
SKYE: Motion Detection & Tracking with SEJITS

Mihir Patil
Armando Fox, Ed.
Charles Markley, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-115
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-115.html

June 1, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

SKYE: Motion Detection & Tracking with SEJITS

 Mihir Patil​1​ Armando Fox​1​ Chick Markley​1

 ​ ​mihir.patil@berkeley.edu​ ​fox@cs.berkeley.edu​ ​chick@berkeley.edu

 1​UC Berkeley, Department of Electrical Engineering & Computer Science

ABSTRACT

Optimized libraries with callables in Python are very popular for scientific development. They
provide an accessible interface, complemented with strong performance. However, there are
often operations that these specialized libraries do not support, but are nevertheless necessary in
custom applications. This presents a problem, since these unsupported operations are often
implemented in Python by the application designer, and therefore are usually unoptimized.
Applications that mandate significant performance cannot be effective when they also require
these unsupported operations. This performance gap can be greatly reduced with selective
embedded just-in-time specialization, or SE​JIT​S. Instead of writing simple Python code for the
custom operations, SEJITS allows users to write an optimized version of the routine that can be
called in Python. The JIT-specialized code drastically improves performance of the custom
routine, allowing the overall computing pipeline for the application to witness a significant
speedup. This report explores SKYE, an application that uses OpenCV and a custom
SEJITS-optimized method to perform motion detection and tracking.

INTRODUCTION

Scientists often use optimized libraries in Python, as they provide a familiar interface and high
performance. The performance benefit of these libraries is significantly increased when they are
written with parallelism in mind, using frameworks such as OpenCL or OpenMP.

However, one problem that arises from the use of these libraries is when the application requires
a ​custom primitive​, a subroutine that is implemented by the application designer exclusively,
and not by the optimized library. When working in Python or another scripting language of
choice, such custom primitives can be written to produce the correct output, but almost never
match the performance of the optimized libraries. Therefore, if one is using optimized libraries
and needs to implement one’s own custom primitive, the performance of the overall pipeline
(the optimized library functions plus the custom primitive) is significantly reduced due to the
slowness of the custom primitive.

With SEJITS, this performance gap can be greatly reduced. SKYE is an application of SEJITS
specific to motion tracking. In the creation of the SKYE pipeline, the optimized OpenCV library
[4] was used extensively. However, there is one routine in SKYE, which is termed the “screener”
method that is a custom primitive and thus does not have an OpenCV implementation. Using

1

mailto:chick@berkeley.edu
mailto:mihir.patil@berkeley.edu
mailto:fox@cs.berkeley.edu

SEJITS to optimize the screener method improves the performance of the SKYE pipeline by
10.4x.

While other real-time motion detection algorithms with similar processing speeds and accuracy
exist, SKYE is unique in that it incorporates an optimized Python library and a JIT framework to
implement custom methods for the application. In other words, it is an example of how an
application designer can augment optimized library functionality, while maintaining high
performance.

THE ORIGINAL SKYE PIPELINE

The Purpose of SKYE

The SKYE system’s function is to track motion from objects, mostly using the OpenCV
framework. The original SKYE pipeline achieves this goal, but is inferior in accuracy to
subsequent versions. Additionally, it is important to note that this original pipeline involves ​only
a series of OpenCV calls, with no custom primitives, and therefore serves as a “control” for
accuracy and performance testing of other iterations of the pipeline that use custom primitives
and SEJITS specialization.

Computing the Difference of Consecutive Frames

This pipeline starts by taking as input consecutive frames of video footage. The frames are then
are made black-and-white for simplicity and a the difference is computed between the two
images. This difference image is black where the two images are the same, and white where the
two images are different. Figure 1 shows an example of a difference image.

2

Figure 1: ​A difference image​. The image at the
bottom is the difference of the top two input
images, which are consecutive frames, labeled
Frame N and ​Frame N+1​. Notice that the image
has a lighter area where there is a difference due to
the change in the projectile’s position, while the
image is dark everywhere else.

Blurring and Thresholding the Difference Image

After computing the difference of the two images, the pipeline blurs the difference image to
smooth out any anomalous differences due to lighting and other factors, while still keeping the
major differences intact. This blurred difference image is then subjected to an OpenCV
thresholding operator [4], which makes any pixel with lightness greater than or equal to a
particular value (​20 for this implementation) completely white, and makes all pixels less than
that value completely black. Figure 2 shows the difference image after the blurring and
thresholding steps.

Figure 2: ​The difference image after
blurring and thresholding​. The SKYE
pipeline takes the difference image, as
shown in Figure 1 and blurs it to smooth
out any anomalous differences. Then, all
the surviving differences are amplified by
a thresholding function, such that any
pixel with greater than or equal to a
specified amount of lightness becomes
completely white, while all others are
made black.

3

Finding Contours

After thresholding the difference image, an OpenCV contour operator [4] is applied to the
image. As the name of the operator suggests, it helps find contours in the image. Because the
pipeline uses a thresholding operator to amplify differences, the contours are quite manifest.
Ultimately, this contour operator produces the final bounding boxes around the projectile.
Figure 3 shows the final bounding box in blue for a projectile.

Figure 3: ​Output of the original
SKYE pipeline. Using a series of
OpenCV operations, the original
SKYE pipeline is able to produce a
bounding box, such as the one
shown in blue in this image, to
describe the location of the projectile.
Notice that the blue bounding box is
rather large compared to the
projectile itself, a problem that is
eased by the use of the “screener”
method in subsequent SKYE
pipelines.

Additionally, Figure 4 shows all the steps for the original pipeline.

Figure 4:​ ​The original pipeline​. This is the version of
the SKYE motion-detection pipeline does not have any
custom primitives and relies solely on OpenCV built-in
functions.

4

Original SKYE Pipeline Performance

All the operations of the pipeline were done using out-of-the-box OpenCV primitives, and
therefore SKYE was able to reach a fast processing speed. On a 3 GHz Intel Core i7 processor
(Haswell), on Mac OSX, this original pipeline achieved performance of 35.14 frames-per-second.

SLOW SCREENER SKYE PIPELINE
OpenCV with Unoptimized Custom Primitive

Problems with the Original SKYE Pipeline

While the original version of the SKYE pipeline successfully tracks motion, the tracking accuracy
of the original version is limited. This can be seen in Figure 3, where the blue bounding box
created by the SKYE algorithm is much larger than the projectile itself.

The reason the bounding box is this large is that it is created based on the contours of an image
that is a processed version of the difference image; specifically, this is because the difference
image has ​two representations of the projectile (one from ​Frame N and one from ​Frame N+1 ​).
This means that the bounding box that encompasses both those representations is much larger
than the shape of the projectile itself.

The “Screener” Method

This next version of the algorithm aims to solve this issue by using a custom primitive (not
included in OpenCV or another optimized library). This custom primitive is known as the
screener method​ in this report.

The screener performs a very simple task ​— whenever the difference at a particular pixel
between the Sobel images of the two frames (​SOBEL N and ​SOBEL N+1 ​in Figure 7) is less
than the constant ​MIN_PIX_DIFF ​, that pixel is thrown out in the resulting image. In other
words, this operation eliminates insignificant differences between the Sobel versions of the two
images. Note that in the existing implementation, ​MIN_PIX_DIFF was set to ​60 ​, but is a
tunable constant depending on the application.

Should the difference at a particular pixel be some value ​X greater than ​MIN_PIX_DIFF ​, then
the screener method checks to see if the pixel is inside one of the contour boxes that were found
in the output of the original SKYE pipeline. If the pixel is inside one of those boxes, the pixel is
allowed to retain its value ​X ​. Otherwise; the pixel is also thrown out and assigned the value ​0 ​.

Overall, because the screener method takes Sobel versions of the two images as inputs and only
keeps pixels that are shared between the inputs and are in a bounding box that was found in the

5

original SKYE pipeline, it achieves a much more accurate version of the bounding box. Figure 5
shows the output of the screener for the same frames that were used as input to create the
thresholded image in Figure 2.

Figure 5: ​The screener output​. This
image is the output of the screener
method. Note that it has a box-area that
is much smaller than that of the image
in Figure 2.

Bilateral Filter and Thresholding

The light portion of Figure 5 is very faint, and for the OpenCV contour finding algorithm to
properly find contours, the light parts must be prominent.

To remedy this, the SKYE pipeline runs an OpenCV bilateral filter [4] on the image. The bilateral
filter is a blurring operator, but also has the property of edge preservation. This operator
eliminates most non-edge-defining light pixels, and thus reduces anomalous contouring.

Additionally, to increase the contrast of the image, another OpenCV thresholding operator is
applied to the output. The result of these two operators on the output of the screener is shown in
Figure 6.

Figure 6: Screener image after bilateral
filtering and thresholding. After applying an
OpenCV bilateral filter and the OpenCV
thresholding function to the output of the
screener method (shown in Figure 5), the
relevant parts of the image are much more
clearly delineated for the contouring algorithm
at the end of the pipeline.

6

Additionally, Figure 7 shows a diagram of this pipeline.

Figure 7: ​The slow screener​. This is the version of the SKYE pipeline that uses the slow Python
screener. In the faster version of this pipeline, the screener method is SEJITS optimized.

Final Output with the Screener

After applying the bilateral filter and thresholding operator to the output of the screener
method, the pipeline uses the same OpenCV contour operator as before to get bounding boxes.
Figure 8 shows the difference between the original SKYE pipeline’s output bounding box and the
screener SKYE pipeline’s bounding box.

Figure 8: ​Comparing the outputs of
the original SKYE pipeline and the
screener SKYE pipeline​. In this
image, the blue (larger) bounding box
is the output of the original SKYE
pipeline, and the red (smaller)
bounding box is the output of the
screener SKYE pipeline. It is clear
from the sizes of the boxes that the
use of the screener method increases
accuracy in motion tracking.

7

Performance Limitations of the Slow Screener

While this version of the SKYE pipeline has greater accuracy than the original version, the extra
computation due to the screener method results in a significant slowdown. This is because the
screener method is implemented in Python, and simply cannot match the speed of the optimized
routines that are implemented in the OpenCV library.

Overall, this pipeline is able to process 2.69 frames-per-second, an order of magnitude worse
performance compared to the original pipeline.

FAST SCREENER SKYE PIPELINE
OpenCV with a SEJITS-optimized Custom Primitive

With the screener we get increased tracking accuracy, at the cost of speed. The reason for the
loss of speed is the custom primitive screener method, which is implemented in Python, while
the rest of the pipeline is comprised of optimized OpenCV functions.

To remedy this, a faster, SEJITS-optimized screener method was used for this pipeline, instead
of the unoptimized Python version. This version involved the same screener, with the exact same
logic, except it was written through a SEJITS specializer, with a C backend. Figure 9 shows the
template code for this optimized screener.

Figure 9: SEJITS
Screener Code. The
SEJITS template of the
screener method maintains
the increased tracking
accuracy of the Python
version, but makes the
pipeline 10.4x faster than
the second iteration of the
pipeline. The ​contains
method (not shown) is also
written in a C string
template in the SEJITS
specializer so it can be
called in the screener.

8

The SEJITS specializer is written as a Python string template in C. The template values such as
$num_boxes ​, as well as ​$im_height and ​$im_width are code-generated as integer literals
just-in-time, based on the number of boxes found as output from the original SKYE pipeline and
the dimensions of the image. The output of this generates a C file named ​generated.c ​, which
contains this template with the just-in-time variables filled in. Additionally, the ​contains
method, which is not shown in Figure 9, is also added as C code so it can be used in the screener
method.

The SEJITS output file ​generated.c ​, which has the hardcoded values specific to the video
stream, is cached using the SEJITS caching mechanism [2], and therefore does not have to be
repeatedly code-generated for every pair of input frames. Instead, after the initial code
generation of the file, SEJITS runs the screener method directly from the cache.

With the use of SEJITS, the performance of the pipeline improves significantly. After the initial
code-generation step is completed for the first pair of input frames, the performance jumps to
28.08 frames-per-second.

PIPELINE PERFORMANCE COMPARISON

The three different pipelines have disparate performances. Because the original pipeline does
not have any custom parts, it is faster than the others. However, the latter two pipelines both use
the screener and therefore have the same tracking accuracy, but the SEJITS version performs
10.4x better than the Python version in terms of speed. Table 1 shows the processing
frames-per-second for each of the pipelines.

SKYE Pipeline Version Frames-per-second

Original (OpenCV only) 35.14

Slow Screener (Python) 2.69

Fast Screener (SEJITS) 28.08

Table 1: Performance comparison of the 3 SKYE pipeline versions. The SEJITS “screener” version
performs 10.4x better than the Python “screener” version.

9

SKYE USAGE

While SKYE ​was originally meant to be for motion detection and tracking, today it is used as a
part of an endeavor known as Project Hermione, which is a system that tracks lecturers as they
pace the classroom, allowing a camera to follow them without a camera-person guiding the
camera. Hermione takes footage at a wide angle, and during post-processing SKYE is used to
identify the movements of the lecturer and thus filter out the unnecessary parts of the footage.
The Hermione system is currently in use at UC Berkeley, for EECS 160 (UI Design) and EECS
16A/B, the electrical engineering introductory courses.

While the current implementation of Hermione is suitable for offline processing, planned
implementations call for near-real-time streaming, making the performance improvements to
SKYE very useful for future development.

POTENTIAL FUTURE WORK

While this 10.4x speedup is significant on its own, further improvements can be made as well.
When processing video on a more powerful computer, with many cores, parallelizing the code
has the potential to increase performance.

Additionally, future work could try to harness SEJITS’s ability to support an OpenCL backend
for GPU development. In essence the screener method can potentially be run on GPUs for much
faster performance. While GPUs require time to copy to and from, OpenCV methods can also be
run on GPUs [4], therefore allowing the entire pipeline to run with just one set of copies to and
from the GPU. Additionally, because the same frame is used in two subsequent iterations of the
pipeline (i.e. ​Frame N is used when comparing ​Frame N-1 to ​Frame N ​, as well as when
comparing ​Frame N ​to ​Frame N+1 ​), only one image has to be copied to the GPU every
iteration, and only four values (the four corners of the bounding box for the image) need to
copied back.

RELATED WORK

The idea of writing code in a productivity language, such as Python, while retaining high-level
performance is not exclusive to SEJITS. Two notable frameworks that try to achieve this are
Weave and Cython.

Weave, a part of the SciPy package, allows users to write C code inline within Python functions
[3]. However, while this approach is similar to the way SEJITS is used for SKYE, Weave cannot
take advantage of JIT specialization to improve performance, and has the additional effect of

10

cluttering the code with the optimizations it does make. In contrast, SEJITS hides the optimized
code away in a specializer, allowing the main application logic to be clean and easy to read [2].

Cython on the other hand allows the user to annotate Python functions to provide information
like static types to a C compiler [5]. Like Weave, Cython’s performance optimizations can clutter
the main logic of the application, and has the additional downside of not being executable
through a standard Python compiler [2].

Change detection itself is a common problem in various fields, ranging from traffic safety to
medical imaging. Many algorithms exist for change detection offline, which doesn’t require fast
performance [1,6]. For real-time applications, such as collision detection on roads, algorithms
such as the one proposed by Yu & Chen [7] are comparable in speed and performance to SKYE.
However, SKYE is unique due to how the application is implemented: the JIT specialization
engine takes a optimized Python-only algorithm and improves accuracy without significant
drops in performance. Other motion-detection implementations should be able to benefit from
this same JIT technique.

CONCLUSION

The majority of the SKYE implementation is completed with a series of calls to optimized
methods in the OpenCV library. But the screener method is the part of the implementation that
does not have an optimized implementation, and thus significantly slows down the entire
pipeline. However, after optimizing the screener method with SEJITS, the SKYE pipeline saw a
10.4x increase in performance overall. In general, with SEJITS, application designers can create
optimized versions of custom primitives, which can significantly improve the performance of
those applications.

REFERENCES

[1] Ardekani, B.A., Bachman, A.H. et al. (2001). A quantitative comparison of motion
detection algorithm of FMRI. Magn Reson. Imaging 19, 959–963.

[2] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer, J. Shalf, K. Yelick,
and A. Fox, “SEJITS: Getting productivity and performance with Selective Embedded
JIT Specialization.”

[3] E. Jones, T. Oliphant, P. Peterson, ​et al​., “SciPy: Open source scientific tools for Python,"
2001-2017.

[4] G. Bradski ​Dr. Dobb's Journal of Software Tools

11

[5] R. Bradshaw, S. Behnel, D. S. Seljebotn, G. Ewing, et al., The Cython compiler,
http://cython.org​.

[6] R. Radke, S. Andra, O. Al-Kofahi, B. Roysam, "Image change detection algorithms: A
systematic survey", ​IEEE Trans. Image Process.​, vol. 14, pp. 294-307, Mar. 2005.

[7] Z. Yu, Y. Chen, "A real-time motion detection algorithm for traffic monitoring systems
based on consecutive temporal difference", ​Proc. 7th Asian Control Conf.​, pp. 1594-1599,
2009-Aug.-2729.

12

http://cython.org/

