
Fast Approximation Algorithms for Positive Linear
Programs

Di Wang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-126
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-126.html

July 13, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Acknowledgement

The results in this dissertation were based on collaboration with Satish
Rao, Michael Mahoney, Peng Zhang and Nishanth Mohan. The results
include previous publications~\cite{WRM16,WRMZ16,WMMR15}. I thank
my collaborators for allowing the inclusion of coauthored work in this
dissertation.

Fast Approximation Algorithms for Positive Linear Programs

by

Di Wang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Satish Rao, Chair
Professor Dorit Hochbaum

Professor Prasad Raghavendra
Professor Michael Mahoney

Summer 2017

Fast Approximation Algorithms for Positive Linear Programs

Copyright 2017
by

Di Wang

1

Abstract

Fast Approximation Algorithms for Positive Linear Programs

by

Di Wang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Satish Rao, Chair

Positive linear programs (LPs), or equivalently, mixed packing and covering LPs, are LPs for-
mulated with non-negative coefficients, constants, and variables. Notable special cases of positive
LPs include packing LPs and covering LPs. Positive LPs model a wide range of fundamental
problems both in theory of computation as well as in practice, thus have long drawn interest in
theoretical computer science, operations research, and optimization communities.

In this work, we study iterative methods for approximately solving positive LPs efficiently.
Given a positive LP of size N , we are interested in iterative methods that can converge to a (1± ε)-
approximate optimal solution with complexity that is nearly linear in N , and polynomial in 1

ε
.

For the special cases of packing LPs and covering LPs, we design improved sequential and
parallel approximate solvers, both using first-order (i.e. gradient based) descent methods from
(continuous) convex optimization. In particular, we build upon the linear coupling framework
introduced by Allen-Zhu and Orecchia. The performance of first-order methods are sensitive to
the geometry of the problem space, as well as properties of the objective function. At a high
level, we design (discrete) techniques that exploit the combinatorial structures of the LPs, which
lead to signicantly improved theoretical behavior of the optimization method. More specifically,
our sequential (i.e., non-parallelizable) solver is based on a Õ(N/ε) algorithm for packing LPs
in a previous breakthrough by Allen-Zhu and Orecchia, and we provide a unified method with
running time Õ(N/ε) for both packing LPs and covering LPs. Our parallel algorithm has depth
(i.e., parallel running time) Õ(1/ε2), which is Ω(1/ε) faster than the previous best algorithm.

For general positive LPs, we take a more combinatorial framework, called Lagrangian relax-
ation, but we crucially adapt the framework to leverage insights from continuous convex optimiza-
tion. The incorporation of continuous optimization techniques provides a primal-dual perspective
of the method, and leads to faster convergence. More specifically, we develop a Õ(1/ε3) depth
parallel algorithm, improving a long-standing bound of Õ(1/ε4) for positive LPs.

At a high level, we benefit from a integrated view of continuous and combinatorial techniques
to obtain the improved results in this work. This combination brings intriguing new perspectives
to algorithm design, and is promising for further exciting progress.

i

To my parents,

who offered unconditional love and support,

and to Tiffany,

who has always been there for me.

ii

Contents

Contents i

List of Tables ii

List of Algorithms iii

1 Introduction 1
1.1 Covering LPs and Packing LPs . 3
1.2 Positive LPs . 8
1.3 Organization . 9
1.4 Bibliographic Notes . 9

2 Sequential Algorithm for Packing LPs and Covering LPs 10
2.1 Preliminaries and Smoothing the Objective . 10
2.2 Technical Overview . 13
2.3 Diameter Reduction Method for Covering Problems 15
2.4 Accelerated Solver for (Packing and) Covering LPs 17
2.5 Missing Proofs . 26

3 Parallel Algorithms for Packing LPs and Covering LPs 31
3.1 Technical Overview . 31
3.2 Õ(1

ε2
) Parallel Solver for Packing LPs . 32

3.3 Õ(1
ε2

) Parallel Solver for Covering LPs . 40
3.4 Õ(d

ε
) Parallel Accelerated Solver for (Packing and) Covering LPs 43

4 Parallel Algorithm for Positive LPs 47
4.1 Technical overview . 47
4.2 Parallel Algorithm for Mixed Packing and Covering LPs 49
4.3 Missing Proof . 59

Bibliography 62

iii

List of Tables

1.1 Selected work of sequential algorithms for covering LP and packing LP. 4
1.2 Selected work of parallel algorithms for covering LP and packing LP. 6

iv

List of Algorithms

1 Accelerated sequential solver for packing LPs and covering LPs 18
2 Õ(1

ε2
) time parallel packing LP solver . 33

3 Fixing procedure for covering LPs . 41
4 Accelerated Õ(d

ε
) time parallel solver for both packing and covering 45

5 Parallel algorithm for mixed packing and covering LPs 52

v

Acknowledgments

During my graduate studies at UC Berkeley, I have been privileged to have Satish Rao as my
advisor. Satish has been a constant source of ideas and inspirations, and has greatly impacted my
research. Beyond the stimulating discussions on research problems, Satish has provided support
on many other aspects of my academic life. Over the years, Satish’s patience and encouragement
have instilled confidence and hope for me to get through the ups and (especially) downs, and I
couldn’t have made the journey without his guidance. I also feel fortunate to have the opportunity
to work extensively with Michael Mahoney. Michael and Satish introduced me to the problems
studied in this dissertation. Since then, Michael has been a great mentor, and I’ve greatly benefited
from his advise and support. Most of this dissertation is based on joint work with Satish, Michael,
Peng Zhang, and Richard Peng, and I thank my collaborators for all the effort and help.

I have also worked with some fabulous researchers not mentioned already, from whom I’ve
learned a lot and greatly benefited, and I feel grateful: Monika Henzinger, Yu Cheng, Ho Yee Che-
ung, Shanghua Teng, Kimon Fountoulakis, Richard Zhang, Kamalika Chaudhuri, and Kevin Chen.
I thank Kamal Jain, who have mentored me during my internship. I also thank the undergraduate
students at Berkeley with whom I have worked with on research problems: Darren Kuo, Andrew
Gambardella, Victor Huang, Chenyu Zhao and Nishanth Mohan.

I thank my fellow graduate students in the theory group for their friendship and the creation of
an encouraging atmosphere: Nima Anari, Urmila Mahadev, Anand Bhaskar, James Cook, Anindya
De, Piyush Srivastava, Chris Wilkens, Lorenzo Orecchia, Gregory Valiant, Isabelle Stanton, Siu
Man Chan, Siu On Chan, Tom Watson, Thomas Vidick, Ilias Diakonikolas, Rafael Frongillo, Jonah
Sherman, George Pierrakos, Seung Woo Shin, Sam Wong, Aviad Rubinstein, Antonio Blanca,
Tselil Schramm, Ben Weitz, Jarett Schwartz, Alex Psomas, Jonah Brown-Cohen, Rishi Gupta,
Paul Christiano, Fotis Iliopoulos, Manuel Sabin, Jingcheng Liu, Peihan Miao, Aaron Schild, Pasin
Manurangsi, Marc Khoury, and Akshayaram Srinivasan. I also thank all the faculty members for
making the theory group such a wonderful place.

My time at Berkeley was made pleasant also because of my friends, and I thank all of them for
the adventures, the fun and the support along the journey. Finally I want to thank my family for
the unconditional love and support I received in my life.

1

Chapter 1

Introduction

Positive linear programs (LPs) are LPs formulated with non-negative coefficients, constants, and
variables (Example 1.0.1). Traditionally, the ≤ constraints are called packing constraints, while
the ≥ constraints (apart from the non-negativity of variables) are called covering constraints, and
positive LPs are equivalently called mixed packing and covering LPs. Notable special cases of
positive LPs are (pure) packing LPs, which are positive LPs without any covering constraint, and
(pure) covering LPs, which are positive LPs without any packing constraint. Positive LPs model a
wide range of fundamental problems both in theory of computation as well as in practice, and thus
have long drawn interest in theoretical computer science, operations research, and optimization
communities.

Example 1.0.1. (Two simple positive LPs) Non-negative coefficients, constants and variables.

min x1 + x2 + x3

x1 + 3x2 + x3 ≥ 5
2x1 + x2 + 2x3 ≥ 7
x1 + x2 + 2x3 ≤ 6
x1, x2, x3 ≥ 0

max x1 + 2x2 + x3

2x1 + 3x2 + x3 ≥ 7
x1 + 3x2 + 2x3 ≤ 6

x1 + 3x3 ≤ 5
x1, x2, x3 ≥ 0

Given a positive LP of size N (i.e., the total number of non-zeros in the formulation), we
want to find a (1 ± ε)-approximate optimal solution efficiently. Although one can use the interior
point method or ellipsoid method, with computational complexity that has poly log(1

ε
) dependence

on the approximation error ε, these methods typically have very high complexity dependence on
N , as computations such as the Hessian matrix or linear system solving are involved in every
iteration, and consequently are problematic for large-scale applications. In this work, we study
fast low-precision iterative solvers for positive LPs. In particular, we are interested in methods of
complexity nearly linear in N , although with of polynomial dependence on 1

ε
.

This line of research was initiated by the seminal work of Luby and Nisan [LN93], which gave
a iterative solver with Õ(N/ε4)1 convergence rate. The focus of this line of work is mostly on

1We follow the standard practice of using Õ to hide poly log factors. We will spell out the exact bounds when we
discuss the results in detail.

CHAPTER 1. INTRODUCTION 2

achieving better polynomial dependence on 1
ε
, which is meaningful in two aspects. On one hand,

it is a direct measure of the complexity of an iterative method, where a 1
εc

convergence rate means
that to achieve one more (binary) bit of accuracy, the method takes 2c times more work. On the
other hand, as positive LP solvers are often used as subroutines in algorithm design, where ε is
chosen to get the best trade-off among various subroutines of the algorithm, the dependence on 1

ε

determines the complexity of the entire algorithm (see Example 1.0.2 for a simple illustration).

Example 1.0.2. (Bipartite Matching) One can first formulate the problem as a fractional packing
LP, get an (1 − ε)-approximate optimal (fractional) solution, round it to an integral solution, and
keep adding augmenting paths to improve the (1 − ε)-optimal solution to an optimal solution.
Suppose the graph has m edges and n vertices, the size of the packing LP will be O(m), and
the optimal is O(n). To improve the (1 − ε)-optimal solution to an optimal solution, one need
to compute O(εn) augmenting paths, which takes O(m · εn). Suppose the positive LP solver has
convergence rate Õ(m/εc) for some constant c, then the optimal trade-off is to set ε = n1/(c+1),
which gives a Õ(mn1−1/(c+1)) algorithm for bipartite matching. Clearly, smaller c is better.

Moreover, based on whether the complexity depends on the width ρ, a parameter which typi-
cally amounts to the largest entry of A, positive LP solvers can be divided into width-dependent
solvers and width-independent solvers. Width-dependent solvers are usually pseudo-polynomial,
as the running time depends at least linearly on ρOPT, which itself can be large, while width-
independent solvers are more efficient in the sense that they provide truly polynomial-time ap-
proximation solvers. The new results presented in this work are all width-independent methods.

Most previous work of iterative positive LP solvers follow one of two high-level approaches.
The first approach is based on turning the original positive LP (with combinatorial packing and
covering constraints) into continuous and convex objective functions with trivial or no constraints
(See [Nes05]). The original positive LP is reduced to a (continuous) convex optimization prob-
lem, and general-purpose first-order iterative methods from the theory of optimization are usually
applied directly. The other approach is based on the Lagrangian-relaxation framework, which is
more of a combinatorial flavor. We note that the characterization of continuous versus combinato-
rial is only at a high level. Methods following the continuous optimization approach also involve
components and techniques of combinatorial nature, and vice versa. Indeed, recent progress along
this line of research, including the results in this work, can be attributed to the organic integration
of techniques and insights from both continuous optimization and combinatorial methods.

In this work, we present algorithms for the special cases of packing LPs and covering LPs,
as well as an algorithm for general positive LPs. The algorithms follow different approaches,
where the method for packing LPs and covering LPs follows the convex optimization framework,
while the method for general positive LPs uses the Lagrangian-relaxation framework, although in
both cases, the improvement crucially relies on the integration of continuous and combinatorial
perspectives of algorithm design. In the following sections, we discuss the two cases respectively.

CHAPTER 1. INTRODUCTION 3

1.1 Covering LPs and Packing LPs
Covering LPs and Packing LPs are important classes of positive LPs, and they have wide applica-
tions in theory, including the design of approximation algorithms, scheduling, and auction design,
as well as practical applications in operation research. A covering LP, in its generic form, can be
written as:

min
x≥0
{cTx : Ax ≥ b},

where c ∈ Rn
≥0, b ∈ Rm

≥0, and A ∈ Rm×n
≥0 . Similarly, again with c, b, A non-negative, a packing LP

can be written in its generic form as:

max
x≥0
{cTx : Ax ≤ b}.

This two classes of LP form a primal-dual pair, i.e., the dual LP of a covering LP is a packing LP.
We denote by OPT the optimal value of a LP. In this case, we say that x is a (1+ ε)-approximation
for the covering LP ifAx ≥ b and cTx ≤ (1+ε) OPT, and we say that x is a (1−ε)-approximation
for the packing LP if Ax ≤ b and cTx ≥ (1− ε) OPT.

The general approach of our methods for packing LPs and covering LPs is to pose the original
problem as an optimization problem, where a smooth convex function is constructed to capture
the original objective as well as the combinatorial packing or covering constraints. From here, we
have a convex function, and we can apply efficient first-order methods from theory of optimization
to minimize it. To do so, recall that first-order methods in optimization exploit the idea of using
the negative gradient as the descent direction for each step of an iterative algorithm. In order
to lower bound the improvement of successive steps of the algorithm, smoothness is at the core
of the analysis, as it measures how much the gradient can change as we move in the problem
space. Basically we want to move in the negative gradient as far as possible, without changing
the gradient by too much; if the gradient changes too much, we no longer move in a descent
direction. Consequently, the performance of an optimization schema, via smoothness, crucially
depends on the geometry of the problem space and the properties of the function being optimized.
Since our optimization problem is constructed in order to solve the original combinatorial problem
(i.e., packing LPs and covering LPs), the problem space and objective function need to capture the
structure of the LPs, which may not align well with the optimization tools we have. As a result, we
need to design techniques to bridge the gap between our optimization problem and the optimization
tools.

We study both sequential (i.e., non-parallelizable) algorithms and parallel algorithms for pack-
ing LP and covering LP. For sequential methods, the complexity is measured by the running time
of the algorithm. For parallel algorithms, we measure complexity using (parallel) running time
and total work. Time and work are standard notions from parallel algorithms that correspond to
the longest chain of dependent operations and the total operations performed. In particular, time
has a natural correspondence with iteration count, and these two measures have been used to mea-
sure the performance of previous work on positive LPs. The algorithms are stochastic, in the sense
that the approximation bound of the computed solution hold with high probability, and the running
time bounds are expected values.

CHAPTER 1. INTRODUCTION 4

Paper Running Time

Width-dependent Solvers

[PST91] Õ(ρ2 OPT2 N
ε2

)

[AHK12] Õ(ρOPT N
ε2

)

[Nes05; Nem04] Õ(ρOPT N
ε

)

[BI04] Õ(
√
dnN

ε
)

Width-independent Solvers

[LN93] Õ(N
ε4

)

[You01; You14] Õ(N
ε2

)

[KY14] Õ(N + n+m
ε2

)

[AZO15a]: Packing LP Õ(N
ε

)

This work: Covering LP Õ(N
ε

)

Table 1.1: Selected work of sequential algorithms for covering LP and packing LP.

Accelerated Sequential Algorithm
For covering LPs, we present an iterative method that is width-independent and has a linear rate
of convergence, that is, O

(
N log2(N/ε) log(1/ε)

ε

)
running time. To simplify the following discussion,

we will follow the standard practice of using Õ to hide poly-log factors, in which case the running
time of our algorithm for covering LP is Õ (N/ε).

In Table 1.1, we show the results of selected work on packing LP and covering LP. We group
the results into width-dependent solvers and width-independent solvers. The result in [BI04] turns
the dependence of the width ρOPT to a more lenient term

√
dn, where d is the largest number of

nonzeros in any row of A, which can be n in the worst case, so the running time is not nearly linear
in the size of the LP.

As we discussed earlier, previous work at a high level mostly follows either the continuous
optimization approach or the Lagrangian-relaxation approach. The continuous optimization ap-
proach gives algorithms that have better polynomial dependence on 1

ε
. In particular, the best de-

pendence on 1
ε

is linear, which is achieved with methods based on Nesterov’s accelerated gradient
descent [Nes05], and we refer to the linear dependence on 1

ε
as Nesterov-like acceleration. How-

ever, methods using the optimization approach are traditionally width-dependent, and it is widely
believed to be very difficult to combine Nesterov-like acceleration and width-independence.

In a recent breakthrough [AZO15a], Allen-Zhu and Orecchia achieve the first such success
to give a packing LP solver that is both width-independent and accelerated. They achieve the
remarkable result by leveraging the linear coupling framework introduced recently by the same

CHAPTER 1. INTRODUCTION 5

authors in [ZO14]. This is a first-order method for solving convex optimization problems, and
it provides a conceptually simple way to integrate gradient descent and mirror descent, which are
two classical first-order methods from the theory of optimization. In the setting of standard smooth
convex optimization, the method achieves the same convergence rate as that of the accelerated
gradient descent method of Nesterov [Nes05], and indeed the former can be viewed as an insightful
reinterpretation of the latter. The high-level view of the method as a coupling of gradient descent
steps and mirror descent steps offers more flexibility to the framework, as the combination allows
the two steps to complement each other in ways beyond simply Nesterov-like acceleration, and
this is indeed crucial for the packing LP solver in [AZO15a] for getting width-independence.

One particular motivation for our work is a striking discrepancy between bounds provided for
packing and covering LPs in [AZO15a]. In particular, they provide a (1− ε)-approximation solver
for the packing problem in Õ(N/ε), but they are only able to obtain Õ(N/ε1.5) for the covering
problem. In the case of covering, they are unable to use the linear coupling method to achieve
Nesterov-like acceleration, and even to get width-independence the authors need to integrate some
ad-hoc and complicated techniques. This discrepancy between results for packing and covering
LPs is rare, due to the duality between them. Filling this gap is of particular interest, as not
being able to do so would suggest some fundamental structural differences between the two dual
problems.

Among other things, our result is an improvement over the Õ(N/ε1.5) bound for the covering
LP in [AZO15a], and gives a covering LP solver that is both Nesterov-like accelerated and width-
independent, which matches the result for packing LP in [AZO15a].

At least as interesting as the Õ(1/ε0.5) improvement for covering LPs, however, is main tech-
nical contribution that we developed and exploited to achieve our improvement. At a high level,
we also use the optimization approach, and exploit the linear coupling framework as in [AZO15a].
In the setting of covering LPs, we build a discrete lifting technique, which reorganizes the geom-
etry of the problem space, so that the optimal solution won’t be hidden in ill-shaped corners that
are difficult to reach for the linear coupling method. Once the lifting is performed, covering LP
shares all the essential properties necessary to achieve both width-independence and Nesterov-like
acceleration as in the case of packing problems, and fits elegantly into the scheme and analysis
from [AZO15a] that was developed for packing LPs. We obtain improved Õ (N/ε) results for
covering LPs, and this provides a unified acceleration method (unified in the sense that it is with
the same algorithm and almost identical analysis) for both packing and covering LPs.

Faster Parallel Algorithm
With the abundance of large-scale datasets, as well as the growing reliance on multiprocessors
and cloud computing, iterative solvers that can be highly parallelized have drawn a lot of interest.
For parallel algorithms, we focus on running time (or equivalently, depth) and total work, which
are standard notions from parallel computing that correspond to the longest chain of dependent

CHAPTER 1. INTRODUCTION 6

Paper Number of Iterations Total Work

Width-dependent Solvers

[PST91] Õ(ρ
2 OPT2

ε2
) Õ(ρ

2 OPT2N
ε2

)

[AHK12] Õ(ρOPT
ε2

) Õ(ρOPTN
ε2

)

[Nes05; Nem04] Õ(ρOPT
ε

) Õ(ρOPTN
ε

)

[BI04] Õ(
√
Kn
ε

) Õ(
√
KnN
ε

)

Width-independent Solvers

[LN93; BBR97; BBR04; You01] Õ(1
ε4

) Õ(N
ε4

)

[You01; You14] Õ(1
ε4

) Õ(N
ε2

)

[AZO15b] Õ(1
ε3

) Õ(N
ε3

)

This work: Algorithm 2 Õ(1
ε2

) Õ(N
ε2

)

This work: Algorithm 4 Õ(d
ε
) Õ(dN

ε
)

Table 1.2: Selected work of parallel algorithms for covering LP and packing LP.

operations2 and the total number of operations performed respectively. For iterative methods, time
has a natural correspondence with iteration count, and these two measures have been used to study
the performance of previous work on positive LPs.

In Table 1.1, we show selected results of parallel solvers for packing LPs and covering LPs.
For all the iterative methods along this line of work, each iteration is computationally dominated
by a matrix-vector multiplication, and takes only nearly-linear work in N and O(logN) depth.
Since we are most interested here in the dependence on 1

ε
, reducing the iteration count is the more

interesting side of this line of work, and we will often just discuss the number of iterations instead
of running time, as they are only off by a factor of O(logN).

In this work, we describe two parallel algorithms for packing LPs and covering LPs. Similar to
our sequential solver, we follow the optimization approach, and develop the dynamically-bucketed
selective coordinate descent (DB-SCD) method. This method is based on the linear coupling
framework, and we integrate a discrete technique addressing the specific issue that slows down
the convergence of previous results. With DB-SCD, we improve the dependence on 1

ε
for both

iteration count and total work from Õ(1
ε3

) to Õ(1
ε2

) for packing LPs and covering LPs. When com-
bined with ideas in the accelerated sequential solver discussed earlier, we also get a parallel solver
with Õ(d

ε
) iterations (recall d is the max number of non-zeros in any row of A), which is always at

least as good as the Õ(
√
dn
ε

) bound in [BI04]. We remark that, different from the case of sequential
2Following the standard model of parallel computation, when we consider the running time, we assume the algo-

rithm has access to unlimited number of processors.

CHAPTER 1. INTRODUCTION 7

solvers, there is no parallel algorithm that obtains both width-independence and Nesterov-like ac-
celeration. It is an interesting question whether this is fundamental for packing LPs and covering
LPs, or whether there is a more efficient solution to approximate packing LPs and covering LPs in
parallel.

Our basic improvement with the DB-SCD method comes from updating only a carefully-
chosen subset of variables in each iteration. In particular, we bucket the coordinates of the gradient
into buckets of roughly equal gradient magnitude, and then we update the coordinates in one of
the buckets. While our particular approach is novel, the basic idea is hardly new to optimization.
Indeed, for most non-trivial functions, variables “interfere” with each other, in the sense that vari-
able i’s gradient will be affected by the update of variable j (e.g., [Bra+11]). Thus, if we aim to
move the variables while maintaining smoothness of the gradients, we have to take interference
into consideration. In general, this limits the possible step size.

One way to alleviate the problem of interference is to update fewer variables in each iteration.
This potentially permits better control over the changes of gradients for the updated variables, since
for the variables not updated, the changes of their gradients don’t affect the objective improvement
for that iteration. One extreme of this idea is the coordinate descent method [Wri15], where in
each iteration only one variable is updated. In this case, the step length of the update on the single
variable is often larger than the step length when all variables are moved simultaneously. On the
other hand, in most cases the computation of n successive partial derivatives can be more expensive
than the computation of all the n partial derivatives for a fixed x, limiting the applicability of
the coordinate descent method. When the tradeoff is good between the gain in the step length
versus the loss in the computation, coordinate descent can be better than gradient descent in terms
of total work ([LS13; AZO15a]). More generally, in the context of solving linear systems, we
have the example of Jacobi iterations versus Gauss-Seidel iterations, and similar tradeoffs between
interference and running time arise ([AM95; BT91], Chapter 4 of [Saa03]). Still more generally,
various efforts to parallelize coordinate descent can be seen as explorations of tradeoffs among
the smoothness parameter, the amount of computation, as well as the distributed iteration count
([FR13; RT12; RT14; Bra+11]).

To the best of our knowledge, all these works exhibit an inverse relationship between the num-
ber of variables updated each iteration, and the number of total iterations required, i.e., when fewer
variables are updated, then more iterative steps are needed. This is what one would naturally ex-
pect. Moreover, these works mostly choose the subset of variables to update either by some fixed
order, e.g., uniformly at random, or according to some static partition constructed from the sparsity
structure of the given instance, e.g., the objective function is separable or the matrix in the problem
is block diagonal ([TY09]). Rarely, if at all, is a subset of variables chosen dynamically using
knowledge of the actual values of the gradients. Again, this is what one would naturally expect.
For example, as Nesterov wrote in his seminal accelerated coordinate descent work [Nes12], if one
already computed the whole gradient, then full-gradient methods seem to be better options.

With respect to both of these considerations, our method of selective coordinate descent is
novel and quite different. First, at least for the case of packing and covering LPs, we can achieve
better parallel running time and better total work by updating fewer (carefully-selected) variables
each iteration. Second, our work shows that the extra computation of the whole gradient can help

CHAPTER 1. INTRODUCTION 8

us select a better subset dynamically (even if we don’t update all coordinates). Our results show
that both of these directions are worth additional exploration.

1.2 Positive LPs
More general than packing LPs and covering LPs, positive LPs further capture problems requiring
both packing and covering constraints, including solving non-negative linear systems, computing
tomography, and single/multi commodity flows on graphs.

Formally, positive LP, or equivalently, mixed packing and covering LP, can be written in the
standard form:

min{λ : Px ≤ λp, Cx ≥ c, x ≥ 0} (1.1)

where P,C, p, c all have non-negative entries. A (1 + ε)-approximation is a feasible solution λ, x
achieving λ ≤ (1 + ε)λOPT.

In this work we focus on width-independent parallel algorithms that produce 1 + ε approx-
imations in in poly(log n, 1

ε
) time and nearly-linear work. Despite the exciting recent progress

following the optimization approach discussed in the previous section, the results are limited to the
special cases of packing LPs and covering LPs, since the presence of both packing and covering
constraints in one LP makes the smoothness properties of the optimization problem deteriorate sig-
nificantly, which poses a fundamental obstacle to obtain width-independent solver following this
approach. Moreover, almost all the width-independent solvers mentioned in the previous section
(except [You01; You14]) don’t extend to the more general case of positive LPs. Prior to our work,
the best method for mixed packing and covering LPs takes time (and number of iterations) Õ(1

ε4
)

([You01; You14]).
In this work, we present a parallel algorithm that in Õ(1

ε3
) iterations computes a (1 + ε)-

approximate solution, or correctly reports the original mixed packing and covering LP is infeasible.
The algorithm is deterministic and width-independent. Again, the bottleneck of each iteration is a
matrix-vector multiplication, and can be implemented in O(logN) depth, in which case the run-
ning time of our algorithm is Õ(1

ε3
). The total work of the algorithm we present in this work is

Õ(N
ε3

).
We follow the Lagrangian-relaxation approach as in [You01; You14], which is a more com-

binatorial framework. Nonetheless, insights from continuous convex optimization still play a sig-
nificant role, and the work demonstrates a different aspect of the integration of continuous and
combinatorial approaches.

At a high level, we construct a continuous and smooth potential function to capture the com-
binatorial packing and covering constraints, which measures how far away the current solution
is from satisfying all the captured constraints. We then start with a solution with all variables
having very small values, and in each iteration, increase the values of a carefully chosen subset
of variables. In particular, increasing the values of variables helps the covering constraints while
hurting the packing constraints, and the subset of variables that we increase is chosen according
to the potential function so that the trade-off between covering constraints and packing constraints
is advantageous for us. Moreover, different from previous work using this approach, where all the

CHAPTER 1. INTRODUCTION 9

variables in the chosen subset are increased by the same fixed quantity, we further incorporate the
gradient of the potential function into the size of the update of variables. This discriminative step
size allows more aggressive updates on average, and is directly motivated by the line of work using
gradient based optimization methods.

Furthermore, as the potential function captures the packing and covering constraints in a LP,
there is an inherent connection between the gradients of the potential function and the variables
in the dual LP of the original LP. By incorporating the gradients into the update of the variables,
we exploit this connection, and essentially construct primal and dual solutions simultaneously.
While previous methods analyze the convergence by tracking the progress made on the primal LP
exclusively, our integration of the gradient into the update size gives us a primal-dual perspective
of the convergence of our algorithm, and allows us to argue that either a feasible primal solution is
obtained, or a dual solution can be constructed to certify the infeasibility of the primal LP.

1.3 Organization
In Chapter 2, we describe the preliminaries and the formulation of the smooth convex optimization
problem for packing LPs and covering LPs, followed by the discrete lifting techniques for covering
LPs, and the unified Õ(fracNε) sequential algorithm for both packing LPs and covering LPs.

In Chapter 3, we describe the dynamically-bucketed selective coordinate descent, and the
width-independent Õ(1

ε2
) time parallel solver for packing LPs and covering LPs. We also present

the Õ(d
ε
) time parallel algorithm based on DB-SCD as well as ideas from the accelerated sequen-

tial algorithm.

In Chapter 4, we describe the Õ(1
ε3

) time parallel solver for general positive LPs, which is
based on the Lagrangian-relaxation framework.

1.4 Bibliographic Notes
The results in this dissertation were based on collaboration with Satish Rao, Michael Mahoney,
Peng Zhang and Nishanth Mohan. The results include previous publications [WRM16; Mah+16;
Wan+15]. I thank my collaborators for allowing the inclusion of coauthored work in this disserta-
tion.

10

Chapter 2

Sequential Algorithm for Packing LPs and
Covering LPs

2.1 Preliminaries and Smoothing the Objective
Without loss of generality, given a packing LP in its generic form, one can scale the coefficients,
in which case one can write the fractional packing LP in the standard form:

max
x≥0
{~1Tx : Px ≤ ~1}, (2.1)

where P ∈ Rm×n
≥0 . If the optimal value of (2.1) is OPT, we say that x is a (1 − ε)-approximation

for the packing LP if Px ≤ ~1 and ~1Tx ≥ (1− ε) OPT.
Similarly, the fractional covering problem, can be written in the standard form as:

min
x≥0
{~1Tx : Cx ≥ ~1}. (2.2)

In this case, we say that x is a (1 + ε)-approximation for the covering LP if Cx ≥ ~1 and ~1Tx ≤
(1 + ε) OPT.

When our discussion applies to both packing LPs and covering LPs, we also use A to denote
the constraint matrix of the LP, i.e., P and C for packing and covering respectively. We denote m
as the number of rows in A, i.e., the number of constraints, n as the number of coordinates of x,
i.e., the number of variables, N as the size of the formulation, i.e., the total number of nonzeros in
A, ρ as the max entry in A, and d as the max number of nonzeros in any row of A.

Now we describe how to pose the LPs as smooth convex optimization problems. We discuss
packing LP and covering LP separately, although due to the duality between them, the results (in
this section) for them are symmetric in terms of both statements and proofs. Since we follow the
same high level optimization approach and the same smoothing step as in [AZO15a], the lemmata
and the proofs in this section are either the same or analogous to the results in [AZO15a]. We defer
the proofs of this section to Section 2.5.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 11

Packing LP
To start, let’s assume that

min
i∈[n]
‖P:i‖∞ = 1.

This assumption is without loss of generality: since we are interested in multiplicative (1 − ε)-
approximation, we can simply scale P for this to hold without sacrificing approximation quality.
With this assumption, the following lemma holds.

Lemma 2.1.1. OPT ∈ [1, n]

The first step (i.e., the smoothing step) is to turn the positive LPs into smoothed objective
functions. For packing LP, we use

fµ(x)
def
= −~1Tx+ max

y≥0
{yT (Px−~1) + µH(y)},

and it is a smoothed objective in the sense that it turns the packing constraints into soft penalties,
with H(y) being a regularization term. Here, same as in [AZO15b; AZO15a], we use the gen-
eralized entropy H(y) = −

∑
j yj log yj + yj , where µ is the smoothing parameter balancing the

penalty and the regularization. It is straightforward to compute the optimal y, and write fµ(x)
explicitly, as stated in the following lemma.

Lemma 2.1.2. fµ(x) = −~1Tx+µ
∑m

j=1 pj(x), where pj(x)
def
= exp(1

µ
((Px)j − 1)) is what we call

the exponential penalty of the j-th packing constraint.

With OPT being at least 1, the error we introduce in the smoothing step will be small enough
that fµ(x) approximates the packing LP well enough with respect to ε around the optimum. If we

let x∗ be an optimal solution, and u∗ def
= (1 − ε/2)x∗, then we have the properties in the following

lemma.

Lemma 2.1.3. Setting the smoothing parameter µ = ε
4 log(nm/ε)

, we have

1. fµ(u∗) ≤ −(1− ε) OPT.

2. fµ(x) ≥ −(1 + ε) OPT for every x ≥ 0.

3. Letting x0 ≥ 0 be such that x0[i] = 1−ε/2
n‖P:i‖∞ for each i ∈ [n], we have fµ(x0) ≤ −1−ε

n
.

4. For any x ≥ 0 satisfying fµ(x) ≤ 0, we must have Px ≤ (1 + ε)~1, and thus ~1Tx ≤
(1 + ε) OPT.

5. If x ≥ 0 satisfies fµ(x) ≤ −(1 − O(ε)) OPT, then 1
1+ε

x is a (1 − O(ε))-approximation to
the packing LP.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 12

6. The gradient of fµ(x) is

∇fµ(x) = −~1 + P T
−−→
p(x) where pj(x)

def
= exp(

1

µ
((Px)j − 1),

and ∇ifµ(x) = −1 +
∑

j Pjipj(x) ∈ [−1,∞].

Covering LP
The smoothing step for covering LP is basically the symmetric version of what we do for packing
LP. This time, we can assume that

min
j∈[m]
‖Cj:‖∞ = 1.

This assumption is without loss of generality: since we are interested in multiplicative (1 + ε)-
approximation, we can simply scale C for this to hold without sacrificing approximation quality.
With this assumption, the following lemma holds.

Lemma 2.1.4. OPT ∈ [1,m]

Observation 2.1.5. Since we are interested in a (1 + ε)-approximation, then with the above as-
sumption, we can also eliminate the very small and very large entries from the matrix as follows.
If some entry Cji ≤ ε/(mn), then since OPT ≤ m we have that Cjix∗i ≤ ε/n, and so we can just
increase each variable by ε/n, in which case we can recover the loss from setting Cji equal to 0
from the variable in the j-th constraint with coefficient at least 1. On the other hand, if some entry
Cji ≥ n/ε, then we can just set variable i to be at least ε/n and ignore constraint j. Thus, we can
eliminate very small and very large entries from the matrix C, and we only incur an additional
cost of ε, but since OPT ≥ 1, we still obtain a (1 +O(ε))-approximation.

Analogously, for covering LP, the smooth function we optimize is

gµ(x)
def
= ~1Tx+ µ

m∑
j=1

qj(x),

where qj(x)
def
= exp(1

µ
(1− (Cx)j)) is the exponential penalty of the j-th covering constraint.

Analogous to fµ, optimizing gµ(x) gives a good approximation to OPT of the covering LP, in

the following sense. If we let x∗ be an optimal solution, and u∗ def
= (1 + ε/2)x∗, then we have the

properties in the following lemma.

Lemma 2.1.6. Setting the smoothing parameter µ = ε
4 log(nm/ε)

, we have

1. gµ(u∗) ≤ (1 + ε) OPT.

2. gµ(x) ≥ (1− ε) OPT for any x ≥ 0.

3. For any x ≥ 0 satisfying gµ(x) ≤ 2 OPT, we must have Cx ≥ (1− ε)~1.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 13

4. If x ≥ 0 satisfies gµ(x) ≤ (1 + O(ε)) OPT, then 1
1−εx is a (1 + O(ε))-approximation to the

covering LP.

5. The gradient of gµ(x) is

∇gµ(x) = ~1− CT
−−→
q(x) where qj(x)

def
= exp(

1

µ
(1− (Cx)j),

and∇igµ(x) = 1−
∑

j Cjiqj(x) ∈ [−∞, 1].

Once the smoothing step is performed, the problem of approximately solving the original pack-
ing LP or covering LP is reduced to approximately optimize the function fµ(x) or gµ(x). We
proceed to give the technique overview of how we solve the optimization problem.

2.2 Technical Overview
At a high level, we (as well as Allen-Zhu and Orecchia [AZO15b; AZO15a]) use the same two-step
approach of Nesterov [Nes05]. The first step involves smoothing, which transforms the constrained
problem into a smooth objective function with trivial or no constraints. In the setting of packing
LP and covering LP, we have the smooth functions fµ(x) and gµ(x). By smooth, we mean that
the gradient of the objective function has some property in the flavor of Lipschitz continuity. Once
smoothing is accomplished, the second step uses one of several first order methods for convex
optimization in order to obtain an approximate solution. Examples of standard application of this
approach to covering LPs includes the width-dependent solvers of [Nes05; Nem04] as well as
multiplicative weights update solvers [AHK12].

The first width-independent result following the optimization approach in [AZO15b] achieves
width-independence by truncating the gradient, thus effectively reducing the width to 1. The algo-
rithm uses, in a white-box way, the coupling of mirror descent and gradient descent from [ZO14],
which can be viewed as a re-interpretation of Nesterov’s accelerated gradient method [Nes05].
However, although [AZO15b] uses a coupling of mirror descent and gradient descent, the role
of gradient descent is only for width-independence, i.e., to cover the loss incurred by the large
component of the gradient (see Eqn. (2.7) below for the precise formulation of this loss), and it
is independent of the mirror descent part acting on the truncated gradient. In addition, [AZO15b]
deviates from the canonical smoothing with entropy, as it instead uses generalized entropy. Impor-
tantly, the objective function to be minimized is not smooth in the standard Lipschitz continuity
sense, but it does satisfy a similar local Lipschitz property.

To improve the sequential packing solver in [AZO15b] with convergence Õ(1/ε3) to Õ(1/ε),
the same authors in [AZO15a] apply a stochastic coordinate descent method based on the linear
coupling idea. Barring the difference between Lipschitz and local Lipschitz continuity, the results
in [AZO15a] can be viewed as a variant of accelerated coordinate descent method [Nes12]. There
are two places where the algorithm achieves an improvement over prior packing-covering results.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 14

• One factor of improvement is due to the better coordinate-wise Lipschitz constant over the
full dimensional Lipschitz constant. Intuitively, in the case of packing or covering, the gradi-
ent of variable xi depends on the penalties of constraints involving xi, which further depend
on all the variables in those constraints. As a result, if we move all the variables simultane-
ously, we can only take a small step before changing the gradient of xi drastically.

• The other factor of improvement comes from accelerating the gradient method. The role
of gradient descent in the packing solver of [AZO15a] is twofold. First, it covers the loss
incurred by the large component of the gradient as in [AZO15b] to give width-independence.
Second, to accelerate the coupling as in [ZO14], the gradient descent also needs to cover
the regret term incurred by the mirror descent step (see Eqn. (2.7) below for the precise
formulation of this regret). The adoption of A-norm (defined in Eqn. (2.6) below) enables
the acceleration. ThisA-norm works particularly well for packing problems, in the sense that
it easily leads to good diameter bounds: since the packing constraints impose a naive upper
bound of x∗i ≤ 1/‖A:i‖∞ on each variable, thus the feasible region has a small diameter
maxx:f(x)≤f(x0) ‖x− x∗‖A.

The importance of the small diameter is twofold. First, the diameter naturally arises in the
convergence bound of gradient based methods, so we always need to use a norm or prox-
imal setup giving small diameter to achieve good convergence. Second, and more impor-
tantly, when we confine the function fµ(x) inside in this box type space with the particular
upper-bound on each coordinate, the function behaves much smoother for the linear cou-
pling method. More specifically, the small diameter [0, 1/‖A:i‖∞] on each coordinate relates
the mirror descent step length and the gradient descent step length. As the regret term in
mirror descent and the improvement of gradient descent step are both proportional to their
respective step lengths, the small coordinate-wise diameter makes it possible to use gradient
descent improvement to cover the mirror descent regret.

The combination of gradient truncation, stochastic coordinate descent, and acceleration due to
small diameter in A-norm leads to the Õ(N/ε) solver for the packing LP [AZO15a].

Shifting to solvers for the covering LP, one obvious obstacle to reproducing the packing result
is we no longer have the small diameter in A-norm. Indeed, a naive coordinate-wise upper bound
from the covering constraints only gives x∗i ≤ 1/minj{Aji : Aji > 0}. Because of this, the
covering solver in [AZO15a] instead use the proximal setup in their earlier work [AZO15b]. The
particular proximal setup gives a good diameter for the feasible region they use, but it doesn’t
give a similarly good coordinate-wise diameter to enable the acceleration. To improve upon the
O(1/ε2) convergence of standard mirror descent, the authors use a negative-width technique as
in [AHK12] (Theorem 3.3 with l =

√
ε). This then leads to the (improved, but still worse than

for packing) Õ(1/ε1.5) convergence rate. In addition, since they truncate the gradient at a smaller
threshold to cover the loss incurred by the large component, they need a more complicated gradient
step, leading to a more complicated algorithm than for the packing LP.

To get an Õ(1/ε) solver for the covering LP, it seems crucial to relate the gradient descent step
and mirror descent step the same way as in the packing solver in [AZO15a]. Thus, we will stick

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 15

with the A-norm, and we will work directly to reduce the diameter. Our main result (presented
next in Section 2.3) is a general discrete lifting technique that transform the feasible region of
covering LP to achieve the same diameter property as in the case of packing LP, and this enables
us to extend all the crucial ideas of the packing solver in [AZO15a], as outlined in this section, to
get a covering solver with running time Õ(N/ε).

2.3 Diameter Reduction Method for Covering Problems
As we disccused in the overview, the optimization schema developed for packing LPs in [AZO15a]
relies on the particular geometry of the problem space, where the optimal x∗ lies in a box type space
with good coordinate-wise diameters, i.e., x∗i ≤ 1/‖P:i‖∞, thus we can optimize fµ(x) over this
particular region, where it has various properties that pair particularly well with the optimization
schema. In this section, we describe our discrete lifting technique that reformulates a covering
LP to give the similar geometry. Essentially, we ”‘lift”’ the covering LP to a higher dimensional
space, i.e., the reformulated LP will (at most a log mn

ε
factor) more variables, but in this space, we

can guarantee the optimal of gµ(x) is within a box with desired coordinate-wise diameters.
Given any covering LP of the form (2.2), characterized by a matrix C, we formulate an equiva-

lent covering LP with good diameter properties. This will involve adding variables and redundant
constraints. We use i ∈ [n] to denote the indices of the variables (i.e., columns of C) and j ∈ [m]
to denote the indices of constraints (i.e., rows of C). For any i ∈ [n], let

ri
def
=

maxj{Cji : Cji > 0}
minj{Cji : Cji > 0}

,

be the ratio between the largest non-zero coefficient and the smallest non-zero coefficient of vari-
able x[i] in all constraints, and let ni

def
= dlog rie. We first duplicate each original variable ni times

to obtain x̄[(i, l)], i ∈ [n], l ∈ [ni] as the new variables. In terms of the coefficient matrix, we now
have a new matrix, call it C̄ ∈ Rm×(

∑
i ni)

≥0 , which contains ni copies of the i-th column C:i. We
denote a column of C̄ by the tuple (i, l) with l ∈ [ni]. Obviously, the covering LP given by C̄ is
equivalent to the original covering LP given by C. Adding additional copies of variables, however,
will allow us to improve the diameter. To reduce the diameter of this new covering LP, we further
decrease some of the coefficients in C̄, and we put upper bounds on the variables. In particular, for
j, i, l, we have

C̄j,(i,l) = min{Cj,i, 2l min
j
{Cji : Cji > 0}}, (2.3)

and for variable x̄[(i, l)], we add the constraint

x̄[(i, l)] ≤ 2

2l minj{Cji : Cji > 0}
. (2.4)

The next lemma shows that the covering LP given by C̄ and the covering LP given by C are
equivalent.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 16

Lemma 2.3.1. Let OPT be the optimal value of the covering LP given by C, and let OPT be the
optimal of the covering LP given by C̄ and (2.4), as constructed above; then OPT = OPT.

Proof. Given any feasible solution x̄, consider the solution x where x[i] =
∑ni

l=1 x̄[(i, l)]. It is
obvious ~1Tx = ~1T x̄, and Cx ≥ ~1, as coefficients in C̄ are no larger than coefficients in C. Thus
OPT ≤ OPT.

For the other direction, consider any feasible x. For each i, we can assume without loss of
generality that

x[i] ≤ 1

minj{Cji : Cji > 0}
.

Let li be the largest index such that

x[i] ≤ 2

2li minj{Cji : Cji > 0}
,

and then let

x̄[(i, l)] =

{
x[i] if l = li

0 if l 6= li
.

By construction, x̄ satisfies all the upper bounds described in (2.4). Furthermore, for constraint
j, we must have C̄j:x̄ ≥ 1. Since for any i, C̄j,(i,li) differs from Cji only when Cji > 2li minj{Cji :
Cji > 0}, and we must have li < ni in this case by definition of ni, which gives x̄[(i, li)] =
x[i] ≥ 1

2li minj{Cji:Cji>0} by our choice of li being the largest possible. Then we know C̄j,(i,li) =

2li minj{Cji : Cji > 0}, so the j-th constraint is satisfied. Thus OPT ≥ OPT, and we can
conclude OPT = OPT.

Given that we have shown that the covering LP defined by C̄ and that defined by C are equiva-
lent, we now point out that the seemingly-redundant constraints of (2.4) turn out to be crucial. The
reason is that the feasible region now has a small diameter in the coordinate-wise weighted 2-norm
‖ · ‖C . In particular, we can rewrite the constraints (2.4) to be

x̄[(i, l)] ≤ 2

‖C̄:(i,l)‖∞
.

For any i, consider the row j∗ = argmaxj{Cji, Cji > 0}, this is the same upper bound on x̄[(i, l)]
for l < ni, and it is a relaxation on x̄[(i, ni)].

The price we pay for this diameter improvement is that the new LP defined by C̄ is larger than
that defined by C. Two comments on this are in order. First, by Observation 2.1.5, ri is bounded
by n2m/ε2, and so the diameter reduction step only increases the problem size by O(log(mn/ε)).
Second, we have presented our diameter reduction as an explicit pre-processing step so we can
use one unified optimization algorithm (Algorithm 1 below) for both packing and covering, but in
practice the diameter reduction would not have to be carried out explicitly. It can equivalently be
implemented implicitly within the algorithm (a trivially-modified version of Algorithm 1 below)

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 17

by randomly choosing a scale after picking the coordinate i and then computing C̄j,(i,l) in (2.3) by
shifting bits on the fly.

Given this reduction, in the rest of the paper, when we refer to the covering LP, we will implic-
itly be referring to the diameter reduced version, and we have the additional guarantee that there
exists an optimal solution x∗ to (2.2) such that

0 ≤ x∗[i] ≤ 2

‖C:i‖∞
∀i ∈ [n]. (2.5)

2.4 Accelerated Solver for (Packing and) Covering LPs
In this section, we will present our solver for covering LPs of the form (2.2). To motivate this,
recall that for packing problems of the form (2.1), bounds of the form (2.5) automatically follow
from the packing constraints Px ≤ ~1, so for both packing LP and covering LP, we can use a box
type problem space

∆
def
= {x ∈ Rn : 0 ≤ x[i] ≤ 3

‖A:i‖∞
},

and pose the problems as optimizing fµ(x) and gµ(x) over ∆ respectively. In particular, the u∗

(i.e., the approximate optimal for fµ(x) or gµ(x) in Lemma 2.1.3 and Lemma 2.1.6 will be inside
∆.

For readers familiar with the packing LP solver in [AZO15a], it should be plausible that—once
we have this diameter property—the same stochastic coordinate descent optimization scheme will
lead to a Õ(N/ε) covering LP solver. We now show that indeed the same optimization algorithm
for packing LPs can be easily extended to solving covering LPs, thus establishing a unified accel-
eration method for packing and covering problems.

Accelerated Coordinate Descent Algorithm

Consider Algorithm 1, which is our main accelerated stochastic coordinate descent for both pack-
ing and covering. The correctness of this algorithm and its running time guarantees for the packing
problem have already been nicely presented in [AZO15a], so here we will focus on the covering
problem.1 We use ei to denote the standard basis vectors.

Recall that we will find a (1+ ε)-approximation of the covering LP by approximately minimiz-
ing

gµ(x)
def
= ~1Tx+ µ

m∑
j=1

qj(x),

1For packing LPs, the input will be the matrix P , function fµ, and ∆
def
= {x ∈ Rn : 0 ≤ x[i] ≤ 1

‖P:i‖∞ }, with

xstart = 1−ε/2
n‖P:i‖∞

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 18

Algorithm 1 Accelerated sequential solver for packing LPs and covering LPs
Input: C ∈ Rm×n

≥0 , xstart ∈ ∆, gµ, ε Output: yT ∈ ∆

1: µ← ε
4 log(nm/ε)

, L← 4
µ
, τ ← 1

8nL

2: T ← d8nL log(1/ε)e = Õ(n
ε
)

3: x0, y0, z0 ← xstart, α0 ← 1
nL

4: for k = 1 to T do
5: αk ← 1

1−ταk−1

6: xk ← τzk−1 + (1− τ)yk−1

7: Select i ∈ [n] uniformly at random.
. Gradient truncation:

8: Let (ξ
(i)
k)←


− ei ∇igµ(xk) < −1

∇igµ(xk) · ei ∇igµ(xk) ∈ [−1, 1]

ei ∇igµ(xk) > 1
. Mirror descent step:

9: zk ← z
(i)
k

def
= argminz∈∆{Vzk−1

(z) + 〈z, nαkξ(i)
k 〉}.

. Gradient descent step:
10: yk ← y

(i)
k

def
= xk + 1

nαkL
(z

(i)
k − zk−1)

11: end for
12: return yT .

where qj(x)
def
= exp(1

µ
(1− (Cx)j)), over the region

∆
def
= {x ∈ Rn : 0 ≤ x[i] ≤ 3

‖C:i‖∞
}.

Our main result is summarized in the following theorems.

Theorem 2.4.1. With xstart computable in time Õ(N) to be specified later, Algorithm 1 outputs yT
satisfying E[gµ(yT)] ≤ (1 + 6ε) OPT, and the running time is Õ(N/ε).

Given Theorem 2.4.1, a standard application of Markov bound, together with Lemma 2.1.6(5),
gives the following theorem as a corollary.

Theorem 2.4.2. There is a algorithm that, with probability at least 9/10, computes a (1 + O(ε))-
approximation to the fractional covering problem and has Õ(N/ε) expected running time.

Not surprisingly, due to the structural similarities of packing and covering problems after diameter
reduction, the correctness of Algorithm 1 for covering can be established using the same approach
as [AZO15a] did for packing.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 19

Before proceeding with our proof of these theorems, we discuss briefly the optimization scheme
from [AZO15a] we will use. First, observe that the C-norm, where

‖x‖C =

√∑
i

‖C:i‖∞x[i]2, (2.6)

is used as the proximal setup for mirror descent. The corresponding distance generating function
is w(x) = 1

2
‖x‖2

C , and the Bregman divergence is Vx(y) = 1
2
‖x− y‖2

C .2

Next, observe that Algorithm 1 works as follows. Each iteration integrates a mirror descent step
and a gradient descent step. Different from the coupling of gradient descent and mirror descent in
the parallel packing algorithm in Section 3.2, in Algorithm 1, the gradient step and mirror descent
step are two seperate steps, and the update takes a convex combination of the two steps.

The role of gradient descent is twofold. First, it covers the loss incurred by the large component
of the gradient as in the parallel packing case to give width-independence. Second, to accelerate
the coupling as in [ZO14], the gradient descent also needs to cover the regret term incurred by
the mirror descent step (see Eqn. (2.7) for the precise formulation of this regret). With the scale
based lifting, we get a small diameter [0, 3/‖C:i‖∞] on each coordinate. We will see this relates
the mirror descent step length and the gradient descent step length, and makes it possible to use
gradient descent improvement to cover the mirror descent regret. This enables us to telescope both
the loss and the regret through all iterations and to bound the total by the gap between gµ(xstart)
and the optimal. The remaining terms in the mirror descent also telescope through the algorithm,
and they are bounded in total by the distance (in C-norm) from xstart to u∗ ∈ ∆. Then, given
these, all we need is an initial condition xstart that is not too far away from the optimal in terms of
the function value and not too far away from u∗ in C-norm. For packing, starting with all 0’s will
work. For covering, we will show later a good enough xstart can be obtained in Õ(N).

Analysis of Algorithm 1 for Covering LPs
Once we perform the discrete lifting, we have that inside the region ∆, our function gµ(x) is
locally Lipschitz continuous, in a sense quantified by the following lemma, and so we have a good
improvement with a gradient step within certain range.

Lemma 2.4.3. Let L def
= 4

µ
, for any x ∈ ∆, and i ∈ [n]

1. If∇igµ(x) ∈ (−1, 1), then for all |γ| ≤ 1
L‖C:i‖∞ , we have

|∇igµ(x)−∇igµ(x+ γ ei)| ≤ L‖C:i‖∞|γ|.

2. If∇igµ(x) ≤ −1, then for all γ ≤ 1
L‖C:i‖∞ , we have

∇igµ(x+ γ ei) ≤ (1− L‖C:i‖∞
2

|γ|)∇igµ(x).

2In particular,w is a 1-strongly convex function with respect to ‖·‖C , and Vx(y)
def
= w(y)−〈∇w(x), y−x〉−w(x).

See [ZO14] for a detailed discussion of mirror descent as well as and several interpretations.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 20

Proof. First, observe the following:∣∣∣∣log
1−∇igµ(x+ γ ei)

1−∇igµ(x)

∣∣∣∣ =

∣∣∣∣∫ γ

0

− ∇iigµ(x+ ν ei)

1−∇igµ(x+ ν ei)
dν

∣∣∣∣ =

∣∣∣∣∣ 1µ
∫ γ

0

∑
j C

2
jiqj(x+ ν ei)∑

j Cjiqj(x+ ν ei)
dν

∣∣∣∣∣
≤
∣∣∣∣ 1µ
∫ γ

0

‖C:i‖∞dν
∣∣∣∣ =

1

µ
|γ|‖C:i‖∞ =

L‖C:i‖∞
4

|γ|.

Then, we have

exp(−L‖C:i‖∞
4

|γ|) ≤ 1−∇igµ(x+ γ ei)

1−∇igµ(x)
≤ exp(

L‖C:i‖∞
4

|γ|).

Since L‖C:i‖∞
4
|γ| ≤ 1

4
by our assumption, we have x ≤ ex − 1 ≤ 1.2x for x ∈ [−1

4
, 1

4
]. Thus, it

follows that

−L‖C:i‖∞
4

|γ| ≤ ∇igµ(x)−∇igµ(x+ γ ei)

1−∇igµ(x)
≤ 1.2

L‖C:i‖∞
4

|γ|.

Finally, to prove the lemma we consider the following two cases:

1. If∇igµ(x) ∈ (−1, 1), then we have

|∇igµ(x)−∇igµ(x+ γ ei)| ≤ 1.2(1−∇igµ(x))
L‖C:i‖∞

4
|γ| ≤ L‖C:i‖∞|γ|.

2. If∇igµ(x) ≤ −1, then 1−∇igµ(x) ≤ −2∇igµ(x), and

∇igµ(x+ γ ei) ≤ ∇igµ(x) + (1−∇igµ(x))
L‖C:i‖∞

4
|γ| ≤ (1− L‖C:i‖∞

2
|γ|)∇igµ(x).

We call L‖C:i‖∞ the coordinate-wise local Lipschitz constant. For readers familiar with ac-
celerated coordinate descent method (ACDM) [Nes12], the C-norm is essentially the ‖ · ‖1−α in
ACDM [Nes12] with α = 0, except we use the coordinate-wise local Lipschitz constant instead of
the Lipschitz constant to weight each coordinate. The significance of Lemma 2.4.3 is that for cov-
ering LPs the coordinate-wise diameter is inversely proportional to the coordinate-wise local Lip-
schitz constant. (This fact has been established previously for the case of packing LPs [AZO15a].)

The following two lemmas are invariant to the differences between packing and covering prob-
lems, and so they follow directly from the same results in [AZO15a] (but, for completeness, we
include the proofs in Section 2.5). The values of parameters µ, L, τ, αk can be found in the de-
scription of Algorithm 1. The first lemma says that the gradient step we take is always valid (i.e.,
in ∆), which is crucial in the sense that the gradient descent improvement is proportional to the
step length, and we need the step length to be at least 1

nαkL
of the mirror descent step length for the

coupling to work.

Lemma 2.4.4. We have xk, yk, zk ∈ ∆ for all k = 0, 1, . . . , T .

The second lemma is clearly crucial to achieve the nearly linear time Õ(N/ε) algorithm.

Lemma 2.4.5. Each iteration can be implemented in expected O(N/n) time.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 21

Mirror Descent Step
We now analyze the mirror descent step of Algorithm 1:

zk ← z
(i)
k

def
= argmin

z∈∆
{Vzk−1

(z) + 〈z, nαkξ(i)
k 〉}.

A lemma of the following form, which here applies to both covering and packing LPs, is needed,
and it’s proof follows from the textbook mirror descent analysis (or, e.g., Lemma 3.5 in [AZO15a]).

Lemma 2.4.6. 〈nαkξ(i)
k , zk−1 − u∗〉 ≤ n2α2

kL〈ξ
(i)
k , xk − y

(i)
k 〉+ Vzk−1

(u∗)− Vzk(u∗)

Proof. The lemma follows from the following chain of equalities and inequalities.

〈nαkξ(i)
k , zk−1 − u∗〉 = 〈nαkξ(i)

k , zk−1 − zk〉+ 〈nαkξ(i)
k , zk − u

∗〉
= n2α2

kL〈ξ
(i)
k , xk − y

(i)
k 〉+ 〈nαkξ(i)

k , zk − u
∗〉

≤ n2α2
kL〈ξ

(i)
k , xk − y

(i)
k 〉+ 〈−∇Vzk−1

(z
(i)
k), zk − u∗〉

≤ n2α2
kL〈ξ

(i)
k , xk − y

(i)
k 〉+ Vzk−1

(u∗)− V
z
(i)
k

(u∗)− Vzk−1
(z

(i)
k)

≤ n2α2
kL〈ξ

(i)
k , xk − y

(i)
k 〉+ Vzk−1

(u∗)− Vzk(u∗).

The first equality follows by adding and subtracting zk, and the second equality comes from the
gradient step y(i)

k = xk + 1
nαkL

(z
(i)
k − zk−1). The first inequality is due to the the minimality of z(i)

k ,
which gives

〈∇Vzk−1
(z

(i)
k) + nαkξ

(i)
k , u− zk〉 ≥ 0 ∀u ∈ ∆,

the second inequality is due to the standard three point property of Bregman divergence, that is
∀x, y ≥ 0

〈−∇Vx(y), y − u〉 = Vx(u)− Vy(u)− Vx(y),

and the last inequality just drops the term −Vzk(u∗), which is always negative.

Also, we note that the mirror descent step, defined above in a variational way, can be explicitly
written as

1. z(i)
k ← zk−1

2. z(i)
k ← z

(i)
k − nαkξ

(i)
k /‖C:i‖∞

3. If z(i)
k [i] < 0, z

(i)
k [i]← 0; if z(i)

k [i] > 3/‖C:i‖∞, z(i)
k [i]← 3/‖C:i‖∞.

This is invariant to the difference of packing and covering, and so it follows directly from Proposi-
tion 3.6 in [AZO15a]. It is fairly easy to derive, and so we omit the proof.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 22

Gradient Descent Step
We now analyze the gradient descent step of Algorithm 1. In particular, from the explicit formula-

tion of the mirror descent step, we have that |z(i)
k [i]− zk−1[i]| ≤ nαk|ξ

(i)
k |

‖C:i‖∞ , which gives

|y(i)
k [i]− xk[i]| =

1

nαkL
|z(i)
k [i]− zk−1[i]| ≤ |ξ(i)

k |
L‖C:i‖∞

.

The gradient step we take is within the local region, and so Lemma 2.4.3 applies. We bound
the improvement from the gradient descent step in the following lemma, which is symmetric3 to
Lemma 3.8 in [AZO15a].

Lemma 2.4.7. gµ(xk)− gµ(y
(i)
k) ≥ 1

2
〈∇gµ(xk), xk − y(i)

k 〉

Proof. Since xk and y(i)
k differ only at coordinate i, denote γ = y

(i)
k [i]− xk[i], we have

gµ(xk)− gµ(y
(i)
k) = gµ(xk)− gµ(xk + γ ei) =

∫ γ

0

−∇igµ(xk + ν ei)dν.

Since γ satisfies |γ| ≤ |ξ(i)k |
L‖C:i‖∞ ≤

1
L‖C:i‖∞ , we can apply Lemma 2.4.3. There are two cases to

consider.
If ∇igµ(xk) ∈ (−1, 1), then we have |γ| ≤ |ξ(i)k |

L‖C:i‖∞ = |∇igµ(xk)|
L‖C:i‖∞ , and by Lemma 2.4.3 we have

−∇igµ(xk + ν ei) ≥ −∇igµ(xk)− L‖C:i‖∞|ν| in the above integration. Thus,

gµ(xk)− gµ(y
(i)
k) ≥

∫ γ

0

−∇igµ(xk + ν ei)dν

≥
∫ γ

0

−∇igµ(xk)− L‖C:i‖∞|ν|dν

= −∇igµ(xk)γ −
L‖C:i‖∞

2
γ2

≥ −∇igµ(xk)γ −
L‖C:i‖∞

2
|γ| |∇igµ(xk)|

L‖C:i‖∞

= −1

2
〈∇igµ(xk), γ〉 =

1

2
〈∇gµ(xk), xk − y(i)

k 〉.

If ∇igµ(xk) ≤ −1, then again by Lemma 2.4.3 we have

−∇igµ(xk + ν ei) ≥ −(1− L‖C:i‖∞
2

|ν|)∇igµ(xk) ≥ −
1

2
∇igµ(xk).

3The symmetry is between Lemma 2.6 in [AZO15a] and Lemma 2.4.3, as the gradient descent improvement
follows directly from the corresponding Lipschitz properties. The actual improvement guarantee is the same as Lemma
3.8 in [AZO15a].

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 23

Thus,

gµ(xk)− gµ(y
(i)
k) ≥

∫ γ

0

−∇igµ(xk + ν ei)dν

≥
∫ γ

0

−1

2
∇igµ(xk)dν =

1

2
〈∇gµ(xk), xk − y(i)

k 〉.

Coupling of Gradient and Mirror Descent
Here, we will analyze the coupling between the gradient descent and mirror descent steps. This
and the next section will give a proof of Theorem 2.4.1.

As we take steps on random coordinates, we will write the full gradient as

∇gµ(xk) = Ei[n∇igµ(xk)] = Ei[nη(i)
k + nξ

(i)
k].

As discussed earlier, we have the small component ξ(i)
k ∈ (−1, 1) ei and the large component

η
(i)
k = ∇igµ(xk) − ξ(i)

k ∈ (−∞, 0] ei. We put the gradient and mirror descent steps together, and
we bound the gap to optimality at iteration k:

αk(gµ(xk)− gµ(u∗))

≤〈αk∇gµ(xk), xk − u∗〉
=〈αk∇gµ(xk), xk − zk−1〉+ 〈αk∇gµ(xk), zk−1 − u∗〉
=〈αk∇gµ(xk), xk − zk−1〉+ Ei[〈nαkη(i)

k , zk−1 − u∗〉+ 〈nαkξ(i)
k , zk−1 − u∗〉]

=
1− τ
τ

αk〈∇gµ(xk), yk−1 − xk〉+ Ei[〈nαkη(i)
k , zk−1 − u∗〉]

+ Ei[〈nαkξ(i)
k , zk−1 − u∗〉]

≤1− τ
τ

αk(gµ(yk−1)− gµ(xk)) + Ei[〈nαkη(i)
k , zk−1 − u∗〉]

+ Ei[n2α2
kL〈ξ

(i)
k , xk − y

(i)
k 〉+ Vzk−1

(u∗)− V
z
(i)
k

(u∗)].

The first line is due to convexity. The next two lines just break and regroup the terms. The fourth
line is due to xk = τzk−1 + (1 − τ)yk−1, so τ(xk − zk−1) = (1 − τ)(yk−1 − xk). The last line is
by Lemma 2.4.6.

We try to use the improvement from the gradient step given in Lemma 2.4.7 to cover the loss
from η

(i)
k , and the regret from the mirror descent step:

Ei[〈nαkη(i)
k , zk−1 − u∗〉]︸ ︷︷ ︸

loss from η
(i)
k

+Ei[n2α2
kL〈ξ

(i)
k , xk − y

(i)
k 〉]︸ ︷︷ ︸

regret from mirror descent

, (2.7)

and we will use the fact zk−1, z
(i)
k , u

∗ ∈ ∆. Consider the following cases.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 24

1. η(i)
k [i] = 0: In this case, the loss term is 0. We only need to worry about the regret term, and

by Lemma 2.4.7

n2α2
kL〈ξ

(i)
k , xk − y

(i)
k 〉 ≤ 2n2α2

kL(gµ(xk)− gµ(y
(i)
k)).

2. η(i)
k [i] < 0, z

(i)
k [i] < 3

‖C:i‖∞ : In this case, we increased the i-th variable in both the gradient

and mirror descent step, and because z(i)
k [i] is inside ∆ without any projection, we know the

step length of gradient descent is exactly y(i)
k [i] − xk[i] = 1

nαkL
nαk
‖C:i‖∞ = 1

L‖C:i‖∞ , together
with zk−1 ≥ 0, and u∗i ≤ 3

‖C:i‖∞ , we have

〈nαkη(i)
k , zk−1−u∗〉 ≤ 〈nαkη(i)

k ,−u
∗〉 ≤ −nαk∇igµ(xk)

3

‖C:i‖∞
= 3nαkL〈∇gµ(xk), xk−y(i)

k 〉,

and

〈nαkη(i)
k , zk−1 − u∗〉+ n2α2

kL〈ξ
(i)
k , xk − y

(i)
k 〉 ≤(3nαkL+ n2α2

kL)〈∇gµ(xk), xk − y(i)
k 〉

≤(6nαkL+ 2n2α2
kL)(gµ(xk)− gµ(y

(i)
k)).

The last step is by Lemma 2.4.7.

3. η(i)
k [i] < 0, z

(i)
k [i] = 3

‖C:i‖∞ : In this case, as we know u∗i ≤ 3
‖C:i‖∞ , we have

〈nαkη(i)
k , zk−1 − u∗〉 ≤ 〈nαkη(i)

k , zk−1 − z(i)
k 〉 = n2α2

kL〈η
(i)
k , xk − y

(i)
k 〉,

and

〈nαkη(i)
k , zk−1 − u∗〉+ n2α2

kL〈ξ
(i)
k , xk − y

(i)
k 〉 ≤2n2α2

kL〈∇gµ(xk), xk − y(i)
k 〉

≤4n2α2
kL(gµ(xk)− gµ(y

(i)
k)).

Again, the last step is due to Lemma 2.4.7.

Since nαk < 1 for all k, we have in all above cases,

Ei[〈nαkη(i)
k , zk−1 − u∗〉] + Ei[n2α2

kL〈ξ
(i)
k , xk − y

(i)
k 〉] ≤ Ei[8nαkL(gµ(xk)− gµ(y

(i)
k))].

Back to our earlier derivation, we have

αk(gµ(xk)− gµ(u∗)) ≤1− τ
τ

αk(gµ(yk−1)− gµ(xk)) + Ei[〈nαkη(i)
k , zk−1 − u∗〉]

+ Ei[n2α2
kL〈ξ

(i)
k , xk − y

(i)
k 〉+ Vzk−1

(u∗)− V
z
(i)
k

(u∗)]

≤1− τ
τ

αk(gµ(yk−1)− gµ(xk)) + Ei[8nαkL(gµ(xk)− gµ(y
(i)
k)]

+ Ei[Vzk−1
(u∗)− V

z
(i)
k

(u∗)].

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 25

With our choice of τ = 1
8nL

, αk = 1
1−ταk−1, we have

−αkgµ(u∗) ≤ 8nLαk−1gµ(yk−1)− Ei[8nLαkgµ(y
(i)
k)] + Ei[Vzk−1

(u∗)− V
z
(i)
k

(u∗)].

Telescoping the above inequality 4 along k = 1, . . . , T , we get

E[8nLαTgµ(yT)] ≤
T∑
k=1

αkgµ(u∗) + 8nLα0gµ(y0) + Vz0(u
∗),

and thus

E[gµ(yT)] ≤
∑T

k=1 αk
8nLαT

gµ(u∗) +
α0

αT
gµ(y0) +

1

8nLαT
Vz0(u

∗).

We have
∑T

k=1 αk = αT
∑T−1

k=0 (1− 1
8nL

)k = 8nLαT (1− (1− 1
8nL

)T) ≤ 8nLαT , and by our choice
of T = d8nL log(1/ε)e, we also have

α0

αT
= (1− 1

8nL
)T ≤ ε,

1

8nLαT
≤ ε

8nLα0

=
ε

8
,

and thus
Ei[gµ(yT)] ≤ gµ(u∗) + εgµ(y0) +

ε

8
Vz0(u

∗).

Finding a Good Starting Point
Here, we will describe how to find a good starting point for the algorithm. This will permit us to
establish the quality-of-approximation and running time guarantees of Theorem 2.4.1.

A good starting point y0 = xstart for Algorithm 1 is an initial condition xstart that is not too far
away from the optimal in terms of the function value (i.e small gµ(y0)), and not too far away from
u∗ in C-norm (i.e. small Vz0(u

∗)). For packing problems, starting with all the all-0’s vector will
work, but this will not work for covering problems. Instead, for covering problems, we will show
now a good enough xstart can be obtained in Õ(N).

To do so, recall that we can get a 2-approximation x# to the original covering LP in time Õ(N)
using various nearly linear time covering solvers, e.g., those of [KY14; You14]. Without loss of
generality, we can assume x[i]# ∈ [0, 2

‖C:i‖∞], since we can use the diameter reduction process as
specified in Lemma 2.3.1 to get a equivalent solution satisfying the conditions. Then, we have the
following lemma.

Lemma 2.4.8. Let xstart = (1+ε/2)x#, we have xstart ∈ ∆, gµ(xstart) ≤ 4 OPT, and Vxstart(u∗) ≤
6 OPT

4More accurately, the telescoping works on

−αkgµ(u∗) ≤ 8nLαk−1EIk−1
[gµ(yk−1)]− EIk [8nLαkgµ(y

(i)
k)] + EIk−1

[Vzk−1
(u∗)]− EIk [V

z
(i)
k

(u∗)].

where Ik is all the random coordinate choices made through the first iteration till k-th iteration. The final expectation
on gµ(yT) is over all the T random choices.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 26

Proof. It is obvious that xstart ∈ ∆. Thus,

~1Txstart = (1 + ε/2)~1Tx# ≤ (1 + ε/2)2 OPT ≤ 3 OPT .

Furthermore, we have Cxstart −~1 ≥ (1 + ε/2)Cx# −~1 ≥ ε
2
~1, and so

gµ(xstart) = µ
∑
j

qj(x
start)+~1Txstart ≤ µ

∑
j

exp(−ε/2
µ

)+3 OPT ≤ µm

(nm)2
+3 OPT < 4 OPT .

For the divergence, we have that

Vxstart(u
∗) =

1

2

∑
i

‖C:i‖∞(xstart
i − u∗i)2

=
1

2

∑
i

‖C:i‖∞((xstart
i)2 + (u∗)2

i − 2xstart
i u∗i)

≤3

2

∑
i

xstart
i + u∗i

≤3

2
(3 OPT + OPT) ≤ 6 OPT,

which proves the lemma.

It is now clear that we have

Ei[gµ(yT)] ≤ gµ(u∗) + εgµ(y0) +
ε

8
Vz0(u

∗) ≤ (1 + ε) OPT +4εOPT +εOPT = (1 + 6ε) OPT .

Thus, we have the approximation guarantee in Theorem 2.4.1. The running time follows directly
from Lemma 2.4.5 and T = Õ(n/ε).

2.5 Missing Proofs
Lemma 2.1.1. OPT ∈ [1, n]

Proof. By the assumption mini∈[n] ‖P:i‖∞ = 1, we know at least one variable has all coefficients
at most 1, so we can just set that variable to 1, which gives OPT ≥ 1. On the other hand, since
each variable has a coefficient of 1 in some constraint, no variable can be larger than 1, thus
OPT ≤ n.

Lemma 2.1.3. Setting the smoothing parameter µ = ε
4 log(nm/ε)

, we have

1. fµ(u∗) ≤ −(1− ε) OPT.

2. fµ(x) ≥ −(1 + ε) OPT for every x ≥ 0.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 27

3. Letting x0 ≥ 0 be such that x0[i] = 1−ε/2
n‖P:i‖∞ for each i ∈ [n], we have fµ(x0) ≤ −1−ε

n
.

4. For any x ≥ 0 satisfying fµ(x) ≤ 0, we must have Px ≤ (1 + ε)~1, and thus ~1Tx ≤
(1 + ε) OPT.

5. If x ≥ 0 satisfies fµ(x) ≤ −(1 − O(ε)) OPT, then 1
1+ε

x is a (1 − O(ε))-approximation to
the packing LP.

6. The gradient of fµ(x) is

∇fµ(x) = −~1 + P T
−−→
p(x) where pj(x)

def
= exp(

1

µ
((Px)j − 1),

and ∇ifµ(x) = −1 +
∑

j Pjipj(x) ∈ [−1,∞].

Proof. 1. Since Px∗ ≤ ~1, and u∗ = (1 − ε/2)x∗, we have (Pu∗)j − 1 ≤ −ε/2 for all j.
Then pj(u

∗) ≤ exp(− 1
µ
ε
2
) = (ε

mn
)2, and fµ(u∗) = −~1Tu∗ + µ

∑m
j=1 pj(u

∗) ≤ −(1 −
ε/2) OPT +µm(ε

mn
)2 ≤ −(1− ε) OPT.

2. By contradiction, suppose fµ(x) < −(1 + ε) OPT, since fµ(x) > −~1Tx, we must have
~1Tx > (1 + ε) OPT. Suppose ~1Tx = (1 + v) OPT for some v > ε. There must exits a j,
such that (Px)j > 1 + v. Then we have pj(x) > exp(v/µ) = ((mn

ε
)4)v/ε, which implies

fµ(x) ≥ −(1 + v) OPT +µpj(x) ≥ ε

4 log(mn/ε)
((
mn

ε
)4)v/ε − (1 + v) OPT > 0

since OPT ≤ n, and v > ε. This gives a contradiction.

3. The x0 we use satisfies Px0 −~1 ≤ −ε/2−~1, thus

fµ(x0) = µ
∑
j

pj(x0)−~1Tx0 ≤
µm

(nm)2
− 1− ε/2

n
≤ −1− ε

n

4. By contradiction, suppose there is some j such that (Px)j−1 ≥ ε. Let v > ε be the smallest
v such that Px ≤ (1 + v) OPT, and denote j the constraint that has (Px)j − 1 = v. We
must have ~1Tx ≤ (1 + v) OPT by definition of OPT. Then

fµ(x) ≥ µpj(x)− (1 + v) OPT ≥ ε

4 log(mn/ε)
((
mn

ε
)4)v/ε − (1 + v) OPT > 0,

which gives a contradiction.

5. By the above part, fµ(x) ≤ −(1 − O(ε)) OPT ≤ 0 suggests x
1+ε

is feasible. Furthermore,
−~1Tx < fµ(x) ≤ −(1 − O(ε)) OPT gives ~1Tx ≥ (1 − O(ε)) OPT, thus ~1T x

1+ε
≥ (1 −

O(ε)) OPT is approximately optimal.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 28

6. This is by straightforward computation.

Lemma 2.1.4. OPT ∈ [1,m]

Proof. By the assumption minj∈[m] ‖Cj:‖∞ = 1, we know at least one constraint has all coeffi-
cients at most 1, so to satisfy that constraint, we must have the sum of the variables to be at least
1. On the other hand, since each constraint has a variable with coefficient at least 1 in it, x = ~1
clearly satisfies all constraints, so OPT ≤ m.

Lemma 2.1.6. Setting the smoothing parameter µ = ε
4 log(nm/ε)

, we have

1. gµ(u∗) ≤ (1 + ε) OPT.

2. gµ(x) ≥ (1− ε) OPT for any x ≥ 0.

3. For any x ≥ 0 satisfying gµ(x) ≤ 2 OPT, we must have Cx ≥ (1− ε)~1.

4. If x ≥ 0 satisfies gµ(x) ≤ (1 + O(ε)) OPT, then 1
1−εx is a (1 + O(ε))-approximation to the

covering LP.

5. The gradient of gµ(x) is

∇gµ(x) = ~1− CT
−−→
q(x) where qj(x)

def
= exp(

1

µ
(1− (Cx)j),

and∇igµ(x) = 1−
∑

j Cjiqj(x) ∈ [−∞, 1].

Proof. 1. Since Cx∗ ≥ ~1, and u∗ = (1 + ε/2)x∗, we have (Cu∗)j − 1 ≥ ε/2 for all j. Then
qj(u

∗) ≤ exp(− 1
µ
ε
2
) = (ε

mn
)2, and

gµ(u∗) = ~1Tu∗ + µ

m∑
j=1

qj(u
∗) ≤ (1 + ε/2) OPT +µm(

ε

mn
)2 ≤ (1 + ε) OPT .

2. By contradiction, suppose gµ(x) < (1 − ε) OPT, since gµ(x) < OPT ≤ m, we must have
qj(x) < m/µ for any j, which implies (Cx)j ≥ 1 − ε. By definition of OPT, we have
~1Tx ≥ (1 − ε) OPT, since Cx ≥ (1 − ε)~1. This gives a contradiction as gµ(x) > ~1Tx ≥
(1− ε) OPT.

3. By contradiction, suppose there is some j such that (Cx)j − 1 ≤ −ε, then as in the last part,
we have µqj(x) ≥ µ(mn

ε
)4 > 2 OPT, contradicting gµ(x) ≤ 2 OPT.

4. For any x satisfying gµ(x) ≤ (1+O(ε)) OPT ≤ 2 OPT, by last part we knowCx ≥ (1−ε)~1,
so C(1

1−εx) ≥ ~1. We also have ~1T (1
1−εx) = 1

1−ε
~1Tx < 1

1−εgµ(x) ≤ (1 +O(ε)) OPT.

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 29

5. This is by straightforward computation.

Lemma 2.4.4. We have xk, yk, zk ∈ ∆ for all k = 0, 1, . . . , T .

Proof. At the start x0 = y0 = z0 = xstart ∈ ∆ by assumption. zk is always in ∆ as we take the
projection in the mirror descent step. If we can further show yk ∈ ∆ for all k, we are done, since
xk is a convex combination of yk−1, zk−1. To show yk ∈ ∆, we write yk as a convex combination
of z0, . . . , zk, yk =

∑k
l=0 c

l
kzl. At k = 0, we have y0 = z0, and at k = 1, y1 = x1 + 1

nα1L
(z1−z0) =

1
nα1L

z1 + (1− 1
nα1L

)z0, as x1 = y0 = z0. For k ≥ 2, we can verify

clk =


(1− τ)clk−1 l = 0, . . . , k − 2

(1
nαk−1L

− 1
nαkL

) + τ(1− 1
nαk−1L

) l = k − 1

1
nαkL

l = k

since

yk = xk +
1

nαkL
(zk − zk−1)

= τzk−1 + (1− τ)yk−1 +
1

nαkL
(zk − zk−1)

= τzk−1 + (1− τ)(
k−2∑
l=0

clk−1zl +
1

nαk−1L
zk−1) +

1

nαkL
(zk − zk−1)

= (
k−2∑
l=0

(1− τ)clk−1zl) + ((
1

nαk−1L
− 1

nαkL
) + τ(1− 1

nαk−1L
))zk−1 +

1

nαkL
zk

As αk ≥ αk−1, and α0 = 1
nL

, we have clk ≥ 0 for all l, k, and it is easy to check the coefficients
sum to 1 for each k.

Lemma 2.4.5. Each iteration can be implemented in expected O(N/n) time.

Proof. We show how to implement a iteration conditioned on i in time O(‖C:i‖0), where ‖C:i‖0

is the number of non-zeros in column i, thus give a expected running time of O(N/n) for each
iteration. We maintain the following quantities

zk ∈ Rn
≥0, czk ∈ Rm

≥0, y
′
k ∈ Rn, cyk ∈ Rm, Bk,1, Bk,2 ∈ R+

with the following invariants always satisfied throughout the algorithm

Czk = czk (2.8)

yk = Bk,1zk +Bk,2y
′
k, Cyk = Bk,1czk +Bk,2cyk (2.9)

When k = 0, we let czk = Cz0, y
′
k = y0, cyk = Cy0, Bk,1 = 0, Bk,2 = 1, and it is clear all the

invariants are satisfied. For k = 1, 2, . . . , T :

CHAPTER 2. SEQUENTIAL ALGORITHM FOR PACKING LPS AND COVERING LPS 30

• The step xk = τzk−1 + (1− τ)yk−1 does not need to be implemented.

• Computation of∇if(xk) requires the value of qj(xk) = exp(1
µ
(1− (Cxk)j)) for each j such

that Cji 6= 0, and we can get the value

(Cxk)j = τ(Czk−1)j+(1−τ)(Cyk−1)j = (τ+(1−τ)Bk−1,1)(czk−1)j+(1−τ)Bk−1,2cyk−1,j

for each such j. This can be computed in O(1) time for each j, and O(‖C:i‖0) time in total.

• The mirror descent step z(i)
k

def
= argminz∈∆{Vzk−1

(z) + 〈z, nαkξ(i)
k 〉} is simply zk = zk + δ ei

where δ ∈ R can be computed in O(1) time. zk = zk−1 + δ ei yields yk = τzk−1 +
(1 − τ)yk−1 + δ

nαkL
ei by the gradient descent step. Therefore, we can update the values

accordingly
zk ← zk−1 + δ ei, czk ← czk−1 + δC:i

and

Bk,1 ← τ + (1− τ)Bk−1,1 Bk,2 ← (1− τ)Bk−1,2

y′k ← y′k−1 + δ(−Bk,1
Bk,2

+ 1
nαkL

1
Bk,2

) ei cyk ← cyk−1 + δ(−Bk,1
Bk,2

+ 1
nαkL

1
Bk,2

)C:i

We can verify that after the updates, the invariants still hold

yk =Bk,1zk +Bk,2y
′
k = Bk,1(zk−1 + δ ei) +Bk,2(y′k−1 + δ(−Bk,1

Bk,2

+
1

nαkL

1

Bk,2

) ei)

=Bk,1zk−1 +Bk,2(y′k−1 + δ(
1

nαkL

1

Bk,2

) ei)

=Bk,1zk−1 +Bk,2y
′
k−1 +

δ

nαkL
ei

=(τ + (1− τ)Bk−1,1)zk−1 + ((1− τ)Bk−1,2)y′k−1 + +
δ

nαkL
ei

=τzk−1 + (1− τ)yk−1 + +
δ

nαkL
ei

It is also straightforward to verify Cyk = Bk,1czk + Bk,2cyk equals Cyk = τCzk−1 + (1 −
τ)Cyk−1 + + δ

nαkL
C ei. The updates are dominated by the updates on czk and cyk, which

take O(‖C:i‖0) time.

31

Chapter 3

Parallel Algorithms for Packing LPs and
Covering LPs

In this chapter we present the parallel algorithms for packing LPs and covering LPs. At a high
level, we still use the optimization approach as our sequential solver from previous chapter, where
we optimize the smooth function fµ(u) or gµ(u). However, in our parallel algorithms, as we are
updating multiple variables simultaneously, we face a different issue regarding the smoothness of
the function.

3.1 Technical Overview
At the core of most gradient based optimization framework is the smoothness issue, where the
update step is bounded by the local region where the gradients don’t change too wildly. In parallel
algorithms where we move all variables simultaneously, we have to take interference into consid-
eration, where by interference we mean that variable i’s gradient will be affected by the update
of other variables j 6= i. In particular, the bottleneck of the convergence in [AZO15b], as we see
it, is that the step size of the update is too small due to interference. In a typical iteration, they
aim to move all variables simultaneously proportional to the respective gradients, without chang-
ing the gradient of any variable by too much. A natural obstacle arises when the gradients of the
variables are not on the same scale. In such case, even when variable i has a large gradient, we are
constrained from moving i by a large step to harness the improvement, due to the interference of i
with some other variable j, which has a tiny gradient.

We tackle this bottleneck by reducing interference with dynamically-bucketed selective coor-
dinate descent (DB-SCD). In particular, as specified in Section 3.2, in each iteration, we group all
the variables according to the magnitudes of their gradients such that variables in the same group
all have approximately the same magnitudes up to some constant factor. If we only update vari-
ables of one randomly chosen group, we don’t suffer from the ratio of the largest gradients and the
smallest gradients of the variables we move. We further show that we only need log 1

ε
groups, so

each iteration we update a large fraction of the variables on expectation.

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 32

For the Õ(1
ε2

) time algorithm, we use a setup that multiplicative update the variables (com-
paring to the addictive updates in the sequential solver), and get a explicit algorithm for packing
LPs. The algorithm for covering LPs is a bit different, as it first construct its dual packing LP, run
the algorithm on the packing LP, and construct a solution for the original covering LP using the
gradients from all the iterations.

For the accelerated Õ(d
ε
) time algorithm, we use the same additive update setup as in our

sequential solver (including discrete lifting for covering LPs), and the techniques in DB-SCD. We
lose a factor of d (i.e., the max number of non-zeros per row in A) in the running time bound,
since to stay in local smooth region, we need to bound our update’s impact on the gradient, which
depends on the exponential penalties of the constraints. As we are updating variables additively,
we need to scale back the step size by 1

d
since a constraint may have d variables involved in the

update.

3.2 Õ(1
ε2
) Parallel Solver for Packing LPs

In this section we present the randomized Õ(1/ε2) time parallel algorithm for packing and cov-
ering. We will start with our packing algorithm and main results, followed by the analysis and
proofs. Then we show the algorithm and analysis for the dual covering problem, using largely the
primal packing solver.

Algorithm and Main Theorems of Packing Solver
Our algorithm to approximately solve packing LPs is specified in Algorithm 2. Recall to find a
(1 − ε)-approximation of a packing LP, we will approximately minimize the following convex
function over the region x ≥ ~0

fµ(x) = −~1Tx+ µ
m∑
j=1

exp(
1

µ
((Px)j − 1)),

In each iteration k, for each variable xk[i], we break the gradients∇ifµ(xk) into small, medium,
and large components, let

ζk[i] =

{
∇ifµ(xk) ∇ifµ(xk) ∈ [−ε, ε]
0 otherwise

ξk[i] =


0 ∇ifµ(xk) ∈ [−ε, ε]
∇ifµ(xk) ∇ifµ(xk) ∈ [−1, 1]\[−ε, ε]
1 ∇ifµ(xk) > 1

ηk[i] =

{
∇ifµ(xk)− 1 ∇ifµ(xk) > 1

0 otherwise

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 33

Algorithm 2 Õ(1
ε2

) time parallel packing LP solver

Input: P ∈ Rm×n
≥0 , fµ, ε ∈ (0, 1/2] Output: x ∈ Rn

≥0

1: µ← ε
4 log(nm/ε)

, α← µ
20

2: T ← d10 log(1/ε) log(2n)e
αε

= Õ(1
ε2

), w ←
⌈
log(1

ε
)
⌉

3: x0 ← 1−ε/2
n‖P:i‖∞

4: for k = 0 to T − 1 do
5: Select t ∈ {0, . . . , w − 1} uniformly at random
6: for i = 1 to n do
. Gradient truncation:

7: Compute∇ifµ(xk), and get ξ(t)
k [i] as defined in (3.2)

. Update step:
8: xk+1[i]← x

(t)
k+1[i]

def
= xk[i] exp(−αξ(t)

k [i])
9: end for

10: end for
11: return xT .

We have
∇fµ(xk) = ζk + ξk + ηk (3.1)

As we will see in Lemma 3.2.3, if the gradients are all within a factor of 2 from each other, we
can take a multiplicative step with step size α = Θ(µ) = Õ(ε). To exploit that, we will further
partition the variables into groups, such that for variables in the same group, the absolute values of
their truncated gradients will be within a factor 2 of each other. For t ∈ {0, . . . , dlog(1

ε
)− 1e}, let

ξ
(t)
k [i] =


ξk[i] ξk[i] ∈ (ε2t, ε2t+1]

∪[−ε2t+1,−ε2t)
0 otherwise

η
(t)
k [i] =

{
ηk[i] t = dlog(1

ε
)e − 1

0 otherwise
(3.2)

In each iteration, we will pick a group t uniformly at random, and update all variables using ξ(t)
k .

Our main result is summarized in the following theorems.

Theorem 3.2.1. Algorithm 2 outputs xT satisfying E[fµ(xT)] ≤ −(1−5ε) OPT, and the algorithm
can be implemented with Õ(1

ε2
) iterations with total work Õ(N/ε2), where N is the total number

of non-zeros in P .

Given Theorem 3.2.1, a standard application of Markov bound, together with Lemma 2.1.3(5),
gives the following corollary.

Corollary 3.2.2. There is an algorithm that, with probability at least 9/10, computes a (1 −
O(ε))-approximation to the fractional packing problem and has Õ(N/ε2) expected total work,
and implementable in Õ(1/ε2) distributed iterations.

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 34

Analysis of Algorithm 2 for Packing LPs
For preliminaries, see Section 2.1, especially Lemma 2.1.3.

Same as in [AZO15b], we interpret our update step xk+1[i] ← x
(t)
k+1[i]

def
= xk[i] exp(−αξ(t)

k [i])
in Algorithm 2 as both a mirror descent step, as well as a gradient descent step. We proceed with
respective analysis for the two interpretations.

Gradient Descent Step
We will first analyze the update step in Algorithm 2 as a gradient descent step. As in most gradient
descent analysis, we need to bound our step’s impact on the gradients. We show fµ(x) is locally
multiplicative Lipschitz continuous, in a sense quantified by the following lemma. Note the result
is a stronger version of Proposition 3.6 in [AZO15b], in the sense that the step size α is 1/ε larger.
This improvement is achieved due to the reduced interference from our selective updating.

Lemma 3.2.3. Let x(t)
k+1[i] = xk[i] exp(−αξ(t)

k [i]) for any t = 0, . . . , w − 1 as in Algorithm 2.
Let Bt = {i|ξ(t)

k [i] > 0} be the set of variables we update. If Pxk ≤ (1 + ε)~1, then for any
x = τxk + (1 − τ)x

(t)
k+1 where τ ∈ [0, 1], we have ∀i ∈ Bt,∇ifµ(x) is between 1

2
∇ifµ(xk) and

3
2
∇ifµ(xk).

Proof. Because for all i ∈ Bt, ξ
(t)
k [i] ∈ (ε2t, ε2t+1] ∪ [−ε2t+1,−ε2t), each variable changes multi-

plicatively by at most exp(±αε2t+1), and since αε2t+1 ≤ 1/4, we must have for all i,

x[i] ∈ xk[i] · [1−
8

3
αε2t, 1 +

8

3
αε2t] (3.3)

Now we look at the impact of the step on the exponential penalties

pj(x) = exp(
1

µ
((Px)j − 1))

Due to (3.3), and (Pxk)j ≤ (1 + ε) for any j, we have

|(Px)j − (Pxk)j| ≤
8

3
αε2t(Pxk)j ≤

10

3
αε2t

Then by our choice of α, we have

pj(x) ≥ pj(xk) exp(−10αε2t

3µ
) = pj(xk) exp(−ε2

t

6
)

Since ε2t ≤ 1, we have exp(− ε2t

6
) ≥ (1 − ε2t

4
). By a similar calculation for the upper bound, we

have

pj(x) ∈ pj(xk) · [1−
ε2t

4
, 1 +

ε2t

4
] (3.4)

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 35

For any i ∈ Bt, if ξ(t)
k [i] ∈ (ε2t, ε2t+1], we have

∇ifµ(x) = (P Tp(x))i − 1

> (P Tp(xk))(1−
ε2t

4
)− 1

= (∇ifµ(xk) + 1)(1− ε2t

4
)− 1

≥ ∇ifµ(xk)

2

where the last step is due to ε2t ≤ 1 and ∇ifµ(xk) ≥ ξ
(t)
k [i] > ε2t. By similar calculation, we get

∇ifµ(x) ≤ 3
2
∇ifµ(xk). The same holds for the case ξ(t)

k [i] ∈ [−ε2t+1,−ε2t).

We will see in Claim 3.2.5, the condition of Pxk ≤ (1 + ε)~1 holds for all k = 0, . . . , T . Once
we established smoothness of the gradients within the range of our update step, we can lower
bound the improvement we make. In particular, the term 〈αη(t)

k , xk − u〉 is the loss incurred from
the truncation, as our update step doesn’t act on the truncated part, but it shows up when we use
convexity to bound the gap to optimality.

Lemma 3.2.4. For all t = 0, . . . , w − 1, any u ≥ 0

〈αη(t)
k , xk − u〉 ≤ 4(fµ(xk)− fµ(x

(t)
k+1))

Proof.

fµ(xk)− fµ(x
(t)
k+1) =

∫ 1

0

〈∇fµ(x
(t)
k+1 + τ(xk − x(t)

k+1)), xk − x(t)
k+1〉dτ

=
∑
i∈Bt

∫ 1

0

∇ifµ(x
(t)
k+1 + τ(xk − x(t)

k+1))dτ × (xk[i]− x(t)
k+1[i])

where the last equality is because xk[i] − x
(t)
k+1[i] = 0 for i 6∈ Bt. By Lemma 3.2.3, we have

∇ifµ(x
(t)
k+1 + τ(xk − x(t)

k+1)) has the same sign as ∇ifµ(xk) for all τ ∈ [0, 1]. Furthermore, by our
update rule, xk[i]−x(t)

k+1[i] also has the same sign as∇ifµ(xk), so we have fµ(xk)− fµ(x
(t)
k+1) ≥ 0

for all t. If t < w − 1, we know η
(t)
k = ~0, thus

〈αη(t)
k , xk − u〉 = 0 ≤ 4(fµ(xk)− fµ(x

(t)
k+1))

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 36

When t = w − 1, let B = {i|∇ifµ(xk) > 1} ⊇ Bt be the set of variables with nonzero η(t)
k [i], we

know for i ∈ B, ξ(t)
k [i] = 1, so x(t)

k+1[i] = xk[i] exp(−α), and

fµ(xk)− fµ(x
(t)
k+1) =

∑
i∈Bt

∫ 1

0

∇ifµ(x
(t)
k+1 + τ(xk − x(t)

k+1))dτ × (xk[i]− x(t)
k+1[i])

≥
∑
i∈B

∫ 1

0

∇ifµ(x
(t)
k+1 + τ(xk − x(t)

k+1))dτ × (xk[i]− x(t)
k+1[i])

≥
∑
i∈B

1

2
∇ifµ(xk)× xk[i](1− exp(−α))

≥
∑
i∈B

α

4
∇ifµ(xk)xk[i]

The first inequality is due to Bt ⊆ B, and every i has non-negative contribution to the sum. The
second inequality is from Lemma 3.2.3, and the last inequality is because (1 − exp(−α)) > α/2
when α < 1/10. Then we have

〈αη(t)
k , xk − u〉 ≤

∑
i∈B

α∇ifµ(xk)xk[i] ≤ 4(fµ(xk)− fµ(x
(t)
k+1))

where the first inequality is because∇ifµ(xk) > η
(t)
k ≥ 0 in this case, and u ≥ 0.

We see fµ(xk)− fµ(x
(t)
k+1) ≥ 0 for any t = 0, . . . , w − 1, we have

Claim 3.2.5. fµ(xk) is non-increasing with k. By part (3), (4) of Lemma 2.1.3, Pxk ≤ (1 + ε)~1,
and ~1Txk ≤ (1 + ε) OPT for all k.

Mirror Descent Step
We now interpret the update step as a mirror desent step. We use the same proximal setup as
in [AZO15b]. The distance generating function will be the generalized entropy function, where

w(x)
def
=
∑
i∈[n]

x[i] log(x[i])− x[i]

and the corresponding Bregman divergence function will be

Vx(y) =
∑
i∈[n]

(y[i] log
y[i]

x[i]
+ x[i]− y[i])

This is the standard proximal setup when one works with L1-norm with the simplex as the feasible
region. In our case, since the feasible region is x ≥ 0, we don’t have the standard strongly
convexity of the Bregman divergence, but one can verify

Vx(y) =
∑
i∈[n]

(y[i] log
y[i]

x[i]
+ x[i]− y[i]) ≥

∑
i∈[n]

(x[i]− y[i])2

2 max{x[i], y[i]}
(3.5)

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 37

To interpret the update step as a mirror descent step. The following claim is the same as Claim 3.7
in [AZO15b] applied to different vectors.

Claim 3.2.6. For all t = 0, . . . , w − 1, we have

x
(t)
k+1 = argmin

z≥0
{Vxk(z) + 〈z − xk, αξ(t)

k 〉}

Proof. Since the function Vx(k)(z), the dot product and the constraint z ≥ 0 are all coordinate-wise
separable, we look at each coordinate independently. Thus we only need to check

x
(t)
k+1[i] = argmin

z[i]≥0

{(z[i] log
z[i]

xk[i]
+ xk[i]− z[i]) + αξ

(t)
k [i](z[i]− xk[i])}

This univariate function being optimized is convex and has a unique minimizer. We find it by
taking the derivative to get

log
z[i]

xk[i]
+ αξ

(t)
k [i] = 0

, which gives x(t)
k+1[i]

def
= z[i] = xk[i] exp(−αξ(t)

k [i]).

Once we see the update step is indeed a mirror descent step, we can derive the following result
from the textbook mirror descent analysis (or, e.g., Lemma 3.3 in [AZO15b]).

Lemma 3.2.7. For all t = 0, . . . , w − 1, we have for any u ≥ 0

〈αξ(t)
k , xk − u〉 ≤ α2 OPT +Vxk(u)− V

x
(t)
k+1

(u)

Proof. The lemma follows from the following chain of equalities and inequalities.

〈αξ(t)
k , xk − u〉 = 〈αξ(t)

k , xk − x
(t)
k+1〉+ 〈αξ(t)

k , x
(t)
k+1 − u〉

≤ 〈αξ(t)
k , xk − x

(t)
k+1〉+ 〈−∇Vxk(x

(t)
k+1), x

(t)
k+1 − u〉

≤ 〈αξ(t)
k , xk − x

(t)
k+1〉+ Vxk(u)− V

x
(t)
k+1

(u)− Vxk(x
(t)
k+1)

≤
∑
i∈[n]

(
αξ

(t)
k [i](xk[i]− x(t)

k+1[i])−
(xk[i]− x(t)

k+1[i])2

2 max{xk[i], x(t)
k+1[i]}

)
+ Vxk(u)− V

x
(t)
k+1

(u)

≤
∑
i∈[n]

(αξ
(t)
k [i])2 max{xk[i], x(t)

k+1[i]}
2

+ Vxk(u)− V
x
(t)
k+1

(u)

≤ 2

3
α2~1Txk + Vxk(u)− V

x
(t)
k+1

(u)

≤ α2 OPT +Vxk(u)− V
x
(t)
k+1

(u)

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 38

The first equality follows by adding and subtracting x(t)
k+1. The first inequality is due to the the

minimality of x(t)
k+1, which gives

〈∇Vxk(x
(t)
k+1) + αξ

(t)
k , u− x

(t)
k+1〉 ≥ 0 ∀u ≥ 0,

the second inequality is due to the standard three point property of Bregman divergence, that is
∀x, y ≥ 0

〈−∇Vx(y), y − u〉 = Vx(u)− Vy(u)− Vx(y),

the third inequality is from (3.5), the fourth inequality follows from 2ab − a2 ≤ b2, the next
inequality is due to x(t)

k+1[i] ≤ xk[i](1 + ε), and ξ(t)
k [i] ≤ 1. The last inequality is by Claim 3.2.5,

~1Txk ≤ (1 + ε) OPT.

Coupling of Gradient and Mirror Descent
In this section we show convergence using the results we derived by analyzing the update step as
both a gradient descent step and a mirror descent step. This section will give a proof of Theo-
rem 3.2.1.
Recall we break the gradients into small, medium and large components. The proof follows a
similar approach as Lemma 3.4 of [AZO15b], where we bound the three components respectively,
and telescope along all iterations. Furthermore, we divide the medium and large components into
w = log(

⌈
1
ε

⌉
) groups.

∇fµ(xk) = ζk + ξk + ηk

and
ξk = wEt[ξ(t)

k], ηk = wEt[η(t)
k]

We bound the gap to optimality at iteration k:

α(fµ(xk)− fµ(u∗)) ≤〈α∇fµ(xk), xk − u∗〉
=α〈ζk, xk − u∗〉+ α〈ξk, xk − u∗〉+ α〈ηk, xk − u∗〉
=α〈ζk, xk − u∗〉+ wEt[〈αξ(t)

k , xk − u
∗〉] + wEt[〈αη(t)

k , xk − u
∗〉]

The first line is due to convexity. The next two lines just break and regroup the terms. Now we
upperbound each of the three terms

Lemma 3.2.8. 1. 〈ζk, xk − u∗〉 ≤ 3εOPT.

2. ∀t, 〈αξ(t)
k , xk − u∗〉 ≤ α2 OPT +Vxk(u

∗)− V
x
(t)
k+1

(u∗).

3. ∀t, 〈αη(t)
k , xk − u∗〉 ≤ 4(fµ(xk)− fµ(x

(t)
k+1)).

Proof. 1. We know |ζk[i]| ≤ ε for all i, ~1Txk ≤ (1 + ε) OPT from Claim 3.2.5, and ~1Tu∗ ≤
OPT, thus

〈ζk, xk − u∗〉 ≤ ε(~1Txk +~1Tu∗) ≤ 3εOPT

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 39

2. This is just Lemma 3.2.7 applied to u = u∗.

3. This is just Lemma 3.2.4 applied to u = u∗.

Then we have

α(fµ(xk)− fµ(u∗)) ≤α〈ζk, xk − u∗〉+ wEt[〈αξ(t)
k , xk − u

∗〉] + wEt[〈αη(t)
k , xk − u

∗〉]
≤3αεOPT +wEt[α2 OPT +Vxk(u

∗)− V
x
(t)
k+1

(u∗)]

+ 4wfµ(xk)− 4wEt[fµ(x
(t)
k+1)]

The above inequality holds for xk following any sequence of random choices (i.e. t’s in the first
k − 1 iterations). Let Ik denote the random choices over the first k iterations, we take expectation
of the above inequality to get

α(EIk [fµ(xk)]− fµ(u∗)) ≤3αεOPT +α2wOPT +wEIk [Vxk(u
∗)]− wEIk+1

[V
x
(t)
k+1

(u∗)]

+ 4wEIk [fµ(xk)]− 4wEIk+1
[fµ(x

(t)
k+1)] (3.6)

Telescoping (3.6) for k = 0, . . . , T − 1, we get

α
T−1∑
k=0

(EIk [fµ(xk)]− fµ(u∗))

≤3TαεOPT +wTα2 OPT +wVx0(u
∗) + 4wfµ(x0)− 4wEIT [fµ(x

(t)
T)]

≤3TαεOPT +wTα2 OPT +2w log 2nOPT−4wEIT [fµ(x
(t)
T)] (3.7)

where the last inequality is due to fµ(x0) < 0, and

Claim 3.2.9. Vx0(u∗) ≤ 2 log 2nOPT

Proof.

Vx0(u
∗) =

∑
i

u∗[i] log
u∗[i]

x0[i]
+ x0[i]− u∗[i] ≤

∑
i

u∗[i] log
u∗[i]

x0[i]
+ x0[i]

≤
∑
i

u∗[i] log
1/‖P:i‖∞

(1− ε/2)/(n‖P:i‖∞)
+

1− ε/2
n‖P:i‖∞

≤ ~1Tu∗ log(2n) + 1 ≤ 2 log(2n) OPT

where we have used u∗i ≤ 1
‖P:i‖∞ in the second line, since Pu∗ ≤ ~1. The third line is due to

~1Tu∗ ≤ OPT, and OPT ≥ 1.

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 40

We prove that EIT [fµ(x
(t)
T)] ≤ −(1 − 5ε) OPT (i.e. Theorem 3.2.1) by contradiction. If

EIT [fµ(x
(t)
T)] > −(1 − 5ε) OPT, we have −4wEIT [fµ(x

(t)
T)] ≤ 4wOPT. Divide both sides

of (3.7) by αT , we have

1

Tα

T−1∑
k=0

α(EIk [fµ(xk)]− fµ(u∗))

≤ 1

Tα
(3TαεOPT +wTα2 OPT +2w log 2nOPT−4wEIT [fµ(x

(t)
T)])

≤3εOPT +wαOPT +
2w log 2n

Tα
OPT +

4w

Tα
OPT

Recall α = µ/20 = ε
20 log mn

ε
, we have wα ≤ ε/20. By our choice of T = 10w log 2n

αε
, we have

2w log 2n
Tα

< ε, and 4w
Tα

< ε. Thus

1

T

T−1∑
k=0

(EIk [fµ(xk)]− fµ(u∗)) ≤ 4εOPT

From part (1) of Lemma 2.1.3, we know fµ(u∗) ≤ −(1−ε) OPT, which suggests there exists a xk,
such that fµ(xk) ≤ −1(1−5ε) OPT. This gives a contradiction ofEIT [fµ(x

(t)
T)] > −(1−5ε) OPT

by Claim 3.2.5, as fµ(xk) is non-increasing, so is EIk [fµ(xk)].

3.3 Õ(1
ε2
) Parallel Solver for Covering LPs

A benefit of actually computing all the gradients in each iteration is that we can exploit the same
primal-dual structure as in [AZO15b] to get a covering LP solver. Given a covering LP instance
in the form of (2.2), we can construct its dual, which is a packing LP with P = CT . If we run
Algorithm 2 on the packing instance for T iterations, the average of the exponential penalties used
in the computation of gradients

ȳ =
1

T

T−1∑
k=0

−−−→
p(xk) ≥ 0 (3.8)

will be with constant probability a (1+ε)-approximation of the covering problem after some simple
fixing step. Here

−−−→
p(xk) is the vector with the exponential penalties of the packing constraints at

iteration k.
The primal-dual property we will exploit is that the slackness of the i-th covering constraint

with ȳ is the average gradient of the i-th variable in the primal packing LP.

(Cȳ)i − 1 =
1

T

T−1∑
k=0

(P T
−−−→
p(xk))i − 1 =

1

T

T−1∑
k=0

∇ifµ(xk)

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 41

We use a similar approch as in [AZO15b; ZLO15]. We specify the fixing procedure in Algorithm 3
from [AZO15b], which explicitly makes all the dual constraints satisfied. We will run Algorithm 2

Algorithm 3 Fixing procedure for covering LPs

Input: P T = C ∈ Rm×n
≥0 , ε ∈ (0, 1/10], ȳ ∈ Rm

≥0 Output: y ∈ Rm
≥0 such that Cy ≥ ~1.

1: ȳ′ ← ȳ

2: for all i such that λi
def
= (P T ȳ)i − 1 + ε ≤ −2ε do

3: Let j = argmax′j Pi,j′ , i.e. Pi,j = ‖P:i‖∞.
4: ȳ′j ← ȳ′j + −λi

Pi,j
.

5: end for
6: return ȳ′

1−3ε
.

for T iterations, with T ≥ max{6w
αε
,

2w2 log n
ε

ε2
}, and fix the ȳ as in (3.8) with Algorithm 3. Let y be

the output of Algorithm 3, y is feasible by construction, i.e. y ≥ 0, Cy = P Ty ≥ ~1. Furthermore,
we can show

Theorem 3.3.1. E[~1Ty] ≤ (1 + 10ε) OPT, and y ≥ 0, Cy = P Ty ≥ ~1.

Apply Markov’s inequality, we get

Corollary 3.3.2. There is a algorithm that, with probability at least 9/10, computes a (1 +O(ε))-
approximation to the fractional covering problem and has Õ(N/ε2) expected total work, and im-
plementable in Õ(1/ε2) distributed iterations.

Analysis of Algorithm 2 for Covering LPs
We first show ~1T ȳ is close to OPT on expectation.

Lemma 3.3.3. For any T ≥ 6w
αε

, we have E[~1T ȳ] ≤ (1 + 5ε) OPT

The proof follows directly from Lemma D.1 of [AZO15b], only with the additional w =
log(

⌈
1
ε

⌉
) due to our dynamic grouping, and the expectation. The expectation holds since all the

inequalities used in the proof hold universally (i.e. in any outcome of the random choices). We
omit the proof here, and encourage interested readers to look at [AZO15b].

Now we look at the i-th constraint of the covering LP, which corresponds to the variable x[i] in
the dual packing instance. Let Z(i)

k be the indicator random variable of whether x[i] is in the group
being updated in iteration k of Algorithm 2, and

Si = w

T−1∑
k=0

Z
(i)
k (min{∇ifµ(xk), 1}+ ε)

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 42

Using the notations of Algorithm 2, we have for all i, Si
w
≥
∑T−1

k=0 ξ
(t)
k [i]. We know the cumulative

update on variable x[i] must be bounded, due to Claim 3.2.5, xk[i] ≤ 1+ε
‖P:i‖∞ for all k, and in

particular

1 + ε

‖P:i‖∞
≥ xT [i] = x0[i] exp(−α

T−1∑
k=0

ξ
(t)
k [i]) ≥ x0[i] exp(−αSi

w
) =

1− ε/2
n‖P:i‖∞

exp(−αSi
w

)

which gives the lower bound on the random variable Si

Si ≥ −
w log 2n

α
(3.9)

Notice that the slackness of the i-th covering constraint with the solution ȳ is

(P T ȳ)i − 1 + ε =
1

T

T−1∑
k=0

(P T
−−−→
p(xk))i − 1 + ε

=
1

T

T−1∑
k=0

∇ifµ(xk) + ε

≥ 1

T

T−1∑
k=0

min{∇ifµ(xk), 1}+ ε

def
=

1

T
Ui

with the definition of the random variable Ui =
∑T−1

k=0 min{∇ifµ(xk), 1}+ ε. If the i-th variable is
updated in all iterations, i.e. Z(i)

k = 1 for all k, we have Ui = Si in that case, and when T ≥ 6w log 2n
αε

(P T ȳ)i − 1 + ε ≥ 1

T
Si ≥ −

w log 2n

αT
≥ −ε

so we know (P T ȳ)i ≥ 1 − 2ε for all i, which means all covering constraints are approximately
feasible. However, we don’t always update variable i in all iterations of Algorithm 2, so we need
to bound the difference Si − Ui.

Lemma 3.3.4. For any T ≥ 2w2 log n
ε

ε2
, we have Pr[Si − Ui ≥ εT] ≤ ε

n

Proof. The randomness of Ui and Si comes from the random choice of which group to update in
each iteration of Algorithm 2. Let

D
(i)
k = w

∑
k′≤k

Z
(i)
k′ (min{∇ifµ(xk), 1}+ ε)−

∑
k′≤k

min{∇ifµ(xk), 1}+ ε

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 43

Let Gk be the random choice (i.e. the group to update) made at k-th iteration of Algorithm 2.
Since Z(i)

k is an indicator random variables with probability of 1
w

being 1, and it is independent
from G0, . . . , Gk−1, D(i)

k is a martingale with respect to Gk, as

E[D
(i)
k |G0, . . . , Gk−1] = D

(i)
k−1 +

1

w
w(min{∇ifµ(xk), 1}+ ε)− (min{∇ifµ(xk), 1}+ ε) = D

(i)
k−1

and we have
D

(i)
0 = E[Si − Ui] = 0, D

(i)
T = Si − Ui

Furthermore, |D(i)
k −D

(i)
k+1| ≤ w for all k, so we can apply Azuma’s inequality, and get

Pr[Si − Ui ≥ εT] ≤ exp(
ε2T 2

2Tw2
) ≤ ε

n

The above lemma shows that with high probability, ȳ satisfies the i-th covering constraint up to
−3ε. In the rare case it doesn’t, we use Algorithm 3 to fix it, and get ȳ′. We show on expectation
this step doesn’t add too much to the total cost.

Lemma 3.3.5. E[~1T ȳ′] ≤ (1 + 6ε) OPT.

Proof. When Si − Ui ≤ εT , we have

(P T ȳ)i − 1 + ε ≥ 1

T
(Si − εT) ≥ −w log 2n

αT
− ε ≥ −2ε

so we don’t need to fix the i-th constraint. When that is not the case, since (P T ȳ)i ≥ 0, and
‖P:i‖∞ ≥ 1, we need to add at most 1 to some variable ȳ′j to fix the i-th covering constraint. For all
the n covering constraints, we add on expectation at most n ε

n
≤ ε ≤ εOPT to ȳ to get ȳ′. Together

with Lemma 3.3.3, we have E[~1T ȳ′] ≤ (1 + 6ε) OPT.

We complete the proof of Theorem 3.3.1 by noticing (P T ȳ′)i ≥ 1 − 3ε for all i, so the output
of Algorithm 3, ȳ′

1−3ε
satisfies the properties in Theorem 3.3.1.

3.4 Õ(dε) Parallel Accelerated Solver for (Packing and)
Covering LPs

We show how to combine the idea of updating selective variables with similar gradients to par-
allelize Algorithm 4 to run in Õ(d

ε
) time. The presentation is based on covering LPs, but it is

straightforward to see it also works for packing LP. We use the same notations as in Chapter 2 and
Section 2.4.

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 44

We break the gradient into small, medium, and large components, let

ζk[i] =

{
∇igµ(xk) ∇igµ(xk) ∈ [−ε/n, ε/n]

0 otherwise

ξk[i] =


0 ∇igµ(xk) ∈ [−ε/n, ε/n]

∇igµ(xk) ∇igµ(xk) ∈ [−1, 1]\[−ε/n, ε/n]

−1 ∇igµ(xk) < −1

ηk[i] =

{
∇igµ(xk) + 1 ∇igµ(xk) < −1

0 otherwise

We have
∇gµ(xk) = ζk + ξk + ηk

We will further partition the variables into groups, such that for variables in the same group,
the absolute values of their truncated gradients will be within a factor 2 of each other. For
t ∈ {0, . . . , dlog(n

ε
)− 1e}, let

ξ
(t)
k [i] =


ξk[i] ξk[i] ∈ (2tε/n, 2t+1ε/n]

∪[−ε2t+1/n,−ε2t/n)

0 otherwise

η
(t)
k [i] =

{
ηk[i] t = dlog(n

ε
)e − 1

0 otherwise
(3.10)

We have ξk = wEt[ξ(t)
k], ηk = wEt[η(t)

k], with w = dlog(n
ε
)e being the total number of groups.

Theorem 3.4.1. With xstart computable in total work Õ(N) and Õ(1) distributed iterations to be
specified later, Algorithm 4 outputs yT satisfying E[gµ(yT)] ≤ (1+6ε) OPT, and the total expected
work is Õ(dN/ε) with Õ(d/ε) expected iterations, where d is the maximum number of variables in
any constraint.

A standard application of Markov bound, together with part 5 of Lemma 2.1.6, gives

Corollary 3.4.2. There is a algorithm such that with probability at least 9/10, computes a (1 +
O(ε))-approximation to the fractional covering problem. The expected total work is Õ(dN/ε), and
the expected number of iterations is Õ(d/ε).

We will prove the smoothness property and gradient descent guarantee. The rest of the analysis
follows trivially from the analysis of the accelerated stochastic coordinate descent algorithm in
Section 2.4, with n replaced by dw, so we omit the proofs.

Lemma 3.4.3. Let x(t)
k+1 = xk +

z
(t)
k −zk−1

4dwαkL
for any t = 0, . . . , w − 1 as in Algorithm 4. Let

Bt = {i|ξ(t)
k [i] > 0} be the set of variables we update, and ~γ = x

(t)
k+1 − xk. For any x = xk + ν~γ

where ν ∈ [0, 1], we have ∀i ∈ Bt,∇igµ(x) is between 1
2
∇igµ(xk) and 3

2
∇igµ(xk).

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 45

Algorithm 4 Accelerated Õ(d
ε
) time parallel solver for both packing and covering

Input: C ∈ Rm×n
≥0 , xstart ∈ ∆, gµ, ε Output: yT ∈ ∆

1: w ←
⌈
log(n

ε
)
⌉
, d← maxj ‖Cj,:‖0

2: µ← ε
4 log(nm/ε)

, L← 4
µ
, τ ← 1

12dwL

3: T ← d12dwL log(1/ε)e = Õ(d
ε
)

4: x0, y0, z0 ← xstart, α0 ← 1
dwL

5: for k = 1 to T do
6: αk ← 1

1−ταk−1

7: xk ← τzk−1 + (1− τ)yk−1

8: Select t ∈ [w] uniformly at random.
. Gradient truncation:

9: Let ξ(t)
k be as specified in (3.10)

. Mirror descent step:
10: zk ← z

(t)
k

def
= argminz∈∆{Vzk−1

(z) + 〈z, wαkξ(t)
k 〉}.

. Gradient descent step:
11: yk ← y

(t)
k

def
= xk + 1

4dwαkL
(z

(t)
k − zk−1)

12: end for
13: return yT .

Proof. Because for all i ∈ Bt, ξ
(t)
k [i] ∈ (ε2t/n, ε2t+1/n] ∪ [−ε2t+1/n,−ε2t/n), we know the

gradient step on each variable is bounded by |~γi| ≤ ε2t+1/n
4dL‖C:i‖∞ , we must have for all i,

x[i] ∈ [xk[i]−
ε2t+1/n

4dL‖C:i‖∞
, x[i] +

ε2t+1/n

4dL‖C:i‖∞
] (3.11)

Now we look at the impact of the step on the exponential penalties

pj(x) = exp(
1

µ
((Cx)j − 1))

Due to (3.11), and d is the max degree of any constraint, we have

|(Cx)j − (Cxk)j| ≤
ε2t/n

2L

Then by our choice of L = 4
µ

, we have

pj(x) ≥ pj(xk) exp(−ε2
t/n

2Lµ
) = pj(xk) exp(−ε2

t/n

8
)

Since ε2t/n ≤ 1, we have exp(− ε2t/n
8

) ≥ (1− ε2t/n
4

). By a similar calculation for the upper bound,
we have

pj(x) ∈ pj(xk) · [1−
ε2t/n

4
, 1 +

ε2t/n

4
] (3.12)

CHAPTER 3. PARALLEL ALGORITHMS FOR PACKING LPS AND COVERING LPS 46

For any i ∈ Bt, if ξ(t)
k ∈ (ε2t/n, ε2t+1/n], we have

∇igµ(x) = 1− (CTp(x))i

> 1− (CTp(xk))(1 +
ε2t/n

4
)

= 1− (1−∇igµ(xk))(1 +
ε2t/n

4
)

≥ ∇igµ(xk)

2

where the last step is due to ε2t/n ≤ 1 and∇igµ(xk) ≥ ξ
(t)
k [i] > ε2t/n. By similar calculation, we

get ∇igµ(x) ≤ 3
2
∇igµ(xk). The same holds for the case ξ(t)

k [i] ∈ [−ε2t+1/n,−ε2t/n).

We bound the improvement from the gradient descent step in the following lemma

Lemma 3.4.4. gµ(xk)− gµ(y
(t)
k) ≥ 1

2
〈∇gµ(xk), xk − y(t)

k 〉

Proof. Let ~γ be the step, i.e. ~γ[i] = y
(t)
k [i]− xk[i], we have

gµ(xk)− gµ(y
(t)
k) = gµ(xk)− gµ(xk + ~γ) =

∫ 1

0

−〈∇gµ(xk + ν~γ), ~γ〉dν

Since ~γi’s are non-zero only at coordinates i’s, such that ε2t/n ≤ |ξk[i]| ≤ ε2t+1/n, denote the set
of those variables Bt, we have

gµ(xk)− gµ(y
(t)
k) =

∑
i∈Gt

−~γ[i]

∫ 1

0

∇igµ(xk + ν~γ)dν

By Lemma 3.4.3,∇igµ(xk +ν~γ) ≥ 1
2
∇igµ(xk) when−~γ[i] > 0, and∇igµ(xk +ν~γ) ≤ 1

2
∇igµ(xk)

when −~γ[i] < 0, we have

gµ(xk)− gµ(y
(t)
k) ≥

∑
i∈Gt

−~γ[i]
1

2
∇igµ(xk) =

1

2
〈∇gµ(xk), xk − y(t)

k 〉

47

Chapter 4

Parallel Algorithm for Positive LPs

In this chapter we describe our parallel algorithm for general positive LPs, i.e., LPs with both pack-
ing and covering constraints. Unlike the algorithms from previous chapters, we use the Lagrangian-
relaxation framework for mixed packing and covering LPs.

Via standard reductions, we can use binary search on the optimal value of the positive LP, and
rewrite the objective function as a packing constraint (for minimization problems) or a covering
constraint (for maximization problems), thus turning the optimization problem into a feasibility
problem. We present a parallel algorithm that, given a mixed packing and covering (feasibility)
LP of size N , in Õ(1

ε3
) iterations computes a (1 + ε)-approximate (feasible) solution, or correctly

reports the original mixed packing and covering LP is infeasible. The algorithm is deterministic
and width-independent.

The bottleneck of each iteration is a matrix-vector multiplication, and can be implemented in
O(logN) depth, in which case the running time of our algorithm is Õ(1

ε3
). The total work of

the algorithm we present in the paper is Õ(N
ε3

). In particular, our result improves upon the current
fastest parallel algorithm of mixed packing and covering LPs in [You01; You14], where the running
time is Õ(1

ε4
). The work of the parallel algorithm in [You01; You14] is Õ(1

ε2
). We note that using

a simple lazy update modification on the algorithm, which is the same technique used in [You01;
You14], we can reduce the work of our algorithm to Õ(1

ε2
). Same as in [You01; You14], this comes

at the cost of requiring a centralized step in the parallel algorithm. Since the iteration count is the
more interesting side of this line of work, we will not incorporate the lazy update in our algorithm
for simplicity.

Furthermore, in the case of pure packing problem or pure covering problem, our algorithm
allows a similar but simplified analysis, and will converge in Õ(1

ε2
) iterations.

4.1 Technical overview
To compute (1 + ε)-approximation of a mixed packing and covering LP in the form (1.1), via
standard reduction and scaling (e.x. See [You01]), it suffices to solve a (1 + O(ε))-feasibility
problem as specified in (4.1) and (4.2).

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 48

At a high level, our work follows the Lagrangian-relaxation approach as in [You01; You14].
In particular, we replace the hard packing and covering constraints with a scalar-valued potential
function, which is continuous and smooth. The potential function measures how far away the
current solution is from satisfying all the captured constraints. We then start with a x of very small
values, and iteratively increase x by a carefully chosen increment vector ∆, which is guided by the
gradients of the potential function. The increment vector ∆ will keep driving down the potential
function, until the function gets small enough, at which point we terminate, and conclude we either
have an approximate solution or the original LP is infeasible.

Same as in [You01; You14], each iteration a subset of the variables are picked based on the
gradients of the potential function, and are increased within a local smooth region so we can bound
the change of the potential function. However, unlike the parallel algorithm in [You01; You14] that
multiplicatively updates all variables in the subset with a uniform step size, we further incorporate
the gradients into step sizes of individual variables’ updates. This discriminative multiplicative step
size allows more aggressive updates on average, and is directly motivated by the line of works using
gradient based optimization methods [AZO15b; AZO15a; Wan+15]. However, we move away
from the optimization oriented view of these update steps in favor of more localized and adhoc
analyses, which was developed to analyze direct adaptations of Young’s algorithm for purely-
packing SDPs [PT12], leading to bounds similar to the optimization based approaches [ZLO15].

In particular, for each variable there will be a packing gradient capturing the packing part of
the potential function, and there will be a covering gradient for the covering part of the potential
function. The packing gradient captures the overall impact of a variable on the packing constraints,
so a large packing gradient suggests the variable should not be increased. The covering gradient,
on the other hand, gauges the impact of the variable on the covering constraints, and when large,
it will be advantageous to increase the variable. To decide whether or not to increase a variable,
we look at both gradients, and update only when the covering gradient is larger. Furthermore, to
determine a variable’s update step size, we use the ratio of its two gradients.

Similar to Young’s algorithm [You01], the overall progress of the algorithm is captured by how
large the constraints become, which in turn depend on how large the variables are. A sufficient
condition for the algorithm to terminate is when a variable is increased by more than a certain
amount. To bound the number of iterations before any variable gets too large, we combine the
notion of phases from [You01] with the more refined analysis of gradient updates from more recent
works [Wan+15]. This is owing to the clearer combinatorial structure of our interpretation of
discriminative multiplicative steps

On a high level, the algorithm demonstrates the behavior that it will update a subset of variables
for a while, until certain global progress is made, before shifting to other variables. The phases
are created to capture these local windows, such that within a phase the algorithm only makes
limited global progress. Since the update only increases variables, thus only increasing the values
of the constraints, this translate to certain monotonicity-like property on the gradients within the
interactions captured by a single phase. In [You01], the phases are defined so that any variable
being increased at the last iteration of a phase must have been increased in every iteration of
the phase, which, coupled with a lower bound on each increase, gives a bound of the number of
iterations in a phase. In our analysis, we significantly expand the phases to capture larger global

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 49

progress, leading to a smaller number of phases.
The larger phases lead to a weaker monotonicity property on the gradients within a phase. To

bound the number of iterations in our phase, we divide the iterations into two groups: some initial
warm-up bad iterations followed by subsequent good iterations containing more interesting seg-
ments of the path to convergence (See Definition 4.2.1 for formal definitions). The bad iterations
are ones where packing gradients are much smaller than covering gradients. Such steps create
difficulties in the analysis, but an analysis identical to Young’s algorithm [You01] shows that they
must occur near the very start of a phase. In the subsequent good iterations, the packing gradients
for all variables are relatively large comparing to their covering counterparts, so we only get weak
signals as to which variables to move, and we can only move them by small steps. To bound the
number of good iterations, we construct a dual solution from a suitable average of the packing and
covering gradients over all the good iterations in a phase. Intuitively, if the primal LP is feasible,
the dual solution certifies that there must be some key variable(s) we increase during the phase to
achieve the fixed global progress. Particularly, we know that there is at least one variable that on
average has smaller packing gradients than covering gradients. Moreover, since in the good itera-
tions, the packing gradients are all at least on the same scale as the covering gradients, an argument
in the spirit of Markov’s inequality then implies that the corresponding variable was increased by
a large amount, which in turn leads to a bound on the number of iterations of a phase.

Remarks
We note that the phases in our result are virtual: we only need them in the analysis, but not in the
actual execution of the algorithm. In particular, this modification to Young’s algorithm [You01]
removes the dependency of updates on the phase of the overall algorithm as well as the current
gradient. We believe this direct removal of phases also apply to other variants of Young’s algo-
rithm [You14].

Furthermore, we believe that there is a more natural variant of the analysis that does not rely on
phases, and treats all the iterations in a completely symmetric manner. Such an analysis is likely
crucial for extending our results to the SDP setting, where the gradients exhibit much weaker
monotonicity behaviors [ZLO15]. We are optimistic that it will lead to an Õ(1

ε2
) bound for the

mixed packing-covering case, which we believe is the more likely asymptotic behaviors of phase-
less, gradient update variants of Young’s algorithm [You01; You14].

4.2 Parallel Algorithm for Mixed Packing and Covering LPs

Preliminaries
To compute (1 + ε)-approximation of a mixed packing and covering LP in the form (1.1), via
standard reduction and scaling (e.x. See [You01]), it suffices to solve the following (1 + O(ε))-
feasibility problem, that is, either find x ≥ 0 such that

0 < maxPx ≤ (1 + ε) minCx (4.1)

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 50

or conclude the following LP is infeasible

Cx ≥ ~1
Px ≤ (1− 10ε)~1

x ≥ 0

(4.2)

We present our parallel Õ(1/ε3) routine in Algorithm 5 for solving the (1 + O(ε))-feasibility
problem above, that is, either find x ≥ 0 satisfying (4.1), or certify the infeasibility of (4.2). The
input contains a packing constraint matrix P ∈ RnP×m

≥0 , a covering constraint matrix C ∈ RnC×m
≥0 ,

and an error parameter 0 < ε. That is, there are m variables, nP packing constraints, and nC
covering constraints. We also use n = nP + nC to denote the total number of constraints.

To certify that (4.2) is infeasible, we rely on the dual LP of (4.2).

Lemma 4.2.1. By duality, (4.2) is infeasible if there exists y, z ≥ 0 s.t.

(1− 10ε)
CT z

~1T z
<
P Ty

~1Ty
. (4.3)

Proof. Eqn. (4.3) is a direct reformulation of the dual LP of (4.2). Since we only need the sufficient
condition, the result is by weak duality. If there exists any x ≥ 0 satisfying (4.2), we have

(1− 10ε)
xTCT z

~1T z
≥(1− 10ε)

~1T z

~1T z
= 1− 10ε,

xTP Ty

~1Ty
≤(1− 10ε)

~1Ty

~1Ty
= 1− 10ε.

Together they give 1 < 1, contradiction.

As in [You01], we use the soft-max lmax(Px) and soft-min lmin(Cx) in our potential function

lmax(Px) = ln(
∑
j

exp(Px)j) = ln(
∑
j

exp(P T
j x))

and
lmin(Cx) = − ln(

∑
j

exp(−Cx)j) = − ln(
∑
j

exp(−CT
j x)),

where P T
j , C

T
j are the j-th row of P,C respectively. In particular, these functions give smooth

approximation to maxPx and minCx:

maxPx ≤ lmax(Px) ≤ maxPx+ lnn

minCx ≥ lmin(Cx) ≥ minCx− lnn.
(4.4)

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 51

Algorithm

We start with small x(0)
i = 1

m‖P:i‖∞ ,∀ i ∈ [m], and keep increasing x properly, until it reaches
the terminate condition in line 5, that is, max{maxPx,minCx} ≥ K = 10 lnn

ε
. The reason

of the chosen K value is stated in Lemma 4.2.5. Roughly, when the difference of minCx and
maxPx becomes ε factor smaller than max{maxPx,minCx}, we know that maxPx ≤ (1 +
O(ε)) minCx.

In each iteration of the while-loop, we first delete all covering constraints which has already
reachedK. Since x never decreases, we know that once a row is deleted, we no longer need to look
at it. Note the covering matrix cannot be empty, since we enter the iteration with minCx < K. We
compute the vectors y, z, which are exponentials of the values of the packing and covering con-
straints respectively. We then compute a and b, which can be considered as gradients of lmax(Px)
and lmin(Cx) respectively, and use them to guide our update on x. In particular, we update xi if
ai ≤ (1− ε/50)bi (i.e. i ∈ B). Furthermore, we update xi multiplicatively by a factor depends on
the ratio of ai

bi
, as specified in Eqn. (4.5) and line 13. Note that the smallest update in our algorithm

is by a factor of (1 + Ω(ε2

lnn
)), which is the same as the fixed update step size in [You14], and in

general our updates take larger steps.
Note that in our analysis, we equivalently view z as the full nC-dimensional vector, where the

coordinates corresponding to deleted constraints are filled by 0’s. In particular, the matrix-vector
product of the original C with the nC-dimensional z will be the same as the product of the reduced
covering matrix C(t) and reduced z.

Proof of Correctness
In this section we will show Algorithm 5 will terminate, and output the correct answer.

Lemma 4.2.2 shows that empty B certifies the infeasibility of the input instance (4.2), which
proves the correctness if we end up in the case of line 11.

Lemma 4.2.2. If the problem instance (4.2) is feasible, then

∀ x ≥ 0, B = {i : ai ≤ (1− ε

50
)bi} 6= ∅.

Proof. Let x∗ be a feasible solution of (4.2). Assume by contradiction, ∃ x ≥ 0,∀ i ∈ [m], a
(t)
i >

(1− ε
50

)b
(t)
i . By definition of a, b, it is equivalent to ∃ y, z ≥ 0 such that

(1− ε

50
)
CT z

~1T z
<
P Ty

~1Ty
.

Then the result follows directly from Lemma 4.2.1.

If Algorithm 5 doesn’t terminate with line 11, it must increase at least one variable by at least
a factor of (1 + ε2

10 lnn
) each iteration, so the algorithm must reach the termination condition of

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 52

Algorithm 5 Parallel algorithm for mixed packing and covering LPs
Input: P,C, ε
Output: “infeasible” or x ≥ 0 s.t. Px ≤ (1 + ε)Cx

1: Let K = 10 lnn
ε

, α = 1
K

, where n is the number of constraints.
2: Initialize x(0)

i = 1
m‖P:i‖∞ ,∀ i ∈ [m], where m is the number of variables.

3:
4: Let t = 0.
5: while maxPx < K and minCx < K do
6: Let C(t) be C with rows j such that

(
Cx(t)

)
j
≥ K deleted.

7: Let y(t) = exp
(
Px(t)

)
, z(t) = exp

(
−C(t)x(t)

)
.

8:
9: a(t) = PT y(t)

~1T y(t)
, b(t) = (C(t))T z(t)

~1T z(t)
.

10: Define B(t) = {i : a
(t)
i ≤ (1− ε

50
)b

(t)
i }.

11: If B(t) = ∅, then return “infeasible”.
12: Let

∆
(t)
i =


1
2
(1− a

(t)
i

b
(t)
i

) ∈ [ε/100, 1
2
] if i ∈ B(t)

0 if i 6∈ B(t)

(4.5)

13: x
(t+1)
i ← x

(t)
i (1 + α∆

(t)
i).

14: t← t+ 1.
15: end while
16: return x = x(t)

K
.

the while loop at some point, and we need to show the output x satisfies (4.1). We consider the
following potential function,

f(x(t)) = lmax(Px(t))− lmin(C(t)x(t)) = ln(~1Ty(t)) + ln(~1T z(t)).

We first quantify the changes of lmax and lmin when we update the variables. This type of smooth-
ness analysis is standard in analyzing algorithms that make updates using gradient information.
Similar results are derived in other works on packing and covering (See [AZO15b; You01]). The
particular analysis we develop can deal with larger gradient steps. In particular, the approach of
our analysis allows updates that may move the gradients of some variables out of their respective
coordinate-wise smooth regions, as long as we can still bound the combined impact on the poten-
tial function from updates of all variables. This approach can extend straightforwardly to show
larger updates also work in [AZO15b], and improve their pure packing algorithm to run in Õ(N

ε2
)

iterations. Since the proof is technically tedious, we defer the proof to Section 4.3.

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 53

Lemma 4.2.3. At each iteration t,

lmax(Px(t+1)) ≤ lmax(Px(t)) + α〈a(t), (1 + ∆(t)) ·∆(t) · x(t)〉

and
lmin(C(t+1)x(t+1)) ≥ lmin(C(t)x(t)) + α〈b(t), (1−∆(t)) ·∆(t) · x(t)〉,

where ∆ · x is the entry-wise product vector, i.e., (∆ · x)i = ∆ixi.

With the above bounds on the changes of the two components lmax(Px) and lmin(Cx), we
can show how our updates move the potential function f(x).

Lemma 4.2.4. Given maxPx(t) < 10 lnn
ε

and minCx(t) < 10 lnn
ε

, we always have f(x(t)) ≤ 2 lnn
during the execution of Algorithm 5.

Proof. Initially, x(0)
i = 1

m‖P:i‖∞ , we have Px(0) ≤ ~1 and Cx ≥ 0, thus f(x(0)) ≤ 2 lnn. To show
f(x) ≤ 2 lnn for all iterations t before terminate, it suffices to show that f(x) is non-increasing
during the process. From Lemma 4.2.3,

f(x(t+1))− f(x(t)) ≤ α〈a, (1 + ∆) ·∆ · x(t)〉 − α〈b, (1−∆) ·∆ · x(t)〉

=
∑
i

α∆ixi(ai(1 + ∆i)− bi(1−∆i)).

For each i ∈ [m], by our update rule (4.5), either ∆i, or ∆i = 1
2
(1− ai

bi
), in which case

ai(1 + ∆i)− bi(1−∆i) =
3aibi − a2

i

2bi
− ai + bi

2
=

2aibi − a2
i − b2

i

2bi
≤ 0,

so all the summands are non-positive, thus f(x) is non-increasing.

The above lemma guarantees that the difference between lmax(Px) and lmin(Cx) is bounded
by 2 lnn, which by Eqn. (4.4) suggests maxPx ≤ minCx + O(lnn).Then when the two terms
are large at termination, we are approximately feasible as the difference is a factor of ε smaller.

Lemma 4.2.5. If Algorithm 5 terminates with line 16, then it returns an x ≥ 0 with 0 < maxPx ≤
(1 + ε) minCx.

Proof. Suppose the algorithm terminates at iteration T , that is, maxPx(T) ≥ 10 lnn
ε

or minCx(T) ≥
10 lnn
ε

. Consider iteration T − 1, the covering matrix is not empty (otherwise, the algorithm ter-
minates before iteration T). Since x(T) = x(T−1) · (1 + α∆(T−1)) ≤ (1 + 5ε

lnn
)x(T−1), we have

maxPx(T−1) ≥ 5 lnn
ε

or minCx(T−1) ≥ 5 lnn
ε

.
By Lemma 4.2.4,

maxPx(T−1) ≤ lmax(Px(T−1)) ≤ lmin(C(T−1)x(T−1)) + 2 lnn ≤ minCx(T−1) + 2 lnn.

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 54

Since 2 lnn ≤ ε · 5 lnn
ε

, we have

maxPx(T−1) ≤ (1 + ε) minCx(T−1).

This also gives maxPx(T) ≤ (1+ε) minCx(T), since xT is within in multiplicative factor 1+ ε
10 lnn

of xT−1. Since we start with x > 0, and only increase x, we also have maxPx > 0. So the x we
return at the end satisfies (4.1).

Analysis of Convergence
So far we have proved that Algorithm 5 will terminate, and will either output x satisfying (4.1)
at the end, or terminate earlier and correctly certify (4.2) is infeasible. In this section we show
that if (4.2) is feasible, Algorithm 5 must finish with the first case in Õ(1

ε3
) iterations, so if the

algorithm takes more than 1000 lnn ln(m
ε

)

ε3
iterations to complete, we can terminate it, and correctly

output that (4.2) is infeasible.
We adapt the concept phase from Young’s algorithm. Note phase is only used in our analysis,

and our algorithm does not contain phase. Formally, phase s contains the iterations t such that

nP
nC
· 2s ≤

~1Ty(t)

~1T z(t)
<
nP
nC
· 2s+1

where nP is the number of packing constraints and nC is the number of covering constraints.
Since we only increase x, ~1T y

~1T z
is monotonically increasing, so each phase covers a consecu-

tive sequence of iterations. Furthermore, as ln(
~1T y
~1T z

) = lmax(Px) + lmin(Cx) measures global
progress towards termination, each phase captures a fixed amount of progress. From our definition
of phases, and the termination condition, we have

Lemma 4.2.6. The total number of phases in Algorithm 5 is O(logn
ε

).

Proof. Since x is monotonically increasing, y = exp(Px) and z = exp(−Cx) are monotonically
increasing and decreasing respectively, which implies that the quantity ~1T y

~1T z
is monotonically in-

creasing. Initially Px(0) ≥ 0, Cx(0) ≥ 0, we know ~1T y(0)

~1T z(0)
≥ nP

nC
. By the termination condition in

Algorithm 5, the ratio never goes beyond nP exp(10 logn
ε

). Therefore, the total number of phases is
O(logn

ε
).

We now bound the number of iterations in a single phase. The iterations of a phase are divided
into two groups, the bad iterations and the good iterations, formally defined as follows.

Definition 4.2.1. If in an iteration t, we have for all i

a
(t)
i

b
(t)
i

>
1

3
, (4.6)

then we call it a good iteration. Otherwise we call it a bad iteration.

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 55

Note a phase may contain only bad iterations or only good iterations. We bound the total
number of iterations in the two groups separately.

As discussed earlier, the bad iterations capture the initial warm-up iterations of a phase, where
in any bad iteration, we can identify some variable xi with a strong signal (i.e. ai

bi
≤ 1

3
), so we can

increase the variable by a lot. This restricts the warm-up sequence from getting too long, and we
formalize the intuition in the following lemma.

Lemma 4.2.7. In a single phase, the number of bad iterations is at most O(lnn ln(m
ε

)/ε).

Proof. We will prove the result by showing that there cannot be any bad iteration after the initial
100 lnn ln(m

ε
)/ε iterations of a phase. By contradiction, if for any variable i, after Ω(lnn ln(m

ε
)/ε)

iterations of a phase, we have at iteration t such that for some i,

a
(t)
i

b
(t)
i

=
(P Ty(t))i
~1Ty(t)

~1T z(t)

(CT z(t))i
≤ 1

3
,

then this ratio is at most 2
3

in all previous iterations of this phase, since (PT y)
i

(CT z)i
is monotonically

increasing, and 2s ≤ ~1T y
~1T z

< 2s+1 in this phase. Equivalently, this is saying ai ≤ 2
3
bi, so i ∈ B in

all previous Ω(lnn ln(m
ε

)/ε) iterations of the phase, and ∆i ≥ 1
6

in all those iterations.
Each iteration the multiplicative update on xi is (1 + α∆i), which is (1 + Θ(ε

10 lnn
)) since

∆i ≥ 1
6
. As xi starts with 1

m‖P:i‖∞ , after 100 lnn ln(m
ε

)/ε updates, we have xi � 10 lnn
ε‖P:i‖∞ , which

gives maxPx� 10 lnn
ε

, so the algorithm must have terminated.

The above lemma guarantees that all iterations after the first 100 lnn ln(m
ε

)/ε must be good
iterations, so we proceed to bound the number of these good iterations in a single phase. Without
loss of generality, we index these good iterations in a phase as 1, . . . , T by shifting t.

We first identify one variable that must be updated extensively in these iterations.

Claim 4.2.8. Suppose the instance (4.2) is feasible, then There exists i ∈ [m] such that

T∑
t=1

b
(t)
i − a

(t)
i ≥ 10ε

T∑
t=1

b
(t)
i . (4.7)

Proof. Define y and z to be the sum of the normalized gradients of iterations 1, . . . , T , that is,

y =
T∑
t=1

y(t)

~1Ty(t)
, z =

T∑
t=1

z(t)

~1T z(t)
.

Note ~1Ty = ~1T z = T . Recall a(t)
i and b(t)

i are respectively (PT y(t))i
~1T y(t)

and (CT z(t))i
~1T z(t)

, then

T∑
t=1

a
(t)
i =

T (P Ty)i
~1Ty

,
T∑
t=1

b
(t)
i =

T (CT z)i
~1T z

.

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 56

Assume by contradiction, ∀ i ∈ [m],
∑T

t=1 a
(t)
i > (1− 10ε)

∑T
t=1 b

(t)
i , that is,

P Ty

~1Ty
> (1− 10ε)

CT z

~1T z
.

By Lemma 4.2.1, y, z certify infeasibility of the instance (4.2), which contradicts the assumption.

The above claim gives us a variable that on average has smaller packing gradients than covering
gradients in this iteration. Together with the property we have on the good iterations (4.6), we can
bound the number of good iterations.

Lemma 4.2.9. In a single phase, the number of good iterations is at most O(lnn ln(m
ε

)/ε2).

Proof. Let xi be a variable satisfying Eqn. (4.7). We want to turn Eqn. (4.7) into some lower
bound on the total multiplicative update on xi through these iterations. Intuitively, a bad case is
that in some iteration t, a(t)

i , b
(t)
i are much larger than the values in other iterations, since they can

dominate the terms from other iterations in Eqn. (4.7), but not much to the total update of xi, since
their ratio is what matters to the update. However, since we are inside one single phase, and only
looking at good iterations, we can show the bad scenario will not show up.

Formally, let l = a
(1)
i and u = b

(1)
i . Since (P Ty)i monotonically increases, and ~1Ty will

increase but not by more than a factor of 2 in a phase, we have

a
(t)
i =

(P Ty(t))i
~1Ty(t)

≥ l/2 ∀t = 1, . . . , T (4.8)

Similarly, we have

b
(t)
i =

(CT z(t))i
~1T z(t)

≤ 2u ∀t = 1, . . . , T (4.9)

Furthermore, since we are looking at the good iterations, we have

l ≥ 1

3
u. (4.10)

The inequalities above allow us to turn the difference-based guarantee from Eqn. (4.7) into lower
bounds on ratios we need.

By the update (4.5), we have

∆
(t)
i ≥

(1− ε
50

)b
(t)
i − a

(t)
i

2b
(t)
i

.

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 57

So we can lower bound the total update on xi as follows

x
(T)
i ≥x(1)

i exp

(
α
∑

t ∆
(t)
i

2

)

=x
(1)
i exp

(
α

4

∑
t

(1− ε
50

)b
(t)
i − a

(t)
i

b
(t)
i

)

≥x(1)
i exp

(
α

4

∑
t

(
b

(t)
i − a

(t)
i

2u
− ε

50

))

where we used (4.9) in the last line.
From Eqn. (4.7), we have ∑

t

b
(t)
i − a

(t)
i ≥10ε

∑
i

b
(t)
i

≥ 10ε

1− 10ε

∑
t

a
(t)
i

≥ εuT

1− 10ε
≥ εuT.

The first two lines both follow from Eqn. (4.7), the next line follows from a
(t)
i ≥ l/2 ≥ u/6.

Thus

x
(T)
i ≥ x

(1)
i exp

(
εαT

8
− εαT

200

)
≥ 1

m‖P:i‖∞
exp

(
εαT

10

)
.

If T ≥ 100 lnn ln m
ε

ε2
≥ 100 ln m

ε

εα
, we have x(T)

i � 10 lnn
ε‖P:i‖∞ . So the algorithm must have terminated

since maxPx� 10 lnn
ε

.

Lemma 4.2.7 and Lemma 4.2.9 bound the total number of iterations in a phase by Õ(1
ε2

),
together with the bound on the number of phases, which is Õ(1

ε
), we guarantee the total number of

iterations in Algorithm 5 is Õ(1
ε3

) if the LP in (4.2) is feasible.

Theorem 4.2.10. Algorithm 5 solves the (1 + ε)-feasibility problem correctly. It runs in parallel
time Õ(1/ε3) with the total work Õ(N/ε3), where N is the number of non-zero entries in the
constraint matrix.

Proof. The correctness and convergence follows from the lemmas in the prior sections. We only
need to look at the running time and total work.

At each iteration, we compute all updated values in O(logN) parallel time. Since the total
number of iterations is Õ(1

ε3
), the algorithm terminates in parallel time Õ(1

ε3
).

To see the total work, consider the following implementation. For each i ∈ [m], we maintain
Pjixi if Pij 6= 0; similarly we maintain Cjixi if Cij 6= 0. Besides, we maintain the values of

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 58

y, z, P Ty, CT z,~1Ty and ~1T z. When we update xi, we update these values accordingly, with work
proportional to the number of non-zero entries in the ith column of the constraint matrix. For each
fixed variable xi, the total time of updates is at most Õ(1

ε2
). Thus, the work on this part is Õ(N

ε2
).

Additionally, we need to compute the ai, bi for all variables at the beginning of each iteration to
determine which variables to update, this takes Õ(N) work each iteration, so the total work is
Õ(N

ε3
).

We see the majority of the work is actually on computing the gradients for the variables we
may not update. We point out that we can implement the same lazy update as in [You14], which
on a high level is just that if a variable has a large ai

bi
in an iteration, and is not updated, we don’t

recompute its gradients, until ~1T y
~1T z

grows by more than a factor of 1 + ε. This can reduce the
work to Õ(N

ε2
), but requires a centralized step to control the phases. We omit the details as it is a

straightforward adaptation.

Pure Packing and Pure Covering LPs
We point out that in the case of pure packing or pure covering LPs, Algorithm 5 converges in Õ(1

ε2
)

iterations. This has the advantages over Algorithm 2, as Algorithm 5 is deterministic, and doesn’t
need centralized steps.

We will look at pure packing LPs, and the case for pure covering LPs will be symmetric.
Given packing LP in the optimization form

max
x≥0
{~1Tx : Px ≤ ~1}

via standard reduction and scaling, we need to solve a (1 + ε)-feasibility problem the same as in
the mixed packing and covering case specified in (4.1) and (4.2). In the case of pure packing, we
will have C = c~1T for some constant c.

The correctness proof follows from the mixed case, and we discuss how we get faster conver-
gence for pure packing.

The special structure of C greatly simplifies the convergence analysis, as now z is a scalar, and
b

(t)
i = c for all variables xi across all iterations t. This allows us to aggregate the good iterations

from all phases, and bound the total number of good phases by Õ(1
ε2

), which will lead to Õ(1
ε2

)
total iterations.

In particular, now we look at all the good iterations across all phases together, and WLOG
number them 1, . . . , T . Claim 4.2.8 still holds, as it doesn’t rely on phases. Then we can prove a
stronger version of Lemma 4.2.9

Lemma 4.2.11. The total number of good iterations T is at most O(lnn ln(m
ε

)/ε2).

The proof is a straightforward adaptation of the proof of Lemma 4.2.9. The proof is simpler,
since now bi is a constant across all iterations, so the property (4.6) we have on the good iterations
directly put all the values on the same scale, so we can lower bound the total update on xi across
all good iterations.

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 59

4.3 Missing Proof
Lemma 4.2.3. At each iteration t,

lmax(Px(t+1)) ≤ lmax(Px(t)) + α〈a(t), (1 + ∆(t)) ·∆(t) · x(t)〉

and
lmin(C(t+1)x(t+1)) ≥ lmin(C(t)x(t)) + α〈b(t), (1−∆(t)) ·∆(t) · x(t)〉,

where ∆ · x is the entry-wise product vector, i.e., (∆ · x)i = ∆ixi.

Proof. To simplify, we omit superscript (t) in the proof.

lmax(Px(t+1)) = ln
∑
j

exp(P T
j (x+ α∆ · x))

= ln
∑
j

exp(P T
j x) · exp(αP T

j (∆ · x))

≤ ln
∑
j

exp(P T
j x)(1 + αP T

j (∆ · x) + α2(P T
j (∆ · x))2).

Recall P T
j is the j-th row of P (i.e. the j-th packing constraint). The last inequality is by Taylor

expansion, with ε ≤ ∆i ≤ 1
2
, α = ε/10 log n, and P T

j x ≤ 10 log n/ε for all j, so αP T
j (∆ · x) ≤ 1

2
.

We can control the second order term as follows

α2(P T
j (∆ · x))2 = α2

(∑
i

Pji(∆ixi)

)2

≤ α2

(∑
i

∆iPji(∆ixi)

)(∑
i

Pjixi

)

≤ α2

(∑
i

∆iPji(∆ixi)

)
10 lnn

ε

= α

(∑
i

∆iPji(∆ixi)

)
= αP T

j (∆ ·∆ · x).

The first inequality is by the Cauchy-Schwarz inequality

〈u, v〉2 ≤ ‖u‖2‖v‖2

, with ui =
√

∆iPji(∆ixi) and vi =
√
Pjixi. The second inequality is due to P T

j x ≤ 10 lnn
ε

for all
j. The last line is by our choice of α = ε

10 lnn
.

So far we have bounded the impact of the updates on each individual constraint, and we have

lmax(Px(t+1)) ≤ ln
∑
j

exp(P T
j x)(1 + αP T

j (∆ · x) + αP T
j (∆ ·∆ · x)).

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 60

We then translate the changes on each constraint to the combined change on lmax(Px). Intuitively,
the combined change is a convex combination on the changes of each constraint, weighted by their
exponential values yj = exp(P T

j x).

ln
∑
j

exp(P T
j x)(1 + αP T

j (∆ · x) + αP T
j (∆ ·∆ · x))

= ln
∑
j

yj(1 + αP T
j (∆ · x) + αP T

j (∆ ·∆ · x))

= ln

(
(~1Ty)

(
1 +

∑
j

yj
~1Ty

(
αP T

j (∆ · x) + αP T
j (∆ ·∆ · x)

)))

= ln

(
(~1Ty)

(
1 + α〈 y

~1Ty
, P ((~1 + ∆) ·∆ · x)〉

))
.

We can then write out the change of lmax(Px) explicitly as

lmax(Px(t+1)) ≤ ln

(
(~1Ty)

(
1 + α〈 y

~1Ty
, P ((~1 + ∆) ·∆ · x)〉

))
= ln

(
(~1Ty)

(
1 + α〈P

Ty

~1Ty
, (~1 + ∆) ·∆ · x〉

))
= ln

(
(~1Ty)

(
1 + α〈a, (~1 + ∆) ·∆ · x〉

))
= lmax(Px) + ln

(
1 + α〈a, (~1 + ∆) ·∆ · x〉

)
≤ lmax(Px) + α〈a, (1 + ∆) ·∆ · x〉.

Recall a = PT y
~1T y

as defined in (9), and the last line is by ln(1 + x) ≤ x for x ≥ 0.

For the lmin(C(t)x) part, we follow the same approach.

− lmin(C(t+1)x(t+1)) = ln
∑
k

exp(−C(t+1)x(t+1))k,

since C(t+1) can only have same or more rows dropped from C(t) due to the overly satisfied con-
straints, we know ln

∑
k exp(−C(t+1)x(t+1))k ≤ ln

∑
k exp(−C(t)x(t+1))k. Again omitting the

superscript (t), we have

− lmin(C(t+1)x(t+1)) ≤ ln
∑
k

exp(−C(x+ α∆ · x))k

= ln
∑
k

exp(−Cx)k exp(−αC(∆ · x))k

≤ ln
∑
k

exp(−Cx)k(1− αC(∆ · x) + α2(C(∆ · x))2)k.

CHAPTER 4. PARALLEL ALGORITHM FOR POSITIVE LPS 61

The last inequality is due to (αC(∆·x))k ≤ 1
2

for all k, since in C(t) we only keep those constraints
that are not above 10 lnn

ε
yet, i.e. (Cx)k ≤ 1

α
for all k. Again using Cauchy-Schwarz inequality as

before and derivations similar to the lmax(Px) case, we get

− lmin(C(t+1)x(t+1)) ≤ − lmin(C(t)x(t))− α〈b, (1−∆) ·∆ · x〉.

62

Bibliography

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. “The Multiplicative Weights Update
Method: a Meta-Algorithm and Applications”. In: Theory of Computing 8.6 (2012),
pp. 121–164.

[AM95] Pierluigi Amodio and Francesca Mazzia. “A Parallel Gauss-Seidel Method for Block
Tridiagonal Linear Systems”. In: SIAM J. Sci. Comput. 16.6 (Nov. 1995), pp. 1451–
1461.

[AZO15a] Zeyuan Allen-Zhu and Lorenzo Orecchia. “Nearly-Linear Time Positive LP Solver
with Faster Convergence Rate”. In: Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing. STOC ’15. Newer version available at http:
//arxiv.org/abs/1411.1124. 2015, pp. 229–236.

[AZO15b] Zeyuan Allen-Zhu and Lorenzo Orecchia. “Using Optimization to Break the Epsilon
Barrier: A Faster and Simpler Width-independent Algorithm for Solving Positive Lin-
ear Programs in Parallel”. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA ’15. Full version with title “Using Opti-
mization to Solve Positive LPs Faster in Parallel” available at http://arxiv.
org/abs/1407.1925. 2015, pp. 1439–1456.

[BBR04] Yair Bartal, John W. Byers, and Danny Raz. “Fast, Distributed Approximation Al-
gorithms for Positive Linear Programming with Applications to Flow Control”. In:
SIAM J. Comput. 33.6 (2004), pp. 1261–1279.

[BBR97] Yair Bartal, John W. Byers, and Danny Raz. “Global Optimization Using Local Infor-
mation with Applications to Flow Control”. In: 38th Annual Symposium on Founda-
tions of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22,
1997. 1997, pp. 303–312.

[BI04] D. Bienstock and G. Iyengar. “Faster Approximation Algorithms for Packing and
Covering Problems”. In: (2004). Preliminary version appeared in the proceeding of
STOC 04.

[Bra+11] Joseph K. Bradley et al. “Parallel Coordinate Descent for L1-Regularized Loss Min-
imization”. In: Proceedings of the 28th International Conference on Machine Learn-
ing, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011. 2011, pp. 321–
328.

BIBLIOGRAPHY 63

[BT91] Dimitri P. Bertsekas and John N. Tsitsiklis. “Some aspects of parallel and distributed
iterative algorithms - A survey, ”. In: Automatica 27.1 (1991), pp. 3–21.

[FR13] Olivier Fercoq and Peter Richtárik. “Accelerated, Parallel and Proximal Coordinate
Descent”. In: CoRR abs/1312.5799 (2013).

[KY14] Christos Koufogiannakis and Neal E. Young. “A Nearly Linear-Time PTAS for Ex-
plicit Fractional Packing and Covering Linear Programs”. In: Algorithmica 70.4 (2014),
pp. 648–674.

[LN93] Michael Luby and Noam Nisan. “A parallel approximation algorithm for positive
linear programming”. In: Proceedings of the Twenty-Fifth Annual ACM Symposium
on Theory of Computing, May 16-18, 1993, San Diego, CA, USA. 1993, pp. 448–457.

[LS13] Yin Tat Lee and Aaron Sidford. “Efficient Accelerated Coordinate Descent Methods
and Faster Algorithms for Solving Linear Systems”. In: 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA. 2013, pp. 147–156.

[Mah+16] Michael W. Mahoney et al. “Approximating the Solution to Mixed Packing and Cov-
ering LPs in Parallel Õ(ε−3) Time”. In: 43rd International Colloquium on Automata,
Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy. 2016,
52:1–52:14.

[Nem04] Arkadi Nemirovski. “Prox-Method with Rate of Convergence O(1/t) for Variational
Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-
Concave Saddle Point Problems”. In: SIAM Journal on Optimization 15.1 (2004),
pp. 229–251.

[Nes05] Yurii Nesterov. “Smooth minimization of non-smooth functions”. In: Math. Program.
103.1 (2005), pp. 127–152.

[Nes12] Yurii Nesterov. “Efficiency of Coordinate Descent Methods on Huge-Scale Optimiza-
tion Problems”. In: SIAM Journal on Optimization 22.2 (2012), pp. 341–362.

[PST91] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. “Fast Approximation Algo-
rithms for Fractional Packing and Covering Problems”. In: 32nd Annual Symposium
on Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991. 1991,
pp. 495–504.

[PT12] Richard Peng and Kanat Tangwongsan. “Faster and simpler width-independent par-
allel algorithms for positive semidefinite programming”. In: Proceedinbgs of the 24th
ACM symposium on Parallelism in algorithms and architectures. SPAA ’12. Available
at http://arxiv.org/abs/1201.5135. Pittsburgh, Pennsylvania, USA, 2012, pp. 101–108.

[RT12] Peter Richtárik and Martin Takác. “Parallel Coordinate Descent Methods for Big Data
Optimization”. In: CoRR abs/1212.0873 (2012).

BIBLIOGRAPHY 64

[RT14] Peter Richtárik and Martin Takác. “Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function”. In: Math. Program. 144.1-2
(2014), pp. 1–38.

[Saa03] Yousef Saad. Iterative methods for sparse linear systems. Siam, 2003.

[TY09] Paul Tseng and Sangwoon Yun. “A coordinate gradient descent method for nons-
mooth separable minimization”. In: Math. Program. 117.1-2 (2009), pp. 387–423.

[Wan+15] Di Wang et al. “Faster Parallel Solver for Positive Linear Programs via Dynamically-
Bucketed Selective Coordinate Descent”. In: CoRR abs/1511.06468 (2015).

[Wri15] Stephen J. Wright. “Coordinate descent algorithms”. In: Math. Program. 151.1 (2015),
pp. 3–34.

[WRM16] Di Wang, Satish Rao, and Michael W. Mahoney. “Unified Acceleration Method for
Packing and Covering Problems via Diameter Reduction”. In: 43rd International Col-
loquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy. 2016, 50:1–50:13.

[You01] Neal E. Young. “Sequential and Parallel Algorithms for Mixed Packing and Cover-
ing”. In: 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001,
14-17 October 2001, Las Vegas, Nevada, USA. 2001, pp. 538–546.

[You14] Neal E. Young. “Nearly Linear-Time Approximation Schemes for Mixed Packing/-
Covering and Facility-Location Linear Programs”. In: CoRR abs/1407.3015 (2014).

[ZLO15] Zeyuan Allen Zhu, Yin Tat Lee, and Lorenzo Orecchia. “Using Optimization to Ob-
tain a Width-Independent, Parallel, Simpler, and Faster Positive SDP Solver”. In:
CoRR abs/1507.02259 (2015).

[ZO14] Zeyuan Allen Zhu and Lorenzo Orecchia. “Linear Coupling: An Ultimate Unification
of Gradient and Mirror Descent”. In: CoRR abs/1407.1537 (2014).

