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ABSTRACT 

Optimized libraries with callables in Python are very popular for scientific development. They             
provide an accessible interface, complemented with strong performance. However, there are           
often operations that these specialized libraries do not support, but are nevertheless necessary in              
custom applications. This presents a problem, since these unsupported operations are often            
implemented in Python by the application designer, and therefore are usually unoptimized.            
Applications that mandate significant performance cannot be effective when they also require            
these unsupported operations. This performance gap can be greatly reduced with selective            
embedded just-in-time specialization, or SE​JIT​S. Instead of writing simple Python code for the             
custom operations, SEJITS allows users to write an optimized version of the routine that can be                
called in Python. The JIT-specialized code drastically improves performance of the custom            
routine, allowing the overall computing pipeline for the application to witness a significant             
speedup. This report explores SKYE, an application that uses OpenCV and a custom             
SEJITS-optimized method to perform motion detection and tracking. 

 

INTRODUCTION 

Scientists often use optimized libraries in Python, as they provide a familiar interface and high               
performance. The performance benefit of these libraries is significantly increased when they are             
written with parallelism in mind, using frameworks such as OpenCL or OpenMP. 

However, one problem that arises from the use of these libraries is when the application requires                
a ​custom primitive​, a subroutine that is implemented by the application designer exclusively,             
and not by the optimized library. When working in Python or another scripting language of               
choice, such custom primitives can be written to produce the correct output, but almost never               
match the performance of the optimized libraries. Therefore, if one is using optimized libraries              
and needs to implement one’s own custom primitive, the performance of the overall pipeline              
(the optimized library functions plus the custom primitive) is significantly reduced due to the              
slowness of the custom primitive. 

With SEJITS, this performance gap can be greatly reduced. SKYE is an application of SEJITS               
specific to motion tracking. In the creation of the SKYE pipeline, the optimized OpenCV library               
[4] was used extensively. However, there is one routine in SKYE, which is termed the “screener”                
method that is a custom primitive and thus does not have an OpenCV implementation. Using               
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SEJITS to optimize the screener method improves the performance of the SKYE pipeline by              
10.4x. 

While other real-time motion detection algorithms with similar processing speeds and accuracy            
exist, SKYE is unique in that it incorporates an optimized Python library and a JIT framework to                 
implement custom methods for the application. In other words, it is an example of how an                
application designer can augment optimized library functionality, while maintaining high          
performance. 

 

THE ORIGINAL SKYE PIPELINE 

The Purpose of SKYE 

The SKYE system’s function is to track motion from objects, mostly using the OpenCV              
framework. The original SKYE pipeline achieves this goal, but is inferior in accuracy to              
subsequent versions. Additionally, it is important to note that this original pipeline involves ​only              
a series of OpenCV calls, with no custom primitives, and therefore serves as a “control” for                
accuracy and performance testing of other iterations of the pipeline that use custom primitives              
and SEJITS specialization. 

Computing the Difference of Consecutive Frames 

This pipeline starts by taking as input consecutive frames of video footage. The frames are then                
are made black-and-white for simplicity and a the difference is computed between the two              
images. This difference image is black where the two images are the same, and white where the                 
two images are different. Figure 1 shows an example of a difference image. 
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Figure 1: ​A difference image​. The image at the         
bottom is the difference of the top two input         
images, which are consecutive frames, labeled      
Frame N and ​Frame N+1​. Notice that the image         
has a lighter area where there is a difference due to           
the change in the projectile’s position, while the        
image is dark everywhere else. 

 

 

Blurring and Thresholding the Difference Image 

After computing the difference of the two images, the pipeline blurs the difference image to               
smooth out any anomalous differences due to lighting and other factors, while still keeping the               
major differences intact. This blurred difference image is then subjected to an OpenCV             
thresholding operator [4], which makes any pixel with lightness greater than or equal to a               
particular value (​20 for this implementation) completely white, and makes all pixels less than              
that value completely black. Figure 2 shows the difference image after the blurring and              
thresholding steps. 

 
Figure 2: ​The difference image after      
blurring and thresholding​. The SKYE     
pipeline takes the difference image, as      
shown in Figure 1 and blurs it to smooth         
out any anomalous differences. Then, all      
the surviving differences are amplified by      
a thresholding function, such that any      
pixel with greater than or equal to a        
specified amount of lightness becomes     
completely white, while all others are      
made black. 

 
3 



 

Finding Contours 

After thresholding the difference image, an OpenCV contour operator [4] is applied to the              
image. As the name of the operator suggests, it helps find contours in the image. Because the                 
pipeline uses a thresholding operator to amplify differences, the contours are quite manifest.             
Ultimately, this contour operator produces the final bounding boxes around the projectile.            
Figure 3 shows the final bounding box in blue for a projectile. 

Figure 3: ​Output of the original      
SKYE pipeline. Using a series of      
OpenCV operations, the original    
SKYE pipeline is able to produce a       
bounding box, such as the one      
shown in blue in this image, to       
describe the location of the projectile.      
Notice that the blue bounding box is       
rather large compared to the     
projectile itself, a problem that is      
eased by the use of the “screener”       
method in subsequent SKYE    
pipelines. 

 

Additionally, Figure 4 shows all the steps for the original pipeline. 

 

 
 

 

 

 

 

 

 

Figure 4:​ ​The original pipeline​. This is the version of 
the SKYE motion-detection pipeline does not have any 
custom primitives and relies solely on OpenCV built-in 
functions. 
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Original SKYE Pipeline Performance 

All the operations of the pipeline were done using out-of-the-box OpenCV primitives, and             
therefore SKYE was able to reach a fast processing speed. On a 3 GHz Intel Core i7 processor                  
(Haswell), on Mac OSX, this original pipeline achieved performance of 35.14 frames-per-second. 

 

SLOW SCREENER SKYE PIPELINE  
OpenCV with Unoptimized Custom Primitive 

Problems with the Original SKYE Pipeline 

While the original version of the SKYE pipeline successfully tracks motion, the tracking accuracy              
of the original version is limited. This can be seen in Figure 3, where the blue bounding box                  
created by the SKYE algorithm is much larger than the projectile itself. 

The reason the bounding box is this large is that it is created based on the contours of an image                    
that is a processed version of the difference image; specifically, this is because the difference               
image has ​two representations of the projectile (one from ​Frame N and one from ​Frame N+1 ​).                
This means that the bounding box that encompasses both those representations is much larger              
than the shape of the projectile itself. 

The “Screener” Method 

This next version of the algorithm aims to solve this issue by using a custom primitive (not                 
included in OpenCV or another optimized library). This custom primitive is known as the              
screener method​ in this report.  

The screener performs a very simple task ​— whenever the difference at a particular pixel               
between the Sobel images of the two frames (​SOBEL N and ​SOBEL N+1 ​in Figure 7) is less                  
than the constant ​MIN_PIX_DIFF ​, that pixel is thrown out in the resulting image. In other               
words, this operation eliminates insignificant differences between the Sobel versions of the two             
images. Note that in the existing implementation, ​MIN_PIX_DIFF was set to ​60 ​, but is a               
tunable constant depending on the application. 

Should the difference at a particular pixel be some value ​X greater than ​MIN_PIX_DIFF ​, then               
the screener method checks to see if the pixel is inside one of the contour boxes that were found                   
in the output of the original SKYE pipeline. If the pixel is inside one of those boxes, the pixel is                    
allowed to retain its value ​X ​. Otherwise; the pixel is also thrown out and assigned the value ​0 ​.  

Overall, because the screener method takes Sobel versions of the two images as inputs and only                
keeps pixels that are shared between the inputs and are in a bounding box that was found in the                   
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original SKYE pipeline, it achieves a much more accurate version of the bounding box. Figure 5                
shows the output of the screener for the same frames that were used as input to create the                  
thresholded image in Figure 2.  

 

Figure 5: ​The screener output​. This      
image is the output of the screener       
method. Note that it has a box-area that        
is much smaller than that of the image        
in Figure 2. 

 

 

 

 

Bilateral Filter and Thresholding 

The light portion of Figure 5 is very faint, and for the OpenCV contour finding algorithm to                 
properly find contours, the light parts must be prominent.  

To remedy this, the SKYE pipeline runs an OpenCV bilateral filter [4] on the image. The bilateral                 
filter is a blurring operator, but also has the property of edge preservation. This operator               
eliminates most non-edge-defining light pixels, and thus reduces anomalous contouring. 

Additionally, to increase the contrast of the image, another OpenCV thresholding operator is             
applied to the output. The result of these two operators on the output of the screener is shown in                   
Figure 6. 

Figure 6: Screener image after bilateral      
filtering and thresholding. After applying an      
OpenCV bilateral filter and the OpenCV      
thresholding function to the output of the       
screener method (shown in Figure 5), the       
relevant parts of the image are much more        
clearly delineated for the contouring algorithm      
at the end of the pipeline. 
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Additionally, Figure 7 shows a diagram of this pipeline. 

Figure 7: ​The slow screener​. This is the version of the SKYE pipeline that uses the slow Python                  
screener. In the faster version of this pipeline, the screener method is SEJITS optimized. 

Final Output with the Screener 

After applying the bilateral filter and thresholding operator to the output of the screener              
method, the pipeline uses the same OpenCV contour operator as before to get bounding boxes.               
Figure 8 shows the difference between the original SKYE pipeline’s output bounding box and the               
screener SKYE pipeline’s bounding box. 

 

Figure 8: ​Comparing the outputs of      
the original SKYE pipeline and the      
screener SKYE pipeline​. In this     
image, the blue (larger) bounding box      
is the output of the original SKYE       
pipeline, and the red (smaller)     
bounding box is the output of the       
screener SKYE pipeline. It is clear      
from the sizes of the boxes that the        
use of the screener method increases      
accuracy in motion tracking. 
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Performance Limitations of the Slow Screener 

While this version of the SKYE pipeline has greater accuracy than the original version, the extra                
computation due to the screener method results in a significant slowdown. This is because the               
screener method is implemented in Python, and simply cannot match the speed of the optimized               
routines that are implemented in the OpenCV library. 

Overall, this pipeline is able to process 2.69 frames-per-second, an order of magnitude worse              
performance compared to the original pipeline. 

 

FAST SCREENER SKYE PIPELINE  
OpenCV with a SEJITS-optimized Custom Primitive 

With the screener we get increased tracking accuracy, at the cost of speed. The reason for the                 
loss of speed is the custom primitive screener method, which is implemented in Python, while               
the rest of the pipeline is comprised of optimized OpenCV functions.  

To remedy this, a faster, SEJITS-optimized screener method was used for this pipeline, instead              
of the unoptimized Python version. This version involved the same screener, with the exact same               
logic, except it was written through a SEJITS specializer, with a C backend. Figure 9 shows the                 
template code for this optimized screener. 

 
Figure 9: SEJITS   
Screener Code. The   
SEJITS template of the    
screener method maintains   
the increased tracking   
accuracy of the Python    
version, but makes the    
pipeline 10.4x faster than    
the second iteration of the     
pipeline. The ​contains   
method (not shown) is also     
written in a C string     
template in the SEJITS    
specializer so it can be     
called in the screener. 
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The SEJITS specializer is written as a Python string template in C. The template values such as                 
$num_boxes ​, as well as ​$im_height and ​$im_width are code-generated as integer literals            
just-in-time, based on the number of boxes found as output from the original SKYE pipeline and                
the dimensions of the image. The output of this generates a C file named ​generated.c ​, which                
contains this template with the just-in-time variables filled in. Additionally, the ​contains            
method, which is not shown in Figure 9, is also added as C code so it can be used in the screener                      
method. 

The SEJITS output file ​generated.c ​, which has the hardcoded values specific to the video              
stream, is cached using the SEJITS caching mechanism [2], and therefore does not have to be                
repeatedly code-generated for every pair of input frames. Instead, after the initial code             
generation of the file, SEJITS runs the screener method directly from the cache. 

With the use of SEJITS, the performance of the pipeline improves significantly. After the initial               
code-generation step is completed for the first pair of input frames, the performance jumps to               
28.08 frames-per-second. 

 

PIPELINE PERFORMANCE COMPARISON 

The three different pipelines have disparate performances. Because the original pipeline does            
not have any custom parts, it is faster than the others. However, the latter two pipelines both use                  
the screener and therefore have the same tracking accuracy, but the SEJITS version performs              
10.4x better than the Python version in terms of speed. Table 1 shows the processing               
frames-per-second for each of the pipelines. 

SKYE Pipeline Version Frames-per-second 

Original (OpenCV only) 35.14 

Slow Screener (Python) 2.69 

Fast Screener (SEJITS) 28.08 

 
Table 1: Performance comparison of the 3 SKYE pipeline versions. The SEJITS “screener” version              
performs 10.4x better than the Python “screener” version. 
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SKYE USAGE 

While SKYE ​was originally meant to be for motion detection and tracking, today it is used as a                  
part of an endeavor known as Project Hermione, which is a system that tracks lecturers as they                 
pace the classroom, allowing a camera to follow them without a camera-person guiding the              
camera. Hermione takes footage at a wide angle, and during post-processing SKYE is used to               
identify the movements of the lecturer and thus filter out the unnecessary parts of the footage.                
The Hermione system is currently in use at UC Berkeley, for EECS 160 (UI Design) and EECS                 
16A/B, the electrical engineering introductory courses. 

While the current implementation of Hermione is suitable for offline processing, planned            
implementations call for near-real-time streaming, making the performance improvements to          
SKYE very useful for future development. 

 

POTENTIAL FUTURE WORK 

While this 10.4x speedup is significant on its own, further improvements can be made as well.                
When processing video on a more powerful computer, with many cores, parallelizing the code              
has the potential to increase performance.  

Additionally, future work could try to harness SEJITS’s ability to support an OpenCL backend              
for GPU development. In essence the screener method can potentially be run on GPUs for much                
faster performance. While GPUs require time to copy to and from, OpenCV methods can also be                
run on GPUs [4], therefore allowing the entire pipeline to run with just one set of copies to and                   
from the GPU. Additionally, because the same frame is used in two subsequent iterations of the                
pipeline (i.e. ​Frame N is used when comparing ​Frame N-1 to ​Frame N ​, as well as when                 
comparing ​Frame N ​to ​Frame N+1 ​), only one image has to be copied to the GPU every                 
iteration, and only four values (the four corners of the bounding box for the image) need to                 
copied back. 

 

RELATED WORK 

The idea of writing code in a productivity language, such as Python, while retaining high-level               
performance is not exclusive to SEJITS. Two notable frameworks that try to achieve this are               
Weave and Cython.  

Weave, a part of the SciPy package, allows users to write C code inline within Python functions                 
[3]. However, while this approach is similar to the way SEJITS is used for SKYE, Weave cannot                 
take advantage of JIT specialization to improve performance, and has the additional effect of              
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cluttering the code with the optimizations it does make. In contrast, SEJITS hides the optimized               
code away in a specializer, allowing the main application logic to be clean and easy to read [2]. 

Cython on the other hand allows the user to annotate Python functions to provide information               
like static types to a C compiler [5]. Like Weave, Cython’s performance optimizations can clutter               
the main logic of the application, and has the additional downside of not being executable               
through a standard Python compiler [2]. 

Change detection itself is a common problem in various fields, ranging from traffic safety to               
medical imaging. Many algorithms exist for change detection offline, which doesn’t require fast             
performance [1,6]. For real-time applications, such as collision detection on roads, algorithms            
such as the one proposed by Yu & Chen [7] are comparable in speed and performance to SKYE.                  
However, SKYE is unique due to how the application is implemented: the JIT specialization              
engine takes a optimized Python-only algorithm and improves accuracy without significant           
drops in performance. Other motion-detection implementations should be able to benefit from            
this same JIT technique.  

 

CONCLUSION 

The majority of the SKYE implementation is completed with a series of calls to optimized               
methods in the OpenCV library. But the screener method is the part of the implementation that                
does not have an optimized implementation, and thus significantly slows down the entire             
pipeline. However, after optimizing the screener method with SEJITS, the SKYE pipeline saw a              
10.4x increase in performance overall. In general, with SEJITS, application designers can create             
optimized versions of custom primitives, which can significantly improve the performance of            
those applications. 
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