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Abstract

Models of Competition for Intelligent Transportation Infrastructure:
Parking, Ridesharing, and External Factors in Routing Decisions

by

Daniel Joseph Calderone

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

S. Shankar Sastry, Chair

Competition underlies much of the complexity of modern transportation systems and ac-
curately modeling the incentives transportation users face is critical in designing the smart
cities of tomorrow. In this work, we extend traditional non-atomic routing games to model
several different scenarios relevant to modern cities. In Chapter 2, we review results on
continuous population potential games and routing games and discuss linear programming
interpretations of individual drivers’ decisions and their relationship to the Wardrop equi-
libria. We include discussion of the variable demand case and upper bounds on the price of
anarchy. In Chapter 3, we combine an observable queueing game with a routing game to
develop a queue-routing game useful for modeling traffic circling looking for parking in urban
centers. We use this framework to model several parking situations in downtown Seattle. In
Chapter 4, we discuss connections between linear programming formulations of shortest path
problems and linear programming formulations of Markov decision processes (MDPs). We
use these connections to motivate a stochastic population game we call a Markov decision
process routing game where each infinitesimal agent solves an MDP as opposed to a shortest
path problem. We develop this game in the infinite-horizon, average-cost case and in the
finite-horizon, total-cost case. We comment on connections with traditional routing games as
well as other stochastic population game formulations such as mean field games. Paralleling
results for traditional routing games, we derive upper bounds on the price of anarchy and
comment on the existence of Braess paradox. We apply this framework to model ridesharing
drivers competing for fares and to develop a model of circling traffic competing for street
parking. Finally, in Chapter 5, we consider a bi-criterion routing game where drivers consider
travel time along with some external factor. Preference for this external factor is represented
by general distribution over a type parameter that can be supported both above and below
zero. We develop the appropriate equilibrium concept and show how this framework can
be used to model the transportation data market, drivers’ interest in their location privacy,
and commuters comparing two different commuting options. In Chapter 6, we conclude and
make final comments on modeling considerations and future research directions.
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1.1 Motivation

Transportation systems are the backbone of cities, supporting many crucial interactions
including economic transactions, resource distribution, and emergency response. Due to
the great urban sprawl [1–3], transportation infrastructure in cities is being stretched to its
limits. As a result, cities incur large economic costs from transport-related inefficiencies [3,4]
particularly congestion. Across the U.S., traffic congestion is responsible for nearly 4 billion
gallons of wasted fuel a year and nearly 7 billion extra hours of travel time [5]. Beyond
economic costs, congestion has adverse effects on public health, the environment, and general
quality of life in cities [6, 7].

At the same time that congestion is becoming a bigger problem than ever, the big data
and autonomy revolutions are transforming transportation infrastructure in unprecedented
ways. Apps like Google maps and Waze provide real time dynamic congestion information to
drivers as well as information about public transportation. Parking apps, such as ParkWhiz,
ParkPanda, and SpotHero are also appearing that help drivers find and, in some cases,
reserve parking spots in cities [8]. Ride-sharing services have also become incredibly popular
with Uber and Lyft growing to billion dollar companies in less than 7 years [9]. Autonomous
car technology also has the potential to revolutionize urban transportation as many large
companies, both traditional car manufacturers and others, including Ford, Tesla, Google,
and Uber invest in self-driving technology [10–12].

These new technologies have the potential to help alleviate congestion but they also
change the incentives that transportation users face. Access to more real time data allows
users to make more sophisticated decisions to optimize their travel experience. Autonomous
systems have the ability to combine this new data with much greater computation power to
even further optimize their performance. In order to design transportation for these smart
cities in the future, urban planners need models of transportation systems that account for
these more complicated game theoretic scenarios.

One of the most widely used models of competitive behavior in transportation behavior
is nonatomic routing games, a specific type of continuous population potential game that
models the aggregate behavior of infinitesimal agents that each attempt to solve a shortest
path problem where the path travel time is affected by congestion. This model was first
introduced by John Wardrop in 1952 [13] and has been studied extensively since. In this
work, we extend this classic framework to model the optimal behavior of intelligent agents
in several new transportation scenarios including urban parking, ride-sharing, and agents
making decisions when they make transportation decisions based on external factors other
than travel time.

1.2 Overview

In Chapter 2, we review classic results on routing games. In Chapter 3, we extend a clas-
sic routing game to model on-street parking in urban areas and how circling traffic affects
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congestion. In Chapter 4, we present a new continuous population game that parallels tradi-
tional routing games except rather than seeking a shortest path each agents seeks to find an
optimal policy for a Markov decision process (MDP). This framework has close connections
with other stochastic population game formulations such as anonymous sequential games
and mean field games. We present our model and use it to model the behavior of ride-
sharing drivers and traffic circling city blocks looking for parking. In Chapter 5, we examine
how varying preferences for different transportation options among a population of users
can change their travel decisions. We present a bi-criterion routing framework that allows
us to examine how members of a population evaluate these trade-offs. We show how this
model could be applied to study how drivers’ concern over their location privacy can change
their travel choices as well as to study how users make tradeoffs between different modes of
travel (such as driving or taking the metro). Throughout, we compare the game theoretic or
equilibrium behavior of agents in these different scenarios with the socially optimal behavior
agents would implement if they were collaborating to minimize congestion. Specifically in
Chapter 4, we present upper bounds on the well studied price of anarchy. Finally, in Chapter
6, we make final comments on modeling considerations and connections between the various
chapters and present directions for future work. We present relevant literature review and
connections with our work in each section as applicable. All simulations were done in Matlab
using the optimization package YALMIP by Löfberg [14].
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Chapter 2

Fundamentals of Routing Games
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The traffic assignment problem (TAP), understanding how traffic patterns form in trans-
portation networks, has been a major focus of research in both the transportation, economics,
and game theory communities for over 75 years. One of the most popular approaches to
modeling this problem is to treat traffic as a continuous fluid that spreads out across a road
network according to the equilibrium principle that any route some portion of the population
chooses has minimal travel time. These equilibrium principles are generally attributed to
John Wardrop and bear his name.

Definition 1 (Wardrop Equilibrium Principles [13])

1. The journey times on all the routes actually used are equal, and less than those which
would be experienced by a single vehicle on any unused route.

2. The average journey time is a minimum.

In this chapter, we will provide a brief overview of these nonatomic routing games specif-
ically focusing on results that will be important for understanding our work. For a more
thorough discussion of routing games, we refer the reader to Patrkisson’s excellent mono-
graph [15]. Rather than proceeding chronologically through the literature, we will discuss
nonatomic routing games as a special case of continuous population potential games intro-
duced by Sandholm in [16].

Remark 1 For notational simplicity, we will present all the results in terms of one popula-
tion of agents. However, all the arguments go through for multiple populations under certain
assumptions. We will comment on these at select points.

2.1 Continuous Population Potential Games

We first review several results from continuous population potential games from Sandholm’s
presentation [16]. We start by assuming a population of identical agents with total mass m.
Each member of the population has the option of choosing from a discrete set of strategies
denoted by the set R. Let z ∈ R|R| be the overall population mass vector where zr is the
portion of the population that chooses strategy r ∈ R. We have that

∑

r zr = m and that
zr ≥ 0 for all r. When an agent chooses strategy r they receive loss ℓr(z) which is a function
of the overall population distribution. (Let ℓ(z) : R|R| → R|R| represent the vector of all
losses.) Each agent seeks to minimize their loss, and Sandholm defines the Nash equilibrium
of the game as the population distribution where no infinitesimal member of the population
has an incentive to deviate from their strategy. This definition of a Nash equilibrium is the
same as Wardrop’s equilibrium concept and we refer to it as a Wardrop equilibrium. We can
state the equilibrium condition succinctly as follows.
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Definition 2 (Wardrop Equilibrium [13]) A population distribution z ∈ R|R| is called a
Wardrop equilibrium if for any two strategies r, r′ ∈ R such that zr > 0, we have that

ℓr(z) ≤ ℓr′(z). (2.1)

Intuitively, the loss associated with any strategy with non-zero mass must be less than or
equal to any other possible strategy, otherwise that portion of mass would switch away from
that strategy. It follows that any strategy chosen by any member of the population must
have equal loss.

We now define continuous population potential games as detailed by Sandholm.

Definition 3 (Continuous Potential Game [16]) We say that a continuous population
game is a potential game if there exists a C1 function F : R|R| → R such that

∂F

∂zr
= ℓr(z) (2.2)

The derivative of the potential function with respect to a particular subpopulation captures
the marginal cost of choosing that strategy. The usefulness of this fact is given in the next
result.

Theorem 1 A population distribution z ∈ R|R| is a Wardrop equilibrium if and only if it
satisfies the KKT necessary conditions for minimizing the potential function F with respect
to the constraints

∑

r zr = m and zr ≥ 0. [16]

We reproduce the proof hear since it is illuminating.

Proof 1 First, z is a Wardrop equilibrium if it satisfies the KKT conditions. The first order
necessary conditions give that

ℓr(z) = λ+ µr, µr ≥ 0, zrµr = 0 ∀r ∈ R (2.3)

where λ ∈ R and µ ∈ R
|R|
+ are the Lagrange multipliers for the mass conservation constraint

and positivity constraints respectively. For any two strategies r and r′ such that zr > 0, it
follows that

ℓr(z) = λ ≤ λ+ µr′ = ℓr′(z) (2.4)

Conversely, given a Wardrop equilibrium distribution z, let λ = minr ℓr(z). By Condition
(2.1) for any r such that zr > 0, ℓr(z) = λ. Setting µr = ℓr(z)− λ yields the result.

As detailed in the proof, the Lagrange multipliers have specific interpretations that are
illustrated in Figure 2.1b. λ is the loss incurred by a member of the population (equal to the
loss of each strategy actually chosen by members of the population) and µr is the inefficiency
of choosing strategy r.
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Linear programming interpretation of individuals’ decisions

We note here another interpretation that arises when we model each individual agent in the
population as choosing from a mixed strategy rather than a pure strategy. Given the overall
population distribution z each agent solves the following linear program to choose a mixed
strategy ζ.

min
ζ

l(z)T ζ (2.5a)

s.t.
∑

r

ζr = 1, ζ ≥ 0 (2.5b)

The first order optimality conditions for (2.5) are

ℓr(z) = λ+ µr, µr ≥ 0, ξrµr = 0 ∀r ∈ R (2.6)

Notice that these are closely related to the first order conditions for minimizing the potential
function with respect to z detailed in (2.3). Specifically the first condition is identical. This
indicates a strong relationship between the equilibrium mass distribution zeq and any ζ that
minimizes (2.5). This is no surprise since z models the aggregate effect of each individual’s
choice ζ.

As illustrated in Figure 2.1b in general at equilibrium, the population mass will be
distributed over several strategies, for example r1 and r2, with equal losses. Choosing either
r1 or r2 yields the same loss and thus a mixed strategy that is a convex combination of
them yields the same loss. Thus an optimal ζ could be any convex combination of pure
strategies with minimal losses. The key is that at equilibrium, the support of an optimal
ζ is included in the support of zeq, that is ζr > 0 only if (zeq)r > 0. Otherwise, several
individuals in the population solving (2.5) might choose strategies with mass outside the
equilibrium distribution and the equilibrium would shift. This is roughly the definition of
Nash equilibrium given by Sandholm and this line of reasoning is the motivation for defining
the potential function.

2.2 Routing Games: Path and Edge Formulations

We now turn to non-atomic routing games as a special case of continuous population games.
In the classic routing game, populations of drivers seek to travel from origin nodes to desti-
nation nodes in a road network in a way that minimizes their travel time. In the next two
sections, we present two formulations of the routing game, the path or route formulation and
the edge formulation. The route formulation is a straight forward application of continuous
population potential games but is often computationally intractable since it involves enumer-
ating each route through a road network. The edge formulation is slightly more complicated
but more computationally tractable.



CHAPTER 2. FUNDAMENTALS OF ROUTING GAMES 8

l1(x1) l2(x2)

l3(x3)

l4(x4) l5(x5)

1 2

3 4

r1

r2

r3

(a)

Mass 

Latency 

{

Route r1 r2 r3

zr1
zr2

µ3
λ

µ

(b)

Figure 2.1: (a) Sample graph with routes from origin to destination. (b) Illustration of the
Wardrop equilibrium condition.

Path formulation

We start by defining a road network represented by a directed graph G = (N , E) with nodes
and edges respectively. To simplify the presentation, we will assume one population of drivers
with mass m that starts at a single origin node o ∈ N and travels to a single destination
node d ∈ N , but all the results hold for multiple populations with different origins and
destinations. Drivers in the population choose from a set of routes through the network R
and let z ∈ R|R| be the population distribution vector as before. We will refer to z as the
route flows or route masses. When a portion of the population chooses a particular route,
their mass gets added to each edge on that route. For each route r ∈ R, we define the set
of edges in that route Er and an indicator vector Er ∈ {0, 1}|E| for the edges in route r.

[Er]e =

{

1 ; if e ∈ Er
0 ; otherwise

(2.7)

We also define a routing matrix ER ∈ {0, 1}|E|×|R| whose rth column is Er.
Let x ∈ R|E| be a vector of the total population of drivers using each edge or the edge

flows. The route flows and edge flows are related by

x = ERz (2.8)

Each edge has an associated latency function le(xe) that indicates the time required to
traverse the edge and is an increasing function of the flow on that edge. A typical latency
function is illustrated in Figure 2.2.

Let l(x) ∈ R|E| represent the vector of edge latencies. The loss for a particular route or
route latency, ℓr(z), is the total route travel time, i.e. the sum of the latencies of each edge



CHAPTER 2. FUNDAMENTALS OF ROUTING GAMES 9

xe

le(xe)

uncongested
travel time

Figure 2.2: Typical latency function.

in that route. We can compute the vector of route latencies ℓ(z) ∈ R|R| as

ℓ(z) = ET
Rl(x) = ET

Rl(ERz) (2.9)

Our goal is to find the population distribution across the routes, z, that is a Wardrop
equilibrium for the route latencies ℓ(z). We next show that this game is a continuous
population potential game with potential function given by

F (z) =
∑

e

∫ xe

0

le(u) du =
∑

e

∫ [ERz]e

0

le(u) du (2.10)

which was first introduce in [17]. We will often abuse notation and write F (x) as well as
F (z).

Proposition 1 The non-atomic routing game is a continuous population potential game
with potential function given by (2.10).

Proof 2 The potential function is designed such that ∂F
∂x = l(x)T . Differentiating with re-

spect to z by using Leibniz rule and then applying the chain rule gives

∂F

∂z
= l(x)TER = ℓ(z)T (2.11)

as desired.

The path or route formulation for finding the equilibrium of the routing game is given by

min
z

F (z) (2.12a)

s.t.
∑

r

zr = m, z ≥ 0 (2.12b)

and is a straightforward application of continuous population potential games.
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Remark 2 As mentioned previously, the main issue with this formulation is the need to
compute the routing matrix ER which depending on the size of the graph is computationally
intractable. For this reason, in practice we use the edge formulation detailed in the next
section.

Edge formulation

Rather than enumerating all possible paths from each origin to each destination, we can
modify the optimization problem to solve for the edge flows directly. Instead of computing
the routing matrix, we use an incidence matrix constraint. Let G ∈ {−1, 0, 1}|N |×|E| be the
node-edge incidence matrix of the directed graph.

[G]ne =

⎧

⎪
⎨

⎪
⎩

1 ; if edge e originates at node n

−1 ; if edge e terminates at node n

0 ; otherwise

(2.13)

We will also find it useful to define ”outgoing” and ”incoming” incidence matrices, Io, Ii ∈
{0, 1}|N |×|E|.

[Io]ne =

{

1 ; if edge e originates at node n

0 ; otherwise
(2.14)

[Ii]ne =

{

1 ; if edge e terminates at node n

0 ; otherwise
(2.15)

Note that G = Io − Ii.
We also define a source and sink vector, S, for the population of drivers traveling from

node o to d.

Sn =

⎧

⎪
⎨

⎪
⎩

1 ; n = o

−1 ; n = d

0 ; otherwise

(2.16)

We can then minimize the potential function directly with respect to the edge flows

min
x

F (x) (2.17a)

s.t. Gx = Sm, x ≥ 0 (2.17b)

This is called edge formulation of the routing game.
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Remark 3 The set of feasible edge flows given the incidence matrix constraint includes
all positive flows that route m mass from node o to node d as desired. However, it also
includes flows in the null space of G, i.e. cyclic flows. Since F (x) is strictly increasing in
xe, the minimizer of (2.17) will not include any cyclic component. For more details, we
refer the reader to [15] (Theorem 2.2 and the following discussion) and the sources cited
therein (Theorem 3.5 in [18] for a discussion of the feasible set and p. 154-155 of [19] for a
discussion of the minimizer not including cyclic components).

Remark 4 For strictly increasing latency functions, the potential function in (2.10) is a
strictly convex function (in the edge flows) and thus the KKT conditions ensure uniqueness
of the equilibrium edge flows. Note this does not ensure uniqueness of the route flows since
there may be multiple route flows that yield the same edges flows. This would be the case if for
example there were more routes than edges (the routing matrix has a non-trivial nullspace.)
Again, we refer the reader to [15] (Section 2.3) for further details.

There is an alternative proof that if x minimizes (2.17) than it represents the edge flows
associated with a Wardrop equilibrium of the routing game that is informative thus we
present it here.

Proof 3 The first order optimality conditions for (2.17) are

l(x) = GTπ + µ, x ≥ 0, µ ≥ 0, µTx = 0 (2.18)

with Lagrange multipliers π ∈ R|N | and µ ∈ R
|E|
+ for the incidence matrix and positivity

constraints respectively. This results in the following characterization of the latency of an
edge that goes from node n1 to node n2.

le(xe) = πn2
− πn1

+ µe, where µe ≥ 0 (2.19)

Summing the latencies along any route r from node o to node d, we get that

ℓr =
∑

e∈Er

le(xe) = πd − πo +
∑

e∈Er

µe (2.20)

Since µe ≥ 0 with equality achieved whenever xe > 0 and since xe > 0 for any edge in a
route r such that zr > 0, we have Condition (2.1).

As in the case of the route formulation, there is a specific interpretation of the Lagrange
multipliers in the edge formulation. π ∈ R|N | can be thought of as a value function on the
nodes that encodes the cost-to-go to the destination, i.e. for any given node n, πn − πd is
the minimum time to travel from node n to the destination node d. µe is the inefficiency of
using edge e and thus xe = 0 whenever µe > 0.

Figure 2.3b illustrates the Wardrop equilibrium principle in the edge formulation frame-
work for the sample graph shown in Figure 2.3a.
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Figure 2.3: (a) Sample graph. (b) Edge formulation of Wardrop equilibrium condition.

Remark 5 As previously mentioned, multiple populations of drivers with different origin-
destination pairs can be incorporated into the routing game. In the routing formulation case,
we add a new population vector and a new routing matrix for each origin-destination pair. In
the edge formulation case, we add a new population vector and incidence matrix constraint
for each pair. The overall edge masses are then obtained by summing up the individual
population masses. The gradient arguments for each population go through unchanged by
applying the chain rule.

Shortest path LP interpretation of individuals’ decisions

As in the case of the simple potential game, there is a linear programming interpretation of
each individual agent’s decision related to the edge formulation of the routing game. Given
the edge flows x and resulting edge travel times l(x), each individual can solve for the shortest
path from their origin to destination using the following linear program.

min
ξ

l(x)T ξ (2.21)

s.t. Gξ = S, ξ ≥ 0

The argument that this program solves for the shortest path given x is equivalent to the
argument in Proof 3. Here ξ ∈ [0, 1]|E| and ξe is the probability of traveling on edge e. If
there is only one shortest path, ξ will be an indicator vector for that path. If there are
multiple shortest paths, ξ is a convex combination of those indicator vectors. Again, the
important feature of the equilibrium edge flows xeq is that the support of any minimizer
ξ of (2.21) is contained in the support of xeq. That is ξe > 0 only if (xeq)e > 0. This
principle is illustrated graphically in Figure 2.4b for the graph in Figure 2.4a. The picture is
a cartoon of the positive orthant of the five dimensional space of edges flows but it illustrates
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Figure 2.4: Illustrations of potential game at equilibrium with an example population choice
distribution. Note any other distribution for ξ centered around xeq is possible.

that the negative gradient of the potential function at the equilibrium points directly into
the edge between routes 1 and 2. An individual driver can choose between routes 1 and
2 with any probability and experience the same travel time (obtain the same value for
(2.21)). The equilibrium condition is that the population mass must be balanced around a
specific unique mixed strategy so that the aggregate population distribution does not shift.
Individual agents can choose any mixed strategy along the edge but if non-negligible amount
shift toward one path, the other path will become less congested and more appealing. This
balancing interpretation is illustrated in Figure 2.5.

Variable demand routing game

An extension of the standard routing game model that is often considered is the variable
demand case where travel through the network is modeled as some commodity with a demand
curve that is a decreasing function of price. This type of model has been considered since
early on in the literature [17, 20, 21]. A sample demand curve is illustrated in Figure 2.6.
The price of traveling through the network is the travel time. In this case, we want to
determine the population mass that plays the routing game for a given travel time. In this
new formulation of the game, we include the total population mass as a new variable. Going
back to the route formulation of the game, we know that the minimum travel time through
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Figure 2.5: Illustrations of relationship between shortest path LP and edge formulation of
routing game for the graph shown in Figure 2.4a. (a) Shortest path LP with minimizer
r1. (b) Shortest path LP with minimizers r1 and r2 (ℓr1 = ℓr2). (c-d) Unbalanced mass
distributions x and how they push the choices of population members.
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Figure 2.6: Sample demand curve and inverse curve for augmenting the potential function.

the network at equilibrium is encoded by the Lagrange multiplier λ. Thus our goal is to
allow the total mass to vary and to design a new potential function so that λ = d−1(m). To
this end we frame the following optimization problem

min
z,m

F (z)−

∫ m

0

d−1(u) du (2.22a)

s.t.
∑

r

zr = m, z ≥ 0, m ≥ 0 (2.22b)

Considering the first order optimality conditions with respect to zr and m, we get

ℓr(z) = λ+ µr (2.23a)

λ = d−1(m) + ν (2.23b)

where ν is the Lagrange multiplier for the constraint m ≥ 0. Equation (2.23b) says that the
price is consistent with the demand whenever the mass is positive. If the mass equals zero,
the price is greater than the demand dictates as expected.

2.3 Social Cost and Price of Anarchy

We minimize the potential function to compute the equilibrium distribution, but we will also
be interested in the value of the social cost function which is the sum of the costs of the
different strategies weighted by the portion of the population that experiences them. It can
also be thought of as the average cost modulo dividing by the total mass. For the standard
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potential game, it is given by

J(z) =
∑

r

zrℓr(z) (2.24)

In the routing game, we can compute it easily using the route flows or the edge flows. We
will often abuse notation and write J(x) as well as J(z).

J(z) = zT ℓ(z) = zTET
Rl
(

ERz
)

= xT l(x) = J(x) (2.25)

Along with the equilibrium flows, we can talk about the socially optimal flows which are
calculated by minimizing the social cost function with respect to the constraints rather than
the potential function. These flows are the ones that drivers would take if they were all
collaborating to minimize the average travel time. We will use Jeq and Jopt to refer to the
social cost at the equilibrium and socially optimal flows respectively.

In general, the Wardrop equilibrium does not optimize the social cost function. The well
studied price of anarchy [22–24] defined for the routing game as

PoA =
Jeq
Jopt

(2.26)

gives the inefficiency of the equilibrium. Clearly, PoA ≥ 1.
We also note here since the potential function is chosen so that it’s gradient is given by

∇F = l(x), there is a close relationship between the social cost function and the potential
function. Indeed, there is a variational inequality formulation of the Wardrop equilibrium
that involves the social cost at equilibrium.

Theorem 2 (Variational Inequality Characterization of Wardrop Equilibrium [25])
If z (or x in the edge flow formulation) is a Wardrop equilibrium then

zT ℓ(z) ≤ z′T ℓ(z) (2.27)

xT l(x) ≤ x′T l(x) (2.28)

for any other feasible route flow z′ (or edge flow x′).

The proof is a direct application of the Wardrop equilibrium principle. We show it here for
the route formulation but the argument is the same in the edge formulation.

Proof 4 Since z is a Wardrop equilibrium, there exists λ ∈ R and µ ∈ R
|R|
+ such that

ℓ(z) = 1λ+ µ, µT z = 0 (2.29)

It follows then that

z′T ℓ(z) = z′T1λ+ z′Tµ = mλ+ z′Tµ = zT1λ+ zTµ+ z′Tµ ≥ zT ℓ(z) (2.30)
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This characterization of the social cost at equilibrium will be useful in price of anarchy
analysis.

In order to have some hope of bounding the price of anarchy, we will need to limit it
ourselves to specific classes of latency functions such as linear or polynomial with positive
coefficients. A useful bound for different latency function classes is the Pigou bound defined
as follows.

Definition 4 (Pigou Bound [23,26]) Let L be a nonempty set of cost functions. The
Pigou bound for the class of functions, α(L ), is given by

α(L ) = sup
l∈L

sup
x,x′≥0

x · l(x)

x′ · l(x′) + (x− x′)l(x)
(2.31)

(2.32)

This bound seems complicated but it is actually finite and fairly easy to compute for
several interesting classes of functions

Proposition 2 ( [23, 26]) Pigou bounds for various function classes

• [23] L := {ax+ b : a, b ≥ 0} ⇒ α(L ) = 4
3

• [26] L := concave functions ⇒ α(L ) = 4
3

• [23] L := polynomials with nonnegative coefficients and degree at most p

⇒ α(L ) =
[

1− p(p+ 1)−(p+1)/p
]−1

which grows as p ln(p).

Using the Pigou bound and the variational characterization of the equilibrium, we can
provide a straightforward upper bound on the price of anarchy.

Theorem 3 (Price of Anarchy Upper Bound [26]) For a nonempty set of cost func-
tions L ,

PoA =
Jeq
Jopt

≤ α(L ) (2.33)

Proof 5 Rearranging (2.31) gives

x′T l(x′) ≥
xT l(x)

α(L )
+ (x′ − x)T l(x) (2.34)

Let x′ be the socially optimal flow and let x be the equilibrium flows. Applying (2.34) and
Proposition 2 gives

Jopt = x′T l(x′) ≥
xT l(x)

α(L )
+ (x′ − x)T l(x) ≥

Jeq
α(L )

(2.35)

Earlier more complicated proofs of this bound appeared in [23,27].
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Chapter 3

Queue-Routing Game
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Our goal in this chapter is to understand the impact that urban drivers looking for street
parking have on overall congestion. To this end, we extend the routing game framework to
include populations of city-goers that choose both their route through the network and which
block face they want to park on. Previous attempts to analyze how parking can be used to
impact congestion in urban centers has been limited to simple road-network topologies and
or simple stochastic models of parking behaviour [28].

Studies have shown that a significant amount of peak congestion in many city centers
is due to traffic circling looking for on street parking [29]. In our new model, an individual
population of drivers travels to an abstract destination we call an attraction rather than a
specific destination node in a network. Each attraction has several block faces (a collection
of nodes and edges) called parking areas that drivers can choose from. Borrowing results
from observable queueing games, we model each parking area as a continuous queue that
parks join as they wait for a spot to open up. Drivers choose their parking area and the
route they use to get there based on the likelihood of finding a space and the congestion
along the route. At the moment, most drivers do not make travel decisions based on how
crowded a parking area is but as parking apps become more ubiquitous, waiting time for a
space to open up is very likely to become part of a driver’s decision making process. When
a certain amount of population mass travels to a parking area it is a distributed around the
edges of that parking area modeling the effect of circling traffic on the congestion of those
links.

Along with giving us a better picture of city congestion, this model gives us access to
a ready made way to affect congestion in cities, namely parking prices in different areas.
Currently, the most common way for urban municipalities to address congestion problems
is through congestion charges. These have been implemented in many of the states and
cities within the U.S. as well as in international cities such as London, Singapore, and
Stockholm among others with varying levels of success [30–32]. Congestion charges have
long been touted by economists to be a successful, if not the successful, mechanism for
decreasing congestion, and yet the theory has confronted stiff opposition from the public, with
criticism that they disproportionately target the poor, push traffic towards more residential
neighborhoods, and have a negative impact on local economies by incentivising people to
stay away from urban areas [33, 34]. In an area where much of the traffic is due to circling,
increasing parking prices could significantly improve congestion in that area as drivers look
to park elsewhere. Adjusting parking tolls is more palatable to the public than standard
congestion prices since they are expecting to pay a price anyway. Parking pricing are also
immediately implementable using largely existing infrastructure. Many pilot programs to
test pricing schemes have been implemented (see, e.g., [35–37]). In one such pilot conducted
in San Fransisco—SFpark—it was shown that changing the pricing of parking does lead to
changes in parking-related behavior [38]. One of the main applications of our model would
be solving the parking tolling problem.

The rest of this chapter is organized as follows. In Section 3.1, we present the queueing
model for on-street parking. The queue model is used to inform the new queue-routing game
that is presented in Section 3.2. We show that this new routing game is still a potential
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Figure 3.1: Queue model. (a) Observable queueing game structure. (b) Block face as queue
served by c parking spaces.

game and present an optimization problem for finding the equilibrium. In Section 3.3 we
present simulation results using real-world networks taken from the downtown Seattle area.
The results of this chapter were first published in [39].

3.1 Inspiration: Observable Queueing Game

Discrete observable queueing game

To model on-street parking, we draw inspiration from a simple observable queue game in
which arriving customers observe the queue length and choose to join or not based on their
expected utility. The expected utility of joining the parking queue is a function of the reward
for having parked, the cost of additional wait time due to circling, and the cost of parking
itself. The queueing game is illustrated in Figure 3.1a.

We use this queue game to inform the additional cost we will add to the routing game
to account for populations of potential parkers. Abstractly, the queue length represents the
amount of parking related congestion on a collection of roadways within a parking area. Each
individual queue models a block face (illustrated in Figure 3.1b) with c available parking
spaces that each become available at a rate of γ (1/average parking time). Together, γ and
c define the overall service rate of the queue. In general customers also have the option
of balking, i.e. choosing not to join the queue, and receiving some fixed cost (the cost of
inconvenience for not joining). We can think of this option as simply a separate queue with
a reward that does not depend on queue length.
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Figure 3.2: Observable queue game equilibrium condition.

We define the expected cost for parking (joining a queue) as

q(k) = −R + Cw(k+1)
γc + Cp

γ . (3.1)

where k is the length of the queue, Cw is the cost of waiting per unit time, and Cp is the
cost of parking per unit time.

Our goal in the classical queueing game is to determine the equilibrium length of each
queue and the balking level which is the length of queues such that no more customers will
join any of the queues since the cost of waiting is too high relative to the reward of joining.
The equilibrium condition parallels the path formulation routing game equilibrium condition,
each non-empty queue has equal cost and any empty queue has higher cost. We illustrate
the equilibrium condition in Figure 3.2. As in the routing game, λ = mini{qi(k)} illustrated
in Figure 3.2 is the cost of joining a queue at equilibrium. We can think of balking as joining
a separate queue with a utility of 0. The balking level is the minimum total number of
customers such that λ ≥ 0. (Further details on queueing games can be found in [40].)

Continuous analog

In our setup, we want to incorporate the queueing cost in (4.76) into a continuos routing
game framework. To this end, we relax the discrete nature of the queue length and define
the cost experienced by a driver entering parking area p as

Cp(u) = Cp
p

γp + Cp
w

γpcpu (3.2)

where u is the continuous mass of drivers in the parking area. Note that since Cp
p/(γ

pcp) is
positive, Cp(·) is strictly increasing.

Remark 6 We note that this queueing model is rather stylized and slightly simplistic for
modeling circling traffic. We detail a more accurate model that could be incorporated in the
routing game framework in Section 4.4.



CHAPTER 3. QUEUE-ROUTING GAME 22

3.2 Queue-Routing Game

Flow network model

We now use the queueing framework to extend a classical routing game to model the case
where drivers choose their parking area as well as their route through the network. Along
with the road graph G = (N , E), we define a set of attractions, A, that drivers travel to as
well as a set of parking areas, P . A parking area p ∈ P consists of a set of nodes denoted
Np ⊂ N and the edges that connect them denoted Ep ⊂ E . We will define indicator vectors
for each of these sets respectively Np ∈ {0, 1}|N | and Ep ∈ {0, 1}|E|:

(Np)i =

{

1, if node i is in parking area p

0, otherwise
(3.3)

(Ep)e =

{

1, if edge e is in parking area p

0, otherwise
(3.4)

An attraction a ∈ A is a drivers ultimate travel goal. Each attraction has an associated set
of parking areas Pa that drivers can choose from. An individual population starts at a single
origin node o ∈ N and travels to a specific attraction a ∈ A. We will denote the population
mass associated with this origin-attraction pair as ma

o. The size of these populations are
given a priori. We note that several attractions may share parking areas.

We use d ∈ Np to denote a (destination) node drivers going to parking area p travel to
in order to enter that parking area. For a given origin o and destination d, let Rod be the
set of all routes from o to d. For a specific route r ∈ Rod, we denote the set of edges in that
route by Er ⊂ E and an indictor vector for that set of edges Er ∈ {0, 1}|E|.

(Er)e =

{

1, if edge e is in route r

0, otherwise
(3.5)

We illustrate the sets of attractions A, parking areas P , and entry nodes d ∈ Np in Figure
3.3. We note that this framework can include through traffic (as in a traditional routing
game) by adding attractions that have a single parking area that consists of a single node.

For each population associated with an origin-attraction pair (o, a), we define a set of
strategies

Ua
o = {(p, d, r)| p ∈ Pa, d ∈ Np, r ∈ Rod}. (3.6)

Each driver traveling from an origin o to an attraction a chooses a parking area p, an entry
node d, and a route to that entry node r. We use (zapod)

r to denote the subpopulation of
population ma

o that chooses strategy (p, d, r) ∈ Ua
o .
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Figure 3.3: Illustration of A and P and parking area nodes.

We will also need several other groupings of driver populations: zap
od

the total population
of drivers traveling to attraction a from o parking in area p entering through node d (but
taking any route); zap, the total population traveling to attraction a and parking in area p;
and z

p the total population parking in area p (since some attractions might share parking
areas). These masses are calculated as follows.

z

ap

od

=
P

r2R
od

(zap
od

)r (3.7)

z

ap =
P

o

P

d2N
p

P

r2R
od

(zap
od

)r (3.8)

z

p =
P

a

P

o

P

d2N
p

P

r2R
od

(zap
od

)r (3.9)

We use z as a short hand for all populations of drivers.
We model the parking tra�c as flowing across the network to their individual parking

area and then spreading out uniformly within that parking area. With each population
(zap

od

)r, we can associate a vector (xap

od

)r 2 R|E| that gives the contribution of population
(zap

od

)r to the flow on each edge of the graph. We define

(xap

od

)r =
h

E
r

+ 1

|E
p

|Ep

i

(zap
od

)r (3.10)

Here, we add the population to each edge on the route through the network and then evenly
distribute the mass over the edges in the parking area to model circling behavior. Note that
a di↵erent model of circling, i.e. drivers spending more time on some edges than others,
could easily be incorporated (see Section 4.4 for a more complex model of circling behavior.)
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Summing over the various routes and populations, we can compute the flow contributions
from zapod and the total flow

xap
od =

∑

r∈Rod

[

Er +
1

|Ep|
Ep

]

(zapod)
r (3.11)

x̄ =
∑

a

∑

o

∑

p∈Pa

∑

d∈Np

∑

r∈Rod

[

Er +
1

|Ep|
Ep

]

(zapod)
r (3.12)

We will write (xap
od)

r
e, (x

ap
od)e, and x̄e to denote the eth element of each of these vectors, i.e.

the portion of each flow on edge e.
We define the cost associated with a particular strategy (p, d, r) ∈ Ua

o as

(ℓapod)
r(z) =

∑

e∈Er τ le(x̄e)
︸ ︷︷ ︸

travel latency

+ 1
|Ep|

∑

e∈Ep
τ le(x̄e)

︸ ︷︷ ︸

circling latency

+(Cp(zp)−Rap)
︸ ︷︷ ︸

parking cost

(3.13)

The travel latency is the cost associated with traveling to the parking area. The circling
latency is the cost associated with the inconvenience of circling in a congested area; it can be
interpreted as the average latency on a link within the parking area. The parking cost is the
cost associated with parking in a particular area which is a combination of the waiting time
for a space to open up, the monetary cost of parking, and the reward for parking (proximity
to attraction, etc) in a particular area. τ (in units of money/time) is a parameter that
represents the population’s time money tradeoff, Rap is the reward for parking in area p for
drivers traveling to attraction a, and Cp(u) is the cost of parking derived from the queueing
model defined by Equation (3.2). Note that having separate rewards for parking-attraction
pairs allows us to model parking areas shared between several attractions to be convenient
for some and inconvenient for others. We also note that the circling latency is separate from
the parking cost. It is meant to represent the inconvenience of circling in a congested area
as opposed to the time waiting for a space to open up.

Queue-routing equilibrium

Definition 5 We say a population distribution z is a Wardrop Equilibrium of the queue-
routing game if and only if it is feasible and for any (o, a) pair, any two strategies (p, d, r),
(p′, d′, r′) ∈ Ua

o such that (zapod)
r > 0 and

(ℓapod)
r(z) ≤ (ℓap

′

od′)
r′(z) (3.14)

We note that this is the standard definition of a Wardrop equilibrium applied to the costs
in Equation (3.13).

We now present a potential function for the queue-routing game. We define the function.

F (x̄, z) =
∑

e

∫ x̄e

0 τ le(u) du+
∑

p

∫ zp

0 Cp(u) du+
∑

a,p

∫ zap

0 −Rap du (3.15)

We will abuse notation sometimes and write F (z) since x̄ is a function of z.
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Figure 3.4: Illustration of the queue-routing Wardrop equilibrium condition. (a) Sample
graph with parking areas labeled. (b) Equilibrium condition.

Theorem 4 Equation (3.15) defines a potential function for the queue-routine game.

Proof 6 Differentiating Equation (3.15) with respect to (zapod)
r, applying Leibniz integral rule

using Equations (3.8), (3.9), and (3.12), we find that derivative is equal to the cost defined
in Equation (3.13) thus (3.15) is a potential function.

Remark 7 We note that the circling latency component of the cost is critical to making this
game a potential game. It arises from the fact that parking traffic contributes to the overall
congestion vector x̄ and thus differentiating the first set of terms in the potential function
with respect to the mass in each parking area produces the circling latency terms. Intuitively,
it is important that each member of the population experience any cost to which their mass
contributes in order for the game to be a potential game. Whether this is a strength or
weakness of the model depends on whether or not one thinks circling drivers actually care
about congestion within their parking area.

We now formulate an optimization problem for finding the equilibrium flow distributions.
Rather then enumerating all possible routes for each (o, d) pair and solving for (zapod)

r, we
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can use the edge formulation of the routing game and solve directly for xap
od and zapod .

min
x,z

F (x, z) (3.16a)

s.t. Gxap
od = Sodz

ap
od , ∀ o, d, a, p (3.16b)

ma
o =

∑

p∈Pa

∑

d∈Np
zapod , ∀ o, a (3.16c)

xap
od ≥ 0, ∀ o, d, a, p (3.16d)

zapod ≥ 0, ∀ o, d, a, p (3.16e)

x̄ =
∑

a,o

∑

p∈Pa

∑

d∈Np

[

xap
od +

1
|Ep|

Epz
ap
od

]

(3.16f)

zp =
∑

a

∑

o

∑

d∈Np
zapod , ∀ p (3.16g)

where Sod is a source-sink vector defined as

(Sod)i =

⎧

⎪
⎨

⎪
⎩

1 ; if i = o

−1 ; if i = d

0 ; otherwise

(3.17)

Again note that ma
o is given a priori.

For the queue-routing game, we can calculate the social cost as

J(z) =
∑

a,o,p,d,r

(zapod)
r(ℓapod)

r(z) (3.18)

We will also be interested in just the routing portion of the social cost which captures the
average congestion that drivers experience. We can calculate this value as

JR(z) =
∑

e

x̄ele(x̄e). (3.19)

As a social planner, we might consider adjusting parking prices in order to lower the average
congestion.

3.3 Examples: Downtown Seattle

To demonstrate the usefulness of the routing game for queue–flow networks, we explore two
examples using different regions in the Seattle downtown area and its arterials as the basis
for the network topologies.

In each example, we measure flows on each edge (x̄e) in cars per unit time. We use
linear latencies that were derived from the Bureau of Public Roads (BPR) link performance
function which is given by

lBPR
e (x̄e) = te

(

1 + 0.15
(

x̄e

κe

)4
)

(3.20)
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(a) (b)

(c) (d)

Figure 3.5: Setup and results for Example 1 (SR-99). (a) Queue–flow network: Magenta
nodes are parking population sources and the magenta boxes are the parking areas. Through
tra�c begins at every node and flows to the destination node shown in blue. (b-d) Flow for
Example 1 (SR-99) with C

2

p

= 0.01 in area 2 and (b) C

1

p

= 0.01, (c) C

1

p

= 0.124, and (d)
C

1

p

= 0.2 in area 1.

where t

e

is the free-flow travel time on link e (length/speed limit) and 

e

is the capacity of
link per unit time [41]. We heuristically take 

e

to be



e

= 50 cars

mi

⇥ �

speed

limit

�

(3.21)

assuming cars are travelling in free-flow with approximately 50 cars per mile (approximately
100 feet per car). We chose the linear latency that agrees with this function at x̄

e

= 0 and
x̄

e

= 3
e

.

l

e

(x̄
e

) = t

e

⇣

1 + 4 x̄

e



e

⌘

. (3.22)
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(a)

C∗
p

Cc
p

(b)

Figure 3.6: (b) The social cost evaluated at the equilibrium and the socially optimal solution
as a function of the cost of parking C1

p in area 1 (with C2
p = 0.01 fixed) for Cw = C1

w =
C2

w ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. (c) The portion of the social cost due to routing under the Nash
equilibrium as a function of the cost of parking C1

p in parking area 1 (with C2
p = 0.01 fixed)

for Cw ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We point out for Cw = 1 the critical point Cc
p at which the

routing demand is no longer flexible to increases in price and the price C∗
p that minimizes

the routing costs .

Example 1: SR-99

In the first example, we construct a queue–flow network using a portion of the Seattle
downtown area near state route 99 (SR-99), a heavily traversed road, detailed in Figure 3.5a
and consider a possible evening rush hours scenario. We consider thru traffic that originates
at each node in the grid and heads towards the entrance to freeway SR-99 (the blue node)
and we consider parking traffic that originates at each of the magenta nodes and heads
towards the two parking areas (the magenta boxes). This would consistent with constituents
exiting the downtown area after work while others seek to find parking close to a restaurant
near the two parking areas.

In Figures 3.6a and 3.6b, we show the social cost at the Wardrop equilibrium and socially
optimal strategies and the routing portion of social cost at equilibrium. The Wardrop-
induced cost is always higher than the socially optimal cost as expected. Both costs increase
with the cost of waiting Cw = C1

w = C2
w and with the cost of parking C1

p. Intuitively, the
Wardrop-induced cost plateaus when the price of parking in Zone 1 gets high enough that
all parkers park in Zone 2.

In addition, in Figure 3.6b, we see that for each value of Cw, the routing cost obtains
a minimum for some value of C1

p (indicated for Cw = 0.1 by C∗
p). These points represent

the optimal price of parking that a municipal service provider should charge if its objective
is to minimize the latency experienced by the total population—note this objective might
not align with minimizing social cost. Moreover, as the cost of waiting Cw increases, the
price of parking that minimizes the routing cost becomes larger. We remark that in Seattle,
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(a)

Figure 3.7: Structure of Amazon area simulation. Magenta dots are tra�c sources (with
radius indicating size relative to other sources.) Parking areas are polyhedra. The lower
figure shows location of the edges from Figure 3.9

like many municipalities, there are regulatory constraints on the maximum value that can
be charged per hour for on-street parking. This value tends to be around $7; hence, if the
cost of waiting is too large, then it may not be possible to optimally design the price of
parking to minimize the latency experienced by the total population. This suggests that
understanding preferences of money over waiting (time spent circling or in tra�c) should
be better understood and perhaps, incorporated into regulatory policies that cap parking
prices.

In Figure 3.5, we show the total tra�c flow (parking plus throughput populations) for
three di↵erent values of C1

p

. It can be seen that as C1

p

increases, the flow shifts from being
evenly distributed between the two parking areas to largely being in Zone 2 (the top area).

Example 2: Amazon campus

The next example we explore is the e↵ect of parking on congestion in the region around
Amazon’s headquarters. This area has seen increased congestion over the last half decade
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(a)

Thru Traffic 1

Thru Traffic 2

Thru Traffic 3

Thru Traffic 4

Thru Traffic 5

Thru Traffic 6

Thru Traffic 7

Thru Traffic 8

Thru Traffic 9

Thru Traffic 10

Attraction 1 Tr...

Attraction 2 Tr...
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Parking Area ...
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(b) (c)

Figure 3.8: Evolution of the congestion in the Amazon Campus area network as the parking
populations increase. Through tra�c population is fixed at 75 cars/min (a) No parking
population (b) Total parking population of 150 cars/min (c) Total parking population of 300
cars/min.

due to Amazon’s presence. We hold the total throughput tra�c fixed and increase the
amount of parking tra�c to simulate a potential rush hour scenario as Amazon employees
are driving to work.

In Figure 3.7, we show the network graph along with a key section of the network which
has interesting routing behaviors that emerge as the proportion of parking-related tra�c in-
creases. All tra�c enters through the magenta nodes. The through tra�c travels (uniformly)
to other magenta nodes and the parking tra�c travels to a parking area indicated by the
boxed magenta regions. The size of the magenta nodes indicates the relative magnitude of
both the throughput and parking tra�c coming from those nodes. For each parking region,
we use the queueing parameters shown in the following table:

R

p

($)

C

p

w

($/min)

µ

p

(spots/min)

c

p

(# spots)

C

p

p

($/min)

⌧ ($/hr)

100 0.1 1/120 50 0.01 30

We fix the total throughput tra�c to be 75 cars/minute distributed among the source nodes
according to their relative size and we vary the amount of parking tra�c in the interval
[0, 300] cars/minute.

In Figure 3.9, we show the total flow, the throughput tra�c flow, and the parking flow
for key edges in the graph enumerated and depicted in Figure 3.7. We remark that the
throughput tra�c decreases as parking tra�c decreases in the parking regions. Also, note
how even links that are significantly removed from the parking regions are a↵ected by parking
tra�c as the network adjusts to the demand. In Figure 3.8, we show qualitatively how the
network becomes more congested as the parking populations grow for a fixed through-tra�c
population size.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.9: Total tra�c, through tra�c, and parking tra�c for Example 2 (Amazon) along
various edges of the network. (See Fig. 3.7 for the edge labels.)
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The work in the paper is the first steps towards the development of a modeling paradigm
for urban mobility that accounts for drivers having different objectives and intended uses
of transportation infrastructure. There is still a significant amount of work to create a
comprehensive theoretical framework for queue–flow networks. In future, we plan to extend
the framework to include more complex queueing behaviors such as balking and jockeying
between queues. We also plan to formulate and solve a bilevel optimization problem for
pricing design as well as potentially validate a version of the model against real data.
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Chapter 4

Markov Decision Process Routing
Games
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We now study a stochastic continuous population potential game where members of the
population solve a Markov decision process (MDP) and the losses (traditionally rewards) are
functions of the population distribution. This formulation is analogous to classical routing
games where agents solve an MDP as opposed to a shortest path problem.

Stochastic games, games where individual players solve an MDP, have been around as long
as routing games. They were first studied by Shapley in the two-player zero sum case [42] and
by others in the finite player non-zero sum case [43–46]. In the finite player case, potential
functions have been used to ensure the existence of pure strategy equilibria [47, 48].

Effort has been made on several fronts to simplify the analysis of stochastic games with
large numbers of players. Oblivious equilibria were introduced by Weintraub [49–52]. In
these stochastic games, the payoff of each player is determined by the average state of the
other players. Stochastic continuous population games have also been considered, first as
anonymous sequential games introduced by Rosenthal and Jovanovic [53]. Results have
mostly focused on existence and uniqueness of equilibria [54–57] and specific applications
[58, 59].

Recently, stochastic continuous population games have been studied as mean field games
introduced by Lasry and Lions [60–62] and concurrently by Huang, Malhame, and Caines
[63, 64]. The classic mean field game formulation assumes a continuous state space and a
pair of coupled partial differential equations (PDEs): one backward time PDE that defines
the value function or ”cost-to-go” for the population of agents and one forward time PDE
that defines the mass evolution of the population (the Fokker-Planck equation). As in our
case, when agents’ individual costs can be written as the gradient of some functional, the
game is called a mean field potential game and both PDEs can be solved by solving a
single optimal control problem. Mean field games have been studied significantly including
numerical schemes for computing equilibria [65–70] and have been applied to model problems
in wireless networks [71–77], oil production [78], smart grid technologies [79–81], and airline
networks [82] to name a few.

Mean field games with a discrete state space (graph structure) have been specifically
considered by Gomes, et.al. [83] in the stationary (infinite horizon) case and by Guéant who
specifically focused on the finite horizon potential game case in [84] and congestion effects
in [85]. In these discrete state space mean field potential games, the potential functional
depends on the mass at each node. A major difference in our formulation is that the potential
function will be allowed to depend on the mass at each node, the mass taking each action,
and the mass on each edge of the graph. Formulations were the agents’ costs depend on the
other agents taking the same actions are called extended mean field games [86,87].

Our formulation can be thought of as a routing game perspective on stochastic population
games. Along with providing a more thorough understanding of the problem space, explicitly
making this connection allows us to extend traditional routing game concepts on efficiency
of equilibria namely the price of anarchy and Braess’ paradox to the stochastic population
game setting. Although there have been early results on efficiency of mean-field equilibria
[64, 88–90], the literature is much more mature in the routing game community. We extend
some of the most significant results from routing games, particularly upper bounds on the
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price of anarchy, to our framework at the end of the chapter.
The rest of this chapter is organized as follows. In Section 4.1, we present a linear

programming formulation of standard Markov decision processes that parallels the linear
programming version of the shortest path problem and serves as inspiration for the equilib-
rium of the game. We then present the game formulation in the infinite and finite horizon
cases in Section 4.2 making explicit connections with classical routing games. In Section 4.3,
we provide upper bounds for the price of anarchy and comment briefly on Braess’ paradox
in the MDP routing game setting. In Section 4.4, we explore three examples. The first two
are related to ridesharing or taxi drivers competing for customers. We study this problem in
both the finite horizon and infinite horizon settings with deterministic and stochastic transi-
tions. In the third example, we consider a more complex model of circling traffic competing
for parking spaces. The finite-horizon version of the MDP routing game formulation was
first published in [91].

4.1 Inspiration: Linear Programming for Markov
Decision Processes

We start out by presenting a linear programming formulation of Markov decision processes
that has close parallels with the linear programming formulation of the shortest path problem
(Problem (2.21)) and serves as the inspiration for the game we present in the next section. .

Let G = (N , E) be a graph with nodes (or states) and edges, and let Nj be the nodes
that can be reached by an edge from node j. Let Aj be a set of actions associated with
each node j and let P a

j = (P a
ij)i∈Nj

∈ ∆|Nj | be the transition probabilities associated with
action a from node j to each node i ∈ Nj. Here, ∆|Nj | is the simplex of dimension |Nj|. We
will sometimes refer to the set of all actions as A = ∪jAj with the understanding that each
action a ∈ A is only available from a specific node. We will use PA = {P a

j }a∈A to refer to
the set of all transition probabilities.

Define node losses (traditionally rewards) qj associated with being in node j, action
losses raj , associated with taking each action a ∈ Aj; and edge losses, lij, associated with
transitioning from j to i. We will sometimes index the action losses simply by the action
a ∈ A, i.e. ra = raj again with the understanding that a is only available from node j. We
will also sometimes index the set of transition or edges losses by the edge only, i.e. le = lij
with the understanding that edge e runs from j to i.

The goal of solving a Markov decision process is to find the optimal mixed strategy over
the actions Aj to choose whenever the agent is in node j. We will denote a mixed strategy
at node j as ηj = (ηaj )a∈Aj

∈ ∆|Aj | where ∆|Aj | is the simplex of dimension |Aj|, and we will
refer to a collection of mixed strategies, η = (ηj)j∈N , as a policy. We will sometimes index
policies by simply the action set as well, i.e. ηa = ηaj for a ∈ Aj. The optimal solution can
be found over a finite time horizon or an infinite time horizon. In the finite time horizon
case, the objective is generally to minimize the total expected loss. In the infinite horizon
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case, one can seek to minimize the discounted loss or the average loss. We consider here the
average loss infinite horizon case.

A policy η gives rise to a transition matrix P (η) ∈ [0, 1]|N |×|N |

[

P (η)
]

ij
=

∑

a∈Aj

P a
ijη

a
j (4.1)

and the resulting stationary distribution p(η) : η +→ [0, 1]|N |. We make the following standard
assumption to guarantee that the stationary distribution exists, is unique, and describes the
long term limit of the Markov chain’s behavior.

Assumption 1 Assume that P (η) is irreducible and aperiodic for every pure strategy policy
η.

In the average loss infinite horizon case, we want to optimize the following program.

min
η

∑

j

(

∑

i

lijPij(η) + raj η
a
j + qj

)

pj(η) (4.2a)

s.t.
∑

a∈Aj

ηaj = 1, ηj ≥ 0 ∀j (4.2b)

Pij(η) =
∑

a∈Aj

P a
ijη

a
j ∀i, j (4.2c)

pi(η) =
∑

j

Pij(η)pj(η) (4.2d)

The objective here is the expected loss at any given time which depends on the probability
of being in a particular node (based on the stationary distribution) at that time and the
probability of taking a particular action (based on the chosen policy). The constraints ensure
that the stationary distribution is the one arising from the chosen policy. This problem as
formulated is nonlinear and difficult to solve. However, if we solve for both the policy and
the stationary distribution at the same time by applying a change of variables

ξaj = pj(η)η
a
j (4.3)

we can transform the problem into a linear program. ξaj is the probability of being in node
j and choosing the action a. Problem (4.2) can be written as

min
ξ

∑

j

∑

a∈Aj

(

∑

i

lijP
a
ij + raj + qj

)

ξaj (4.4a)

s.t.
∑

j

∑

a∈Aj

ξaj = 1, ξ ≥ 0 (4.4b)

∑

a∈Ai

ξai =
∑

j

∑

a∈Aj

P a
ijξ

a
j ∀i, j (4.4c)
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Given ξ, it is straightforward to solve for η and p(η) as

ηaj =
ξaj

∑

a∈Aj
ξaj
, pj(η) =

∑

a∈Aa

ξaj (4.5)

More details of this formulation can be found in [92–94]
It is also straightforward to see that Equation (4.4c) guarantees that p(η) is a stationary

distribution for P (η)

∑

a∈Ai

ξai =
∑

j

∑

a∈Aj

P a
ijξ

a
j (4.6a)

∑

a∈Ai

ξai =
∑

j

∑

a∈Aj

P a
ij

ξaj
(
∑

a∈Aj
ξaj

)

⎛

⎝
∑

a∈Aj

ξaj

⎞

⎠ (4.6b)

pi =
∑

j

∑

a∈Aj

P a
ijη

a
j pj (4.6c)

pi =
∑

j

Pijpj (4.6d)

In order to write Problem (4.4) in matrix form and make connections with the shortest
path problem and routing game, we can assign some ordering to the edges of the graph and
as well as the action set A. We can then define a transition matrix PA ∈ [0, 1]|E|×|A| that
maps ξ to the probability of taking edge e at any given transition.

[

PA

]

ea
=

{

P a
ij ; if a is available in node j and edge e connects j to i

0 ; otherwise
(4.7)

Note that PA is column stochastic. Using matrix PA, we can compute the vector of proba-
bilities of taking a specific edge in the graph at any given time, ξ̄ ∈ [0, 1]|E|, as

ξ̄ = PAξ (4.8)

We will often be interested in the fully deterministic case, where an agent can choose any
edge originating from a given node with probability 1. In this case, we have that PA = I|E|×|E|

(assuming the proper ordering on the edges and actions) and ξ̄ = ξ.
Indexing l by edges, q by nodes, and r and ξ by actions in A, we can write Problem (4.4)

in matrix form as

min
ξ

(lTPA + rT + qT IoPA)ξ (4.9a)

s.t. 1T ξ = 1, ξ ≥ 0 (4.9b)

GPAξ = 0 (4.9c)
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Note that here we have used the fact that since PA is column stochastic and agrees with
the graph structure, we have that

[

IoPA

]

ja
=

{

1 ; if a ∈ Aj

0 ; otherwise
(4.10)

In the fully deterministic case, Problem 4.9 becomes

min
ξ

(lT + rT + qT Io)ξ (4.11a)

s.t. 1T ξ = 1, ξ ≥ 0 (4.11b)

Gξ = 0 (4.11c)

Remark 8 It should be noted that this deterministic case breaks Assumption 1 (irreducibility
and aperiodicity). We mention it here to draw connections with the routing game and we
make further comments about it in the game context in Remark 13.

In the form of Problem 4.11, we can see a clear connection with the shortest path linear
program presented in Section 2.2. ξ = ξ̄ must live in the nullspace of the incidence matrix G
which means that ξ must be some positive linear combination of the cycles of the graph G.
Let C denote the set of cycles of the graph and let Ec be the edges in cycle c ∈ C. If all the
mass is concentrated on that cycle, the mass on each edge is 1/|Ec|. Thus the feasible set is
the convex combinations of the cycles scaled by their lengths, i.e. convex combinations of
the columns of the matrix EC

[

EC

]

ec
=

{
1

|Ec|
; if e ∈ Ec

0 ; otherwise
(4.12)

Given the scaled indicator matrix EC, we could rewrite Problem (4.11) in terms of the

probability mass assigned to each cycle, ζ ∈ R
|C|
+ as

min
ζ

(lT + rT + qT Io)ECζ (4.13a)

s.t. 1T ζ = 1, ζ ≥ 0 (4.13b)

Here Problem (4.11) is analogous to the edge formulation of the shortest path problem and
Problem (4.13) is analogous to the route formulation where cycles have taken the place of
routes.

Remark 9 One main conceptual difference with the shortest path problem is that in the
MDP case, we are seeking to minimize the average loss over time and thus the length of each
cycle matters. In the optimization problem, this results in the cycles being scaled by length
and mass being divided up uniformly over the edges in a cycle. In the shortest path problem,
the number of edges in each path is not important and thus mass conservation is modeled as
the entire mass being added to each edge, i.e. the routes are not scaled by their length.
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In the nondeterministic case, we can think of the stationary probability masses in either
the action mass space (ξ) or the edge mass space (ξ̄). The stationary edge masses ξ̄ can still
be thought of as a linear combination of cycle flows since ξ̄ must still live in the nullspace of
G (Constraint (4.35c)). However, the probabilistic transitions put limits on the relative mass
that is assigned to each cycle. To illustrate, this we consider the simple graph in Figure 4.3a
with three cycles. We first consider fully deterministic transitions. Figure 4.1b illustrates
the feasible space of the stationary probability masses (ξ = ξ̄), i.e. the convex combination
of the cycles of the graph, as well as the linear program for optimizing the MDP. We then
consider the case where the transitions are probabilistic with action sets

A1 = {a1}, A2 = {a2}, A3 = {a3, a4}, A4 = {a5, a6} (4.14)

with transition probabilities

PA =
{

P a
j

}

a∈A

=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

P a1
1 =

⎡

⎢
⎢
⎣

0
0
1
0

⎤

⎥
⎥
⎦
, P a2

2 =

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦
, P a3

3 =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦
, P a4

3 =

⎡

⎢
⎢
⎣

0
1
2
0
1
2

⎤

⎥
⎥
⎦
, P a5

4 =

⎡

⎢
⎢
⎣

9
10
0
1
10
0

⎤

⎥
⎥
⎦
, P a6

4 =

⎡

⎢
⎢
⎣

1
2
0
1
2
0

⎤

⎥
⎥
⎦

⎫

⎪
⎪
⎬

⎪
⎪
⎭

(4.15)

Given these transition probabilities, the optimizer cannot make the choice to simply circle
on cycle 2 anymore. The only way to transition from node 3 to node 2 is to choose action 4
which causes a transition to node 4 fifty percent of the time. Similarly, there is no way to
simply circle on cycle 3. Because of this, the space of edge probability masses (ξ̄) is limited
to the blue region illustrated in Figure 4.1c. The vertices of this region represent the pure
strategy policies (where the agent choose a single action with probability 1 at each node).
We can also draw the space of feasible action probability masses (ξ) illustrated in Figure
4.1d. The ξ and ξ̄ spaces are related by the linear transformation PA ∈ R|E|×|A| = R6×6

which we produce here for clarity.

PA =

e1
e2
e3
e4
e5
e6

a1 a2 a3 a4 a5 a6
︷ ︸︸ ︷
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1

2 0 0
0 0 1 1

2 0 0
0 0 0 0 9

10
1
2

0 0 0 0 1
10

1
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.16)

Note that in this example PA is invertible which simplifies the relationship between the two
spaces. This need not be the case in general.
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This linear programming view illuminates certain properties of MDPs such as the fact
that there always exists a pure strategy optimal policy. In general the descent direction (the
negative gradient) of the objective will point into a vertex of the feasible space. Even when
the negative gradient points directly into a face of the feasible space, any vertex of that face
still represents an optimal policy.

This linear program view of MDPs and the connections with the edge flow formulation
of the routing game as well as the route flow formulation with the proper analogy between
paths and cycles also suggests that we can define a population potential game where the loss
functions are functions of the mass of the population and each infinitesimal member of the
population is seeking to optimize an MDP. In the next section, we define this game, present
the appropriate Wardrop-type equilibrium condition, the appropriate potential function and
optimization problem for finding the equilibrium in the infinite horizon and then the finite
horizon cases.

4.2 Markov Decision Process Routing Games:
Infinite and Finite Horizon Cases

We now present the Markov decision process routing game in the infinite and finite horizon
cases. Again for simplicity of notation, we only assume a single population of agents; however,
as in classic routing games, the results hold for multiple populations in both the infinite and
finite horizon cases. We comment on this more after presenting the model.

Infinite horizon, average cost case

We first consider the infinite horizon case where agents optimize their average expected
loss. As in the routing game, we allow the losses to be functions of the population mass
distribution. We assume the same form of the action sets and probabilistic transitions
introduced in Section 4.1. Let xj be the steady state population mass in node j and let xa

j

be the portion of that population that chooses action a. We have that

xj =
∑

a∈Aj

xa
j (4.17)

We will denote the vector of all masses on nodes as x ∈ R
|N |
+ where xj = xj. We will denote

the vector of masses choosing each action at each node as x ∈ R
|A|
+ . Note that xa = xa

j

with the implication that action a is only available from node j. We note that we can take
advantage of the structure of PA to write Equation (4.17) in matrix form as

x = IoPAx (4.18)
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Figure 4.1: (a) Sample MDP graph. (b) Illustration of fully deterministic LP (edge space =
action space). (c) Illustration of stochastic LP (edge space) (d) Illustration of stochastic LP
(action space).
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We will denote the mass transitioning from j to i as xij which we can compute from the
action masses as

xij =
∑

a∈Aj

P a
ijx

a
j (4.19)

We will refer to vector of all transition or edge masses as x̄ = R
|E|
+ . Note that x̄e = xij for

the edge e that runs from j to i. In matrix form, we can write Equation (4.19) as

x̄ = PAx (4.20)

At steady state, mass conservation at each node gives

∑

a∈Ai

xa
i = xi =

∑

j

xij =
∑

j

∑

a∈Aj

P a
ijx

a
j (4.21)

In addition, the total mass of the population, m, is conserved and must be positive every-
where.

m =
∑

j

∑

a∈Aj

xa
j , xa

j ≥ 0, ∀a ∈ Aj, ∀j ∈ N , (4.22)

In matrix form, (4.21) and (4.22) can be written as

IoPAx− IiPAx = GPAx = 0, 1Tx = m, x ≥ 0 (4.23)

Analogous to the routing game, we now allow the losses to depend on the population
masses. In general, we assume the action losses are functions of the action masses, r(x) :

R
|A|
+ → R|A|; the transition losses are functions of the edges masses l(x̄) : R|E|

+ → R|E|; and

the node losses are functions of the node masses, q(x) : R|N |
+ → R|N |. We will often abuse

notation and write the edge and node losses as functions of the action masses, l(x) and
q(x), with the understanding that l(x) = l(PAx) and q(x) = q(IoPAx). Again, depending
on context, we will sometimes index r(x) by nodes and actions, i.e. raj (x), and sometimes
simply by actions, i.e. ra(x). We will also sometimes index l(x̄) by the starting and ending
nodes, i.e. lij(x̄), and sometimes by edges, i.e. le(x̄).

As in Section 4.1, let η represent the policy of an individual agent within the population
and P (η) the resulting transition matrix. Intuitively, we are looking for the mass distribution
x that is consistent with the individual policies that agents can choose similar to the mass
distribution in the classic routing game being consistent with the shortest path problem each
individual population member solves.

Given the action mass distribution of the other population members x, we take the cost
of the feedback policy η to be the average expected loss over the infinite horizon. Given
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Assumption 1 (irreduciblibility and aperiodicity), this can be calculated as

ℓ(x, η) =
∑

j

(
∑

i

lij(x)Pij(η) +
∑

a∈Aj

raj (x)η
a
j + qj(x)

)

pj(η)

=
∑

j

∑

a∈Aj

(
∑

i

lij(x)P
a
ij + raj (x) + qj(x)

)

ηaj pj(η) (4.24)

We will use the tuple G = (G, r(x), l(x), q(x),A,PA) to refer to the game induced by the
graph structure, the set of loss functions, actions, and transition probabilities when individual
agents within the population seek to optimize Equation (4.24).

We can now define the appropriate version of a Wardrop equilibrium for the stationary
infinite horizon case as follows.

Definition 6 A population mass distribution x is a stationary infinite horizon Wardrop
equilibrium for the MDP routing game G if for any two policies η, η′ such that ηaj > 0 only
if xa

j > 0 for all j.

ℓ(x, η) ≤ ℓ(x, η′) (4.25)

Intuitively, no population member can improve their expected average reward by changing
their action profile at any state.

We now define the notion of a potential game in the infinite horizon case.

Definition 7 We say G is a infinite-horizon potential game if there exists a C1 function
F : x +→ R such that

∂F

∂xa
j

(x) =
∑

i

lij(x)P
a
ij + raj (x) + qj(x) (4.26)

Intuitively, the derivative of the potential function with respect to the mass taking a partic-
ular action captures the immediate payoff of that action.

Remark 10 We note that if we can find a function F (·) that is also explicitly a function of
the edge and node masses as well as the action masses, and F (·) satisfies

∂F

∂xa
j

= raj (x),
∂F

∂xij
= lij(x),

∂F

∂xj
= qj(x) (4.27)

then Condition (4.26) is satisfied by applying the chain rule and Equations (4.17) and (4.19).

Remark 11 This definition of a potential function is a substantial deviation from mean-
field games on graphs where the potential function differentiation condition is defined with
respect to the mass on the nodes as opposed to the mass taking a particular action. See [83]
for comparison in the stationary case.
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Remark 12 In the special case where each raj (·) is simply a function of xa
j and lij(·) is

simply a function of xij, and qj(·) is simply a function of xj, we can use the potential

F (x) =
∑

j

[
∑

i

∫ xij

0

lij(u) du+
∑

a∈Aj

∫ xa
j

0

raj (u) du+

∫ xj

0

qj(u) du

]

(4.28)

which bears obvious similarities to the standard routing game potential function.

We now show that we can find a Wardrop equilibrium by minimizing the potential function.

Theorem 5 Given a potential function F for the infinite horizon game G, if x satisfies
the KKT first order necessary conditions for minimizing F , then x is an infinite horizon
Wardrop equilibrium.

Proof 7 The optimization problem and corresponding Lagrangian are given by

min
x≥0

F (x) (4.29a)

s.t.
∑

a∈Ai

xa
i =

∑

j

∑

a∈Aj

P a
ijx

a
j (4.29b)

m =
∑

j

∑

a∈Aj

xa
j (4.29c)

L(x, π,λ, µ) = F (x)−
∑

i

πi

⎛

⎝
∑

a∈Ai

xa
i −

∑

j

∑

a∈Aj

P a
ijx

a
j

⎞

⎠− λ

⎛

⎝
∑

j

∑

a∈Aj

xa
j −m

⎞

⎠−
∑

j,a

µa
jx

a
j

(4.30)

with Lagrange multipliers π ∈ R|N |, λ ∈ R, and µj ∈ R
|Aj |
+ . Since F is a potential function,

the first order necessary conditions give

∂L

∂xa
j

:
∑

i

lij(x)P
a
ij + raj (x) + qj(x)− πj +

∑

i

πiP
a
ij − λ− µa

j = 0 (4.31a)

µa
j ≥ 0 (4.31b)

µa
jx

a
j = 0 (4.31c)
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Using (4.31a), we can compute the utility of any individual’s strategy profile η as

ℓ(x, η) =
∑

j

∑

a∈Aj

(
∑

i

lij(x)P
a
ij + raj (x) + qj(x)

)

ηaj pj(η) (4.32a)

=
∑

j

∑

a∈Aj

(

πj −
∑

i

πiP
a
ij + λ+ µa

j

)

ηaj pj(η) (4.32b)

=
∑

j

πjpj(η)−
∑

i

πi

∑

j

∑

a∈Aj

ηajP
a
ijpj(η) + λ+

∑

j

∑

a∈Aj

ηajµ
a
jpj(η) (4.32c)

=
∑

j

πjpj(η)−
∑

i

πipi(η) + λ+
∑

j

∑

a∈Aj

ηajµ
a
jpj(η) (4.32d)

= λ+
∑

j

∑

a∈Aj

ηajµ
a
jpj(η) (4.32e)

It follows that

ℓ(x, η)−
∑

j

∑

a∈Aj

ηajµ
a
jpj(η) = ℓ(x, η′)−

∑

j

∑

a∈Aj

η′j
aµa

jpj(η
′) (4.33)

for any two action profiles η, η′. If ηaj > 0 only if xa
j > 0 for all j, than by complementary

slackness we have that ηajµ
a
j = 0. It follows that

ℓ(x, η) ≤ ℓ(x, η′) (4.34)

since η′ajµ
a
jpj(η

′) ≥ 0 for all j and a ∈ Aj.

Remark 13 Many interesting cases break the irreducible, aperiodic assumption (Assumption
1), the deterministic transition case being the most obvious. We note that the steady state
equilibrium concept may be valid even in these cases. A reducible Markov chain will have
several irreducible subsets of recurrent states. Problem (4.4) will assign a certain amount of
mass to each of these irreducible subsets in order to minimize the expected loss. If the initial
probability distribution of the agent is fixed, there may not be a policy that divides up the
probability mass between the irreducible subsets in this optimal way. If, however, we think
of the agent as choosing their initial probability distribution as well as a policy, they would
be able to assign the appropriate amount of mass to each recurrent subset. In the case of a
periodic Markov chain assuming strictly increasing losses, we note that oscillating solutions
cause some members of the population to experience more congestion than others. If agents
have the option of remaining in a node at any time, they will damp out these oscillations.
We could recover the full aperiodic assumption by adding a small probability of remaining in
the same node to each action; however, from this argument it seems to be enough to simply
assume that agents have the option of remaining in a node. This argument is particularly
applicable in the deterministic case where we are really thinking of agents as playing a routing
game where they choose between cycles as opposed to routes.
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Figure 4.2: Infinite horizon equilibrium conditions. (a) Action balance condition with in-
terpretation of the Lagrange multipliers (illustrating Equation (4.31a)). (b) Pure strategy
policy balance condition (analogous to Figure 2.1b).

In Figure 4.2, we give two illustrations of the equilibrium condition in the infinite horizon
case for the graph and equilibrium depicted in Figure 4.3 (see below). Specifically, it depicts
how the Lagrange multipliers of the optimization problem capture the loss information at
equilibrium. The multiplier λ encodes the average cost of taking each action, π can be
thought of as value function on the nodes that encodes how any individual transition between
nodes deviates from the average cost, and µ encodes the inefficiency of any particular action.
The fact that µa

j = 0 if and only if xa
j > 0 means that no member of the population takes

an inefficient action at any node. Figure 4.2a shows the first order optimality condition
(Equation (4.31a)) for each action specifically detailing these Lagrange multipliers. Figure
4.2b shows the average cost of each pure strategy policy that members of the population can
choose. In the standard routing game, the equilibrium condition is that each route that some
portion of the population chooses has equal minimal latency. In the infinite horizon MDP
routing game, the equilibrium condition is that each pure strategy policy that members of
the population choose has equal minimal latency. This is illustrated in Figure 4.2b.

Parallels with classic routing games

The infinite horizon formulation just presented has clear parallels with the edge formulation
of the classical routing game. Assuming the appropriate ordering of edges and actions, we



CHAPTER 4. MARKOV DECISION PROCESS ROUTING GAMES 47

can write Problem 4.29 in matrix form as

min
x

F (x) (4.35a)

s.t. 1Tx = m, x ≥ 0 (4.35b)

GPAx = 0 (4.35c)

In the fully deterministic case where PA = I|E|×|E| and x̄ = x, this becomes

min
x

F (x) (4.36a)

s.t. 1Tx = m, x ≥ 0 (4.36b)

Gx = 0 (4.36c)

In the deterministic case, there are parallels to the path formulation of the routing game
as well. Analogous to the discussion in Section 4.1, given the set of cycles of the graph C
and the scaled indicator matrix for the cycles EC defined in Equation (4.12), we can rewrite
Problem (4.36) as

min
z

F (x) (4.37a)

s.t. 1T z = m, z ≥ 0 (4.37b)

x = ECz (4.37c)

where z ∈ R
|C|
+ is a vector of the masses on each cycle.

The feasible set and equilibrium condition for the deterministic and stochastic cases are
illustrated in Figure 4.3 in both the edge and action mass spaces.

Finite horizon, total cost case

In the finite horizon case, we consider a time horizon of T discrete steps. Let T = {0, 1, . . . , T}
refer to the set of times. Let At

j refer to the set of actions from node j at time step t. We
will use A = ∪t∈T ∪j∈N Aa

j to refer to the set of all actions over all time steps again with
the assumption that a ∈ A is only available from a specific node at a specific time step. Let
P at
j = (P at

ij )i∈Nj
∈ ∆|Nj | be the transition probabilities associated with action a. P at

ij is the
probability that an agent who chooses action a in node j at time t will transition to node i
at time t + 1. Let PA =

{

P at
j

}

a∈A
be the set of all transition probabilities. Let xt

j refer to
the mass in node j at time t and xat

j the portion of that mass taking action a. We have that

xt
j =

∑

a∈At
j

xat
j (4.38)
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Figure 4.3: (a) Graph and cycles. Illustrations of minimizing the potential function for the
MDP routing game in the (b) fully deterministic case (edge flows = action flows), (c) the
stochastic transition case (edge flows), and (d) the stochastic transition case (action flows).
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We will denote the mass transitioning from j to i at time t as xt
ij. The edge masses are

related to the action masses by the equation

xt
ij =

∑

a∈At
j

P at
ij x

at
j (4.39)

We will use x ∈ R
|A|
+ to refer to the vector of all action masses at all time steps, x̄ ∈ R

|E|·|T |
+

to refer to the vector of all edge masses at all time steps, and x ∈ R
|N |·|T |
+ to refer to the

vector of all node masses at all time steps.
Summing over all nodes j gives us the new population in node i

∑

a∈At+1
i

xa(t+1)
i = xt+1

i =
∑

j

xt
ij =

∑

j

∑

a∈At
j

P at
ij x

at
j (4.40)

The initial distribution of populations at the first time step is given a priori.
∑

a∈A0
i

xa0
i = mi (4.41)

We now allow the loss functions to change with time as well. Let ratj (x) refer to the loss
of taking action a at node j at time t, let ltij(x̄) refer to the loss of transitioning from j to i
at time t, and let qtj(x) refer to the loss of being in node j at time t. Again in general, qtj(·)
and ltij(·) will be functions of the node masses and edge masses respectively but as in the
infinite horizon case we will abuse notation and write them as functions of the action masses
implicitly assuming Equations (4.39), (4.40), and (4.41). We will use r(x), l(x), and q(x) to
refer to vectors of all the loss functions.

Each individual agent in the population seeks to minimize their expected total loss over
the entire time horizon. At each transition, an agent must consider the immediate reward
they expect from the action as well as the expected cost-to-go from the state they transition
to.

For a given population distribution x, let vtj(x) be the expected optimal cost-to-go from
node j at time t which can be defined backwards recursively from t = T as

vTj (x) = min
a∈AT

j

(

∑

i

P aT
ij lTij(x) + raTj (x) + qTj (x)

)

(4.42a)

vt−1
j (x) = min

a∈At−1
j

(

∑

i

P a(t−1)
ij

[

lt−1
ij (x) + vti(x)

]

+ ra(t−1)
j (x) + qt−1

j (x)

)

(4.42b)

Note that vtj(x) is a function of x. We define the cost of taking action a from node j at time
t as

ℓaTj (x) =
∑

i

P aT
ij lTij(x) + raTj (x) + qTj (x) (4.43a)

ℓatj (x) =
∑

i

P at
ij

[

ltij(x) + vt+1
i (x)

]

+ ratj (x) + qtj(x) t < T (4.43b)
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We will refer to the game induced by agents seeking to optimize their expected cost over
the time horizon by the tuple G = (G, r(x), l(x), q(x),A,PA).

We now give the appropriate Wardrop equilibrium condition and the finite horizon po-
tential game.

Definition 8 We say that x is a finite-horizon Wardrop equilibrium for the game G if at
every node j at every time step t for any two actions a, a′ ∈ At

j such that xat
j > 0

ℓatj (x) ≤ ℓa
′t

j (x) (4.44)

This is the standard definition of Wardrop equilibria applied to the appropriate decision that
agents make at each node and at each time step. Intuitively, no agent has an incentive to
deviate from their chosen strategy at each transition. We now define the notion of a potential
function for the finite horizon game.

Definition 9 We call G a finite horizon potential game if the following condition holds

There exists a C1 function F : x +→ R such that

∂F

∂xat
j

(

x
)

=
∑

i

ltij(x)P
at
ij + ratj (x) + qtj(x) (4.45)

Remark 14 Again, we note that if we can find a function F (·) that is also explicitly a
function of the edge and node masses as well as the action masses, and F (·) satisfies

∂F

∂xat
j

= ratj (x),
∂F

∂xt
ij

= ltij(x),
∂F

∂xt
j

= qtj(x) (4.46a)

then Condition (4.45) is satisfied by applying the chain rule using Equations (4.38) and
(4.39).

Remark 15 Again, this definition of a potential function deviates from mean-field games
on graphs where the potential function differentiation condition is defined with respect to the
mass on the nodes as opposed to the mass taking particular actions. See [84] for comparison
in the finite horizon case.

Remark 16 In the special case where each ltij(·) is simply a function of xt
ij, each ratj (·) is

simply a function of xat
j , and each qtj(·) is simply a function of xt

j, we can use the potential

F (x) =
∑

t

⎛

⎝
∑

j

[

∑

i

∫ xt
ij

0

ltij(u) du+
∑

a∈At
j

∫ xat
j

0

ratj (u) du.+

∫ xt
j

0

qtj(u) du

]
⎞

⎠ (4.47)

which could be thought of as a discrete time functional version of the standard routing game
potential.
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We now show that the first order necessary conditions for minimizing the potential with
respect to the mass conservation constraints guarantees that the mass distribution is a finite
horizon Wardrop equilibrium.

Theorem 6 Given a potential function F (x) for the finite horizon game G. x satisfies the
KKT first order necessary conditions for minimizing F if and only if x is a finite horizon-
Wardrop equilibrium for G.

Proof 8 (⇒) The optimization problem and corresponding Lagrangian are given by

min
x≥0

F (x) (4.48a)

s.t.
∑

a∈A0
i

xa0
i = mi ∀i (4.48b)

∑

a∈At+1
i

xa(t+1)
i =

∑

j

∑

a∈At
j

P at
ij x

at
j ∀i (4.48c)

L(x, µ, π) = F (x)−
∑

i

π0
i

(
∑

a∈A0
i

xa0
i −mi

)

−

T−1
∑

t=0

∑

i

πt+1
i

(
∑

a∈At+1
i

xa(t+1)
i −

∑

j

∑

a∈At
j

P at
ij x

at
j

)

−
∑

t

∑

j

∑

a∈At
j

µat
j x

at
j (4.49)

with Lagrange multipliers π ∈ R|N |·|T | and µ ∈ R
|A|·|T |
+ Computing the KKT first-order

necessary conditions gives

∑

i

P at
ij l

t
ij(x) + ratj (x) + qtj(x)− πt

j +
∑

i

πt+1
i P at

ij − µat
j = 0 (4.50a)

∑

i

P aT
ij lTij(x) + raTj (x) + qTj (x)− πT

j − µaT
j = 0 (4.50b)

µat
j ≥ 0 (4.50c)

µat
j x

at
j = 0 (4.50d)

In the following, we suppress the dependence of ltij(x), r
at
j (x), q

t
j(x), u

at
j (x) and vtj(x) on x

for notational simplicity.
Starting at t = T , we have that

πT
j =

∑

i

P aT
ij lTij + raTj + qTj − µaT

j

= ℓaTj − µaT
j (4.51)
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For any two actions a, a′ ∈ AT
j such that xaT

j > 0, we have that µaT
j = 0 and µa′T

j ≥ 0 and
thus

πT
j = ℓaTj ≤ ℓa

′T
j (4.52)

Thus, we have that Condition (4.44) is satisfied at t = T . We also have that

πT
j ≤ min

a∈AT
j

ℓaTj = vTj (4.53)

We would have equality except for the possibility that xT
j = 0 and thus xaT

j = 0 for all a ∈ AT
j .

In this case, µaT
j > 0 for all a and πT

j could be shifted down by an arbitrary amount. In the

case where xT
j > 0, there must exist a1 ∈ AT

j such that xa1T
j > 0. It follows that µa1T

j = 0
and

πT
j = ℓa1Tj = min

a∈AT
j

ℓaTj = vTj . (4.54)

Thus, we have that πT
j is a lower bound on the optimal cost-to-go from node j at time T with

equality achieved whenever xT
j > 0.

Moving on to t = T − 1, we have that a

πT−1
j =

∑

i

P a(T−1)
ij

[

lT−1
ij + πT

i

]

+ ra(T−1)
j + qa(T−1)

j − µat
j (4.55)

≤
∑

i

P a(T−1)
ij

[

lT−1
ij + vTi

]

+ ra(T−1)
j + qa(T−1)

j − µat
j (4.56)

≤ ℓa(T−1)
j − µa(T−1)

j (4.57)

Since µat
j ≥ 0, we have that

πT−1
j ≤ ℓa(T−1)

j (4.58)

for all a ∈ AT−1
j If xT−1

j > 0, for any two actions a1, a2 ∈ AT−1
j such that xa1(T−1)

j > 0, we

have that µa1(T−1)
j = 0 and µa2(T−1)

j ≥ 0. For any i such that P a1(T−1)
ij > 0, xT

i > 0 and thus
πT
i = vTi by (4.54) and it follows that

πT−1
j = ℓa1(T−1)

j ≤ ℓa2(T−1)
j (4.59)

which is Condition (4.44) at time t = T − 1. In addition, we have that

πT−1
j ≤ min

a∈AT−1
j

ℓa(T−1)
j = vT−1

j (4.60)

with equality achieved whenever xT−1
j > 0. The result follows by induction.

(⇐) Conversely suppose x satisfies Condition (4.44). The primal feasibility conditions are
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satisfied a priori. We need to construct dual variables πt
j and µat

j that satisfy dual feasibility,
complementary slackness, and the gradient condition. Starting from t = T for each j, define

πT
j = min

a∈AT
j

∑

i

P aT
ij lTij + raTj + qaTj

= min
a∈AT

j

ℓaTj = vTj (4.61)

By Condition (4.44), we have that πT
j = ℓa1Tj for all a1 ∈ AT

j such that xa1T
j > 0 and

πT
j ≤ ℓa2Tj for all a2 ∈ AT

j such that xa2T
j = 0. Defining

µaT
j = ℓaTj − πT

j (4.62)

satisfies dual feasibility, complementary slackness, and the gradient constraint for t = T .
Moving on to t = T − 1, since πT

j is the optimal cost-to-go from j at time T , we have that

ℓa(T−1)
j =

∑

i

P a(T−1)
ij

[

lT−1
ij + πT

i

]

+ ra(T−1)
j + qa(T−1)

j (4.63)

Let

πT−1
j = min

a∈AT−1
j

ℓa(T−1)
j = vT−1

j (4.64)

By Condition (4.44), πT−1
j = ℓa1(T−1)

j for all a1 ∈ AT−1
j such that xa1(T−1)

j > 0 and πT−1
j ≤

ℓa2(T−1)
j for all a2 ∈ AT−1

j such that xa2(T−1)
j = 0. Again, setting

µa(T−1)
j = ℓa(T−1)

j − πT−1
j (4.65)

satisfies dual feasibility and complementary slackness and by substituting Equation (4.63)
into Equation (4.65) gives the gradient condition. The result follows by induction.

Remark 17 In the finite horizon case if the transition matrices are fully deterministic, the
problem could be framed as a classic routing game by making T copies of the state space,
connecting the proper nodes (where transitions are allowed) between each time step, and then
enumerating all possible paths through this new network. It should be noted that this is not
possible however when agents strategies consist of choosing a sequence of non-deterministic
transitions. It might be the case for a specific sequence of transitions that a realization of
the first t transitions make the t+1 transition impossible even if it would have been possible
for another realization. Indeed, this might be true for all possible sequences of transitions
available to an agent.
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Existence and uniqueness

We comment briefly on existence and uniqueness of the equilibria in both the infinite and
finite horizon cases. Existence is guaranteed in both cases by Weierstrass’s Theorem (a
continuous function attains it’s minimum on a nonempty, closed and bounded set). This is
simpler even then the classic routing game case (see Theorem 2.4 in [15]) since the feasible
set is always closed and bounded. Uniqueness is guaranteed in each case if the potential
function is a strictly convex function of the action masses. Assuming a potential function
of the form of Equation 4.28 or 4.47, this is guaranteed if all the action losses are strictly
increasing functions. If not, strict convexity still may be achieved by either the edge losses
or node losses being strictly increasing. In these case, however, it will also depend on the
properties of the matrices PA and IoPA. For example, in a game where all the edge losses are
strictly increasing, the equilibrium still may not be unique if PA has a nontrivial nullspace.
This could happen, for instance, if there were more actions available at one node than there
were edges coming out of that node. Similar arguments apply to the node losses and the
matrix IoPA.

Multiple populations

As in the traditional routing game, these results extend directly to multiple populations.
Each new population would get its own state vector and copy of the constraints and could
either share the same action set or have their own action set to choose from. Two populations
having different action sets is analogous to two populations in a traditional routing game
having different origin-destinations pairs and different routing matrices. (In the finite horizon
case, we already implicitly consider different populations that start at each of the nodes in
the network.)

If each population cares about the same loss functions then the loss functions must depend
on the sum of the population masses. The results follow by considering the potential function
differentiation condition with respect to each population mass separately and applying the
chain rule. It would also be possible to consider a game where populations care about some
of the same losses but not all of them. For example, the results would still go through
in a game where each population cares about the same edge and node losses but separate
action losses. The edge and node losses, in this case, would need to depend on the sum of
the population masses and the action losses for each population would only depend on the
mass of that population. Indeed any combination of populations caring or not caring about
particular types of losses would work as along as when populations care about the same loss,
that loss is dependent on the sum of the population masses.

Variable demand

We comment briefly that we could also easily formulate a variable demand MDP routing
game similarly to the classical variable demand routing game. In the infinite horizon case,
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we would define a demand function for the entire mass using the network. In the finite
horizon case as formulated above, we would define separate demand functions for the mass
at each node at the initial time step. We could also extend the model so that mass is able to
join the game at any time step and define demand functions for at each node at each time
step. It should be noted that in this case, we are making the assumption that all agents
participating in the game have full information about these demand functions, i.e. they know
how much population mass will join the game at each node at each time step depending on
the cost-to-go from that node.

Further discussion of modeling considerations

As previously mentioned, this formulation can be thought of as a routing game perspective
on stochastic population games. Depending on the situation, it could provide a simple, more
tractable modeling framework than the traditional mean-field game approach. Given the
comparable form, it could be directly combined with traditional routing game models. One
application of this would be improving the queue-routing model for parking presented in
Chapter 3. In Section 4.4, we presented a more complex (realistic) model of cars competing
for parking spaces around a set of block faces. This model could be combined with the
queue-routing game replacing the assumption that cars spread out uniformly over the block
faces in a parking area.

One of the weaknesses of the model is that the discrete time view of time is inconsistent
with congestion effects that increase latency at any given node or on any given edge of the
graph. In the ridesharing examples, for instance, all the mass that makes a specific transition
at a given time step completes that transition by the next time step even though the cost of
making a specific transition is related to the waiting time to pick up riders. This could be
problematic depending on the required accuracy of the model.

4.3 Price of Anarchy and Braess’ Paradox

One advantage of looking at stochastic population games from a routing game perspective is
that it allows us to extend traditional routing game concepts into the stochastic game space.
We consider the price of anarchy first and then briefly consider Braess’ paradox.

Price of anarchy

In matrix form, the social cost in the infinite horizon case is computed as

J(x) = xT
(

PT
Al(x) + r(x) +PT

AI
T
o q(x)

)

(4.66)

= x̄T l(x) + xT r(x) + xT q(x) (4.67)
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Just as in the standard routing game we can write a variational inequality characterization
of the equilibrium which allows us to upper bound the price of anarchy using the Pigou
bound.

Remark 18 We present the variational inequality characterization in Proposition 3 and the
price of anarchy bound in Theorem 7 in the infinite horizon case, but the results carry through
directly in the finite horizon case as well.

Proposition 3 (Wardrop Variational Inequality) Let x be an infinite horizon stochas-
tic Wardrop equilibrium and x′ be any other feasible flow and let x̄, x̄′, x, and x′ be the
corresponding edge and node flows respectively. The following inequality holds.

xT r(x) + x̄T l(x) + xT q(x) ≤ x′T r(x) + x̄′T l(x) + x′T q(x) (4.68)

Proof 9 Since both x and x′ are feasible, we have that

GPAx = 0, 1Tx = m, x ≥ 0, GPAx
′ = 0, 1Tx′ = m, x′ ≥ 0 (4.69)

For the equilibrium flow x, the first order optimality conditions give

PT
Al(x) + r(x) +PT

AI
T
o q(x) = PT

AG
Tπ + 1λ+ µ, µ ≥ 0, xTµ = 0 (4.70)

Note that we also have x′Tµ ≥ 0 by positivity of x′ and µ. It follows that

x′T r(x) + x̄′T l(x) + x′T q(x) = x′T
(

PT
Al(x) + r(x) +PT

AI
T
o q(x)

)

(4.71a)

= x′T
(

PT
AG

Tπ + 1λ+ µ
)

= 0Tπ +mλ+ x′Tµ (4.71b)

≥ xT
(

PT
AG

Tπ + 1λ+ µ
)

= xT r(x) + x̄T l(x) + xT q(x) (4.71c)

Theorem 7 (Price of Anarchy Upper Bound for the MDP Routing Game) Recall
the Pigou bound from Definition 4.

α(L ) = sup
l∈L

sup
x,x′≥0

x · l(x)

x′ · l(x′) + (x− x′)l(x)
(4.72)

For a nonempty class of loss functions L such that r(·), l(·), q(·) ∈ L ,

PoA ≤ α(L ). (4.73)

for the MDP routing game.

Proof 10 (Again, we prove the result for the infinite horizon case and note that the same
arguments go through in the finite horizon case.) Let x′ and x be the socially optimal and
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1 3

22

24

l6(x6) = 0

l1(x1) = x1

l5(x5) = x5l2(x2) = 1

l4(x4) = 1

l3(x3) = b

(a) (b)

Figure 4.4: Illustration of Braess’ paradox in the MDP routing game with deterministic
transitions. (a) Braess graph. (b) Social cost at equilibrium for varying values of b.

equilibrium action masses and let x̄′ and x̄ and x′ and x be the corresponding edge and node
masses respectively. As in Proof 5, applying the Pigou bound to action masses gives

x′T r(x′) ≥
xT r(x)

α(L )
+ (x′ − x)T r(x) (4.74)

and similarly for the edge and node masses. Applying these inequalities and applying Propo-
sition 3 gives

Jopt = x′T r(x′) + x̄′T l(x̄′) + x′T q(x′) (4.75a)

≥
xT r(x) + x̄T l(x̄) + xT q(x)

α(L )
+
[

x′ − x
]T
r(x) +

[

x̄′ − x̄
]T
l(x̄) +

[

x′ − x
]T
q(x) (4.75b)

≥
1

α(L )
Jeq (4.75c)

Braess’ paradox example

We now give a simple example of Braess’ paradox in the MDP routing game case. We assume
deterministic transitions and use the obvious graph derived from the graph used to illustrate
Braess’ paradox in the routing game case shown in Figure 4.4a. As can be seen in Figure
4.4b, increasing the latency on edge 3 causes the social cost to decrease.
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4.4 Examples: Ridesharing and Urban Street Parking

Ridesharing: finite-horizon, deterministic transitions

To illustrate the model, we simulate a scenario where ridesharing drivers competing for
customers on a weekend night in downtown San Francisco. We abstract the city as a set of
neighborhoods (nodes) that drivers travel between. We assume the graph is fully connected
and that all transitions are fully deterministic. xt

ij is the population of drivers transitioning
from neighborhood j to neighborhood i at time t. The loss functions that drivers consider
are influenced by multiple factors including the fares they receive, their fuel costs, the time
they spend traveling, and the time they spend waiting for customers. We use linear costs of
the form

ltij(x
t
ij) = −M t

ij + (Ct
ij)travel + (Ct

ij)waitx
t
ij (4.76)

The monetary reward of a trip M t
ij has the form

M t
ij = k ·

(

Rate
)

︸ ︷︷ ︸

$/mi

·
(

Dist
)

︸ ︷︷ ︸

mi

(4.77)

where k is the surge pricing multiplication factor. The travel cost of the trip consists of
travel time plus fuel costs.

(Ct
ij)travel = τ ·

(

Dist
)

︸ ︷︷ ︸

mi

·
(

Vel
)−1

︸ ︷︷ ︸

hr/mi

+
(

Fuel
Price

)

︸ ︷︷ ︸

$/gal

·
(

Fuel
Eff

)−1

︸ ︷︷ ︸

gal/mi

·
(

Dist
)

︸ ︷︷ ︸

mi

(4.78)

where τ is a time-money tradeoff parameter which we calculate by multiplying the ride
rate ($/mi) times the average distance between neighborhoods times the length of one time
interval (20 min), assuming one trip per time interval. The last portion of the cost is the
cost of waiting for jobs that depends on the other ridesharing drivers attempting to make
the same transition. The coefficient (Ct

ij)wait has units of $ / driver and is defined as

(Ct
ij)wait = τ ·

(
1

Customer
Demand Rate

)

︸ ︷︷ ︸

hr/rides

(4.79)

The values that are not specifically edge dependent are listed in Table 4.1
We simulate the activity of ridesharing drivers in San Francisco over the course of a

weekend evening from 7 pm to 1 am with every time step representing 20 min. A population
of 20 drivers starts at each node. The various neighborhoods (modeled as nodes, and divided
loosely into downtown and residential neighborhoods) are shown in Figure 4.5a and are listed
in Table 4.2a. We assume that throughout the night there is at least a few customers (10
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Rate Velocity Fuel Price Fuel E↵
$6 /mi 8 mph $2.5/gal 20 mi/gal

Table 4.1: Common values for latency calculations

1

2

3

4

5

6

7

8

9

10

10

(a)

Drivers

(b)

Figure 4.5: (a) Neighborhoods in San Francisco. (b) Population of drivers in each neighbor-
hood at each time.

customers/hr) who want to travel between any two nodes. During the first few hours, most
customers are traveling from residential neighborhoods to downtown neighborhoods. As the
evening progresses, more customers are looking for rides among downtown neighborhoods,
and then towards the end of the evening, most customers are looking to travel back to
residential neighborhoods. The demand for rides between each of the di↵erent types of
neighborhoods is detailed in Table 4.2b. We also add a surge pricing factor of 2 between the
downtown nodes from 9-11pm and a surge pricing factor of 3 from downtown to residential
nodes from 11pm-1am. We note that all the values in this simulation could be chosen much
more accurately given google maps data and driver demand data. We solve the game by
optimizing the potential function given in (4.47). We display the results in terms of the
rewards drivers receive which are just the negative costs.

In Figure 4.5b, we show the population of drivers in each neighborhood over the course
of the evening. Low number of drivers in certain neighborhoods could indicate a need to
adjust the fares in those neighborhoods to maintain service for all customers throughout the
evening. Given the population distribution at equilibrium, there are many optimal routes
that drivers starting from each node can take over the course of the evening. In Figures 4.6a
and 4.6b, we show the running reward and cumulative average reward for several optimal
routes as well as several random routes starting from Node 1. Note that for the optimal
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# Neighborhood Type
1 Richmond Resident
2 Presidio Resident
3 North Beach Downtown
4 Union Square Downtown
5 S. of Market Downtown
6 Haight-Ashbury Resident
7 Mission Downtown
8 Castro Resident
9 Dogpatch Resident
10 Noe Valley Resident

(a)

Rates
(
rides
hr

) Resident
to

Downtown

Downtown
to

Downtown

Downtown
to

Resident

Resident
to

Resident

7 pm – 9 pm 300 100 10 20
9 pm – 11 pm 100 200 100 20
11 pm – 1 am 10 50 300 20

(b)

Table 4.2: (a) Neighborhood Types. (b) Customer demand rates (rides/hr).

routes, the instantaneous running reward that drivers experience might go down or even be
negative at one time step in order to setup for a large reward in the future. We note also
that while the cumulative averages for each optimal route vary separately over time, they all
become equal at the final time step. This has to be true at equilibrium for any two routes
starting from the same node. Optimal routes starting at different nodes could have different
total rewards. As expected, random routes achieve significantly less total reward over the
time horizon. Two of the optimal traces are shown in Figures 4.6c and 4.6d.

Finally, we consider the decision that drivers make at an individual node at a specific
time step. In Figures 4.7 and 4.7b, we show decision criteria that drivers face at node 7 (the
Mission, Figure 4.5a) at time steps t = 9 and t = 17. This decision criteria includes both
the immediate reward for a specific transition and the expected reward-to-go. Notice that
population mass is only distributed among transitions choices that achieve the maximum
expected reward.

Ridesharing: infinite-horizon, stochastic transitions

In this section, we simulate a modified version of the of the ridesharing game where drivers do
not get to specifically choose which riders they want to take. This model could be more useful
for studying the incentives of taxi drivers. We assume that at each node a certain percentage
of riders want to travel to each of the other nodes. We assume that these percentages are
given a priori.

At each node, the taxi driver can choose from several actions. The first action, ar is to
wait for a random rider and transition to whatever node that rider wants to go to. The
transition probabilities of this action are determined by the percentages of riders at that
node that want to make specific trips. The other actions the driver can choose from are to
transition to some other node without a rider. We will refer to the driver transitioning to
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Reward

($)

(a)

Reward

($)

(b)

1

2

3

4

5

6

7

8

9

10

10

(c)

1

2

3

4

5

6

7

8

9

10

10

(d)

Figure 4.6: (a) Running reward for various optimal routes. (b) Cumulative average reward
for optimal and suboptimal routes. (c) Trace 1. (d) Trace (2)



CHAPTER 4. MARKOV DECISION PROCESS ROUTING GAMES 62

Transition Reward

Neg. Transition Reward

Pos. Transition Reward

Reward-to-go at t+1

Max Reward

(a)

Transition Reward

Neg. Transition Reward

Pos. Transition Reward

Reward-to-go at t+1

Max Reward

(b)

Figure 4.7: Decision criteria at (a) t = 9 and (b) t = 17 showing immediate reward and
expected reward-to-go.

To ea.
From ea.

Resident Downtown

Resident 0.06 0.083
Downtown 0.175 0.167

Table 4.3: Probability of transitioning from one neighborhood to another when a driver waits
for a rider (based on percentage of riders making each transition).

node i without a rider as a

i

. In general, this would result in the driver paying the travel
costs without receiving a fare; however, there is a small possibility that the driver will find
a customer along the way.

In order to model this scenario, we define a graph with two sets of edges going between
each node. The first set model transitioning with a rider. We will denote these edges E

rider

.
The second set model transitioning without a rider which we will denote E

norider

. This allows
us to di↵erentiate between the rewards received for taking a rider and for driving without a
rider.

We assume the same node structure as in the finite horizon example of downtown San
Francisco presented above. The transition probabilities for each action a

r

(based on rider
percentages) are shown in Table 4.3.

Note that drivers who take a
r

at each node travel on edges in E
rider

. If a driver takes the
action of transitioning to another without a rider, they take the appropriate edge in E

norider

with probability 0.82 and they take each of the edges in E
rider

(coming from that node) with
probability 0.02. This is meant to represent the small chance that they might pick up a rider
along the way.
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The costs on the actions are given as

rarj = (Cj)waitx
ar
j (4.80a)

raij = 0 (4.80b)

i.e. drivers who wait for a rider have to compete with other drivers taking that action while
drivers who transition without a rider pay no action cost. Here, as in the finite horizon
example, we take the waiting cost coefficient to be

(Cj)wait = τ ·

(
1

Customer
Demand Rate

)

︸ ︷︷ ︸

hr/rides

(4.81)

Driver demand rates at each node are shown in the table below.

Neighborhood type Resident Downtown
Demand (rides/hr) 20 50

The transition costs differ depending on whether the drivers take a rider or not (whether
they take an edge in Erider or an edge in Enorider). The transition costs are given by

le(x) =

{

−Me + (Ce)travel ; if e ∈ Erider
(Ce)travel ; if e ∈ Enorider

(4.82)

where Me is the fare for a trip on edge e and (Ce)travel is the cost of travel on that edge. We
assume the same form and values forMe as in the finite-horizon example (with a surge pricing
factor of k = 1, Equation (4.77)) and we assume the same form and values for (Ce)travel as
in Equation (4.78).

We compute both the equilibrium strategies and the socially optimal strategies in the
infinite horizon game. Figure 4.8 shows the steady state distribution of drivers at the nodes
in both cases including the portion that take riders and the portion that do not. Figure 4.9
shows the portion of the population that is making transitions without riders. Interestingly,
the socially optimal strategies involve more drivers making trips without riders.

Circling for parking: infinite-horizon, deterministic transitions

Another application of this model is determining the optimal strategies for urban drivers
circling city blocks looking for places to park. We consider a sample set of city blocks shown
in Figure 4.10a. We solve the problem on the dual graph as it allows us more freedom to
restrict certain transitions (left turns, U-turns, etc.). We write down a loss function for each
node (block face) that represents the expected waiting time to find an open space.

The expected waiting time for a given member of the population is related to the rate at
which spots become available and the probability that when a spot becomes available that
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Figure 4.8: Steady state distribution of drivers at each node under the (a) equilibrium
strategies and (b) socially optimal strategies showing the portion of drivers that take riders
and the portion that do not take riders.
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Figure 4.9: Drivers transitioning between nodes without riders in the (a) equilibrium case
and (b) under the socially optimal strategies.
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individual driver will get it which depends on congestion. For the probability of finding an
empty spot we draw inspiration from a queuing model where customers are selected randomly
from a queue. We assume that block face j has cj spots and each spot becomes available at
a rate of γj (in units of car/min). The total cost of driving by each block face is given by

qj(x) = Mjpj +
(

(Cj)wait +Mj

)

(1− pj) (4.83)

Here, Mj is the cost of parking and (Cj)wait is the cost of waiting for a space which we take
to be the (Cj)wait = τ∆tj where τ is a time vs. money tradeoff parameter and ∆tj is the
average amount of time spent on block face j. The probability of an individual driver getting
a parking spot, pj, is given by

pj =
(

1− e−cjγj∆tj
) 1

1 + xj
(4.84)

This equation consists of two parts. The first is the probability that a space opens up in
the time the driver spends on the block face. The second part is the probability that an
individual driver of the population on the edge gets that space. This second term is 1 when
there is 0 mass on the edge, 1

2 when there is a mass of 1 other driver on the edge, 1
3 when

there is a mass of 2 other drivers on the edge, etc.
The full loss function can be rewritten as

qj(x) =
(

Mj + (Cj)wait
)

︸ ︷︷ ︸

aj

−(Cj)wait
(

1− e−cjγj∆tj
)

︸ ︷︷ ︸

bj

1

1 + xj
(4.85)

The potential function is then given by

F (x) =
∑

j

∫ xj

0

qj(u) du =
∑

j

[

ajxj + bi ln
(

1 + xj

)
]

(4.86)

We use the following parameter values

∆tj (min) γj (1/hr) Mj ($) τ ($/min)
0.5 1/120 5 0.5

for each street but we look at a scenario where there are different numbers of parking spaces
on each street according to the values shown in the table below.

Street 1-6 7-8 9-10 11-14 15-16 17-18 19 -24
Num. spaces (cj) 20 10 20 10 20 10 20

The streets are numbered in Figure 4.10a.
We consider this game in the infinite horizon case with deterministic transitions. In

Figure 4.10, we look at the traffic distribution at the Wardrop equilibrium, at the social
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Figure 4.10: (a) Block faces and allowed transitions. (b) Wardrop equilibrium. (c) Social
optimum. (d) Uniform turns. (e) Scale (cars).

optimum, and when the population members use a uniform turning strategy. We note that
one application of this model could be determining how to vary parking prices between
streets in order to improve congestion since even in this simple scenario the Nash solution is
suboptimal. We also note that a model like this could be integrated with the queue-routing
game developed in Chapter 3 to provide a more sophisticated model of parking behavior.
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Chapter 5

External-Cost Routing Game
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In traditional routing games, transportation users only care about their travel time. In
real world scenarios, however, there are likely to be other factors that population members
consider such as monetary cost, convenience, etc. The tradeoffs between these different
factors are also likely to vary among different members of the population.

Multi-criteria routing equilibria were considered early on by Dial [95] extending the work
of Quandt [96] and Schneider [97]. These early formulations considered multiple decision
criteria (time and money) but ignored the effects of congestion. Congestion effects were
added by Dafermos [98] in the deterministic case and Daganzo [99] in the stochastic case.
In general, multi-criteria models either divide up the population into a finite classes of users
each with distinct preferences or they represent the population by some distribution (infinite
classes of users). Nagurney and Dong [100,101], and Li and Chen [102] consider finite classes
of users using variational inequality approaches. Yang [103] also considers finite user classes
and studies the comparison between the socially optimal flows and equilibrium flows.

Leurent [104,105] was one of the earliest to represent the population’s value for time vs.
money as a continuous distribution over some positive interval and formulated an optimiza-
tion problem for finding the equilibrium. Dial [106, 107] considered a more general scenario
where both travel time and monetary cost can depend on congestion and framed the problem
as a variational inequality. Marcotte, et al. [108–111] generalized the work of Leurent and
Dial presenting a general variational inequality formulation. Much of the strength of these
formulations has been methods to turn infinite dimensional variational inequalities into finite
dimensional problems [111, 112]. Our work follows in the mode of these models. Much of
the focus since then has been using these models to devise tolling schemes, see [113–115] in
the finite user class case and [116–122] in the continuous distribution case. Another recent
branch of research has applied multi-objective optimization techniques to the external factor
problem. Raith, Wang, et al. [123–127] consider an equilibrium they call a bi-objective user
equilibrium where no transportation users can improve their travel time or toll cost without
worsening the other criteria. They also consider similar equilibrium definition for more than
two objectives [128,129].

In this chapter, we present an optimization formulation that revisits the formulations of
Marcotte, Leurent, and Dial. Population members consider an external factor (money, con-
venience,etc) as well as well as travel time in their routing decisions. Population preference
for this external factor in relation to travel time is represented by an arbitrary distribution
over a parameter θ. We model the whole set of routes as being divided into subsets {Ro}o∈O
that each come with an external cost αo. Drivers in the population select which subset of
routes they want to use and then within that subset, they select which route they want to
take. The total cost for selecting subset Ro and route r ∈ Ro is given by

ℓr(z) + αoθ (5.1)

This cost depends on the total mass distribution z and the travel time ℓr(z) but it also
depends on θ, the individual population member’s value of the external cost αo. We present
the appropriate equilibrium definition for agents who consider this cost; and then from this
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definition, we derive how the population will divide itself up among the various transportation
options. We also give a potential function and the appropriate optimization problem that
can be used to compute the population mass distribution associated with the equilibrium.

Our approach revisits the formulations of Leurent and Marcotte. It is a cleaner version of
Leurent’s optimization formulation [104] and a subcase of Marcotte’s variational inequality
formulation [111] where the external factor cost does not depend on traffic flow. We present
our own simple proofs of the form of the equilibrium and equivalence between the minimum
of our potential function optimization problem and the equilibrium. A main distinction
between our presentation and these previous works is that Leurent, Dial, and Marcotte
assume the distribution over the external cost parameter (which they consider to be the
monetary value of time) is supported on the non-negative reals (θ ∈ [0,∞) in our notation).
Our proofs highlight the fact that this is not necessary. In addition, the external costs αo

can be positive or negative. Either θ or αo being negative does not make sense when the
external cost is money, but it can be useful when the external cost represents something else.
At the end of this chapter, we specifically comment on how this framework could be used to
model arbitrary preference for one mode of transportation over another.

Along with presenting our formulation, we discuss several contexts where this framework
could be applied to analyze non-monetary tradeoffs. An interesting example is understanding
the impact of a population’s concern for their location privacy. Recent work has explored
privacy in routing games from the view point of differential privacy [130, 131]. Using our
framework, we can analyze how drivers’ concern for their location privacy will shift the traffic
equilibrium. We can think of some privacy price, αpriv that drivers pay whenever they use
navigation services that monitor their location. Drivers who choose not to use these services
only have access to a limited set of routes without congestion information.

As mentioned above, we can use also use this framework to compare different modes of
transportation as well where the parameter θ represents the population’s preference for one
form over the other. Our work differs from previous work using a continuous distribution to
represent transportation mode preferences [132] in that we take advantage of the fact that θ
and each αi can be either negative or positive in order to model the fact that some members
of the population may prefer different travel modes even when the travel time is equal. We
go into further detail in Section 5.2.

The rest of this chapter is organized as follows. In Section 5.1, we present our equilib-
rium concept and derive some of its properties. We then give a potential function and the
corresponding optimization problem for computing the equilibrium as well as several simple
examples. In Section 5.2, we discuss several new applications for this framework.
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θ

dF (θ)

θ θ̄0 time

ext. factor

Figure 5.1: Example population distribution of time vs. external factor tradeoff.

5.1 External-Cost Wardrop Equilibrium

Setup

Let G = (N , E) be a graph with nodes and edges and let R be the set of all routes through
a network from an origin node to a destination node. Let {Ro}o∈O be a collection of subsets
of routes. Each subset of routes, Ro has a price, αo that users have to pay in order to use
those particular routes. Without loss of generality, we will assume that the route subsets
are ordered by price,

αo−1 > αo ∀o ∈ O (5.2)

Once they pay to use a certain set of routes, drivers then play a standard routing game on
those routes (though their congestion costs may depend on members of the population who
choose a different set of routes.) We note that we do not assume any specific structure on
the subsets {Ro}o∈O. We also note that it is not a restriction to assume that αo−1 is strictly
greater than αo. If we have two groups, Ro and Ro′ such that αo = αo′ , we can just consider
Ro ∪Ro′ as one group.

As previously mentioned, each member of the population has some type θ that represents
their tradeoff between time and the external factor, i.e. how much external cost they are
willing to incur for access to quicker routes through the network. We assume we are given
some population distribution for this parameter, dF (θ). A sample distribution is illustrated
in Figure 5.1. Note that this distribution can be supported above and below 0. θ̄ is the
maximum time-money tradeoff for anyone in the population and θ is the minimum tradeoff.

The overall population’s decision to pay for each set of routes is encoded by a vector
valued indicator function I : [θ, θ̄] → ∆|O| where ∆|O| is the simplex of dimension |O|. The
oth element Io(θ) represents the fraction of users with type θ that select subset Ro. Here,
we have implicitly made the assumption that every member of the population chooses some
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option. We can compute the total mass of users that pay for routes in Ro as

mo(Io) =

∫

[θ,θ̄]

Io(θ)dF (θ) (5.3)

This mass is then divided up over the various routes in Ro. Let zo ∈ R
|Ro|
+ be the vector of

masses assigned to each of these routes. We have that
∑

r∈Ro

(zo)r = mo (5.4)

The total population mass m is given by

m =
∑

o

mo =

∫

[θ,θ̄]

∑

o

Io(θ)dF (θ) (5.5)

We will also use z = (zo)o∈O as a short hand for the entire set of mass distributions.
Given I = (Io)o∈O and the corresponding mass distributions z = (zo)o∈O, we can compute

the total flows on each edge of the network x ∈ R
|E|
+ as

x =
∑

o

ERozo (5.6)

where ERo ∈ {0, 1}|E|×|Ro| is the routing matrix for the routes in Ro.

Equilibrium

We now define the appropriate equilibrium concept.

Definition 10 (External-Cost Wardrop Equilibrium) An external-cost Wardrop equi-
librium is a set of measurable functions I = (Io)o∈O : [θ, θ̄] → ∆|O| and corresponding mass
distributions z = (zo)o∈O satisfying Equations (5.3), (5.4), and (5.5) that satisfies the fol-
lowing. For any θ ∈ [θ, θ̄] and o ∈ O such that Io(θ) > 0 and any r ∈ Ro such that (zo)r > 0

ℓr(z) + αoθ ≤ ℓr′(z) + αo′θ (5.7)

for any o′ ∈ O and r′ ∈ Ro′.

Intuitively, this states that any population member of type θ who pays for Ro and drives a
specific route could not have done better by selecting a different subset of routes and/or a
different route. We note that whenever αo = αo′ this reduces to the standard Wardrop equi-
librium condition. Thus, all population members who choose a specific subset of routes are
playing a Wardrop equilibrium within that subset. We also note that like in the traditional
routing game, the equilibrium condition only places restrictions on strategies with positive
mass (mo > 0); however, Equation (5.3) requires that Io(θ) = 0 almost everywhere whenever
mo = 0.

We now deduce several properties about the choice functions I = (Io)o∈O.
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Lemma 1 Assume an ordering on {αo}o∈O such that

α1 > · · · > α|O| (5.8)

Suppose I and z form an external-cost Wardrop equilibrium. Then there exists {θ̄o}o∈O such
that

θ ≤ θ̄1 ≤ · · · ≤ θ̄|O| ≤ θ̄ (5.9)

and {γ
o
}o∈O ∈ [0, 1] and {γ̄o}o∈O ∈ [0, 1] such that I satisfies

Io(θ) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

γ
o

; if θ = θ̄o−1

1 ; if θ̄o−1 < θ < θ̄o
γ̄o ; if θ = θ̄o
0 ; otherwise

(5.10)

almost everywhere (where we define θ̄0 = θ). Whenever θ̄o−1 = θ̄o, γo
= γ̄o.

The set {Io}o∈O is illustrated in Figure 5.2. The set {θ̄o}o∈O are the critical points detailed
by Marcotte [111,112].

Proof 11 First we note that (5.3) guarantees that Io(θ) = 0 almost everywhere for any o
such that mo = 0. For every o ∈ O such that mo > 0, define

θo = inf
θ
{θ : Io(θ) > 0} θ̄o = sup

θ
{θ : Io(θ) > 0} (5.11)

First, we show that for any two options o and o′ such that αo′ > αo and both mo > 0 and
mo′ > 0, then θ̄o′ ≤ θo. Assume not, i.e. that θo < θ̄o′. Select θ, θ′ ∈ [θo, θ̄o′ ] such that θ < θ′,
Io(θ) > 0, and Io′(θ′) > 0. Select routes r ∈ Ro and r′ ∈ Ro′ such that both (zo)r > 0 and
(zo′)r′ > 0. Applying (5.7) at θ and θ′ respectively gives.

(αo′ − αo)θ ≥ ℓr − ℓr′ ≥ (αo′ − αo)θ
′ (5.12)

Since αo′ −αo > 0, it follows that θ ≥ θ′ which is a contradiction. Thus we have that θ̄o′ ≤ θo
for any options with positive mass. For any option o with mo = 0, let θ̄o = θ̄o−1. Since I(θ)
maps to the simplex, we have that Io(θ) = 1 almost everywhere for θ ∈ (θ̄o−1, θ̄o).

We note that given the form of {Io}o∈O expounded in Lemma 1, we can compute {θ̄o}o∈O
using the cumulative distribution function of dF (θ). Let CDF : θ +→ m be the cumulative
distribution function. Define a function Θ : m +→ θ as Θ(·) = CDF−1(·). We can then
compute θ̄o as

θ̄o = Θ
(
∑

i≤omi

)

(5.13)
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Figure 5.2: Illustration of a possible set of indicator functions, {Io}o∈O, at equilibrium for
the distribution in Figure 5.1.
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Figure 5.3: Inverse cummulative distribution function, Θ(m), for the distribution in 5.1.
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This inverse cumulative distribution is illustrated in Figure 5.3. We can also compute the
values of {γ

o
}o∈O and {γ̄o}o∈O using the masses {mo}o∈O. Whenever mo = 0, then γ

o
=

γ̄o = 0. Whenever mo > 0 and θ̄o−1 = θ̄o, then

γ
o
= γ̄o =

mo

F ({θ̄o})
(5.14)

The remaining values are then computed inductively. Let 1, . . . , o′ be the set of options such
that θ = θ̄o for o ≤ o′. We can compute

γ
o′+1

= 1−
o′
∑

i=1

γ̄i (5.15)

and we can use

mo′+1 = γ
o′+1

F ({θ̄o′}) + F ((θ̄o′ , θ̄o′+1)) + γ̄o′+1F ({θ̄o′+1}) (5.16)

to solve for γ̄o′+1. Similarly, we can repeat this procedure with θ̄o′+1 instead of θ. The rest
of the γ′s follow by induction.

We note that whenever θ̄o falls on a set of measure zero (as is the case with θ̄1, θ̄4, and θ̄5
in Figure 5.2), there is some ambiguity in the choice of γ̄o and γ

o−1
. In this case, the choice

of γ does not affect the equilibrium mass distribution.

Potential function and optimization problem

Lemma 1 indicates that given an equilibrium mass distribution {zo}o∈O, we can determine the
choice functions {Io(θ)}o∈O of the form (5.10) using Equations (5.13) and solving for gamma
inductively as discussed above. These arguments allow us to solve for the equilibrium mass
directly. We define the appropriate potential function and show that the KKT necessary
conditions for minimizing this function with respect to the appropriate constraints gives a
mass distribution satisfying the external-cost Wardrop equilibrium conditions.

The potential function is given by

F (z) =
∑

e

∫ xe

0

le(u) du+
∑

i

∫ ∑
o≤i mo

∑
o<i mo

αiΘ(u) du (5.17)

We note that we could also write this potential as

F (z) =
∑

e

∫ xe

0

le(u) du+
|O|−1
∑

i=1

∫ ∑
o≤i mo

0

(αi − αi+1)Θ(u) du+

∫ ∑
o≤|O| mo

0

α|O|Θ(u) du

(5.18)
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On the set defined by the conservation of mass constraint (Equation (5.5)), the last term is
constant. Indeed, we can write

F (z) =
∑

e

∫ xe

0

le(u) du+
|O|−1
∑

i=1

∫ ∑
o≤i mo

0

(αi − αi+1)Θ(u) du+

∫ m

0

α|O|Θ(u) du
︸ ︷︷ ︸

constant

(5.19)

In this form, we can see that the potential function is convex on the set defined by Equation
(5.5). This follows from the fact that Θ(·) is increasing for any distribution dF (θ) as illus-
trated in Figure 5.3 and αi−αi+1 > 0 for any set of αi’s that satisfy the ordering convention
(5.2). Note that we can write F (z) as a function of z only since {mo}o∈O and x are both
functions of z.

Remark 19 This potential function is closely related to Leurent’s objective function, Equa-
tion (8) in [104], and is equivalent to the potential function given in Equation (54) in [111]
and Equation (40) in [112] when θ is supported only on R+.

We can write the following optimization problem for finding the equilibrium.

Theorem 8 Let z = (zo)o∈O be a mass distribution that solves the following optimization
problem and I = (Io)o∈O be a set of choice functions with form determined by (5.10), (5.13),
and the inductive procedure outlined above.

min
z

F (z) (5.20a)

s.t. m =
∑

o

∑

r∈Ro

(zo)r, zo ≥ 0, ∀o ∈ O (5.20b)

mo =
∑

r∈Ro

(zo)r (5.20c)

x =
∑

o∈O

ERozo (5.20d)

It follows that z = (zo)o∈O and I = (Io)o∈O are an external-cost Wardrop equilibrium.

Proof 12 The Lagrangian is given by

L(z,λ, µ) = F (z)− λ

(

m−
∑

o

∑

r∈Ro

(zo)r

)

−
∑

o

µT
o zo (5.21)

where λ ∈ R and µo ∈ R
|Ro|
+ and where we have substituted in (5.20c) and (5.20d). For a

given r ∈ Ro, the first order optimality conditions give

ℓr +
∑

o≤i

αiθ̄i −
∑

o<i

αiθ̄i−1 = λ+ (µo)r (5.22)
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where (µo)r ≥ 0 with equality achieved whenever (zo)r > 0 by complementary slackness. We
can rewrite Equation (5.22) in two different ways

ℓr +
∑

o≤i

(αi − αi+1)θ̄i = λ+ (µo)r (5.23a)

ℓr +
∑

o<i

(αi−1 − αi)θ̄i−1 = λ+ (µo)r (5.23b)

We now consider a specific choice function Io(θ) and a route r ∈ Ro such that (zo)r > 0.
By Lemma 1, we simply need to show that (5.7) is satisfied for any θ ∈ [θ̄o−1, θ̄o]. Take any
θ ∈ [θ̄o−1, θ̄o] and two subsets o, o′ ∈ O such that o′ > o and corresponding routes r ∈ Ro and
r′ ∈ Ro′ such that (zo)r > 0. From (5.23a), we have that

ℓr − ℓr′ +
∑

o≤i<o′

(αi − αi+1)θ̄i = (µo)r − (µo′)r′ (5.24a)

ℓr − ℓr′ +
∑

o≤i<o′

(αi − αi+1)θ ≤ (µo)r − (µo′)r′ (5.24b)

ℓr − ℓr′ + (αo − αo′)θ ≤ (µo)r − (µo′)r′ (5.24c)

where, in Equation (5.24b), we have used that αi−αi+1 > 0 for all i and θ ≤ θ̄i for all i ≥ o.
Since (zo)r > 0 (and thus by complementary slackness (µo)r = 0) and (µo′)r′ ≥ 0, it follows
that

ℓr + αoθ ≤ ℓr′ + αo′θ (5.25)

Now if o′ < o, we have that

ℓr′ − ℓr +
∑

o′<i≤o

(αi−1 − αi)θ̄i−1 = (µo)r′ − (µo′)r (5.26a)

ℓr′ − ℓr +
∑

o′<i≤o

(αi−1 − αi)θ ≥ (µo)r′ − (µo′)r (5.26b)

ℓr′ − ℓr + (αo′ − αo)θ ≥ (µo)r′ − (µo′)r (5.26c)

since αi−1 − αi > 0 for all i and θ ≥ θ̄i−1 for i ≤ o. This yields

ℓr + αoθ ≤ ℓr′ + αo′θ (5.27)

again by complementary slackness which proves the result.

Remark 20 We point out again that in the above proofs, the signs of θ and the αo’s were
not important. Only the fact that αo−1 − αo > 0 and the fact that θ was contained in the
interval [θ̄o−1, θ̄o] was used.
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Figure 5.4 gives a graphical illustration of the equilibrium condition for the sample dis-
tribution in Figure 5.1. We note that the familiar balance Wardrop balance condition is
maintained at the various transition points θ̄1, θ̄2, etc. This balance at the transition points
is actually the way Leurent defines the equilibrium in [104]. In this particular case, we have
assumed that the route groups are disjoint. Even so, we note that this illustration is fairly
complicated involving a complex distribution and both positive and negative prices. For
simpler illustrations with θ only positive and positive αo’s, consider the examples in the next
section. For simpler examples with positive and negative values of θ as well as positive and
negative values of αo, consider the multi-modal example in Section 5.2.

Examples

We now compute the external-cost equilibrium for the parallel graph shown in Figure 5.5a
and the graph shown in Figure 5.5b assuming the population has a uniform distribution on
the value of time vs. the external factor with θ = 0, θ̄ = 10, and a total mass of M = 20.
The inverse cumulative distribution function is given by Θ(u) = 0.5u.
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Figure 5.5: (a) Parallel graph and (b) more general graph with routes labeled.

For both graphs we assume linear edge latencies of the form

li(x) = xi + 1 (5.28)

We assume the following route groupings and prices.
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Routes
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Pos. External Cost

Neg. External Cost
(µ5)r5

r5 r6 r7 r8

0 > α6

α1θ α1θ̄1

α2θ̄1 α2θ̄2

α3θ̄2 α3θ̄3

α4θ̄3 α4θ̄4

α5θ̄4

α5θ̄5

α6θ̄5 α6θ̄6

Figure 5.4: Visualization of the external-cost Wardrop equilibrium condition for the dis-
tribution shown in Figure 5.1 and the route subset structure given. Purple represents the
travel latency for specific routes. Blue represents the perceived external cost which depends
on the price of each routing option αo and individual population members type θ. Note
that the perceived external cost can be negative either because θ is negative (as is the case
for R1 in the figure) or because αo is negative (as is the case for R6 in the figure). The
familiar Wardrop balance condition is preserved at the transitions between various routing
options. We note that the distribution of mass on the various routes could be significantly
more complicated for more complex route groupings.



CHAPTER 5. EXTERNAL-COST ROUTING GAME 79

� �� � ��

����
�	
��

�

�

�������

�

�

�
�

�

��

��

�������� �����

�������� �
�
������ �������

�� �� �� �� �� ��

 �


��
��!��


�

�

��

�� �� �� �� �� ��

(a)

� �� � ��

����
�	
��

�

�

�������

�

�

�
�

�

��

��

��

������� �����

�������� �
�
������ �������

�� �� �� �� �� �� � �!

"�


��
��#��


�

�

�� �� �� �� �� ��

(b)

Figure 5.6: External-cost Wardrop equilibrium conditions for (a) a parallel graph (Figure
5.5a) and (b) a more general graph (Figure 5.5b) with a uniform distribution on θ ∈ [0, 10]
and the route groupings and prices shown in Table 5.1.

αi Parallel groups General graph groups
R1 6 {r1, r2, r3, r4, r5, r6} {r1, r2, r3, r4, r5, r6, r7, r8}
R2 5 {r2, r3, r4, r5, r6} {r2, r3, r4, r5, r6, r7, r8}
R3 4 {r3, r4, r5, r6} {r3, r4, r5, r6, r7, r8}
R4 3 {r4, r5, r6} {r4, r5, r6, r7, r8}
R5 2 {r5, r6} {r5, r6, r7, r8}
R6 1 {r6} {r7, r8}

Table 5.1: Route groupings and prices for Figure 5.6.

The resulting equilibria balance conditions, the choice functions {Io}o∈O, and the route
masses z are are shown in Figure 5.6. Note that in this case, the route groupings are nested
with more expensive options having more routes and θ ≥ 0 for the whole population. When
both of these things are true, clearly the mass choosing a particular route will choose the
cheapest grouping in which that route is an option. This can be seen in Figure 5.6.
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5.2 Applications: Information Pricing, Privacy, and
Multi-Modal Routing

Classical routing and variable demand

It is straightforward to see that this framework reduces to the classical routing game whenever
the population distribution is a delta function at zero. The variable demand routing game
can also be thought of as a special case. Consider the route groupings,

{R1,R2} = {R, ∅}, (5.29a)

{α1,α2} = {α, 0} with α > 0 (5.29b)

with dF (θ) supported on R−. The latency for taking a route in the empty set (not driving)
is considered 0. The equilibrium condition for any route r ∈ R such that zr > 0 is given by

ℓr + αθ ≤ 0 (5.30)

Drivers with more negative values of θ are okay with longer travel times before they decide
not to drive. The potential function is given by

F (z) =
∑

e

∫ xe

0

le(u) du+

∫ m1

0

α1Θ(u) du+

∫ m1+m2

m1

α2Θ(u) du (5.31a)

=
∑

e

∫ xe

0

le(u) du+

∫ m1

0

αΘ(u) du (5.31b)

Here the demand curve is given by

d(·) = −
1

α
Θ−1(·) (5.32)

Traveler information systems market

One clear application of this framework would be modeling the market for traveler informa-
tion systems. Various routing apps such as Google maps or Waze each provide users with a
group of routes to choose from. Better apps would provide more routing options, shortcuts,
etc. The price αo would be the amount users pay for each service. This modeling frame-
work would allow us to compute how users would decide between various services given their
time-money tradeoff distribution.

Privacy

Another interesting application of this framework would be to model drivers’ interest in their
location privacy. Consider a scenario where users of a navigation service such as Google maps
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only receive congestion information about the network if they allow the navigation service
to monitor their location. Any user who ”opts out”, decides not to share their location and
not receive congestion information, takes the nominally shortest route, the shortest route
without congestion. Any users that ”opt in”, decide to share their location information,
receive information about all possible routes. The routing groups are Rout = {r1} where
r1 is the shortest uncongested route and Rin = R. Members who opt out do not pay any
additional cost (αout = 0) and members who opt in pay an additional cost of αin > 0 times
θ. The parameter θ here represents each population member’s value of privacy versus their
value of travel time.

Multi-modal routing

This framework also provides a way to study the choice commuters make between different
modes of transportation such as taking the subway or driving. We assume there are two
commuting options with sets of routes R1 and R2. Depending on the commuting options
these routes may be disjoint. For example, if commuters choose between driving or taking
the subway, the subway routes will be separate from the driving routes and have different
congestion effects. Congestion on driving routes will primarily result in increased travel time.
Congestion on the subway routes could result in greater inconvenience, more crowded plat-
forms, less available seats, etc. This framework is similar to the variable demand case except
rather than choosing between driving and not driving at all, commuters choose between two
different commuting options.

The population distribution dF (θ) is supported from the θ ≤ 0 to θ̄ ≥ 0 and models
the populations preference for one option over the other. If we set the price for option 1 as
α1 > 0 and the price for option 2 as α2 < 0, then population mass below 0 has a preference
for option 1 and population mass above 0 has a preference for option 2. We illustrate a
sample preference distribution for two options in Figure 5.2. If in particular, we set α1 =

1
2

and α2 = −1
2 , then at θ̄1 at equilibrium we have that

min
r∈R1

ℓr(z) +
1

2
θ̄1 = min

r∈R2

ℓr(z)−
1

2
θ̄1 (5.33a)

⇒ θ̄1 = min
r∈R2

ℓr(z)− min
r∈R1

ℓr(z) (5.33b)

In other words, the value of θ for each member of the population indicates how much faster
option 1 must be than option 2 before they will switch to option 1.

We note that this framework can be used to model two different commuting options;
however, more than two is problematic. Since θ is one dimensional, it can represent relative
preference between two options; however, it would only make sense to compare three or
more commuting options if there was a clear preference ordering for these options that all
population members agreed upon. This is unlikely. It would be interesting to consider
expanding this framework to a multi-dimensional preference parameter θ that compares
multiple options.
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Figure 5.7: Preference distribution for two different commuting options. If the routing costs
of each option are equal, population mass at θ < 0 prefers Option 1 and population mass at
θ > 0 prefers Option 2.

The two commuting options in this framework can be varied and it is not required that
the two sets of routes be disjoint. For example, we might seek to compare the demand for
driving vs the demand for taxis. If the two options share routes, however, it is important
that mass from either group have the same effect on congestion on the shared routes. If not,
the game is no longer a potential game. For example, this framework would have problems
comparing the demand for driving vs. the demand for carpool services since the portion of
the population that chooses to carpool has less effect on road congestion than the portion
that chooses to drive. Comparing driving vs. ride-sharing would be possible in situations
where it was a reasonable to assume the average number of commuters in a regular car
and a ride-sharing car were the same. Comparing driving vs. taking the bus would also
be problematic if the cost of taking the bus depends on how congested the roads are along
the bus route. Taking the bus does not add to congestion the same way driving a car does
since the bus will be driving that route anyway regardless of how many commuters use it. If
however, it was reasonable to assume that bus commuters do not consider congestion along
the bus route but only how crowded the bus is as well as their personal preference for not
driving, then this framework could be used.

To further illustrate the use of the model in this way, we consider a simple parallel
network with two commuting options each with two routes (shown in Figure 5.8a). We
assume a total mass of M = 8 and α1 = 1

2 and α2 = −1
2 . The population distribution is
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uniform from θ = −4 to θ̄ = 4. We consider three different sets of latencies of the form

li(zi) = aizi + bi (5.34)

with coefficients shown in the table below.

ai bi
Routes r1 r2 r3 r4 r1 r2 r3 r4
Case 1 2 2 2 2 1 1 1 1
Case 2 1 8 1 1 0 0 8 8
Case 3 4 2 1 1 2 2 1 1

The resulting equilibria and balance conditions are illustrated in Figures 5.8b, 5.8c, and
5.8d. In case 1, the latencies on all the routes are the same and thus since the population
distribution is symmetric about zero, population members with θ < 0 choose option 1 and
members with θ > 0 choose option 2. In cases 2 and 3, this symmetry is broken and members
who would prefer option 1 or 2 switch to the other option.

Ridesharing: MDP routing game

Finally, we note briefly that we could apply this framework in the ridesharing MDP routing
game scenario to model how drivers make choices to drive for one ride-sharing company or
another. The price for driving for a particular ridesharing company, αo, would depend on
the percentage of the fares that the drivers get to keep as well as any other overhead costs.
The equilibrium mass distribution would reflect the fact that drivers would prefer to drive
for a company that gives them more money but if too many drivers chose that company
they would have to compete more for the specific rides they want. Note that this model
would not currently capture the fact that rider demand also fluctuates with the number of
drivers a particular company has. Extending the model to encompass this interaction would
be interesting.
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Figure 5.8: Equilibrium and balance conditions for the simple network shown in (a) for
several different cases. (b) Case 1: the two routing options are symmetric so the population
mass chooses their preferred mode of transportation and the population mass is split around
θ = 0. (c) Case 2: option 2 becomes more congested so some mass that prefers option 2
switches to option 1. (d) Case 3: option 1 becomes more congested so some mass switches
from option 2 to option 1.
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In conclusion, we comment on modeling considerations that are important in applications,
connections between the various aspects of our work, and future directions for research.

6.1 Modeling Considerations and Connections

A major part of the art of modeling is choosing a framework that is powerful enough to
capture the desired phenomena but mathematically simple enough to solve. In our work, we
hope to strike this balance. In the MDP routing game formulation in particular, we have
provided a stochastic population game with a straight forward discrete time formulation
that is fairly simple as compared to traditional mean-field games that require solving either
coupled partial differential equations (in the general setting) or an optimal control problem
(in the potential game setting). In the infinite-horizon MDP routing game, we have provided
a low dimensional, tractable optimization problem that captures many of the important
competitive features of various scenarios such as circling for parking or ridesharing. These
simple types of models could prove useful in price setting or tolling problems providing a
tractable equilibrium computation scheme to be used in the lower level of traditional tolling
bilevel programs.

As previously mentioned at the end of Section 4.2, one of the weaknesses of the MDP
routing game is the fundamentally discrete time nature of the formulation. Since all mass
transitions from one node to another at each time step, the model is somewhat inconsistent
with tradition routing game loss functions that model latency on an edge or waiting time at
a node. It would be a useful direction of research to figure out when and how much simple
models like the MDP routing game diverge from real world phenomena they are attempting
to model. In situations where the correspondence is close, the simple MDP routing game
model could be used, and in situations where the model does not capture the phenomena
well, one could switch to a more complex, more faithful approach such as a full mean-field
game model.

As mentioned several times, the infinite horizon MDP routing game model of circling for
parking presented in Section 4.4 could be incorporated into the queue-routing game. The
strategy space would involve choosing a parking area, an entrance node, a route to that node,
and a circling policy to be applied within the parking area. The edge latencies within the
parking area would depend on both thru traffic congestion as well as circling congestion and
the potential function would be a combination of (3.15) and (4.28) (with the edge integral
terms only appearing once).

The external-cost framework for value of time vs. money could be incorporated into the
queue-routing game in order to provide a more complex look at how parking prices would
affect the equilibrium flow distributions. In this case, each parking area would correspond
to an option and we would be setting the price of that option to the price of parking in

that area, Cp
p

γp . The distribution of θ would represent the population’s time-money tradeoff.
The external-cost framework could also be used to model a parking population’s preference
for one parking area over another. In the case where there were only two parking areas the
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comparison framework detailed in Section 5.2 for multi-modal routing could be used. This
framework allows us to compare arbitrary population preference for one of two parking areas.
If we could assume that the population chooses parking areas based on one objective factor
alone, proximity to the attraction for example, we could use the external-cost framework to
rank more than two parking areas. Here the price of each option would be Rap and θ would
represent the population’s proximity vs. travel time tradeoff.

It would be interesting also to see how the continuous distribution external-factor consid-
eration could be combined with the MDP routing game. At a basic level, the external-factor
framework could be used to compare drivers choosing between driving for two different
ridesharing services such as Uber or Lyft. It would also be interesting to consider situations
where two of the different loss types (action losses, edge losses, or node losses) are funda-
mentally different from each other and θ represents the tradeoff between the various types
of losses. With our current formulation this would only be possible if one type of loss was
constant. An example might be in the traffic circling scenario where edge or action losses
representing the inconvenience of making specific turns at an intersection (left turns are more
inconvenient than right turns, etc) are constant and where the node losses representing the
probability of not getting a parking space are congestion dependent. θ in this example would
represent the tradeoff between ease of driving vs. desire to find a parking space.

6.2 Future Directions

There are multiple future research directions to be explored as well. For the queue-routing
game, a more realistic model of circling, such as the MDP routing game model, should
be incorporated. It would also be very interesting to incorporate the model into a bilevel
program to design parking prices as well as to compare the models predictions to real world
data in various scenarios. In particular, it would be interesting to compare scenarios where
drivers have more or less information about parking availability (through phone apps, etc)
to see if the model accurate predicts how parking traffic will shift as the prices are adjusted.

The MDP routing game framework could be incorporated into a bilevel programming
framework to design surge prices and trip rates. It would be a interesting to compare the
results of the model with actual driving patterns of ridesharing drivers. Along these same
lines from a more theoretical perspective, it would be very interesting to compare long term
optimization behavior (the MDP Wardrop equilibrium) with another equilibrium concept
where agents optimize their immediate rewards or losses. In some cases, this immediate
reward optimization, which we might call a myopic Wardrop equilibrium could be more con-
sistent with drivers’ actual behavior. Designing a way to compute such an equilibrium as
well as to compute a combined equilibrium where some agents optimize over the entire time
horizon and some only care about immediate rewards could have wide spread applications.
It would also be interesting to study the discounted-loss MDP routing game case and draw
connections with the myopic equilibrium as the limit of the discounted problem as the dis-
count factor shrinks to zero. Lower bounds on the price of anarchy for MDP routing games
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should be studied. Inspiration from price of anarchy results in MDP routing games could
also lead to interesting results in the general mean-field game context. It would also be very
interesting to explore Braess paradox further in the MDP routing game setting. In some
ways, studying Braess paradox in this setting is more natural than the classical routing game
setting since any results would depend only on the connectivity structure of the graph (the
incidence matrix G, the space of cycles, etc) as opposed to also depending on where the mass
enters and exits the network (the source-sink vector S).

Finally, jt would be interesting to revisit Marcotte’s variational inequality formulation
of the external-cost framework and extend the results about θ being supported above and
below zero to this context. Making this extension would allow for direct comparison of travel
options that have more than one type of congestion effect. It would also be very interesting
to extend this comparison framework to more than two decision criteria, i.e. allowing θ to
be multi-dimensional. This would provide a framework to compare transportation options
on multiple criteria or a framework to directly compare multiple transportation options
pairwise.

As intelligent transportation systems, both advanced traffic information systems and
autonomous driving systems, become more ubiquitous, complex models of competition such
as the ones presented in this work will become more and more useful. Given the right
models of competition, urban planners will be able to design new systems that leverage the
incentives users face to provide efficient, robust transportation and maximize the quality of
life in urban areas.
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[48] D. González-Sánchez and O. Hernández-Lerma, “A survey of static and dynamic po-
tential games,” Science China Mathematics, vol. 59, no. 11, pp. 2075–2102, 2016.

[49] G. Y. Weintraub, C. L. Benkard, and B. Van Roy, “Oblivious equilibrium: A mean
field approximation for large-scale dynamic games,” in NIPS, 2005, pp. 1489–1496.

[50] S. Adlakha, R. Johari, G. Weintraub, and A. Goldsmith, “Oblivious equilibrium for
large-scale stochastic games with unbounded costs,” in Decision and Control, 2008.
CDC 2008. 47th IEEE Conference on. IEEE, 2008, pp. 5531–5538.

[51] G. Y. Weintraub, C. L. Benkard, P. Jeziorski, and B. Van Roy, “Nonstationary obliv-
ious equilibrium,” Manuscript, Columbia University, pp. 1375–1411, 2008.

[52] G. Y. Weintraub, C. L. Benkard, and B. Van Roy, “Computational methods for obliv-
ious equilibrium,” Operations research, vol. 58, no. 4-part-2, pp. 1247–1265, 2010.

[53] B. Jovanovic and R. W. Rosenthal, “Anonymous sequential games,” Journal of Math-
ematical Economics, vol. 17, no. 1, pp. 77–87, 1988.

[54] J. Bergin, D. Bernhardt, et al., “Anonymous sequential games with general state
space,” Tech. Rep., 1991.



BIBLIOGRAPHY 93

[55] J. Bergin and D. Bernhardt, “Anonymous sequential games with aggregate uncer-
tainty,” Journal of Mathematical Economics, vol. 21, no. 6, pp. 543–562, 1992.

[56] ——, “Anonymous sequential games: existence and characterization of equilibria,”
Economic Theory, vol. 5, no. 3, pp. 461–489, 1995.

[57] P. Wiecek and E. Altman, “Stationary anonymous sequential games with undiscounted
rewards,” Journal of optimization theory and applications, vol. 166, no. 2, pp. 686–710,
2015.

[58] P. Wiecek, E. Altman, and Y. Hayel, “An anonymous sequential game approach for
battery state dependent power control,” in International Conference on Network Con-
trol and Optimization. Springer, 2009, pp. 121–136.

[59] ——, “Stochastic state dependent population games in wireless communication,” IEEE
Transactions on Automatic Control, vol. 56, no. 3, pp. 492–505, 2011.
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[78] O. Guéant, J. M. Lasry, P. L. Lions, et al., “Mean field games and oil production,”
Tech. Rep., 2010.

[79] R. Couillet, S. M. Perlaza, H. Tembine, and M. Debbah, “A mean field game anal-
ysis of electric vehicles in the smart grid,” in Computer Communications Workshops
(INFOCOM WKSHPS), 2012 IEEE Conference on. IEEE, 2012, pp. 79–84.



BIBLIOGRAPHY 95

[80] M. Kamgarpour and H. Tembine, “A bayesian mean field game approach to supply de-
mand analysis of the smart grid,” in Communications and Networking (BlackSeaCom),
2013 First International Black Sea Conference on. IEEE, 2013, pp. 211–215.

[81] F. Bagagiolo and D. Bauso, “Mean-field games and dynamic demand management in
power grids,” Dynamic Games and Applications, vol. 4, no. 2, pp. 155–176, 2014.

[82] A. T. Siwe and H. Tembine, “Mean-field-type games on airline networks and airport
queues: Braess paradox, its negation, and crowd effect,” in Systems, Signals & Devices
(SSD), 2016 13th International Multi-Conference on. IEEE, 2016, pp. 595–600.

[83] D. A. Gomes, J. Mohr, and R. R. Souza, “Discrete time, finite state space mean field
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