A JavaScript Extension Providing Deterministic Temporal
Semantics for the Internet of Things

Chadlia Jerad
Edward A. Lee

I FEELC LLL]

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-136
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-136.html

August 3, 2017




Copyright © 2017, by the author(s).
Al rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Acknowledgement

This work was supported in part by the Fulbright Scholar Program, a
program of the United States Department of State Bureau of Educational
and Cultural Affairs, and by the TerraSwarm Research Center, one of six
centers administered by the STARnet phase of the Focus Center Research
Program (FCRP) a Semiconductor Research Corporation program sponsored
by MARCO and DARPA.



A JavaScript Extension Providing
Deterministic Temporal Semantics
for the Internet of Things

Chadlia Jerad
UC Berkeley & University of Manouba

Berkeley, CA 94720 & ENSI, Manouba, 2010, Tunisia
Email: chadlia.jerad @berkeley.edu & chadlia.jerad @ensi-uma.tn

Abstract—This paper is about reconciling the highly asyn-
chronous untimed interactions that prevail on the Internet with
time-sensitive operations of Things in the Internet of Things
(IoT). Specifically, this paper addresses a design pattern that is
widely used on the Internet called asynchronous atomic callbacks
(AAC). We show that it is possible and practical to endow
AACs with temporal semantics that can make system behaviors
more repeatable and testable and can make the interactions
between cyber services and physical Things safer. We show
how a well-defined notion of logical time is compatible with
AAC and can be used to endow applications with semantic
notions of simultaneity, give them more control over the ordering
of events, and enable the specification of real-time behaviors
that nevertheless recognize the often long and highly variable
latencies introduced in the Internet. We introduce labeled logical
clock domains (LLCDs), which permit arbitrary mixtures of
synchronized and unsynchronized behaviors and we show how
LLCDs can be realized in the JavaScript language, which is
widely used in Internet applications. We give a formal model
for LLCDs and an execution algorithm that is compatible with
standard JavaScript engines.

I. INTRODUCTION

The Internet of Things (IoT) is the class of cyberphysical
systems (CPS) that leverage Internet technology for inter-
actions between the physical world and the cyber world.
The vision embodied by IoT appeals to the imagination of
many—our environment and virtually anything in it will turn
“smart” by having otherwise ordinary things be furnished with
sensors, actuators, and networking capability, so that we can
patch these things together and have them be orchestrated by
sophisticated feedback and control mechanisms. As Wegner
argued in [?], interaction opens up limitless possibilities for
Things to harness their environment and compensate for a lack
of self-sufficient cleverness. Sensors aside, a connection to the
Internet alone allows a Thing to tap into an exceedingly rich
environment—unleashing a real potential for making things
smarter.

Ensuring safety, reliability, privacy, and security, however,
becomes extremely challenging. There is precedent, however,
for high confidence systems that use open networks. Today, the
world’s financial system operates almost entirely electronically
and with heavy use of the open Internet. No engineered system

Edward A. Lee
UC Berkeley
Berkeley, CA 94720
Email: eal @eecs.berkeley.edu

is perfect, but the benefits appear to outweigh the risks, and
losses due to technical failures and malicious actors are simply
factored into the cost of operation. Can cyber-physical systems
achieve the same balance, where the benefits of open networks
outweigh the costs?

We believe that they can, and this paper represents a step in
that direction. Specifically, we show how to attach a rigorous
model of time to interactions between IoT devices and between
those devices and Internet-hosted services.

A. Using the Internet for CPS

Specific Internet technologies of interest for IoT include
networking (e.g. IP, TCP, UDP), the worldwide web (e.g.
HTTP, HTMLS), cloud computing, and programming lan-
guages for client and server-side functionality. But these
technologies were not designed for interaction with Things.
The most egregious mismatch concerns timing. Timing of
Internet technologies is strictly a “best effort” affair where
the goal is simply to be sufficiently responsive that humans
do not loose patience. But when talking about Things, timing
can matter quite a lot. It matters when a self-driving car applies
the brakes or a robot arm on a factory floor moves.

Some kinds of real-time behavior are not realistically
achievable with today’s Internet technology. For example, it is
unlikely that the feedback control laws governing a self-driving
car can be realized in the cloud using RESTful interfaces [?],
which rely on HTTP and carry all context state information in
each exchange of information. The latency of responses from
the cloud-based service is likely to be too high and, more
important, too variable.

There are market forces that are driving Internet technology
towards more controllable latencies. Interactive services such
as distributed gaming and video teleconferencing demand
controllable latencies and are difficult to achieve today with
high quality and reliability. To address this demand, a recent
industry trend is the emergence of time-sensitive networking
(TSN) technology. The Time-Sensitive Networking task group
of the IEEE 802.1 working group is in the final stages of
issuing standards with promising new capabilities that are
compatible with open networks.



Some elements of TSN technologies are already widely
deployed, though not yet widely used. For example, the
IEEE 1588 [?] standard for clock synchronization, which first
appeared in 2002 and was substantially revised in 2008, is
supported in essentially all Ethernet PHY chips on the market
today. It has been deployed in quite a lot of networking
gear, but it has not yet risen to the level of a service for
application developers except in niche applications [?]. This
technology is capable of synchronizing clocks on a local-
area network to nanosecond precision, and it is compatible
with legacy Ethernet and TCP/IP equipment. The TSN stan-
dards that are expected this year, particularly updates of the
802.1AS standard, could be the galvanizing force that will
lead to worldwide high-precision clock synchronization. If
we combine this technology with edge computers, which can
function as gateways that ensure controlled timing on local
area networks, then networks with deterministic latencies and
reliability delivery that are compatible with the Internet are
within reach. We assume in this paper that such networks will
become widely deployed.

Even if these market forces are wildly successful, the
Internet is unlikely to ever provide the level of determinism
needed for many safety-critical, latency-sensitive services.
Its most important defining features are openness, which
inevitably will increase variability in quality of service, and
its geographical distribution, which inevitably increases laten-
cies. Nevertheless, some temporal properties are achievable
even with today’s Internet technology. Some applications can
immediately benefit from these properties by becoming more
deterministic, more testable, and better able to detect and adapt
to failures or degradations of network services. And then as
the network infrastructure improves, we will become able to
exploit these same temporal properties and more to deliver
innovative services.

B. Asynchronous Atomic Callbacks

In the IoT, Things are intrinsically concurrent. Any two
physical devices will typically be executing at the same time.
Their execution can also be concurrent with cloud-based
services, or, more generally, with any software with which
they are interacting. Consequently, concurrency looms large
in the IoT.

A concurrency pattern that is widely used in the Internet
is asynchronous atomic callbacks (AAC). The AAC pattern,
a central feature of the JavaScript programming language, is
used extensively in Web programming, both on the server side
(using for example Node.js, http://nodejs.org, and Vert.x, http:
//vertx.io) and on the client side, in browsers. On the server
side, it has proven scalable to very large numbers of clients
and servers. It has also been used in some other (non-web)
applications such as parallel computing (e.g. Active Messages
[?]) and embedded systems (e.g. TinyOS [?]).

AAC depends on a functional style of programming, where
functions are first-class objects in the language. Functions
are invoked asynchronously, typically when some request that
has long and/or variable latency has been satisfied. When

making such a request, an application will pass a callback
function as an argument to the service that is to satisfy request.
That service then initiates the asynchronous callback when
the request has been satisfied. For example, when making a
request for data from a URL on the Internet, the application
will provide a callback function to be invoked when the data
has been retrieved, and that data will be passed as an argument
to the callback function. This is better than blocking the
application to wait for the response from the Internet because
the time to retrieve the response can be quite long and highly
variable, and the program may become unresponsive.
Importantly, every such asynchronously invoked function
invocation is atomic with respect to every other function
invocation; that is, a callback function invocation waits until
no other function is being executed before beginning, and
the callback function executes to completion before any other
function can begin executing. This atomicity distinguishes the
AAC concurrency model from interrupt-driven I/O, threads,
and many asynchronous remote procedure call mechanisms.
AAC comes with costs, however. First, it becomes essential
to write code carefully to consist only of quick, small function
invocations. A long-running function will block all callback
functions, reducing the responsiveness of applications. Second,
AAC accentuates the chaos of asynchrony, where achieving
coordinated action can become challenging. For example, if
you make multiple requests in sequence to a service, each time
passing a callback function, there is no assurance that the call-
backs will be invoked in the same order as the requests. Both
problems are important for IoT, where heavy computation may
be required to analyze sensor data, and coordinated physical
actions may be dependent on the order in which things occur.
Because of these limitations, several alternatives mix AAC
with other concurrency models. Many JavaScript implementa-
tions realize a thread-like mechanism called a Web Worker,
which runs tasks in the background concurrently with the
main AAC function invocations. Unlike threads, these Web
Workers cannot share data with the main application, but
rather send messages to the main application, which, if it
is listening, will invoke a callback to handle the message.
ECMAScript 6, a recent version of JavaScript, enriches AAC
with a cooperative multitasking model called ‘“generators,”
which allows a function to suspend execution at well-defined
points, allowing other functions to be invoked while it waits
for some event. The Vert.x framework enriches AAC with
so-called “verticles” (think “particles”), which can execute in
parallel while preserving atomicity. Verticles can interact with
one another through a publish-and-subscribe bus or through
shared but immutable data structures. Click [?] mixes push
and pull interactions with AAC in very interesting ways to
create very efficient network routers. Calvin [?], Node-RED
(https://nodered.org/), and NoFlo (https://noflojs.org/) use a
dataflow concurrency model for interactions between services
that are using AAC.
In this paper, we mitigate the limitations of ACC by
endowing it a temporal semantics. The temporal semantics
includes a notion of simultaneity, enforcement of causal data


http://nodejs.org
http://vertx.io
http://vertx.io
https://nodered.org/
https://noflojs.org/

1
2
3
4
5
6
7
8

9
10
11
12
13

var x = 0;

function increment () {
X = x + 1;

}

function decrement () {
X = x - 2;

}

function observe () {

console.log(x);

}

setInterval (increment, 1000);
setInterval (decrement, 2000);
setInterval (observe, 4000);

Fig. 1. JavaScript example illustrating weak temporal semantics.

dependencies, and a logical time line that can be bound
to real time (approximately) to achieve real-time behaviors.
Although our work is not limited to JavaScript, it is useful for
understanding to refer to a concrete language, so we will give
all our examples in JavaScript.

C. Delayed Callbacks

To get timed behavior, most AAC frameworks support de-
layed callbacks. For example, most JavaScript environments
provide a setInterval(F,T) function, where function F
is to be invoked after 7" milliseconds and then again period-
ically with intervals of 7" milliseconds. Of course, the actual
time of the function invocations cannot be exactly every T
milliseconds, since that would require a perfect timekeeper,
which does not exist, and it would require that the JavaScript
engine be idle at every multiple of 7" milliseconds, since the
AAC model requires that the function invocation wait until the
engine is idle. We expect (and get) some jitter in the actual
timing of the function invocations. Such jitter is unavoidable
in any software platform.

But the situation is worse because the time 7' actually has
very little meaning at all. It is interpreted in the JavaScript
language as a suggestive guideline to please invoke the func-
tion at some time near the multiples of 7" milliseconds. When
there are multiple delayed callbacks, there are no guarantees
on the order of invocation of the callbacks even if the time
intervals are identical or related by integer multiples.

Consider the JavaScript program in Fig. 1. This program
defines a variable x that is shared among all the functions. The
code defines functions that increment x by one, decrement x
by two, and observe the value of x. It then sets up a periodic
callbacks to increment x by one every second, decrement
x by two every two seconds, and observe the value of x
every four seconds. You might think this would result in the
observed value of x always being 0, but there is no assurance
of this. On version v5.3.0 of Node.js running under MacOS
Sierra, the observer sometimes sees 0, sometimes —1, and
sometimes 1. Even more insidious, most observations are 0,
so testing the program may lull the programmer into a false
sense of confidence about its behavior. This is not an error in
Node.js. It simply reflects the weak temporal semantics of the
setInterval function.

In the IoT, it is common to build programs that interact
periodically with actuators. Since actuators affect the physical
world and can do damage, we believe that we need much
stronger temporal semantics.

D. Informal Labeled Clock Domains

We achieve a stronger temporal semantics by defining
labeled logical clock domains (LLCDs) within which time
values all have specific meanings with respect to one another.
To use LLCDs with the program in Fig. 1, we can replace the
last three lines with the following:

setInterval (increment, 1000, "A’);
setInterval (decrement, 2000, "A’);
setInterval (observe, 4000, ’'A’);

where the third argument is a label for a clock domain. By
using the same label in all three calls, we assert that the
specified times share the same logical time line. With this
specification, the observe function x will only see value 0.
Under JavaScript principles, the code in Fig. 1 executes
atomically. In our temporal semantics, logical time in any
clock domain does not elapse during the execution of any
such atomic chunks of code. Assume a logical time value
of 0 when this code executes. Then the time arguments
to the setInterval functions will all be relative to this
logical time. This program, therefore, expresses that at logical
time 1000 (one second), function increment should be
invoked. At logical time 2000, functions increment and
decrement should be invoked in that order and atomically.
That is, no other function should be invoked between the
invocation of increment and decrement, and hence any
observer of variable x will only see the combined effects
of the two functions. We call this combined invocation of
the functions an atomic action (AA). The two functions,
therefore, are logically simultaneous, but also causally ordered.
At logical time 4000, functions increment, decrement,
and observe will be invoked atomically and in that order.
The atomicity of these combined function invocations
makes them logically simultaneous, whereas their ordering
ensures that dependency constraints can be specified in the
code. The program in Fig. 1, when augmented with clock
domain labels as above, expresses that function observe
should be invoked after decrement, which in turn should
be invoked after increment, at all times when all three
are invoked. This is a strong temporal semantic property that
enables the construction of much more deterministic programs.
Note that this temporal semantics is independent of the
actual physical time at which these functions are invoked. The
setInterval functions express a desire to invoke functions
at specified physical times, but as we have observed before,
this is impossible to do precisely (or even to define what that
means). A good implementation of this program will invoke
the functions at physical times close to the specified times,
but a correct implementation only needs to invoke them in
the right order and preserve atomicity. The physical time at
which they are invoked is a quality metric, not a semantic

property.



var http = require(’http’);
var x = 0;
function increment () {
X = x + 1;
}
function decrement () {
X =X - 2;
}
function observe () {

console.log(x);
}
setInterval (increment,
setInterval (decrement,

A7)
'A% ;

1000,
2000,

function handler (request,
setInterval (observe, 1000, "A’);
response.statusCode = 200;
response.end(’ Started’);

response) {

bi
var server =
server.listen (8080,

http.createServer (handler);
"localhost’);

Fig. 2. Asynchronous joining of a clock domain.

Suppose that instead of the last three lines we had

setInterval (increment, 1000, "A’);
setInterval (decrement, 2000, 'B’);
setInterval (observe, 4000, ’'A");

This code specifies two distinct LLCDs. In LLCD with label
"A’, at multiples of 4000, the increment and observe
functions will be invoked atomically in that order. Hence, the
decrement function cannot be invoked between them. Since
the LLCD labeled " B’ is created after the one labeled " A’ ,
our semantics ensures that at multiples of 2000, decrement
will be invoked after all relevant label /A’ invocations have
occurred. Therefore, with the above code, the observe
function will deterministically observe value 2 rather than
zero. Hence, use of LLCDs gives the programmer much more
control over atomicity and ordering of callback invocations.
In Internet computing, many things happen asynchronously,
often with long latencies or in reaction to external, uncon-
trollable events. Consider the example shown in Fig. 2. In
this example, unlike Fig. 1, the periodic invocation of the
observe function does not begin until an external HTTP
request arrives, for example from a user via a browser. This
is representative of IoT applications where a web interface is
used to start, stop, or otherwise control some timed service
involving Things. The way this program works is that the last
two lines release an asynchronous callback, where the function
handler will be invoked whenever a user points their
browser at the URL http://localhost:8080. That handler,
when executed, on line 16 releases a delayed periodic callback
that will cause the function observe to be invoked at
multiples of 1000 milliseconds, starting 1000 milliseconds
from the current time in clock domain ’A’. Whenever this
callback occurs, the current logical time of clock domain ” A’
will be the logical time at which the last AA for 'A’ was
executed. Since the clock label is ’ A’ , this function will be
invoked synchronously with increment and decrement,
but after them. Hence, even though it is started asynchronously,

it “joins” a synchronous periodic atomic action. The function
observe will start executing at a nondeterministic time, but
will then deterministically print 0 and 1 alternating.

In our semantics, the joining can occur at any time, but once
the joining has occurred, each invocation of observe will
be simultaneous with every second invocation of decrement
and will occur after that invocation of decrement in a single
AA. Moreover, the first invocation of observe will occur at
an integer multiple of 4000 in logical time, or put another way,
logically simultaneously with an even-numbered invocation of
decrement. By this mechanism, we embrace the asynchrony
that is intrinsic in the Internet while nevertheless providing a
strong temporal semantics.

Fig. 3 illustrates one possible execution of this program.
It shows the logical and physical times at which various
operations occur. Assume for this illustration that physical time
and logical time have the same units so that we can share the
same horizontal axis for both. Assume further that physical
time starts at 0 coincident with the first release of a callback.

The vertical bands show AAs. The leftmost band, lasting
from physical time O to 0.5 (seconds), represents the execu-
tion of the main AA, the program in Fig. 2. This program
releases two timed callbacks and one asynchronous callback.
At physical time 0, line 12 of Fig. 2 executes, releasing the
callback function increment to be executed at intervals of
1000ms. Since this is the first appearance of clock domain 2,
the time origin and the current time for this clock domain is
set to 0. Physically, however, the invocations of increment
cannot possibly occur at exactly the specified times. The
dotted lines dropping from the time line indicate that each of
these invocations occurs slightly later than the corresponding
multiple of 1000ms in physical time.

The second time line shows line 13 of Fig. 2 executing
slightly later in physical time, but since logical time remains
at 0, the decrement function callback it releases will first be

setInterval (increment, 1000,3)

A
1
1
I
[}
[}

setInterval (decrement, 2000, A)

A
1
1
t
1
1

setInterval (observe, 1000, A)

A
1
1
t
1
1

0 1 2 3 4

Fig. 3. Time alignment between physical time (dotted) and logical time (solid)
for labeled logical clock domains. The vertical bands show atomic actions
(AAs).



executed at logical time 2000, synchronous with increment,
but physically slightly later.

The third time line shows what happens when the asyn-
chronous callback handler initiates a new periodic action
using the same clock-domain label that is already in use.
In this example, at physical time 1.5 (approximately), the
callback function is invoked and executes line 16 in Fig. 2.
When this happens, logical time for clock domain "A’ is
1000ms (1 second), so the first invocation of observe will
occur at logical time 2s, synchronous with increment and
decrement but physically later than them.

E. Outline

The remainder of this paper is organized as follows. Section
IT gives background on programming languages and models
that express temporal properties. The following section intro-
duces our vision for the determinism of temporal semantics.
The basic idea and its formalization are described in section
IV. Section V describes our implementation in pseudo code.
In Section VI, we explain alternative semantic models that we
rejected and consider fault management for situations where
a program fails to keep up with real time. Finally, we draw
conclusions in section VIL.

II. BACKGROUND

Recent years have seen an explosion of innovation in
programming languages and programming models. New lan-
guages, such as Rust, Scala, Hack, Clojure, Julia, F#, Go, and
Dart, and frameworks, such as Apache Spark, Microsoft Or-
leans [?], and Akka, codify programming models that manage
parallel computing resources, scalable workloads, and/or long
network latencies.

A common thread in these new languages is to embrace
elements of functional programming, particularly to make
functions first-class objects in the language. This enables
use of the AAC design pattern. A common thread in the
frameworks (Spark, Orleans, Akka) is support for stream
computation based on some variant of actors [?], [?]. None
of these new languages or frameworks, however, has real-time
properties.

There is a long and checkered history of programming
languages that include timing constructs (Modula [?], [?],
PEARL [?], Ada [?], Occam [?], Real-Time Euclid [?], and
Erlang [?], for example). These improve things by including in
the language some of the mechanisms of a real-time operating
system (RTOS), which means that a model (a program)
is more self-contained. One does not need to combine the
semantics of the language with the semantics of a separate and
distinct RTOS to interpret the model. Few of these languages
survive, however, and all fall short of yielding a deterministic
modeling paradigm. In this paper, we focus on a higher-level
provisioning of real-time properties, above the language, at the
component level and in the concurrency model, specifically in
the model of computation.

Another recent trend is to focus on real-time data analytics.
The emerging IoT promises a flood of sensor data. Many

organizations already are collecting but not effectively using
vast amounts of data. Consulting and market research company
Gartner calls “dark data” the “information assets that organi-
zations collect, process and store in the course of their regular
business activity, but generally fail to use for other purposes.”
Real-time data analytics implies both timing constraints and
streaming data.

Computing on streaming data fundamentally means that you
don’t have all the data, but you have to deliver results. It
differs from standard computation in that the data sets are
unbounded, not just big, and you can’t do random access
on input data, which constrains the types of algorithms you
can use. Major research efforts, such as the industry-funded
RISELab launched at Berkeley in 2016 (Real-time Intelligent
Secure Execution, https://rise.cs.berkeley.edu/), are getting a
lot of attention. Examples of algorithmic innovations for real-
time streaming data include adaptations of machine learning
and optimization algorithms [?], [?] and adaptations of formal
methods [?] to operate on streams.

But the timing constraints in real-time data analytics are
often not comparable to timing constraints in IoT. For safety-
critical cyber-physical systems, timing may effect things that
are more important than business opportunities. For safety,
stronger semantic models are required. Specifically, we need
semantic temporal properties (not just quality metrics). Some
temporal properties can be assured with high confidence even
today, and some will have to wait for advances in networking
and computing technology. In either case, clear definitions of
those properties is valuable, either to better exploit today’s
technology or to drive innovation in networking.

III. TEMPORAL SEMANTICS

What do we mean by “temporal semantics”? Fundamentally,
what we mean is that certain temporal properties should
be elevated from quality metrics to correctness criteria. In
programs, we are accustomed to being able to assume that
every execution of a program will (with very high probability)
perform exactly the logical functions specified by the program.
These logical functions are correctness criteria in that failing
to perform them correctly is treated as a fault condition.
We believe that certain timing properties should similarly be
correctness criteria. What timing properties?

Consider a program that wishes to take two distinct orches-
trated actions A and B at 100ms intervals. We can argue that it
is physically impossible for these actions to be simultaneous,
but that would be missing the point. It may be very useful
to have these actions be logically simultaneous. What does
this mean? It could mean that any observer of these actions
will at all times have counted the same number of actions A
and B that have occurred. That is, if the observer has seen n
A actions, then it has also seen n B actions. Note that this
requirement is independent of timing precision and is most
certainly physically realizable (with certain assumptions about
what an “observer” is). It gives a clean semantic notion to
simultaneity. This is an example of a temporal property that
can be a correctness criterion.


https://rise.cs.berkeley.edu/

In addition to a logical notion of simultaneity, a useful
temporal semantics should provide for clear ordering of events.
First, each component in a system must be able to distinguish
past, present, and future. The state of a component at a
“present” is a summary of the past, and it contains everything
the component needs to react to further stimulus in the future.
A component changes state as time advances, and every
observer of this component should see state changes in the
same order.

A more subtle ordering of events arises from the intuitive
notion of causality. If one event A causes another B, then
every observer should see A ordered before B. Put another
way, any observer that can see both A and B that sees an
effect from B should also be able to see any effects from A.

These requirements are much easier to meet with an abstract
semantic notion of time than one that is more closely tied to
physics. But we are interested in cyber-physical systems, so
we cannot ignore physics. On the physical side of CPS, it
is natural to be tempted to adopt a notion of time directly
from physics. However, this puts us squarely in a minefield,
since time is a poorly understood physical phenomenon [?],
and models of time differ significantly between Newtonian,
quantum, and relativistic physics. However, our goal is not
to understand the physics of time, and the usefulness of our
models is not determined by how well they match physics.
Instead, the usefulness of our models depends on whether we
can build physical systems that match the behavior of our
models with high confidence [?]. This leads to significantly
different choices for modeling time.

The most common choice for modeling physical time is
Newtonian time. But ironically, Newtonian time proves not
so practical for cyber-physical systems. The most obvious
reason is that digital computers do not work with real num-
bers. Computer programs typically approximate real numbers
using floating-point numbers, which can create problems. For
example, real numbers can be compared for equality (e.g. to
define “simultaneity’), but it rarely makes sense to do so for
floating point numbers. In fact, some software bug finders,
such as Coverity, report equality tests of floating point numbers
as bugs. Moreover, addition of floating point numbers is not
associative. This precludes any clean notion of simultaneity.
Fortunately, these problems have been solved, and we can
simply adopt the quantized superdense model of time that has
been shown effective for both cyber and physical models [?].

In the next section, we give formal definitions of simultane-
ity and of event ordering for the AAC programming pattern.

IV. LABELED CLOCK DOMAINS

Our temporal semantics implies simultaneous existence of at
least two time lines, logical time(s) and physical time. Unfor-
tunately, natural language did not evolve to give us vocabulary
nor idioms for simultaneously talking about multiple time
lines. Hence, we have to be very careful with our wording
in our explanations, and even then, we risk confusion. Even
such common words as “when” can become treacherous. We
will do our best.

Logical time is an ideal, a model that imposes constraints
on execution order for software. Physical time, or wall-clock
time, is the real time that is perceived by humans or by
machines. For this time, we assume a Newtonian model,
that all measurements of this time are flawed, and that no
action can be precisely placed on this time line. Nevertheless,
physical time is useful because the degree to which logical
time aligns with it can form a quality metric. A real-time
system will strive for close concurrence between logical and
physical times, at least for some of its actions.

Physical time and logical time do not progress at the same
rate. Logical time will advance in a computational world, in
discrete jumps. Physical time, according to Newton’s model,
advances smoothly and uniformly. We assume that the execu-
tion platform has a real-time clock accessible to the program
so that the program can at any time obtain an estimate of the
current physical time. We denote physical times or estimates
of physical times with lower case variable names, such as ¢,
and logical times with upper case, such as 7. Physical time is
a real number and it is not important what the origin is.

Physical times ¢ are real numbers ¢ € R, and logical times
T are natural numbers 7" € N. We assume an interpretation
mapping between these where a logical time 7' is assumed
to correspond to a physical time ¢ = w(T') and physical time
t is assumed to correspond to a logical time T = §(¢). The
function w: N — R is one-to-one, and the function 2: R — N
is onto.

We focus three key mechanisms:

o A delayed periodic callback, realized in JavaScript as
a function setInterval(F,T,L). This function has
three arguments, a function F' to invoke in the future,
a logical time value 7' € N, and a clock domain label L.
This function initiates periodic invocation of the specified
function, where the first invocation occurs 7" logical time
units in the future on the logical time line with label L.
If no label L is given, then a new anonymous clock
domain is created and its origin is set to 2(t), where ¢
is the current physical time.

« A delayed one-time callback, realized in JavaScript as a
function setTimeout(F,T,L). The arguments are the
same, but instead of setting up a periodic function invo-
cation, it sets up a one-time invocation of the specified
callback function F' to occur T logical time units in the
future on the logical time line with label L (or on an
anonymous time line).

« An asynchronous callback, realized in JavaScript by a
variety of functions that take at least one argument F’, a
function to be invoked in the future when some condition
in the environment is satisfied. The web server message
handler in Fig. 2 is an example.

Each of these three mechanisms is said to release a callback.
The release occurs at some physical time ¢ € R called
the release time, and the execution of function F' starts
at some later physical time(s) ' > t called the callback
execution time. In all three cases, the callback function F,



when executed, can release further callbacks. Those releases
will occur at some physical time ¢ > t'.

We assume a sequential execution model where callbacks
are released in a well-defined order. We further assume that
all operations take time, and hence no two callbacks can
have the same release time. Note however that, in practice,
if release times are obtained from a real-time clock that has
some granularity defined by the underlying operating system,
then these release time may in fact be equal. Many operating
systems, for example, provide estimates of real time as integer
multiples of one millisecond, and these estimates are often
more coarsely quantized, for example only having values that
are integer multiples of ten milliseconds. Based on these
estimates, therefore, two callbacks may appear to have the
same release times. We nevertheless assume that the execution
engine can keep track of the order in which callbacks are
released, which is well defined because of the sequential
execution model. We will represent this order by considering
idealized release times, unquantized real numbers. That is, if
one callback has release time ¢ and another has release time ¢/,
then ¢ # t' and if ¢ < t/, then the first callback was released
first. Hence, callback releases are totally ordered by release
time.

Execution of a program is a sequence of atomic actions
(AAs) as in JavaScript. An AA may release several callbacks.
These releases may specify clock domain labels that have not
been seen before in any previous release. In this case, a new
clock domain is created with label L provided as an argument
to function that releases the callback. A delayed callback may
also be released with no specified clock domain label, in which
case a new anonymous clock domain is created.

We assign to a new clock domain with label L a physical
time origin 7, which is the release time of the first release
in this clock domain, and a logical time origin 7, = Q(t).
For convenience, we define two partial functions o: £ — R
and O: L — N, where L is the set of labels, to be

O(L) = tL (1)
O(L) = Tp=9(). )

The function o is one-to-one, but because of time quantization,
O is not. Two clock domains could have the same logical time
origin.

Once a clock domain has been created, logical time in that
clock domain does not advance until after the AA that creates
the clock domain completes. Hence, within an AA that creates
a new clock domain, logical time remains at the logical time
origin for that clock domain. In fact, it does not advance until
a delayed callback in that clock domain is executed. At that
point, logical time for that clock domain advances by the
amount of the delay in the delayed callback. If multiple clock
domains are created within an AA, then their physical time
origins o(L) are assured to be different, but not their logical
time origins O(L).

In a typical execution environment, execution begins with
a main AA, e.g. the execution of a top-level program like

that in Figs. 1 and 2. If no callbacks are released during that
execution, then the program terminates. Such a program is not
interesting to us because it has no temporal behavior. Hence,
we assume that the main AA releases some callbacks.

After the main AA completes, each subsequent AA consists
of a sequence of one or more invocations of callback functions.
These AAs may be triggered by the passage of time or by some
asynchronous action in the environment, such as the arrival
of an HTTP request. An AA is triggered by the passage of
time if either a delayed periodic callback or a delayed one-
time callback has been released and the logical time at which
that callback should be invoked is smallest logical time of all
pending callbacks. If more than one callback is to be invoked
at the same logical time for a clock domain, then all those
callbacks are invoked atomically. When that AA is executed,
logical time for the clock domain that triggered it is set to the
logical time of the callback(s) that triggered it.

For example, if the program in Fig. 1 is modified to use
clock domain A in all calls to setInterval, then its
execution proceeds as follows. When the first set Interval
(line 11) is executed, the logical clock domain A is created and
its origin is set to t 4 and T4, physical and logical respectively.
Logical time remains at 74 until after the entire script has
been executed. Once the main script has been executed, there
is nothing more to do, so the execution engine examines the
pending delayed callbacks and finds that the smallest callback
time is T4 + 1000. It then sets a real-time timer to wait
until physical advances to approximately w(74+1000), unless
that real time has already passed, in which case it proceeds
directly to execute the callback(s) in an AA. If it sets a timer,
then it will execute the callback only after that timer expires.
For the example in the figure, at approximately physical time
w(T'4+1000), the logical time of clock domain A will be set to
T4+ 1000 and increment will be executed. The execution
engine then again has nothing to do, so it again waits, this
time for another 1000 milliseconds. At approximately physical
time w(T4 + 2000), logical time will be set to T4 + 2000
and increment and decrement will execute in sequence
within an AA. At approximately physical time w(7'4 + 3000),
increment executes again. At approximately physical time
w(Ta + 4000), increment, decrement, and observe
will execute in sequence within an AA. Then the whole pattern
repeats.

If instead the last three lines are

setInterval (increment, 1000, "A’);
setInterval (decrement, 2000, 'B’);
setInterval (observe, 4000, ’'A");

then the pattern is similar, except that at physical times
near w(T4 + m2000) for m € N, m > 1, an AA will
execute increment (followed by observe if m is even).
At physical times near w(Ts + m2000), decrement will
be invoked. We are guaranteed that Tz > T4, but since
they can be equal, decrement may be invoked at the same
logical time as increment followed by observe, but it
is guaranteed to be invoked after them because they execute
atomically. All of these executions are guaranteed to occur



in exactly this order regardless of how much physical time
passes.

The program in Fig. 2 is similar except that the asyn-
chronous callback handler may be invoked between any
two AAs, most likely while the execution engine is waiting
for time to elapse. In this case, during the execution of the
handler callback, logical time T4 for clock domain is A has
whatever value was last set by a delayed callback, which will
be T4 +m1000) for m € N, m > 0. Hence, the interpretation
of line 16,

setInterval (observe, 1000, ’'A’");

is that observe should start being invoked at the next mul-
tiple of 1000. Moreover, observe will join the invocations
of increment (and if m is even, decrement) in the same
AA.

Our temporal semantics has the following key properties:

1) New clock domains may be created at any time during
execution. Their origin will be set to a logical time that
approximates current physical time.

2) For each clock domain, all callbacks that are scheduled
to be invoked at the same logical time will be invoked in
the same AA. This makes them logically simultaneous,
since an AA is atomic.

3) Those callbacks will be invoked within the AA in the
same order in which the callbacks were released. This
means that precedence constraints can be expressed and
are respected.

4) During the execution of an AA, all clock domains are
frozen. Logical time does not advance. Hence, each AA
logically executes instantaneously.

5) When an AA is triggered by the passage of time, exactly
one of the logical clocks, the one corresponding to the
trigger, is advanced so that its logical time matches the
time of the delayed periodic or one-time callback that
triggered it. All other clock domains remain unchanged.
Hence, logical time will advance non-uniformly across
clock domains.

6) When an AA is triggered by an asynchronous callback,
logical clocks are left unchanged from whatever value
they had before the AA is executed.

There are exactly two sources of potential nondeterminism
in this model. First, when clock domains are created, their
origin is nondeterministic because it depends on the execution
time of code preceding it, and that execution time is not under
the control of the program. Second, an asynchronous callback
can occur between any two AAs and can release delayed
callbacks. If a program has only one clock domain and no
asynchronous callbacks, then it is completely deterministic.

The following definition summarizes our notation:
Definition 1 A delayed callback is a tuple
C = (F,T,L,t,p) where

o F'is the callback function,

o T is the delay,

e L is the clock domain label,

o t is the release time, and

e p is a boolean that is true if the callback is periodic and
false if it is one time.

Asynchronous callbacks can be similarly defined:
Definition 2 An asynchronous callback is a tuple
A = (F,t,7) where
e I is the callback function,
« ¢ is the release time, and
o T is the physical time at which invocation is requested
by the environment.

As noted in this definition, the environment requests invo-
cation of an asynchronous callback at some physical time 7.
At that time, the main loop of the execution engine may be
idle, or it may be executing an AA. If it is idle, then it can
immediately begin executing the callback in a new AA. If it
is not idle, then it must queue an AA to execute the callback.
In this paper, we assume that queued AAs are executed in
FIFO order whenever the currently executing AA completes.
In principle, more elaborate prioritized ordering could be used,
but this is beyond the scope of this paper.

V. IMPLEMENTATION
A data structure Callback has fields:

e F': Function to invoke.

e T': The logical time of the next invocation of this function.
e L: The logical clock label or null for an anonymous clock.
e P: The period with which to invoke F', or —1 for one time.

We also assume a data structure Clocks that is a hashtable
indexed by clock labels with value equal to the current logical
time for that clock.

A function execute(C) executes a list C' of Callbacks as
follows. It assumes (and checks) that every Callback on the
list has the same logical time 7. It sets the current logical time
for each clock labels L on the list to 7', Clocks(L) = T, just
prior to executing the first callback on the list with label L.
It executes F' for the first Callback in the list followed by all
the F's for subsequent Callbacks in the list that have the same
(non-null) logical clock label. As it executes these functions,
it removes each of these functions from the list. It then repeats
this process on second (now first) F' in the list. It continues
until the list is empty.

A CallbackQ class is a priority queue sorted by logical time
with special support for periodic actions. Specifically, when
you put a Callback on this queue that has period P > 0, then
this callback is (logically) inserted into the queue an infinite
number of times, once for every invocation. This class supports
the following operations:

e isEmpty(): Return true if the queue is empty.

e put(c): Put the specified Callback ¢ on the queue.

e nextTime(): Return the next earliest time on the queue.

e poll(): Return and remove a list of Callbacks scheduled to
be executed at nextTime().

Note that this class needs to be fairly sophisticated to take into

account periodic actions. It has to be carefully implemented to

preserve the order in our semantics and to adjust the 7" field of



each periodic Callback before returning it. Our implementation
has one global instance of CallbackQ.

A function currentTime(L) returns the current time for the
clock label L, or if no clock label is given, then it returns
Q(t), where t is current physical time.

We assume a standard main loop like that found in
JavaScript that executes ready tasks in FIFO order. Asyn-
chronous callbacks go directly into this event loop’s FIFO
queue when they become ready for execution.

We further assume a timer(F¢) function that sets a real-
time timer to execute F' as close as possible to time . At
that time, it will put F' on the queue for the main loop. This
function returns a handle h that can be used to cancel the
timer if it has not expired using a cancel(®) function. Our
execution engine never has more than one pending such timer
and it uses a global variable H that is the handle to that timer.
This variable is null when there is no pending timer. Another
global variable W records the logical time at which the one
pending timer will expire, if there is one.

Execution begins by initializing the global variables H =
null, W = oo, an empty Clocks, and an empty CallbackQ.
It then executes the application’s main program, which may
release callbacks. It then invokes a function NEXT(), defined
below, which executes any callbacks for which it is time and
then sets a timer to wait until the time at which the next
anticipated timed callback will be invoked.

1: procedure NEXT

2: if CallbackQ.isEmpty() then
3: W o0 > No pending timed callbacks
4 return

5: end if

6: T <+ CallbackQ.nextTime() > Next logical time
7 t < currentTime() > Current physical time
8 while ¢t > T do > Anything ready to execute?
9 C' + CallbackQ.poll() > Get list of callbacks

10: execute(C) > Execute callbacks
11: T <+ CallbackQ.nextTime()

12: t + currentTime()

13: end while

14: H < timer(NEXT, T') > Start a timer

15: end procedure

The application’s main program and any of its callbacks
may call setTimeout, which is defined as follows:

1: procedure SETTIMEOUT(F, T, L)

2 if | L then > No label, anonymous clock

3 L < some unique label

4 end if

5: if ! Clocks(L) then > Clock does not exist

6 Clocks(L) < currentTime()

7 end if

8 T, < Clocks(L) + T > Next execution time.
9: ¢ < new Callback(F, T, L,—1)
10: CallbackQ.put(c)
11: if T,, < W then
12: cancel(H)

> Time is earlier than timer.

13: W« 1T,
14: H + timer(NEXT, T
15: end if

16: end procedure

The function setInterval is similarly defined.

To verify, we have implemented the formal model using
Real-Time Maude [?]. The Appendix shows key parts of this
model, which we have used to check some properties of the
semantics, for example that callbacks released at the same
logical time with the same clock label and delay execute in
the same sequence as their releases.

VI. DISCUSSION

Our semantics significantly improves the determinism of
programs compared to the standard best-effort timing and
nondeterministic ordering of functions like set Timeout and
setInterval in JavaScript. There remain two sources of
nondeterminism, both of which are useful for dealing with the
inevitable vagaries of the Internet. The first is that when a
new clock is created, its origin is set to an estimate of current
physical time. This value will depend on execution times prior
to this occurrence, but it means that an application can be very
dynamic, starting a family of predictable behaviors at any time.
The second is that asynchronous callbacks will be executed
nondeterministically between timed atomic executions. Other
than these two mechanisms, the order of execution of all
functions is completely defined by the program.

Note that this order is respected even the execution of
the program completely fails to keep up with real time. The
timer function described in the previous section will be used
only when the execution is ahead of real time and performing
any further execution will result in executing functions too
early. But we cannot do magic. There is no way to keep up
with real time if the computation load is too heavy.

For this reason, safety-critical applications will need to
perform sanity checks when callbacks are invoked. A rec-
ommended practice is to use the currentTime function to
compare logical time to real time, and when the difference
exceeds some threshold, switch the application into a fault
handling mode. No matter what semantics one uses, faults are
always possible, in which case executions may not behave
as intended. Programs should be written to expect faults to
occur and to handle them accordingly. Our mechanism at
least enables detection of such faults, albeit possibly late. If,
for example, some callback function performs a very long
execution, then our recommended strategy will discover the
fault only after it has finished. To discover it sooner, we
would have to sacrifice the key atomicity property of AAC
and allow preemption. This is a big price to pay because it
probably requires the fault handler to abort the entire execution
of the application program since its integrity can no longer
be guaranteed. Nevertheless, this may be necessary for some
safety-critical applications.

We considered and rejected several alternative designs
before settling on the semantics we have presented. One
candidate that initially seemed very appealing was that the



meaning of 7" in a release like set Timeout(F,T, A) would
be to invoke the function F' at the earliest logical time
O(A) + mT, where m is an integer, after the current time.
Instead, we interpret 7' to mean to invoke F' at Clocks(L)
+ T, relative to the current time of the clock with label L.
The alternative design is intuitive for simple periodic tasks
and it enables quick recovery in the event that some task
takes more than the expected time so that physical time passes
logical time. However, we realized that a sequence of releases
like the following becomes very difficult to control under the
alternative design:

setTimeout (F, 3, A);
setTimeout (G, 4, A);

It will be very hard to know whether F' will be invoked
before G and how much logical time will elapse between
their invocations. This will depend on exactly when the above
commands are issued. Only at the very start of the execution of
the program will the order of invocation be easy to predict, so
this semantics proves problematic for long running programs.

VII. CONCLUSION

The Internet is highly asynchronous while physical Things
are highly timing dependent. If the IoT is to be applied to
important and safety-critical applications, these contradictions
need to be reconciled. We offer in this paper a modest
addition the commonly used AAC model of computation that
has proved so effective in the Internet. Our modest addition
endows timed callbacks with a rigorous semantics, making it
much easier to control the order and atomicity of events.

We have integrated our proposed semantics with an actor-
oriented discrete-event programming model for IoT called
“accessors” (see http://accessors.org and [?]). This integra-
tion combines AAC a highly concurrent, parallelizable, and
scalable actor model augmented with time stamps. But this
integration will need to be the topic of another paper.

There are enormous opportunities for further work. First,
in this paper, we have not really addressed language design.
We suspect that programming languages that directly embrace
temporal properties may be much more effective than those
that just append timing as an afterthought using delayed
callback functions. Second, we have not addressed how the
alignment between logical time and physical time might be
enforced. Third, there are opportunities for distributed real-
time execution that can be combined with our timed AACs,
using for example techniques like Ptides [?], [?].

ACKNOWLEDGMENT

This work was supported in part by the Fulbright Scholar
Program, a program of the United States Department of
State Bureau of Educational and Cultural Affairs, and by the
TerraSwarm Research Center, one of six centers administered
by the STARnet phase of the Focus Center Research Program
(FCRP) a Semiconductor Research Corporation program spon-
sored by MARCO and DARPA.

APPENDIX

We first briefly introduce Real-Time Maude. In the algebraic
specification community, data types are called “sorts” and
they are introduced in Real-Time Maude using the keyword
sort, while subsort is used for sub-typing. The keyword
op is used to define constructors and/or modifiers on top of
sorts. The behavior of operations is described by means of
conditional and unconditional equations (respectively ceq and
eq). Rules (introduced by the keywords cr1, for conditional,
and rl, for unconditional) remove the symmetry of the
equations. They are interpreted as local concurrent transitions.
In object-oriented modules, a system state is usually described
as a multiset of objects and messages. Classes are introduced
using the keyword class, together with the attributes list
with their respective sorts.

We start by giving the definition of CallbackQ. It is
declared as follows:
sort CallBackQ CallBack .
subsorts CallBack < CallBackQ < NEConfiguration .
op _::_ : CallBackQ CallBackQ

—-> CallBackQ [assoc ctor]

op empty : —> CallBackQ [ctor]
op put : CallBack CallBackQ -> CallBackQ .

Labeled logical clock domains are defined as objects of the
class LLCD. The sort Label is defined as a subsort of 0id,
Object Identifier.
sort Label
subsort Label < 0id .

class LLCD | origine :
CurrentTime : Time .

Time, Origine : Time,

Physical time is modeled by the class clock. The attribute
currentTime records the value of the current time, while
the timer attribute saves the timer value. Physical time
elapsing is modeled by the rule tick. This rule transforms
the system from one state to another, where it increments

the current time and enables the execution of instructions
(tick (false)).

class clock | currentTime : Time, timer : Time .
op tick : Bool -> NEConfiguration .
rl [tick]
{< physTime : clock | currentTime : ct,
timer : tt > tick(true) C:Configuration}
=> {< physTime : clock | currentTime : ct + R,
timer : tt > tick(false) C:Configuration}

in time R [nonexec]

sort callbackFunction .

class delayedCallback | task : callbackFunction ,
delay : Time , 1llcd : 0id,
release : Time, Release : Time,
periodic : Bool

The functions set Timeout and setInterval are Mes-
sages (using the keyword msg) with the following arguments:
the physical time of the release, the identifier for the callback
function, the delay, and the label of the clock domain.
msg setInterval :

Time Oid callbackFunction Time Label -> Msg .

msg setTimeout
Time Oid callbackFunction Time Label -> Msg .


http://accessors.org

We give below the example of a setInterval message
consumption, which creates a periodic delayed callback with
an existing label. The message will be consumed only if the
current physical time is greater to or equal to the message
release. Consequently, the callback queue is updated. Further-
more, if the callback needs to execute before the current set
timer, then the timer is updated.

ceq
< physTime : clock | currentTime : ct’,
timer : tt >
tick (false) CBQ:CallBackQ
< 1 : LLCD | origine : o, Origine : O,
CurrentTime : CT >
setInterval (ct, oid, cbf, dly, 1)

if tt 1t (CT plus dly) then

< physTime : clock | currentTime : ct’,
timer : tt > tick(true)

< 1l : LLCD | origine : o, Origine : O,
CurrentTime : CT >

< oid : delayedCallback | task : cbf,
delay : dly, llcd : 1,
release : ct’, Release : CT plus dly,

periodic : true >

put (aac (oid, o, ct’, CT plus dly),
CBQ:CallBackQ)

else

< physTime : clock | currentTime : ct’,
timer : CT plus dly > tick(true)

< 1 : LLCD | origine : o, Origine : O,
CurrentTime : CT >

< oid : delayedCallback | task : cbf ,
delay : dly, llcd : 1,
release : ct’, Release : CT plus dly,

periodic : true >

put (aac (oid, o, ct’, CT plus dly),
CBQ:CallBackQ)

fi
if ct’ ge ct

The following conditional equation describes a callback
execution. Indeed, if the current physical time is greater than
or equal to the timer, and the timer is greater than or equal to
the release time of the callback at the top of the queue, then
the callback is pulled, the execution is recorded, and the clock
domain current time is updated as well as the timer.

ceq
< physTime : clock | currentTime : ct, timer : tt >
(aac (oid, o, r, R) :: aac(oid’, o', r’', R’")
CBQ:CallBackQ)

< oid : delayedCallback | task : cbf, 1llcd : 1,
release : r, Release : R,
delay : dly, periodic : true >

< 1l : LLCD | origine : o, Origine : O,
CurrentTime : ct’ >

OL:0rderedList tick(false)

< physTime : clock | currentTime : ct, timer : R’ >
put (aac(oid, o, r, R plus dly),
(aac (oid’, o', r’, R’) :: CBQ:CallBackQ))
< oid : delayedCallback | task : cbf, 1llcd : 1,
release : r, Release : R plus dly,
delay : dly, periodic : true >
< 1 : LLCD | origine : o, Origine : O,
CurrentTime : R >
(OL:0OrderedList ++ (oid @L R @P ct)) tick(true)
if (R le tt) and (tt le ct)



	Introduction
	Using the Internet for CPS
	Asynchronous Atomic Callbacks
	Delayed Callbacks
	Informal Labeled Clock Domains
	Outline

	Background
	Temporal Semantics
	Labeled Clock Domains
	Implementation
	Discussion
	Conclusion
	Appendix

