Scholes model.

An alternative model for option pricing was considered1 by DeMarzo et al. [16], who posed

1A similar approach with a slightly distinct flavor was explored in the book of Vovk and Shafer [58].
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the question: “Can we construct hedging strategies that are robust to adversarially chosen
price fluctuations?” Essentially, the authors asked if we may consider hedging through the
lens of regret minimization in online learning, an area that has proved fruitful, especially for
obtaining guarantees robust to worst-case conditions. Within this minimax option pricing
framework, DeMarzo et al. provided a particular algorithm resembling the Weighted Majority
and Hedge algorithms [19, 38] with a nice bound.

In an earlier work [1], we have taken the minimax option pricing framework a step further
by analyzing the zero-sum game being played between an Investor, who is attempting to
replicate the option payoff, and Nature, who is sequentially setting the price changes of the
underlying asset. The Investor’s goal is to “hedge” the payoff of the option as the price
fluctuates, whereas Nature attempts to foil the Investor by choosing a challenging sequence
of price fluctuations. The value of this game can be interpreted as the “minimax option
price,” since it is what the Investor should pay for the option against an adversarially chosen
price path. Our main result in [1] was to show that the game value approaches the Black-
Scholes option price as the Investor’s trading frequency increases. Put another way, the
minimax price tends to the option price under the GBM assumption. This lends significant
further credibility to the Black-Scholes model, as it suggests that the GBM assumption may
already be a “worst-case model” in a certain sense.

The previous result, while useful and informative, left two significant drawbacks. First,
our techniques used minimax duality to compute the value of the game, but no particular
hedging algorithm for the Investor is given. This is in contrast to the Black-Scholes frame-
work (as well as to the DeMarzo et al.’s result [16]) in which a hedging strategy is given
explicitly. Second, the result depended on a strong constraint on Nature’s choice of price
path: the multiplicative price variance is uniformly constrained, which forbids price jumps
and other large fluctuations.

In this work, we resolve these two drawbacks. We consider the problem of minimax option
pricing with much weaker constraints: we restrict the sum over the length of the game of
the squared price fluctuations to be no more than a constant c, and we allow arbitrary price
jumps, up to a bound ζ. We show that the minimax option price is exactly the Black-Scholes
price of the option, up to an additive term of O(cζ1/4). Furthermore, we give an explicit
hedging strategy: this upper bound is achieved when the Investor’s strategy is essentially a
version of the Black-Scholes hedging algorithm.

4.1 The Black-Scholes formula

Let us now briefly review the Black-Scholes pricing formula and hedging strategy. The
derivation requires some knowledge of continuous random walks and stochastic calculus—
Brownian motion, Itô’s Lemma, a second-order partial differential equation—which can be
found in standard references on stochastic calculus, e.g., [60].

Let us imagine we have an underlying asset A whose price is fluctuating. We let W (t)
be a Brownian motion, also known as a Wiener process, with zero drift and unit variance;
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in particular, W (0) = 0 and W (t) ∼ N(0, t) for t > 0. We shall imagine that A’s price path
G(t) is described by a geometric Brownian motion with drift µ and volatility σ, which we
can describe via the definition of a Brownian motion:

G(t)
d
= exp{(µ− 1

2
σ2)t+ σW (t)}.

If an Investor purchases a European call option on some asset A (say, MSFT stock) with
a strike price of K > 0 that matures at time T , then the Investor has the right to buy a
share of A at price K at time T . Of course, if the market price of A at T is G(T ), then the
Investor will only “exercise” the option if G(T ) > K, since the Investor has no benefit of
purchasing the asset at a price higher than the market price. Hence, the payoff of a European
call option has a profit function of the form max{0, G(T )−K}. Throughout the chapter we
shall use

gEC(x) := max{0, x−K}
to refer to the payout of the European call when the price of asset A at time T is x (the
parameter K is implicit).

We assume the current time is t. The Black-Scholes derivation begins with a guess:
assume that the “value” of the European call option can be described by a smooth function
V(G(t), t), depending only on the current price of the asset G(t) and the time to expiration
T − t. We can immediately define a boundary condition on V , since at the expiration time
T the value of the option is

V(G(T ), 0) = gEC(G(T )).

So how do we arrive at a value for the option at another time point t? We assume
the Investor has a hedging strategy, ∆(x, t) that determines the amount to invest when the
current price is x and the time is t. Notice that if the asset’s current price is G(t) and
the Investor purchases ∆(G(t), t) dollars of asset A at t, then the incremental amount of
money made in an infinitesimal amount of time is ∆(G(t), t) dG/G(t), since dG/G(t) is
the instantaneous multiplicative price change at time t. Of course, if the earnings of the
Investor are guaranteed to exactly cancel out the infinitesimal change in the value of the
option dV(G(t), t), then the Investor is totally hedged with respect to the option payout for
any sample of G for the remaining time to expiration. In other words, we hope to achieve

dV(G, t) =
∆(G, t)

G
dG.

However, by Itô’s Lemma [60] we have the following useful identity:

dV(G, t) =
∂V
∂x

dG+
∂V
∂t
dt+

1

2
σ2G2∂

2V
∂x2

dt. (4.1)

Black and Scholes proposed a generic hedging strategy, that the investor should invest

∆(x, t) = x
∂V
∂x

(4.2)
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dollars in the asset A when the price of A is x at time t. As mentioned, the goal of the
Investor is to hedge out risk so that it is always the case that dV(G, t) = ∆(G, t) dG/G.
Combining this goal with Equations (4.1) and (4.2), we have

∂V
∂t

+
1

2
σ2x2∂

2V
∂x2

= 0. (4.3)

Notice the latter is an entirely non-stochastic PDE, and indeed it can be solved explicitly:

V(x, t) = EY [gEC(x · exp(Y ))] where Y ∼ N (−1
2
σ2(T − t), σ2(T − t)) (4.4)

Remark: While we have described the derivation for the European call option, with payoff
function gEC, the analysis above does not rely on this specific choice of g. We refer the reader
to a standard text on asset pricing for more on this [60].

4.2 The minimax hedging game

We now describe a sequential decision protocol in which an Investor makes a sequence of
trading decisions on some underlying asset, with the goal of hedging away the risk of some
option (or other financial derivative) whose payout depends on the final price of the asset
at the expiration time T . We assume the Investor is allowed to make a trading decision at
each of n time periods, and before making this trade the investor observes how the price of
the asset has changed since the previous period. Without loss of generality, we can assume
that the current time is 0 and the trading periods occur at {T/n, 2T/n, . . . , 1}, although
this will not be necessary for our analysis.

The protocol is as follows.

1: Initial price of asset is S = S0.
2: for i = 1, 2, . . . , n do
3: Investor hedges, invests ∆i ∈ R dollars in asset.
4: Nature selects a price fluctuation ri and updates price S ← S(1 + ri).
5: Investor receives (potentially negative) profit of ∆iri.
6: end for
7: Investor is charged the cost of the option, g(S) = g (S0 ·

∏n
i=1(1 + ri)).

Stepping back for a moment, we see that the Investor is essentially trying to minimize the
following objective:

g

(
S0 ·

n∏
i=1

(1 + ri)

)
−

n∑
i=1

∆iri.

We can interpret the above expression as a form of regret : the Investor chose to execute a
trading strategy, earning him

∑n
i=1 ∆iri, but in hindsight might have rather purchased the

option instead, with a payout of g (S0 ·
∏n

i=1(1 + ri)). What is the best hedging strategy the
Investor can execute to minimize the difference between the option payoff and the gains/losses
from hedging? Indeed, how much regret may be suffered against a worst-case sequence of
price fluctuations?
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Constraining Nature. The cost of playing the above sequential game is clearly going
to depend on how much we expect the price to fluctuate. In the original Black-Scholes
formulation, the price volatility σ is a major parameter in the pricing function. In our earlier
work [1], a key assumption was that Nature may choose any r1, . . . , rn with the constraint
that E[r2

i | r1, . . . , ri−1] = O(1/n). 2 Roughly, this constraint means that in any ε-sized time
interval, the price fluctuation variance shall be no more than ε. This constraint, however,
does not allow for large price jumps during trading. In the present work, we impose a much
weaker set of constraints, described as follows:3

• TotVarConstraint: The total price fluctuation is bounded by a constant c, that is,∑n
i=1 r

2
i ≤ c.

• JumpConstraint: Every price jump |ri| is no more than ζ, for some ζ > 0 (which
may depend on n).

The first constraint above says that Nature is bounded by how much, in total, the asset’s
price path can fluctuate. The latter says that at no given time can the asset’s price jump
more than a given value. It is worth noting that if c ≥ nζ2 then TotVarConstraint is
superfluous, whereas JumpConstraint becomes superfluous if c < ζ2.

The Minimax Option Price We are now in a position to define the value of the sequential
option pricing game using a minimax formulation. That is, we shall ask how much the
Investor loses when making optimal trading decisions against worst-case price fluctuations
chosen by Nature.

Let V
(n)
ζ (S; c,m) be the value of the game, measured by the investor’s loss, when the

asset’s current price is S ≥ 0, the TotVarConstraint is c ≥ 0, the JumpConstraint is
ζ > 0, the total number of trading rounds are n ∈ N, and there are 0 ≤ m ≤ n rounds
remaining. We define recursively:

V
(n)
ζ (S; c,m) = inf

∆∈R
sup

r : |r|≤min{ζ,
√
c}
−∆r + V

(n)
ζ ((1 + r)S; c− r2,m− 1), (4.5)

with the base case V
(n)
ζ (S; c, 0) = g(S). Notice that the constraint under the supremum

enforces both TotVarConstraint and JumpConstraint. For simplicity, we will write
V

(n)
ζ (S; c) := V

(n)
ζ (S; c, n). This is the value of the game that we are interested in analyzing.

Towards establishing an upper bound on the value (4.5), we shall discuss the question of
how to choose the hedge parameter ∆ on each round. We can refer to a “hedging strategy”
in this game as a function of the tuple (S, c,m, n, ζ, g(·)) that returns hedge position. In our
upper bound, in fact we need only consider hedging strategies ∆(S, c) that depend on S and
c; there certainly will be a dependence on g(·) as well but we leave this implicit.

2The constraint in [1] was E[r2i | r1, . . . , ri−1] ≤ exp(c/n)− 1, but this is roughly equivalent.
3We note that in [1] we also assumed that the multiplicative price jumps |ri| are bounded by ζ̂n =

Ω(
√

(log n)/n); this is a stronger assumption than what we impose on (ζn) in Theorem 4.1.
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4.3 Asymptotic results: Convergence to the

Black-Scholes price

The central focus of the present work is the following questions:

For fixed c and S, what is the asymptotic behavior of the value V
(n)
ζ (S; c)?

and

Is there a natural hedging strategy ∆(S, c) that (roughly) achieves this value?

In other words, what is the minimax value of the option, as well as the optimal hedge, when
we fix the variance budget c and the asset’s current price S, but let the number of rounds
tend to∞? We now give answers to these questions, and devote the remainder of the chapter
to developing the results in detail.

We consider payoff functions g : R0 → R0 satisfying three constraints:

1. g is convex.

2. g is L-Lipschitz, i.e. |g(x)− g(y)| ≤ L|x− y|.

3. g is eventually linear, i.e. there exists K > 0 such that g(x) is a linear function for all
x ≥ K; in this case we also say g is K-linear.

We believe the first two conditions are strictly necessary to achieve the desired results.
The K-linearity may not be necessary but makes our analysis possible. We note that the
constraints above encompass the standard European call and put options.

Henceforth we shall let G be a zero-drift GBM with unit volatility. In particular, we
have that

logG(t) ∼ N
(
−1

2
t, t

)
.

For S, c ≥ 0, define the function

U(S, c) = EG[g(S ·G(c))],

and observe that U(S, 0) = g(S). Our goal will be to show that U is asymptotically
the minimax price of the option. Most importantly, this function U(S, c) is identical to
V(S, 1

σ2 (T − c)), the Black-Scholes value of the option in (4.4) when the GBM volatility
parameter is σ in the Black-Scholes analysis. In particular, analogous to to (4.3), U(S, c)
satisfies a differential equation:

1

2
S2∂

2U

∂S2
− ∂U

∂c
= 0. (4.6)

The following is our main result of this chapter.
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Theorem 4.1. Let S > 0 be the initial asset price and let c > 0 be the variance budget.
Assume we have a sequence {ζn} with limn→∞ ζn = 0 and lim infn→∞ nζ

2
n > c. Then

lim
n→∞

V
(n)
ζn

(S; c) = U(S, c).

This statement tells us that the minimax price of an option, when Nature has a total
fluctuation budget of c, approaches the Black-Scholes price of the option when the time to
expiration is c. This is particularly surprising since our minimax pricing framework made
no assumptions as to the stochastic process generating the price path. This is the same
conclusion as in [1], but we obtained our result with a significantly weaker assumption.
Unlike [1], however, we do not show that the adversary’s minimax optimal stochastic price
path necessarily converges to a GBM. The convergence of Nature’s price path to GBM in [1]
was made possible by the uniform per-round variance constraint.

The previous theorem is the result of two main technical contributions. First, we prove a
lower bound on the limiting value of V

(n)
ζn

(S; c) by exhibiting a simple randomized strategy
for Nature in the form of a stochastic price path, and appealing to the Lindeberg-Feller
central limit theorem. Second, we prove an O(cζ1/4) upper bound on the deviation between

V
(n)
ζ (S; c) and U(S, c). The upper bound is obtained by providing an explicit strategy for

the Investor:

∆(S, c) = S
∂U(S, c)

∂S

and carefully bounding the difference between the output using this strategy and the game
value. In the course of doing so, because we are invoking Taylor’s remainder theorem, we
need to bound the first few derivatives of U(S, c). Bounding these derivatives turns out to be
the crux of the analysis; in particular, it uses the full force of the assumptions on g, including
that g is eventually linear, to avoid the pathological cases when the derivative of g converges
to its limiting value very slowly.

4.4 Lower bound

In this section we prove that U(S, c) is a lower bound to the game value V
(n)
ζn

(S; c). We note
that the result in this section does not use the assumptions in Theorem 4.1 that ζn → 0, nor
that g is convex and eventually linear. In particular, the following result also applies when
the sequence (ζn) is a constant ζ > 0.

Theorem 4.2. Let g : R0 → R0 be an L-Lipschitz function, and let {ζn} be a sequence of
positive numbers with lim infn→∞ nζ

2
n > c. Then for every S, c > 0,

lim inf
n→∞

V
(n)
ζn

(S; c) ≥ U(S, c).
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The proof of Theorem 4.2 (given below) is based on correctly “guessing” a randomized
strategy for Nature. For each n ∈ N, define the i.i.d. random variables

R1,n, . . . , Rn,n ∼ Uniform

{
±
√
c

n

}
.

Note that (Ri,n)ni=1 satisfies TotVarConstraint by construction. Moreover, the assumption

lim infn→∞ nζ
2
n > c implies ζn >

√
c/n for all sufficiently large n, so eventually (Ri,n) also

satisfies JumpConstraint. We have the following convergence result for (Ri,n), which we
prove in Section 4.6.

Lemma 4.3. Under the same setting as in Theorem 4.2, we have the convergence in distri-
bution

n∏
i=1

(1 +Ri,n)
d−→ G(c) as n→∞.

Moreover, we also have the convergence in expectation

lim
n→∞

E

[
g

(
S ·

n∏
i=1

(1 +Ri,n)

)]
= U(S, c). (4.7)

With the help of Lemma 4.3, we are now ready to prove Theorem 4.2.

Proof of Theorem 4.2: Let n be sufficiently large such that nζ2
n > c. Let Ri,n ∼

Uniform{±
√
c/n} i.i.d., for 1 ≤ i ≤ n. As noted above, (Ri,n) satisfies both TotVarCon-

straint and JumpConstraint. Then we have

V
(n)
ζn

(S; c) = inf
∆1

sup
r1

· · · inf
∆n

sup
rn

g
(
S ·

n∏
i=1

(1 + ri)
)
−

n∑
i=1

∆iri

≥ inf
∆1

· · · inf
∆n

E
[
g
(
S ·

n∏
i=1

(1 +Ri,n)
)
−

n∑
i=1

∆iRi,n

]
= E

[
g
(
S ·

n∏
i=1

(1 +Ri,n)
)]
.

The first line follows from unrolling the recursion in the definition (4.5); the second line
from replacing the supremum over (ri) with expectation over (Ri,n); and the third line from
E[Ri,n] = 0. Taking limit on both sides and using (4.7) from Lemma 4.3 give us the desired
conclusion.

4.5 Upper bound

In this section we prove that U(S, c) is an upper bound to the limit of V
(n)
ζ (S; c).



CHAPTER 4. BLACK-SCHOLES PRICING IS MINIMAX OPTIMAL 80

Theorem 4.4. Let g : R0 → R0 be a convex, L-Lipschitz, K-linear function. Let 0 < ζ ≤
1/16. Then for any S, c > 0 and n ∈ N, we have

V
(n)
ζ (S; c) ≤ U(S, c) +

(
18c+

8√
2π

)
LK ζ1/4.

We remark that the right-hand side of the above bound does not depend on the number
of trading periods n. The key parameter is ζ, which determines the size of the largest price
jump of the stock. However, we expect that as the trading frequency increases, the size of
the largest price jump will shrink. Plugging a sequence {ζn} in place of ζ in Theorem 4.4
gives us the following corollary.

Corollary 4.5. Let g : R0 → R0 be a convex, L-Lipschitz, K-linear function. Let {ζn} be a
sequence of positive numbers with ζn → 0. Then for S, c > 0,

lim sup
n→∞

V
(n)
ζn

(S; c) ≤ U(S, c).

Note that the above upper bound relies on the convexity of g, for if g were concave, then
we would have the reverse conclusion:

V
(n)
ζ (S; c) ≥ g(S) = g(S · E[G(c)]) ≥ E[g(S ·G(c))] = U(S, c).

Here the first inequality follows from setting all r = 0 in (4.5), and the second is by Jensen’s
inequality.

Intuition

For brevity, we write the partial derivatives as

Uc(S, c) =
∂U(S, c)

∂c
, US(S, c) =

∂U(S, c)

∂S
, and US2(S, c) =

∂2U(S, c)

∂S2
.

The proof of Theorem 4.4 proceeds by providing a “guess” for the Investor’s action, which is
a modification of the original Black-Scholes hedging strategy. Specifically, when the current
price is S and the remaining budget is c, then the Investor invests

∆(S, c) := SUS(S, c).

We now illustrate how this strategy gives rise to a bound on V
(n)
ζ (S; c) as stated in

Theorem 4.4. First suppose for some m ≥ 1 we know that V
(n)
ζ (S; c,m − 1) is a rough

approximation to U(S, c). Note that a Taylor approximation of the function rm 7→ U(S +
Srm, c− r2

m) around U(S, c) gives us

U(S + Srm, c− r2
m) = U(S, c) + rmSUS(S, c)− r2

mUc(S, c) +
1

2
r2
mS

2US2(S, c) +O(r3
m)

= U(S, c) + rmSUS(S, c) +O(r3
m),
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where the last line follows from the Black-Scholes equation (4.6). Now by setting ∆ =
SUS(S, c) in the definition (4.5), and using the assumption and the Taylor approximation
above, we obtain

V
(n)
ζ (S; c,m) = inf

∆∈R
sup

|rm|≤min{ζ,
√
c}
−∆rm + V

(n)
ζ (S + Srm; c− r2

m,m− 1)

≤ sup
rm

−rmSUS(S, c) + V
(n)
ζ (S + Srm; c− r2

m,m− 1)

= sup
rm

−rmSUS(S, c) + U(S + Srm, c− r2
m) + (approx terms)

= U(S, c) +O(r3
m) + (approx terms).

In other words, on each round of the game we add an O(r3
m) term to the approximation

error. By the time we reach V
(n)
ζ (S; c, n) we will have an error term that is roughly on the

order of
∑n

m=1 |rm|3. Since
∑n

m=1 r
2
m ≤ c and |rm| ≤ ζ by assumption, we get

∑n
m=1 |rm|3 ≤

ζc.
The details are more intricate because the error O(r3

m) from the Taylor approximation
also depends on S and c. Trading off the dependencies of c and ζ leads us to the bound
stated in Theorem 4.4.

Proof of Theorem 4.4

In this section we describe an outline of the proof of Theorem 4.4. Throughout, we assume
g is a convex, L-Lipschitz, K-linear function, and 0 < ζ ≤ 1/16. The proofs of Lemma 4.6
and Lemma 4.8 are provided in Section 4.7, and Lemma 4.7 is proved in Section 4.8.

For S, c > 0 and |r| ≤
√
c, we define the (single-round) error term of the Taylor approx-

imation,
εr(S, c) := U(S + Sr, c− r2)− U(S, c)− rSUS(S, c). (4.8)

We also define a sequence {α(n)(S, c,m)}nm=0 to keep track of the cumulative errors. We
define this sequence by setting α(n)(S, c, 0) = 0, and for 1 ≤ m ≤ n,

α(n)(S, c,m) := sup
|r|≤min{ζ,

√
c}
εr(S, c) + α(n)(S + Sr, c− r2,m− 1). (4.9)

For simplicity, we write α(n)(S, c) ≡ α(n)(S, c, n). Then we have the following result, which

formalizes the notion from the preceding section that V
(n)
ζ (S; c,m) is an approximation to

U(S, c).

Lemma 4.6. For S, c > 0, n ∈ N, and 0 ≤ m ≤ n, we have

V
(n)
ζ (S; c,m) ≤ U(S, c) + α(n)(S, c,m). (4.10)

It now remains to bound α(n)(S, c) from above. A key step in doing so is to show the
following bounds on εr. This is where the assumptions that g be L-Lipschitz and K-linear
are important.
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Lemma 4.7. For S, c > 0, and |r| ≤ min{1/16,
√
c/8}, we have

εr(S, c) ≤ 16LK
(
max{c−3/2, c−1/2} |r|3 + max{c−2, c−1/2} r4

)
. (4.11)

Moreover, for S > 0, 0 < c ≤ 1/4, and |r| ≤
√
c, we also have

εr(S, c) ≤
4LK√

2π
· r

2

√
c
. (4.12)

Using Lemma 4.7, we have the following bound on α(n)(S, c).

Lemma 4.8. For S, c > 0, n ∈ N, and 0 < ζ ≤ 1/16, we have

α(n)(S, c) ≤
(

18c+
8√
2π

)
LK ζ1/4.

Proof (sketch). By unrolling the inductive definition (4.9), we can write α(n)(S, c) as the
supremum of f(r1, . . . , rn), where

f(r1, . . . , rn) =
n∑

m=1

εrm

(
S
m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
.

Let (r1, . . . , rn) be such that |rm| ≤ ζ and
∑n

m=1 r
2
m ≤ c. We will show that f(r1, . . . , rn) ≤

(18c+ 8/
√

2π) LK ζ1/4. Let 0 ≤ n∗ ≤ n be the largest index such that
∑n∗

m=1 r
2
m ≤ c−

√
ζ.

We split the analysis into two parts.

1. For 1 ≤ m ≤ min{n, n∗ + 1}: By (4.11) from Lemma 4.7 and a little calculation, we
have

εrm

(
S
m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 18LK ζ1/4 r2

m.

Summing over 1 ≤ m ≤ min{n, n∗ + 1} then gives us

min{n, n∗+1}∑
m=1

εrm

(
S
m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 18LK ζ1/4

min{n, n∗+1}∑
m=1

r2
m ≤ 18LK ζ1/4 c.

2. For n∗ + 2 ≤ m ≤ n (if n∗ ≤ n− 2): By (4.12) from Lemma 4.7, we have

εrm

(
S
m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 4LK√

2π
· r2

m√∑n
i=m r

2
i

.

Therefore,

n∑
m=n∗+2

εrm

(
S
m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 4LK√

2π

n∑
m=n∗+2

r2
m√∑n
i=m r

2
i

≤ 8LK√
2π

ζ1/4,

where the last inequality follows from Lemma 4.9 in Section 4.7.
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Combining the two cases above gives us the desired conclusion.

Proof of Theorem 4.4: Theorem 4.4 follows immediately from Lemma 4.6 and Lemma 4.8.

4.6 Proof of Lemma 4.3

For each 1 ≤ i ≤ n, the random variable log(1 +Ri,n) has mean and variance, respectively,

µn =
1

2
log
(

1− c

n

)
and σ2

n =
1

4
log2

(√
n+
√
c√

n−
√
c

)
.

We now define

Xi,n :=
log(1 +Ri,n)− µn

σn
√
n

, (4.13)

so X1,n, . . . , Xn,n are i.i.d. random variables with E[Xi,n] = 0 and
∑n

i=1 E[X2
i,n] = 1. Recalling

that Ri,n ∈ {±
√
c/n}, we see that the two possible values for Xi,n both approach 0 as

n→∞. This means for any ε > 0 we can find a sufficiently large n such that |Xi,n| < ε for
all 1 ≤ i ≤ n. In particular, this implies the Lindeberg condition for the triangular array
(Xi,n, 1 ≤ i ≤ n): for all ε > 0,

lim
n→∞

n∑
i=1

E[X2
i,n 1{|Xi,n| > ε}] = 0.

Thus, by the Lindeberg central limit theorem [17, Theorem 3.4.5], we have the convergence

in distribution
∑n

i=1Xi,n
d−→ Z, where Z ∼ N (0, 1) is a standard Gaussian random variable.

Clearly µn → 0 as n → ∞. Furthermore, one can easily verify that by the L’Hôpital’s
rule,

lim
n→∞

σn
√
n =
√
c and lim

n→∞
nµn = − c

2
.

Therefore, from the convergence
∑n

i=1Xi,n
d−→ Z and recalling the definition (4.13) of Xi,n,

we also obtain

n∑
i=1

log(1 +Ri,n) =
n∑
i=1

(
µn + σn

√
nXi,n

)
= nµn + σn

√
n

n∑
i=1

Xi,n
d−→ −c

2
+
√
cZ.

In particular, by the continuous mapping theorem,

n∏
i=1

(1 +Ri,n)
d−→ exp

(
− c

2
+
√
cZ
)

d
= G(c).



CHAPTER 4. BLACK-SCHOLES PRICING IS MINIMAX OPTIMAL 84

We now want to show that we also have convergence in expectation when g is an L-
Lipschitz function, namely, that E[g(S ·

∏n
i=1(1 + Ri,n))] → E[g(S · G(c))]. Without loss of

generality (by replacing g(x) by ĝ(x) = g(S · x)− g(0)) we may assume S = 1 and g(0) = 0.
For simplicity, let Sn =

∏n
i=1(1 + Ri,n). For each M > 0 define the continuous bounded

function gM(x) = min{g(x),M}. The convergence in distribution Sn
d→ G(c) gives us

lim
n→∞

E[gM(Sn))] = E[gM(G(c))] for all M > 0. (4.14)

Since gM ↑ g pointwise, by the monotone convergence theorem we also have

lim
M→∞

E[gM(G(c))] = E[g(G(c))]. (4.15)

Now observe that E[Sn] = 1 and E[S2
n] = (1 + c/n)n ≤ exp(c). Since g(0) = 0 and g is L-

Lipschitz, we have g(x) ≤ Lx for all x ≥ 0. In particular, E[g(Sn)2] ≤ L2E[S2
n] ≤ L2 exp(c).

Moreover, by Markov’s inequality,

P(g(Sn) > M) ≤ P
(
Sn >

M

L

)
≤ E[Sn]

M/L
=

L

M
.

Therefore, for each n and for all M > 0, by Cauchy-Schwarz inequality,∣∣E[g(Sn)]− E[gM(Sn)]
∣∣ = E[(g(Sn)−M) · 1{g(Sn) > M}]
≤ E[g(Sn) · 1{g(Sn) > M}]
≤ E[g(Sn)2]1/2 P(g(Sn) > M)1/2

≤
(
L3 exp(c)/M

)1/2
.

Since the final bound does not involve n, this shows that limM→∞ E[gM(Sn)] → E[g(Sn)]
uniformly in n. This allows us to interchange the order of the limit operations below, which,
together with (4.14) and (4.15), give us our desired result:

lim
n→∞

E[g(Sn)] = lim
n→∞

lim
M→∞

E[gM(Sn)] = lim
M→∞

lim
n→∞

E[gM(Sn)] = lim
M→∞

E[gM(G(c))] = E[g(G(c))].

This completes the proof of Lemma 4.3.

4.7 Proofs of Lemma 4.6 and Lemma 4.8

Proof of Lemma 4.6

Lemma 4.6 essentially follows from the definition of α(n).
Proof of Lemma 4.6: We proceed by induction on m. For the base case m = 0, we use
Jensen’s inequality and the fact that E[G(c)] = 1:

V
(n)
ζ (S; c, 0) = g(S) = g(S · E[G(c)]) ≤ E[g(S ·G(c))] = U(S, c).
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Now assume the statement (4.10) holds for m− 1. Then for m,

V
(n)
ζ (S; c,m) = inf

∆∈R
sup

|r|≤min{ζ,
√
c}
−∆r + V

(n)
ζ (S + Sr; c− r2,m− 1)

≤ inf
∆∈R

sup
|r|≤min{ζ,

√
c}
−∆r + U(S + Sr, c− r2) + α(n)(S + Sr, c− r2,m− 1)

≤ sup
|r|≤min{ζ,

√
c}
−rSUS(S, c) + U(S + Sr, c− r2) + α(n)(S + Sr, c− r2,m− 1)

= sup
|r|≤min{ζ,

√
c}
U(S, c) + εr(S, c) + α(n)(S + Sr, c− r2,m− 1)

= U(S, c) + α(n)(S, c,m).

The first line is from the definition (4.5); the second line is using the inductive hypothesis
that (4.10) holds for m− 1; the third line is from substituting the choice ∆ = SUS(S, c); the
fourth line is from the definition of εr; and the last line is from the definition of α(n)(S, c,m).

Proof of Lemma 4.8

For completeness, we provide a more detailed proof of Lemma 4.8.
Proof of Lemma 4.8: Unrolling the inductive definition (4.9), we can write

α(n)(S, c) = sup
r1,...,rn

|rm|≤ζ,
∑n
m=1 r

2
m≤c

f(r1, . . . , rn),

where f is the function

f(r1, . . . , rn) =
n∑

m=1

εrm

(
S
m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
.

Let (r1, . . . , rn) be such that |rm| ≤ ζ and
∑n

m=1 r
2
m ≤ c. We will show that f(r1, . . . , rn) ≤

(18c+ 8/
√

2π) LK ζ1/4.
Assume for now that ζ ≤ c2. Let 0 ≤ n∗ ≤ n be the largest index such that

n∗∑
m=1

r2
m ≤ c−

√
ζ.

We split the analysis into two parts.

For 1 ≤ m ≤ min{n, n∗ + 1}: We want to apply the bound in Lemma 4.7, so let us verify
that the conditions in Lemma 4.7 are satisfied. Clearly |rm| ≤ ζ ≤ 1/16. Moreover, since
c−

∑m−1
i=1 r2

i ≥ c−
∑n∗

i=1 r
2
i ≥
√
ζ and ζ ≤ 1/16, we also have

|rm| ≤ ζ ≤ ζ1/4

8
≤

√
c−

∑m−1
i=1 r2

i

8
.
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Therefore, by (4.11) from Lemma 4.7,

εrm

(
S
m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 16LK

(
max

{(
c−

m−1∑
i=1

r2
i

)−3/2

,
(
c−

m−1∑
i=1

r2
i

)−1/2
}
|rm|3

+ max

{(
c−

m−1∑
i=1

r2
i

)−2

,
(
c−

m−1∑
i=1

r2
i

)−1/2
}
r4
m

)
≤ 16LK

(
max{ζ−3/4, ζ−1/4} |rm|3 + max{ζ−1, ζ−1/4} r4

m

)
= 16LK

(
ζ−3/4 |rm|3 + ζ−1 r4

m

)
(since ζ < 1)

≤ 16LK
(
ζ1/4 r2

m + ζ r2
m

)
(since |rm| ≤ ζ)

≤ 16LK

(
ζ1/4 r2

m + ζ1/4 1

163/4
r2
m

)
(since ζ ≤ 1/16)

= 18LK ζ1/4 r2
m.

Summing over 1 ≤ m ≤ min{n, n∗ + 1} gives us

min{n, n∗+1}∑
m=1

εrm

(
S
m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 18LK ζ1/4

min{n, n∗+1}∑
m=1

r2
m ≤ 18LK ζ1/4 c. (4.16)

For n∗ + 2 ≤ m ≤ n, if n∗ ≤ n− 2: Without loss of generality we may assume rn 6= 0, for
if rn = 0, then the term depending on rn does not affect f(r1, . . . , rn) since

εrn

(
S
n−1∏
i=1

(1 + ri), c−
n−1∑
i=1

r2
i

)
= 0,

so we can remove rn and only consider n∗ + 2 ≤ m ≤ n − 1. From the definition of n∗ we
see that

∑n∗+1
m=1 r

2
m > c−

√
ζ, and since

∑n
m=1 r

2
m ≤ c, this implies

n∑
m=n∗+2

r2
m ≤ c−

n∗+1∑
m=1

r2
m < c− (c−

√
ζ) =

√
ζ. (4.17)

Note also that for each n∗ + 2 ≤ m ≤ n,

0 < r2
n ≤

n∑
i=m

r2
i ≤ c−

m−1∑
i=1

r2
i ≤ c−

n∗+1∑
i=1

r2
i ≤

√
ζ ≤ 1

4
,

so by (4.12) from Lemma 4.7,

εrm

(
S
m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 4LK√

2π
· r2

m√
c−

∑m−1
i=1 r2

i

≤ 4LK√
2π
· r2

m√∑n
i=m r

2
i

.
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Therefore, by applying Lemma 4.9 below to xi = r2
n∗+1+i, we see that

n∑
m=n∗+2

εrm

(
S

m−1∏
i=1

(1 + ri), c−
m−1∑
i=1

r2
i

)
≤ 4LK√

2π

n∑
m=n∗+2

r2
m√∑n
i=m r

2
i

≤ 8LK√
2π

(
n∑

m=n∗+2

r2
m

)1/2

≤ 8LK√
2π

ζ1/4,

(4.18)

where the last inequality follows from (4.17). Combining (4.16) and (4.18) gives us the
desired conclusion.

Now if ζ > c2, then the argument in the second case above (for n∗ + 2 ≤ m ≤ n) still
holds with n∗ set to be −1, so we still get the same conclusion.

It now remains to prove the following result, which we use at the end of the proof of
Lemma 4.8.

Lemma 4.9. For x1, . . . , xk ≥ 0 with xk > 0, we have

k∑
i=1

xi√
xi + xi+1 + · · ·+ xk

≤ 2

(
k∑
i=1

xi

)1/2

.

Proof. Let Lk denote the objective function that we wish to bound,

Lk(x1, . . . , xk) =
k∑
i=1

xi√
xi + xi+1 + · · ·+ xk

,

and note that for any t > 0,

Lk(tx1, . . . , txk) =
√
t Lk(x1, . . . , xk), (4.19)

For each k ∈ N, let ∆k denote the unit simplex in Rk with xk > 0,

∆k =

{
(x1, . . . , xk) : x1, . . . , xk−1 ≥ 0, xk > 0,

k∑
i=1

xi = 1

}
,

and let ηk denote the supremum of the function Lk over x ∈ ∆k. Given x = (x1, . . . , xk) ∈ ∆k,
define y = (y1, . . . , yk−1) by yi = xi+1/(1− x1), so y ∈ ∆k−1. Then we can write

Lk(x1, . . . , xk) =
x1√

x1 + · · ·+ xk
+ Lk−1(x2, . . . , xk)

= x1 +
√

1− x1 Lk−1(y1, . . . , yk−1)

≤ x1 +
√

1− x1 ηk−1,
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where the second equality is from (4.19) and the last inequality is from the definition of ηk−1.
The function x1 7→ x1 +

√
1− x1 ηk−1 is concave and maximized at x∗1 = 1− η2

k−1/4, giving
us

Lk(x1, . . . , xk) ≤ x∗1 +
√

1− x∗1 ηk−1 = 1−
η2
k−1

4
+

√
η2
k−1

4
ηk−1 = 1 +

η2
k−1

4
.

Taking the supremum over x ∈ ∆k gives us the recursion

ηk ≤ 1 +
η2
k−1

4
,

which, along with the base case η1 = 1, easily implies ηk ≤ 2 for all k ∈ N. Now given
x1, . . . , xk ≥ 0 with xk > 0, let x′ = (tx1, . . . , txk) with t = 1/(x1 + · · · + xk), so x′ ∈ ∆k.
Then using (4.19) and the bound ηk ≤ 2, we get

Lk(x1, . . . , xk) =
1√
t
Lk(tx1, . . . , txk) ≤ ηk

(
k∑
i=1

xi

)1/2

≤ 2

(
k∑
i=1

xi

)1/2

,

as desired.

4.8 Proof of Lemma 4.7

In this section we provide a proof of Lemma 4.7. Throughout the rest of this chapter, we
use the following notation for the higher-order partial derivatives of U ,

USacb(S, c) =
∂a+bU(S, c)

∂Sa∂cb
, a, b ∈ N0.

We will use the following bounds on US2 , US3 , and US4 , which we prove in Section 4.9.
These bounds are where we use the crucial assumptions that the payoff function g is convex,
L-Lipschitz, and K-linear.

Lemma 4.10. Let g : R0 → R0 be a convex, L-Lipschitz, K-linear function. Then for all
S, c > 0,

|US2(S, c)| ≤ 2LK√
2π
· 1

S2
√
c

(4.20)

|US3(S, c)| ≤ 7LK · max{c−3/2, c−1/2}
S3

, (4.21)

|US4(S, c)| ≤ 28LK · max{c−2, c−1/2}
S4

. (4.22)

We will also use the following property of the function U .

Lemma 4.11. The function U(S, c) is convex in S and non-decreasing in c.
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Proof. For each fixed c ≥ 0 and for each realization of the random variable G(c) > 0, the
function S 7→ g(S · G(c)) is convex. Therefore, U(S, c) is convex in S, being a nonnegative
linear combination of convex functions. In particular, this implies US2(S, c) ≥ 0. So by the
Black-Scholes equation (4.6), we also have Uc(S, c) = 1

2
S2US2(S, c) ≥ 0.

We are now ready to prove Lemma 4.7. For clarity, we divide the proof into two parts:
we first prove the bound (4.12), then prove the bound (4.11).

Proof of (4.12) in Lemma 4.7: Recall that U(S, c) is non-decreasing in c by Lemma 4.11.
Then by the Taylor remainder theorem, we can write

εr(S, c) = U(S + Sr, c− r2)− U(S, c)− rSUS(S, c)

≤ U(S + Sr, c)− U(S, c)− rSUS(S, c)

=
1

2
r2S2US2(S + Sξ, c)

where ξ is some value between 0 and r. Since |ξ| ≤ |r| ≤
√
c ≤ 1/2, we have (1 + ξ)2 ≥ 1/4.

Moreover, from (4.20) in Lemma 4.10, we have∣∣(1 + ξ)2S2US2(S + Sξ, c)
∣∣ ≤ 2LK√

2π
· 1√

c
.

Combining the bounds above gives us

εr(S, c) ≤
1

2

r2

(1 + ξ)2

∣∣(1 + ξ)2S2US2(S + Sξ, c)
∣∣ ≤ 4LK√

2π
· r

2

√
c
,

as desired.

Proof of (4.11) in Lemma 4.7: Fix S, c > 0, and consider the function

f(r) = U(S + Sr, c− r2), |r| ≤
√
c.

By repeatedly applying the Black-Scholes differential equation (4.6), we can easily verify
that f(0) = U(S, c), f ′(0) = SUS(S, c), and

f ′′(r) = p2(r) r S2US2(S + Sr, c− r2) + p3(r) (1 + r)2r S3US3(S + Sr, c− r2)

+ (1 + r)4r2 S4US4(S + Sr, c− r2),
(4.23)

where p2, p3 are the polynomials p2(r) = 2r3 + 4r2 − 3r − 6 and p3(r) = 4r2 + 4r − 2.
Noting that we can write

εr(S, c) = f(r)− f(0)− f ′(0)r,

another application of Taylor’s remainder theorem allows us to write

εr(S, c) =
1

2
f ′′(ξ)r2
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for some ξ lying between 0 and r. It is easy to verify that we have∣∣∣∣ p2(ξ)

(1 + ξ)2

∣∣∣∣ ≤ 7,

∣∣∣∣ p3(ξ)

(1 + ξ)

∣∣∣∣ ≤ 3 for all |ξ| ≤ |r| ≤ 1

16
.

Moreover, since ξ2 ≤ r2 ≤ c/64, we have c − ξ2 ≥ 63
64
c. Then from the bound (4.20) in

Lemma 4.10, we have∣∣(1 + ξ)2S2US2(S + Sξ, c− ξ2)
∣∣ ≤ 2LK√

2π
· 1

(c− ξ2)1/2
≤ 2LK√

2π
· 1

(63
64
c)1/2

≤ LK c−1/2.

We also get from the bound (4.21) in Lemma 4.10,∣∣(1 + ξ)3S3US3(S + Sξ, c− ξ2)
∣∣ ≤ 7LK max{(c− ξ2)−3/2, (c− ξ2)−1/2}

≤ 7LK max
{(63

64
c
)−3/2

,
(63

64
c
)−1/2}

≤ 7LK

(
64

63

)3/2

max{c−3/2, c−1/2}

≤ 8LK max{c−3/2, c−1/2}.

Similarly, the bound (4.22) in Lemma 4.10 gives us∣∣(1 + ξ)4S4US4(S + Sξ, c− ξ2)
∣∣ ≤ 29LK max{c−2, c−1/2}.

Applying the bounds above to (4.23) gives us

|f ′′(ξ)| ≤
∣∣∣∣ p2(ξ)

(1 + ξ)2

∣∣∣∣ · |ξ| · ∣∣(1 + ξ)2S2US2(S + Sξ, c− ξ2)
∣∣

+

∣∣∣∣ p3(ξ)

(1 + ξ)

∣∣∣∣ · |ξ| · ∣∣(1 + ξ)3S3US3(S + Sξ, c− ξ2)
∣∣

+ ξ2 ·
∣∣(1 + ξ)4S4US4(S + Sξ, c− ξ2)

∣∣
≤ 7LK |r| c−1/2 + 24LK |r| max{c−3/2, c−1/2}+ 29LK r2 max{c−2, c−1/2}
≤ 31LK |r| max{c−3/2, c−1/2}+ 29LK r2 max{c−2, c−1/2}.

Therefore, we obtain

|εr(S, c)| =
1

2
|f ′′(ξ)| · r2 ≤ 16LK

(
|r|3 max{c−3/2, c−1/2}+ r4 max{c−2, c−1/2}

)
,

as desired.
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4.9 Proof of Lemma 4.10

In this section we prove the bounds on the higher-order derivatives USa(S, c), a ≥ 0. Proving
the bounds in Lemma 4.10 is more difficult than the analysis that we have done so far, and
uses the full force of the assumptions that the payoff function g is convex, L-Lipschitz, and
K-linear.

The outline of the proof is as follows. By writing U(S, c) as a convolution, we can write its
derivatives USa(S, c) as an expectation of g(S ·G(c)) modulated by certain polynomials. The
K-linearity of g allows us to approximate g by the European-option payoff function gEC that
we encountered in Section 4.1, so we first prove Lemma 4.10 for the specific case when the
payoff function is gEC. We extend the bound on US2(S, c) to the general case by dominating
the function inside the expectation by another carefully constructed function. Finally, we
use the approximation of g by gEC to prove the bounds on the higher-order derivatives US3

and US4 . In particular, Lemma 4.17 proves the bound (4.20), and Lemma 4.20 proves the
bounds (4.21) and (4.22).

Throughout the rest of this section, Z ∼ N (0, 1) denotes a standard Gaussian random
variable, and Φ and φ denote the cumulative distribution function and the probability density
function, respectively, of the standard Gaussian distribution. The symbol ∗ denotes the

convolution operator on R. We also use the fact that G(c)
d
= exp(−1

2
c +
√
cZ). Recall

that the convexity of g implies differentiability almost everywhere, so we can work with its
derivative g′, which is necessarily increasing (since g is convex) and satisfies |g′(x)| ≤ L
(since g is L-Lipschitz).

Finally, in the proofs below we use the following easy property, which we state without
proof.

Lemma 4.12. For f : R→ R, Z ∼ N (0, 1), and c ≥ 0, we have

E[f(Z) exp(
√
cZ)] = exp

( c
2

)
E[f(Z +

√
c)],

provided all the expectations above exist.

Formulae for the Derivatives

In this section we show that the partial derivative USa(S, c) can be expressed as an expecta-
tion of a polynomial modulated by the payoff function g. We define the family of polynomials
p[a](x, y), a ≥ 0, as follows:

p[0](x, y) = 1

p[a+1](x, y) = (x− ay) p[a](x, y)− p[a]
x (x, y) for a ≥ 1,

(4.24)

where p
[a]
x (x, y) = ∂p[a](x, y)/∂x.

The following is the main result in this section; note that we only assume that g is
Lipschitz.
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Lemma 4.13. Let g : R0 → R0 be an L-Lipschitz function. For a ≥ 0 and S, c > 0,

USa(S, c) =
1

Saca/2
E
[
p[a](Z,

√
c) · g

(
S · exp

(
− c

2
+
√
cZ
))]

,

where Z ∼ N (0, 1).

In proving Lemma 4.13 we will need the following result, which allows us to differentiate
the convolution.

Lemma 4.14. Fix c > 0. Let g : R0 → R0 be an L-Lipschitz function, and let g̃(x) =
g(exp(x)). Let ω : R→ R be given by

ω(x) = p(x) φ

(
x√
c

)
where p(x) is a polynomial in x with coefficients involving c. Finally, let f : R→ R be given
by f(r) = (g̃ ∗ ω)(r). Then the derivative f ′(r) = df(r)/dr can be written as the derivative
of the convolution, f ′(r) = (g̃ ∗ ω′)(r).

Proof. Fix r ∈ R. For h 6= 0, consider the quantity ρh = 1
h
(f(r + h)− f(r)), and note that

f ′(r) = limh→0 ρh. Recalling the definition of f as a convolution and using the mean-value
theorem, we can write ρh as

ρh =

∫ ∞
−∞

g̃(x)

(
ω(r − x+ h)− ω(r − x)

h

)
dx =

∫ ∞
−∞

g(x) ω′(r − x+ ξh) dx,

for some ξh between 0 and h. Let

ρ0 :=

∫ ∞
−∞

g̃(x) ω′(r − x) dx = (g̃ ∗ ω′)(r).

Then by another application of the mean-value theorem, we can write

∆h := ρh − ρ0 = ξh

∫ ∞
−∞

g̃(x)

(
ω′(r − x+ ξh)− ω′(r − x)

ξh

)
dx

= ξh

∫ ∞
−∞

g̃(x) ω′′(r − x+ ξ
(2)
h ) dx,

(4.25)

for some ξ
(2)
h lying between 0 and ξh. One can easily verify that the second derivative of ω

is given by

ω′′(x) =
q(x)

c2
φ

(
x√
c

)
,

where q(x) is the polynomial q(x) = (x2−c)p(x)−2cxp′(x)+c2p′′(x). Since g is L-Lipschitz,
for each x ∈ R we have

0 ≤ g̃(x) = g(exp(x)) ≤ g(0) + |g(exp(x))− g(0)| ≤ g(0) + L exp(x)
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This gives us the estimate∣∣∣∣∫ ∞
−∞

g̃(x) ω′′(r − x+ ξ
(2)
h ) dx

∣∣∣∣
≤ 1

c2

∫ ∞
−∞

(
g(0) + L exp(x)

)
· |q(r − x+ ξ

(2)
h )| · φ

(
r − x+ ξ

(2)
h√

c

)
dx

=
1

c3/2

∫ ∞
−∞

(
g(0) + L exp(r + ξ

(2)
h −

√
cy)
)
· |q(
√
cy)| · φ(y) dy <∞,

where in the computation above we have used the substitution y = (r − x + ξ
(2)
h )/
√
c. The

last expression above shows that the integral is finite, since we are integrating exponential
and polynomial functions against the Gaussian density. Plugging this bound to (4.25) and
recalling that |ξh| ≤ |h|, we obtain

|∆h| ≤ |h| ·
∣∣∣∣∫ ∞
−∞

g̃(x) ω′′(r − x+ ξ
(2)
h ) dx

∣∣∣∣→ 0 as h→ 0.

Since ∆h = ρh − ρ0, this implies our desired conclusion,

f ′(r) = lim
h→0

ρh = ρ0 = (g̃ ∗ ω′)(r).

We are now ready to prove Lemma 4.13.

Proof of Lemma 4.13: We proceed by induction on a. The base case a = 0 follows from
the definition of U . Assume the statement holds for some a ≥ 0; we prove it also holds for
a + 1. Our strategy is to express USa as a convolution, use Lemma 4.14 to differentiate the
convolution, and write the result back as an expectation.

Fix S, c > 0 for the rest of this proof. Let g̃(x) = g(exp(x)) and φc(x) = φ(x/
√
c). From

the inductive hypothesis and the fact that −Z d
= Z, we have

USa(S, c) =
1

Saca/2
E
[
p[a](−Z,

√
c) · g̃

(
logS − c

2
−
√
cZ
)]

=
1

Saca/2

∫ ∞
−∞

p[a](−x,
√
c) · g̃

(
logS − c

2
−
√
cx
)
· φ(x) dx

=
1

Sac(a+1)/2

∫ ∞
−∞

p[a]

(
− y√

c
,
√
c

)
· g̃
(

logS − c

2
− y
)
· φc(y) dy

=
1

Sac(a+1)/2

∫ ∞
−∞

g̃
(

logS − c

2
− y
)
· ω(y) dy

=
1

Sac(a+1)/2
(g̃ ∗ ω)

(
logS − c

2

)
,
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where in the computation above we have used the substitution y =
√
cx, and we have defined

the function

ω(y) = p[a]

(
− y√

c
,
√
c

)
· φ
(
y√
c

)
.

In particular, ω has derivative

ω′(y) = − 1√
c

(
p[a]
x

(
− y√

c
,
√
c

)
+

y√
c
p[a]

(
− y√

c
,
√
c

))
φ

(
y√
c

)
.

Differentiating USa with respect to S and using the result of Lemma 4.14 give us

USa+1(S, c) = − a

Sa+1c(a+1)/2
(g̃ ∗ ω)

(
logS − c

2

)
+

1

Sa+1c(a+1)/2
(g̃ ∗ ω′)

(
logS − c

2

)
=

1

Sa+1c(a+1)/2

∫ ∞
−∞

g̃
(

logS − c

2
− y
) (

ω′(y)− aω(y)
)
dy

=
1

Sa+1ca/2

∫ ∞
−∞

g̃
(

logS − c

2
−
√
cx
) (

ω′(
√
cx)− aω(

√
cx)
)
dx

=
1

Sa+1ca/2

∫ ∞
−∞

g̃
(

logS − c

2
−
√
cx
) (

(−x−a
√
c)p[a](−x,

√
c)−p[a]x (−x,

√
c)
)

√
c

φ(x) dx

=
1

Sa+1c(a+1)/2

∫ ∞
−∞

g̃
(

logS − c

2
−
√
cx
)
p[a+1](−x,

√
c) φ(x) dx

=
1

Sa+1c(a+1)/2
E
[
p[a+1](−Z,

√
c) · g̃

(
logS − c

2
−
√
cZ
)]

=
1

Sa+1c(a+1)/2
E
[
p[a+1](Z,

√
c) · g

(
S ·
(
− c

2
+
√
cZ
))]

,

as desired. In the computation above we have again used the substitution x = y/
√
c and

the fact that −Z d
= Z. This completes the induction step and the proof of the lemma.

As an example, the first few polynomials p[a](x, y) are

p[0](x, y) = 1

p[1](x, y) = x

p[2](x, y) = x2 − yx− 1

p[3](x, y) = x3 − 3yx2 + (2y2 − 3)x+ 3y,

giving us the formulae

U(S, c) = E
[
g
(
S · exp

(
− c

2
+
√
cZ
))]

US(S, c) =
1

S
√
c
E
[
Z · g

(
S · exp

(
− c

2
+
√
cZ
))]

US2(S, c) =
1

S2c
E
[
(Z2 −

√
cZ − 1) · g

(
S · exp

(
− c

2
+
√
cZ
))]

US3(S, c) =
1

S3c3/2
E
[(
Z3 − 3

√
cZ2 + (2c− 3)Z + 3

√
c
)
· g
(
S · exp

(
− c

2
+
√
cZ
))]

.
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We also have the following corollary.

Corollary 4.15. For a ≥ 1, we have

E[p[a](Z,
√
c)] = 0.

For a ≥ 2, we also have
E[p[a](Z +

√
c,
√
c)] = 0.

Proof. First assume a ≥ 1, and take g to be the constant function g(x) = 1. In this case
U(S, c) = 1 and USa(S, c) = 0, so by the result of Lemma 4.13,

E[p[a](Z,
√
c)] = Saca/2 USa(S, c) = 0.

Next, assume a ≥ 2, and take g to be the linear function g(x) = x. In this case U(S, c) =
E[S ·G(c)] = S, so USa(S, c) = 0. Then using the results of Lemma 4.12 and Lemma 4.13,

E
[
p[a](Z +

√
c,
√
c)
]

= exp
(
− c

2

)
E
[
p[a](Z,

√
c) exp(

√
cZ)
]

= Sa−1ca/2 USa(S, c) = 0.

Calculations for the European-Option Payoff Function

In this section, we bound the derivatives USa(S, c) for the special case when g is the payoff
function of the European call function, g(x) = max{0, x −K}, where K > 0 is a constant.
Note that the bounds on US3 and US4 are slightly stronger than the stated bounds (4.21)
and (4.22), because in this case we are able to compute the derivatives exactly.

Lemma 4.16. Let g(x) = max{0, x−K}. Then for all S, c > 0,

|US2(S, c)| ≤ K√
2π
· 1

S2
√
c

|US3(S, c)| ≤ K√
2π
· (2
√
c+ 1)

S3c

|US4(S, c)| ≤ K√
2π
· (6c+ 5

√
c+ 2)

S4c3/2

Proof. We first compute the Black-Scholes value U(S, c). Define

α ≡ α(S, c) = − 1√
c

log
S

K
+

√
c

2
,
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and observe that S · exp(−c/2 +
√
cZ) ≥ K if and only if Z ≥ α. Then using the result of

Lemma 4.12, we have

U(S, c) = E
[
g
(
S · exp

(
− c

2
+
√
cZ
))]

= E
[(
S · exp

(
− c

2
+
√
cZ
)
−K

)
· 1{Z ≥ α}

]
= S · exp

(
− c

2

)
E
[
exp(
√
cZ) · 1{Z ≥ α}

]
−K P(Z ≥ α)

= S P(Z ≥ α−
√
c)−K P(Z ≥ α)

= S Φ(−α +
√
c)−K Φ(−α).

Differentiating the formula above with respect to c and applying the Black-Scholes differential
equation (4.6), we get

US2(S, c) =
2

S2
Uc(S, c) =

1

S2c

[
Sαφ

(
−α +

√
c
)

+K(−α +
√
c)φ (α)

]
=

K

S2
√
c
φ(α),

where the last equality follows from the relation Sφ(−α +
√
c) = Kφ(α). In particular, we

have the bound 0 ≤ US2(S, c) ≤ K/(S2
√

2πc). A direct calculation reveals that the higher
order derivatives of U are given by

US3(S, c) =
K

S3c

(
α− 2

√
c
)
φ(α)

and

US4(S, c) =
K

S4c3/2

(
α2 − 5

√
cα + 6c− 1

)
φ(α).

It is not difficult to see that we have |α exp(−α2/2)| ≤ 1 and |α2 exp(−α2/2)| ≤ 1. Applying
these bounds to the formulae above gives us the desired conclusion.

Bounding the Second Derivative US2(S, c)

We now bound the second-order derivative US2(S, c) in the general case.

Lemma 4.17. Let g : R0 → R0 be a convex, L-Lipschitz, K-linear function. Then for all
S, c > 0,

0 ≤ US2(S, c) ≤ 2LK√
2π
· 1

S2
√
c
.

Proof. Recall that U(S, c) is convex in S (Lemma 4.11), so US2(S, c) ≥ 0. If g is a linear
function, say g(x) = γx for some 0 ≤ γ ≤ L, then U(S, c) = E[γS ·G(c)] = γS. In this case
US2(S, c) = 0, and we are done.
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Now assume g is not a linear function. Since g is non-negative, L-Lipschitz, and K-linear,
we can find 0 ≤ γ ≤ L such that g′(x) = γ for x ≥ K. Moreover, since g is convex and not
a linear function, we also have that γ > g′(0). Define the function g̃ : R0 → R0 by

g̃(x) =
g(x)− g(0)− xg′(0)

γ − g′(0)
, (4.26)

and note that g̃ is an increasing, 1-Lipschitz convex function with g̃(0) = g̃′(0) = 0, 0 ≤
g̃′(x) ≤ 1, and g̃′(x) = 1 for x ≥ K.

Consider the quantity V (S, c) = E[g̃(S ·G(c))], and note that we can write

V (S, c) =
E [g(S ·G(c))− g(0)− g′(0) · S ·G(c)]

γ − g′(0)
=
U(S, c)− g(0)− g′(0) · S

γ − g′(0)
.

Taking second derivative with respect to S on both sides and using the fact that 0 ≤
γ − g′(0) ≤ 2L, we obtain

0 ≤ US2(S, c) = (γ − g′(0)) · VS2(S, c) ≤ 2L · VS2(S, c).

We already know that VS2(S, c) ≥ 0 since g̃ is convex, so we only need to show that

VS2(S, c) ≤ K√
2π
· 1

S2
√
c
.

For 0 < S ≤ K, using the formula from Lemma 4.13 and the result of Lemma 4.18 below,
we obtain

VS2(S, c) =
1

S2c
E
[
(Z2 −

√
cZ − 1) · g̃

(
S · exp

(
− c

2
+
√
cZ
))]
≤ 1

S2c
· S
√
c√

2π
≤ K√

2π
· 1

S2
√
c
,

and for S ≥ K, we use the result of Lemma 4.19 to obtain

VS2(S, c) =
1

S2c
E
[
(Z2 −

√
cZ − 1) · g̃

(
S · exp

(
− c

2
+
√
cZ
))]
≤ 1

S2c
·K
√
c√

2π
=

K√
2π
· 1

S2
√
c
.

This completes the proof of the lemma.

It remains to prove the following two results, which we use in the proof of Lemma 4.17
above with g̃ in place of g. Note that the first result below does not use the assumption that
g is eventually linear.

Lemma 4.18. Let g : R0 → R0 be an increasing, nonnegative, convex, 1-Lipschitz function.
Then for all S, c > 0,

E
[
(Z2 −

√
cZ − 1) · g

(
S · exp

(
− c

2
+
√
cZ
))]
≤ S
√
c√

2π
.
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Proof. Fix S, c > 0, and define the following quantities:

t1 =

√
c−
√
c+ 4

2

t2 =

√
c+
√
c+ 4

2

λ1 = S · exp
(
− c

2
+
√
c t1

)
λ2 = S · exp

(
− c

2
+
√
c t2

)
g1 = g(λ1)

g2 = g(λ2)

t∗ =
1√
c

log

(
exp(
√
ct2)− 1

S
· exp

( c
2

)
· (g2 − g1)

)
.

Furthermore, define the function h : R→ R0 by

h(x) = g1 +
(
g2 − g1 − λ2 + S · exp

(
− c

2
+
√
c x
))
· 1{x ≥ t∗}.

We will show that

E
[
(Z2 −

√
cZ − 1) · g

(
S · exp

(
− c

2
+
√
cZ
))]
≤ E

[
(Z2 −

√
cZ − 1) · h(Z)

]
, (4.27)

and furthermore, we can evaluate the latter expectation explicitly:

E
[
(Z2 −

√
cZ − 1) · h(Z)

]
= S
√
c φ(t∗ −

√
c) ≤ S

√
c√

2π
.

We begin by noting that t1 and t2 are the two roots of the polynomial x2 −
√
cx− 1. Since

g is increasing and 1-Lipschitz,

g2 − g1 = g(λ2)− g(λ1) ≤ λ2 − λ1 = S · exp
(
− c

2

) (
exp(
√
c t2)− exp(

√
c t1)

)
.

Therefore, from the definition of t∗, we see that

exp(
√
c t2)− exp(

√
c t∗) =

1

S
· exp

( c
2

)
· (g2 − g1) ≤ exp(

√
c t2)− exp(

√
c t1),

so t1 ≤ t∗ ≤ t2. Furthermore, by construction,

S · exp
(
− c

2
+
√
c t∗

)
= S · exp

(
− c

2
+
√
c t2

)
− (g2 − g1) = λ2 − g2 + g1,

so h(t∗) = g1. This means h is a continuous convex function of x (although we will not
actually use this property). We will now show that pointwise,

φ(x) · (x2 −
√
cx− 1) · g

(
S · exp

(
− c

2
+
√
cx
))
≤ φ(x) · (x2 −

√
cx− 1) · h(x). (4.28)

We consider four cases:
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• Suppose x ≤ t1, so x2 −
√
cx− 1 ≥ 0. Since g is increasing and nonnegative,

0 ≤ g
(
S · exp

(
− c

2
+
√
cx
))
≤ g

(
S · exp

(
− c

2
+
√
c t1

))
= g1 = h(x).

• Suppose t1 ≤ x ≤ t∗, so x2 −
√
cx− 1 ≤ 0. Since g is increasing,

g
(
S · exp

(
− c

2
+
√
cx
))
≥ g

(
S · exp

(
− c

2
+
√
c t1

))
= g1 = h(x) ≥ 0.

• Suppose t∗ ≤ x ≤ t2, so x2 −
√
cx− 1 ≤ 0. Since g is increasing and 1-Lipschitz,

g
(
S · exp

(
− c

2
+
√
cx
))

≥ g
(
S · exp

(
− c

2
+
√
c t2

))
+ S · exp

(
− c

2
+
√
cx
)
− S · exp

(
− c

2
+
√
c t2

)
= g2 − λ2 + S · exp

(
− c

2
+
√
cx
)

= h(x) ≥ 0.

• Suppose x ≥ t2, so x2 −
√
cx− 1 ≥ 0. Since g is increasing and 1-Lipschitz,

g
(
S · exp

(
− c

2
+
√
cx
))

≤ g
(
S · exp

(
− c

2
+
√
c t2

))
+ S · exp

(
− c

2
+
√
cx
)
− S · exp

(
− c

2
+
√
c t2

)
= g2 − λ2 + S · exp

(
− c

2
+
√
cx
)

= h(x).

Integrating (4.28) over x ∈ R gives us the desired inequality (4.27). Let us now evaluate the
expectation on the right hand side of (4.27). A simple computation using the properties of
Z ∼ N (0, 1) gives us

E
[
(Z2 −

√
cZ − 1) · h(Z)

]
= g1 E

[
(Z2 −

√
cZ − 1)

]
+ (g2 − g1 − λ2) · E

[
(Z2 −

√
cZ − 1) · 1{Z ≥ t∗}

]
+ S · exp

(
− c

2

)
· E
[
(Z2 −

√
cZ − 1) exp(

√
cZ) · 1{Z ≥ t∗}

]
= (g2 − g1 − λ2) · (t∗ −

√
c) φ(t∗) + St∗ φ(t∗ −

√
c)

= −S · exp
(
− c

2
+
√
c t∗

)
· (t∗ −

√
c) φ(t∗) + St∗ φ(t∗ −

√
c)

= −S(t∗ −
√
c) φ(t∗ −

√
c) + St∗ φ(t∗ −

√
c)

= S
√
c φ(t∗ −

√
c),

as desired.

The following result is similar to Lemma 4.18, except that this result assumes the K-
linearity of g and achieves a stronger result.
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Lemma 4.19. Let g : R0 → R0 be an increasing, nonnegative, convex, 1-Lipschitz function
with the property that g′(x) = 1 for x ≥ K. Then for all S ≥ K and c > 0,

E
[
(Z2 −

√
cZ − 1) · g

(
S · exp

(
− c

2
+
√
cZ
))]
≤ K

√
c√

2π
.

Proof. This proof is similar in nature to the proof of Lemma 4.18, and we omit some of the
details.

Case 1: Suppose S ≥ K exp(
√
c(c+ 4)/2). Recall the European-option payoff function

gEC(x) = max{0, x−K} from Section 4.1, and note that the K-linearity of g implies g(x) =
g(K) + gEC(x) for x ≥ K. Using the fact that g is increasing and K-linear, we can show
that for all x ∈ R we have

(x2−
√
cx−1)·g

(
S · exp

(
− c

2
+
√
cx
))
≤ (x2−

√
cx−1)·

{
g(K) + gEC

(
S · exp

(
− c

2
+
√
cx
))}

.

Integrating both sides above with Z ∼ N (0, 1) in place of x and using the result of
Lemma 4.16, we obtain

E
[
(Z2 −

√
cZ − 1) · g

(
S · exp

(
− c

2
+
√
cZ
))]

≤ E
[
(Z2 −

√
cZ − 1) ·

{
g(K) + gEC

(
S · exp

(
− c

2
+
√
cZ
))}]

= E
[
(Z2 −

√
cZ − 1) · gEC

(
S · exp

(
− c

2
+
√
cZ
))]

≤ K
√
c√

2π
.

Case 2: Suppose K ≤ S ≤ K exp(
√
c(c+ 4)/2). Define the following quantities:

t0 =

√
c

2
− 1√

c
log

S

K − g(K) + g1

λ1 = S · exp

(
− c

2
+
√
c
(√c−√c+ 4

2

))
and g1 = g(λ1). Consider the function h2 : R→ R0 given by

h2(x) = g1 +
(
g(K)− g1 −K + S · exp

(
− c

2
+
√
c x
))
· 1{x ≥ t0}.

Using the fact that g is increasing, 1-Lipschitz, and K-linear, we can show that for all x ∈ R,

(x2 −
√
cx− 1) · g

(
S · exp

(
− c

2
+
√
cx
))
≤ (x2 −

√
cx− 1) · h2(x).

Integrating both sides above with Z ∼ N (0, 1) in place of x, we get

E
[
(Z2 −

√
cZ − 1) · g

(
S · exp

(
− c

2
+
√
cZ
))]
≤ E

[
(Z2 −

√
cZ − 1) · h2(Z)

]
.
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Following the same calculation as in the proof of Lemma 4.18, we can evaluate the latter
expectation to be

E
[
(Z2 −

√
cZ − 1) · h2(Z)

]
= (K − g(K) + g1)

√
c φ(t0) ≤ K

√
c√

2π
,

where the last inequality follows from the relation 0 ≤ g(K) − g1 ≤ K − λ1, since g is
increasing and 1-Lipschitz.

Bounding the Higher-Order Derivatives

We now turn to bounding the higher-order derivatives US3(S, c) and US4(S, c). Our strategy
is to approximate the eventually linear payoff function g by the European-option payoff gEC

and applying the bounds for gEC developed in Lemma 4.16.

Lemma 4.20. Let g : R0 → R0 be a convex, L-Lipschitz, K-linear function. Then for all
S, c > 0,

|US3(S, c)| ≤ 7LK · max{c−3/2, c−1/2}
S3

,

|US4(S, c)| ≤ 28LK · max{c−2, c−1/2}
S4

.

Proof. Since g is L-Lipschitz and K-linear, we can find 0 ≤ γ ≤ L such that g(x) =
g(K) + γ(x−K) for x ≥ K. We decompose g into two parts,

g(x) = γgEC(x) + g∗(x),

where gEC(x) = max{0, x−K} is the European-option payoff function, and g∗ : R0 → R0 is
given by g∗(x) = g(x) for 0 ≤ x ≤ K, and g∗(x) = g(K) otherwise.

Then the Black-Scholes value U(S, c) also decomposes,

U(S, c) = E[g(S ·G(c))] = γ E[gEC(S ·G(c))] + E[g∗(S ·G(c))] ≡ γ UEC(S, c) + U∗(S, c),

and similarly for the derivatives,

USa(S, c) = γ UEC
Sa (S, c) + U∗Sa(S, c), a ≥ 0. (4.29)

For the function gEC, Lemma 4.16 tells us that for all S, c > 0,

|UEC
S3 (S, c)| ≤ 3K√

2π
· max{c1/2, 1}

S3c
,

|UEC
S4 (S, c)| ≤ 13K√

2π
· max{c, 1}

S4c3/2
.

(4.30)
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Now for the second function g∗, we use Lemma 4.13 to write

U∗Sa(S, c) =
1

Saca/2
E
[
p[a](Z,

√
c) · g∗

(
S · exp

(
− c

2
+
√
cZ
))]

. (4.31)

Since E[p[a](Z,
√
c)] = 0 for a ≥ 1 (Corollary 4.15), we may assume that g(0) = 0, so

g∗(0) = 0 as well. Since g is L-Lipschitz, this implies

sup
x∈R

∣∣g∗(x)
∣∣ = max

0≤x≤K
|g(x)| ≤ max

0≤x≤K
Lx = LK.

Therefore, by applying triangle inequality and Cauchy-Schwarz inequality to (4.31), we get
for a ≥ 1,

|U∗Sa(S, c)| ≤
1

Saca/2
E
[∣∣p[a](Z,

√
c)
∣∣ · LK] ≤ LK

Saca/2
E
[(
p[a](Z,

√
c)
)2
]1/2

. (4.32)

For a = 3, 4, we use the recursion (4.24) to compute the polynomials p[a](Z,
√
c), and we

evaluate the expectation E[(p[a](Z,
√
c))2]. Plugging in this expectation to (4.32) with a = 3

gives us

|U∗S3(S, c)| ≤
LK

S3c3/2
·
(
4c2 + 18c+ 6

)1/2 ≤
√

28 · LK · max{c, 1}
S3c3/2

. (4.33)

Therefore, by combining the bound above with the first inequality in (4.30) and using the
decomposition (4.29), we get the first part of our lemma,

|US3(S, c)| ≤ 3√
2π
· LK · max{c1/2, 1}

S3c
+
√

28 · LK · max{c, 1}
S3c3/2

≤ 7LK · max{c, 1}
S3c3/2

.

A similar computation with a = 4 yields the second part of the lemma,

|US4(S, c)| ≤ 13√
2π
· LK · max{c, 1}

S4c3/2
+
√

518 · LK · max{c3/2, 1}
S4c2

≤ 28LK · max{c3/2, 1}
S3c2

.



103

Bibliography

[1] Jacob Abernethy, Rafael M. Frongillo, and Andre Wibisono. “Minimax option pricing
meets Black-Scholes in the limit”. In: STOC. Ed. by Howard J. Karloff and Toniann
Pitassi. ACM, 2012, pp. 1029–1040. isbn: 978-1-4503-1245-5.

[2] Jacob Abernethy, Peter L. Bartlett, Rafael M. Frongillo, and Andre Wibisono. “How to
Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal”.
In: Advances in Neural Information Processing Systems (NIPS) 26. 2013.

[3] S. M. Aji and R. J. McEliece. “The generalized distributive law and free energy mini-
mization”. In: Proceedings of the 39th Allerton Conference. 2001.

[4] Zeyuan Allen-Zhu and Lorenzo Orecchia. “Linear coupling: An ultimate unification of
gradient and mirror descent”. In: ArXiv preprint arXiv:1407.1537 (2014).
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