
High Dimensional Reachability Analysis: Addressing the
Curse of Dimensionality in Formal Verification

Mo Chen
Claire Tomlin, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-132
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-132.html

July 26, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

High Dimensional Reachability Analysis:
Addressing the Curse of Dimensionality in Formal Verification

by

Mo Chen

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Claire Tomlin, Chair
Professor Murat Arcak

Professor Andrew Packard

Summer 2017

High Dimensional Reachability Analysis:
Addressing the Curse of Dimensionality in Formal Verification

Copyright c© 2017

by

Mo Chen

1

Abstract

High Dimensional Reachability Analysis:
Addressing the Curse of Dimensionality in Formal Verification

by

Mo Chen
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley
Professor Claire Tomlin, Chair

Automation is becoming pervasive in everyday life, and many automated systems,
such as unmanned aerial systems, autonomous cars, and many types of robots, are
complex and safety-critical. Formal verification tools are essential for providing per-
formance and safety guarantees for these systems. In particular, reachability analysis
has previously been successfully applied to small scale control systems with general
nonlinear dynamics under the influence of disturbances. Its exponentially scaling
computational complexity, however, makes analyzing more complex, large scale sys-
tems intractable. Alleviating computation burden is in general a primary challenge
in formal verification.

This thesis presents ways to tackle this “curse of dimensionality” from multiple
fronts, bringing tractable verification of complex, practical systems such as unmanned
aerial systems, autonomous cars and robots, and biological systems closer to reality.
The theoretical contributions pertain to Hamilton-Jacobi (HJ) reachability analysis,
with applications to unmanned aerial system. In addition, this thesis also explores two
frontiers of HJ reachability by combining the formal guarantees of reachability with
the computational advantages of optimization and machine learning, and with fast
motion planning algorithms commonly used in robotics. The potential and benefits
of the theoretical advances are demonstrated in numerous practical applications.

Contents

Contents i

1 Introduction 1
1.1 Safety-Critical Autonomous Systems 1
1.2 Reachability as a Safety Analysis Tool 2

2 Background 6
2.1 System Dynamics . 8
2.2 Hamilton-Jacobi Reachability Analysis 9

3 Unmanned Airspace Infrastructure 14
3.1 Air Highways and Unmanned Aerial Platoons 14
3.2 Provably Safe and Scalable UAV Routing: A Case Study in San Fran-

cisco and the Bay Area . 41

4 System Decomposition 67
4.1 Decomposition of Reachable Sets and Tubes for a Class of Nonlinear

Systems . 67
4.2 Approximate Decomposition via State Decoupling Disturbances . . . 99

5 Frontiers in HJ Reachability Verification 110
5.1 Using Neural Networks to Compute Approximate and Guaranteed Fea-

sible HJB PDE Solutions . 110
5.2 FaSTrack: a Modular Framework for Fast and Guaranteed Safe Motion

Planning . 127

6 Conclusions and Future Work 145

ii

Acknowledgments

First, I would like to express special appreciation for the guidance I received from
my thesis committee members Professor Andrew Packard, Professor Murat Arcak,
and Professor Claire Tomlin. The wisdom you imparted on me has benefited me
greatly in both tangible and intangible ways. In addition, this thesis would also not
have been possible without many generous, caring, and fun people.

The first step to producing new results in research is learning how to do research;
I am deeply grateful for receiving the guidance of Anil, Ruzena, Max, Young-Hwan,
Suraj, Junkai, Frauke, Simon, Insoon, Zhengyuan, Chris, Meeko, Ian, Tomizuka, Jose,
Karl, Andy, Murat, and Claire. Without you, I would not even be able to begin this
thesis.

Of course, a thesis cannot be finished without its contents, and contents are
only possible through research with collaborators. Whenever “we” appears in this
thesis, I mean Kene, Somil, Glen, Aparna, Jaime, SooJean, Sylvia, Frank, Qie, Casey,
Jennifer, Mahesh, Shankar, and Claire. Through these collaborations, I have learned
that a great researcher is more often one with many collaborators rather than the
stereotypical lone scientist.

Technical content and research vision is only a small part of a PhD journey.
Uncountable intangible factors are needed for the courage to pursue a PhD, the
creativity to create new challenges, and the confidence to propose seemingly foolish
solutions. These qualities were jointly granted to me by countless many people:
Kene, Somil, Lititia, Lucretia, Qi, Sylvia, Qie, Ian, Ying, Winnie, Meeko, Claire,
Sally, Shicong, Jack, and everyone else I missed.

1

Chapter 1

Introduction

Autonomous systems have become increasingly pervasive in every day life. These
systems include unmanned aerial systems, self-driving cars, and many other types of
robots. By now, it goes without saying that these systems have many potential
applications, limited only by our imagination. In the recent years, a tremendous
amount of progress has been made in autonomous systems research, for example in
sub-areas such as modeling, planning, and sensing and perception. In addition, the
availability of computing power and hardware platforms today have also helped bridge
the gap between theory and practical implementation.

Despite the recent success in automation, our use of robots and interactions with
robots are still quite limited. For example, one of the current uses of unmanned aerial
vehicles (UAVs) is surveying areas with very few people and no other air traffic. In
general, robotic operations are restricted to controlled environments, and involve a
single robot or a few robots. These robots also have limited interactions with other
agents such as humans. There are likely many reasons for this, and one reason is
simple: If we put many robots close to each other and to humans, we would not know
for sure whether they will harm each other or harm humans.

The perspective of safety is crucial for enabling more effective use of autonomous
systems, many of which are safe-critical systems. Safety critical systems are systems
in which failure is extremely costly, or even fatal. Formal safety analysis will allow
autonomous systems to become provably robust to changes in the environment and
to other agents, as well as operate in much denser configurations. This would mean,
for example, that thousands of UAVs could fly in an urban area. Safety analysis is
also essential for allowing automation to interact closely and physically with humans.

1.1 Safety-Critical Autonomous Systems

On an intuitive level, maintaining safety could be simply avoiding an obstacle,
such as a tree. Sometimes the obstacle may be an agent that can also control the

CHAPTER 1. INTRODUCTION 2

Tree (Don’t hit this)
Stay out of here
(“reachable set”)

Figure 1.1: Reachability analysis quantifies when the bike needs to steer away to
avoid the tree.

way it moves, like an aircraft. On a broader level, maintaining safety means keeping
within a set of safe operating conditions. Staying out of obstacles is one specific
example, but this concept is quite general. For example, safe operating conditions
can be defined in terms of not only position, but also any other variables of interest
such as velocities, angles, or even voltages or concentrations of chemicals, human
comfort, and degree of trust in automation.

Verification of systems is challenging for many reasons. First, all possible system
behaviors need to be accounted for. This makes most simulation-based approaches
insufficient, and is where formal verification methods are needed. Many practical
systems operate in complex environments. These systems are affected by disturbances
such as weather conditions. The environments can be unpredictable, and may even
contain adversarial agents. In addition, the systems evolve in continuous time with
complex, nonlinear dynamics.

Perhaps the most difficult challenge of all is that these systems often have high-
dimensional configuration spaces. High-dimensionality means that many variables are
needed to describe the state of a system. This could occurs if the system of interest
is very complex, or if there are many agents in the system, or both.

1.2 Reachability as a Safety Analysis Tool

The focus of this thesis is reachability analysis, one of the most powerful formal
verification tools for guaranteeing performance and safety properties of systems. The
idea is quite simple: Imagine riding a bike, and suppose that there is a tree in front.
Obviously, we do not want to run into the tree. Figure 1.1 shows a simplified diagram
in which we have the bike, and a circular area that represents the tree. The way we can
avoid hitting the tree is to make sure to change our direction of travel early enough,
while taking into account variables such as momentum and steering capabilities of
the bike, and any disturbances like rough terrain that might affect steering.

CHAPTER 1. INTRODUCTION 3

Reachability analysis quantifies exactly what it means to steer away early enough.
This is done by computing the backward reachable tube or in some cases a backward
reachable set, a region that we must stay out of in order to be able to avoid the
obstacle. In a more generalized setting, where wed like to keep our system within
safe operating conditions, reachability analysis tells us how far away from the unsafe
conditions the system needs to stay away from.

Reachability analysis has been studied extensively in the past several decades.
It is a formal verification method, and accounts for all possible system behaviors, but
is computationally expensive. So, many reachability methods are only applicable to
certain classes of system dynamics, such as linear, or polynomial. Others approximate
reachable sets using simple shapes such as polytopes, or only applicable to systems
without control and disturbance variables. In fact, most methods have multiple of
these restrictions.

This thesis builds upon and extends beyond the Hamilton-Jacobi (HJ) formula-
tion of reachability, which is the most general formulation, without any of the above
restrictions. It is applicable to general controlled nonlinear systems that involve dis-
turbances or adversarial behaviors, and despite this, computes the exact reachable
set rather than approximations. The trade off here is that HJ reachability is the most
computationally expensive method.

In terms of the challenges in analyzing safety critical systems, HJ reachability is
very well suited for addressing all except for one: Like every other formal verification
method, computation burden makes HJ reachability intractable for high dimensional
systems. This thesis presents several methods to alleviate this last challenge, which
is referred to as the “curse of dimensionality”.

In the case of HJ reachability, the computational complexity is exponential with
respect to the number of system dimensions. This is depicted by Figure 1.2. Using
HJ reachability, 1D and 2D reachable sets can be computed very quickly, and do not
use much RAM. 3D reachable sets can take minutes to hours to compute, and require
hundreds of megabytes of memory. 4D reachable sets typically take many hours to
days to compute, and require many gigabytes of memory. Due to computation time
and memory limitations, reachable sets of 5 or more dimensions have been considered
intractable to compute prior to the work on system decomposition in this thesis.

Therefore, despite its recent success, reachability methods are in general in-
tractable for high-dimensional systems. Unfortunately, these are the systems for
which performance and safety guarantees are the most urgently needed, given the
recent developments in automation and systems modeling. This thesis describes
progress towards tractable formal verification of complex, high-dimensional systems
via reachability analysis. The solutions presented involve three broad, complementary
approaches:

1. Structural solutions. The behavior of multi-agent systems can be non-
intuitive and difficult to monitor. In these cases, imposing various structural

CHAPTER 1. INTRODUCTION 4

1D:
< 0.1s
negligible RAM

2D:
seconds – minutes
negligible RAM

3D:
minutes – hours
hundreds of megabytes

4D:
hours – days
many gigabytes

number of system dimensions

Computation time
and RAM usage

5D and higher:
Intractable!

Figure 1.2: Illustration of computational complexity of HJ reachability.

CHAPTER 1. INTRODUCTION 5

assumptions, such as having air highways, to the system can significantly reduce
problem complexity while allowing intuitive human participation.

2. System decomposition. For general high-dimensional systems, this thesis
presents recently developed techniques to decompose a full dynamical system
into multiple subsystems, reducing computation cost by many orders of magni-
tude and enabling previously intractable analyses.

3. Frontiers of Reachability. This thesis will also provide a first attempt of
exploring the connection between machine learning and verification, as well
as a first attempt of combining reachability analysis with fast planners in a
modular fashion.

6

Chapter 2

Background

Hamilton-Jacobi (HJ) reachability analysis falls under the umbrella of optimal
control problems and differential games, which are important and powerful theoretical
tools for analyzing a wide variety of systems, particularly in safety-critical scenarios.
They have been extensively studied in the past several decades [16, 23, 60, 64, 111,
140, 142], and have been successfully applied to practical problems such as pairwise
collision avoidance [111], aircraft in-flight refueling [54], vehicle platooning [35], and
many others [18, 79]. With the recent growing interest in using safety-critical au-
tonomous systems such as autonomous cars and unmanned aerial vehicles for civil
purposes [?, 13, 19, 84, 116,123], the importance and necessity of having flexible tools
that can provide safety guarantees have substantially increased.

Intuitively, in an optimal control problem, one seeks to find the cheapest way
a system described by an ordinary differential equation (ODE) model can perform
a certain task. In a differential game, a system is controlled by two adversarial
agents competing to respectively minimize and maximize a joint cost function. HJ
reachability is a common and effective way to analyze both optimal control problems
and differential games because of the guarantees that it provides and its flexibility
with respect to the system dynamics.

In a reachability problem, one is given some system dynamics described by an
ODE, and a target set which describes the set of final conditions under consideration.
Depending on the application, the target set can represent either a set of desired or
undesired states. The goal in reachability analysis is to compute various definitions of
the backward reachable tube (BRT), backward reachable set (BRS), forward reachable
tube (FRT), or forward reachable set (FRS). This thesis mostly focuses on backward
reachability. When the target set is a set of desired states, the BRT or BRS represents
the set of states from which the system can be guaranteed to be driven to the target
set, despite the worst case disturbance. In contrast, when the target set is a set of
undesired states, the BRT or BRS represents the set of states from which the system
may be driven into the target set under some disturbance, despite its best control
efforts to remain outside. Because of the theoretical guarantees that reachability

CHAPTER 2. BACKGROUND 7

analysis provides, it is ideal for analyzing the newest problems involving autonomous
systems. Several frequently used formal definitions of BRSs and backward reachable
tubes (BRTs) will be defined in Section 2.2.1.

In addition, HJ reachability is a powerful tool because BRTs and BRSs can be
used for synthesizing both controllers that steer the system away from a set of unsafe
states (“safety controllers”) to guarantee safety, and controllers that steer the system
into a set of goal states (“goal satisfaction controllers”) to guarantee goal satisfac-
tion. Unlike many formulations of reachability, the HJ formulations are flexible in
terms of system dynamics, enabling the analysis of controlled nonlinear systems un-
der disturbances. Furthermore, HJ reachability analysis is complemented by many
numerical tools readily available to solve the associated HJ partial differential equa-
tion (PDE) [110, 122, 135]. However, the computation is done on a grid, making the
problem complexity scale exponentially with the number of states, and therefore with
the number of vehicles. Consequently, HJ reachability computations are intractable
for large numbers of vehicles.

Besides the HJ formulation, there are many other methods related to reachability
analysis. In general, none of the current methods, including the HJ formulation,
simultaneously addresses all of the challenges that need to be overcome. For example,
[58, 93] excel in determining whether system trajectories from a small set of initial
conditions could potentially enter a set of unsafe states, but do not provide the BRS
or BRT – the set of all initial states from which entering some target set is inevitable.
Due to the challenges of computing BRSs and BRTs, the state-of-the-art methods
need to make trade offs on different axes of considerations such as computational
scalability, generality of system dynamics, existence of control and/or disturbance
variables, and flexibility in representation of sets.

For example, the methods presented in [65, 71, 95, 96, 102] have had success in
analyzing relatively high-dimensional affine systems using sets of pre-specified shapes,
such as polytopes or hyperplanes. Other potentially less scalable methods are able to
handle systems with the more complex dynamics [6, 39, 56, 65, 104]. Computational
scalability varies among these different methods, with the most scalable methods re-
quiring that the system dynamics do not involve control and disturbance variables.
The work in [120] accounts for both control and disturbances, but is only applica-
ble to linear systems. Methods that can account for general nonlinear systems such
as [8] also sometimes represent sets using simple shapes such as polytopes, poten-
tially sacrificing representation fidelity in favor of the other aspects mentioned earlier.
Hamilton-Jacobi (HJ) formulations [16,24,105,111] excel in handling general nonlin-
ear dynamics, control and disturbance variables, and flexible set representations via
a grid-based approach; however, these methods are the least computationally scal-
able. Still other methods make a variety of other assumptions to make desirable
trade offs [42, 48, 73]. In addition, under some special scenarios, it may be possible
to obtain small computational benefits while minimizing trade offs in other axes of
consideration by exploiting system structure [31,64,89,90,114,115].

CHAPTER 2. BACKGROUND 8

In this chapter, we formalize the above notions and specialize in the HJ for-
mulation although much of the content in the following chapters are agnostic to the
reachability formulation.

2.1 System Dynamics

Let s ∈ [−∞, 0] be the time, z ∈ Rn be the system state, which evolves according
to the ordinary differential equation (ODE)

dz(s)

ds
= ż(s) = f(z(s), u(s), d(s)), u(s) ∈ U , d(s) ∈ D (2.1)

In general, the theory we present is applicable when some states are periodic
dimensions (such as angles), but for simplicity we will consider Rn. The control and
disturbance are respectively denoted by u(s) and d(s), with the control function u(·)
and disturbance function d(s) being respectively drawn from the set of measurable
functions1:

u(·) ∈ U(t) = {φ : [t, 0]→ U : φ(·) is measurable}
d(·) ∈ D(t) = {φ : [t, 0]→ D : φ(·) is measurable}

where U ⊂ Rnu and D ⊂ Rnd are compact, and t < 0. The system dynamics, or flow
field, f : Rn × U × D → Rn is assumed to be uniformly continuous, bounded, and
Lipschitz continuous in2 z for fixed u and d. Therefore, given u(·) ∈ U, d(·) ∈ D, there
exists a unique trajectory solving (2.1) [41]. We will denote solutions, or trajectories
of (2.1) starting from state z at time t under control u(·) and disturbance d(·) as
ξ(s; z, t, u(·), d(·)) : [t, 0] → Rn. ξ satisfies (2.1) with an initial condition almost
everywhere:

d

ds
ξ(s; z, t, u(·), d(·)) = f(ξ(s; z, t, u(·), d(·)), u(s), d(s))

ξ(t; z, t, u(·), d(·)) = z
(2.2)

For time-invariant system dynamics, the time variables in trajectories can be
shifted by any constant τ :

ξ(s; z, t, u(·), d(·)) = ξ(s+ τ ; z, t+ τ, u(·), d(·)),∀z ∈ Rn (2.3)

The interaction between disturbance and control is modeled using a differential
game, as in [111]. We define a strategy for the disturbance as the mapping γ : U → D

1A function f : X → Y between two measurable spaces (X,ΣX) and (Y,ΣY) is said to be
measurable if the preimage of a measurable set in Y is a measurable set in X, that is: ∀V ∈
ΣY , f

−1(V) ∈ ΣX , with ΣX ,ΣY σ-algebras on X,Y .
2The notation (s) from variables such as z and u referring to function values will be omitted

when the context is clear.

CHAPTER 2. BACKGROUND 9

that determines a disturbance signal that reacts to the control signal based on the
state. The mapping γ is drawn from only non-anticipative strategies γ ∈ Γ(t), and
write d(·) = γ[u](·). Non-anticipative strategies is defined as follows:

γ ∈ Γ(t) := {K : U(t)→ D(t), u(r) = û(r) for almost every r ∈ [t, s]

⇒ K[u](r) = K[û](r) for almost every r ∈ [t, s]}
(2.4)

Roughly speaking, this means that the disturbance may only react to current
and past control signals. A detailed discussion of this information pattern can be
found in [111].

2.2 Hamilton-Jacobi Reachability Analysis

In HJ reachability, we begin with the system dynamics given by an ordinary
differential equation (ODE), and a target set which represents the set of unsafe states.
We then solve the HJ equation to obtain various desired forms of reachable sets or
tubes, which could represent states leading to danger. To avoid danger, the system
may apply any control until it reaches the boundary of a reachable set. At the
boundary, applying the optimal safety controller would guarantee avoidance. We
present the most commonly used definitions in this section, and more specialized
definitions in their respective sections.

2.2.1 Backward Reachable Sets and Tubes

We consider two different definitions of the BRS and two different definitions of
the BRT.

Intuitively, a BRS represents the set of states z ∈ Rn from which the system can
be driven into some set L ⊆ Rn at the end of a time horizon of duration |t|. We call
L the “target set”. First we define the “Maximal BRS”; in this case the system seeks
to enter L using some control function. We can think of L as a set of goal states.
The Maximal BRS represents the set of states from which the system is guaranteed
to reach L. The second definition is for the “Minimal BRS”; in this case the BRS is
the set of states that will lead to L for all possible controls. Here we often consider
L to be an unsafe set such as an obstacle. The Minimal BRS represents the set of
states that leads to violation of safety requirements. Formally, the two definitions of
BRSs are below3:

3Sometimes in the literature, the argument ofR, A, R̄, or Ā is some non-negative number τ = −t;
however, for simplicity we will use the non-positive number t to refer to the time horizon of the BRS
and BRT.

CHAPTER 2. BACKGROUND 10

Figure 2.1: The difference between a BRS and a BRT. The dashed trajectory starts
at z1 and passes through L during the period [t, 0], but exits L by the end of the
time period. Therefore the z1 is in the BRT, but not in the BRS. The solid trajectory
starting from z2 is in L at the end of the time period. Therefore, z2 is in both the
BRS and the BRT.

Definition 1 Maximal BRS.

R(t) = {z : ∀γ ∈ Γ(t),∃u(·) ∈ U, ξ(0; z, t, u(·), γ[u](·)) ∈ L}

Definition 2 Minimal BRS.

A(t) = {z : ∀u(·) ∈ U, ξ(0; z, t, u(·), γ[u](·)) ∈ L}

While BRSs indicate whether a system can be driven into L at the end of a time
horizon, BRTs indicate whether a system can be driven into L at any time during the
time horizon of duration |t|. Figure 2.1 demonstrates the difference. BRTs are very
important notions especially in safety-critical applications, in which we are interested
in determining the “Minimal BRT”: the set of states that could lead to danger at
any time within a specified time horizon. Formally, the two definitions of BRTs are
as follows:

Definition 3 Maximal BRT.

R̄(t) = {z : ∃u(·) ∈ U,∃s ∈ [t, 0], ξ(s; z, t, u(·), γ[u](·)) ∈ L}

Definition 4 Minimal BRT.

Ā(t) = {z : ∀u(·) ∈ U,∃s ∈ [t, 0], ξ(s; z, t, u(·), γ[u](·)) ∈ L}

The terms “maximal” and “minimal” refer to the role of the optimal control
[109]. In the maximal (or minimal) case, the control causes the BRS or BRT to
contain as many (or few) states as possible – to have maximal (or minimal) size.

CHAPTER 2. BACKGROUND 11

2.2.2 Computing Reachable Sets and Tubes

HJ formulations such as [16, 24, 111, 142] cast the reachability problem as an
optimal control or differential game problem and directly compute BRSs and BRTs
in the full state space of the system. The numerical methods (such as [109]) for
obtaining the optimal solution all involve solving an HJ PDE on a grid that represents
a discretization of the state space. For the time-invariant case, we now summarize
necessary details related to the HJ PDEs and what their solutions represent in terms
of the cost function of the corresponding optimization problem.

Let the target set L ⊆ Rn be represented by the implicit surface function l(z)
as L = {z : l(z) ≤ 0}. Such a function always exists since we can choose l(·) to be
the signed distance function from L. Consider the optimization problem

VR(t, z) = sup
γ[u](·)∈Γ(t)

inf
u(·)∈U

l(ξ(0; z, t, u(·), γ[u](·))) subject to (2.2) (2.5)

with the optimal control being given by

u∗R(·) = arg sup
γ[u](·)∈Γ(t)

inf
u(·)∈U

l(ξ(0; z, t, u(·), γ[u](·))) (2.6)

The value function VR(t, z) is the implicit surface function representing the max-
imal BRS: R(t) = {z : VR(t, z) ≤ 0}.

Similarly, consider the optimization problem

VA(t, z) = inf
γ[u](·)∈Γ(t)

sup
u(·)∈U

l(ξ(0; z, t, u(·), γ[u](·))) subject to (2.2) (2.7)

with optimal control

u∗A(·) = arg inf
γ[u](·)∈Γ(t)

max
u(·)∈U

l(ξ(0; z, t, u(·), γ[u](·))) (2.8)

Analogously, we also have A(t) = {z : VA(t, z) ≤ 0}.
Fig. 2.2 provides a simple 2D example demonstrating the relationship between

the target set, implicit surface function, BRS, and value function.
The value functions VR(t, z) and VA(t, z) are the viscosity solution [44,45] of the

HJ PDE

DsV (s, z) +H(z,∇V (s, z)) = 0, s ∈ [t, 0]

V (0, z) = l(z)
(2.9)

The Hamiltonian H(z, λ) depends on the system dynamics and on the optimal
control problem. For example, for the optimal control problem (2.5), the Hamiltonian
is given by

CHAPTER 2. BACKGROUND 12

Figure 2.2: A 2D illustration of HJ reachability. The boundary of the target set L is
shown as the solid black line. The blue surface represents the implicit surface function
l(z), which by (2.9) is equivalent to V±(0, z). The light gray surface shows the value
function V±(t, z) at some t < 0. The corresponding BRS is the zero sub-level set of
this function; the boundary of the BRS is shown as the dashed black line.

CHAPTER 2. BACKGROUND 13

H(z, λ) = min
u∈U

max
d∈D

λ · f(z, u, d) (2.10)

Once the value function VR is computed, the optimal control (2.6) can be ob-
tained by the expression

u∗R(s) = arg min
u∈U

max
d∈D
∇VR(s, z) · f(z, u, d) (2.11)

Similarly, for the optimal control problem (2.7), the Hamiltonian is given by

H(s, z, λ) = max
u∈U

min
d∈D

λ · f(z, u, d) (2.12)

and the optimal control is given by

u∗A(s) = arg max
u∈U

min
d∈D
∇VA(s, z) · f(z, u, d) (2.13)

Furthermore, by the dynamic programming principle, the optimal value on op-
timal trajectories must be constant:

VR(s, ξ(s; z, τ, u∗R(·)) = VR(τ, z) ∀τ, s ∈ [t, 0]

VA(s, ξ(s; z, τ, u∗A(·)) = VA(τ, z) ∀τ, s ∈ [t, 0]
(2.14)

For the BRT, several equivalent formulations have been proposed. For example,
one can modify the value function to keep track of the minimum value of the function
l(·) that the system trajectory achieves over some time horizon, so that (2.5) and
(2.7) respectively become

V̄R(t, z) = max
γ[u](·)∈Γ(t)

min
u(·)∈U

min
s∈[t,0]

l(ξ(0; z, t, u(·), γ[u](·)))

V̄A(t, z) = min
γ[u](·)∈Γ(t)

max
u(·)∈U

min
s∈[t,0]

l(ξ(0; z, t, u(·), γ[u](·)))
(2.15)

The reader is encouraged to read the details of this formulation in [64] which
contains a very general time-varying reach-avoid framework, or other formulations
such as [16, 24, 105, 111]. However, for this thesis it suffices to note that V̄R and V̄A
are the viscosity solution of the following HJ variational inequality:

min{DsV̄ (s, z) +H(z,∇V̄ (s, z)), l(z)− V̄ (s, z)} = 0, s ∈ [t, 0]

V̄ (0, z) = l(z)
(2.16)

where H(z, λ) is given by (2.10), (2.12) for V̄R, V̄A respectively.

14

Chapter 3

Unmanned Airspace Infrastructure

Unmanned aerial vehicles (UAVs) have in the past been mainly used for military
operations [74,139]; however, recently there has been an immense surge of interest in
using UAVs for civil applications. Through projects such as Amazon Prime Air [10]
and Google Project Wing [137], companies are looking to send UAVs into the airspace
to not only deliver commercial packages, but also for important tasks such as aerial
surveillance, emergency supply delivery, videography, and search and rescue [123]. In
the future, the use of UAVs is likely to become more and more prevalent.

As a rough estimate, suppose in a city of 2 million people, each person requests
a drone delivery every 2 months on average and each delivery requires a 30-minute
trip for a UAV. This would equate to thousands of UAVs simultaneously in the air
just from package delivery services. Applications of UAVs extend beyond package
delivery; they can also be used, for example, to provide supplies or to respond to
disasters in areas that are difficult to reach but require prompt response [13, 49]. As
a result, government agencies such as the Federal Aviation Administration (FAA)
and National Aeronautics and Space Administration (NASA) are also investigating
unmanned aerial systems (UAS) traffic management (UTM) in order to prevent col-
lisions among potentially numerous UAVs [84,116,123].

In this chapter, we present two different approaches for managing the airspace.
First, in Section 3.1, we propose the concept of air highways, and provide a method for
automatically designing an air highway network on which UAVs would fly in platoons.
In Section 3.2, we propose the sequential trajectory planning method, potentially as a
last-mile solution for off-the-highway management. Through large scale simulations,
we provide a case study of our algorithm over the San Francisco Bay Area.

3.1 Air Highways and Unmanned Aerial Platoons

This section is an adaptation of the paper in [34].
In order to accommodate potentially thousands of vehicles simultaneously flying

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 15

in the air, additional structure is needed to allow for tractable analysis and intuitive
monitoring by human beings. An air highway system on which platoons of vehicles
travel accomplishes both goals. However, many details of such a concept need to be
addressed. Due to the flexibility of placing air highways compared to building ground
highways in terms of highway location, even the problem of air highway placement
can be a daunting task. To address this, in the first part of this section, we propose
a flexible and computationally efficient method based on [135] to perform optimal
air highway placement given an arbitrary cost map that captures the desirability of
having UAVs fly over any geographical location. We demonstrate our method using
the San Francisco Bay Area as an example. Once air highways are in place, platoons
of UAVs can then fly in fixed formations along the highway to get from origin to
destination. The air highway structure greatly simplifies safety analysis, while at the
same time allows intuitive human participation in unmanned airspace management.

A considerable body of work has been done on the platooning of ground ve-
hicles [87]. For example, [108] investigated the feasibility of vehicle platooning in
terms of tracking errors in the presence of disturbances, taking into account complex
nonlinear dynamics of each vehicle. [75] explored several control techniques for per-
forming various platoon maneuvers such as lane changes, merge procedures, and split
procedures. In [100], the authors modeled vehicles in platoons as hybrid systems,
synthesized safety controllers, and analyzed throughput. Reachability analysis was
used in [66] to analyze a platoon of two trucks in order to minimize drag by minimiz-
ing the following distance while maintaining collision avoidance safety guarantees.
Finally, [129] provided a method for guaranteeing string stability and eliminating
accordion effects for a heterogeneous platoon of vehicles with linear time-invariant
dynamics.

Previous analyses of a large number of vehicles typically do not provide safety
and goal satisfaction guarantees to the extent that HJ reachability does; however,
HJ reachability typically cannot be used to tractably analyze a large number of ve-
hicles. In the second part of this section, we propose organizing UAVs into platoons,
which provides a structure that allows pairwise safety guarantees from HJ reachabil-
ity to better translate to safety guarantees for the whole platoon. With respect to
platooning, we first propose a hybrid systems model of UAVs in platoons to estab-
lish the modes of operation needed for our platooning concept. Then, we show how
reachability-based controllers can be synthesized to enable UAVs to successfully per-
form mode switching, as well as prevent dangerous configurations such as collisions.
Finally, we show several simulations to illustrate the behavior of UAVs in various
scenarios.

Overall, this section is not meant to provide an exhaustive solution to the un-
manned airspace management problem. Instead, this section illustrates that the
computation intractability of HJ reachability can be overcome using an air highway
structure with UAVs flying in platoons. In addition, the results are intuitive, which
can facilitate human participation in managing the airspace. Although many chal-

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 16

lenges not addressed in this section still need to be overcome, this section can provide a
starting point for future research in large-scale UASs with safety and goal-satisfaction
guarantees.

3.1.1 Air Highways

We consider air highways to be virtual highways in the airspace on which a
number of UAV platoons may be present. UAVs seek to arrive at some desired
destination starting from their origin by traveling along a sequence of air highways.
Air highways are intended to be the common pathways for many UAV platoons,
whose members may have different origins and destinations. By routing platoons of
UAVs onto a few common pathways, the airspace becomes more tractable to analyze
and intuitive to monitor. The concept of platoons will be proposed in Section 3.1.3;
in this section, we focus on air highways.

Let an air highway be denoted by the continuous function H : [0, 1]→ R2. Such
a highway lies in a horizontal plane of fixed altitude, with start and end points given
by H(0) ∈ R2 and H(1) ∈ R2 respectively. For simplicity, we assume that the highway
segment is a straight line segment, and the parameter s indicates the position in some
fixed altitude as follows: H(s) = H(0)+s(H(1)−H(0)). To each highway, we assign a
speed of travel vH and specify the direction of travel to be the direction from H(0) to

H(1), denoted using a unit vector d̂ = H(1)−H(0)
‖H(1)−H(0)‖2 . As we will show in Section 3.1.3,

UAVs use simple controllers to track the highway.
Air highways must not only provide structure to make the analysis of a large

number of vehicles tractable, but also allow vehicles to reach their destinations while
minimizing any relevant costs to the vehicles and to the surrounding regions. Such
costs can for example take into account people, assets on the ground, and manned
aviation, entities to which UAVs pose the biggest risks [123]. Thus, given an origin-
destination pair (eg. two cities), air highways must connect the two points while
potentially satisfying other criteria. In addition, optimal air highway locations should
ideally be able to be recomputed in real-time when necessary in order to update
airspace constraints on-the-fly, in case, for example, airport configurations change or
certain airspaces have to be closed [123]. With this in mind, we now define the air
highway placement problem, and propose a simple and fast way to approximate its
solution that allows for real-time recomputation. Our solution based on solving the
Eikonal equation can be thought of as converting a cost map over a geographic area
in continuous space into a discrete graph whose nodes are waypoints joined by edges
which are the air highways.

Note that the primary purpose of this section is to provide a method for the
real-time placement of air highways. The specifics of determining the cost map based
on population density, geography, weather forecast information, etc., as well as the
criteria for when air highway locations need to be updated, is beyond the scope of
this section.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 17

In addition, if vehicles in the airspace are far away from each other, it may be
reasonable for all vehicles to fly in an unstructured manner. As long as multiple-way
conflicts do not occur, pairwise collision avoidance maneuvers would be sufficient to
ensure safety. Unstructured flight is likely to result in more efficient trajectories for
each individual vehicle. However, whether multiple-way conflicts occur cannot be
predicted ahead of time, and are not guaranteed to be resolvable when they occur.
By organizing vehicles into platoons, the likelihood of multiple-way conflicts is vastly
reduced. Structured flight is in general less efficient for the individual vehicle, and
this loss of efficiency can be thought of as a cost incurred by the vehicles in order
ensure higher levels of safety.

In general, there may be many different levels of abstractions in the airspace.
For larger regions such as cities, air highways may prove beneficial, and for a small
region such as a neighborhood, perhaps unstructured flight is sufficiently safe. Further
research is needed to better understand parameters such as the density of vehicles
above which unstructured flight is no longer manageable, and other details like platoon
size.

3.1.2 The Air Highway Placement Problem

Consider a map c : R2 → R which defines the cost c(p) incurred when a UAV
flies over the position p = (px, py) ∈ R2. Given any position p, a large value of c(p)
indicates that the position p is costly or undesirable for a UAV to fly over. Locations
with high cost could, for example, include densely populated areas and areas around
airports. In general, the cost map c(·) may be used to model cost of interference with
commercial airspaces, cost of accidents, cost of noise pollution, risks incurred, etc.,
and can be flexibly specified by government regulation bodies.

Let po denote an origin point and pd denote a destination point. Consider a
sequence of highways SN = {H1,H2, . . . ,HN} that satisfies the following:

H1(0) = po

Hi(1) = Hi+1(0), i = 0, 1, . . . , N − 1

HN(1) = pd
(3.1)

The interpretation of the above conditions is that the start point of first highway
is the origin, the end point of a highway is the start point of the next highway, and
the end point of last highway is the destination. The highways H1, . . . ,HN form a
sequence of waypoints for a UAV starting at the origin po to reach its destination pd.

Given only the origin point po and destination point pd, there are an infinite
number of choices for a sequence of highways that satisfy (3.1). However, if one takes
into account the cost of flying over any position p using the cost map c(·), we arrive
at the air highway placement problem:

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 18

min
SN ,N

{(
N∑
i=1

∫ 1

0

c(Hi(s))ds

)
+R(N)

}
subject to (3.1)

(3.2)

where R(·) is a regularizer, such as R(N) = N2.
The interpretation of (3.2) is that we consider air highways to be line segments

of constant altitude over a region, and UAV platoons travel on these air highways to
get from some origin to some destination. Any UAV flying on a highway over some
position p incurs a cost of c(p), so that the total cost of flying from the origin to the
destination is given by the summation in (3.2). The air highway placement problem
minimizes the cumulative cost of flying from some origin po to some destination pd

along the sequence of highways SN = {H1,H2, . . . ,HN}. The regularization term
R(N) is used to prevent N from being arbitrarily large.

3.1.2.1 The Eikonal Equation – Cost-Minimizing Path

Let s0, s1 ∈ R, and let P : [s0, s1] → R2 be a path starting from an origin point
po = P(s0) and ending at a destination point pd = P(s1). Note that the sequence SN
in (3.2) is a piecewise affine example of a path P(s), s ∈ [s0, s1]; however, a path P
that is not piecewise affine cannot be written as a sequence of highways SN .

More concretely, suppose a UAV flies from an origin point po to a destination
point pd along some path P(s) parametrized by s. Then, P(s0) = po would denote
the origin, and P(s1) = pd would denote the destination. All intermediate s values
denote the intermediate positions of the path, i.e. P(s) = p(s) = (px(s), py(s)).

Consider the cost map c(px, py) which captures the cost incurred for UAVs flying
over the position p = (px, py). Along the entire path P(s), the cumulative cost C(P)
is incurred. Define C as follows:

C(P) =

∫ s1

s0

c(P(s))ds (3.3)

For an origin-destination pair, we would like to find the path such that the above
cost is minimized. More generally, given an origin point po, we would like to compute
the function V representing the optimal cumulative cost for any destination point pd:

V (pd) = min
P(·),P(s1)=pd

C(P)

= min
P(·),P(s1)=pd

∫ s1

s0

c(P(s))ds
(3.4)

It is well known that the viscosity solution [45] to the Eikonal equation (3.5)
precisely computes the function V (pd) given the cost map c [9, 135]. Note that a
single function characterizes the minimum cost from an origin po to any destination

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 19

Origin 𝑝𝑜 Destination 𝑝𝑑

Low cost region

High cost region

Cost-minimizing path ℙ

Origin 𝑝𝑜 Destination 𝑝𝑑

Low cost region

High cost region

Locations with large change in path heading

Origin 𝑝𝑜 Destination 𝑝𝑑

Low cost region

High cost region

Sequence of highways ℍ1, ℍ2, … ,ℍ5

Figure 3.1: Illustration of the air highway placement procedure.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 20

pd. Once V is found, the optimal path P between po and pd can be obtained via
gradient descent.

c(p)|∇V (p)| = 1

V (po) = 0
(3.5)

The Eikonal equation (3.5) can be efficiently computed numerically using the
fast marching method [135]; each computation takes on the order of merely a second.

Note that (3.4) can be viewed as a relaxation of the air highway placement
problem defined in (3.2). Unlike (3.2), the relaxation (3.4) can be quickly solved
using currently available numerical tools. Thus, we first solve the approximate air
highway placement problem (3.4) by solving (3.5), and then post-process the solution
to (3.4) to obtain an approximation to (3.2).

Given a single origin point po, the optimal cumulative cost function V (pd) can
be computed. Suppose M different destination points pdi , i = 1, . . . ,M are chosen.
Then, M different optimal paths Pi, i = 1, . . . ,M are obtained from V .

3.1.2.2 From Paths to Waypoints

Each of the cost-minimizing paths Pi computed from the solution to the Eikonal
equation consists of a closely-spaced set of points. Each path Pi is an approximation
to the sequence of highways SiNi = {Hi

j}
i=M,j=Ni
i=1,j=1 defined in (3.2), but now indexed by

the corresponding path index i.
For each path Pi, we would like to sparsify the points on the path to obtain

a collection of waypoints, Wi,j, j = 1, . . . , Ni + 1, which are the end points of the
highways:

Hi
j(0) =Wi,j,

Hi
j(1) =Wi,j+1,

j = 1, . . . , Ni

(3.6)

There are many different ways to do this, and this process will not be our focus.
However, for illustrative purposes, we show how this process may be started. We begin
by noting the path’s heading at the destination point. We add to the collection of
waypoints the first point on the path at which the heading changes by some threshold
θC , and repeat this process along the entire path.

If there is a large change in heading within a small section of the cost-minimizing
path, then the collection of points may contain many points which are close together.
In addition, there may be multiple paths that are very close to each other (in fact, this
behavior is desirable), which may contribute to cluttering the airspace with too many
waypoints. To reduce clutter, one could cluster the points. Afterwards, each cluster
of points can be replaced by a single point located at the centroid of the cluster.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 21

To the collection of points resulting from the above process, we add the origin and
destination points. Repeating the entire process for every path, we obtain waypoints
for all the cost-minimizing paths under consideration. Figure 3.1 summarizes the
entire air highway placement process, including our example of how the closely-spaced
set of points on a path can be sparsified.

3.1.2.3 Simulation Results

To illustrate our air highway placement proposal, we used the San Francisco
Bay Area as an example, and classified each point on the map into four different
regions: “regions around airports”, “highly populated cities”, “water”, and “other”.
Each region has an associated cost, reflecting the desirability of flying a vehicle over
an area in the region. In general, these costs can be arbitrary and determined by
government regulation agencies. For illustration purposes, we assumed the following
categories and costs:

• Region around airports: cairports = b,

• Cities: ccities = 1,

• Water: cwater = b−2,

• Other: cother = b−1.

This assumption assigns costs in descending order to the categories “regions
around airports”, “cities”, “other”, and “water”. Flying a UAV in each category is
more costly by a factor of b compared to the next most important category. The
factor b > 1 is a tuning parameter that we adjusted to vary the relative importance
of the different categories, and we used b = 4 in the figures below.

Figure 3.2 shows the San Francisco Bay Area geographic map, cost map, cost-
minimizing paths, and contours of the value function V . The region enclosed by the
black boundary represents “region around airports”, which have the highest cost. The
dark blue, yellow, and light blue regions represent the “cities”, the “water”, and the
“other”’ categories, respectively. We assumed that the origin corresponds to the city
“Concord”, and chose a number of other major cities as destinations.

A couple of important observations can be made here. First, the cost-minimizing
paths to the various destinations in general overlap, and only split up when they are
very close to entering their destination cities. This is intuitively desirable because
having overlapping cost-minimizing paths keeps the number of distinct air highways
low. Secondly, the contours, which correspond to level curves of the value function,
have a spacings corresponding to the cost map: the spacings are large in areas of
low cost, and vice versa. This provides insight into the placement of air highways to
destinations that were not shown in this example.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 22

Bay Area Map, Cost-Minimizing Paths

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Cost Map, Cost-Minimizing Paths, Value Function

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.2: Cost-minimizing paths computed by the Fast Marching Method based on
the assumed cost map of the San Francisco Bay Area.

Figure 3.3 shows the result of converting the cost-minimizing paths to a small
number of waypoints. The left plot shows the waypoints, interpreted as the start and
end points of air highways, over a white background for clarity. The right plot shows
these air highways over the map of the Bay Area. Note that we could have gone further
to merge some of the overlapping highways. However, the purpose of this section
is to illustrate the natural occurrence of air highways from cost-minimizing paths;
post-processing of the cost-minimizing paths, which serve as a guide for defining air
highways, is not our focus.

3.1.2.4 Real-Time Highway Location Updates

Since (3.5) can be solved in approximately 1 second, the air highway placement
process can be redone in real-time if the cost map changes at a particular time. This
flexibility can be useful in any situation in which unforeseen circumstances could cause
a change in the cost of a particular region of the airspace. For example, accidents or
disaster response vehicles may result in an area temporarily having a high cost. On
the other hand, depending on for instance the time of day, it may be most desirable
to fly in different regions of the airspace, resulting in those regions temporarily having
a low cost.

3.1.3 Unmanned Aerial Vehicle Platooning

Air highways exhibiting trunk routes that separate near destinations motivate
the use of platoons which fly on these highways. The air highway structure along with

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 23

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.3: Results of conversion from cost-minimizing paths to highway way points.

the UAV platooning concept together enable the use of reachability to analyze safety
and goal satisfaction properties. The structure reduces the likelihood of multiple-way
conflicts, and makes pairwise analysis more indicative of the joint safety of all UAVs.
In addition to reducing complexity, the proposed structure is intuitive, and allows
human participation in the monitoring and management of the unmanned airspace.

Organizing UAVs into platoons implies that the UAVs cannot fly in an unstruc-
tured way, and must have a restricted set of controllers or maneuvers depending on
the UAV’s role in the airspace. To model UAVs flying in platoons on air highways,
we propose a hybrid system whose modes of operations describe a UAV’s role in the
highway structure. For the hybrid system model, reachability analysis is used to
enable successful and safe operation and mode transitions.

3.1.3.1 UAVs in Platoons

Vehicle Dynamics: The techniques we present here do not depend on the dynamics
of the vehicles, as long as their dynamics are known. However, for concreteness,
we assume that the UAVs are quadrotors that fly at a constant altitude under non-
faulty circumstances. For the quadrotor, we use a simple model in which the x and
y dynamics are double integrators:

ṗx = vx

ṗy = vy

v̇x = ux

v̇y = uy

|ux|, |uy| ≤ umax

(3.7)

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 24

where the state x = (px, vx, py, vy) ∈ R4 represents the quadrotor’s position in the
x-direction, its velocity in the x-direction, and its position and velocity in the y-
direction, respectively. The control input u = (ux, uy) ∈ R2 consists of the acceler-
ation in the x- and y- directions. For convenience, we will denote the position and
velocity p = (px, py), v = (vx, vy), respectively.

In general, the problem of collision avoidance among N vehicles cannot be
tractably solved using traditional dynamic programming approaches because the com-
putation complexity of these approaches scales exponentially with the number of ve-
hicles. Thus, in our present work, we will consider the situation where UAVs travel
on air highways in platoons, defined in the following sections. The structure imposed
by air highways and platooning enables us to analyze the safety and goal satisfaction
properties of the vehicles in a tractable manner.

Vehicles as Hybrid Systems: We model each vehicle as a hybrid system [100,101]
consisting of the modes “Free”, “Leader”, “Follower”, and “Faulty”. Within each
mode, a vehicle has a set of restricted maneuvers, including one that allows the
vehicle to change modes if desired. The modes and maneuvers are as follows:

• Free:

A Free vehicle is not in a platoon or on a highway, and its possible maneuvers
or mode transitions are

– remain a Free vehicle by staying away from highways

– become a Leader by entering a highway to create a new platoon

– become a Follower by joining a platoon that is currently on a highway

• Leader:

A Leader vehicle is the vehicle at the front of a platoon (which could consist of
only the vehicle itself). The available maneuvers and mode transitions are

– remain a Leader by traveling along the highway at a pre-specified speed
vH

– become a Follower by merging the current platoon with a platoon in front

– become a Free vehicle by leaving the highway

• Follower:

A Follower vehicle is a vehicle that is following a platoon leader. The available
maneuvers and mode transitions are

– remain a Follower by staying a distance of dsep behind the vehicle in front
in the current platoon

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 25

– remain a Follower by joining a different platoon on another highway

– become a Leader by splitting from the current platoon while remaining on
the highway

– become a Free vehicle by leaving the highway

• Faulty:

If a vehicle from any of the other modes becomes unable to operate within
the allowed set of maneuvers, it transitions into the Faulty mode. Reasons
for transitioning to the Faulty mode include vehicle malfunctions, performing
collision avoidance with respect to another Faulty vehicle, etc. A Faulty vehicle
is assumed to descend via a fail-safe mechanism after some pre-specified duration
tfaulty to a different altitude level where it no longer poses a threat to vehicles
on the air highway system.

Such a fail-safe mechanism could be an emergency landing procedure such as
those analyzed in [2, 43, 80]. Typically, emergency landing involves identifying
the type of fault and finding feasible landing locations given the dynamics during
the fault. We will omit these details and summarize them into tfaulty, the time
required to exit the current altitude level.

The available maneuvers and associated mode transitions are summarized in
Figure 3.4.

Suppose that there are N vehicles in total in the airspace containing the highway
system. We will denote the N vehicles as Qi, i = 1 . . . , N . We consider a platoon
of vehicles to be a group of M vehicles (M ≤ N), denoted QP1 , . . . , QPM , {Pj}Mj=1 ⊆
{i}Ni=1, in a single-file formation. When necessary, we will use superscripts to denote
vehicles of different platoons: QP ji

represents the ith vehicle in the jth platoon.

For convenience, let Qi denote the set of indices of vehicles with respect to
which Qi checks safety. If vehicle Qi is a free vehicle, then it must check for safety
with respect to all other vehicles, Qi = {j : j 6= i}. If the vehicle is part of a
platoon, then it checks safety with respect to the platoon member in front and behind,
Qi = {Pj+1, Pj−1}. Figure 3.5 summarizes the indexing system of the vehicles.

We will organize the vehicles into platoons travel along air highways. The vehi-
cles maintain a separation distance of dsep with their neighbors inside the platoon. In
order to allow for close proximity of the vehicles and the ability to resolve multiple
simultaneous safety breaches, we assume that when a vehicle exhibits unpredictable
behavior, it will be able to exit the altitude range of the highway within a duration of
tfaulty. Such a requirement may be implemented practically as an fail-safe mechanism
to which the vehicles revert when needed.

Objectives: Given the above modeling assumptions, our goal is to provide control
strategies to guarantee the success and safety of all the mode transitions. The theo-

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 26

Free:
• Vehicle not in a

platoon or on a
highway

Leader
• Leader of

platoon

Follower
• Member of

platoon

Faulty
• Descends after a

duration of 𝑡faulty

Leave highway

Merge onto
highway

Create new
platoon

Merge with
platoon in front

Join platoon

Follow highway

Follow platoon

Leave highway

Figure 3.4: Hybrid modes for vehicles in platoons. Vehicles begin in the “Free” mode
before they enter the highway.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 27

𝑄"

𝑄# 𝑄$

𝑄%𝑄&𝑄'𝑄(
Platoon	1

𝑄""

𝑄)𝑄*𝑄"+
Platoon	2

𝑄"#

𝑃"" = 4
𝑃#" = 5
𝑃$" = 6
𝑃%" = 7

𝑃"# = 8
𝑃## = 9
𝑃$# = 10

𝒬) = 9

𝒬$ = 1,2,4,5,… , 12

𝒬"# = 1,2,3,… , 11

𝒬& = 4,6

Free	vehicles

Leader	vehicles

Follower	vehicles

Figure 3.5: Notation for vehicles in platoons.

retical tool used to provide the safety and goal satisfaction guarantees is reachability.
The BRSs we compute will allow each vehicle to perform complex actions such as

• merge onto a highway to form a platoon

• join a new platoon

• leave a platoon to create a new one

• react to malfunctioning or intruder vehicles

We also propose more basic controllers to perform other simpler actions such as

• follow the highway at constant altitude at a specified speed

• maintain a constant relative position and velocity with respect to the leader of
a platoon

In general, the control strategy of each vehicle has a safety component, which
specifies a set of states that it must avoid, and a goal satisfaction component, which
specifies a set of states that the vehicle aims to reach. Together, the safety and goal
satisfaction controllers guarantee the safety and success of a vehicle in the airspace

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 28

making any desired mode transition. In this section, these guarantees are provided
using reachability analysis, and allow the multi-UAV system to perform joint maneu-
vers essential to maintaining structure in the airspace.

Relative Dynamics and Augmented Relative Dynamics: Besides Equation
(3.17), we will also consider the relative dynamics between two quadrotors Qi, Qj.
These dynamics can be obtained by defining the relative variables

px,r = px,i − px,j
py,r = py,i − py,j
vx,r = vx,i − vx,j
vy,r = vy,i − vy,j

(3.8)

We treat Qi as Player 1, the evader who wishes to avoid collision, and we treat
Qj as Player 2, the pursuer, or disturbance, that wishes to cause a collision. In terms
of the relative variables given in (3.8), we have

ṗx,r = vx,r

ṗy,r = vy,r

v̇x,r = ux,i − ux,j
v̇y,r = uy,i − uy,j

(3.9)

We also augment (3.8) with the velocity of Qi, given in (3.10), to impose a
velocity limit on the quadrotor.

ṗx,r = vx,r

ṗy,r = vy,r

v̇x,r = ux,i − ux,j
v̇y,r = uy,i − uy,j
v̇x,i = ux,i

v̇y,i = uy,i

(3.10)

For our application, we will use several decoupled system models and utilize
decomposition techniques [32,33,37], which enables real-time 4D BRT computations
and tractable 6D BRT computations.

3.1.3.2 Reachability-Based Controllers

Reachability analysis is useful for constructing controllers in a large variety of
situations. In order to construct different controllers, an appropriate target set needs
to be defined depending on the goal of the controller. If one defines the target set to
be a set of desired states, the BRS would represent the states that a system needs to
first arrive at in order to reach the desired states. On the other hand, if the target set

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 29

represents a set of undesirable states, then the BRS would indicate the region of the
state space that the system needs to avoid. In addition, the system dynamics with
which the BRS is computed provide additional flexibility when using reachability to
construct controllers.

Using a number of different target sets and dynamics, we now propose differ-
ent reachability-based controllers used for vehicle mode transitions in our platooning
concept.

Getting to a Target State: The controller used by a vehicle to reach a target state
is important in two situations in the platooning context. First, a vehicle in the “Free”
mode can use the controller to merge onto a highway, forming a platoon and changing
modes to a “Leader” vehicle. Second, a vehicle in either the “Leader” mode or the
“Follower” mode can use this controller to change to a different highway, becoming a
“Leader” vehicle.

In both of the above cases, we use the dynamics of a single vehicle specified
in (3.17). The target state would be a position (p̄x, p̄y) representing the desired
merging point on the highway, along with a velocity (v̄x, v̄y) = vH that corresponds
to the speed and direction of travel specified by the highway. For the reachability
computation, we define the target set to be a small range of states around the target
state x̄H = (p̄x, p̄y, v̄x, v̄y):

LH = {x : |px − p̄x| ≤ rpx , |vx − v̄x| ≤ rvx ,

|py − p̄y| ≤ rpy , |vy − v̄y| ≤ rvy}.
(3.11)

Here, we represent the target set LH as the zero sublevel set of the function
lH(x), which specifies the terminal condition of the HJ PDE that we need to solve.
Once the HJ PDE is solved, we obtain the BRS VH(t) from the subzero level set of
the solution VH(t, x). More concretely, VH(T) = {x : VH(−T, x) ≤ 0} is the set of
states from which the system can be driven to the target LH within a duration of T .

Depending on the time horizon T , the size of the BRS VH(T) varies. In general,
a vehicle may not initially be inside the BRS VH(T), yet it needs to be in order to
get to its desired target state. Determining a control strategy to reach VH(T) is itself
a reachability problem (with VH(T) as the target set), and it would seem like this
reachability problem needs to be solved in order for us to use the results from our first
reachability problem. However, practically, one could choose T to be large enough
to cover a sufficiently large area to include any practically conceivable initial state.
From our simulations, a suitable algorithm for getting to a desired target state is as
follows:

1. Move towards x̄H in pure pursuit with some velocity, until VH(−T, x) ≤ 0. In
practice, this step consistently drives the system into the BRS.

2. Apply the optimal control extracted from VH(−T, x) according to (2.11) until
LH is reached.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 30

Getting to a State Relative to Another Vehicle: In the platooning context,
being able to go to a state relative to another moving vehicle is important for the
purpose of forming and joining platoons. For example, a “Free” vehicle may join an
existing platoon that is on a highway and change modes to become a “Follower”.
Also, a “Leader” or “Follower” may join another platoon and afterwards go into the
“Follower” mode.

To construct a controller for getting to a state relative to another vehicle, we use
the relative dynamics of two vehicles, given in (3.9). In general, the target state is
specified to be some position (p̄x,r, p̄y,r) and velocity (v̄x,r, v̄y,r) relative to a reference
vehicle. In the case of a vehicle joining a platoon that maintains a single file, the
reference vehicle would be the platoon leader, the desired relative position would be a
certain distance behind the leader, depending on how many other vehicles are already
in the platoon; the desired relative velocity would be (0, 0) so that the formation can
be kept.

For the reachability problem, we define the target set to be a small range of
states around the target state x̄P = (p̄x,r, p̄y,r, v̄x,r, v̄y,r):

LP = {x : |px,r − p̄x,r| ≤ rpx , |vx,r − v̄x,r| ≤ rvx ,

|py,r − p̄y,r| ≤ rpy , |vy,r − v̄y,r| ≤ rvy}
(3.12)

The target set LP is represented by the zero sublevel set of the implicit surface
function lP (x), which specifies the terminal condition of the HJ PDE (2.16). The zero
sublevel set of the solution to (2.16), VP (−T, x), gives us the set of relative states from
which a quadrotor can reach the target in the relative coordinates within a duration
of T . In the BRS computation, we assume that the reference vehicle moves along the
highway at constant speed, so that uj(t) = 0. The following is a suitable algorithm
for a vehicle joining a platoon to follow the platoon leader:

1. Move towards x̄P in a straight line, with some velocity, until VP (−T, x) ≤ 0.

2. Apply the optimal control extracted from VP (−T, x) according to (2.11) until
LP is reached.

Avoiding Collisions: A vehicle can use a goal satisfaction controller described in
the previous sections when it is not in any danger of collision with other vehicles. If
the vehicle could potentially be involved in a collision within the next short period of
time, it must switch to a safety controller. The safety controller is available in every
mode, and executing the safety controller to perform an avoidance maneuver does
not change a vehicle’s mode.

In the context of our platooning concept, we define an unsafe configuration as
follows: a vehicle is either within a minimum separation distance d to a reference
vehicle in both the x and y directions, or is traveling with a speed above the speed

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 31

limit vmax in either of the x and y directions. To take this specification into account,
we use the augmented relative dynamics given by (3.10) for the reachability problem,
and define the target set as follows:

LS = {x :|px,r|, |py,r| ≤ d ∨ |vx,i| ≥ vmax ∨ |vy,i| ≥ vmax} (3.13)

We can now define the implicit surface function lS(x) corresponding to LS, and
solve the HJ PDE (2.16) using lS(x) as the terminal condition. As before, the zero
sublevel set of the solution VS(t, x) specifies the BRS VS(t), which characterizes the
states in the augmented relative coordinates, as defined in (3.10), from which Qi

cannot avoid LS for a time period of t, if Qj uses the worst-case control. To avoid
collisions, Qi must apply the safety controller according to (2.13) on the boundary
of the BRS in order to avoid going into the BRS. The following algorithm wraps our
safety controller around goal satisfaction controllers:

1. For a specified time horizon t, evaluate VS(−t, xi − xj) for all j ∈ Q(i).

Q(i) is the set of quadrotors with which vehicle Qi checks safety.

2. Use the safety or goal satisfaction controller depending on the values VS(−t, xi−
xj), j ∈ Q(i):

If ∃j ∈ Q(i), VS(−t, xi − xj) ≤ 0, then Qi, Qj are in potential conflict, and Qi

must use a safety controller; otherwise Qi may use a goal satisfaction controller.

3.1.3.3 Other Controllers

Reachability was used in Section 3.1.3.2 for the relatively complex maneuvers
that require safety and goal satisfaction guarantees. For the simpler maneuvers of
traveling along a highway and following a platoon, many well-known classical con-
trollers suffice. For illustration, we use the simple controllers described below.

Traveling along a highway: We use a model-predictive controller (MPC) for trav-
eling along a highway; this controller allows the leader to travel along a highway at
a pre-specified speed. Here, the goal is for a leader vehicle to track an air highway
H(s), s ∈ [0, 1] while maintaining some constant velocity vH specified by the highway.
The highway and the specified velocity can be written as a desired position and veloc-
ity over time, p̄(t), v̄(t). Assuming that the initial position on the highway, s0 = s(t0)
is specified, such a controller can be obtained from the following optimization problem
over the time horizon [t0, t1]:

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 32

minimize

∫ t1

t0

{
‖p(t)− p̄(t)‖2+

‖v(t)− v̄(t)‖2 + 1− s
}
dt

subject to vehicle dynamics (3.7)

|ux|, |uy| ≤ umax, |vx|, |vy| ≤ vmax

s(t0) = s0, ṡ ≥ 0

(3.14)

If we discretize time, the above optimization is becomes convex optimization
over a small number of decision variables, and can be quickly solved.

Following a Platoon: Follower vehicles use a feedback control law tracking a nomi-
nal position and velocity in the platoon, with an additional feedforward term given by
the leader’s acceleration input; here, for simplicity, we assume perfect communication
between the leader and the follower vehicles. This following law enables smooth ve-
hicle trajectories in the relative platoon frame, while allowing the platoon as a whole
to perform agile maneuvers by transmitting the leader’s acceleration command uP1(t)
to all vehicles.

The i-th member of the platoon, QPi , is expected to track a relative position in
the platoon ri = (rix, r

i
y) with respect to the leader’s position pP1 , and the leader’s

velocity vP1 at all times. The resulting control law has the form:

ui(t) = kp
[
pP1(t) + ri(t)− pi(t)

]
+ kv

[
vP1(t)− vi(t)

]
+ uP1(t) (3.15)

for some kp, kv > 0. In particular, a simple rule for determining ri(t) in a single-file
platoon is given for QPi as:

ri(t) = −(i− 1)dsepd̂ (3.16)

where dsep is the spacing between vehicles along the platoon and d̂ is the highway’s
direction of travel.

3.1.3.4 Summary of Controllers

We have introduced several reachability-based controllers, as well as some simple
controllers. Pairwise collision avoidance is guaranteed using the safety controller,
described in Section 3.1.3.2. As long as a vehicle is not in potential danger according
to the safety BRSs, it is free to use any other controller. All of these other controllers
are goal satisfaction controllers, and their corresponding mode transitions are shown
in Figure 3.6.

The controller for getting to an absolute target state, described in Section 3.1.3.2,
is used whenever a vehicle needs to move onto a highway to become a platoon leader.
This controller guarantees the success of the mode transitions shown in blue in Figure
3.6.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 33

Free:
• Vehicle not in

platoon or on
highway

Leader
• Leader of

platoon

Follower
• Member of

platoon

Leave
highway

Merge onto highway
(get to absolute state)

Create new platoon
(get to absolute state)

Merge with platoon in front
(get to relative state)

Join platoon
(get to relative state)

Follow highway
(model predictive controller)

Follow platoon
(PD controller)

Leave highway

Figure 3.6: Summary of mode switching controllers. Reachability-based controllers
are shown as the blue and green arrows.

The controller for getting to a relative target state, described in Section 3.1.3.2, is
used whenever a vehicle needs to join a platoon to become a follower. This controller
guarantees the success of the mode transitions shown in green in Figure 3.6.

For the simple maneuvers of traveling along a highway or following a platoon,
many simple controllers such as the ones suggested in Section 3.1.3.3 can be used.
These controllers keep the vehicles in either the Leader or the Follower mode. Al-
ternatively, additional controllers can be designed for exiting the highway, although
these are not considered in this section. All of these non-reachability-based controllers
are shown in gray in Figure 3.6.

3.1.3.5 Safety Analysis

Under normal operations in a single platoon, each follower vehicle Qi, i = P2, . . . ,
PM−1 in a platoon checks whether it is in the safety BRS with respect to QPi−1

and
QPi+1

. So Qi = {Pi+1, Pi−1} for i = P2, . . . , PN−1. Assuming there are no nearby
vehicles outside of the platoon, the platoon leader QP1 checks safety against QP2 ,
and the platoon trailer QPN checks safety against QPN−1

. So QP1 = {P2},QPN =
{PN−1}. When all vehicles are using goal satisfaction controllers to perform their
allowed maneuvers, in most situations no pair of vehicles should be in an unsafe
configuration. However, occasionally a vehicle Qk may behave unexpectedly due to
faults or malfunctions, in which case it may come into an unsafe configuration with
another vehicle.

With our choice of Qi and the assumption that the platoon is in a single-file
formation, some vehicle Qi would get near the safety BRS with respect to Qk, where

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 34

Qk is likely to be the vehicle in front or behind of Qi. In this case, a “safety breach”
occurs. Our synthesis of the safety controller guarantees the following: between every
pair of vehicles Qi, Qk, if VS(−t, xi − xk) > 0, then ∃ui to keep Qi from colliding
with Qk for a desired time horizon t, despite the worst case (an adversarial) control
from Qk. Therefore, as long as the number of “safety breaches” is at most one for Qi,
Qi can simply use the optimal control to avoid Qk and avoid collision for the time
horizon of t. Under the assumption that vehicles are able to exit the current altitude
range within a duration of tfaulty, if we choose t = tfaulty, the safety breach would
always end before any collision can occur.

Within a duration of tfaulty, there is a small chance that additional safety breaches
may occur. However, as long as the total number of safety breaches does not exceed
the number of affected vehicles, collision avoidance of all the vehicles can be guaran-
teed for the duration tfaulty. However, as our simulation results show, placing vehicles
in single-file platoons makes the likelihood of multiple safety breaches low during the
presence of one intruder vehicle.

In the event that multiple safety breaches occur for some of the vehicles due to a
malfunctioning vehicle within the platoon or intruding vehicles outside of the platoon,
vehicles that are causing safety breaches must exit the highway altitude range in order
to avoid collisions. Every extra altitude range reduces the number of simultaneous
safety breaches by 1, so K simultaneous safety breaches can be resolved using K − 1
different altitude ranges. The general process and details of the complete picture of
multi-altitude collision avoidance is part of our future work.

The concept of platooning can be coupled with any collision avoidance algorithm
that provides safety guarantees. In this section, we have only proposed the simplest
reachability-based collision avoidance scheme. Existing collision avoidance algorithms
such as [15] and [36] have the potential to provide safety guarantees for many vehicles
in order to resolve multiple safety breaches at once. Coupling the platooning concept
with the more advanced collision avoidance methods that provide guarantees for a
larger number of vehicles would reduce the risk of multiple safety breaches.

Given that vehicles within a platoon are safe with respect to each other, each
platoon can be treated as a single vehicle, and perform collision avoidance with other
platoons when needed. The option of treating each platoon as a single unit can reduce
the number of individual vehicles that need to check for safety against each other,
reducing overall computation burden.

3.1.3.6 Numerical Simulations

In this section, we consider several situations that vehicles in a platoon on an
air highway may commonly encounter, and show via simulations the behaviors that
emerge from the controllers we defined in Sections 3.1.3.2 and 3.1.3.3.

Forming a Platoon: We first consider the scenario in which Free vehicles merge onto

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 35

an initially unoccupied highway. In order to do this, each vehicle first checks safety
with respect to all other vehicles, and uses the safety controller if necessary, according
to Section 3.1.3.2. Otherwise, the vehicle uses the goal satisfaction controller for
getting to an absolute target set described in Section 3.1.3.2 in order to merge onto
the highway, create a platoon, and become a Leader vehicle if there are no platoons
on the highway. If there is already a platoon on the highway, then the vehicle would
use the goal satisfaction controller for getting to a target set relative to the platoon
leader as described in Section 3.1.3.2 to join the platoon and become a Follower.

For the simulation example, shown in Figure 3.7, the highway is specified by a
line segment beginning at the origin. The five vehicles, Q1, Q2, . . . , Q5 are colored
orange, purple, light blue, dark blue, and yellow, respectively.

The first two plots in Figure 3.7 illustrate the use of safety and goal satisfaction
BRS for the first two vehicles. Since the goal satisfaction BRSs are in 4D and the
safety BRSs are in 6D, we compute and plot their 2D slices based on the vehicles’
velocities and relative velocities. All vehicles begin as Free vehicles, so they each need
to take into account five different BRSs: four safety BRSs and one goal satisfaction
BRS. For clarity, we only show the goal satisfaction BRS and the four safety BRSs
for one of the vehicles.

For Q1 (orange), an arbitrary point of entry on the highway is chosen as the
target absolute position, and the velocity corresponding to a speed of 10 m/s in the
direction of the highway is chosen as the target absolute velocity. This forms the
target state x̄H = (p̄x, v̄x, p̄y, v̄y), from which we define the target set LH as in Section
3.1.3.2.

At t = 4.2, Q1 (orange) is inside the goal satisfaction BRS for getting to an
absolute state, shown as the dotted orange boundary. Therefore, it is “locked-in” to
the target state x̄H , and follows the optimal control in (2.11) to x̄H . During the entire
time, Q1 checks whether it may collide with any of the other vehicles within a time
horizon of tfaulty. To do this, it simply checks whether its state relative to each of
the other vehicles is within the corresponding safety BRS. As an example, the safety
BRS boundary with respect to Q2 (purple) is shown as the orange dashed boundary
around Q2 (purple); Q1 (orange) is safe with respect to Q2 (purple) since Q1 (orange)
is outside of the boundary. In fact, Q1 is safe with respect to all vehicles.

After completing merging onto the empty highway, Q1 (orange) creates a platoon
and becomes its leader, while subsequent vehicles begin to form a platoon behind the
leader in the order of ascending distance to Q1 (orange) according to the process
described in Section 3.1.3.2. Here, we choose the target relative position (p̄x,r, p̄y,r) to
be a distance dsep behind the last reserved slot in the platoon, and the target relative
velocity (v̄x,r, v̄y,r) = (0, 0) with respect to the leader in order to maintain the platoon
formation. This gives us the target set LP that we need.

At t = 8.0, Q2 (purple) is in the process of joining the platoon behind Q1

(orange) by moving towards the target x̄P relative to the position of Q1 (orange).
Note that x̄P moves with Q1 (orange) as x̄P is defined in terms of the relative states

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 36

of the two vehicles. Since Q2 is inside the goal satisfaction BRS boundary for joining
the platoon (purple dotted boundary), it is “locked-in” to the target relative state
x̄P , and begins following the optimal control in (2.11) towards the target as long as
it stays out of all safety BRSs. For example, at t = 5.9, Q2 (purple) is outside of
the safety BRS with respect to Q1 (orange), shown as the purple dashed boundary
around Q1 (orange). Again, from the other safety BRS boundaries, we can see that
Q2 is in fact safe with respect to all vehicles.

In the bottom plots of Figure 3.7, Q1 (orange) and Q2 (purple) have already be-
come the platoon leader and follower, respectively. The rest of the vehicles follow the
same process to join the platoon. All 5 vehicles eventually form a single platoon and
travel along the highway together. As with the first two vehicles, the goal satisfaction
controllers allow the remaining vehicles to optimally and smoothly join the platoon,
while the safety controllers prevent collisions from occurring.

Intruder Vehicle: We now consider the scenario in which a platoon of vehicles
encounters an intruder vehicle. To avoid collision, each vehicle checks for safety with
respect to the intruder and any vehicles in front and behind of it in the platoon. If
necessary, the vehicle uses the reachability-based safety controller to avoid collision,
otherwise it uses the appropriate controller to travel on the highway if it is a leader,
or follow the leader if it is a follower. After danger has passed, the vehicles in the
platoon resume normal operation.

Figure 3.8 shows the simulation result. At t = 9.9, a platoon of four vehicles,
Qi, i = 1, . . . , 4 (with Pi = i), travels along the highway shown. An intruder vehicle
Q5 (yellow) heads left, disregarding the presence of the platoon. At t = 11.9, the
platoon leader Q1 (red) detects that it has gone near the boundary of the safety BRS
(not shown) with respect to the intruder Q5 (yellow). In response, Q1 (red) starts
using the safety controller to optimally avoid the intruder according to (2.13); in
doing so, it steers slightly off the highway.

Note that although in this particular simulation, the intruder travels in a straight
line, a straight line motion of the intruder was not assumed. Rather, the safety BRSs
are computed assuming the worst case control of the intruder.

As the intruder Q5 (yellow) continues to disregard other vehicles, the followers of
the platoon also get near the respective boundaries of their safety BRSs with respect
to the intruder. This occurs at t = 13.9, where the platoon “makes room” for the
intruder to pass by to avoid collisions; all vehicles deviate from their intended path,
which is to follow the platoon leader or the highway. Note that in this case, we have
assumed that the platoon does not move as a unit in response to an intruder to show
more interesting behavior.

After the intruder has passed, eventually all vehicles become far away from any
safety BRSs. When this occurs, the leader resumes following the highway, and the
followers resume following the leader. At t = 19.9, the platoon successfully gets back
onto the highway.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 37

-150 -100 -50 0 50 100 150 200

-300

-250

-200

-150

-100

-50

0

50

t=4.2

(a) The red vehicle is merging onto the
highway while avoiding collisions.

-150 -100 -50 0 50 100 150

-300

-250

-200

-150

-100

-50

0

50

t=8

(b) The purple vehicle is joining the pla-
toon while avoiding collisions.

-50 0 50 100

-300

-250

-200

-150

-100

-50

0

t=10.9

(c) The last three vehicles follow the same
process to join the platoon.

-50 0 50 100

-300

-250

-200

-150

-100

-50

0

t=20.9

(d) All five vehicles have successfully
joined the platoon and now travel on the
highway together.

Figure 3.7: A simulation showing how five vehicles initially in the Free mode can form
a platoon.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 38

0 50 100 150 200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

t=9.9

(a) A four-vehicle platoon travels along
the highway. The yellow vehicle disre-
gards the others.

0 50 100 150 200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

t=11.9

(b) Vehicles begin avoidance maneuvers
as they get near safety BRS boundaries.

0 50 100 150 200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

t=13.9

(c) Safety controllers cause vehicles to
spread out to “make room” for the in-
truder to pass.

0 50 100 150 200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

t=19.9

(d) After danger has passed, the platoon
resumes normal operation.

Figure 3.8: A simulation showing how a platoon of four vehicles reacts to an intruder.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 39

Changing highways: In order to travel from origin to destination, a vehicle may
need to change highways several times before exiting an air highway system. In this
simulation, shown in Figure 3.9, two platoons are traveling on two different highways
that intersect. When the platoons are near the highway intersection, two of the
vehicles in the four-vehicle platoon change highways and join the other platoon.

The t = 8.2 plot shows the two platoons of vehicles traveling on the two air
highways. One platoon has three vehicles, and the other has four vehicles. At t = 12.3,
the yellow vehicle begins steering off its original highway in order to join the other
platoon. In terms of the hybrid systems modes, the yellow vehicle transitions from the
Leader mode to the Follower mode. At the same time, the green vehicle transitions
from the Follower mode to the Leader mode, since the previous platoon leader, the
yellow vehicle, has left the platoon. By t = 16.9, the yellow vehicle successfully
changes highways and is now a follower in its new platoon.

At t = 16.9, the dark red vehicle is in the process of changing highways. In this
case, it remains in the Follower mode, since it is a follower in both its old and new
platoons. While the dark red vehicle changes highways, the orange vehicle moves
forward to catch up to its new platoon leader, the green vehicle. By t = 23, all the
vehicles have finished performing their desired maneuvers, resulting in a two-vehicle
platoon and a five-vehicle platoon traveling on their respective highways.

3.1.4 Conclusions

To address the important and urgent problem of the traffic management of
unmanned aerial vehicles (UAVs), we proposed to have platoons of UAVs traveling
on air highways. We showed how such an airspace structure leads to much easier
safety and goal satisfaction analysis. We provided simulations which show that by
organizing vehicles into platoons, many complex maneuvers can be performed using
just a few different backward reachable sets.

For the placement of air highways over a region, we utilize the very intuitive
and efficient fast marching algorithm for solving the Eikonal equation. Our algorithm
allows us to take as input any arbitrary cost map representing the desirability of
flying over any position in space, and produce a set of paths from any destination to
a particular origin. Simple heuristic clustering methods can then be used to convert
the sets of paths into a set of air highways.

On the air highways, we considered platoons of UAVs modeled by hybrid sys-
tems. We show how various required platoon functions (merging onto an air high-
way, changing platoons, etc.) can be implemented using only the Free, Leader, and
Follower modes of operation. Using HJ reachability, we proposed goal satisfaction
controllers that guarantee the success of all mode transitions, and wrapped a safety
controller around goal satisfaction controllers to ensure no collision between the UAVs
can occur. Under the assumption that faulty vehicles can descend after a pre-specified
duration, our safety controller guarantees that no collisions will occur in a single alti-

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 40

-200 -100 0 100 200
-200

-150

-100

-50

0

50

100

150

200
t=8.2

(a) A three-vehicle platoon and a four-
vehicle platoon travel on their respective
air highways.

-200 -100 0 100 200
-200

-150

-100

-50

0

50

100

150

200
t=12.3

(b) The yellow vehicle begins to join the
new platoon; The green vehicle becomes
a leader.

-200 -100 0 100 200
-200

-150

-100

-50

0

50

100

150

200
t=16.9

(c) The dark red vehicle joins a new pla-
toon; the orange vehicle catches up to
new platoon leader.

-200 -100 0 100 200
-200

-150

-100

-50

0

50

100

150

200
t=23

(d) New platoons now travel on their re-
spective air highways.

Figure 3.9: A simulation showing two vehicles changing highways and joining a new
platoon.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 41

tude level as long as at most one safety breach occurs for each vehicle in the platoon.
Additional safety breaches can be handled by multiple altitude ranges in the airspace.

3.2 Provably Safe and Scalable UAV Routing: A

Case Study in San Francisco and the Bay Area

This section is an adaptation of the paper in [29].
One essential problem that needs to be addressed for the unmanned airspace

to be successful is that of trajectory planning: how a group of vehicles in the same
vicinity can reach their destinations while avoiding situations which are considered
dangerous, such as collisions. Many previous studies address this problem under
different assumptions. In some studies, specific control strategies for the vehicles are
assumed, and approaches such as those involving induced velocity obstacles [27, 63,
141,145] and involving virtual potential fields to maintain collision avoidance [40,121]
have been used. Methods have also been proposed for real-time trajectory generation
[62], for path planning for vehicles with linear dynamics in the presence of obstacles
with known motion [3], and for cooperative path planning via waypoints which do not
account for vehicle dynamics [22]. Other related work include those which consider
only the collision avoidance problem without path or trajectory planning. These
results include those that assume the system has a linear model [20,132,138], rely on
a linearization of the system model [7,106], assume a simple positional state space [99],
and many others [?, 77, 97].

However, to make sure that a dense group of UAVs can safely fly in the close
vicinity of each other, we need the capability to flexibly plan provably safe and dy-
namically feasible trajectories without making strong assumptions on the vehicles’
dynamics and other vehicles’ motion. Moreover, any trajectory planning scheme that
addresses collision avoidance must also guarantee both goal satisfaction and safety of
UAVs despite disturbances caused by wind and communication faults [123]. Finally,
the proposed scheme should scale well with the number of vehicles, as well as result
in an intuitive airspace structure for humans to monitor and potentially adjust.

The problem of trajectory planning and collision avoidance under disturbances
in safety-critical systems has been well-studied using HJ reachability analysis, which
provides guarantees on goal satisfaction and safety of optimal system trajectories
[16, 23, 24, 64, 105, 111]. Reachability-based methods are particularly suitable in the
context of UAVs because of the hard guarantees that are provided. Despite its power,
the approach becomes numerically intractable as the state space dimension increases,
and therefore is not directly suitable for managing the next generation airspace, which
is a large-scale system with a high-dimensional joint state space because of the high
density of vehicles that needs to be accommodated [123].

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 42

To overcome this problem, the Sequential Trajectory Planning (STP) method
was proposed in [30]. Here, vehicles are assigned a strict priority ordering. Higher-
priority vehicles plan their trajectories without taking into account the lower-priority
vehicles. Lower-priority vehicles treat higher-priority vehicles as moving obstacles.
Under this assumption, time-varying formulations of reachability [24,64] can be used
to obtain the optimal and provably safe trajectories for each vehicle, starting from the
highest-priority vehicle. Thus, the curse of dimensionality is overcome for the multi-
vehicle trajectory planning problem at the cost of a mild structural assumption, under
which the computation complexity scales just linearly with the number of vehicles.

Intuitively, STP algorithm allocates a space-time trajectory to each vehicle based
on their priorities. The highest-priority vehicle gets to choose any space-time trajec-
tory that does not collide with static obstacles, such as the optimal trajectory. The
next vehicle’s trajectory must not intersect with the trajectory of the highest-priority
vehicle, and so on. Hence two vehicles can either follow same state tarjectory but at
different times (referred to as time-separated trajectories here on) or follow different
state trajectories but at the same time (referred to as state-separated trajectories
here on), but not both. Finally, they can have different state trajectories at different
times (referred to as state-time separated trajectories here on). So by design, STP
algorithm ensures that the space-time trajectories of the vehicles do not intersect,
and hence a safe transition to destination is guaranteed for all vehicles.

Authors in [14] and [28], respectively, extend STP to the scenarios where dis-
turbances and adversarial intruders are present in the system, resolving some of the
practical challenges associated with the basic STP algorithm in [30]. The focus of
these works, however, have mostly been on the theoretical development of STP algo-
rithm. The focus of this chapter is instead on demonstrating the potential of STP
algorithm as a provably safe trajectory planning algorithm for large-scale systems. In
particular,

• We simulate large-scale multi-vehicle systems in two different urban environ-
ments under the presence of disturbances in vehicles’ dynamics. First, the STP
algorithm is used for trajectory planning at a city level and then at a regional
level. For city level planning, we consider the city of San Francisco in California,
USA, and for regional level planning we consider a part of San Francisco Bay
Area in California, USA. The main differences between these two case studies
are that the city level planning needs to take into account static physical ob-
stacles such as tall buildings, whereas the origins and destinations are farther
apart at the regional level. In both cases, we demonstrate that STP algorithm
is able to design provably-safe trajectories despite the disturbances.

• We demonstrate how different types of space-time trajectories emerge naturally
out of STP algorithm between a given pair of origin and destination for different
disturbance conditions and other problem parameters. These emerging behav-

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 43

iors, while being provably safe, are also intuitive and would facilitate human
monitoring.

• We also show the reactivity of the control law obtained from STP algorithm.
In other words, we show that the obtained control law is able to effectively
counteract the disturbances in real-time without requiring any communication
with other vehicles.

The rest of this section is organized as follows: in Section 3.2.1, we formally
present the STP problem in the presence of disturbances. In Section 3.2.2, we present
a brief review of time-varying reachability, the basic STP algorithm [30] in the absence
of disturbances, and the Robust Trajectory Tracking (RTT) method [14] to account
for disturbances. We also use this algorithm for all our simulations in this section.
Simulation results are in Sections 3.2.3 and 3.2.4.

3.2.1 Hamilton-Jacobi Sequential Trajectory Planning

Consider N vehicles (also denoted as STP vehicles) which participate in the
STP process Qi, i = 1, . . . , N . We assume their dynamics are given by

żi = fi(zi, ui, di), t ≤ tSTA
i

ui ∈ Ui, di ∈ Di, i = 1 . . . , N
(3.17)

where zi ∈ Rni , ui ∈ Ui and di ∈ Di, respectively, represent the state, control and
disturbance experienced by vehicle Qi. We partition the state zi into the position
component pi ∈ Rnp and the non-position component hi ∈ Rni−np : zi = (pi, hi). We
will use the sets Ui,Di to respectively denote the set of functions from which the
control and disturbance functions ui(·), di(·) are drawn.

Each vehicle Qi has initial state z0
i , and aims to reach its target Li by some

scheduled time of arrival tSTA
i . The target in general represents some set of desirable

states, for example the destination of Qi. On its way to Li, Qi must avoid a set of
static obstacles Ostatic

i ⊂ Rni . The interpretation of Ostatic
i could be a tall building or

any set of states that are forbidden for each STP vehicle. In addition to the static
obstacles, each vehicle Qi must also avoid the danger zones with respect to every other
vehicle Qj, j 6= i. The danger zones in general can represent any joint configurations
between Qi and Qj that are considered to be unsafe. We define the danger zone of
Qi with respect to Qj to be

Zij = {(zi, zj) : ‖pi − pj‖2 ≤ Rc} (3.18)

whose interpretation is that Qi and Qj are considered to be in an unsafe configuration
when they are within a distance of Rc of each other. In particular, Qi and Qj are
said to have collided, ifif (zi, zj) ∈ Zij.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 44

Given the set of STP vehicles, their targets Li, the static obstacles Ostatic
i , and

the vehicles’ danger zones with respect to each other Zij, our goal is, for each vehicle
Qi, to synthesize a controller which guarantees that Qi reaches its target Li at or
before the scheduled time of arrival tSTA

i , while avoiding the static obstacles Ostatic
i as

well as the danger zones with respect to all other vehicles Zij, j 6= i. In addition, we
would like to obtain the latest departure time tLDT

i such that Qi can still arrive at Li
on time.

In general, the above optimal trajectory planning problem must be solved in the
joint space of all N STP vehicles. However, due to the high joint dimensionality, a
direct dynamic programming-based solution is intractable. Therefore, authors in [30]
proposed to assign a priority to each vehicle, and perform STP given the assigned
priorities. Without loss of generality, let Qj have a higher priority than Qi if j < i.
Under the STP scheme, higher-priority vehicles can ignore the presence of lower-
priority vehicles, and perform trajectory planning without taking into account the
lower-priority vehicles’ danger zones. A lower-priority vehicle Qi, on the other hand,
must ensure that it does not enter the danger zones of the higher-priority vehicles
Qj, j < i; each higher-priority vehicle Qj induces a set of time-varying obstaclesOji (t),
which represents the possible states of Qi such that a collision between Qi and Qj

could occur.
It is straight-forward to see that if each vehicle Qi is able to plan a trajectory

that takes it to Li while avoiding the static obstacles Ostatic
i and the danger zones of

higher-priority vehicles Qj, j < i, then the set of STP vehicles Qi, i = 1, . . . , N would
all be able to reach their targets safely. Under the STP scheme, trajectory planning
can be done sequentially in descending order of vehicle priority in the state space of
only a single vehicle. Thus, STP provides a solution whose complexity scales linearly
with the number of vehicles, as opposed to exponentially with a direct application of
dynamic programming approaches.

3.2.2 Background

In this section, we present the basic STP algorithm [30] in which disturbances
are ignored and perfect information of vehicles positions is assumed. This simplifi-
cation allows us to clearly present the basic STP algorithm. However, in presence
of disturbances, it is no longer possible to commit to exact trajectories (and hence
positions), since the disturbance di(·) is a priori unknown. Thus, disturbances and
incomplete information significantly complicate the STP scheme. We next present
the robust trajectory tracking algorithm [14] that can be used to make basic STP
approach robust to disturbances as well as to an imperfect knowledge of other ve-
hicles’ positions. All of these algorithms use time-varying reachability analysis to
provide goal satisfaction and safety guarantees; therefore, we start with an overview
of time-varying reachability.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 45

3.2.2.1 Time-Varying HJ Reachability

We will be using reachability analysis to compute a backward reachable set
(BRS) V given some target set L, time-varying obstacle G(t), and the Hamiltonian
function H which captures the system dynamics as well as the roles of the control
and disturbance. The BRS V in a time interval [t, tf] will be denoted by

V(t, tf) (backward reachable set) (3.19)

Several formulations of reachability are able to account for time-varying obsta-
cles [24, 64] (or state constraints in general). For our application in STP, we utilize
the time-varying formulation in [64], which accounts for the time-varying nature of
systems without requiring augmentation of the state space with the time variable.
In the formulation in [64], a BRS is computed by solving the following final value
double-obstacle HJ VI:

max
{

min{DtV (t, z) +H(t, z,∇V (t, z)), l(z)− V (t, z)},

− g(t, z)− V (t, z)
}

= 0, t ≤ tf

V (tf , z) = max{l(z),−g(tf , z)}

(3.20)

In (3.20), the function l(z) is the implicit surface function representing the target
set L = {z : l(z) ≤ 0}. Similarly, the function g(t, z) is the implicit surface function
representing the time-varying obstacles G(t) = {z : g(t, z) ≤ 0}. The BRS V(t, tf) is
given by

V(t, tf) = {z : V (t, z) ≤ 0} (3.21)

Some of the reachability computations will not involve an obstacle set G(t), in
which case we can simply set g(t, z) ≡ ∞ which effectively means that the outside
maximum is ignored in (3.20).

The Hamiltonian, H(t, z,∇V (t, z)), depends on the system dynamics, and the
role of control and disturbance. Whenever H does not depend explicit on t, we will
drop the argument. In addition, the Hamiltonian is an optimization that produces
the optimal control u∗(t, z) and optimal disturbance d∗(t, z), once V is determined.
For BRSs, whenever the existence of a control (“∃u”) or disturbance is sought, the
optimization is a minimum over the set of controls or disturbance. Whenever a BRS
characterizes the behavior of the system for all controls (“∀u”) or disturbances, the
optimization is a maximum. We will introduce precise definitions of reachable sets,
expressions for the Hamiltonian, expressions for the optimal controls as needed for
the many different reachability calculations we use.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 46

3.2.2.2 STP Without Disturbances

In this section, we give an overview of the basic STP algorithm assuming that
there is no disturbance and intruder affecting the vehicles. Although in practice, such
assumptions do not hold, the description of the basic STP algorithm will introduce
the notation needed for describing the subsequent, more realistic versions of STP.
The majority of the content in this section is taken from [30].

Recall that the STP vehicles Qi, i = 1, . . . , N , are each assigned a strict priority,
with Qj having a higher priority than Qi if j < i. In the absence of disturbances, we
can write the dynamics of the STP vehicles as

żi = fi(zi, ui), t ≤ tSTA
i

ui ∈ Ui, i = 1 . . . , N
(3.22)

In STP, each vehicle Qi plans the trajectory to its target set Li while avoiding
static obstacles Ostatic

i and the obstacles Oji (t) induced by higher-priority vehicles
Qj, j < i. Trajectory planning is done sequentially starting from the first vehicle
and proceeding in descending priority, Q1, Q2, . . . , QN so that each of the trajectory
planning problems can be done in the state space of only one vehicle. During its
trajectory planning process, Qi ignores the presence of lower-priority vehicles Qk, k >
i, and induces the obstacles Oik(t) for Qk, k > i.

From the perspective of Qi, each of the higher-priority vehicles Qj, j < i induces
a time-varying obstacle denoted Oji (t) that Qi needs to avoid. Therefore, each vehicle
Qi must plan its trajectory to Li while avoiding the union of all the induced obstacles
as well as the static obstacles. Let Gi(t) be the union of all the obstacles that Qi must
avoid on its way to Li:

Gi(t) = Ostatic
i ∪

i−1⋃
j=1

Oji (t) (3.23)

With full position information of higher priority vehicles, the obstacle induced
for Qi by Qj is simply

Oji (t) = {zi : ‖pi − pj(t)‖2 ≤ Rc} (3.24)

Each higher priority vehicle Qj plans its trajectory while ignoring Qi. Since
trajectory planning is done sequentially in descending order or priority, the vehicles
Qj, j < i would have planned their trajectories before Qi does. Thus, in the absence
of disturbances, pj(t) is a priori known, and therefore Oji (t), j < i are known, deter-
ministic moving obstacles, which means that Gi(t) is also known and deterministic.
Therefore, the trajectory planning problem for Qi can be solved by first computing
the BRS Vbasic

i (t, tSTA
i), defined as follows:

Vbasic
i (t, tSTA

i) ={y : ∃ui(·) ∈ Ui, zi(·) satisfies (3.22),

∀s ∈ [t, tSTA
i], zi(s) /∈ Gi(s),

∃s ∈ [t, tSTA
i], zi(s) ∈ Li, zi(t) = y}

(3.25)

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 47

The BRS V(t, tSTA
i) can be obtained by solving (3.20) with L = Li, G(t) = Gi(t),

and the Hamiltonian
Hbasic
i (zi, λ) = min

ui∈Ui
λ · fi(zi, ui) (3.26)

The optimal control for reaching Li while avoiding Gi(t) is then given by

ubasic
i (t, zi) = arg min

ui∈Ui
λ · fi(zi, ui) (3.27)

from which the trajectory zi(·) can be computed by integrating the system dynamics,
which in this case are given by (3.22). In addition, the latest departure time tLDT

i

can be obtained from the BRS V(t, tSTA
i) as tLDT

i = arg supt{z0
i ∈ V(t, tSTA

i)}. In
summary, the basic STP algorithm is given in Algorithm 1.

Algorithm 1: STP algorithm in the absence of disturbances

input : Set of vehicles Qi, i = 1, . . . , N in the descending priority order;
Vehicle dynamics (3.22) and initial states z0

i ;
Vehicle destinations Li and static obstacles Ostatic

i .
output: Provably safe vehicle trajectories to respective destinations for all

vehicles;
Goal-satisfaction controller ubasic(·) for all vehicles.

1 for i = 1 : N do
2 Trajectory planning for Qi

3 compute the total obstacle set Gi(t) given by (3.23). If i = 1,
Gi(t) = Ostatic

i ∀t;
4 compute the BRS Vbasic

i (t, tSTA
i) defined in (3.25).

5 Trajectory and controller of Qi

6 compute the optimal controller ubasic
i (·) given by (3.27);

7 determine the trajectory zi(·) using vehicle dynamics (3.22) and the control
ubasic
i (·);

8 output the trajectory and optimal controller for Qi.
9 Induced obstacles by Qi

10 given the trajectory zi(·), compute the induced obstacles Oik(t) given by
(3.24) for all k > i.

3.2.2.3 Robust Trajectory Tracking (RTT)

In the basic STP algorithm, lower priority vehicles know the trajectories of all
higher-priority vehicles. The region that a lower-priority vehicle needs to avoid is thus
simply given by the danger zones around these trajectories; however, disturbances
and incomplete information significantly complicate the STP scheme. Committing to
exact trajectories is no longer possible, since the disturbance di(·) is a priori unknown.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 48

Thus, the induced obstacles Oji (t) are no longer just the danger zones centered around
positions. Fortunately, it is straight forward to apply the FaSTrack method outlined
in Section 5.2 to robustify STP. In this section, we provide some intuitive details; for
the formal mathematics of FaSTrack, please refer to Section 5.2.

Even though it is impossible to commit to and track an exact trajectory in the
presence of disturbances, it may still be possible to instead robustly track a feasible
nominal trajectory with a bounded error at all times. If this can be done, then
the tracking error bound can be used to determine the induced obstacles. Here,
computation is done in two phases: the planning phase and the disturbance rejection
phase. In the planning phase, a nominal trajectory zr,j(·) is computed that is feasible
in the absence of disturbances. This planning is done for a reduced control set Up ⊂ U ,
as some margin is needed to reject unexpected disturbances while tracking the nominal
trajectory.

In the disturbance rejection phase, we compute a bound on the tracking error,
independently of the nominal trajectory. To compute this error bound, we find a
robust controlled-invariant set in the joint state space of the vehicle and a tracking
reference that may “maneuver” arbitrarily in the presence of an unknown bounded
disturbance. Taking a worst-case approach, the tracking reference can be viewed as
a virtual evader vehicle that is optimally avoiding the actual vehicle to enlarge the
tracking error. We therefore can model trajectory tracking as a pursuit-evasion game
in which the actual vehicle is playing against the coordinated worst-case action of the
virtual vehicle and the disturbance.

Let zj and zr,j denote the states of the actual vehicle Qj and the virtual evader,
respectively, and define the tracking error ej = zj−zr,j. When the error dynamics are
independent of the absolute state as in (3.28) (and also (7) in [111]), we can obtain
error dynamics of the form

ėj = fej(ej, uj, ur,j, dj),

uj ∈ Uj, ur,j ∈ Upj , dj ∈ Dj, t ≤ 0
(3.28)

To obtain bounds on the tracking error, we first conservatively estimate the error
bound around any reference state zr,j, denoted Ej:

Ej = {ej : ‖pej‖2 ≤ REB}, (3.29)

where pej denotes the position coordinates of ej and REB is a design parameter. We
next solve a reachability problem with its complement Ecj , the set of tracking errors
violating the error bound, as the target in the space of the error dynamics. From Ecj ,
we compute the following BRS:

VEB
j (t, 0) ={y : ∀uj(·) ∈ Uj,∃ur,j(·) ∈ Up

j ,∃dj(·) ∈ Di,

ej(·) satisfies (3.28), ej(t) = y,

∃s ∈ [t, 0], ej(s) ∈ Ecj },
(3.30)

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 49

where the Hamiltonian to compute the BRS is given by:

HEB
j (ej, λ) = max

uj∈Uj
min

ur∈Upj ,dj∈Dj
λ · fej(ej, uj, ur,j, dj). (3.31)

Letting t → −∞, we obtain the infinite-horizon control-invariant set Ωj :=
limt→−∞

(
VEB
j (t, 0)

)c
. If Ωj is nonempty, then the tracking error ej at flight time is

guaranteed to remain within Ωj ⊆ Ej provided that the vehicle starts inside Ωj and
subsequently applies the feedback control law

κj(ej) = arg max
uj∈Uj

min
ur∈Upj ,dj∈Dj

λ · fej(ej, uj, ur,j, dj). (3.32)

The induced obstacles by each higher-priority vehicle Qj can thus be obtained
by:

Oji (t) = {zi : ∃y ∈ Pj(t), ‖pi − y‖2 ≤ Rc}
Pj(t) = {pj : ∃hj, (pj, hj) ∈Mj(t)}
Mj(t) = Ωj + zr,j(t),

(3.33)

where the “+” in (3.33) denotes the Minkowski sum1. Intuitively, if Qj is tracking
zr,j(t), then it will remain within the error bound Ωj around zr,j(t) ∀t. This is precisely
the set Pj(t). The induced obstacles can then be obtained by augmenting a danger
zone around this set. Finally, we can obtain the total obstacle set Gi(t) using:

Gi(t) = Ostatic
i ∪

i−1⋃
j=1

Oji (t) (3.34)

Since each vehicle Qj, j < i, can only be guaranteed to stay within Ωj, we must
make sure during the trajectory planning of Qi that at any given time, the error
bounds of Qi and Qj, Ωi and Ωj, do not intersect. This can be done by augmenting
the total obstacle set by Ωi:

G̃i(t) = Gi(t) + Ωi. (3.35)

Finally, given Ωi, we can guarantee that Qi will reach its target Li if Ωi ⊆ Li;
thus, in the trajectory planning phase, we modify Li to be L̃i := {zi : Ωi + zi ⊆ Li},
and compute a BRS, with the control authority Upi , that contains the initial state of
the vehicle. Mathematically,

Vrtt
i (t, tSTA

i) ={y : ∃ui(·) ∈ Up
i , zi(·) satisfies (3.22),

∀s ∈ [t, tSTA
i], zi(s) /∈ G̃i(t),

∃s ∈ [t, tSTA
i], zi(s) ∈ L̃i, zi(t) = y}

(3.36)

1The Minkowski sum of sets A and B is the set of all points that are the sum of any point in A
and B.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 50

The BRS Vrtt
i (t, tSTA

i) can be obtained by solving (3.20) using the Hamiltonian:

Hrtt
i (zi, λ) = min

ui∈Upi
λ · fi(zi, ui) (3.37)

The corresponding optimal control for reaching L̃i is given by:

urtt
i (t) = arg min

ui∈Upi
λ · fi(zi, ui). (3.38)

The nominal trajectory zr,i(·) can thus be obtained by using vehicle dynamics
in the absence of disturbances (given by (3.22)) with the optimal control urtt

i (·) given
by (3.38). From the resulting nominal trajectory zr,i(·), the overall control policy to
reach Li can be obtained via (3.32). The robust trajectory tracking method can be
summarized in Algorithm 2.

3.2.3 City Environment Simulation

We now illustrate STP algorithm using a 50-vehicle UAV system where UAVs
are flying through a city environment. This setup can be representative of many UAV
applications, such as package delivery, aerial surveillance, etc.

3.2.3.1 Setup

We grid the City of San Francisco (SF) in California, USA, and use it as our
position space, as shown in Fig. 3.10. Each box in Fig. 3.10 represents a 1 km2 area
of SF. The origin point for the vehicles is denoted by the blue star. Four different
areas in the city are chosen as the destinations for the vehicles. Mathematically, the
target sets Li of the vehicles are circles of radius r in the position space, i.e. each
vehicle is trying to reach some desired set of positions. In terms of the state space zi,
the target sets are defined as

Li = {zi : ‖pi − ci‖2 ≤ r} (3.39)

where ci are centers of the target circles. In this simulation, we use r = 100 m.
The four targets are represented by four circles in Fig. 3.10. The destination of
each vehicle is chosen randomly from these four destinations. Finally, some areas in
downtown SF and the city hall are used as representative static obstacles for the STP
vehicles, denoted by black contours in Fig. 3.10.

For this simulation, we use the following dynamics for each vehicle:

ṗx,i = vi cos θi + dx,i

ṗy,i = vi sin θi + dy,i

θ̇i = ωi,

v ≤ vi ≤ v̄, |ωi| ≤ ω̄,

‖(dx,i, dy,i)‖2 ≤ dr

(3.40)

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 51

Algorithm 2: Robust trajectory tracking algorithm (STP algorithm in the
presence of disturbances)

input : Set of vehicles Qi, i = 1, . . . , N in the descending priority order;
Vehicle dynamics (3.17) and initial states z0

i ;
Vehicle destinations Li and static obstacles Ostatic

i .
output: The nominal trajectories to respective destinations for all vehicles;

Goal-satisfaction controller for all vehicles.
1 for i = 1 : N do
2 Computation of tracking error bound for Qi

3 obtain the error dynamics given by (3.28);
4 decide on a reduced control authority Upi for the planning phase, and

choose a parameter REB to conservatively bound the tracking error;
5 compute the BRS VEB

i (t, 0) using (3.30);
6 compute the Ωi using the converged BRS VEB

i ;
7 if Ωi 6= ∅ then
8 the error bound on the tracking error is given by Ωi;

9 else
10 recompute the tracking error bound using a larger REB;

11 Computation of obstacles for Qi

12 determine the total obstacle set Gi(t), given in (3.23). In the case i = 1,
Gi(t) = Ostatic

i ∀t;
13 using Ωi, determine the augmented obstacle set G̃i(t), given in (3.35).
14 Trajectory planning for Qi

15 compute the reduced target set L̃i;
16 compute the BRS Vrtt

i (t, tSTA
i) defined in (3.36).

17 Trajectory and controller of Qi

18 compute the nominal controller urtt
i (·) given by (3.38);

19 determine the nominal trajectory zr,i(·) using vehicle dynamics (3.22) and
the control urtt

i (·);
20 the overall goal satisfaction controller for Qi is given by (3.32);
21 output the nominal trajectory and the optimal tracking controller for Qi.
22 Induced obstacles by Qi

23 given the trajectory zr,i(·) and the tracking error bound Ωi, compute the
induced obstacles Oik(t) given by (3.33) for all k > i.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 52

Simulation Setup

48

0 1 2 3 4 5 km

0

1

2

3

4

5 km

Figure 3.10: Simulation setup. A 25 km2 area in the City of San Francisco is used as
the space for the STP vehicles. STP vehicles originate from the blue star and go to
one of the four destinations, denoted by circles. Tall buildings in the downtown area
are used as static obstacles, represented by the black contours.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 53

where zi = (px,i, py,i, θi) is the state of vehicle Qi, pi = (px,i, py,i) is the position, θi
is the heading, and d = (dx,i, dy,i) represents Qi’s disturbances, for example wind,
that affect its position evolution. The control of Qi is ui = (vi, ωi), where vi is the
speed of Qi and ωi is the turn rate; both controls have a lower and upper bound. To
make our simulations as close as possible to real scenarios, we choose velocity and
turn-rate bounds as v = 0 m/s, v̄ = 25 m/s, ω̄ = 2 rad/s, aligned with the modern
UAV specifications [1, 118]. The disturbance bounds are chosen to be either dr = 6
m/s or dr = 11 m/s. These conditions correspond to moderate breeze and strong
breeze respectively on the Beaufort scale [144]. The scheduled times of arrival tSTA

i

for all vehicles are chosen to be all 0 for a high UAV density condition. For medium
and low density conditions, we separated the tSTA

i for the vehicles by 5 s and 10 s
respectively, with the latest tSTA

i being 0. Note that we have used same dynamics and
input bounds across all vehicles for clarity of illustration; however, STP can easily
handle more general systems of the form in which the vehicles have different control
bounds, tSTA

i and dynamics.
The goal of the vehicles is to reach their destinations while avoiding a collision

with the other vehicles or the static obstacles. The joint state space of this 50-vehicle
system is 150-dimensional (150D), making the joint trajectory planning and collision
avoidance problem intractable for direct analysis. Therefore, we assign a priority
ordering to vehicles and solve the trajectory planning problem sequentially. For this
simulation, we assign a random priority order to fifty vehicles and use RTT algorithm
to compute the trajectories of the vehicles.

3.2.3.2 High UAV Density with 6 m/s Wind

As per Algorithm 2, we start with Q1 and sequentially compute the optimal
control policy κj and the latest departure time tLDT

j for each vehicle. To compute
the error bound Ej on the tracking error of vehicle j, we choose REB = 5 m and use
the reduced control authority Upj = {(vr,j, ωr,j) : 11 m/s ≤ vr,j ≤ 13 m/s, |ωr,j| ≤
1.2 rad/s}. Given dynamics in (3.40), the error dynamics between Qj and the virtual
evader are given by [111]:

ėx,j = vj cos(eθ,j)− vr,j + ωr,jey,j + dx,j

ėy,j = vr,j sin(eθ,j)− ωr,jex,j + dy,j

ėθ,j = ωj − ωr,j,
(3.41)

where ej = (ex,j, ey,j, eθ,j) is the tracking error in the three states of Qj. Given relative
dynamics, we compute the BRS VEB using (3.30) and evaluate the infinite-horizon
control invariant set Ωj. For all the BRS computations in this simulation, we use
Level Set Toolbox [110]. In presence of moderate winds, the obtained tracking error
bound is 5 m. This means that given any trajectory (which is a sequence of states
over time) of vehicle, winds can at most cause a deviation of 5 m from this trajectory

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 54

at all times. Consequently, the vehicle will be within a distance of 5 m from the
trajectory. Note that since all STP vehicles have same dynamics, the error bound is
also same for all vehicles.

The optimal control policy for Qj is thus given by κj(ej) in (3.32). However, to
compute the relative state ej, the nominal trajectory zr,j for Qj is required. Using
Ωj, we compute the obstacles induced by the higher-priority vehicles for Qj and the
obstacle induced by Qj for the lower-priority vehicles. These obstacles are given by
(3.35) and (3.33) respectively. Note that since disturbance directly impacts the com-
putation of tracking error bound, these obstacles also grow as disturbance magnitude
increases. We will illustrate the effect of disturbance magnitude on the trajectories
of vehicles in 3.2.3.3.

The nominal trajectory can now be obtained by computing Vrtt
j in (3.36) and

executing the corresponding control policy urtt
j in (3.38), starting from the initial state

z0
j . Finally, the latest departure time tLDT

j is given by arg supt z
0
j ∈ Vrtt

j (t, tSTA
j). It is

important to note that since the BRS Vrtt
j is computed backwards starting from the

scheduled time of arrival tSTA
j , (a) the latest departure time tLDT

j directly depends on
and varies with tSTA

j and (b) it directly impacts the obstacles that Qj needs to avoid
in its trajectory towards its destination. We will illustrate the effect of the scheduled
time of arrival on the trajectories of vehicles also in 3.2.3.3.

The resulting trajectories of vehicles for dr = 6 m/s and tSTA
j = 0 ∀j at different

times are shown in Fig. 3.11. As evident from the figures, the vehicles remain clear of
all the static obstacles (the black contours) and make steady progress towards reaching
their destinations. The vehicles whose destinations are relatively closer need less time
to travel to their destinations and depart later. Note that the shown trajectories are
simulated under uniformly random disturbance (i.e., for every vehicle, the disturbance
is uniformly sampled from a circle of radius dr = 6 m/s at each time step), but the
STP algorithm guarantees safety and reactivity despite the worst case disturbance,
as we show later in this section.

The full trajectories of vehicles are shown in Fig. 3.12a. All vehicles reach
their respective destinations. A zoomed-in version of Fig. 3.12a near the red target
(Fig. 3.13) illustrates that vehicles are also outside each other’s danger zones (circles
around the vehicles) as required.

It is interesting to note that the vehicles going to the same destination take
different trajectories. This is because all vehicles have same scheduled time of arrival,
and hence the lower-priority vehicles do not have the flexibility to wait for the higher-
priority vehicles. In order to ensure that they reach their destinations on time, they
take alternative trajectories to their destinations, forming different “traffic lanes”.
Thus, the vehicles’ trajectories obtained in this case are predominately state-separated
trajectories, i.e., they follow different state trajectories but at the same time.

Although the plotted trajectories in Fig. 3.12a are for a particular realization of
the (uniformly random) disturbances, the STP algorithm guarantees obstacle avoid-
ance regardless of the realized disturbance. To illustrate this, we plot the trajectories

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 55

0 1 2 3 4 5 km

0

1

2

3

4

5 km

(a)

0 1 2 3 4 5 km

0

1

2

3

4

5 km

(b)

0 1 2 3 4 5 km

0

1

2

3

4

5 km

(c)

0 1 2 3 4 5 km

0

1

2

3

4

5 km

(d)

Figure 3.11: Snapshots of vehicle trajectories at different times for uniform distur-
bance with dr = 6 m/s. The vehicles remain clear of all static obstacles despite the
disturbance in the dynamics.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 56

0 1 2 3 4 5 km

0

1

2

3

4

5 km

(a) Case-0: dr = 6m/s, tSTA
i = 0

0 1 2 3 4 5 km

0

1

2

3

4

5 km

(b) Case-1: dr = 11m/s, tSTA
i = 0

0 1 2 3 4 5 km

0

1

2

3

4

5 km

(c) Case-2: dr = 6m/s, tSTA
i = 5(i− 1)

0 1 2 3 4 5 km

0

1

2

3

4

5 km

(d) Case-3: dr = 11m/s, tSTA
i = 5(i− 1)

Figure 3.12: Effect of the disturbance magnitude and the scheduled times of arrival
on vehicle trajectories. All trajectories are simulated under uniformly random distur-
bance. The relative separation in the scheduled times of arrival of vehicles determines
the number of lanes between a pair of origin and destination, and more and more tar-
jectories become time-separated as this relative separation increases. The disturbance
magnitude determines the relative separation between different lanes, and more and
more tarjectories become state-separated as the disturbance increases.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 57

2800 2900 3000 3100 3200 3300 m

3700

3800

3900

4000

4100

4200 m

Figure 3.13: Zoomed-in version of vehicle trajectories near the red target in Fig.
3.12a. The STP algorithm ensures that the vehicles are outside each other’s danger
zones (circles around the vehicles).

of a particular vehicle (Q17) for three different disturbance realizations – uniform,
worst-case, and constant wind from the west direction – in Fig. 3.14. One can see
that the trajectories are nearly indistinguishable even in the zoomed-in plot on the
right.

Fig. 3.15 shows the minimum distance between Q17 and other vehicles. One can
see that this distance is never below 10 m, which is the minimum required separation
between the vehicles. The separation distance is small in the beginning because the
vehicles need to depart as soon as possible while maintaining this minimum required
separation.

Fig. 3.16 shows the optimal control action in terms of the turn rate and the linear
speed of each vehicle, demonstrating that the tracking control law reacts to tracking
error due to disturbances in an intuitive way. Both subplots show the control law
when the vehicle is facing east. Fig. 3.16a indicates, for example, that generally
when the tracking error is such that the vehicle is too far to the right compared to
the nominal position, the optimal tracking control is to turn left. Fig. 3.16b indicates,
for example, that when the vehicle is too far ahead of the nominal position, it should
slow down. The optimal turn rate and linear speed controls ensure that the vehicle
never deviates from the nominal trajectory for more than 5 m.

The average trajectory computation time per vehicle is 2 seconds using a CUDA
implementation of the level set toolbox on a desktop computer with a Core i7 5820K

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 58

constant

none

uniformly random

worst-case

(a)

constant

none

uniformly random

worst-case

(b)

Figure 3.14: Trajectories of Q17 under different types of bounded disturbances –
constant wind from the west, no wind, uniformly random wind, and worse-case wind.
The right plot zooms in on the beginning of the left plot.

-300 -250 -200 -150 -100 -50 0

Time (s)

0

50

100

150

200

250

300

M
in

im
u
m

 D
is

ta
n
c
e
 (

m
)

constant

none

uniform

worst-case

(a)

-330 -320 -310 -300 -290 -280

Time (s)

0

50

100

150

200

M
in

im
u

m
 D

is
ta

n
c
e

 (
m

)

constant

none

uniform

worst-case

(b)

Figure 3.15: Minimum distance to other vehicles for Q17 under different types of
bounded disturbances – constant wind from the west, no wind, uniformly random
wind, and worse-case wind. The right plot zooms in on the beginning of the left plot.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 59

-5 -2.5 0 2.5 5 m

-5

-2.5

0

2.5

5 m

(a) Turn rate control as a function of tracking
error. White: turn right; red: turn left; blue:
go straight.

-5 -2.5 0 2.5 5 m

-5

-2.5

0

2.5

5 m

(b) Linear speed control as a function of track-
ing error. Yellow: high speed; white: low
speed.

Figure 3.16: Optimal tracking control law for each vehicle for a heading of zero degrees
(facing towards the right).

processor and two GeForce GTX Titan X graphics processing units. Note that all this
computation is done offline and the resulting optimal policy κj(ej) is obtained as a
lookup table. In real time, neither any computation nor any communication between
vehicles is required. Only a lookup table query is required, and this can be performed
very quickly in real time. This illustrates the capability of STP as a provably safe
trajectory planning algorithm for large multi-vehicle systems. Without CUDA, the
computation time per vehicle is 33 seconds using a C++ implementation of the level
set toolbox, and 200 seconds using a MATLAB implementation.

3.2.3.3 Effects of Disturbance and Scheduled Time of Arrival

In this section, we illustrate how the disturbance bound dr in (3.40) and the
relative tSTAs of vehicles affect the vehicle trajectories. For this purpose, we simulate
the STP algorithm for four additional scenarios:

• Case-0: dr = 6 m/s, tSTA
i = 0 ∀i (moderate breeze, high UAV density)

• Case-1: dr = 11 m/s, tSTA
i = 0 ∀i (strong breeze, high UAV density)

• Case-2: dr = 6 m/s, tSTA
i = 5(i−1) ∀i (moderate breeze, medium UAV density)

• Case-3: dr = 11 m/s, tSTA
i = 5(i− 1) ∀i (strong breeze, medium UAV density)

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 60

• Case-4: dr = 11 m/s, tSTA
i = 10(i− 1) ∀i (strong breeze, low UAV density)

The interpretation tSTA
i = 5(i − 1) is that the scheduled time of arrival of any two

consecutive vehicles is separated by 5 s, which represents a medium vehicle density
scenario; a separation of 10 s represents a low vehicle density scenario. dr = 6 m/s
and dr = 11 m/s correspond to the moderate breeze and strong breeze respectively
on Beaufort wind force scale [144].

Intuitively, as dr increases, it is harder for a vehicle to closely track a particular
nominal trajectory, which results in a higher tracking error bound. As mentioned
previously, with a 6 m/s wind speed, the tracking error bound is 5 m; however,
with an 11 m/s wind speed, the tracking error bound becomes 35 m. Thus, the
vehicles need to be separated more from each other in space to ensure that they do
not enter each other’s danger zones. This is also evident from comparing the results
corresponding to Case-0 (Fig. 3.12a) and Case-1 (Fig. 3.12b). As the disturbance
magnitude increases from dr = 6 m/s (moderate breeze) to dr = 11 m/s (strong
breeze), the vehicles’ trajectories get farther apart from each other. Since tSTA is
same for all vehicles, the vehicles trajectories are still predominately state-separated
trajectories.

We next compare Case-0 and Case-2. The difference between these two cases is
that vehicles have a 5 second separation in their schedule times of arrival in Case-2.
When vehicles Qi and Qj (j > i) have same scheduled time of arrival and are going
to the same destination, they are constrained to travel at the same time to make
sure they reach the destination by the designated tSTA. However, since Qi is high-
priority, it gets access to the optimal trajectory (in terms of the total time of travel
to destination) and Qj has to settle for a relatively sub-optimal trajectory. Thus, all
vehicles going to a particular destination take different trajectories creating a “band”
of trajectories between the origin and the destination, as shown in Fig. 3.12a; the
high-priority vehicles take a relatively straight trajectory between the origin and the
destination whereas the low-priority vehicles take a (relatively sub-optimal) curved
trajectory. If we think of an air highway between the origin and the destination,
then vehicles take different lanes of that highway to reach the destination in Case-
0. Thus, the trajectories of vehicles in this case are state-separated. However, when
tSTA
j > tSTA

i , then Qj is not bound to travel at the same time as Qi; it can wait for
Qi to depart and take a shorter trajectory later on. Thus, vehicles travel in a single
(optimal) lane in this case, as shown in Fig. 3.12c. In other words, they take the
same trajectory to the destination, but at different times. Thus, the trajectories of
vehicles in this case are time-separated.

Note that the exact number of lanes depends on both the disturbance and sep-
aration of scheduled times of arrival. As the disturbance increases, vehicles need to
be separated more from each other to ensure safety. A larger arrival time difference
between vehicles is also able to ensure this separation even if the vehicles were to take
the same lane. As shown in Fig. 3.12d, a difference of 5 s in the tSTA’s is not suffi-

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 61

0 1 2 3 4 5 km

0

1

2

3

4

5 km

Figure 3.17: Vehicle trajectories for Case-4: dr = 11 m/s, tSTA
i = 10(i− 1). Since dif-

ferent vehicles have different scheduled times of arrival, there is a single lane between
every origin-destination pair.

cient to achieve a single lane behavior for stronger 11 m/s wind conditions. However,
the number of lanes is significantly less than that in Case-1 (Fig. 3.12b). Finally, a
separation of 10 s in tSTA’s ensure that we get the single lane behavior even in the
presence of 11 m/s winds, leading to time-separated trajectories, as shown in Fig.
3.17. Videos of the simulations can be found at https://youtu.be/1ocaBGZqSAE.

Overall, the relative magnitude of disturbance and scheduled times of arrival
separation determines the number of lanes and type of trajectories that emerge out
of the STP algorithm. For a fixed disturbance magnitude, as the separation in the
scheduled times of arrival of vehicles increases, the number of lanes between a pair
of origin and destination decreases, and more and more trajectories become time-
separated. On the other hand, for a fixed separation in the scheduled times of arrival
of vehicles, as the disturbance magnitude increases, the number of lanes between
a pair of origin and destination increases, and more and more trajectories become
state-separated.

3.2.4 Multi-city Environment Simulation

We next use STP algorithm to design trajectories for a 200-vehicle UAV system
where UAVs are flying through a multi-city region.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 62

3.2.4.1 Setup

We grid the San Francisco Bay Area in California, US and use it as our state
space, as shown in Fig. 3.18. We consider the UAVs flying to and from four cities:
Richmond, Berkeley, Oakland, and San Francisco. The blue region in Fig. 3.18
represents bay. This environment is different from the city environment in Section
3.2.3 in that now the UAVs need to fly for longer distances and through a high-
density vehicle environment with strong winds, but have very few static obstacles like
tall buildings.

Each box in Fig. 3.18 represents a 25 km2 area. The vehicles are flying to and
from the four cities indicated by the four circles. The origin and the destination of
each vehicle is chosen randomly from these four cities. The vehicle dynamics are
given by (3.40). We choose velocity and turn-rate bounds as v = 0 m/s, v̄ = 25 m/s,
ω̄ = 2 rad/s. The disturbance bound is chosen as dr = 11 m/s, which corresponds to
strong breeze on Beaufort wind force scale [144]. The scheduled time of arrival tSTA

for vehicles are chosen as 5(i− 1) s.
The goal of the vehicles is to reach their destinations while avoiding a collision

with the other vehicles. The joint state space of this 200-vehicle system is 600-
dimensional, making the joint trajectory planning and collision avoidance problem
intractable for direct analysis. Therefore, we assign a priority order to vehicles and
solve the trajectory planning problem sequentially.

3.2.4.2 Results

The trajectory planning for the vehicles is done using RTT algorithm, similar
to that in Section 3.2.3.2. The resulting trajectories of vehicles are shown in Fig.
3.19a. Once again, the vehicles remain clear of all other vehicles and reach their
respective destinations. Given the separation between the scheduled times of arrival,
the trajectories are predominately time-separated, with roughly two lanes for each
pair of cities (one for going from city A to city B and another for from city B to
city A). A high-density of vehicles is achieved in the center since the 4 trajectories
are intersecting in the center (Richmond-Oakland, Oakland-Richmond, Berkeley-San
Francisco, San Francisco-Berkeley), but the STP algorithm ensures safety despite
this high-density, as shown in the zoomed-in version of center at an intermediate
time when a large number of vehicles are passing through the central region (Fig.
3.19b).

Finally, we simulate the system for the case where tSTA
i = 0 ∀i. As evident from

Fig. 3.20, we get multiple lanes between each pair of cities in this case and trajecto-
ries become predominately state-separated, as we expect based on the discussion in
Section 3.2.3.3.

The average computation time per vehicle is 4 minutes using a CUDA imple-
mentation of the Level Set Toolbox on a desktop computer with a Core i7 5820K

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 63

0 5 10 15 km

0

5

10

15 km

Figure 3.18: Multi-city simulation setup. A 300 km2 area of San Francisco Bay Area
is used as the state-space for vehicles. STP vehicles fly to and from the four cities
indicated by the four circles. The simulations are performed under the strong winds
condition with dr = 11 m/s.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 64

(a)

8500 9000 9500 10000 m

7500

8000

8500

9000

9500 m

(b)

Figure 3.19: (a) Trajectories obtained from the STP algorithm for the multi-city
simulation with dr = 11 m/s, tSTA

i = 5(i − 1). (b) Zoomed-in version of the central
area. A high density of vehicles is achieved at the center because of the intersection
of several trajectories; however, the STP algorithm still ensures that vehicles do not
enter each other’s danger zones and reach their destinations.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 65

Figure 3.20: Vehicle trajectories for dr = 11 m/s, tSTA
i = 0. Since different vehicles

have same scheduled times of arrival, a multiple-lane behavior is observed between
every pair of cities.

CHAPTER 3. UNMANNED AIRSPACE INFRASTRUCTURE 66

processor and two GeForce GTX Titan X graphics processing units. The computa-
tion time is much longer than in the previous simulation in SF because of the larger
space over which planning is done. Once again all the computation is done offline and
only a lookup table query is required in real-time, which can be performed very effi-
ciently. This simulation illustrates the scalability and the potential of deploying the
STP algorithm for provably safe trajectory planning for large multi-vehicle systems.

3.2.5 Conclusion

Provably safe multi-vehicle trajectory planning in an important problem that
needs to be addressed to ensure that vehicles can fly in close proximity of each other.
Recently, the STP algorithm was proposed for multi-vehicle trajectory planning prob-
lem that scales linearly with the number of vehicles. We illustrate the full potential
of the algorithm by using it for large-scale multi-vehicle trajectory planning problems
under different flying conditions. We demonstrate how different types of space-time
trajectories emerge naturally out of the algorithm for different disturbance condi-
tions and other problem parameters. The reactivity of the obtained controller is also
demonstrated under different wind conditions.

67

Chapter 4

System Decomposition

There are several drawbacks to using HJ Reachability on large systems. In order
to compute the BRS, an HJ partial differential equation (PDE) must be solved on a
grid representing a discretization of the state space. This means that the complexity
of computing a BRT or BRS grows exponentially with the number of system states,
making the standard HJ reachability formulation intractable for systems higher than
approximately five dimensions. To address this difficulty, a number of approximation
techniques have been developed, such as those involving projections, approximate
dynamic programming, and occupation measure theory [98,107,114].

In this chapter, we introduce two new methods for decomposing a system into
smaller subsystems. Both methods involve computing a BRS or BRT in lower-
dimensional subspaces, and then reconstructing the full-dimensional BRS or BRT.
Section 4.1 presents a method based on the new concept of “self-contained subsys-
tems” common found in vehicle dynamics and mechanical systems; this method sub-
stantially reduces computational requirements without incurring any additional ap-
proximation errors, as long as the system dynamics are of a compatible form. Section
4.2 presents a complementary method based on the concept of virtual disturbances,
which eliminates state coupling in system dynamics at the cost of conservative ap-
proximation error. Fortunately, the trade off between degree of conservatism and
computational requirements can be tuned naturally.

4.1 Decomposition of Reachable Sets and Tubes

for a Class of Nonlinear Systems

This section is an adaptation of the paper in [33].
In this section, we present a system decomposition method for computing BRSs

and BRTs of a class of nonlinear systems. Our method drastically reduces dimen-
sionality without making any other trade offs. Our method first computes BRSs
for lower-dimensional subsystems, and then reconstructs the full-dimensional BRS

CHAPTER 4. SYSTEM DECOMPOSITION 68

without incurring additional approximation errors other than those arising from the
lower-dimensional computations. Crucially, the subsystems can be coupled through
common states, controls, and disturbances. The treatment of this coupling distin-
guishes our method from others which consider completely decoupled subsystems,
potentially obtained through transformations [26, 130]. Since BRTs are also of great
interest in many situations, we prove conditions under which BRTs can also be de-
composed.

The theory we present in this section is compatible with any methods that
compute BRSs and BRTs, such as [6,31,39,65,115] and others mentioned earlier. In
addition, when different decomposition methods are combined together, even more
dimensionality reduction can be achieved. This section will be presented as follows:

• In Section 4.1.1 we introduce all the definitions needed for our proposed decom-
position technique.

• In Sections 4.1.2 and 4.1.3 we present our theoretical results related to de-
composing BRSs for systems involving a control variable, but not involving a
disturbance variable.

• In Section 4.1.4 we show how BRTs can be decomposed.

• In Section 4.1.5 we demonstrate our decomposition method on high-dimensional
systems.

• In Section 4.1.6 we discuss how the presence of disturbances affects the above
theoretical results.

• We will also present numerical results obtained through the Hamilton-Jacobi
(HJ) reachability formulation in [111] throughout the subsections to validate
our theory.

4.1.1 Problem Formulation

In this section, we seek to obtain the BRSs and BRTs in Definitions 1 to 4 in
Section 2.2.1 via computations in lower-dimensional subspaces under the assumption
that the system (2.1) can be decomposed into self-contained subsystems (SCS) (4.77).
Such a decomposition is common, since many systems involve components that are
loosely coupled. In particular, the evolution of position variables in vehicle dynamics
is often weakly coupled though other variables such as heading.

4.1.1.1 Definitions

Subsystem Dynamics: Let the state z ∈ Rn be partitioned as z = (z1, z2, zc), with
z1 ∈ Rn1 , z2 ∈ Rn2 , zc ∈ Rnc , n1, n2 > 0, nc ≥ 0, n1 + n2 + nc = n. Note that nc could

CHAPTER 4. SYSTEM DECOMPOSITION 69

be zero. We call z1, z2, zc “state partitions” of the system. Intuitively, z1 and z2, are
states belonging to subsystems 1 and 2, respectively, and zc states belong to both
subsystems.

Under the above notation, the system dynamics (2.1) become

ż1 = f1(z1, z2, zc, u)

ż2 = f2(z1, z2, zc, u)

żc = fc(z1, z2, zc, u)

(4.1)

In general, depending on how the dynamics f depend on u, some state partitions
may be independent of the control.

We group these states into subsystems by defining the SCS states x1 = (z1, zc) ∈
Rn1+nc and x2 = (z2, zc) ∈ Rn2+nc , where x1 and x2 in general share the “common”
states in zc. Note that our theory is applicable to any finite number of subsystems
defined in the analogous way, with xi = (zi, zc); however, without loss of generality
(WLOG), we assume that there are just two subsystems.

Definition 5 Self-contained subsystem. Consider the following special case of
(4.1):

ż1 = f1(z1, zc, u)

ż2 = f2(z2, zc, u)

żc = fc(zc, u)

(4.2)

We call each of the subsystems with states defined as xi = (zi, zc) a “self-
contained subsystem” (SCS), or just “subsystem” for short. Intuitively (4.77) means
that the evolution of each subsystem depends only on the subsystem states: ẋi de-
pends only on xi = (zi, zc). Explicitly, the dynamics of the two subsystems are as
follows:

ż1 = f1(z1, zc, u) ż2 = f2(z2, zc, u)

żc = fc(zc, u) żc = fc(zc, u)

(Subsystem 1) (Subsystem 2)

Note that the two subsystems are coupled through the common state partition
zc and control u. When the subsystems are coupled through u, we say that the
subsystems have “shared control”.

An example of a system that can be decomposed into SCSs is the Dubins Car
with constant speed v: ṗx

ṗy
θ̇

 =

 v cos θ
v sin θ
ω

 , ω ∈ U (4.3)

CHAPTER 4. SYSTEM DECOMPOSITION 70

with state z = (px, py, θ) representing the x position, y position, and heading, and
control u = ω representing the turn rate. The state partitions are simply the system
states: z1 = px, z2 = py, zc = θ. The subsystem states xi and the subsystem controls
wi are

ẋ1 =

[
ż1

żc

]
=

[
ṗx
θ̇

]
=

[
v cos θ
ω

]
ẋ2 =

[
ż2

żc

]
=

[
ṗy
θ̇

]
=

[
v sin θ
ω

]
u = ω

(4.4)

where the overlapping state is θ, and the subsystem controls and their shared com-
ponent is the control u itself. The control partitions u1, u2 do not exist, since the
state partitions z1, z2 do not depend on the control. For more examples of systems
decomposed into SCSs, see (4.56), (4.57) and other numerical examples in this section.

Although there may be common or overlapping states in x1 and x2, the evolution
of each subsystem does not depend on the other explicitly. In fact, if we for example
entirely ignore the subsystem x2, the evolution of the subsystem x1 is well-defined and
can be considered a full system on its own; hence, each subsystem is self-contained.

Projection Operators: For the projection operators, it will be helpful to refer to
Fig. 4.1. Define the projection of a state z = (z1, z2, zc) onto a subsystem state space
Rni+nc as

proji(z) = xi = (zi, zc) (4.5)

This projects a point in the full dimensional state space onto a point in the
subsystem state space. Also define the back-projection operator to be

proj−1(xi) = {z ∈ Z : (zi, zc) = xi} (4.6)

This back-projection lifts a point from the subsystem state space to a set in the
full dimensional state space. We will also need the ability to apply the back-projection
operator on subsystems set to full dimensional sets. In this case, we overload the
back-projection operator:

proj−1(Si) = {z ∈ Z : ∃xi ∈ Si, (zi, zc) = xi} (4.7)

CHAPTER 4. SYSTEM DECOMPOSITION 71

Figure 4.1: This figure shows the back-projection of sets in the z1-zc plane S1 and the
z2-zc plane (S2) to the 3D space to form the intersection shown as the black cube (S).
The figure also shows projection of a point z onto the lower-dimensional subspaces in
the z1-zc and z2-zc planes.

Subsystem Trajectories: Since each subsystem in (4.77) is self-contained, we can
denote the subsystem trajectories ξi(s;xi, t, u(·)). When needed, we will write the sub-
system trajectories more explicitly in terms of the state partitions as ξi(s; zi, zc, t, u(·)).
The subsystem trajectories satisfy the subsystem dynamics and initial condition:

d

ds
ξi(s;xi, t, u(·)) = gi(ξi(s;xi, t, u(s))

ξi(t;xi, t, u(·)) = xi

(4.8)

where gi(xi, u) = (fi(zi, zc, u), fc(zc, u)), and the full system trajectory and subsystem
trajectories are simply related to each other via the projection operator:

proji
(
ξ(s; z, t, u(·))

)
= ξi(s;xi, t, u(·)) (4.9)

where xi = proji(z).

4.1.1.2 Goals of This Section

We assume that the full system target set L can be written in terms of the
subsystem target sets L1 ⊆ X1,L2 ⊆ X2 in one of the following ways:

L = proj−1(L1) ∩ proj−1(L2) (4.10)

CHAPTER 4. SYSTEM DECOMPOSITION 72

where the full target set is the intersection of the back-projections of subsystem target
sets, or

L = proj−1(L1) ∪ proj−1(L2) (4.11)

where the full target set is the union of the back-projections of subsystem target
sets. Fig. 4.1 helps provide intuition for these concepts: applying (4.10) to S1 and
S2 results in the black cube. Applying (4.11) would result in the cross-shaped set
encompassing both proj−1(S1) and proj−1(S2).

In practice, this is not a strong assumption, since L1 and L2 share the common
variables zc. Relatively complex shapes, for example those in Fig. 4.3 and 4.5, can
be represented by an intersection or union of back-projections of lower-dimensional
sets that share common variables. In addition, such an assumption is reasonable
since the full system target set should at least be representable in some way in the
lower-dimensional spaces.

Next, we define the subsystem BRSs Ri,Ai the same way as in Definitions 1
and 2, but with the subsystems in (4.77) and subsystem target sets Li, i = 1, 2,
respectively:

Ri(t) = {xi : ∃u(·), ξi(0;xi, t, u(·)) ∈ Li}
Ai(t) = {xi : ∀u(·), ξi(0;xi, t, u(·)) ∈ Li}

(4.12)

Subsystem BRTs are defined analogously:

R̄i(t) = {xi : ∃u(·),∃s ∈ [t, 0], ξi(s;xi, t, u(·)) ∈ Li}
Āi(t) = {xi : ∀u(·),∃s ∈ [t, 0], ξi(s;xi, t, u(·)) ∈ Li}

(4.13)

Given a system in the form of (4.77) with target set that can be represented by
(4.10) or (4.11), our goals are as follows.

• Decomposition of BRSs. First, we would like to compute full-dimensional
BRSs by performing computations in lower-dimensional subspaces. Specifically,
we would like to first compute the subsystem BRSs Ri(t) or Ai(t), and then
reconstruct the full system BRS R(t) or A(t). This process greatly reduces
computation burden by decomposing the full system into two lower-dimensional
subsystems. Formally, we would like to investigate the situations in which the
following four cases is true:

(4.10)⇒ R(t) = proj−1(R1(t)) ∩ proj−1(R2(t))

(4.10)⇒ A(t) = proj−1(A1(t)) ∩ proj−1(A2(t))

(4.11)⇒ R(t) = proj−1(R1(t)) ∪ proj−1(R2(t))

(4.11)⇒ A(t) = proj−1(A1(t)) ∪ proj−1(A2(t))

(4.14)

CHAPTER 4. SYSTEM DECOMPOSITION 73

Table 4.1: Backward Reachable Set Decomposition

Section 4.1.2 4.1.3
Shared Controls Yes No
Shared Disturbance No No
Target Intersection Union Intersection Union
Recover Max. BRS? No Yes, exact Yes, exact Yes, exact
Recover Min. BRS? Yes, exact No Yes, exact Yes, exact

Locations & Equation(s) Thm 2, (4.16) Thm 1, (4.15)
Prop 1, (4.31)
Thm 2, (4.16)

Thm 1, (4.15)
Prop 2, (4.32)

Section 4.1.6.1 4.1.6.2
Shared Controls Yes No
Shared Disturbance Yes Yes
Target Intersection Union Intersection Union
Recover Max. BRS? No Yes, consrv Yes, consrv Yes, consrv
Recover Min. BRS? Yes, consrv No Yes, consrv Yes, consrv
Locations & Equation(s) Cor 4, (4.67) Cor 3, (4.65) Cor 5, (4.68) Cor 6, (4.70)

Summary of possible decompositions of the BRS, whether they are possible, and if so whether they
are exact or conservative. Exact means that no additional approximation errors are introduced.
Note that in the cases marked “no” for shared control (or shared disturbance), the results hold for
both decoupled control (or disturbance) and for no control (or disturbance). All cases shown are
for scenarios with shared states, with the shared states being zc in (4.77); in the case that there are
no shared states this becomes a straightforward decoupled system.

Results related to BRSs are outlined for SCSs in Theorems 1 and 2. In the case
that the subsystem controls do not share any components, Propositions 1 and
2 state stronger results.

• Decomposition of BRTs. BRTs are useful since they provide guarantees over
a time horizon as opposed to at a particular time. However, often BRTs cannot
be decomposed the same way as BRSs. Therefore, our second goal is to propose
how BRTs can be decomposed. These results are stated in Propositions 3 and
4, and Theorem 3.

• Treatment of disturbances. Finally, we investigate how the above theoret-
ical results change in the presence of disturbances. In Section 4.1.6, we will
show that slightly conservative BRSs and BRTs can still be obtained using our
decomposition technique.

Tables 4.1, 4.2, 4.3 summarize our theoretical results and where details of each
result can be found.

CHAPTER 4. SYSTEM DECOMPOSITION 74

Table 4.2: BRT Results for Reconstruction from Tubes

Section 4.1.4.1
Shared Controls Yes No
Shared Disturbance No No
Target Intersection Union Intersection Union
Recover Max. BRT? No Yes, exact No Yes, exact
Recover Min. BRT? No No No Yes, exact

Equation(s) N/A Prop 3, (4.37) N/A
Prop 3, (4.37)
Prop 3, (4.38)

Section 4.1.6.3
Shared Controls Yes No
Shared Disturbance Yes Yes
Target Intersection Union Intersection Union
Recover Max. BRT? No Yes, conserv No Yes, conserv
Recover Min. BRT? No No No Yes, conserv

Equation(s) N/A Cor 7, (4.71) N/A
Cor 7, (4.71)
Cor 8, (4.72)

4.1.2 Self-Contained Subsystems

Suppose the full system (2.1) can be decomposed into SCSs given in (4.2). Then,
the full-dimensional BRS can be reconstructed without incurring additional approx-
imation errors from lower-dimensional BRSs in the situations stated in Theorem 1
and 2.

Remark 1 If L represents states the system aims to reach, then R(t) represents the
set of states from which L can be reached. If the system goal states are the union of
subsystem goal states, then it suffices for any subsystem to reach its subsystem goal
states, regardless of any coupling that exists between the subsystems. Theorem 1 states
this intuitive result.

Theorem 1 Suppose that the full system in (2.1) can be decomposed into the form
of (4.2), then

L = proj−1(L1) ∪ proj−1(L2)

⇒ R(t) = proj−1(R1(t)) ∪ proj−1(R2(t))
(4.15)

Remark 2 If L represents the set of unsafe states, then A(t) is the set of states
from which the system will be driven into danger. Thus outside of A(t), there exists
a control for the system to avoid the unsafe states. For the system to avoid L, it
suffices to avoid the unsafe states in either subsystem, regardless of any coupling that
exists between the subsystems. Theorem 2 formally states this intuitive result.

Theorem 2 Suppose that the full system in (2.1) can be decomposed into the form
of (4.2), then

CHAPTER 4. SYSTEM DECOMPOSITION 75

Table 4.3: BRT Results for Reconstruction from Sets

Section 4.1.4.2
Shared Controls Yes No
Shared Disturbance No No
Target Intersection Union Intersection Union
Recover Max. BRT? Yes, exact
Recover Min. BRT? Yes, exact*

Equation(s)
Prop 4, (4.39)
Thm 3, (4.41)

Section 4.1.6.3
Shared Controls Yes No
Shared Disturbance Yes Yes
Target Intersection Union Intersection Union
Recover Max. BRT? Yes, conserv
Recover Min. BRT? Yes, exact*

Equation(s)
Cor 9, (4.73)
Thm 3, (4.41)

Summary of possible decompositions of the BRT, whether they are possible, and if
so whether they are exact or conservative. Exact means that no additional
approximation errors are introduced. Note that in the cases marked “no” for shared
control (or shared disturbance), the results hold for both decoupled control (or
disturbance) and for no control (or disturbance). All cases shown are for scenarios
with shared states, with the shared states being zc in (4.77); in the case that there
are no shared states this becomes a straightforward decoupled system. We assume
that exact sets are available to compute those BRTs that require the union of sets.
* the solution here can be found only if the minimum BRSs are non-empty for the
entire time period.

CHAPTER 4. SYSTEM DECOMPOSITION 76

L = proj−1(L1) ∩ proj−1(L2)

⇒ A(t) = proj−1(A1(t)) ∩ proj−1(A2(t))
(4.16)

To prove the theorems, we need some intermediate results.

Lemma 1 Let z̄ ∈ Z, x̄i = proji(z̄),Si ⊆ Xi. Then,

x̄i ∈ Si ⇔ z̄ ∈ proj−1(Si) (4.17)

Proof of Lemma 1: Forward direction: Suppose x̄i ∈ Si, then trivially ∃xi ∈
Si, proji(z̄) = xi. By the definition of back-projection in (4.7), we have z̄ ∈ proj−1(Si).

Backward direction: Suppose z̄ ∈ proj−1(Si), then by (4.7) we have ∃xi ∈
Si, proji(z̄) = xi. Denote such an xi to be x̂i, and suppose x̄i /∈ Si. Then, we have
x̂i 6= x̄i, a contradiction, since x̄i = proji(z̄) = x̂i. �

Corollary 1 If S = proj−1(S1) ∪ proj−1(S2), then

z̄ ∈ S ⇔ x̄1 ∈ S1 ∨ x̄2 ∈ S2, where x̄i = proji(z̄)

Corollary 2 If S = proj−1(S1) ∩ proj−1(S2), then

z̄ ∈ S ⇔ x̄1 ∈ S1 ∧ x̄2 ∈ S2, where x̄i = proji(z̄)

4.1.2.1 Proof of Theorem 1

We will prove the following equivalent statement:

z̄ ∈ R(t)⇔ z̄ ∈ proj−1(R1(t)) ∪ proj−1(R2(t)) (4.18)

Consider the relationship between the full system trajectory and subsystem tra-
jectory in (4.9). Define x̄i = proji(z̄) and ξi(0; x̄i, t, u(·)) = proji(ξ(0; z̄, t, u(·))).

We first prove the backward direction. By Corollary 1, (4.18) is equivalent to

x̄1 ∈ R1(t) ∨ x̄2 ∈ R2(t) (4.19)

WLOG, assume x̄1 ∈ R1(t). By the subsystem BRS definition in (4.12), this is
equivalent to

∃u(·), ξ1(0; x̄1, t, u(·)) ∈ L1 (4.20)

By Lemma 1, we equivalently have z̄ ∈ proj−1(R1(t)). This proves the backward
direction.

For the forward direction, we begin with z̄ ∈ R(t), which by Definition 1 is
equivalent to ∃u(·), ξ(0; z̄, t, u(·)) ∈ L. By Corollary 1, we then have

∃u(·), ξ1(0; x̄1, t, u(·)) ∈ L1 ∨ ξ2(0; x̄2, t, u(·)) ∈ L2 (4.21)

Finally, distributing “∃u(·)” gives (4.19). �

CHAPTER 4. SYSTEM DECOMPOSITION 77

4.1.2.2 Proof of Theorem 2

We will prove the following equivalent statement:

z̄ /∈ A(t)⇔ z̄ /∈ proj−1(A1(t)) ∩ proj−1(A2(t)) (4.22)

The above statement is equivalent to

z̄ ∈ Ac(t)⇔ z̄ ∈
[
proj−1(A1(t))

]c ∪ [proj−1(A2(t))
]c

(4.23)

By the Definition 2 (minimal BRS), we have that z̄ ∈ Ac(t) is equivalent to
∃u(·) ∈ U, ξ(0; z̄, t, u(·)) ∈ Lc. Also,

z̄ ∈
[
proj−1(A1(t))

]c ∪ [proj−1(A2(t))
]c

is equivalent to x̄1 ∈ Ac1(t) ∨ x̄2 ∈ Ac2(t).
From here, we can proceed in the same fashion as the proof of Theorem 1, with

“R(t)” replaced with “Ac(t)”, “proj−1(Ri(t))” replaced with “
[
proj−1(Ai(t))

]c
”, and

“L”, “Li” replaced with “Lc”, “Lci”, respectively. �
The conditions for reconstruction the maximal BRS for an intersection of targets, as
well as the minimal BRS for a union of targets, are more complicated and beyond the
scope of this section of thesis. Table 4.4 summarizes the results from this subsection.

Table 4.4: BRS Results from Section 4.1.2

Shared Controls Yes
Shared Disturbance No
Target Intersection Union
Recover Max. BRS? No Yes, exact
Recover Min. BRS? Yes, exact No
Equation(s) Thm 2, (4.16) Thm 1, (4.15)

4.1.2.3 Numerical Example: The Dubins Car

The Dubins Car is a well-known system whose dynamics are given by (4.3). This
system is only 3D, and its BRS can be tractably computed in the full-dimensional
space, so we use it to compare the full formulation with our decomposition method.
The Dubins Car dynamics can be decomposed according to (4.4). For this example,
we computed the BRS from the target set representing positions near the origin in
both the px and py dimensions:

L = {(px, py, θ) : |px|, |py| ≤ 0.5} (4.24)

CHAPTER 4. SYSTEM DECOMPOSITION 78

Figure 4.2: Comparison of the Dubins Car BRS A(t = −0.5) computed using the
full formulation and via decomposition. Left top: BRSs in the lower-dimensional
subspaces and how they are combined to form the full-dimensional BRS. Top right:
BRS computed via decomposition. Bottom left: BRSs computed using both methods,
superimposed, showing that they are indistinguishable. Bottom right: BRS computed
using the full formulation.

Such a target set L can be used to model an obstacle that the vehicle must
avoid. Given L, the interpretation of the BRS A(t) is the set of states from which a
collision with the obstacle may occur after a duration of |t|. From L, we computed
the BRS A(t) at t = −0.5. The resulting full formulation BRS is shown in Fig. 4.2
as the red surface which appears in the bottom subplots. To compute the BRS using
our decomposition method, we write the unsafe set L as

L1 = {(px, θ) : |px| ≤ 0.5},L2 = {(py, θ) : |py| ≤ 0.5}
L = proj−1(L1) ∩ proj−1(L2)

(4.25)

From L1 and L2, we computed the lower-dimensional BRSs A1(t) and A2(t),
and then reconstructed the full-dimensional BRS A(t) using Theorem 2: A(t) =

CHAPTER 4. SYSTEM DECOMPOSITION 79

Figure 4.3: The Dubins Car BRS A(t = −0.5) computed using the full formulation
and via decomposition, other view angles.

proj−1(A1(t)) ∩ proj−1(A2(t)). The subsystem BRSs and their back-projections are
shown in magenta and green in the top left subplot of Fig. 4.2. The reconstructed
BRS is shown in the top left, top right, and bottom left subplots of Fig. 4.2 (black
mesh).

In the bottom left subplot of Fig. 4.2, we superimpose the full-dimensional
BRS computed using the two methods. We show the comparison of the computation
results viewed from two different angles in Fig. 4.3. The results are indistinguishable.

Theorem 2 allows the computation to be performed in lower-dimensional sub-
spaces, which is significantly faster. Another benefit of the decompositino method
is that in the numerical methods for solving the HJ PDE, the amount of numerical
dissipation increases with the number of state dimensions. Thus, computations in
lower-dimensional subspaces lead to a slightly more accurate numerical solution.

The computation benefits of using our decomposition method can be seen from
Fig. 4.4. The plot shows, in log-log scale, the computation time in seconds versus
the number of grid points per dimension in the numerical computation. One can
see that the direct computation of the BRS in 3D becomes very time-consuming
as the number of grid points per dimension is increased, while the computation via
decomposition hardly takes any time in comparison. Directly computing the BRS
with 251 grid points per dimension in 3D took approximately 80 minutes, while
computing the BRS via decomposition in 2D only took approximately 30 seconds!
The computations were timed on a computer with an Intel Core i7-2600K processor
and 16GB of random-access memory.

Fig. 4.5 illustrates Theorem 1. We chose the target set to be L = {(px, py, θ) :
px ≤ 0.5 ∨ py ≤ 0.5}, and computed the BRS R(t), t = −0.5 via decomposition.

CHAPTER 4. SYSTEM DECOMPOSITION 80

0 50 100 150 200 250 300
0

2000

4000

6000

C
o

m
p

u
ta

tio
n

 t
im

e
 (

s)

Decomposition

Full formulation

101 102 103

Number of grid points per dimension

10-2

100

102

104

C
o

m
p

u
ta

tio
n

 t
im

e
 (

s)

Figure 4.4: Computation times of the two methods in log scale for the Dubins Car.
The time of the direct computation in 3D increases rapidly with the number of grid
points per dimension. In contrast, computation times in 2D with decomposition are
negligible in comparison.

Figure 4.5: Comparison of the R(t) computed using our decomposition method and
the full formulation. The computation results are indistinguishable. Note that the
surface shows the boundary of the set; the set itself is on the “near” side of the left
subplot, and the left side of the right subplot.

CHAPTER 4. SYSTEM DECOMPOSITION 81

No additional approximation error is incurred in the reconstruction process. The
target set can be written as L = proj−1(L1) ∪ proj−1(L1) where L1 = {(px, θ) : px ≤
0.5},L2 = {(py, θ) : py ≤ 0.5}.

4.1.3 SCSs with Decoupled Control

In this section, we consider a special case of (4.2) in which the subsystem controls
do not have any shared components. The results from 4.1.2 still hold, and in addition
we can state the results in Propositions 1 and 2. The special case of (4.2) is as follows:

ż1 = f1(z1, zc, u1)

ż2 = f2(z2, zc, u2)

żc = fc(zc)

(4.26)

where the subsystem controls do not have any shared components, so that we have
u = (u1, u2). Furthermore, we can define the trajectory of zc as η(s; zc, t)), which
satisfies

d

ds
ηc(s; zc, t) = fc(ηc(s; zc, t))

ηc(t; zc, t)) = zc

(4.27)

Note that since the trajectory ηc(s; zc, t) does not depend on the control, we can
treat ηc(s; zc, t) as a constant when given zc and s. Therefore, given zc, the other
state partitions also become self-contained, with dynamics

żi = fi(zi, zc, ui) = fi(zi, ui; ηc(s; zc, t)) (4.28)

and with trajectories ηi(s; zi, zc, t, ui(·)) satisfying

d

ds
ηi(s; zi, zc, t, ui(·))

= fi(ηi(s; zi, zc, t, ui(·)), ui(s); ηc(s; zc, t))
ηi(t; zi, zc, t, ui(·)) = zi

(4.29)

Therefore, the subsystem trajectories can be written as

ξi(s;xi, t, ui(·)) =
(
ηi(s; zi, zc, t, ui(·)), ηc(s; zc, t)

)
(4.30)

Proposition 1 Suppose that the full system in (2.1) can be decomposed into the form
of (4.26). Then,

L = proj−1(L1) ∩ proj−1(L2)

⇒ R(t) = proj−1(R1(t)) ∩ proj−1(R2(t))
(4.31)

CHAPTER 4. SYSTEM DECOMPOSITION 82

Proposition 2 Suppose that the full system in (2.1) can be decomposed into the form
of (4.26). Then,

L = proj−1(L1) ∪ proj−1(L2)

⇒ A(t) = proj−1(A1(t)) ∪ proj−1(A2(t))
(4.32)

Remark 3 Systems with fully decoupled subsystems in the form of x1 = z1, x2 =
z2 are a special case of (4.26). A numerical example illustrating this case will be
presented in the 10D Near-Hover Quadrotor example in Section 4.1.5.2.

4.1.3.1 Proof of Proposition 1

We will prove the following equivalent statement:

z̄ ∈ R(t)⇔ z̄ ∈ proj−1(R1(t)) ∩ proj−1(R2(t)) (4.33)

By Definition 1 (maximal BRS), we have

z̄ ∈ R(t)⇔ ∃u(·), ξ(0; z̄, t, u(·)) ∈ L (4.34)

Consider the relationship between the full system trajectory and subsystem tra-
jectory in (4.9). Define

x̄i = (z̄i, z̄c) = proji(z̄), and

ξi(s; x̄i, t, ui(·)) = proji(ξ(0; z̄, t, u(·)))

By (4.30) we can write(
ηi(s; z̄i, z̄c, t, ui(·)), ηc(s; z̄c, t)

)
= proji(ξ(0; z̄, t, u(·)))

Since L = proj−1(L1) ∩ proj−1(L2), (4.34) is equivalent to

∃ (u1(·), u2(·)) ,(
η1(s; z̄1, z̄c, t, u1(·)), ηc(s; z̄c, t)

)
∈ L1∧(

η2(s; z̄2, z̄c, t, u2(·)), ηc(s; z̄c, t)
)
∈ L2

(by Corollary 2)

(4.35)

⇔
∃u1(·),

(
η1(s; z̄1, z̄c, t, u1(·)), ηc(s; z̄c, t)

)
∈ L1∧

∃u2(·),
(
η2(s; z̄2, z̄c, t, u2(·)), ηc(s; z̄c, t)

)
∈ L2

(since subsystem controls do not share components)

(4.36)

⇔ x1 ∈ R1(t) ∧ x2 ∈ R2(t)
(by definition of subsystem BRS in (4.12))

⇔ z̄ ∈ proj−1(R1(t)) ∩ proj−1(R2(t))
(by Corollary 2)

�

CHAPTER 4. SYSTEM DECOMPOSITION 83

4.1.3.2 Proof of Proposition 2

This proof follows the same arguments as 1, but with “R”, “∩”, “∃” replaced
with “A”, “∪”, “∀”, respectively. �

Remark 4 When the subsystem controls have shared components, the control chosen
by each subsystem may not agree with the other. This is the intuition behind why the
results of Propositions 1 and 2 only hold true when there are no shared components in
the subsystem controls. Note that the theorems hold despite the state coupling between
the subsystems.

The results from this section are summarized in Table 4.5.

Table 4.5: BRS Results from Section 4.1.3

Shared Controls No
Shared Disturbance No
Target Intersection Union
Recover Max. BRS? Yes, exact Yes, exact
Recover Min. BRS? Yes, exact Yes, exact

Equation(s)
Prop 1, (4.31)
Thm 2, (4.16)

Thm 1, (4.15)
Prop 2, (4.32)

4.1.4 Decomposition of Reachable Tubes

Sometimes, BRTs are desired; for example, in safety analysis, the computation
of the BRT Ā(t) in Definition 2 is quite important, since if the target set L represents
an unsafe set of states, then Ā(t) contains all states that would lead to some unsafe
state at some time within a duration of length |t|.

We now first discuss a special case where the full system BRT can be directly
reconstructed from subsystem BRTs in Section 4.1.4.1, and then present a general
method in which a BRT can be obtained via the union of BRSs in Section 4.1.4.2.

4.1.4.1 Full System BRTs From Subsystem BRTs

Intuitively, it may seem like the results related to BRSs outlined in Sections 4.1.2
and 4.1.3 trivially carry over to BRTs, and the relationship between BRSs and BRTs
are relatively simple; however, this is only partially true. The results related to BRSs
presented so far only easily carry over for BRTs if L = proj−1(L1)∪proj−1(L2). This
is formally stated in the following Proposition:

CHAPTER 4. SYSTEM DECOMPOSITION 84

Proposition 3 Suppose (4.11) holds, that is,

L = proj−1(L1) ∪ proj−1(L2)

Then, the full-dimensional BRT can be reconstructed from the lower-dimensional
BRTs without incurring additional approximation errors. For systems with SCSs as
in (4.2), we have

R̄(t) = proj−1(R̄1(t)) ∪ proj−1(R̄2(t)) (4.37)

This can be proven by starting the proof of Theorem 1 with Definition 3 for the
BRT R̄(t) instead of Definition 1 for the BRS R(t).

For systems with subsystem controls that do not share any components, we in
addition have

Ā(t) = proj−1(Ā1(t)) ∪ proj−1(Ā2(t)) (4.38)

This can be proven by starting the proof of Proposition 2 from Definition 4 for
the BRT Ā(t) instead of Definition 2 for the BRS A(t). Note that (4.38) does not
necessarily hold for systems with shared controls.

4.1.4.2 BRTs From Union of BRSs

If L = proj−1(L1) ∩ proj−1(L2), the BRT cannot be directly reconstructed from
lower-dimensional BRTs because when computing with BRTs, we lose information
about the exact time that a trajectory enters a set. Instead, we provide a general
method of obtaining the BRT that can also be used in the case of Section 4.1.4.1: We
first compute the BRSs, and then take their union to obtain the BRT. For this case,
we show that R̄(t) =

⋃
s∈[t,0]R(s), and Ā(t) =

⋃
s∈[t,0]A(s) when A(s) 6= ∅ ∀s ∈ [t, 0].

These results related to the indirect reconstruction of BRTs are given in Proposition
4 and Theorem 3

Proposition 4 ⋃
s∈[t,0]

R(s) = R̄(t) (4.39)

Theorem 3 ⋃
s∈[t,0]

A(s) ⊆ Ā(t) (4.40)

In addition, if ∀s ∈ [t, 0],A(s) 6= ∅, then⋃
s∈[t,0]

A(s) = Ā(t). (4.41)

CHAPTER 4. SYSTEM DECOMPOSITION 85

Propositions 4 and the first part of Theorem 3 are known [109], but we present
them in greater detail for clarity and completeness. The second part of Theorem 3 is
the main new result related to obtaining the BRT from BRSs.

Remark 5 The reason the theorems in Sections 4.1.2 and 4.1.3 trivially carry over
when L = proj−1(L1) ∪ proj−1(L2) is that in this case, any subsystem trajectory that
reaches the corresponding subsystem target set implies that the full system trajectory
reaches the full system target set.

In contrast, in the case L = proj−1(L1)∩ proj−1(L2), both subsystem trajectories
must be in the corresponding subsystem target sets at the same time. Mathematically,
recall the definitions of subsystem BRTs in (4.13):

Āi(t) = {xi : ∀u(·),∃s ∈ [t, 0], ξi(s;xi, t, u(·)) ∈ Li}
R̄i(t) = {xi : ∃u(·),∃s ∈ [t, 0], ξi(s;xi, t, u(·)) ∈ Li}

The set of “s” during which each subsystem trajectory is in Li may not overlap
for the different subsystems. In this case, we can still first compute the BRSs in lower-
dimensional subspaces, and then convert the BRSs to the BRT using Propositions 4
and Theorem 3.

4.1.4.3 Proof of Proposition 4

We start with Definition 1 (maximal BRS):

R(t) = {z : ∃u(·) ∈ U, ξ(0; z, t, u(·)) ∈ L}

If some state z is in the union
⋃
s∈[t,0]R(s), then there is some s ∈ [t, 0] such

that z ∈ R(s). Therefore, the union can be written as⋃
s∈[t,0]

R(s) = {z : ∃s ∈ [t, 0], ∃u(·), ξ(0; z, s, u(·)) ∈ L} (4.42)

Suppose z ∈
⋃
s∈[t,0]R(s), then equivalently

∃s ∈ [t, 0],∃u(·) ∈ U, ξ(0; z, s, u(·)) ∈ L (4.43)

Using (2.3), the time-invariance of the system, we can shift the trajectory time
arguments by t− s to get

∃s ∈ [t, 0],∃u(·) ∈ U, ξ(t− s; z, t, u(·)) ∈ L (4.44)

Since s ∈ [t, 0]⇔ t− s ∈ [t, 0], we can equivalently write

∃s ∈ [t, 0],∃u(·) ∈ U, ξ(s; z, t, u(·)) ∈ L (4.45)

CHAPTER 4. SYSTEM DECOMPOSITION 86

We can swap the expressions ∃s ∈ [t, 0] and ∃u(·) ∈ U without changing meaning
since both quantifiers are the same:

∃u(·) ∈ U,∃s ∈ [t, 0], ξ(s; z, t, u(·)) ∈ L (4.46)

which is equivalent to z ∈ R̄(t) by Definition 3 (maximal BRT). �

4.1.4.4 Proof of Theorem 3

We first establish
⋃
s∈[t,0]A(s) ⊆ Ā(t). Consider Definition 2 (minimal BRS):

A(t) = {z : ∀u(·) ∈ U, ξ(0; z, t, u(·)) ∈ L}

If some state z is in the union
⋃
s∈[t,0]A(s), then ∃s ∈ [t, 0] such that z ∈ A(s).

Thus, the union can be written as⋃
s∈[t,0]

A(s) = {z : ∃s ∈ [t, 0],∀u(·), ξ(0; z, s, u(·)) ∈ L} (4.47)

Suppose z ∈
⋃
s∈[t,0]A(s), then

∃s ∈ [t, 0],∀u(·) ∈ U, ξ(0; z, s, u(·)) ∈ L (4.48)

Using (2.3), the time-invariance of the system, we can shift the trajectory time
arguments by t− s to get

∃s ∈ [t, 0],∀u(·) ∈ U, ξ(t− s; z, t, u(·)) ∈ L (4.49)

Since s ∈ [t, 0]⇔ t− s ∈ [t, 0], we can equivalently write

∃s ∈ [t, 0],∀u(·) ∈ U, ξ(s; z, t, u(·)) ∈ L (4.50)

Let such an s ∈ [t, 0] be denoted s̄, then

∀u(·) ∈ U, ξ(s̄; z, t, u(·)) ∈ L
⇒ ∀u(·) ∈ U,∃s ∈ [t, 0], ξ(s; z, t, u(·)) ∈ L

(4.51)

By Definition 4, we have z ∈ Ā(t).
Next, given ∀s ∈ [t, 0],A(s) 6= ∅, we show

⋃
s∈[t,0]A(s) ⊇ Ā(t). Equivalently, we

show

z /∈
⋃
s∈[t,0]

A(s)⇒ z /∈ Ā(t) (4.52)

First, observe that by the definition of minimal BRS, we have that if any state
z̄ ∈ A(t), then

CHAPTER 4. SYSTEM DECOMPOSITION 87

∀s ∈ [t, 0],∀u(·) ∈ U, ξ(s; z̄, t, u(·)) ∈ A(s) (4.53)

since otherwise, we would have for some s̄ ∈ [t, 0],

∃u(·) ∈ U, ξ(s̄; z̄, t, u(·)) /∈ A(s̄)

⇒ ∃u(·) ∈ U, ξ(0; ξ(s̄; z̄, t, u(·)), s̄, u(·)) /∈ L
⇔ ∃u(·) ∈ U, ξ(0; z̄, t, u(·)) /∈ L

(4.54)

which contradicts z̄ ∈ A(t).
Given z /∈ A(t), there exists some control ū(·) such that ξ(0; z, t, ū(·)) /∈ L =

A(0). Moreover, we must have ∀s ∈ [t, 0], ξ(s; z, t, ū(·)) /∈ L, since otherwise, we
would have ∃ŝ such that

ξ(ŝ; z, t, ū(·)) ∈ L = A(0)

⇒ z = ξ(t; z, t, ū(·)) ∈ A(t− ŝ)
(4.55)

which contradicts z /∈
⋃
s∈(t,0)A(s).

Using time-invariance of the system dynamics, we have ∀s ∈ [t, 0], ξ(0; z, t −
s, ū(·)) /∈ L, which is equivalent to ∀s ∈ [t, 0], ξ(0; z, s, ū(·)) /∈ L. Therefore, ∃u(·) ∈
U,∀s ∈ [t, 0], ξ(0; z, s, ū(·)) /∈ L ⇔ z /∈ Ā(t). �

Remark 6 When ∃s ∈ [t, 0],A(s) = ∅, it is currently not known whether the union
of the BRSs A(s) will be equal to the BRT Ā(t) or a proper subset of the BRT Ā(t).
Both are possibilities. Finding a weaker condition under which the union of BRSs
equals to the BRT is an important future direction that we plan to investigate.

Remark 7 Note that Proposition 4 and Theorem 3 also hold for decoupled control.

Table 4.6: BRT Results for Reconstruction from Tubes

Shared Controls Yes No
Shared Dstb. No No
Target Intersection Union Intersection Union
Recover
Max. BRT?

No Yes, exact No Yes, exact

Recover
Min. BRT?

No No No Yes, exact

Equation(s)
N/A, see
Table 4.7

Prop 3,
(4.37)

N/A, see
Table 4.7

Prop 3, (4.37)
Prop 3, (4.38)

CHAPTER 4. SYSTEM DECOMPOSITION 88

Table 4.7: BRT Results for Reconstruction from Sets

Shared Controls Yes No
Shared Disturbance No No
Target Intersection Union Intersection Union
Recover Max. BRT? Yes, exact
Recover Min. BRT? Yes, exact*

Equation(s)
Prop 4, (4.39)
Thm 3, (4.41)

4.1.4.5 Numerical Results

Figure 4.6: The BRT computed directly in 3D (red surface) and computed via decom-
position in 2D (black mesh). Using our decomposition techinque, we first compute
the BRSs A(s), s ∈ [−0.5, 0], and then obtained the BRT by taking their union.

We now revisit the Dubins Car, whose full system and subsystem dynamics are
given in (4.3) and (4.4) respectively. Using the target set L given in (4.24) and writing
L in the form of (4.25), we computed the BRT Ā(t), t = −0.5 by first computing
A(s), s ∈ [−0.5, 0], and then taking their union.

Fig. 4.6 shows the BRT Ā(t), t = −0.5 computed directly in 3D and via de-
composition. Since A(s) 6= ∅ ∀s ∈ [−0.5, 0], the reconstruction does not incur any
additional approximation errors.

4.1.5 High-Dimensional Numerical Results

In this section, we show numerical results for the 6D Acrobatic Quadrotor and
the 10D Near-Hover Quadrotor, two systems whose exact BRSs and BRTs were in-

CHAPTER 4. SYSTEM DECOMPOSITION 89

tractable to compute with previous methods to the best of our knowledge.

4.1.5.1 The 6D Acrobatic Quadrotor

In [69], a 6D quadrotor model used to perform backflips was simplified into a
series of smaller models linked together in a hybrid system. The Quadrotor has state
z = (px, vx, py, vy, φ, ω), and dynamics

ṗx
v̇x
ṗy
v̇y
φ̇
ω̇

 =

vx
− 1
m
Cv
Dvx − T1

m
sinφ− T2

m
sinφ

vy
− 1
m

(mg + Cv
Dvy) + T1

m
cosφ+ T2

m
cosφ

ω

− 1
Iyy
Cφ
Dω − l

Iyy
T1 + l

Iyy
T2

 (4.56)

where x, y, and φ represent the quadrotor’s horizontal, vertical, and rotational po-
sitions, respectively. Their derivatives represent the velocity with respect to each
state. The control inputs T1 and T2 represent the thrust exerted on either end of the
quadrotor, and the constant system parameters are m for mass, Cv

D for translational
drag, Cφ

D for rotational drag, g for acceleration due to gravity, l for the length from
the quadrotor’s center to an edge, and Iyy for moment of inertia.

We decompose the system into the following subsystems:

x1 = (px, vx, φ, ω), x2 = (py, vy, φ, ω) (4.57)

For this example we will compute A(t) and Ā(t), which describe the set of initial
conditions from which the system may enter the target set despite the best possible
control to avoid the target. We define the target set as a square of length 2 centered
at (px, py) = (0, 0) described by L = {(px, vx, py, vy, φ, ω) : |px|, |py| ≤ 1}. This can
be interpreted as a positional box centered at the origin that must be avoided for all
angles and velocities. From the target set, we define l(z) such that l(z) ≤ 0⇔ z ∈ L.
This target set is then decomposed as follows:

L1 = {(px, vx, φ, ω) : |px| ≤ 1}
L2 = {(py, vy, φ, ω) : |py| ≤ 1}

The BRS of each 4D subsystem is computed and then recombined into the 6D BRS.
To visually depict the 6D BRS, 3D slices of the BRS along the positional and velocity
axes were computed. The left image in Fig. 4.7 shows a 3D slice in (px, py, φ) space
at vx = vy = 1, ω = 0. The yellow set represents the target set L, with the BRS
in other colors. Shown on the right in Fig. 4.7 are 3D slices in (vx, vy, ω) space at
px, py = 1.5, φ = 1.5 through different points in time. The sets grow darker as time
propagates backward. The union of the BRSs is the BRT, shown as the gray surface.

CHAPTER 4. SYSTEM DECOMPOSITION 90

Figure 4.7: Left: 3D positional slices of the reconstructed 6D BRSs at vx = vy = 1,
ω = 0 at different points in time. The BRT cannot be seen in this image because it
encompasses the entire union of BRSs. Right: 3D velocity slices of the reconstructed
6D BRSs at x, y = 1.5, φ = 1.5 at different points in time. The BRT can be seen as
the transparent gray surface that encompasses the sets.

4.1.5.2 The 10D Near-Hover Quadrotor

The 10D Near-Hover Quadrotor was used for experiments involving learning-
based MPC [25]. Its dynamics are

ṗx
v̇x
θ̇x
ω̇x
ṗy
v̇y
θ̇y
ω̇y
ṗz
v̇z

=

vx + dx
g tan θx
−d1θx + ωx
−d0θx + n0Sx

vy + dy
g tan θy
−d1θy + ωy
−d0θy + n0Sy

vz + dz
kTTz − g

(4.58)

where (px, py, pz) denotes the position, (vx, vy, vz) denotes the velocity, (θx, θy) denotes
the pitch and roll, and (ωx, ωy) denotes the pitch and roll rates. The controls of the
system are (Sx, Sy), which respectively represent the desired pitch and roll angle,
and Tz, which represents the vertical thrust. The system experiences the disturbance
(dx, dy, dz) which represents wind in the three axes. g denotes the acceleration due
to gravity. The parameters d0, d1, n0, kT , as well as the control bounds U , that we
used were d0 = 10, d1 = 8, n0 = 10, kT = 0.91, |ux|, |uy| ≤ 10 degrees, 0 ≤ uz ≤

CHAPTER 4. SYSTEM DECOMPOSITION 91

2g, |dx|, dy ≤ 0.5 m/s, |dz| ≤ 1 m/s. The system can be fully decoupled into three
subsystems of 4D, 4D, and 2D, respectively:

x1 = (px, vx, θx, ωx), x2 = (py, vy, θy, ωy), x3 = (pz, vz) (4.59)

The target set is chosen to be

L = {(px, vx, θx, ωx, py, vy, θy, ωy, pz, vz) :

|px|, |py| ≤ 1, |pz| ≤ 2.5}
(4.60)

This target set can be written as L =
⋂3
i=1 proj−1(Lxi), where proj−1(Lxi), i =

1, 2, 3 are given by

L1 = {(px, vx, θx, ωx) : |px| ≤ 1}
L2 = {(py, vy, θy, ωy) : |py| ≤ 1}
L3 = {(pz, vz) : |pz| ≤ 2.5}

(4.61)

Since the subsystems do not have any common controls or disturbances, and
L =

⋂3
i=1 proj−1(Lxi), we can compute the full-dimensional R(t) and R̄(t) by recon-

structing lower-dimensional BRSs and BRTs. A discussion of disturbances can be
found in Section 4.1.6.

CHAPTER 4. SYSTEM DECOMPOSITION 92

Figure 4.8: 3D slices of the 10D BRSs over time (colored surfaces) and BRT (black
surface) for the Near-Hover Quadrotor. The slices are taken at the indicated 7D
point.

From the target set, we computed the 10D BRS and BRT, R(s), R̄(s), s ∈
[−1, 0]. In the left subplot of Fig. 4.8, we show a 3D slice of the BRS and BRT sliced
at (vx, vy, vz) = (−1.5,−1.8, 1.2), θx = θy = ωx = ωy = 0. The colored sets show
the slice of the BRSs R(s), s ∈ [−1, 0], with the times color-coded according to the
legend. The slice of the BRT is shown as the black surface; the BRT is the union of
BRSs by Proposition 4.

The right subplot of Fig. 4.8 shows the BRS and BRT in (θx, θy, vz) space, sliced
at (px, py, pz) = (−1.5, 0, 1), (vx, vy) = (1.2,−0.6), ωx = ωy = −0.5. To the best of
our knowledge, such a slice of the exact BRS and BRT is not possible to obtain using
previous methods, since a high-dimensional system model like (4.58) is needed for
analyzing the angular behavior of the system.

4.1.6 Handling disturbances

Under the presence of disturbances, the full system dynamics changes from (2.1)
to

CHAPTER 4. SYSTEM DECOMPOSITION 93

dz

ds
= ż = f(z, u, d), s ∈ [t, 0], u ∈ U , d ∈ D (4.62)

where d ∈ D represents the disturbance, with d(·) ∈ D drawn from the set of mea-
surable functions.

In addition, we assume that the disturbance function d(·) is drawn from the set
of non-anticipative strategies [111], denoted Γ(t). We denote the mapping from u(·)
to d(·) as γ[u](·) as in [111]. The subsystems in (4.2) are now written as

ż1 = f1(z1, zc, u, d)

ż2 = f2(z2, zc, u, d)

żc = fc(zc, u, d)

(4.63)

In general, subsystem disturbances may have shared components. Whether this
is the case is very important, as some of the results involving disturbances become
stronger when the subsystem disturbances do not have shared components.

Trajectories of the system and subsystems are now denoted ξ(s; z, t, u(·), d(·)),
ξi(s;xi, t, u(·), d(·)), and satisfy conditions analogous to (2.2) and (4.8) respectively.
We also need to incorporate the disturbance into the BRS and BRT definitions:

Ā(t) = {z : ∃γ[u](·),∀u(·),∃s ∈ [t, 0],

ξ(s; z, t, u(·), γ[u](·)) ∈ L}
R̄(t) = {z : ∀γ[u](·),∃u(·),∃s ∈ [t, 0],

ξ(s; z, t, γ[u](·), d(·)) ∈ L}
A(t) = {z : ∃γ[u](·),∀u(·), ξ(0; z, t, u(·), γ[u](·)) ∈ L}
R(t) = {z : ∀γ[u](·),∃u(·), ξ(0; z, t, u(·), γ[u](·)) ∈ L}

(4.64)

Subsystem BRSs Ri,Ai, i = 1, 2 are defined analogously.

4.1.6.1 Self-Contained Subsystems

Under the presence of disturbances, the results from Section 4.1.2 carry over
with some modifications. Theorems 1 and 2 need to be changed slightly, and the
reconstructed BRS is now an approximation conservative in the right direction.

Corollary 3 Suppose that the full system in (2.1) can be decomposed into the form
of (4.63), then

L = proj−1(L1) ∪ proj−1(L2)

⇒ R(t) ⊇ proj−1(R1(t)) ∪ proj−1(R2(t))
(4.65)

To solve this, in the proof of Theorem 1, (4.21) becomes

CHAPTER 4. SYSTEM DECOMPOSITION 94

∀γ[u](·),∃u(·), ξ1(0; x̄1, t, u(·), d(·)) ∈ L1∨
ξ2(0; x̄2, t, u(·), d(·)) ∈ L2

(4.66)

The expression “∀γ[u](·),∃u(·)” can no longer be distributed, thus making the
reconstructed BRS a conservative approximation of the true BRS in the right direction.
By conservative in the right direction, we mean that a state z in the reconstructed BRS
is guaranteed to be able to reach the target.

Corollary 4 Suppose that the full system in (2.1) can be decomposed into the form
of (4.63), then

L = proj−1(L1) ∩ proj−1(L2)

⇒ A(t) ⊆ proj−1(A1(t)) ∩ proj−1(A2(t))
(4.67)

The proof of Theorem 2 makes the same arguments except that it involves com-
plements of sets instead. Again, the reconstructed BRS is a conservative approxi-
mation of the true BRS in the right direction, meaning that a state z outside of the
reconstructed BRS is guaranteed to be able to avoid the target.

If the subsystem disturbances have no shared components, then (4.66) becomes

∀ (γ1[u](·), γ2[u](·)) ,∃u(·), ξ1(0; x̄1, t, u(·), γ1[u](·)) ∈ L1∨
ξ2(0; x̄2, t, u(·), γ2[u](·)) ∈ L2

where γ[u](·) is written as (γ1[u](·), γ2[u](·)).
In this case, the expression “∀ (γ1[u](·), γ2[u](·)) ,∃u(·)” can be distributed. There-

fore, in this case Theorems 1 and 2 still hold.

4.1.6.2 Subsystems with Decoupled Control

For systems with decoupled control, but shared disturbance in the subsystems,
results from Section 4.1.6.1 still hold since the system dynamics structure is a special
case of that in Section 4.1.6.1. In addition, results from Section 4.1.3 hold with some
modifications. Propositions 1 and 2 need to be modified, and again the reconstructed
BRS is now an approximation conservative in the right direction.

Corollary 5 Suppose that the full system in (2.1) can be decomposed into the form
of (4.26), with the addition of shared disturbances. Then,

L = proj−1(L1) ∩ proj−1(L2)

⇒ R(t) ⊇ proj−1(R1(t)) ∩ proj−1(R2(t))
(4.68)

CHAPTER 4. SYSTEM DECOMPOSITION 95

To prove this, we modify Proposition 1 by changing (4.35) to

∀γ[u](·),∃ (u1(·), u2(·))(
η1(s; z̄1, z̄c, t, u1(·), γ[u](·)), ηc(s; z̄c, t)

)
∈ L1∧(

η2(s; z̄2, z̄c, t, u2(·), γ[u](·)), ηc(s; z̄c, t)
)
∈ L2

(4.69)

The expression “∀γ[u](·), ∃ (u1(·), u2(·))” cannot be distributed to lead to a statement
analogous to (4.36). Hence, the forward direction of Proposition 1 does not hold, and
conservativeness is introduced.

By the same reasoning, the result of Proposition 2 changes to the following.

Corollary 6
L = proj−1(L1) ∪ proj−1(L2)

⇒ A(t) ⊆ proj−1(A1(t)) ∪ proj−1(A2(t))
(4.70)

In both cases, conservative approximations of the BRS can still be obtained.

Table 4.8: BRS Results from Subsections 4.1.6.1 & 4.1.6.2

Shared Controls Yes No
Shared Dstb. Yes Yes
Target Intersection Union Intersection Union
Recover
Max. BRT?

No Yes, consrv Yes, consrv Yes, consrv

Recover
Min. BRT?

Yes, consrv No Yes, consrv Yes, consrv

Equation(s) Cor 4, (4.67) Cor 3, (4.65) Cor 5, (4.68) Cor 6, (4.70)

4.1.6.3 Decomposition of Reachable Tubes

Under disturbances, the results from Section 4.1.4 carry over with modifications.
For reconstruction from other BRTs, the arguments in Proposition 3 do not change.
However, in the case where there are overlapping components in the subsystem dis-
turbances, the reconstructed BRTs become conservative approximations:

Corollary 7 Suppose our system has coupled control and disturbance as in (4.63),
then

L = proj−1(L1) ∪ proj−1(L2)

⇒ R̄(t) ⊇ proj−1(R̄1(t)) ∪ proj−1(R̄2(t))
(4.71)

CHAPTER 4. SYSTEM DECOMPOSITION 96

Corollary 8 Suppose our system has subsystem controls that do not share any com-
ponents, then

L = proj−1(L1) ∪ proj−1(L2)

⇒ Ā(t) ⊆ proj−1(Ā1(t)) ∪ proj−1(Ā2(t))
(4.72)

For Proposition 4, the union of the BRSs now becomes an under-approximation
of the BRT in general:

Corollary 9 Suppose our system has coupled control and disturbance as in (4.63),
then

L = proj−1(L1) ∩ proj−1(L2)

⇒
⋃
s∈[t,0]

R(s) ⊆ R̄(t) (4.73)

To show this, all arguments in the proof of Proposition 4 remain the same, except
(4.42) no longer implies (4.46). Instead, the implication is unidirectional:

∃s ∈ [t, 0], ∀γ[u](·),∃u(·), ξ(0; z, s, u(·), γ[u](·)) ∈ L
⇒ ∀γ[u](·), ∃u(·),∃s ∈ [t, 0], ξ(s; z, t, u(·), γ[u](·)) ∈ L

(4.74)

This is due to the switching of the order of the expressions “∃s ∈ [t, 0]” and
“γ[u](·)”. Therefore, the union of the BRSs becomes an under-approximation of the
BRT, a conservatism in the right direction: a state in the under-approximated BRT
is still guaranteed to be able to reach the target.

In contrast to Proposition 4, all the arguments of Theorem 3 hold, since there
no change of order of expressions involving existential and universal quantifiers.

Table 4.9: BRT Results for Reconstruction from Tubes

Shared Controls Yes No
Shared Dstb. Yes Yes
Target Intersection Union Intersection Union
Recover
Max. BRT?

No Yes, consrv No Yes, consrv

Recover
Min. BRT?

No No No Yes, consrv

Equation(s) N/A Cor 7, (4.71) N/A
Cor 7, (4.71)
Cor 8, (4.72)

CHAPTER 4. SYSTEM DECOMPOSITION 97

Table 4.10: BRT Results for Reconstruction from Sets

Shared Controls Yes No
Shared Disturbance Yes Yes
Target Intersection Union Intersection Union
Recover Max. BRT? Yes, conserv
Recover Min. BRT? Yes, exact*

Equation(s)
Cor 9, (4.73)
Thm 3, (4.41)

* the solution here can be found only if the minimum BRSs are non-empty for the
entire time period.

4.1.6.4 Dubins Car with Disturbances

Under disturbances, the Dubins Car dynamics are given by ṗx
ṗy
θ̇

 =

 v cos θ + dx
v sin θ + dy
ω + dθ

ω ∈ U , (dx, dy, dθ) ∈ D

(4.75)

with state z = (px, py, θ), control u = ω, and disturbances d = (dx, dy, dθ). The state
partitions are z1 = px, z2 = py, zc = θ. The subsystems states xi, controls wi, and
disturbances bi are

ẋ1 =

[
ż1

żc

]
=

[
ṗx
θ̇

]
=

[
v cos θ + dx
ω + dθ

]
ẋ2 =

[
ż2

żc

]
=

[
ṗy
θ̇

]
=

[
v sin θ + dy
ω + dθ

]
uc = ω = u

d1 = dx, d2 = dy, dc = dθ

(4.76)

where the overlapping state is θ = zc. We assume that each component of disturbance
is bounded in some interval centered at zero: |dx| ≤ d̄x, |dy| ≤ d̄y, |dθ| ≤ d̄θ. The
subsystem disturbances b1 and b2 have the shared component dθ.

CHAPTER 4. SYSTEM DECOMPOSITION 98

Figure 4.9: Minimal BRTs computed directly in 3D and via decomposition in 2D
for the Dubins Car under disturbances with shared components. The reconstructed
BRT is an over-approximation of the true BRT. The over-approximated regions of
the reconstruction are indicated by the arrows.

Figure 4.10: Minimal BRTs computed directly in 3D and via decomposition in 2D
for the Dubins Car under disturbances without shared components. In this case, the
BRT computed using decomposition matches the true BRT.

Fig. 4.9 compares the BRT Ā(t), t = −0.5 computed directly from the target
set in (4.24), and using our decomposition technique from the subsystem target sets
in (4.25). For this computation, we chose d̄x, d̄y = 1, d̄θ = 5.

Since there is a shared component in the disturbances, the BRT computed using
our decomposition technique becomes an over-approximation of the true BRT. One

CHAPTER 4. SYSTEM DECOMPOSITION 99

can see the over-approximation by noting that the black set is not flush against the
red set, as marked by the arrows in Fig. 4.9.

Fig. 4.10 shows the same computation with d̄θ = 0, so that subsystem distur-
bances effectively have no shared components. In this case, one can see that the BRTs
computed directly in 3D and via decomposition in 2D are the same.

4.1.7 Conclusions

In this section, we presented a general system decomposition method for effi-
ciently computing BRSs and BRTs in several scenarios. By performing computa-
tions in lower-dimensional subspaces, computation burden is substantially reduced,
allowing currently tractable computations to be orders of magnitude more faster,
and currently intractable computations to become tractable. Unlike related work on
computation of BRSs and BRTs, our method can significantly reduce dimensionality
without sacrificing any optimality.

Under disturbances, the reconstructed BRSs and BRTs sometimes become slightly
conservative approximations which are still useful for providing performance and
safety guarantees. To the best of our knowledge, such guarantees for high-dimensional
systems are now possible for the first time. Our decomposition technique can also
be used in combination with other dimensionality reduction or approximation tech-
niques, further alleviating the curse of dimensionality.

4.2 Approximate Decomposition via State Decou-

pling Disturbances

This section is an adaptation of the paper in [31].
In this section, we propose a general method to remove coupling in systems by

treating coupling variables as disturbances. This uncoupling of dynamics transforms
the system into a form that is suitable for analysis using methods such as [115]
and [37], which exploit system structure. This method can also be combined with
previous work such as [98,107,114]. to reduce computation complexity even further.
We show that our approach results in BRSs that are conservative in the desired
direction, and demonstrate the performance of our method when combined with the
decoupled formulation in [37].

4.2.1 Problem Formulation

Suppose that the state can be written as z = (x, y) such that the control u and
disturbance d can be written as u = (ux, uy), d = (dx, dy), and such a decomposition

CHAPTER 4. SYSTEM DECOMPOSITION 100

of the control leads to the following form of system dynamics:

ẋ = g(x, y, ux, dx) ẏ = h(x, y, uy, dy)

ux ∈ Ux, uy ∈ Uy, dx ∈ Dx, dy ∈ Dy, t ∈ [−T, 0]
(4.77)

where x ∈ Rnx , y ∈ Rny , nx+ny = n, and g, h are components of the system dynamics
that involve (ux, dx), (uy, dy), respectively. Note that this assumption on u and d is
a mild one, and is satisfied by any system in which each of the control components
ux, uy and disturbance components dx, dy have independent control sets Ux,Uy and
disturbance sets Dx,Dy, respectively; note that we can also write U = Ux × Uy, and
D = Dx × Dy. This decomposition is very common in real world systems, where
control input bounds such as maximum acceleration and maximum turn rate are
independent of each other.

For the system in the form of (4.77), we would like to compute the BRS of
time horizon T , denoted V(T). Intuitively, V(T) is the set of states from which there
exists a control strategy to drive the system into a target set L within a duration of
T despite worst-case disturbances. Formally, the BRS is defined as1

V(T) ={z0 ∈ Rn : ∃u(·) ∈ U,∀γ ∈ Γ,

z(·) satisfies (4.77), z(−T) = z0 ⇒ z(0) ∈ L}
(4.78)

Standard HJ formulations exist for computing the BRS in the full dimensionality
n [16, 23, 64, 111]. In addition, special HJ formulations can be used to substantially
reduce computation complexity for systems with special properties such as having
terminal integrators or having fully decoupled dynamics [37, 115]. The goal of this
section will be to demonstrate how to take advantage of previous work on BRS com-
putation for systems of particular forms, even when the actual system dynamics do
not exactly satisfy necessary assumptions. For concreteness, we will focus on remov-
ing coupling to put systems into a fully decoupled form that satisfies the assumptions
in [37].

Our proposed approach computes an approximation of the BRS in dimension
max(nx, ny) instead of in dimension n, dramatically reducing computation complexity.
This is done by removing coupling in the dynamics by treating certain variables as
disturbances. The computed approximation is conservative in the desired direction,
meaning any state in the approximate BRS is also in the true BRS.

4.2.2 Decoupling via Virtual Disturbance

In the case where the dynamics are in the form of (4.77), one can treat y as a
disturbance in the function g, and x as a disturbance in the function h, the system

1Similar definitions of BRSs and their relationships can be found in, for example, [109]

CHAPTER 4. SYSTEM DECOMPOSITION 101

would become decoupled. Mathematically, (4.77) becomes the following:

ẋ = ĝ(x, yd, ux, dx)

x ∈ X , yd ∈ Y
ux ∈ Ux, dx ∈ Dx

ẏ = ĥ(y, xd, uy, dy)

xd ∈ X , y ∈ Y
uy ∈ Uy, dy ∈ Dy

t ∈ [−T, 0] (4.79)

where X ×Y represents the full-dimensional domain over which computation is done.
By treating the coupled variables as a disturbance, we have uncoupled the original
system dynamics (4.77), and produced approximate dynamics (4.79) that are decou-
pled, allowing us to do the computation in the space of each decoupled component.

Compared to the original system dynamics given in (4.77), the uncoupled dy-
namics given in (4.79) experiences a larger disturbance, since the y dependence of
the function g and the x dependence on the function h are treated as disturbances.
With the definition of BRS in (4.78), the approximate BRS computed using the dy-
namics (4.79) is an under-approximation of the true BRS. We formalize this in the
proposition below.

Proposition 5 Let Vx(T),Vy(T) be the BRSs of the subsystem (4.79) from the target
sets Lx,Ly, and let V(T) be the BRS of the system (4.77) from the target set L. Then2,
L = Lx ∩ Ly ⇒ Vx(T) ∩ Vy(T) ⊆ V(T).

Proof : It suffices to show that given any state (x0, y0) = (x(−T), y(−T)) such that
x0, y0 are in the BRSs Vx(T),Vy(T) for the system in (4.79), respectively, then (x0, y0)
is in the BRS V(T) for the system in (4.77).

For convenience, we will use x(·) ∈ X to denote x(s) ∈ X ∀s ∈ [−T, 0], with
y(·) ∈ Y having the analogous meaning. Applying the definition of BRS in (4.78) to
the subsystems in (4.79), at the state z0 = (x0, y0) we have

1. ∃ux ∈ Ux,∀dx ∈ Dx,∀yd ∈ Y, x(·) satisfies (4.79),
x(0) ∈ Lx

2. ∃uy ∈ Uy,∀dy ∈ Dy, ∀xd ∈ X, y(·) satisfies (4.79),
y(0) ∈ Ly

The above two conditions together imply

∃(ux, uy) ∈ Ux × Uy,∀(dx, dy) ∈ Dx × Dy,

∀(xd, yd) ∈ X× Y, (x(·), y(·)) satisfies (4.79),

(x(0), y(0)) ∈ L
(4.80)

2Strictly speaking, Lx,Ly,Vx(T),Vy(T) would need to be “back projected” into the higher di-
mensional space before their intersections can be taken, but we will use the abuse of notation for
convenience.

CHAPTER 4. SYSTEM DECOMPOSITION 102

In particular, since x(·) ∈ X, y(·) ∈ Y, the above is true also when xd = x(·), yd =
y(·), so

∃(ux, uy) ∈ Ux × Uy,∀(dx, dy) ∈ Dx × Dy,

(xd, yd) = (x(·), y(·)), (x(·), y(·)) satisfies (4.79),

(x(0), y(0)) ∈ L
(4.81)

But if xd = x(·), yd = y(·), then (4.79) becomes (4.77), thus

∃(ux, uy) ∈ Ux × Uy,∀(dx, dy) ∈ Dx × Dy,

(x(·), y(·)) satisfies (4.77), (x(0), y(0)) ∈ L.
(4.82)

�
By treating the coupled states as disturbance, the computation complexity re-

duces from O(knT) for the full formulation to O(kmax{nx,ny}T) for the decoupled
approximate system (4.79).

4.2.3 Disturbance Splitting

By treating coupling variables y and x as disturbances in g and h, respectively, we
introduce conservatism in the BRS computation. This conservatism is always in the
desired direction. In situations where X and Y are large, the degree of conservatism
can be reduced by splitting the disturbance xd and yd into multiple sections, as long
as the target set L does not depend on the state variables being split. For example,
xd ∈ X can be split as follows:

xid ∈ Xi, i = 1, 2, . . . ,M

where
M⋃
i=1

Xi = X
(4.83)

This disturbance splitting results in the following family of approximate system
dynamics

ẋ = g(x, yd, ux, dx)

ux ∈ Ux, dx ∈ Dx
yd ∈ Y
t ∈ [−T, 0]

ẏ = h(y, xid, uy, dy)

uy ∈ Uy, dy ∈ Dy
xid ∈ X i

i = 1, 2, . . . ,Mx

(4.84)

from which a BRS can be computed in X i × Y . Since X i ⊆ X , the uncoupling dis-
turbance is reduced whenever the disturbance xd is split. In addition, the uncoupling
disturbance yd can also be split into My, for a total of M = MxMy total “pieces” of
uncoupling disturbances. However, a smaller disturbance bound also restricts the al-
lowable trajectories of each approximate system, so overall it is difficult to determine
a priori the optimal way to split the uncoupling disturbances. The trade-off between

CHAPTER 4. SYSTEM DECOMPOSITION 103

the size of disturbance bound and degree of restriction placed on trajectories can be
seen in Fig. 4.12.

4.2.3.1 Examples of Decoupling System Dynamics

Our proposed method applies to any system of the form (4.77), as we will demon-
strate with the example in Section 4.2.4. Systems with light coupling between groups
of state variables are particularly suitable for the application or our proposed method.
Below are other example systems for which treating the coupling variables y in g or
x in h as disturbances would lead to decoupling.

Linear systems with large Jordan blocks, for example,

ż =

λ 1 0 0
0 λ 1 0
0 0 λ 1
0 0 0 λ

 z +Bu (4.85)

If z3 is treated as a disturbance in the equation for ż2, we would obtain the
decoupled components (z1, z2) and (z3, z4).

Lateral Quadrotor Dynamics near Hover [25]:

ż =

z2

g tan z3

z4

−d0z3 − d1z4

+

0
0
0
n0

u (4.86)

where z1 is the longitudinal position, z2 is the longitudinal velocity, z3 is the pitch
angle, z4 is the pitch rate, and u is the desired pitch angle. These dynamics are
valid for small pitch angles. The system would become decoupled into the (z1, z2)
and (z3, z4) components if z3 is treated as a disturbance in ż2. In fact, the full ten-
dimensional (10D) quadrotor dynamics given in [25] can be decomposed into five
decoupled components of 2D systems, allowing an approximation of the 10D BRS to
be computed in 2D space.

It is worth noting that after decoupling the 4D system in (4.86) into two 2D
systems, each decoupled component is in the form ẏ = g(y, u), ẋ = b(y). This is
exactly the form of the dynamics in [115], allowing the 4D BRS to be exactly computed
in 1D! In general, removing coupling may bring the system dynamics into a form
suitable for analysis using methods that require specific assumptions on the dynamics,
potentially greatly reducing computation complexity.

CHAPTER 4. SYSTEM DECOMPOSITION 104

4.2.4 Numerical Results

We demonstrate our proposed method using a 4D model of an aircraft flying at
constant altitude, given by

ṗx = v cosψ

ψ̇ = ω

ω ≤ ω ≤ ω̄

ṗy = v sinψ

v̇ = a

a ≤ a ≤ ā

(4.87)

where (px, py) represent the plane’s position in the x and y directions, ψ represents
the plane’s heading, and v represents the plane’s longitudinal velocity. The plane has
a limited turn rate ω and a limited longitudinal acceleration a as its control variables.
For our example, the computation bounds are

px ∈ [−40, 40] m

ψ ∈ [−π, π] rad

py ∈ [−40, 40] m

v ∈ [6, 12] m/s

Using the decoupled approximation technique, we create the following decoupled
approximation of the system with (px, ψ) and (py, v) as the decoupled components:

ṗx = dv sin(ψ)

ψ̇ = ω

ω ≤ ω ≤ ω̄

dv ≤ dv ≤ d̄v

ṗy = v sin(dψ)

v̇ = a

a ≤ a ≤ ā

dψ ≤ dψ ≤ d̄ψ

(4.88)

We define the target set as a square of length 4 m centered at (px, py) = (0, 0),
described by L = {(px, py, ψ, v) : |px|, |py| ≤ 2}. This can be interpreted as a posi-
tional goal centered at the origin that can be achieved for all angles and velocities
within the computation grid bounds. From the target set, we define l(z) such that
l(z) ≤ 0⇔ x ∈ L. To analyze our newly decoupled system we must likewise decouple
the target set by letting Li, i = 1, 2 be

L1 = {(px, ψ) : |px| ≤ 2}
L2 = {(py, v) : |py| ≤ 2}

(4.89)

These target sets have corresponding implicit surface functions li(xi), i = 1, 2,
which then form the 4D target set represented by l(z) = maxi li(xi), i = 1, 2.

We set L as the target set in our reachability problem and computed the BRS
V(T) from L using both the direct 4D computation as well as the proposed decoupled
approximation method.

CHAPTER 4. SYSTEM DECOMPOSITION 105

Figure 4.11: 3D slices of the BRSs across a range of Mv and Mψ. The full formulation
sets are in green, and the decoupled approximation sets are in gray. The top row shows
3D projections through all values of v. The top left plot shows this projection for
Mψ = Mv = 1 with Mψ,Mv increasing as we move right in the list of plots, up to
Mψ = Mv = 32 at top right. The bottom figures show the same sections for 3D
projections through ψ.

4.2.4.1 Backward Reachable Sets

The BRS describes in this case the set of initial conditions from which the
system is guaranteed to reach the target set within a given time period T despite
worst possible disturbances. To analyze the BRS we vary the degree of conservatism
using the disturbance splitting method described in section 4.2.3. After applying
splitting, we arrive at the following piece-wise system:

ṗx = div sin(ψ)

ψ̇ = ω

ω ≤ ω ≤ ω̄

div ≤ div ≤ d̄iv
i =1, 2, . . . ,Mv

ṗy = v sin(djψ)

v̇ = a

a ≤ a ≤ ā

djψ ≤ djψ ≤ d̄jψ

j =1, 2, . . . ,Mψ

(4.90)

We analyzed the decoupled approximation formulation with Mv and Mψ ranging
from 1 to 32. To visually depict the computed 4D BRS, we plot 3D slices of the BRS
in Fig. 4.11. In these slices the green sets are the BRS computed using the full
formulation, and the gray sets are the decoupled approximations. With the definition
of BRS given in (4.78), all the decoupled approximations are constructed to be under-
approximations.

The top row of plots shows the 3D projections through all values of v. The
bottom row of plots shows the 3D projections through all values of ψ. Moving from left

CHAPTER 4. SYSTEM DECOMPOSITION 106

5 10 15 20 25 30

M
ψ
 Sections

0.05

0.1

0.15

0.2

V
o
lu

m
e
 R

a
ti
o

M
v
=1

M
v
=2

M
v
=4

M
v
=8

M
v
=16

M
v
=32

Figure 4.12: The vertical axis represents the ratio of the reconstructed BRS volume
over the full formulation volume. The graph shows how this ratio changes as a
function of number of disturbance sections. The highest volume ratio (and therefore
least conservative BRS) was for Mψ = 16,Mv = 2.

to right, each column of plots shows the decoupled approximations with an increasing
number of split sections Mψ and Mv.

4.2.4.2 Reconstruction Performance

To compare the degree of conservatism of the decoupled approximations, we
determined the total 4D volume of the BRS computed using both methods. We then
took the ratio of the decoupled approximation volume to the full formulation BRS
volume. Since under-approximations are computed, a higher volume ratio indicates
a lower degree of conservatism.

Fig. 4.12 shows this volume ratio as a function of Mψ and Mv. For example, the
purple curve represents the volume ratio for Mv = 1 across various values of Mψ, and
on the other extreme, the yellow curve represents the the volume ratio for Mv = 32
across various values of Mψ. The highest number of sections computed was with
Mψ = Mv = 32.

Initially the decoupled approximations become less conservative as Mv and Mψ

increase. This is because splitting the disturbance range has the effect of mitigat-
ing the strength of the disturbances. However, splitting the disturbance range also
restricts the allowable trajectories of the system and can eventually introduce more
conservatism. For example, if the velocity disturbance range is 6 ≤ dv ≤ 12, the
trajectories must stay within this velocity range for the duration of T . If this range
is split, the set of disturbances has a smaller range, but likewise the trajectories for
each subsection must remain within the smaller split velocity range for the time pe-
riod. Therefore, there is an optimal point past which splitting does not help decrease

CHAPTER 4. SYSTEM DECOMPOSITION 107

Figure 4.13: 3D slices of the BRS for Mψ = 16,Mv = 2. This decoupled approxima-
tion provides the largest and least conservative under-approximation.

conservatism.
In this system the least conservative approximation was for Mψ = 16,Mv = 2.

The volume ratio for this approximation was 0.217, meaning that the decoupled
approximation had a volume that is 21.7% of the volume of the BRS computed using
the full formulation. The 3D projections of the set computed by Mψ = 16,Mv = 2
can be seen in Fig. 4.13.

4.2.4.3 Computation Time Performance

In Fig. 4.14 we compare the computation time of the two methods as a function
of the number of grid points in each dimension. Computations were done on a desktop
computer with a Core i7-5820K CPU and 128 GB of random-access memory (RAM).
The full formulation (yellow curve) quickly becomes intractable as grid points are
added; 100 grid points in each dimension requires 12.7 hours and 97 GB of RAM.

The decoupled approximation is orders of magnitude faster than the full formu-
lation, and therefore can be done with many more grid points in each dimension. The
decoupled approximation used was for Mψ = 16,Mv = 2 sections, as this provided
the most accurate BRS as determined in 4.2.4.2. The runtimes would be even faster
using Mψ = Mv = 1 sections. We plot both the runtimes for reachability computation
with 4D-reconstruction (red curve) as well as the runtimes for reachability computa-
tion alone (blue curve). Compared to the full formulation, at 100 grid points in each
dimension the decoupled approximation takes 50 seconds to run and 36 seconds to
reconstruct, with 625 MB of RAM to run and 6.75 GB of RAM to reconstruct. At 200
grid points the decoupled approximation takes 3.37 minutes to run and 44.1 minutes
to reconstruct, with 1 GB of RAM to run and 120 GB of RAM to reconstruct.

CHAPTER 4. SYSTEM DECOMPOSITION 108

50 100 150 200

 Number of Grid Points

1

2

3

4

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

s
)

×104

Decoupled approx w/o reconstruction

Decoupled approx w/ reconstruction

Full formulation

Figure 4.14: Computation time as a function of the number of grid points in each
dimension. The full formulation (yellow curve) is orders of magnitude slower than
the decoupled approximation. The decoupled approximation with reconstruction (red
curve) takes a bit more time (and significantly more memory) than without recon-
struction (blue curve).

In general we recommend computing the value function in only a region near a
state of interest, bypassing the time and RAM required to reconstruct the function
over the entire grid. Without full reconstruction of the value function, we are able
to obtain results faster and for higher numbers of grid points before running out of
memory, improving the accuracy of the computation.

In Fig. 4.15 we compare the computation time of the 2D computations in the
decoupled approximation as a function Mv and Mψ. Each line of the graph represents
the computation time for a fixed number of Mv across various values of Mψ. As the
number of sections increases, the computation time required increases approximately
linearly, as expected.

4.2.5 Conclusions

Hamilton-Jacobi reachability analysis can provide safety and performance guar-
antees for many practical systems, but the curse of dimensionality limits its appli-
cation to systems with less than approximately five state variables. By treating
state variables as disturbances, key state dependencies can be eliminated, reducing
the system dynamics to a simpler form and allowing reachable sets to be calculated
conservatively using available efficient methods in the literature.

CHAPTER 4. SYSTEM DECOMPOSITION 109

5 10 15 20 25 30

M
ψ
 Sections

200

400

600

800

1000

1200

1400

1600

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

M
v
=1

M
v
=2

M
v
=4

M
v
=8

M
v
=16

M
v
=32

Figure 4.15: Computation time to compute decoupled approximation sets without
reconstruction as a function of Mv and Mψ. As the number of sections increases, the
computation time increases approximately linearly.

110

Chapter 5

Frontiers in HJ Reachability
Verification

In this chapter, we discuss two potential directions of HJ reachability analysis
in detail. In Section 5.1, an initial idea of how a machine learning technique can
be brought into the context of optimal control, and how formal guarantees can be
maintained despite the use of a neural network. In Section 5.2, we present FaSTrack,
a method for combining the formal guarantees of differential games and the real-
time planning capabilities of robotic path planners such as rapidly-exploring random
trees (RRT) to obtain the best of both worlds. Additional future directions will be
discussed briefly in Chapter 6.

5.1 Using Neural Networks to Compute Approxi-

mate and Guaranteed Feasible HJB PDE So-

lutions

This section is an adaptation of the paper in [82].
In recent years, rapid progress in robotics and artificial intelligence has acceler-

ated the need for efficient path-planning algorithms in high-dimensional spaces. In
particular, there has been vast interest in the development of autonomous cars and
unmanned aerial vehicles (UAVs) for civilian purposes [?, 13, 19, 61, 83, 123]. As such
systems grow in complexity, development of algorithms that can tractably control
them in high-dimensional state spaces are becoming necessary.

Many path planning problems can be cast as optimal control problems with
initial and final state constraints. Dynamic programming-based methods for opti-
mal control recursively compute controls using the Hamilton-Jacobi-Bellman (HJB)
partial differential equation (PDE). Such methods suffer from space and time com-
plexities that scale exponentially with the system dimension. Dynamic programming

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 111

is also the backbone for Hamilton-Jacobi (HJ) reachability analysis, which solves a
specific type of optimal control problem and is a theoretically important and prac-
tically powerful tool for analyzing a large range of systems. It has been extensively
studied in [16, 23, 60, 64, 105, 111, 140, 142], and successfully applied to many low-
dimensional real world systems [35, 54, 111]. We use the reachability framework to
validate our method.

To alleviate the curse of dimensionality, many proposed dynamic programming-
based methods heavily restrict the system at hand [48,56,104]. Other less restrictive
methods use projections, approximate dynamic programming, and approximate sys-
tems decoupling [31,107,114], each limited in flexibility, scalability, and degree of con-
servatism. There are also several approaches towards scalable verification [?,?,?,59];
however, to the best of our knowledge, these methods do not extend easily to control
synthesis. Direct and indirect methods for optimal control, such as nonlinear model
predictive control [72], the calculus of variations [68], and shooting methods [12], avoid
dynamic programming altogether but bring about other issues such as nonlinearity,
instability, and sensitivity to initial conditions.

One primary drawback of dynamic programming-based approaches is the need
to compute a value function over a large portion of the state space. This is com-
putationally wasteful since the value function, from which the optimal controller is
derived, is only needed along a trajectory from the system’s initial state to the target
set. A more efficient approach would be to only compute the value function local
to the trajectory from the initial state to the target set. However, there is no way
of knowing where such a trajectory will lie before thoroughly computing the value
function.

Methods that exploit machine learning have great potential because they are
state discretization-free and do not depend on the dynamic programming principle.
Unfortunately, many machine learning techniques cannot make the guarantees pro-
vided by reachability analysis. For instance, [21] and [91] use neural networks (NNs) as
nonlinear optimizers to synthesize trajectories which may not be dynamically feasible.
The authors in [5] propose a supervised learning-based algorithm that depends heav-
ily on feature tuning and design, making its application to high-dimensional problems
cumbersome. In [55] and [119], the authors successfully use NNs for approximating
the value function, but the approximation is not guaranteed to be conservative.

In this section, we attempt to combine the best features of both dynamic programming-
based optimal control and machine learning using an NN-based algorithm. Our
proposed grid-free method conservatively approximates the value function in only
a region around a feasible trajectory. Unlike previous machine learning techniques,
our technique guarantees a direction of conservatism, and unlike previous dynamic
programming-based methods, our approach involves an NN that effectively finds the
relevant region that requires a value function. Our contributions will be presented as
follows:

(1) In Section 5.1.1, we summarize optimal control and the formalisms used for

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 112

this work. (2) In Section 5.1.2, we provide an overview of the full method and the
core ideas behind each stage, as well as highlight the conservative guarantees of the
method. (3) In Sections 5.1.3 and 5.1.4, we present the two phases of our proposed
algorithm and the underlying design choices. (4) In Section 5.1.5, we illustrate our
guaranteed-conservative approximation of the value function, and the resulting near-
optimal trajectories for the Dubins Car. (5) In Section 5.1.6, we conclude and discuss
future directions.

5.1.1 Problem Formulation

In this section, we will provide some definitions essential to express our main
results. Afterwards, we will briefly discuss the goals of this section.

5.1.1.1 Optimal Control Problem

Consider a dynamical system governed by the following ordinary differential
equation (ODE):

ż = f(z, u), t ∈ [t0, 0]

z(t0) = z̄, u ∈ U
(5.1)

Note that since the system dynamics (5.1) is time-invariant, we assume without
loss of generality that the final time is 0.

Here, z ∈ Rn is the state of the system and the control function u(·) is assumed
to be drawn from the set of measurable functions. Let us further assume that the
system dynamics f : Rn×U → Rn are uniformly continuous, bounded, and Lipschitz
continuous in z for fixed u. Denote the function space from which f is drawn as F.

With these assumptions, given some initial state z, initial time t0, and control
function u(·) ∈ U, there exists a unique trajectory solving (3.17). We refer to trajec-
tories of (3.17) starting from state z1 and time t1 as ξf (t; z1, t1, u(·)), with z1 ∈ Rn and
t0 ≤ t, t1 ≤ 0. Trajectories satisfy an initial condition and (3.17) almost everywhere:

d

dt
ξf (t; z1, t1, u(·)) = f(ξf (t; z1, t1, u(·)), u(t))

ξf (t1; z1, t1, u(·)) = z1

(5.2)

Note that we can use the trajectory notation to specify states that satisfy a final
condition if t ≤ t1. In this section of the thesis this will often be the case, since our
NN will be producing backward-time trajectories.

Consider the following optimal control problem with final state constraint1:

1For simplicity we constrain the final state to a single state; our method easily extends to the
case with a set-based final state constraint, z(0) ∈ L.

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 113

V (z, t) = min
u(·),t0

∫ 0

t

C(u(τ))dτ

subject to z(t0) = z̄, z(0) = zL

(5.3)

The value function V (z, t) is typically obtained via dynamic programming-based
approaches such as [17,23,64,111,122,135,146], and an appropriate HJB partial dif-
ferential equation is solved backwards in time on a grid representing the discretization
of states. Once V (z, t) is found, the optimal control, which we denote u∗(z, t), can be
computed based on the gradient of V (z, t):

u∗(z, t) = arg min
u∈U
∇V (z, t) · f(z, u) (5.4)

Unfortunately, the computational complexity of these methods scales exponen-
tially with the state space dimension.

5.1.1.2 Goal

We seek to overcome the exponentially scaling computational complexity. Our
approach is inspired by two inherent challenges that dynamic programming-based
methods face. First, since only relatively mild assumptions are placed on the system
dynamics (3.17), optimal trajectories are a priori unknown and could essentially trace
out any arbitrary path in the state space. Dynamic programming ignores this issue by
considering all possible trajectories. Second, in a practical setting, the system starts
at some particular state z0. Thus, the optimal control, and in particular ∇V (z, t)
in (5.4), is needed only in a “corridor” along the optimal trajectory. However, since
the optimal trajectory is a priori unknown, dynamic programming-based approaches
resort to computing V (z, t) over a very large portion of the state space so that the
∇V (z, t) is available regardless of where the optimal trajectory happens to be.

We propose a method that, in contrast to dynamic programming-based methods,

1. has a substantially faster computation time and smaller memory-usage;

2. is a flexible and general framework that can be applied to higher-order systems
with just hyperparameter tuning;

3. generates an approximate value function V̂ (z, t) from which a controller that
drives the system to the target can be synthesized;

4. guarantees that V̂ (z, t) ≥ V (z, t) ∀x, t, so that a direction of conservatism can
be maintained despite the use of an NN.

We enforce 1) by avoiding operations that exhaustively search the state space. As
seen in Section 5.1.3.2, the training and final data sets are either generated randomly

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 114

Data
Collection

Post-
Processing

Query
Network

Simulate
Output

Filter &
Compile

New Data

Re-Train
Network

Warm-Up
Network
Weights

Dynamic Training

Randomly Sampled
Training Data

Initialized
Network

Feasible Control-
State Pairs

Control
Estimates

Local
Control-
State Pairs

Updated
Network

Final Control-
State Pairs

Feasible Value
Function

Approximation

Figure 5.1: Stages of proposed method

or outputted by the NN, both constant time operations. Furthermore, we rely on
NNs being universal function approximators [46] to make our method general to the
system dynamics, thus satisfying 2). While our method does have some limitations,
as discussed at the end of Section 5.1.3.1, we do not believe that these limitations are
restrictive in the context of optimal control. Our post-processing of the NN outputs
outlined in Section 5.1.4 satisfies 3). Finally, we use the dynamics of the system to
ensure our final output satisfies 4); this is detailed in Section 5.1.3.2.

Our method overcomes the challenges faced by dynamic programming-based
methods in two phases: the NN training phase, which allows the NN to learn the
inverse backward system dynamics while also generating a dataset from which we
can obtain a conservative approximation of the value function; and the controller
synthesis phase, which uses the approximation to synthesize a controller to drive the
system from its initial state to its target.

5.1.2 Overview

In this section we will briefly describe the different stages of our computational
framework (depicted in Fig. 5.1). We leave the details of each stage to subsections of
Section 5.1.3 and 5.1.4.

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 115

5.1.2.1 Pre-Training

In the pre-training phase (detailed in Section 5.1.3.2), we produce some initial
datasets to prepare the NN for the dynamic training procedure. The dynamic training
procedure is already designed to help the NN improve its performance iteratively;
however, the pre-training phase speeds up the convergence by warming up the NN
with sampled data of the system dynamics, f .

5.1.2.2 Dynamic Training

Our proposed dynamic training loop is tasked with both improving the approx-
imation of the NN and producing the necessary data from which we extract our
value function approximation. Fortunately, these two tasks are inherently tied to one
another.

We pose our NN as an approximation of the inverse dynamics of the system (this
is formally clarified in Section 5.1.3). In other words, if we query our NN with a set of
states to check its approximation, then the NN will predict a set of controls to drive
the system to those states (detailed in Section 5.1.3.2). We can check the correctness
of this prediction by simulating the controls through f (detailed in Section 5.1.3.2).
Even if this prediction is inaccurate, we can recycle the new data the NN produced
through an attempted prediction, and add the data into our training set to re-train
the NN. Since we simulated the NN’s prediction to get the actual states the predicted
control drives the system to, we now have corrective data with which we can re-train
our NN. By doing this repeatedly, we iteratively train the NN with feedback. The
data produced by the NN can be used to evaluate an approximate value of the value
function using (5.3). Thus, with this dynamic training loop, we are able to produce
data to construct an approximate value function while iteratively improving our NN’s
prediction capabilities. Furthermore, as the NN improves, the relevance of the data
also improves.

To further encourage the process, in every iteration we additionally apply stochas-
tic filters to our dataset that favor more local and optimal data (detailed in Sec-
tion 5.1.3.2). This way, we can ensure the NN will not saturate or keep any unneces-
sary data for our final value function approximation.

5.1.2.3 Post-Training

Once dynamic training is complete, the NN will be able to make accurate pre-
dictions and our dataset will encompass the region over which an approximate value
function is needed. After some post-processing over the dataset (detailed in Sec-
tion 5.1.3.3), we will show that we can successfully extract a value function approx-
imation from which we synthesize control to drive our system from our initial state
to our goal state.

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 116

x

u
PRIMITIVE DURATION

0

n

N

PLANT

X[0] U[N]

PRIMITIVE DURATION OUTPUT

P[n] D[n]

PLANT U[n]

X[n]

RNN

Figure 5.2: Four-layer RNN which takes input states and outputs discretized control.

5.1.3 Neural Network Training Phase

Given a target state zL and assuming the system starts at some initial state z̄,
we want to design an NN that can produce a control function u(·) that drives the
backward-time system from zL to z̄. More concretely, consider the inverse backward
dynamics of the system, denoted gzL : Rn × F→ U, and defined to be

gzL(z̄;−f(·, ·)) = u∗(·) (5.5)

where the optimal control u∗(·) is defined for t ≤ 0. For simplicity, we will write
gzL as g from now on. Given some u∗(·) defined in the time interval [t, 0], we have
z̄ = ξf (0; zL, t, u

∗(·)).
Our NN is an approximation of g, and we will denote the NN as ĝ. Let û(·)

be the control produced by ĝ, and let the time interval for which û(·) is defined be
denoted [−T̂ , 0]. The primary tasks of our training procedure will be to: (1) iteratively
improve our NN’s training set so ĝ approaches g in the region local to the path given
by ξf (0; zL, t, u

∗(·)), t ≤ 0; and (2) produce a dataset of states, their corresponding
control and, in turn, the corresponding value approximation, which will be used for
control synthesis.

5.1.3.1 Neural Network Architecture

Denote the maximum time horizon as T̄ . To reduce the space in which the
NN needs to look for candidate control functions, we assume that û(·) returned by
the NN is composed of two finite sequences {uj}Kj=1, {τ j}Kj=1 called the sequence of

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 117

control primitives and the sequence of time durations respectively. Mathematically,
the control function û(·) is of the form

û(t) =

u1, t ∈ [−
∑K

j=1 τ
j,−

∑K
j=2 τ

j]

u2, t ∈ (−
∑K

j=2 τ
j,−

∑K
j=3 τ

j]

· · ·
uK−1, t ∈

(
−τK − τK−1,−τK

]
uK , t ∈

(
−τK , 0

]
(5.6)

where we implicitly define T̂ =
∑K

j=1 τ
j. Since we will only use the control to obtain

the approximation V̂ (·, ·) and not for actually controlling the system, we do not need
the generated controls to be extremely accurate or continuous, as we will explain in
Sections 5.1.3.2 and 5.1.4.

We propose a rectified linear unit recurrent NN (RNN) with the following struc-
ture:

Primitive Layer: P [n] = ψ(WP ·X [n] + bP)

Duration Layer: D[n] = ψ(WD1 · P [n] +WD2 ·X [n] + bD)

Control Layer: U [n] = WL ·D[n] + bL

Plant Layer: X [n+1] = ψ(WX · U [n] + bX)

where ψ is the positive rectifying function defined as ψ(a) = max(0, a) and n =
0, 1, . . . , N . The input of the RNN is z̄ (X [0] = z̄), and the output is some û(·) (U [N] =
û(·)), that approximately brings the system from z̄ to zL. The parameters we learn
through training are the weights WP , WD1 , WD2 , WL, WX and biases bP , bD, bL, bX .
All weights and biases will be collectively denoted W. For prediction, û(·) and training
example, u(·), we discretize both controls using (5.6), then the training is performed
with mean-squared error (MSE), or

MSE =
1

n

N∑
n=1

(ûn − un)2 (5.7)

as the cost function, where u(·) is our training example output.
As already mentioned, the primitive layer takes a state as input and computes

a control primitive. The duration layer takes in the primitive layer’s output and the
same input state, and outputs a time duration. This time duration is then passed
through the control (also called output) linear layer, which outputs the sequences
{uj}, {τ j} representing the control function û(·). Afterwards, the control function is
fed into the plant layer, which attempts to encode the backward dynamics −f . The
plant’s output state, X [n+1], is then fed back to the primitive layer.

Explicitly, the RNN can be written as

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 118

ĝ(z̄, zL;−f(·, ·),W) = û(·) = U [N] (5.8)

where û(·) is given in the form of the sequences {uj}, {τ j}.
In the next section, we discuss the dynamic training procedure for this RNN.

5.1.3.2 Detailed Dynamic Training

Warm-up and Initial Training: We first train the RNN without knowledge of z̄.
For starters, we will require training examples in the form of {ẑi, ûi(·)} that sufficiently
capture the basic behaviors of the system dynamics. To do this, we randomly generate
{ẑi} using an accept-reject algorithm similar to the one in [55], which is described in
Alg. 3.

Algorithm 3: Exponential Filter

1: Result: A
2: Inputs: z, R, λ
3: compute zproj via (5.9)
4: generate β uniformly from [0, λ];
5: if z ∈ R then
6: A = true;
7: else
8: if β ≤ λe−λ‖x−xproj‖2 then
9: A = true;

10: else
11: A = false;
12: end if
13: end if

Alg. 3 takes a state z, an accept region R, and a decay rate λ as inputs. To use
Alg. 3, we first compute zproj, the Euclidean projection of the state z onto the set R
as follows:

xproj = arg min
x′
‖x′ − x‖2 : x′ ∈ R (5.9)

Using Alg. 3, we generate two training sets: one large dataset D1 and one small
dataset D2. The large data set D1, used for supervised training of the plant layer
(the weights WX), is generated with a large accept region with a large number of
accepted points. The smaller dataset D2, used to initialize the full RNN after the
plant layer has been warmed up with D1, is generated with a smaller accept region
and a relatively small number of accepted points.

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 119

Algorithm 4: Length Filter

1: Result: X
2: Inputs: X , λC , Ĉ(X), D
3: generate β uniformly from [0, λ];
4: for zi ∈ X do
5: XC ← ∅;
6: for zj 6= zi ∈ X : ||zi − zj||2 ≤ D do

7: if β > λCe
−λC Ĉ(zj) then

8: XC ← XC ∪ xj;
9: end if

10: end for
11: X ← X \ XC ;
12: end for

Once the RNN’s plant layer is warmed up with D1 and the full network has been
trained on D2, the RNN is ready to be queried, setting the dynamic training loop
into motion.

Neural Network Query: At the start of every training loop, the RNN is used to
predict controls, {ûi(·)}Ni=1, from a set of states {z̄i}Ni=1.

For our training loop’s first query, we uniformly sample Mε states within a
distance of ε to z̄ to produce a set of states denoted Xε = {z̄i}Mε

i=1. Then, for all
of the network queries, we query the RNN with the same Xε to get its current set
of predictions, Vε = {ûi(·)}Mε

i=1. By using a set of states, Xε, as opposed to using
just a singular state, we capture more local trajectories and relax the need for every
trajectory to lead exactly to a point location in the state space.

Simulate Output and Feasibility: In general, applying a control in Vε brings the
backward system from zL to some ẑ 6∈ Xε. Thus, to find Vε’s true set of resultant
states, we simply apply each control in Vε to f with zL as the initial condition. This
will yield Vε’s true set of resultant states, which we denote as X ′ε .

This key step is what gives us our feasibilty guarantee. Since all of the data in
our final output is a compilation of filtered data drawn from (X ′ε ,Vε) at each training
cycle, we know we have a dynamically feasible control for each state. In addition, since
the controls are feasible, they must also be either optimal or suboptimal. Therefore,
when we compute values from our final set of controls using (5.3), these
values must be strictly conservative.

Filtering: Often the RNN will predict a Vε that lead to states far from our target.
Since our method is intended to produce a value function approximation local to a
relevant region of the state space, we apply an exponential accept-reject filter (Alg.

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 120

3) to X ′ε , with accept region Rε and decay rate λε, to stochastically remove states
that are not nearby. We let the remaining states and their corresponding controls be
(Xnew,Vnew).

We choose the input accept region Rε and decay rate λε provided to Alg. 3 such
that the filter will generously accept states that could lie near a feasible path from z̄
to zL. Though choosing a reasonable Rε for general high-dimensional systems with
complicated dynamics before training could be difficult since we may be unable to
provide even a generous guess of where in the state space optimal trajectories might
lie, we can instead adjust the size or shape of Rε until the region begins accepting
predictions from the RNN.

After finding (Xnew,Vnew), we can update our full training set on which we will
train our RNN, for the next training iteration. We first improve our current training
set, denoted as (X ,V), by once again applying Alg. 3 with accept region R and decay
rate λ. Then, we apply a second filter to all of our remaining data that favors controls
with relatively low costs, this is detailed in Alg. 4 with inputs X , the costs Ĉ(X),
and decay rate λC and search radius D. We let the remaining data set from filtering
(X ,V) be called (Xold,Vold). Then, we compile our new training set for the next
training cycle as (X ,V) = ({Xold,Xnew}, {Vold,Vnew}).

5.1.3.3 Post-processing

In order to drive the system from x̄ to xL, the value function, and in particular
its gradient, is necessary at points between z̄ and zL along a dynamically feasible
trajectory. Fortunately, this information can be computed from X and V . Specifically,
ẑi ∈ X and ûi(·) ∈ V produce a trajectory ξfi (0; ẑi, t, ûi(·)), t ∈ [T̂ , 0]. From the
trajectories, we can obtain Mi states on the trajectory by discretizing the time t into
Mi points. We denote these states z(i,j), where the index i comes from the index of
ẑi ∈ X , and the index j ∈ {0, . . . ,Mi − 1} indicates that the state is computed from
the jth time point on the trajectory ξfi . Mathematically, ẑ(i,j) is given as follows:

ẑ(i,j) = ξfi (0; x̂i, tj, ûi(·)),

tj = − jT̂i
Mi − 1

, j = 0, 1, . . . ,Mi − 1
(5.10)

Once we have explicitly added data along the trajectories from our dataset, we
now have a dataset that spans the local state space around and between z̄ and zL.
To get our value function approximation across our dataset, we can simply use (5.3).
Explicitly, for state-control pair, (x̂i, ûi(·)) ∈ X ×V , and tj, we have the approximate
value function at states x(i,j)) and times tj:

V̂ (x(i,j), tj) =

∫ 0

tj

C(ûi(t))dt (5.11)

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 121

5.1.4 Controller Synthesis Phase

After we obtain our value function approximation, we can synthesize control to
drive our system from z̄ to zL using (5.4) with the appropriate gradient components
of the value function. However, since our value function approximation is irregular
and based in a point set, we will first define a special computation for obtaining the
gradient.

To compute (∇V)i, the ith component of the gradient at a given state z, we
search above and below in the î direction for states in X within a hyper-cylinder of
tunable radius r. We define the closest point within the hyper-cylinder above z as za
and below as zb. If some za and zb exist, we compute the gradient at z as:

(∇V (z))i =
V (za)− V (zb)

(za)i − zb)i
(5.12)

If we have multiple states above but none below, we approximate the gradient
using (5.12), with za being the closest state above and zb being the second closest
state above. A similar procedure holds if we have multiple states below but none
above.

In general, we can use a finite element method to compute gradient values for a
non-regular grid, which involves using shape functions as basis functions to interpolate
the gradient values between nodes.

5.1.5 Dubins Car Example

5.1.5.1 Vehicle Dynamics

Consider the Dubins Car [57], with state z = (px, py, θ). (px, py) are the x and
y positions of the vehicle, and θ is the heading of the vehicle. The system dynamics,
assuming unit longitudinal speed, are

ṗx = cos θ, ṗy = sin θ

θ̇ = u, |u| ≤ 1
(5.13)

The control of the Dubins car is denoted u, and is constrained to lie in the
interval [−1, 1], the interpretation of which is that the vehicle has a maximum turn
rate of 1 rad/s. In addition, we only accrue cost on our control with the duration
of the control. Formally, this means that C(u(t)) = 1. We choose the Dubins car
to illustrate our method because of the simple structure of the optimal controls. In
addition, since the model is only 3D, we are able to verify our results by comparing
them to the those obtained via HJ reachability.

For our example, we choose many different initial states z̄ for the system. The
target state zL is chosen as the origin.

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 122

-10 0 10
x

-15

-10

-5

0

5

10

15

y

V (xt) vs V̂ (xt)

5

10

15

Figure 5.3: Comparison of the true value function V (z, t∗0) computed over a large
portion of the state space, and the approximate value function from our NN-based
approach V̂ (z(i,j), tj) on two different corridors containing the initial state z̄, the target
set zL, and a dynamically feasible trajectory. The contours are level sets of V (z, t∗0).
Two different corridors in which V̂ is computed resulting from two different values of
x̄ ((10,−4,−3), (−12, 5, 2)) are also plotted using the same colormap.

5.1.5.2 Control Primitives

In [57], Dubins shows that all optimal trajectories of this system utilize controls
that represent going straight or turning maximally left or right. Thus, the set of
controls that are valid for generating optimal trajectories can be reduced down to
three motion primitives, {‘L’, ‘S’, ‘R’}, encoding the controls u = 1 (max left), u = 0
(straight), and u = −1 (max right) respectively. Though [57] additionally provides
an algebraic solution to the optimal control problem, we purposefully do not leverage
this result, as many interesting systems do not have such a simple method of deriving
optimal control. Instead, we use five motion primitives, encoding the controls u = 2,
u = 1, u = 0, u = −1, u = −2.

Following our notation in Section 5.1.3, we write a n length control sequence
as {u1, u2, . . . , un}, {τ 1, τ 2, . . . , τn} where ui denotes the ith control primitive and τ i

denotes the duration of ith control primitive.

5.1.5.3 Neural Network

Using the RNN architecture described in Section 5.1.3.1, we let N = 3, since
we only need at most three control primitives. Since the controls and dynamics of
Dubins car are simple, we have chosen the number of neurons in layers P,D,U,X to
be [10, 10, 6, 75], respectively. The NN is trained with the training functionality of

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 123

the MATLAB Neural Network ToolBox 2016a. The training function used for the full
NN is resilient back-propagation and the performance function used is mean squared
error.

5.1.5.4 Dynamic Training

For D1 and D2, we choose each ui from the three possible values {−1, 0, 1}. The
controls for D1 have durations, τ i, uniformly sampled from [0, T̄] where T̄ = 100. D2’s
control durations are also uniformly sampled in the same manner, but with T̄ = 2π.

For the dynamic training parameters, our query set Xε is generated with ε = 1
and Mε = 500.

Filtering Algorithms: Throughout training, the exponential filtering process uses
two accept regions. In early iterations, R = Rc is defined as the cone of minimum size
that contains Xε, with the tip of the cone located at x̄. The choice of using a conical
filter to guide the neural net at first is based on the hypothesis that a trajectory
taking the system from z̄ to xL is likely to stay in the cone Rc. In later iterations,
R = Rs is chosen as Xε. This spherical filter, centered at xL, helps to more finely
guide the neural network to xL.

We also apply length filtering with a small distance parameter D = 0.5, since
we would like to be comparing distance costs only between trajectories with similar
end points.

Filter Decay Rate: Setting and Timing: Although RC and RS are chosen before
the dynamic training process, the filtering of the training set X can still be adjusted
while training. This is done by varying the parameters λC and λS. In early training
iterations, we want to decrease λC slightly to ensure that we are not filtering out
states needed for the NN to explore the state space. Once the NN has gained a better
understanding of how to reach z̄, we increase λC and λS slightly to further encourage
the NN to drive states near z̄. When the dataset is mostly near z̄, we increase λS and
λS significantly. The decay rate for the length filter, λC , is constant over iterations.

5.1.5.5 Dubins Car Results

Training Process: In Fig. 5.4a, 5.4b, 5.4c, the process by which the training set X
iteratively changes from the initial training set D2 to encompassing Xε is shown. Here,
the red states represent the set Xε and the black states represent the current states
in X . In the early iterations (Fig. 5.4a), the NN explores outward from the initial
training set, frequently making mistakes, resulting in the states in X being very far
away from z̄. As the iteration number increases, the trajectory ambiguous training
set D2 is gradually cut down, and eventually the NN begins to predict controls ûi(·)
that drive to states ẑi in an arc that heavily intersects Xε. This can be seen in Fig.

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 124

-20
50

0

20

z
Iteration 7

y

0

x

20

0
-50 -20

(a)

-5
20

0

20

z

Iteration 25

y

0

x

5

0
-20 -20

(b)

0
20

2

20

z

4

Iteration 45

y

10

x

6

10
0 0

(c)

Figure 5.4: Evolution of X over many iterations.

5.4b. By the end of the training process, the RO conical target filter prunes the states
outside of the Xε. This can be seen in Fig. 5.4c.

The length filter also enables our method to be robust to suboptimal training
data. If we provide the neural net with a mixture of optimal and suboptimal training
data, the length filter improves the quality of X by removing many states generated by
using suboptimal control (Figure 5.5a), compared to without the length filter (Figure
5.5b).

Value Function Comparison: Using level set methods [111], we computed V (x, t),
and compared the true value function, V (z̄, t∗0) and the approximate value function,
V̂ (z̄, T̂) computed for several states in Table 5.1. t∗0 denotes the time component of
the optimal solution of (5.3).

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 125

-5 0 5 10 15
x

-5

0

5

10

15

20

y

Length -lter on

(a)

-5 0 5 10 15
x

-5

0

5

10

15

20

y

Length -lter o,

(b)

Figure 5.5: Effect of the length filter on quality of X . (a) shows X when the filter is
on, and (b) shows X when it is off.

State z̄ NN Cost V̂ (z̄, T̂) True Cost V (z̄, t∗0)
(−12, 5, 2) 26.51 14.84
(−10, 0, 0) 10.23 10.00

(1, 1, 6) 9.93 7.40
(10,−4,−3) 16.20 13.36

Table 5.1: Trajectory values (seconds)

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 126

Figure 5.6: Trajectories generated using level set methods (dashed) and using our
NN-based method (solid). Each color corresponds to a different initial state x̄.

Computation Time: Synthesizing control using our NN-based approach allows for
large time complexity improvements in comparison to using level set methods. On
a 2012 MacBook Pro laptop, data generation requires approximately 3 minutes, and
controller synthesis from this data and simulation requires 2 minutes on average.
Since the region of the state space we are considering is quite large, and the target
set is quite small (a singleton), the level set methods approach is intractable on this
laptop, and requires 4 days on a desktop computer with a Core i7-5820K processor
and 128 GB of RAM.

There are also large spatial savings by using the NN. For example, X and V̂ for
one particular corridor computed between (10,−1,−3) and (0, 0, 0) requires only 179
MB, while a reachable set computed over that horizon on a very low resolution grid
requires approximately 7 GB.

As can be seen from this and the previous sections, using level set methods not
only is more time-consuming compared to using our NN-based approach, but also
does not guarantee a more shorter trajectory due to discretization error.

5.1.6 Conclusions and Future Work

Our NN-based grid-free method computes an upper bound of the optimal value
function in a region of the state space that contains the initial state, the target set,
and a feasible trajectory. By combining the strengths of dynamic programming-based
and machine learning-based approaches, we greatly alleviate the curse of dimension-

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 127

ality while maintaining a desired direction of conservatism, effectively avoiding the
shortcomings of both types of approaches.

Using a numerical example, we demonstrate that our approach can successfully
generate a value function approximation in multiple test cases for the Dubins car.
We are even able to approximate value function values in regions that are very far
from the target set, a very computationally expensive task for dynamic programming-
based approaches. Our approximate value function is able to drive the Dubins car
from many different initial conditions to the target set.

Although our current results are promising, much more investigation is still
needed to make our approach more practical and applicable to more scenarios. For
example, better intuition for the choice of accept regions in the filtering process is
needed to extend our approach to other systems. We currently plan to investigate
applying our method to the 6D engine-out plane [2] as well as a 12D quadrotor model.
In addition to path planning, we also hope to extend our theory to provide safety
guarantees and robustness against disturbances. Such extensions are non-trivial due
to the different roles that the control and disturbance inputs play in the system
dynamics.

5.2 FaSTrack: a Modular Framework for Fast and

Guaranteed Safe Motion Planning

This section is an adaptation of the paper in [76].
As unmanned aerial vehicles (UAVs) and other autonomous systems become

more commonplace, it is essential that they be able to plan safe motion paths through
crowded environments in real time. This is particularly crucial for navigating through
environments that are a priori unknown. However, for many common dynamical
systems, accurate and robust path planning can be too computationally expensive
to perform efficiently. In order to achieve real-time planning, many algorithms use
highly simplified model dynamics or kinematics, resulting in a tracking error between
the planned path and the true high-dimensional system. This concept is illustrated in
Fig. 5.7, where the path was planned using a simplified planning model, but the real
vehicle cannot track this path exactly. In addition, external disturbances (e.g. wind)
can be difficult to account for. Crucially, such tracking errors can lead to dangerous
situations in which the planned path is safe, but the actual system trajectory enters
unsafe regions.

We propose the modular tool FaSTrack: Fast and Safe Tracking, which models
the navigation task as a sophisticated tracking system that pursues a simplified plan-
ning system. The tracking system accounts for complex system dynamics as well as
bounded external disturbances, while the simple planning system enables the use of
real-time planning algorithms. Offline, a precomputed pursuit-evasion game between
the two systems is analyzed using Hamilton Jacobi (HJ) reachability analysis. This

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 128

Tracking System

Planning System

Figure 5.7: A planning system using a fast but simple model, followed by a tracking
system using a dynamic model

results in a tracking error function that maps the initial relative state between the
two systems to the tracking error bound : the maximum possible relative distance
that could occur over time. This tracking error bound can be thought of as a “safety
bubble” around the planning system that the tracking system is guaranteed to stay
within. Because the tracking error is bounded in the relative state space, we can
precompute and store a safety control function that maps the real-time relative state
to the optimal safety control for the tracking system to “catch” the planning system.
It is important to note that the offline computations are independent of the path
planned in real-time; what matters are the relative states and dynamics between the
systems, not the absolute state of the online path.

In the online computation, the autonomous system senses local obstacles, which
are then augmented by the tracking error bound to ensure that no potentially un-
safe paths can be computed. Next, a path or trajectory planner uses the simplified
planning model to determine the next desired state. The tracking system then finds
the relative state between itself and the next desired state. If this relative state is
nearing the tracking error bound then it is plugged into the safety control function to
find the instantaneous optimal safety control of the tracking system; otherwise, any
controller may be used. In this sense, FaSTrack provides a least-restrictive control
law. This process is repeated until the navigation goal is reached.

Because we designed FaSTrack to be modular, it can be used with existing
fast path or trajectory planners, enabling motion planning that is rapid, safe, and
dynamically accurate. In this section, we demonstrate this tool by computing the
tracking error bound between a 10D quadrotor model affected by wind and a linear
3D kinematic model. Online, the simulated system travels through a static, windy
environment with obstacles that are only known once they are within the limited
sensing range of the vehicle. Combining this bound with a kinematic rapidly exploring
random trees (RRT) fast path planner [94], [88], the system is able to safely plan and
track a trajectory through the environment in real time.

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 129

5.2.1 Related Work

Motion planning is a very active area of research in the controls and robotics
communities [78]. In this section we will discuss past work on path planning, kine-
matic planning, and dynamic planning. A major current challenge is to find an
intersection of robust and real-time planning for general nonlinear systems.

Sample-based planning methods like rapidly-exploring random trees (RRT) [94],
probabilistic road maps (PRM) [88], fast marching tree (FMT) [81], and many oth-
ers [86, 92, 127] can find collision-free paths through known or partially known envi-
ronments. While extremely effective in a number of use cases, these algorithms are
not designed to be robust to model uncertainty or disturbances.

Motion planning for kinematic systems can also be accomplished through on-
line trajectory optimization using methods such as TrajOpt [133] and CHOMP [125].
These methods can work extremely well in many applications, but are generally chal-
lenging to implement in real time for nonlinear dynamic systems due to the compu-
tational load.

Model predictive control (MPC) has been a very successful method for dynamic
trajectory optimization in both academia and industry [124]. However, combining
speed, safety, and complex dynamics is a difficult balance to achieve. Using MPC for
robotic and aircraft systems typically requires model reduction to take advantage of
linear programming or mixed integer linear programming [128, 143, 147]; robustness
can also be achieved in linear systems [51, 126]. Nonlinear MPC is most often used
on systems that evolve more slowly over time [52, 131], with active work to speed
up computation [53, 117]. Adding robustness to nonlinear MPC is being explored
through algorithms based on minimax formulations and tube MPCs that bound out-
put trajectories with a tube around a nominal path (see [78] for references).

There are other methods of dynamic trajectory planning that manage to cleverly
skirt the issue of solving for optimal trajectories online. One such class of methods
involve motion primitives [50,70]. Other methods include making use of safety funnels
[103], or generating and choosing random trajectories at waypoints [85, 134]. The
latter has been implemented successfully in many scenarios, but is risky in its reliance
on finding randomly-generated safe trajectories.

Recent work has considered using offline Hamilton-Jacobi analysis to guarantee
tracking error bounds, which can then be used for robust trajectory planning [14]. A
similar new approach, based on contraction theory and convex optimization, allows
computation of offline error bounds that can then define safe tubes around a nominal
dynamic trajectory computable online [136].

Finally, some online control techniques can be applied to trajectory tracking with
constraint satisfaction. For control-affine systems in which a control barrier function
can be identified, it is possible to guarantee forward invariance of the desired set
through a state-dependent affine constraint on the control, which can be incorporated
into an online optimization problem, and solved in real time [11].

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 130

The work presented here differs from the robust planning methods above be-
cause FaSTrack is designed to be modular and easy to use in conjunction with any
path or trajectory planner. Additionally, FaSTrack can handle bounded external dis-
turbances (e.g. wind) and work with both known and unknown environments with
static obstacles.

5.2.2 Problem Formulation

We seek to simultaneously plan and track a trajectory (or path converted to
a trajectory) online and in real time. The planning is done using a kinematic or
dynamic planning model. The tracking is done by a tracking model representing the
autonomous system. The environment may contain static obstacles that are either
known a priori or can be observed by the system within a limited sensing range (see
Section 5.2.5). In this subsection we will define the tracking and planning models, as
well as the goals of the thesis section.

5.2.2.1 Tracking Model

The tracking model is a representation of the autonomous system dynamics, and
in general may be nonlinear and high-dimensional. Let s represent the state variables
of the tracking model. The evolution of the dynamics satisfy the ordinary differential
equation:

ds

dt
= ṡ = f(s, us, d), t ∈ [0, T]

s ∈ S, us ∈ Us, d ∈ D
(5.14)

We assume that the system dynamics f : S × Us×D → S are uniformly continuous,
bounded, and Lipschitz continuous in s for fixed control us. The control function
us(·) and disturbance function d(·) are drawn from the following sets:

us(·) ∈ Us(t) = {φ : [0, T]→ Us : φ(·) is measurable}
d(·) ∈ D(t) = {φ : [0, T]→ D : φ(·) is measurable}

(5.15)

where Us,D are compact and t ∈ [0, T] for some T > 0. Under these assumptions there
exists a unique trajectory solving (5.14) for a given us(·) ∈ Us [?]. The trajectories
of (5.14) that solve this ODE will be denoted as ξf (t; s, t0, us(·)), where t0, t ∈ [0, T]
and t0 ≤ t. These trajectories will satisfy the initial condition and the ODE (5.14)
almost everywhere:

d

dt
ξf (t; s, t0, us(·)) = f(ξf (t; s, t0, us(·)), us(t))

ξf (t; s, t, us(·)) = s
(5.16)

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 131

5.2.2.2 Planning Model

The planning model is used by the path or trajectory planner to solve for the
desired path online. Kinematics or low-dimensional dynamics are typically used de-
pending on the requirements of the planner. Let p represent the state variables of
the planning model, with control up. The planning states p ∈ P are a subset of
the tracking states s ∈ S. The dynamics similarly satisfy the ordinary differential
equation:

dp

dt
= ṗ = h(p, up), t ∈ [0, T], p ∈ P , up ≤ up ≤ up (5.17)

Note that the planning model does not involve a disturbance input. This is a key
feature of FaSTrack: the treatment of disturbances is only necessary in the tracking
model, which is modular with respect to any planning method, including those that
do not account for disturbances.

5.2.2.3 Goals of This Section

The goals of the section are threefold:

1. To provide a tool for precomputing functions (or look-up tables) to determine
a guaranteed tracking error bound between tracking and planning models, and
optimal safety controller for robust motion planning with nonlinear dynamic
systems

2. To develop a framework for easily implementing this tool with fast real-time
path and trajectory planners.

3. To demonstrate the tool and framework in an example using a high dimensional
system

5.2.3 General Framework

The overall framework of FaSTrack is summarized in Figs. 5.8, 5.9, 5.10. The
online real-time framework is shown in Fig. 5.8. At the center of this framework is
the path or trajectory planner; our framework is agnostic to the planner, so any may
be used (e.g. MPC, RRT, neural networks). We will present an example using an
RRT planner in Section 5.2.6.

When executing the online framework, the first step is to sense obstacles in the
environment, and then augment the sensed obstacles by a precomputed tracking error
bound as described in Section 5.2.4. This tracking error bound is a safety margin that
guarantees robustness despite the worst-case disturbance. Augmenting the obstacles
by this margin can be thought of as equivalent to wrapping the planning system with
a “safety bubble”. These augmented obstacles are given as inputs to the planner

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 132

Planning	
system

Tracking	
system

Path/trajectory	
planner

Hybrid	tracking	
controller

Environment
(obstacles)

Augmented obstacles

Control

State

Planning State

Desired planning state

Online	computation	
(performed	at	every	time	iteration)

Tracking	
error	bound

Figure 5.8: Online framework

along with the current state of the planning system. The planner then outputs the
next desired state of the planning system.

The tracking system is a model of the physical system (such as a quadrotor).
The hybrid tracking controller block takes in the state of the tracking system as well
as the desired state of the planning system. Based on the relative state between these
two systems, the hybrid tracking controller outputs a control signal to the tracking
system. The goal of this control is to make the tracking system track the desired
planning state as closely as possible.

The hybrid tracking controller is expanded in Fig. 5.9 and consists of two con-
trollers: a safety controller and a performance controller. In general, there may be
multiple safety and performance controllers depending on various factors such as ob-
served size of disturbances, but for simplicity we will just consider one safety and one
performance controller. The safety controller consists of a function (or look-up table)
computed offline via HJ reachability, and guarantees that the tracking error bound
is not violated, despite the worst-case disturbance. In addition, the table look-up
operation is computationally inexpensive. When the system is close to violating the
tracking error bound, the safety controller must be used to prevent the violation. On
the other hand, when the system is far from violating the tracking error bound, any
controller (such as one that minimizes fuel usage), can be used. This control is used
to update the tracking system, which in turn updates the planning system, and the
process repeats.

To determine both the tracking error bound and safety controller functions/look-
up tables, an offline framework is used as shown in Fig. 5.10. The planning and
tracking system dynamics are plugged into an HJ reachability computation, which
computes a value function that acts as the tracking error bound function/look-up
table. The spatial gradients of the value function comprise the safety controller
function/look-up table. These functions are independent of the online computations—

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 133

Performance	
controller

Safety	controller

Hybrid	tracking	controller

Far	from	tracking	
error	violation

Near	tracking	
error	violationState

Desired	
planning	
state

Safety	
controller	

look-up	table

Tracking	error	
bound

Control

Figure 5.9: Hybrid controller

they depend only on the relative states and dynamics between the planning and
tracking systems, not on the absolute states along the trajectory at execution time.
In the following sections we will first explain the precomputation steps taken in the

Planning	
system

Tracking	
system

Reachability	
precomputation Safety	

controller	
look-up	table

Tracking	error	
bound

Tracking
dynamics

Planning
dynamics

Value function

Offline	computation	(performed	once)

Figure 5.10: Offline framework

offline framework. We will then walk through the online framework and provide a
complete example.

5.2.4 Offline Computation

The offline computation begins with setting up a pursuit-evasion game [38, 79]
between the tracking system and the planning system, which we then analyze using
HJ reachability. In this game, the tracking system will try to “capture” the planning
system, while the planning system is doing everything it can to avoid capture. In
reality the planner is typically not actively trying to avoid the tracking system, but
this allows us to account for worst-case scenarios. If both systems are acting optimally
in this way, we want to determine the largest relative distance that may occur over
time. This distance is the maximum possible tracking error between the two systems.

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 134

5.2.4.1 Relative Dynamics

To determine the relative distance that may occur over time we must first define
the relative states and dynamics between the tracking and planning models. The
individual dynamics are defined in Section 5.2.2, equations (5.14) and (5.17). The
relative system is found by fixing the planning model to the origin and finding the
dynamics of the tracking model relative to the planning model, as shown below.

r = s−Qp, ṙ = g(r, us, up, d) (5.18)

where Q matches the common states of s and p by augmenting the state space of
the planning model (as shown in Section 5.2.6). The relative states r now represent
the tracking states relative to the planning states. Similarly, QT projects the state
space of the tracking model onto the planning model: p = QT (s − r). This will be
used to update the planning model in the online algorithm.

5.2.4.2 Formalizing the Pursuit-Evasion Game

Now that we have the relative dynamics between the two systems we must define
a metric for the tracking error bound between these systems. We do this by defining
an implicit surface function as a cost function l(r) in the new frame of reference.
Because the metric we care about is distance to the origin (and thus distance to the
planning system), this cost function can be as simple as distance in position space
to the origin. An example can be seen in Fig. 5.11-a, where l(r) is defined for a 4D
quadrotor model tracking a 2D kinematic planning model. The contour rings beneath
the function represent varying level sets of the cost function. The tracking system will
try to minimize this cost to reduce the relative distance, while the planning system
will do the opposite.

Before constructing the differential game we must first determine the method
each player must use for making decisions. We define a strategy for planning system
as the mapping γp : Us → Up that determines a control for the planning model based
on the control of the planning model. We restrict γ to draw from only non-anticipative
strategies γp ∈ Γp(t), as defined in [111]. We similarly define the disturbance strategy
γd : Us → D, γd ∈ Γd(t).

We want to find the farthest distance (and thus highest cost) that this game
will ever reach when both players are acting optimally. Therefore we want to find a
mapping between the initial relative state of the system and the maximum possible
cost achieved over the time horizon. This mapping is through our value function,
defined as

V (r, T) = sup
γp∈Γp(t),γd∈Γd(t)

inf
us(·)∈Us(t)

{
max
t∈[0,T]

l
(
ξg(t; r, 0, us(·), γp[us](·), γd[us](·))

)} (5.19)

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 135

b.

0

10

5

10
0

10

0

-10 -10

a.

0

10

5

10
0

10

0

-10 -10

c.

-10 0 10

-10

-5

0

5

10

3

4

5

6

7

Figure 5.11: illustrative example of the precomputation steps for a 4D quadrotor
model tracking a 2D kinematic planning model. All graphs are defined over a 2D
slice of the 4D system. a) Cost function l(r) defined on relative states as distance
to the origin, b) Value function V (r) computed using HJ reachability, c) Level sets
of l(r) (solid) and V (r) (dashed). If the initial relative state is contained within the
dashed set the system is guaranteed to remain within the corresponding solid set.

By implementing HJ reachability analysis we solve for this value function over the
time horizon. If the control authority of the tracking system is powerful enough to
always eventually reach the planning system, this value function will converge to an
invariant solution for all time, i.e. V∞(r) := limT→∞ V (r, T). An example of this
converged value function is in Fig. 5.11-b. In the next section we will prove that the
sub-level sets of this value function will map initial relative states to the guaranteed
furthest possible tracking error over all time, as seen in Fig. 5.11-c.

In the context of the online framework, the value function V∞(r) is the tracking
error bound function. The spatial gradients of the value function, ∇V∞(r), comprise
the safety controller function (as described in Section 5.2.5). When the framework is
executed on a computer, these two functions are saved as look-up tables over a grid
representing the state space of the relative system.

5.2.4.3 Invariance of Converged Value Function

Proposition 6 Suppose that the value function converges, and define

V∞(r) := lim
T→∞

V (r, T) (5.20)

Then ∀t1, t2 with t2 ≥ t1,

V∞(r) ≥ V∞

(
ξ∗g(t2; r, t1)

)
,where (5.21)

ξ∗g(t; r, 0) := ξg(t; r, 0, u
∗
s(·), u∗p(·), d∗(·))) (5.22)

u∗s(·) = arg inf
us(·)∈Us(t)

{
max
t∈[0,T]

l(ξg(t; r, 0, us(·), u∗p(·), d∗(·)))
} (5.23)

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 136

u∗p(·) := γ∗p [us](·) = arg sup
γp∈Γp(t)

inf
us(·)∈Us(t)

{
max
t∈[0,T]

l(ξg(t; r, 0, us(·), γp[us](·), d∗(·)))
} (5.24)

d∗(·) = arg sup
γd∈Γd(t)

sup
γp∈Γp(t)

inf
us(·)∈Us(t)

{
max
t∈[0,T]

l(ξg(t; r, 0, us(·), γp[us](·), γd[us](·)))
} (5.25)

Proposition 6 proves that every level set of V∞(r) is invariant under the following
conditions:

1. The tracking system applies the optimal control which tries to track the planning
system;

2. The planning system applies (at worst) the optimal control that tries to escape
from the tracking system;

3. The tracking system experiences (at worst) the optimal disturbance that tries
to prevent successful tracking.

In practice, conditions 2 and 3 may not hold; the result of this is only advantageous
to the tracking system and will make it easier to stay within its current level set of
V∞(r), or to move to a smaller invariant level set of V∞(r). The smallest invariant level
set corresponding to the value V := minr V∞(r) can be interpreted as the smallest
possible tracking error of the system. The tracking error bound is given by2 the set
B = {r : V∞(r) ≤ V }. This tracking error bound in the planner’s frame of reference
is given by:

Bp(s) = {p : V∞(s−Qp) ≤ V } (5.26)

This is the tracking error bound that will be used in the online framework as shown
in Fig. 5.8. Within this bound the tracking system may use any controller, but on
the border of this bound the tracking system must use the safety optimal controller.
We now prove Proposition 6.
Proof : Without loss of generality, assume t1 = 0. By definition, we have

V∞(r) = lim
T→∞

max
t∈[0,T]

l(ξ∗g(t; r, 0)) (5.27)

By time-invariance, for some t2 > 0,

V∞(r) = lim
T→∞

max
t∈[−t2,T]

l(ξ∗g(t; r,−t2))

≥ lim
T→∞

max
t∈[0,T]

l(ξ∗g(t; r,−t2))
(5.28)

2In practice, since V∞ is obtained numerically, we set B = {r : V∞(r) ≤ V + ε} for some suitably
small ε > 0

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 137

where the sub-interval [−t2, 0) has been removed in the last line. Next, by time
invariance again, we have

ξ∗g(t; r,−τ) = ξ∗g(t; ξ
∗
g(0; r,−t2), 0)

= ξ∗g(t; ξ
∗
g(t2; r, 0), 0)

(5.29)

Now, (5.28) implies

V∞(r) ≥ lim
T→∞

max
t∈[0,T]

l(ξ∗g(t; ξ
∗
g(t2; r, 0), 0))

= V∞(ξ∗g(t2; r, 0))
(5.30)

�

Remark 8 Proposition 6 is very similar to well-known results in differential game
theory with a slightly different cost function [4], and has been utilized in the context of
using the subzero level set of V∞ as a backward reachable set for tasks such as collision
avoidance or reach-avoid games [111]. In our work we do not assign special meaning
to any particular level set, and instead consider all level sets at the same time. This
effectively allows us to perform solve many simultaneous reachability problems in a
single computation, thereby removing the need to check whether resulting invariant
sets are empty, as was done in [14].

5.2.5 Online Computation

Algorithm 5 describes the online computation. The inputs are the tracking error
function V∞(r) and the safety control look-up function ∇V∞(r). Note that when
discretized on a computer these functions will be look-up tables; practical issues
arising from sampled data control can be handled using methods such as [47,112,113]
and are not the focus of this section.

Lines 1-3 initialize the computation by setting the planning and tracking model
states (and therefore the relative state) to zero. The tracking error bound in the
planning frame of reference is computed using (5.26). Note that by initializing the
relative state to be zero we can use the smallest possible invariant Bp for the entire
online computation. The tracking error bound block is shown on lines 5-6. The sensor
detects obstacles Osense within the sensing distance around the vehicle. The sensed
obstacles are augmented by Bp(0) using the Minkowski sum. This is done to ensure
that no unsafe path can be generated3.

The path planner block (lines 7-8) takes in the planning model state p and the
augmented obstacles Oaug, and outputs the next state of the planning system pnext.
The hybrid tracking controller block (lines 9-16) first computes the updated relative

3The minimum allowable sensing distance is m = 2Bp(0) + ∆x, where ∆x is the largest step in
space that the planner can make in one time step.

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 138

Algorithm 5: Online Trajectory Planning

1: Initialization:
2: p = s = r = 0
3: Bp(0) = {p : V∞(0) ≤ V }
4: while planning goal is not reached do
5: Tracking Error Bound Block:
6: Oaug ← Osense + Bp(0)
7: Path Planner Block:
8: pnext ← j(p,Oaug)
9: Hybrid Tracking Controller Block:

10: rnext = s−Qpnext
11: if rnext is on boundary Bp(0) then
12: use safety controller: us ← u∗s in (5.31)
13: else
14: use performance controller:
15: us ← desired controller
16: end if
17: Tracking Model Block:
18: apply control us to vehicle for a time step of ∆t, save next state as snext
19: Planning Model Block:
20: p = QT snext
21: check if p is at planning goal
22: reset states s = snext, r = 0
23: end while

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 139

Figure 5.12: On the left are the cost and value functions over a 2D slice of the 10D
relative state space, with contour lines showing three level sets of these functions.
On the right are 3D projections of these level sets at the same slice (vx, vy, vz) =
[1,−1, 1] m/s, (θx, ωx, θy, ωy) = 0. The solid boxes show initial relative states, and
the transparent boxes show the corresponding tracking error bound. In practice we
set the initial relative states to 0 to find the smallest invariant tracking error bound.

state rnext. If the rnext is on the tracking bound Bp(0), the safety controller must be
used to remain within the safe bound. The safety control is given by:

u∗s = arg min
us∈Us

max
up∈Up,d∈D

∇V (rnext) · g(rnext, us, up, d) (5.31)

For many practical systems (such as control affine systems), this minimization can
be found extremely quickly.

If the relative state is not on the tracking boundary, a performance controller
may be used. For the example in Section 5.2.6 the safety and performance controllers
are identical, but in general this performance controller can suit the needs of the
individual applications.

The control u∗s is then applied to the physical system in the tracking block (lines
17-18) for a time period of ∆t. The next state is saved as snext. This then updates
the planning model state in the planning model block (lines 19-22). We repeat this
process until the planning goal has been reached.

5.2.6 10D Quadrotor RRT Example

We demonstrate this framework with a 10D near-hover quadrotor developed
in [25] tracking a 3D point source path generated by an RRT planner [94], [88]. First
we perform the offline computations to acquire the tracking error bound and safety
controller look-up tables. Next we set up the RRT to convert paths to simple 3D
trajectories. Finally we implement the online framework to navigate the 10D system
through a 3D environment with static obstacles.

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 140

Figure 5.13: Various 3D slices of the 10D relative states (solid) and the corresponding
tracking error bound (transparent)

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 141

5.2.6.1 Precomputation of 10D-3D system

First we use the 10D dynamics of the tracking quadrotors from (4.58), and define
the 3D dynamics of a holonomic vehicle: ẋ

ẏ
ż

 =

 bx
by
bz

 (5.32)

where states (x, y, z) denote the position, (vx, vy, vz) denote the velocity, (θx, θy) de-
note the pitch and roll, and (ωx, ωy) denote the pitch and roll rates. The controls of
the 10D system are (ax, ay, az), where ax and ay represent the desired pitch and roll
angle, and az represents the vertical thrust. The 3D system controls are (bx, by, bz),
and represent the velocity in each positional dimension. The disturbances in the 10D
system (dx, dy, dz) are caused by wind, which acts on the velocity in each dimension.
Note that the states of the 3D dynamics are a subset of the 10D state space; the ma-
trix Q used in the online computation matches the position states of both systems.
Next the relative dynamics between the two systems is defined using (5.18):

ẋr
v̇x
θ̇x
ω̇x
ẏr
v̇y
θ̇y
ω̇y
żr
v̇z

=

vx − bx + dx
g tan θx
−d1θx + ωx
−d0θx + n0ax
vy − by + dy
g tan θy
−d1θy + ωy
−d0θy + n0ay
vz − bz + dz
kTaz − g

(5.33)

The values for parameters d0, d1, n0, kT , g used were: d0 = 10, d1 = 8, n0 = 10, kT =
0.91, g = 9.81. The 10D control bounds were |ax|, |ay| ≤ 10 degrees, 0 ≤ az ≤ 1.5g
m/s2. The 3D control bounds were |bx|, |by|, |bz| ≤ 0.5 m/s. The disturbance bounds
were |dx|, |dy|, |dz| ≤ 0.1 m/s.

Next we follow the setup in section 5.2.4 to create a cost function, which we then
evaluate using HJ reachability until convergence to produce the invariant value func-
tion as in (5.19). Historically this 10D nonlinear relative system would be intractable
for HJ reachability analysis, but using the decomposition method in Section 4.1 we
can decompose this system into 3 subsystems (for each positional dimension). Do-
ing this also requires decomposing the cost function; therefore we represent the cost
function as a 1-norm instead of a 2-norm. This cost function as well as the resulting
value function can be seen projected onto the x, y dimensions in Fig. 5.12.

Fig. 5.12 also shows 3D positional projections of the mapping between initial
relative state to maximum potential relative distance over all time (i.e. tracking error

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 142

bound). If the real system starts exactly at the origin in relative coordinates, its
tracking error bound will be a box of V = 0.81 m in each direction. Slices of the 3D
set and corresponding tracking error bounds are also shown in Fig. 5.13. We save the
look-up tables of the value function (i.e. the tracking error function) and its spatial
gradients (i.e. the safety controller function).

5.2.6.2 Online Planning with RRT and Sensing

Our precomputed value function can serve as a tracking error bound, and its
gradients form a look-up table for the optimal tracking controller. These can be
combined with any planning algorithm such as MPC, RRT, or neural-network-based
planners in a modular way.

To demonstrate the combination of fast planning and provably robust tracking,
we used a simple multi-tree RRT planner implemented in MATLAB modified from
[67]. We assigned a speed of 0.5 m/s to the piecewise linear paths obtained from the
RRT planner, so that the planning model is as given in (4.58). Besides planning a path
to the goal, the quadrotor must also sense obstacles in the vicinity. For illustration,
we chose a simple virtual sensor that reveals obstacles within a range of 2 m in the
x, y, or z directions.

Once an obstacle is sensed, the RRT planner replans while taking into account
all obstacles that have been sensed so far. To ensure that the quadrotor does not
collide with the obstacles despite error in tracking, planning is done with respect to
augmented obstacles that are “expanded” from the sensed obstacles by V in the x,
y, and z directions.

On an unoptimized MATLAB implementation on a desktop computer with a
Core i7-2600K CPU, each iteration took approximately 25 ms on average. Most of
this time is spent on planning: obtaining the tracking controller took approximately
5 ms per iteration on average. The frequency of control was once every 100 ms.

Fig. 5.14 shows the simulation results. Four time snapshots are shown. The
initial position is (−12, 0, 0), and the goal position is (12, 0, 0). The top left subplot
shows the entire trajectory from beginning to end. In all plots, a magenta star repre-
sents the position of the planning model; its movement is based on the paths planned
by RRT, and is modeled by a 3D holonomic vehicle with a maximum speed. The blue
box around the magenta star represents the tracking error bound. The position of the
tracking model is shown in blue. Throughout the simulation, the tracking model’s
position is always inside the tracking error, in agreement with Proposition 6. In ad-
dition, the tracking error bound never intersects with the obstacles, a consequence of
the RRT planner planning with respect to a set of augmented obstacles (not shown).
In the latter two subplots, one can see that the quadrotor appears to be exploring
the environment briefly before reaching the goal. We did not employ any exploration
algorithm; this exploration behavior is simply emerging from replanning using RRT
whenever a new part (a 3 m2 portion) of an obstacle is sensed.

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 143

(a)

(b) (c)

Figure 5.14: Numerical simulation. The tracking model trajectory is shown in blue,
the planning model position in magenta, unseen obstacles in gray, and seen obstacles
in red. The translucent blue box represents the tracking error bound. The top left
subplot shows the entire trajectory; the other subplots zoom in on the positions
marked in the top left subplot. The camera angle is also adjusted to illustrate our
theoretical guarantees on tracking error and robustness in planning. A video of this
simulation can be found at https://youtu.be/ZVvyeK-a62E

CHAPTER 5. FRONTIERS IN HJ REACHABILITY VERIFICATION 144

5.2.7 Conclusions and Future work

In this section we introduced our new tool FaSTrack: Fast and Safe Tracking.
This tool can be used to add robustness to various path and trajectory planners with-
out sacrificing fast online computation. So far this tool can be applied to unknown
environments with a limited sensing range and static obstacles. We are excited to
explore several future directions for FaSTrack in the near future, including exploring
robustness for moving obstacles, adaptable error bounds based on external distur-
bances, and demonstration on a variety of planners.

145

Chapter 6

Conclusions and Future Work

Autonomous systems research has been tremendously successful recently, and
now the perspective of safety is becoming very important, despite the difficulties of
safety analysis. With the recent progress in high-dimensional verification, I think we
are have made great initial progress in the path towards more pervasive and verified
automation. If large-scale safety analysis could be combined with previous successes
in the field in a modular way, we could have safe system design, planning, sens-
ing, and learning, safe large-scale autonomous systems, and safe human-automation
interaction in the near future.

There are many exciting areas of future research in verified automation, in-
cluding combining machine learning and formal verification, modular combination
of verification and planning, more sophisticated system decomposition, multi-agent
coordination, and hardware validation. All of these are steps we can take towards
more pervasive automation. Below, a few high level directions are provided.

Incorporating machine learning in verification: The preliminary work involving
neural networks in Section 5.1 falls under the category of using machine learning
techniques to augment verification techniques. This was an attempt at using machine
learning to overcome computation burden in formal verification.

Incorporating verification in machine learning: As a start, verification tech-
niques such as reachability can be applied to learned systems and learned controllers.
This is not currently easy to do, and to address this difficulty, for safety-critical ap-
plication we should also try to learn verifiable systems and controllers. The robotics
community is now applying machine learning to identify many different system models
as well as construct a variety of controllers. Currently, perhaps only a small portion
of these are verifiable with current verification tools. For many applications, this may
be good enough, but for safety-critical systems, machine learning should be done
with verification in mind. For example, we could identify representations of system
dynamics that are compatible with verification tools. Given current limitations in

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 146

verification, the identified system or controller would have to be low-dimensional, or
have some decomposable structure.

More sophisticated verification techniques: The current popularity of machine
learning motivates development of verification tools that are better suited in the
context of learned systems. For example, having the ability to verify systems with
partially known dynamics, having ways to analyze safety even when there is only
partial state information, and developing more methods for high-dimensional systems
would facilitate verification learned systems.

Parallelizing verification computations: Utilizing more computing power would
also help verification tools become more relevant in analyzing learned systems, espe-
cially when the computing power is combined with high-dimensional techniques such
as decomposition. Massively parallel computing and cloud computing are already
widely used in machine learning, and verification methods can also take advantage
of these resources. A first implementation of the HJ reachability method using GPU
parallelization has already achieved a 80 times improvement in computation time.

Safe learning: A slightly different way in which formal verification would be very
important is in safe learning. Often, practical systems require real-world data. For
safety-critical systems, this data collection process must be done in a provably safe
way.

More general system decomposition: This thesis provided two examples of sys-
tem decomposition. In Section 4.2, a system component is linked unidirectionally to
several others components, and all of these components may have self-links, as shown
in Figure 6.1a. This simple structure has already enabled substantial dimensional-
ity reduction. Section 4.2 provides a method to remove any edge at the expense of
conservatism. With a graphical representation, one can easily imagine many other
possible links, such as parent nodes, children nodes, or multiple parent nodes, shown
in Figure 6.1b. The particular structures that we should investigate would be moti-
vated by the structure of real systems, and perhaps those arising from other domains
such as machine learning.

Decomposition in other contexts: The concept of decomposition is not just use-
ful in reachability or verification, but would also be very beneficial in many other
contexts. For example, decomposition methods would be useful in the contexts of
partially observable Markov decision processes (POMDPs) and reinforcement learn-
ing, and the idea of decomposition is quite closely related to distributed and parallel
computing.

Automatic system structure detection and decomposition: As we analyze

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 147

𝑦𝑐

𝑦1 𝑦2 𝑦𝑁

(a) Structure compatible with the decom-
position technique in Section 4.1.

𝑦𝑐

𝑦1 𝑦2 𝑦𝑁

(b) A more complex system structure.

Figure 6.1: Graphical representations of dynamical systems.

systems that are more and more complex, we would have more complex graphical
abstractions of dynamical systems. Eventually, we would need to develop methods
for automatically decomposing a very complex system. Having more powerful decom-
position tools would facilitate combining machine learning and verification on these
systems.

Applications in unmanned airspace infrastructure: One possible application of
both machine learning and verification is in unmanned airspace traffic management.
This is a rapidly growing area, and multiple levels of abstractions of the airspace will
likely be needed. For example, cities and larger regions could have separate traffic
rules, and these different levels of abstractions would need to satisfy contracts between
them.

Practical sensing and perception: On a smaller level, there are many practical
considerations. For example, often algorithms designed in control theory are im-
plemented on systems using motion capture systems to provide state information;
however, this is not realistic for large-scale utilization. Sensors such as LIDAR and
systems such as global positioning system (GPS) and computer vision systems would
need to be used for navigation. Other practical challenges include delays, frequency
of data, and even missing data.

Human-robot interactions: Humans will undoubtedly be participating in the con-
trol of autonomous or semi-autonomous systems. In this area, safety analysis would

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 148

be very useful for providing the right feedback, for example in the form of visual
feedback or haptics, to guide humans away from danger. To this end, a modular
combination of verification and planning such as FaSTrack, discussed in Section 5.2
is very promising.

Hardware implementation: All of the theory and algorithms that we develop
can now be, and should be validated on many types of hardware platforms. This has
never been easier before, with many different hardware platforms available from many
different companies. For example, there is a variety of UAVs from companies such
as Bitcraze, which offers the crazyflie, DJI, and Parrot, which sell larger quadrotors
which may have different computation capabilities and sensors. Robotic arms are
also now becoming more accessible, and would be especially useful for research in
human-robot interactions. Robotic surgeries is now becoming a popular concept. Of
course, depending on the application area there are other hardware platforms such
as ground robotics and miniature autonomous cars. In fact, practically speaking,
different types of autonomous systems will likely be interacting with each other.

149

Bibliography

[1] 3D Robotics. Solo Specs: Just the facts, 2015. https://news.3dr.com/solo-
specs-just-the-facts-14480cb55722#.w7057q926 [retrieved May 9, 2017].

[2] Avishai Adler, Aharon Bar-Gill, and Nahum Shimkin. Optimal flight
paths for engine-out emergency landing. In Proceedings of the IEEE
Chinese Control and Decision Conference, pages 2908–2915, 2012. doi:
10.1109/CCDC.2012.6244461.

[3] A. Ahmadzadeh, N. Motee, A. Jadbabaie, and G. Pappas. Multi-vehicle path
planning in dynamically changing environments. In International Conference
on Robotics and Automation, pages 2449–2454, May 2009.

[4] Anayo K. Akametalu, Jaime F. Fisac, Jeremy H. Gillula, Shahab Kaynama,
Melaine N. Zeilinger, and Claire J. Tomlin. Reachability-based safe learning
with Gaussian processes. In Proceedings of the IEEE Conference on Decision
and Control, Dec. 2014.

[5] Ross E Allen, Ashley A Clark, Joseph A Starek, and Marco Pavone. A ma-
chine learning approach for real-time reachability analysis. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2202–2208, Sep. 2014.

[6] M. Althoff. An Introduction to CORA 2015. In Proceedings of the Workshop
on Applied Verification for Continuous and Hybrid Systems, 2015.

[7] Matthias Althoff and John M. Dolan. Set-based computation of vehicle be-
haviors for the online verification of autonomous vehicles. In International
Conference on Intelligent Transportation Systems, pages 1162–1167, Oct. 2011.

[8] Matthias Althoff and Bruce H. Krogh. Reachability Analysis of Nonlin-
ear Differential-Algebraic Systems. IEEE Transactions Automatic Control,
59(2):371–383, Feb. 2014.

[9] K. Alton and I.M. Mitchell. Optimal path planning under defferent norms in
continuous state spaces. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 866–872. doi: 10.1109/ROBOT.2006.1641818.

BIBLIOGRAPHY 150

[10] Amazon.com, Inc. Amazon prime air, 2016.

[11] Aaron D Ames, Jessy W Grizzle, and Paulo Tabuada. Control barrier function
based quadratic programs with application to adaptive cruise control. In Pro-
ceedings of the IEEE Conference on Decision and Control, pages 6271–6278,
2014.

[12] Maria Soledad Aronna, J. Frédéric Bonnans, and Pierre Martinon. A shooting
algorithm for optimal control problems with singular arcs. Journal of Optimiza-
tion Theory and Applications, 158(2):419–459, 2013.

[13] AUVSI News. UAS Aid in South Carolina Tornado Investigation. http://www.
auvsi.org/blogs/auvsi-news/2016/01/29/tornado, 2016.

[14] Somil Bansal, Mo Chen, Jaime F. Fisac, and Claire J. Tomlin. Safe Sequential
Path Planning of Multi-Vehicle Systems Under Presence of Disturbances and
Imperfect Information. Proceedings of the AACC American Control Conference,
2017.

[15] Somil Bansal*, Mo Chen*, and Claire J. Tomlin. Safe sequential path planning
of multi-vehicle systems under presence of disturbances and measurement noise.
In Proceedings of the AACC American Control Conference, 2017.

[16] E. N. Barron. Differential games with maximum cost. Nonlinear Analysis,
14(11):971–989, Jun. 1990.

[17] E.N. Barron and H. Ishii. The Bellman equation for minimizing the maximum
cost. Nonlinear Analysis: Theory, Methods & Applications, 13(9):1067–1090,
Sept. 1989. doi: 10.1016/0362-546X(89)90096-5.

[18] Alexandre M. Bayen, Ian M. Mitchell, Meeko Oishi, and Claire J. Tomlin. Air-
craft autolander safety analysis through optimal control-based reach set com-
putation. AIAA Journal of Guidance, Control, and Dynamics, 30(1), 2007.

[19] BBC News. Google plans drone delivery service for 2017. http://www.bbc.

co.uk/news/technology-34704868, 2015.

[20] R.W. Beard and TW McLain. Multiple UAV cooperative search under collision
avoidance and limited range communication constraints. In Proceedings of the
Conference on Decision and Control, volume 1, pages 25–30, 2003.

[21] Yaar Becerikli, Ahmet Ferit Konar, and Tarq Samad. Intelligent optimal control
with dynamic neural networks. Neural Networks, 16(2):251–259, Mar. 2003.

BIBLIOGRAPHY 151

[22] J.S. Bellingham, M Tillerson, M Alighanbari, and J.P. How. Cooperative path
planning for multiple UAVs in dynamic and uncertain environments. In Pro-
ceedings of the Conference on Decision and Control, volume 3, pages 2816–2822,
Dec. 2002.

[23] Olivier Bokanowski, Nicolas Forcadel, and Hasnaa Zidani. Reachability and
Minimal Times for State Constrained Nonlinear Problems without Any Control-
lability Assumption. SIAM Journal on Control and Optimization, 48(7):4292–
4316, Jan. 2010. doi: 10.1137/090762075.

[24] Olivier Bokanowski and Hasnaa Zidani. MINIMAL TIME PROBLEMS
WITH MOVING TARGETS AND OBSTACLES. IFAC Proceedings Volumes,
44(1):2589–2593, Jan. 2011.

[25] Patrick Bouffard. On-board model predictive control of a quadrotor helicopter:
Design, implementation, and experiments. Master’s thesis, University of Cali-
fornia, Berkeley, 2012.

[26] Frank M. Callier and Charles A. Desoer. The System Representation
R=[A,B,C,D], Part II. In Linear System Theory, pages 103–139. Springer, 1991.

[27] G.C. Chasparis and J.S. Shamma. Linear-programming-based multi-vehicle
path planning with adversaries. In Proceedings of the AACC American Control
Conference, pages 1072–1077, Jun. 2005.

[28] Mo Chen, Somil Bansal, Jaime F Fisac, and Claire J Tomlin. Robust sequen-
tial path planning under disturbances and adversarial intruder. arXiv preprint
arXiv:1611.08364, 2016.

[29] Mo Chen, Somil Bansal, Ken Tanabe, and Claire J. Tomlin. Provably Safe and
Robust Drone Routing via Sequential Path Planning: A Case Study in San
Francisco and the Bay Area. May 2017.

[30] Mo Chen, Jaime F. Fisac, Shankar Sastry, and Claire J. Tomlin. Safe se-
quential path planning of multi-vehicle systems via double-obstacle Hamilton-
Jacobi-Isaacs variational inequality. In Proceedings of the European Control
Conference, pages 3304–3309, Jul. 2015.

[31] Mo Chen*, Sylvia Herbert*, and Claire J Tomlin. Fast Reachable Set Ap-
proximations via State Decoupling Disturbances. In Proceedings of the IEEE
Conference on Decision and Control, 2016.

[32] Mo Chen, Sylvia Herbert, and Claire J Tomlin. Exact and Efficient Hamilton-
Jacobi-based Guaranteed Safety Analysis via System Decomposition. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation,
2017.

BIBLIOGRAPHY 152

[33] Mo Chen, Sylvia L. Herbert, Mahesh S. Vashishtha, Somil Bansal, and Claire J.
Tomlin. Decomposition of Reachable Sets and Tubes for a Class of Nonlinear
Systems. IEEE Transactions on Automatic Control (to appear), Nov. 2016.

[34] Mo Chen, Qie Hu, Jaime F. Fisac, Kene Akametalu, Casey Mackin, and
Claire J. Tomlin. Reachability-Based Safety and Goal Satisfaction of Unmanned
Aerial Platoons on Air Highways. AIAA Journal of Guidance, Control, and Dy-
namics, pages 1–14, Jan. 2017.

[35] Mo Chen, Qie Hu, Casey Mackin, Jaime Fisac, and Claire J. Tomlin. Safe
platooning of unmanned aerial vehicles via reachability. In Proceedings of the
IEEE Conference on Decision and Control, 2015.

[36] Mo Chen*, Jennifer Shih*, and Claire J. Tomlin. Multi-vehicle collision avoid-
ance via reachability and mixed integer programming. In Proceedings of the
IEEE Conference on Decision and Control, 2016.

[37] Mo Chen and Claire J. Tomlin. Exact and efficient Hamilton-Jacobi reachability
for decoupled systems. In Proceedings of the IEEE Conference on Decision and
Control, pages 1297–1303, 2015. doi: 10.1109/CDC.2015.7402390.

[38] Mo Chen, Zhengyuan Zhou, and Claire J. Tomlin. Multiplayer Reach-Avoid
Games via Pairwise Outcomes. IEEE Transactions on Automatic Control,
62(3):1451–1457, Mar. 2017.

[39] Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An Analyzer
for Non-linear Hybrid Systems. In Proceedings of the Conference on Computer
Aided Verification, pages 258–263, 2013.

[40] Yao Li Chuang, Yuan R. Huang, Maria R. D’Orsogna, and Andrea L. Bertozzi.
Multi-vehicle flocking: Scalability of cooperative control algorithms using pair-
wise potentials. In International Conference on Robotics and Automation, pages
2292–2299, Apr. 2007.

[41] Earl A. Coddington and Norman Levinson. Theory of ordinary differential
equations. Tata McGraw-Hill Education, 1955.

[42] Samuel Coogan and Murat Arcak. Efficient finite abstraction of mixed mono-
tone systems. In Proceedings of the ACM International Conference Hybrid Sys-
tems: Computation and Control, pages 58–67, 2015.

[43] Matthew Coombes, Wen-Hua Chen, and Peter Render. Reachability Analysis
of Landing Sites for Forced Landing of a UAS. Journal of Intelligent & Robotic
Systems, 73(1-4):635–653, Jan. 2014. doi: 10.1007/s10846-013-9920-9.

BIBLIOGRAPHY 153

[44] Michael G. Crandall and Pierre-Louis Lions. Viscosity solutions of Hamilton-
Jacobi equations. Trans. Amer. Math. Soc., 277(1):1, Jan. 1983.

[45] Michael Grain Crandall, Lawrence Craig Evans, and Pierre-Louis Lions. Some
properties of viscosity solutions of Hamilton-Jacobi equations. Transactions of
the American Mathematical Society, 282(2):487–502, Apr. 1984. doi: S0002-
9947-1984-0732102-X.

[46] G. Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of Control, Signals, and Systems, 2(4):303–314, Dec. 1989.

[47] Charles Dabadie, Shahab Kaynama, and Claire J. Tomlin. A practical
reachability-based collision avoidance algorithm for sampled-data systems: Ap-
plication to ground robots. In Proceedings of the IEEE International Conference
on Intelligent Robots and Systems, pages 4161–4168, Sept. 2014.

[48] Jérôme Darbon and Stanley Osher. Algorithms for overcoming the curse of
dimensionality for certain HamiltonJacobi equations arising in control theory
and elsewhere. Research in the Mathematical Sciences, 3(1):19, Dec. 2016.

[49] Wesley DeBusk. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado
Alley. In AIAA Infotech@Aerospace 2010, Apr. 2010. AIAA paper number:
2010-3506, 10.2514/6.2010-3506.

[50] Debadeepta Dey, Kumar Shaurya Shankar, Sam Zeng, Rupesh Mehta, M Talha
Agcayazi, Christopher Eriksen, Shreyansh Daftry, Martial Hebert, and J An-
drew Bagnell. Vision and learning for deliberative monocular cluttered flight.
In Field and Service Robotics, pages 391–409, 2016.

[51] Stefano Di Cairano and Francesco Borrelli. Reference tracking with guaranteed
error bound for constrained linear systems. IEEE Transactions on Automatic
Control, 61(8):2245–2250, 2016.

[52] Moritz Diehl, H Georg Bock, Johannes P Schlöder, Rolf Findeisen, Zoltan Nagy,
and Frank Allgöwer. Real-time optimization and nonlinear model predictive
control of processes governed by differential-algebraic equations. Journal of
Process Control, 12(4):577–585, 2002.

[53] Moritz Diehl, Hans Joachim Ferreau, and Niels Haverbeke. Efficient numerical
methods for nonlinear mpc and moving horizon estimation. In Nonlinear model
predictive control, pages 391–417. 2009.

[54] Jerry Ding, Jonathan Sprinkle, S. Shankar Sastry, and Claire J. Tomlin.
Reachability calculations for automated aerial refueling. In Proceedings of
the IEEE Conference on Decision and Control, pages 3706–3712, 2008. doi:
10.1109/CDC.2008.4738998.

BIBLIOGRAPHY 154

[55] Badis Djeridane and John Lygeros. Neural approximation of PDE solutions:
An application to reachability computations. In Proceedings of the IEEE Con-
ference on Decision and Control, pages 3034–3039, 2006.

[56] Tommaso Dreossi, Thao Dang, and Carla Piazza. Parallelotope Bundles for
Polynomial Reachability. In Proceedings of the ACM International Conference
on Hybrid Systems: Computation and Control, pages 297–306, 2016.

[57] L. E. Dubins. On Curves of Minimal Length with a Constraint on Average
Curvature, and with Prescribed Initial and Terminal Positions and Tangents.
American Journal of Mathematics, 79(3):497, Jul. 1957.

[58] Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan, and Matthew
Potok. C2E2: A Verification Tool for Stateflow Models. In Proc. Int. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems, pages
68–82, 2015.

[59] Parasara Sridhar Duggirala, Matthew Potok, Sayan Mitra, and Mahesh
Viswanathan. C2e2: A tool for verifying annotated hybrid systems. In Proceed-
ings of the ACM International Conference on Hybrid Systems: Computation
and Control, pages 307–308, 2015.

[60] L. C. Evans and P. E. Souganidis. Differential games and representation for-
mulas for solutions of Hamilton-Jacobi-Isaacs equations. Indiana University
Mathematics Journal, 33(5):773–797, 1984.

[61] Katie Fehrenbacher. Feds Say Safety Is the Key to the Future of Autonomous
Cars. http://fortune.com/2016/07/19/safety-feds-autonomous-cars/.

[62] Feng-Li Lian and R. Murray. Real-time trajectory generation for the cooperative
path planning of multi-vehicle systems. In Conference on Decision and Control,
volume 4, pages 3766–3769, Dec. 2002.

[63] Paolo Fiorini and Zvi Shiller. Motion Planning in Dynamic Environments Using
Velocity Obstacles. The International Journal of Robotics Research, 17(7):760–
772, Jul. 1998.

[64] Jaime F. Fisac, Mo Chen, Claire J. Tomlin, and S. Shankar Sastry. Reach-avoid
problems with time-varying dynamics, targets and constraints. In Proceedings of
the ACM International Conference Hybrid Systems: Computation and Control,
pages 11–20, 2015.

[65] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi
Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded
Maler. SpaceEx: Scalable Verification of Hybrid Systems. In Proceedings of

BIBLIOGRAPHY 155

the International Conference on Computer Aided Verification, pages 379–395,
2011.

[66] Ather Gattami, Assad Al Alam, Karl Henrik Johansson, and Claire J Tomlin.
Establishing Safety for Heavy Duty Vehicle Platooning: A Game Theoretical
Approach. volume 44, pages 3818–3823, Jan. 2011. doi: 10.3182/20110828-6-
IT-1002.02071.

[67] Gavin (Matlab community Contributor). Multiple Rapidly-exploring Random
Tree (RRT), 2013.

[68] I. M. (Izrail Moiseevich) Gelfand, Richard A Silverman, and S. V. (Sergei Vasile-
vich) Fomin. Calculus of variations. Englewood Cliffs, N.J. : Prentice-Hall, rev.
english ed. / translated and edited by richard a. silverman edition, 1963.

[69] Jeremy H Gillula, Gabriel M Hoffmann, Haomiao Huang, Michael P Vitus, and
Claire J Tomlin. Applications of hybrid reachability analysis to robotic aerial
vehicles. International Journal of Robotics Research, 30(3):335–354, Mar. 2011.

[70] Jeremy H Gillula, Haomiao Huang, Michael P Vitus, and Claire J Tomlin. De-
sign of guaranteed safe maneuvers using reachable sets: Autonomous quadrotor
aerobatics in theory and practice. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 1649–1654, 2010.

[71] Mark R. Greenstreet and Ian Mitchell. Integrating projections. In Hybrid
Systems: Computation and Control, pages 159–174, 1998.

[72] Lars Grne and Jrgen Pannek. Nonlinear Model Predictive Control: Theory and
Algorithms. Springer Publishing Company, Incorporated, 2013.

[73] Michael R. Hafner and Domitilla Del Vecchio. Computation of safety control
for uncertain piecewise continuous systems on a partial order. In Proceedings
of the IEEE Conference on Decision and Control, pages 1671–1677, 2009.

[74] Daniel L. Haulman. U.S. Unmanned Aerial Vehicles in Combat, 1991-2003.
Technical report, Air Force Historical Research Agency, Maxwell Air Force Base,
Alabama, 2003.

[75] K. J. Hedrick, G. Zhang, K. V. Narendran, K. s. Chang, Partners for Ad-
vanced Transit, Highways (Calif.), and Berkeley. Institute of Transporta-
tion Studies University of California. Transitional Platoon Maneuvers in an
Automated Highway System. California PATH Program, Institute of Trans-
portation Studies, University of California at Berkeley, 1992.

BIBLIOGRAPHY 156

[76] Sylvia L. Herbert, Mo Chen, SooJean Han, Somil Bansal, Jaime F. Fisac, and
Claire J. Tomlin. FaSTrack: a Modular Framework for Fast and Guaranteed
Safe Motion Planning. In Proceedings of the IEEE International Conference on
Robotics and Automation, May 2017.

[77] Gabriel M. Hoffmann and Claire J. Tomlin. Decentralized cooperative collision
avoidance for acceleration constrained vehicles. In Proceedings of the Conference
on Decision and Control, pages 4357–4363, 2008.

[78] Michael Hoy, Alexey S Matveev, and Andrey V Savkin. Algorithms for collision-
free navigation of mobile robots in complex cluttered environments: a survey.
Robotica, 33(03):463–497, 2015.

[79] Haomiao Huang, J. Ding, Wei Zhang, and C.J. Tomlin. A differential game
approach to planning in adversarial scenarios: A case study on capture-the-
flag. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 1451–1456, 2011.

[80] Jinu Idicula, Kene Akametalu, Mo Chen, Claire Tomlin, Jerry Ding, and Loyd
Hook. Where to Land: A Reachability Based Forced Landing Algorithm for
Aircraft Engine Out Scenarios, Nov. 2015. Seedling Technical Seminar, NASA
Dryden Flight Research Center, Report number DFRC-E-DAA-TN28194.

[81] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast
marching tree: A fast marching sampling-based method for optimal motion
planning in many dimensions. The International Journal of Robotics research,
34(7):883–921, 2015.

[82] Frank Jiang, Glen Chou, Mo Chen, and Claire J. Tomlin. Using Neural Net-
works to Compute Approximate and Guaranteed Feasible Hamilton-Jacobi-
Bellman PDE Solutions. Nov 2016.

[83] Joint Planning and Development Office. Unmanned Aircraft Systems (UAS)
Comprehensive Plan: A Report on the Nation’s UAS Path Forward. Technical
report, 2013.

[84] Jointed Planning and Development Office (JPDO). Unmanned aircraft sys-
tems (UAS) comprehensive plan – a report on the nation’s UAS path forward.
Technical report, Federal Aviation Administration, 2013.

[85] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and
Stefan Schaal. Stomp: Stochastic trajectory optimization for motion planning.
In IEEE International Conference on Robotics and Automation, pages 4569–
4574, 2011.

BIBLIOGRAPHY 157

[86] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli, and
Seth Teller. Anytime motion planning using the rrt. In Proceedings of the
IEEE International Conference onRobotics and Automation, pages 1478–1483,
2011.

[87] Pooja Kavathekar and YangQuan Chen. Vehicle Platooning: A Brief Survey and
Categorization. In Proceedings of the ASME/IEEE International Conference on
Mechatronic and Embedded Systems and Applications, Parts A and B, volume 3,
pages 829–845, 2011. doi: 10.1115/DETC2011-47861.

[88] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[89] Shahab Kaynama and Meeko Oishi. Schur-based decomposition for reachability
analysis of linear time-invariant systems. In Proceedings of the IEEE Conference
on Decision and Control, pages 69–74, Dec. 2009.

[90] Shahab Kaynama and Meeko Oishi. A Modified Riccati Transformation for
Decentralized Computation of the Viability Kernel Under LTI Dynamics. IEEE
Transactions on Automatic Control, 58(11):2878–2892, Nov. 2013.

[91] Byoung S. Kim and Anthony J. Calise. Nonlinear Flight Control Using Neural
Networks. AIAA Journal of Guidance, Control, and Dynamics, 20(1):26–33,
Jan. 1997.

[92] Marin Kobilarov. Cross-entropy motion planning. The International Journal
of Robotics Research, 31(7):855–871, 2012.

[93] Soonho Kong, Sicun Gao, Wei Chen, and Edmund Clarke. dReach: δ-
Reachability Analysis for Hybrid Systems. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, pages 200–205, 2015.

[94] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach to
single-query path planning. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, volume 2, pages 995–1001, 2000.

[95] A.B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis:
internal approximation. Syst. & Contr. Lett., 41(3):201–211, Oct. 2000.

[96] A.B. Kurzhanski and P. Varaiya. On Ellipsoidal Techniques for Reachability
Analysis. Part II: Internal Approximations Box-valued Constraints. Optimiza-
tion Methods and Software, 17(2):207–237, Jan. 2002.

BIBLIOGRAPHY 158

[97] Emmett Lalish, Kristi A. Morgansen, and Takashi Tsukamaki. Decentralized
reactive collision avoidance for multiple unicycle-type vehicles. In Proceedings
of the AACC American Control Conference, pages 5055–5061, Jun. 2008.

[98] Jean B. Lasserre, Didier Henrion, Christophe Prieur, and Emmanuel Trélat.
Nonlinear optimal control via occupation measures and lmi-relaxations. SIAM
Journal Control and Optimization, 47(4):1643–1666, June 2008.

[99] Yucong Lin and Srikanth Saripalli. Collision avoidance for UAVs using reachable
sets. In International Conference on Unmanned Aircraft Systems, pages 226–
235, Jun. 2015.

[100] John Lygeros, Datta N. Godbole, and Shankar S. Sastry. Verified hybrid con-
trollers for automated vehicles. IEEE Transactions on Automatic Control,
43(4):522–539, Apr. 1998.

[101] John Lygeros, Shankar Sastry, and Claire Tomlin. Hybrid Systems: Founda-
tions, advanced topics and applications. Springer Verlag, 2012.

[102] John N. Maidens, Shahab Kaynama, Ian M. Mitchell, Meeko M K Oishi, and
Guy A. Dumont. Lagrangian methods for approximating the viability kernel in
high-dimensional systems. Automatica, 49(7):2017–2029, Jul. 2013.

[103] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust
feedback motion planning. The International Journal of Robotics Research,
Jun. 2017.

[104] Anirudha Majumdar, Ram Vasudevan, Mark M Tobenkin, and Russ Tedrake.
Convex optimization of nonlinear feedback controllers via occupation measures.
33(9):1209–1230, Aug. 2014.

[105] Kostas Margellos and John Lygeros. HamiltonJacobi Formulation for
ReachAvoid Differential Games. Transactions on Automatic Control,
56(8):1849–1861, Aug. 2011.

[106] M Massink and N. De Francesco. Modelling free flight with collision avoidance.
In Proceedings of the International Conference on Engineering of Complex Com-
puter Systems, pages 270–279, 2001.

[107] J. S. McGrew, J. P. How, L. Bush, B. Williams, and N. Roy. Air combat strategy
using approximate dynamic programming. AIAA Guidance, Navigation, and
Control Conference, Aug. 2008.

[108] H. D. McMahon, K. J. Hedrick, and E. S. Shladover. Vehicle modelling and
control for automated highway systems. In American Control Conference, 1990,
pages 297–303, May 1990.

BIBLIOGRAPHY 159

[109] Ian M. Mitchell. Comparing forward and backward reachability as tools for
safety analysis. In Proceedings of the ACM International Conference on Hybrid
Systems: Computation and Control, 2007.

[110] Ian M. Mitchell. The Flexible, Extensible and Efficient Toolbox of Level Set
Methods. Journal of Scientific Computing, 35(2-3):300–329, Jun. 2008. doi:
10.1007/s10915-007-9174-4.

[111] Ian M. Mitchell, Alexandre M. Bayen, and Claire J. Tomlin. A time-dependent
Hamilton-Jacobi formulation of reachable sets for continuous dynamic games.
IEEE Transactions on Automatic Control, 50(7):947–957, Jul. 2005.

[112] Ian M. Mitchell, Mo Chen, and Meeko Oishi. Ensuring safety of nonlinear sam-
pled data systems through reachability. IFAC Proceedings Volumes, 45(9):108–
114, 2012.

[113] Ian M. Mitchell, Shahab Kaynama, Mo Chen, and Meeko Oishi. Safety pre-
serving control synthesis for sampled data systems. Nonlinear Analysis: Hybrid
Systems, 10(1):63–82, Nov. 2013.

[114] Ian M. Mitchell and Claire J. Tomlin. Overapproximating reachable sets by
hamilton-jacobi projections. Journal of Scientific Computing, 19(1-3):323–346,
2003.

[115] I.M. Mitchell. Scalable calculation of reach sets and tubes for nonlinear systems
with terminal integrators: a mixed implicit explicit formulation. In Proceedings
of the ACM International Conference Hybrid Systems: Computation and Con-
trol, pages 103–112, 2011.

[116] National Aeronautics and Space Administration. Challenge is on to design
sky for all, 2016. http://www.nasa.gov/feature/challenge-is-on-to-design-sky-
for-all, [retrieved Feb. 12, 2016].

[117] Michael Neunert, Cédric de Crousaz, Fadri Furrer, Mina Kamel, Farbod
Farshidian, Roland Siegwart, and Jonas Buchli. Fast nonlinear model pre-
dictive control for unified trajectory optimization and tracking. In Proceedings
of the International Conference on Robotics and Automation, pages 1398–1404,
2016.

[118] New Atlas. Amazon Prime Air. http://newatlas.com/amazon-new-delivery-
drones-us-faa-approval/36957/ [retrieved May 9, 2017].

[119] K. N. Niarchos and J. Lygeros. A Neural Approximation to Continuous Time
Reachability Computations. In Proceedings of the IEEE Conference on Decision
and Control, pages 6313–6318, 2006.

BIBLIOGRAPHY 160

[120] Petter Nilsson and Necmiye Ozay. Synthesis of separable controlled invariant
sets for modular local control design. In Proceedings of the AACC American
Control Conference, pages 5656–5663, Jul. 2016.

[121] Reza Olfati-Saber and Richard M. Murray. DISTRIBUTED COOPERA-
TIVE CONTROL OF MULTIPLE VEHICLE FORMATIONS USING STRUC-
TURAL POTENTIAL FUNCTIONS. IFAC Proceedings Volumes, 35(1):495–
500, 2002.

[122] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dynamic Implicit
Surfaces. Springer-Verlag, 2002.

[123] Thomas Prevot, Joseph Rios, Parimal Kopardekar, John E. Robinson III, Mar-
cus Johnson, and Jaewoo Jung. UAS Traffic Management (UTM) Concept of
Operations to Safely Enable Low Altitude Flight Operations. In Proceedings of
the AIAA Aviation Technology, Integration, and Operations Conference, Jun.
2016. AIAA paper number: 2016-3292, doi: 10.2514/6.2016-3292.

[124] S Joe Qin and Thomas A Badgwell. A survey of industrial model predictive
control technology. Control Engineering Practice, 11(7):733–764, 2003.

[125] Nathan Ratliff, Matt Zucker, J Andrew Bagnell, and Siddhartha Srinivasa.
Chomp: Gradient optimization techniques for efficient motion planning. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 489–494, 2009.

[126] Arthur Richards and Jonathan P How. Robust variable horizon model pre-
dictive control for vehicle maneuvering. International Journal of Robust and
Nonlinear Control, 16(7):333–351, 2006.

[127] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory plan-
ning for aggressive quadrotor flight in dense indoor environments. In Robotics
Research, pages 649–666. 2016.

[128] Stefan Richter, Colin Neil Jones, and Manfred Morari. Computational com-
plexity certification for real-time mpc with input constraints based on the fast
gradient method. IEEE Transactions on Automatic Control, 57(6):1391–1403,
2012.

[129] Serban Sabau, Cristian Oara, Sean Warnick, and Ali Jadbabaie. Optimal
Distributed Control for Platooning via Sparse Coprime Factorizations. IEEE
Transactions on Automatic Control, 62(1):305–320, Jan. 2017.

[130] Shankar S. Sastry. Linearization by State Feedback. In Nonlinear Systems:
Analysis, Stability, and Control, chapter 9, page 384. Springer-Verlag, 1999.

BIBLIOGRAPHY 161

[131] Georg Schildbach and Francesco Borrelli. A dynamic programming approach
for nonholonomic vehicle maneuvering in tight environments. In Intelligent
Vehicles Symposium (IV), 2016 IEEE, pages 151–156, 2016.

[132] Tom Schouwenaars and Eric Feron. Decentralized Cooperative Trajectory Plan-
ning of Multiple Aircraft with Hard Safety Guarantees. In AIAA Guidance,
Navigation, and Control Conference and Exhibit, pages 2004–5141, Aug. 2004.

[133] John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow, and
Pieter Abbeel. Finding locally optimal, collision-free trajectories with sequential
convex optimization. In Robotics: Science and Systems, volume 9, pages 1–10,
2013.

[134] Ulrich Schwesinger, Martin Rufli, Paul Furgale, and Roland Siegwart. A
sampling-based partial motion planning framework for system-compliant nav-
igation along a reference path. In Intelligent Vehicles Symposium (IV), pages
391–396, 2013.

[135] J A Sethian. A fast marching level set method for monotonically advancing
fronts. Proceedings of the National Academy of Sciences, 93(4):1591–1595, Feb.
1996. doi: 10.1073/pnas.93.4.1591.

[136] Sumeet Singh, Anirudha Majumdar, Jean-Jacques Slotine, and Marco Pavone.
Robust online motion planning via contraction theory and convex optimization.
Proceedings of the IEEE Conference on Decision and Control, 2017.

[137] Jack Stewart. Google tests drone deliveries in Project Wing trials, 2014.

[138] Dusan M. Stipanovic, Peter F. Hokayem, Mark W. Spong, and Dragoslav D.
Siljak. Cooperative Avoidance Control for Multiagent Systems. Journal of
Dynamic Systems, Measurement, and Control, 129(5):699, 2007.

[139] Brian P Tice. Unmanned Aerial Vehicles – The Force Multiplier of the 1990s.
Airpower Journal, pages 41–55, 1991.

[140] C.J. Tomlin, J Lygeros, and S. Shankar Sastry. A game theoretic approach to
controller design for hybrid systems. Proceedings of the IEEE, 88(7):949–970,
Jul. 2000.

[141] Jur van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal Velocity Ob-
stacles for real-time multi-agent navigation. In Proceedings of the International
Conference on Robotics and Automation, pages 1928–1935, May 2008.

[142] P. P. Varaiya. On the Existence of Solutions to a Differential Game. SIAM
Journal on Control, 5(1):153–162, Feb. 1967. doi: 10.1137/0305009.

BIBLIOGRAPHY 162

[143] Michael Vitus, Vijay Pradeep, Gabriel Hoffmann, Steven Waslander, and Claire
Tomlin. Tunnel-milp: Path planning with sequential convex polytopes. In AIAA
guidance, navigation and control conference and exhibit, page 7132, 2008.

[144] Wikipedia. Beaufort scale. https://en.wikipedia.org/wiki/Beaufort scale [re-
trieved May 9, 2017].

[145] Albert Wu and Jonathan P. How. Guaranteed infinite horizon avoidance of un-
predictable, dynamically constrained obstacles. Autonomous Robots, 32(3):227–
242, Apr. 2012.

[146] Insoon Yang, Sabine Becker-Weimann, Mina J. Bissell, and Claire J. Tomlin.
One-shot computation of reachable sets for differential games. In Proceedings
of the ACM International Conference on Hybrid systems: Computation and
Control, page 183, 2013.

[147] Melanie Nicole Zeilinger, Colin Neil Jones, and Manfred Morari. Real-time
suboptimal model predictive control using a combination of explicit mpc and
online optimization. IEEE Transactions on Automatic Control, 56(7):1524–
1534, 2011.

