
Parallel Machine Learning Using Concurrency Control

Xinghao Pan

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-138
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-138.html

August 8, 2017



Copyright © 2017, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.



Parallel Machine Learning Using Concurrency Control

by

Xinghao Pan

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

and the Designated Emphasis

in

Communications, Computation and Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Michael I. Jordan, Chair
Professor Joseph Hellerstein

Associate Professor Benjamin Recht
Professor Thomas Griffiths

Summer 2017



Parallel Machine Learning Using Concurrency Control

Copyright 2017
by

Xinghao Pan



1

Abstract

Parallel Machine Learning Using Concurrency Control

by

Xinghao Pan

Doctor of Philosophy in Computer Science
and the Designated Emphasis in

Communications, Computation and Statistics

University of California, Berkeley

Professor Michael I. Jordan, Chair

Many machine learning algorithms iteratively process datapoints and transform global
model parameters. It has become increasingly impractical to serially execute such iterative
algorithms as processor speeds fail to catch up to the growth in dataset sizes.

To address these problems, the machine learning community has turned to two paral-
lelization strategies: bulk synchronous parallel (BSP), and coordination-free. BSP algorithms
partition computational work among workers, with occasional synchronization at global
barriers, but has only been applied to ‘embarrassingly parallel’ problems where work is
trivially factorizable. Coordination-free algorithms simply allow concurrent processors to
execute in parallel, interleaving transformations and possibly introducing inconsistencies.
Theoretical analysis is then required to prove that the coordination-free algorithm produces
a reasonable approximation to the desired outcome, under assumptions on the problem and
system.

In this dissertation, we propose and explore a third approach by applying concurrency
control to manage parallel transformations in machine learning algorithms. We identify
points of possible interference between parallel iterations by examining the semantics of the
serial algorithm. Coordination is then introduced to either avoid or resolve such conflicts,
whereas non-conflicting transformations are allowed to execute concurrently. Our parallel
algorithms are thus engineered to produce the same exact output as the serial machine
learning algorithm, preserving the serial algorithm’s theoretical guarantees of correctness
while maximizing concurrency.

We demonstrate the feasibility of our approach to parallelizing a variety of machine
learning algorithms, including nonparametric unsupervised learning, graph clustering, discrete
optimization, and sparse convex optimization. We theoretically prove and empirically verify
that our parallel algorithms produce equivalent output to their serial counterparts. We also
theoretically analyze the expected concurrency of our parallel algorithms, and empirically
demonstrate their scalability.



2



i

Contents

Contents i

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Organization and Key Results . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 6
2.1 Iterative Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Concurrency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Parallel Machine Learning Approaches . . . . . . . . . . . . . . . . . . . . . 12

3 Approach 17
3.1 Comparison With Existing Parallel Machine Learning Approaches . . . . . . 20
3.2 Comparison With Transactional Databases . . . . . . . . . . . . . . . . . . . 21

4 Nonparametric Unsupervised Learning 23
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Nonparametric Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . 24
4.3 Optimistic Concurrency Control for Nonparametric Unsupervised Learning . 25
4.4 Analysis of Correctness and Scalability . . . . . . . . . . . . . . . . . . . . . 30
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Additional Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.A Proof of Serializability of Distributed Algorithms . . . . . . . . . . . . . . . 36
4.B Proof of Master Processing Bound for DP-means (Theorem 4.3) . . . . . . . 41

5 Correlation Clustering 45
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Two Parallel Algorithms for Correlation Clustering . . . . . . . . . . . . . . 47
5.3 Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Additional Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



ii

5.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.A Proofs of Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . . . . . 59
5.B Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.C Complete Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Non-monotone Submodular Maximization 75
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Submodular Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Concurrency Control with Coordinated Bounds . . . . . . . . . . . . . . . . 77
6.4 CF-2g: Coordination-Free Double Greedy Algorithm . . . . . . . . . . . . . 79
6.5 CC-2g: Concurrency Control for the Double Greedy Algorithm . . . . . . . 81
6.6 Analysis of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.9 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.A Proofs of Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . . . . . 87
6.B Upper Bound on Expected Number of Failed Transactions . . . . . . . . . . 94
6.C Parallel Algorithms for Separable Sums . . . . . . . . . . . . . . . . . . . . . 97
6.D Complete Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.E Illustrative Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Sparse Stochastic Updates 107
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 The Algorithmic Family of Stochastic-Updates . . . . . . . . . . . . . . . . . 108
7.3 Cyclades: Shattering Dependencies . . . . . . . . . . . . . . . . . . . . . . 111
7.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.5 Additional Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.A Algorithms in the Stochastic Updates family . . . . . . . . . . . . . . . . . . 126
7.B With and Without Replacement Proofs . . . . . . . . . . . . . . . . . . . . . 130
7.C Parallel Connected Components Computation . . . . . . . . . . . . . . . . . 132
7.D Allocating the Conflict Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.E Robustness against High-degree Outliers . . . . . . . . . . . . . . . . . . . . 136
7.F Complete Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8 Conclusion & Future Directions 143

Bibliography 145



iii

Acknowledgments

I would like to thank my advisor, Michael I. Jordan, for his support and advice through
graduate school. Mike was an inspiration for conducting research in machine learning and
always staying ahead of the field. He taught me to focus on the big ideas without losing track
of the details, and instilled in me a mathematical rigor that I did not realize I was capable of.

I would also like to thank the members of my thesis committee: Joe Hellerstein, for
constantly challenging me to sharpen my arguments and turning this thesis into its current
final form; Ben Recht, for always cutting to the core of the research issue and asking the hard
questions; and Tom Griffiths, for providing valuable feedback on the Bayesian nonparametrics
aspects of this work.

There have been many researchers I have had the privilege to work with over the past
five years. Special credit goes to my closest collaborators, Joseph Gonzalez and Dimitris
Papailiopoulos. Joey was a major influence in the early days when I was still crystallizing
the central theme of database-inspired parallel machine learning. The numerous discussions
we had on systems and learning problems in large scale machine learning deepened my
understanding of each field, and enhanced my appreciation of the intricacies of making them
work together. Dimitris came on board to this project later, but was one of my greatest
supporters in the effort to marry concurrency control with machine learning. His enthusiasm
and determination to push through seemingly impossible difficulties — both theoretical and
practical — was the driving force for the second half of this work.

Stefanie Jegelka, Tamara Broderick, Maximilian Lam, Stephen Tu, Ce Zhang, Samet
Oymak, Chris Re, and Kannan Ramchandran co-authored papers which contributed to this
work; this thesis would not have been possible without their expertise and talents. I have also
had the honor of collaborating with Horia Mania, Evan Sparks, Ameet Talwalkar, Virginia
Smith, Andre Wibisono, and Shivaram Venkataraman on research outside the scope of this
thesis. Many others from SAIL and AMP Lab have at various times provided feedback and
been sounding boards for my random ideas. This vibrant community of machine learning folks
— Elaine Angelino, Chi Jin, Robert Nishihara, Philipp Moritz, Xin Wang — and systems and
databases people — Dan Crankshaw, Neeraja Yadwadkar, Sanjay Krishnan — has made me
feel at home in Berkeley.

My gratitude also goes out to Jianmin Chen and Rajat Monga who hosted me at Google
Brain during my internship. Without too much evidence, they chose to trust my ability
and afforded me the opportunity to work on a real-world large scale learning problem. I
am thankful for their patience while I fumbled around, and for their understanding at times
when personal matters took precedence over work.

This work was sponsored in large part by a DSO National Laboratories Postgraduate
Scholarship. I am greatly appreciative of the support that the organization and my superiors,
Khee Yin How, Gee Wah Ng, and Loo Nin Teow have provided throughout my graduate
studies.

Finally, and most importantly, I am grateful to my wife, Rachel (Jue) Rui, for her endless
support, leaving behind everything in Singapore to live with me in a foreign land. It has



iv

been twelve years filled with wonderful memories and unexpected adversities. Thank you for
being by my side through all the highs and lows, and for carrying on this journey with me
until the end.



1

Chapter 1

Introduction

Many machine learning algorithms iteratively process datapoints and transform some global
state (e.g. model parameters or variable assignments). Such algorithms have typically been
developed and studied in the serial setting, where iterations are sequentially executed after
transformations of earlier iterations have completed. However, the impending death of
Moore’s law combined with the advent of the big data era has rendered it impractical to
execute millions to trillions of transformations serially. The desire to apply machine learning
to increasingly larger datasets has pushed the machine learning community to design parallel
algorithms, for both multicore and distributed settings, with the twin objectives of:

• Correctness: The parallel algorithm is theoretically guaranteed to produce the desired
solution to the machine learning problem, or at least a quantifiable approximation to
the desired solution. One method for achieving correctness is to ensure equivalence of
output to the serial algorithm — theoretical guarantees of the serial algorithm then
immediately translate to the parallel algorithm.

• Concurrency: Increasing the computational resources decreases the time required
to obtain the solution; ideally, with linear speedup, i.e., doubling the computational
resources should at least halve the running time.

In general, there have been two classes of approaches for the parallelization of machine
learning algorithms.

Simple Bulk Synchronous Parallel (BSP). Simple BSP algorithms partition the
work of each iteration across multiple workers, each of which computes an intermediate
result for the iteration. These intermediate results are aggregated before being applied as a
transformation to the global state. A global synchronization barrier prevents workers from
proceeding with the computation of the following iteration before the transformation of the
current iteration completes. While the simple BSP approach ensures correctness, it is limited
to algorithms for which an iteration’s work factors trivially1.

1 Also known as ‘embarrassingly parallel’ problems.



CHAPTER 1. INTRODUCTION 2

Coordination-free. A second class of coordination-free algorithms simply allows workers
to each execute multiple iterations, in parallel, as they would have done in the serial
algorithm. Concurrent iterations are interleaved, and workers may partially or completely
overwrite each other’s progress, possibly leading to inconsistent states. Such approaches,
exemplified by Hogwild! [116], appear to emphasize the maximization of concurrency with
an apparent disregard for correctness. Surprisingly, recent breakthroughs have demonstrated
that many such coordination-free machine learning algorithms retain theoretical guarantees of
approximate correctness. Unfortunately, these analyses are tailored to individual algorithms,
work under various assumptions on the computation system and / or problem, and provide
approximations that worsen with increasing parallelism.

Concurrency control for parallel machine learning. In this dissertation, we explore
an alternative approach to simple BSP and coordination-free methods for parallelizing machine
learning algorithms. Specifically, we wish to achieve the following goals:

• Strong guarantees of correctness. We desire theoretical guarantees that do not worsen
with increasing parallelism, and prioritize achieving correctness over maximizing con-
currency.

• Scalable. Ideally, we should be able to prove speedups of our parallel algorithms
under assumptions on the system and problem, or at minimum, demonstrate empirical
speedups for the parallel algorithms.

• Verifiable and reproducible results. It should be possible to verify that an implementation
of the parallel algorithm is producing the correct output. Ideally, multiple runs of the
parallel algorithm should produce the same output. These properties aid testing and
debugging, and help to ensure correct implementations.

Our proposal for achieving these goals is to employ concurrency control mechanisms for
coordinating parallel workers, ensuring that concurrent iterations and transformations do
not interfere with one another. Concurrency control has been studied by database systems
researchers as a means for parallel execution of transactions. A database transaction is a set
of read-compute-write operations that need to be executed atomically and free of interference
from other transactions. This in turn guarantees serializability: the parallel execution of
transactions produces an output that is equivalent to some serial execution of the transactions.
If the transactions’ ordering is recorded, the database output can be verified by comparing it
against a serial execution obeying the same ordering.

In our context, each iteration of the machine learning algorithm will be cast as a database
transaction. We will identify potential conflicts between concurrent transactions through an
understanding of the algorithm’s semantics. By either avoiding or resolving such conflicts
through concurrency control, we guarantee that our parallel algorithms are serializable,
and therefore retains the same theoretical guarantees of correctness of the serial algorithm.



CHAPTER 1. INTRODUCTION 3

In most cases, we are also able to show that the machine learning algorithms parallelized
through concurrency control are deterministic, i.e., the parallel execution corresponds to a
pre-determined order of serial execution, which grants the added advantage of reproducible
and verifiable results, and ease of debugging.

A key to achieving high concurrency is the insight that the iterative transformations
of many machine learning algorithms are only weakly dependent on one another. Thus,
most transactions can execute concurrently without conflict. We quantify the concurrency
and scalability of our parallel algorithms by analyzing the occurrence of conflict, under
assumptions on the computation system and / or problem.

1.1 Contributions
Concretely, the contributions of this dissertation are as follows:

1. We present a general approach of applying concurrency control to the parallelization of
machine learning algorithms.

2. We demonstrate the feasibility of our approach by application to algorithms for different
classes of machine learning problems:

a) Nonparametric unsupervised learning (Chapter 4)

b) Graph clustering (Chapter 5)

c) Discrete optimization (Chapter 6)

d) Sparse convex optimization (Chapter 7)

3. We prove that our parallel algorithms are serializable (or deterministic), and therefore
preserve the theoretical guarantees of the serial counterparts. Our parallel algorithms
are verifiable (by comparing the results against a serial run with the corresponding
ordering of transactions) and easy to study (by reduction to the serial algorithm).

4. We theoretically analyze the expected concurrency of our parallel algorithms, and
empirically validated the algorithms’ speedups.

5. For the correlation clustering (Chapter 5) and double greedy (Chapter 6) algorithms,
we also propose coordination-free parallelizations. We analyze the theoretical approx-
imations of the coordination-free algorithms, and examine the trade-offs of both the
concurrency controlled and coordination-free algorithms.

1.2 Organization and Key Results
The remainder of this dissertation is organized as follows.



CHAPTER 1. INTRODUCTION 4

We present a model of machine learning algorithms as iterative transformations in Chapter
2, and discuss both traditional database concurrency control mechanisms and existing parallel
machine learning approaches in this context.

Chapter 3 presents the general approach of applying concurrency control to the paral-
lelization of machine learning algorithms. We also compare our approach with other parallel
machine learning approaches and traditional concurrency control techniques in transactional
databases.

We demonstrate concrete applications of the concurrency control approach to various
machine learning algorithms in Chapters 4, 5, 6, and 7. In Chapter 4, we study three
nonparametric unsupervised learning algorithms. DP-means and BP-means are respectively
small-variance asymptotic approximations to Gibbs samplers for Dirichlet processes and
Beta processes; the online facility location (OFL) algorithm is a clustering algorithm closely
related to DP-means. All three algorithms iteratively process datapoints, and possibly
propose new clusters / features if the datapoint is not well-represented by existing clusters /
features. Our parallelizations utilize an optimistic concurrency control protocol to resolve
conflicting proposals for new clusters / features. We empirically evaluated and demonstrated
the scalability of our parallel algorithms in a distributed, cluster computing environment.

We continue in Chapter 5 with the theme of nonparametric clustering, specifically,
correlation clustering, which aims to group similar items in a similarity graph together.
One algorithm that achieves a 3-approximation for correlation clustering is KwikCluster,
which iteratively picks an unclustered vertex, and places the vertex and its unclustered
neighbors in a new cluster. Our first parallelization of KwikCluster uses a mix of locking
and compensation logic to achieve a deterministic parallel algorithm C4. We also examine a
coordination-free parallelization, ClusterWild!, and provide theoretical guarantees of speedups
and approximations for both C4 and ClusterWild!. Empirically, our solutions outperform the
previous state-of-the-art parallel correlation clustering algorithm in both speed and clustering
quality.

Chapter 6 focuses on the important class of non-monotone submodular maximization
problems. The randomized double greedy algorithm has been shown to obtain an optimal 1/2
approximation in expectation; however, this algorithm is particularly serial – each iteration
takes the entire global state as input and always makes some transformation to the global
state. Our insight for parallelization is that, under the randomization, there is a small
probability that an iteration’s computation is affected by other concurrent iterations. Thus,
most iterations can proceed concurrently without interference, and in the minute chance that
a conflict could occur, we simply force the later iteration to wait. The resultant deterministic
algorithm, which we term CC-2g, preserves the optimal 1/2 approximation. We also propose
a coordination-free algorithm, CF-2g, which incurs an additive error due to conflicts. We
empirically evaluated CC-2g and CF-2g on large synthetic and real datasets.

In Chapter 7 we parallelize a large class of sparse stochastic optimization algorithms,
which include SGD (with or without weight decay), SVRG, and SAGA. We exploit the fact
that concurrent sparse updates are unlikely to share parameters that they read or write. Our
parallelization, Cyclades, combines BSP with concurrency control — iterations are processed



CHAPTER 1. INTRODUCTION 5

in batches, and conflicting iterations within each batch are serialized by assigning them to
the same processor. This technique obviates the use of explicit locks and provides better
cache coherency. The BSP approach also allows us to theoretically analyze Cyclades’ running
time and prove it achieves near linear speedup. We demonstrate that for sufficiently sparse
problems, Cyclades can outperform coordination-free implementations, even for notoriously
robust algorithms such as SGD.

Finally, we conclude and discuss some potential future directions of the concurrency
control approach to parallelization of machine learning algorithms in Chapter 8.



6

Chapter 2

Background

We present a general model of machine learning algorithms in this chapter, and discuss both
traditional database concurrency control mechanisms and existing parallel machine learning
approaches in the context of our model.

2.1 Iterative Transformations
A large number of machine learning algorithms can be viewed as iterative transformations to
a global state of model parameters. Given a dataset X = {x1, . . . , xn} and model parameters
θ, the t-th iteration of the algorithm computes the update

θ(t+1) = Tt(θ
(t),Λt(θ

(t), X(t))) (2.1)

where θ(t) is the model after t iterations, and X(t) ⊆ X is the subset of data that the t-th
iteration operates on. Here, the change function Λt(θ,X) computes an intermediate result
based on θ and X, which is then applied to the model by the transformation function Tt(·, ·).
It will often be the case that the ordering of the updates is inconsequential, in the sense that
executing the updates in a different order still produces a valid, though possibly different,
outcome. For some other algorithms, we will additionally require that the update ordering
be a uniformly random permutation.

We will sometimes make the dependence on individual d coordinates of θ explicit by
writing

θ
(t+1)
k = Tt,k(θ

(t)
k ,Λt({θ(t)

1 , . . . , θ
(t)
d }, X(t))). (2.2)

We assume that the transformation factors as [Tt(θ, λ)]k = Tt,k(θk, λ), where the notation [·]k
denotes the k-th coordinate. In some cases, Λt will only depend on a subset of coordinates,
and Tt will only transform a subset of coordinates:

θ
(t+1)
k =

{
Tt,k(θ

(t)
k ,Λt({θ(t)

r : r ∈ R(X(t))}, X(t))) if k ∈ W (X(t))

θ
(t)
k otherwise

(2.3)



CHAPTER 2. BACKGROUND 7

where R and W are the read and write sets1 respectively.
This formulation was alluded to in [111, 110], and also recognized by others in [135]. We

next present a number of example machine learning algorithms that fit into this framework.

Example 2.1 (Stochastic Gradient Descent (SGD)). Given a composite loss function F (θ) =
1
n

∑n
i=1 fi(θ;xi), SGD minimizes F with respect to θ by computing the iteration

θ(t+1) = θ(t) − γt∇θfi(t)(θ;xi(t))
∣∣
θ=θ(t) , (2.4)

where i(t) ∈ {1, . . . , n} is a random index, drawn uniformly at random with or without
replacement. SGD can be represented as an iterative transformation with Λ((η, t),X ) =
−γt∇θfi(t)(θ;xi(t))

∣∣
θ=η

and T ((η, t), λ) = (η+λ, t+ 1). Note that the updates can be reordered
with a uniformly random permutation while still producing a valid outcome, without impacting
any theoretical properties of the algorithm.

Example 2.2 (Minibatch SGD). Minibatch SGD seeks to optimize the same composite loss as
SGD, but computes the gradient over a random minibatch B(t) = {B(t)

1 , . . . , B
(t)
m } ⊆ {1, . . . , n}.

We consider two ways to cast minibatch SGD in the iterative transformations framework.
Firstly, we can consider the application of the minibatch gradient as a single iteration:

θ(t+1) = θ(t) − γt
|B(t)|

∑
i∈B(t)

∇θfi(θ, xi)
∣∣
θ=θ(t) (2.5)

with Λ((η, t),X ) = − γt
|B(t)|

∑
i∈B(t)∇θfi(θ, xi)

∣∣
θ=η

and T ((η, t), λ) = (η+λ, t+1). Alternatively,
a minibatch can be viewed as m individual iterations

θ(t,s+1) = θ(t,s) − γt
|B(t)|∇θfB(t)

s
(θ, x

B
(t)
s

)
∣∣
θ=θ(t,0) (2.6)

θ(t+1,0) = θ(t,|B(t)|) (2.7)

with Λ((η, t, s),X ) = γt
|B(t)|∇θfB(t)

s
(θ, x

B
(t)
s

)
∣∣
θ=η

, and T ((η, t, s), λ) = (η+λ, t, s+1) if s < |B(t)|
and (η + λ, t+ 1, 0) otherwise.

Example 2.3 (Conditional Gibbs Sampler for Beta-Bernoulli). Consider the generative
probabilistic model

p ∼ Beta(1, 1) (2.8)
xi ∼ Bernoulli(p), i = 1, . . . , n (2.9)

A conditional Gibbs sampler for this model iteratively performs the sampling

p|x1, . . . , xn ∼ Beta

(
1 +

n∑
i=1

xi, 1 + n−
n∑
i=1

xi

)
(2.10)

xi|p, x1, . . . , xi−1, xi+1, . . . , xn ∼ Bernoulli(p), i = 1, . . . , n (2.11)
1 We assume that the read and write sets depend only on the data subset X(t), and not on θ(t) or Λt,

which will suffice for most of our example applications.



CHAPTER 2. BACKGROUND 8

Note that for i 6= i′, xi is conditionally independent of xi′ given p. The above iterative
transformations can be described by

[Λp(q, y1, . . . , yn)]p ∼ Beta

(
1 +

n∑
i=1

yi, 1 + n−
n∑
i=1

yi

)
(2.12)

[Λxi(q, y1, . . . , yn)]xi ∼ Bernoulli(q) (2.13)

Tp(·, λ) = λp Wp = {p} (2.14)
Txi(·, λ) = λxi Wxi = {xi} (2.15)

Example 2.4 (Marginal Gibbs Sampler for Beta-Bernoulli). We consider the same generative
probabilistic model as before, but with a Gibbs sampler where p is marginalized. The sampling
proceeds as

xi|x1, . . . , xi−1, xi+1, . . . , xn ∼ Bernoulli

(
1 +

∑
i′ 6=i xi′

1 + n

)
(2.16)

which has the iterative transformation

[Λxi(y1, . . . , yn)]xi ∼ Bernoulli

(
1 +

∑
i′ 6=i yi′

1 + n

)
(2.17)

Txi(·, λ) = λxi Wxi = {xi} (2.18)

In a parallel execution of iterative transformations, concurrent reads and writes may be
interleaved and re-ordered. Without additional coordination, the change function Λ and
transformation function T of the t-th iteration may access model parameters not necessarily
generated by the (t− 1)-th iteration. That is, the output of the t-th iteration is

θ
(t+1)
k =

{
Tk(θ

(t−σt,k)

k ,Λ({θ(t−τt,r)
r : r ∈ R(X(t))}, X(t))) if k ∈ W (X(t))

θ
(t)
k otherwise

(2.19)

for some arbitrary delays σt,k and τt,r. These ‘delays’ need not be positive, since a ‘later’
iteration may be interleaved with the t-th iteration, and update the coordinate θk before the
t-th iteration reads θk. Note also that θ(t) may never exist as a consistent state — at any point
of time, there may exist coordinates k and k′ such that θ(t)

k and θ(t′)
k′ are simultaneously stored

in memory, with t 6= t′. The challenge of any parallelization of the iterative transformation
algorithm is to show, through a mix of coordination and analysis on the robustness of the
algorithm, that (2.19) produces the (approximately) correct solution despite the interactions
between concurrent iterations.



CHAPTER 2. BACKGROUND 9

2.2 Concurrency Control
Concurrency control is a well-studied area of database systems research for parallel execution
of database transactions, which are sets of read-compute-write operations. The goal of
concurrency control is to maximize throughput (number of transactions processed per unit
time), minimize latency (total time taken to process each transaction), while ensuring that
the resultant database corresponds to the state of some serial execution of the transactions.

In the context of our iterative transformation framework, we observe that since iterations
may be reordered arbitrarily, we essentially have a set of updates that needs to be executed. We
will therefore treat each iteration as a database transaction Tt = (Tt,Λt, X

(t)) to be executed
by the parallel algorithm; the goal is thus to ensure the parallel algorithm corresponds to
some execution of the serial algorithm, under any ordering of the iterations. Formally, we
can define serializability as below.

Definition 2.1 (Serializability). Let A be a parallel algorithm taking as input a set of
transactions {T1, . . . , TN} where Tt = (Tt,Λt, X

(t)), and let θ(t+1) be the output of its t-th
transaction (iteration) be defined as (2.19). The algorithm A is serializable if for every
parallel execution of A, there is some permutation π such that

θ
(π(t)+1)
k =

{
Tt,k(θ

(π(t))
k ,Λt({θ(π(t))

r : r ∈ R(X(t))}, X(t))) if k ∈ W (X(t))

θ
(π(t))
k otherwise

(2.20)

or more concisely

θ(π(t)+1) = Tt(θ
(π(t)),Λt(θ

(π(t)), X(t))) (2.21)

and A generates output θ(π(N)).

Said differently, a serializable parallel algorithm may reorder iterations, but ensures that
the output is equivalent to a serial execution of the reordered iterations, specifically, where Tt
is executed as the π(t)-th transaction. The definition of serializability makes no reference
to a serial algorithm, but merely to some serial execution of transactions2 Note also that
serializability is a statement on the parallel algorithm’s output and not of its execution;
in particular, the state3 of a serializable parallel algorithm need not be consistent until it
produces the final output.

Many mechanisms have been proposed for concurrency control. We review a few common
techniques in this chapter, following the classification in Chapter 18 of [58]. For a more
complete review, the reader is referred to [58, 16, 17].

2 Nevertheless, this will suffice for our needs: since the serial algorithm allows for arbitrary reordering of
iterations, every serial execution of transactions is a valid outcome of the serial algorithm.

3 In the machine learning setting, the dataset X is given and considered to be immutable, i.e., read-only,
and thus requires no coordination of access. The ‘state’ to which we apply concurrency control mechanism
refers only to the model parameters θ.



CHAPTER 2. BACKGROUND 10

Locking

Locking is a common concurrency control technique for enforcing mutual exclusion. Intuitively,
when a transaction acquires a ‘lock’ on a coordinate θk, it receives ownership of θk so no
other transaction may make changes to θk.

There are two types of locks that a transaction may acquire. A read lock gives the
transaction the right to read a coordinate θk without θk changing, and must be successfully
acquired and held during the transaction reading θk. A write lock gives the transaction the
sole right to make changes to the coordinate θk, and must be successfully acquired and held
during the transaction writing to θk. Read locks conflict with write locks — an existing read
lock on θk precludes another transaction from acquiring a write lock on θk, and vice versa.
Write locks also conflict with write locks — no two transactions may hold write locks on
the same coordinate θk at the same time. However, read locks do not conflict with read
locks — multiple transactions may hold read locks on the same coordinate simultaneously. If
a transaction requests for a lock but is blocked by an existing lock, it must wait until the
conflicting lock has been released.

A protocol for using locks to achieve serializability is two-phase locking : in the first phase,
a transaction may acquire but not release locks; in the second phase, the transaction may
release but not acquire locks. The transaction is logically timestamped at the point after the
first phase but before the start of the second phase. Transaction timestamps can be used to
provide the serialization ordering π. A simple inductive proof shows that two-phase locking is
indeed serializable. Intuitively, the transaction must read all earlier conflicting writes (since
earlier writes must complete before the releasing of write locks and the transaction’s acquiring
a read lock); the transaction’s writes must be read by later conflicting reads (for the same
reason). Furthermore, if two transactions have write-write conflicts on multiple coordinates,
the earlier transaction must have acquired all write locks on conflicting coordinates before
the later transaction acquires any write locks on these coordinates (for otherwise the protocol
is not two-phase), and so writes of the later transaction to the conflicting coordinates will
always overwrite writes of the earlier transaction.

A potential problem of locking arises when a set of transactions have partially acquired
their requisite locks, but are blocked by acquiring the remaining locks by other transactions
in the set. This situation is known as deadlock, and many schemes have been proposed to
either avoid or detect and break deadlocks. For our purposes, we will use the simple scheme
of acquiring locks in a pre-determined, globally agreed-upon lock order, which is a feasible
method since we assume read and write sets are declared upfront.

Locking is a pessimistic concurrency control mechanism, in that it assumes that conflicts
are likely and hence actively seeks to prevent them from happening. The other two types of
concurrency control mechanisms are optimistic in comparison — they assume that nothing
will go wrong, but then take actions to remedy things when conflicts do happen.



CHAPTER 2. BACKGROUND 11

Timestamp Ordering

In two-phase locking, the timestamp of the transaction is implicitly defined. The key idea of
timestamp ordering is to explicitly assign a timestamp to each transaction, and then to ensure
that transactions execute in the order of their timestamps. Intuitively, a transaction’s read is
allowed if it has not been superseded by a later transaction’s write, and a transaction’s write
is allowed if it does not interfere with a later transactions’ read. (For clarity of exposition,
we omit technicalities with transaction commits.)

Formally, each transaction T is assigned a timestamp TS(T ), and every coordinate θk is
assigned a write-timestamp WT (θk) and a read-timestamp RT (θk). The write-timestamp
WT (θk) is the timestamp of the transaction that wrote the stored value of θk, and the
read-timestamp RT (θk) is the largest timestamp of transactions that have read θk. The rules
for timestamp ordering are:

1. A read of θk by T is allowed if TS(T ) ≥ WT (θk). If the read is successful, set
RT (θk)← max{RT (θk), TS(T )}.

2. A write of θk by T is allowed if TS(T ) ≥ RT (θk). If also TS(T ) ≥ WT (θk), we write
the new value of θk and set WT (θk)← TS(T ). Otherwise, if TS(T ) < WT (θk), then
T ’s write has already been superseded by the write from a later transaction T ′ with
TS(T ′) = WT (θk), so we simply ignore T ’s write to θk — this is known as the Thomas
Write Rule.

In case any read or write is unsuccessful, the transaction T must rollback all its writes to the
database, and retry from scratch with a new timestamp.

Validation

The validation concurrency control method was first published in [86] under the name of
‘optimistic concurrency control’, and was the first to use the term ‘optimistic’ to describe
non-locking techniques. At a high level, the validation method optimistically allows all reads
to proceed without blocking, but any change to the database via a write must be validated
to ensure that it does not conflict with other transactions.

A transaction T in a validation-based database goes through three phases, and is logically
timestamped at the second phase. In the first read phase, it is allowed to read any coordinate
θk from the database. In the second validation phase, the database checks that T ’s reads
reflect writes of earlier transactions, and that its writes will not be overwritten by earlier
transactions. If the validation completes successfully, T instantiates its writes into the
database; otherwise, T must retry from scratch again.

We now present the details of the validation phase for avoiding read-write and write-write
conflicts:

1. Read-write conflicts: If T reads θk and an earlier transaction T ′ writes to θk, the
validation must ensure that T reads the write of θk by T ′. This is conservatively



CHAPTER 2. BACKGROUND 12

checked by comparing the time T ′ finished its writes to the start time of T , and
confirming that the former is larger than the latter.

2. Write-write conflicts: If T and an earlier transaction T ′ both write θk, then T ’s write
should be reflected in the database. This is conservatively checked by comparing the
time T ′ finished its writes to the time T starts its writes (i.e. the validation time), and
confirming that the former is larger than the latter.

Applying Concurrency Control to Iterative Transformations

It is straightforward to apply traditional concurrency control mechanisms, including the
three reviewed above, to parallelizing iterative transformations. In particular, when the read
set R(X(t)) and write set W (X(t)) are defined, as in (2.19), we can cast each iteration as
a transaction and provide the read and write sets to the transactional database, which in
turn applies some form of concurrency control based on resolving read-write and write-write
conflicts to produce a serializable output.

2.3 Parallel Machine Learning Approaches
There has been a proliferation of parallel machine learning algorithms in recent years. We
briefly review some of these approaches in the context of the iterative transformations
framework, and highlight a couple of systems with particular relevance to our approach.

Simple Bulk Synchronous Parallel (BSP)

The BSP model [132] of computation is a method for ensuring lock-step progress of parallel
workers. Specifically, there are three phases in a global BSP superstep: (1) concurrent
asynchronous computation by workers, (2) communication of intermediate results by workers
to data storage, and (3) a global barrier which synchronizes workers and prevents them
from proceeding with the next superstep before all workers complete their computation and
communication.

We consider two ways that the BSP model has been directly applied to computing iterative
transformations; we term these approaches as ‘simple BSP’. Firstly, BSP may be used if
the work of computing the change function Λ can be trivially factorized. For example, if
Λ(A, x) = Ax is a matrix-vector multiplication, we may distribute the rows of A across
workers and compute each coordinate of Ax separately.

The second way batches multiple iterations together into a single BSP superstep, and
uses an aggregation to combine the results from the iterations. Formally, let B(t) =



CHAPTER 2. BACKGROUND 13

{B(t)
1 , . . . , B

(t)
m } ⊆ {1, . . . , n} be a batch of indices. The BSP computation computes

λ
(t)
i = Λ(θ(t), {x

B
(t)
i
}) i = 1, . . . ,m (2.22)

θ(t+1) = T (T (. . . T (T (θ(t), λ
(t)
1 ), λ

(t)
2 ), . . . , λ

(t)
m−1), λ(t)

m ) (2.23)

This BSP superstep corresponds to the update

θ(t,s+1) = T (θ(t,s),Λ(θ(t,0), {x
B

(t)
i
})) (2.24)

θ(t+1,0) = θ(t,|B(t)|) (2.25)

Since the λ(t)’s are computed from the same θ(t), and they do not depend on other iterations
in the same batch. In general, this update may not correspond to the below iteration of

θ(t+1) = T (θ(t),Λ(θ(t), B(t))) (2.26)

A restricted setting where (2.26) is equivalent to (2.22), (2.23) is when T is associative,
commutative, and distributed by Λ, i.e., Λ(θ, B ∪ B′) = T (Λ(θ, B),Λ(θ, B′)) for all θ, and
disjoint B, B′. Then, we have

θ(t+1) = T (T (. . . T (T (θ(t), λ
(t)
1 ), λ

(t)
2 ), . . . , λ

(t)
m−1), λ(t)

m )

= T (θ(t), T (λ
(t)
1 , T (λ

(t)
2 , T (. . . T (λ

(t)
m−1, λ

(t)
m ) . . . ))))

= T (θ(t),Λ(θ(t), B(t))) (2.27)

Examples of algorithms that can be parallelized in this manner are minibatch SGD and the
conditional Gibbs sampler for Beta-Bernoulli models.

The introduction of the MapReduce [43] programming paradigm has coincided with
an increased interest in the application of simple BSP to parallelizing machine learning
algorithms. [39] presented 10 machine learning algorithms that can be implemented on
multicore using MapReduce / simple BSP. Modern distributed machine learning frameworks
such as MLI [127] on Spark, and Tensorflow [1, 112] implement BSP minibatch stochastic
optimization. GraphLab [97] and Petuum [135] are respectively general graph-processing and
parameter server systems that provide BSP-style execution of graph-based or parameter-based
iterations.

It is important to recognize that BSP is a coordination technique that may be used in
ways beyond the abovementioned direct applications. In Chapters 4, 5, 7, we will use BSP in
conjunction with other concurrency control mechanisms to either guarantee correctness or to
simplify our speedup analyses. However, in existing literature, BSP has only been applied to
either embarrassingly parallel problems (as above) or without additional coordination and
thus requiring additional analysis of correctness (see [104] for example).



CHAPTER 2. BACKGROUND 14

Coordination-free

The coordination-free approach simply executes iterations asynchronously in parallel without
any coordination. As we pointed out in (2.19), the output of the t-th iteration is

θ
(t+1)
k =

{
Tk(θ

(t−σt,k)

k ,Λ({θ(t−τt,r)
r : r ∈ R(X(t))}, X(t))) if k ∈ W (X(t))

θ
(t)
k otherwise

(2.28)

where σt,k and τt,r are arbitrary delays that the coordination-free algorithm does not attempt
to control. This interleaving of concurrent iterations’ reads and writes leaves us with an
execution that almost surely does not correspond to any serial execution, and hence one may
not appeal to the correctness of the serial algorithm when arguing the theoretical guarantees
of the parallel algorithm. Instead, one typically assumes a bounded delay, i.e., that there
is some small constant c such that |σt,k| ≤ c and |τt,r| ≤ c, which translate to a bound on
the interference that iterations can have on one another. The approximation of the parallel
algorithm can then in turn be bounded, and usually worsens with larger c. Intuitively, c
should be in the order of the number of parallel workers, so increasing parallelism leads to
poorer approximations.

On the other hand, the complete absence of coordination gives coordination-free algorithms
(theoretical) ideal linear speedup.

Interest in coordination-free algorithms in recent years was first sparked by the seminal
paper HogWild! [116] which empirically demonstrated that coordination-free SGD vastly
outperformed SGD with locks. Furthermore, [116] provided a template for analyzing the
convergence rate of a coordination-free stochastic optimization algorithm. Since then, various
coordination-free stochastic optimization algorithms have been proposed and analyzed, includ-
ing stochastic coordinate descent [95, 101]; dual averaging and AdaGrad [50]; Frank-Wolfe
[133]; and SVRG [101]. Recent papers [101, 41] have introduced more unified analysis of
coordination-free stochastic optimization algorithms; these papers view the interference of
concurrent iterations as stochastic noise, an issue for which stochastic optimization algorithms
are particularly well-suited to handle.

Coordination-free algorithms have also been proposed for Gibbs samplers, particularly for
topic models such as LDA and HDP [106, 3, 126]. However, understanding the correctness
or approximation of such samplers have proven more difficult. [70, 69] provided bounds on
the error of a single iteration of coordination-free LDA sampling, whereas [73] was restricted
to Gaussian distributions. A breakthrough was achieved in [42], which bounded both the
bias and mixing times of Gibbs samplers for distributions that satisfy Dobrushin’s condition
(which intuitively states that no variable has a strong influence on any other variable), and
under the assumption of bounded delays.

Systems that provide coordination-free executions include PowerGraph [62], parameter
servers [89, 65], DistBelief [44], and TensorFlow [1].



CHAPTER 2. BACKGROUND 15

Hybrid Approaches

In this section, we review some parallel machine learning approaches that do not fit nicely
into our above dichotomy of either simple BSP or coordination-free.

Some of these approaches have used the BSP computation model but without the same
guarantees of serializability. CoCoA [71, 98, 125] is a distributed primal-dual solver, where
machines solve local subproblems in the compute phase, communicate their approximate
solutions for aggregation, and then wait on the global synchronization barrier for the next BSP
superstep. Distributed ADMM solvers [27] also solve local subproblems on subsets of data
before a global consensus update. Splash [142] proposes running (reweighted) SGD locally on
a subset of data in the compute phase before globally averaging the local parameters. In all
three cases, the aggregate of local solutions is not equivalent to the solution one would have
obtained from optimizing over the entire dataset. This dependence on the parallelism can be
observed by the worsened rates of CoCoA and Splash with larger number of machines.

A different parallelization strategy begins with the coordination-free algorithm, but adds
cheap coordination mechanisms to reduce interference between iterations. SoftSync [141]
batches gradients from multiple workers together before performing a minibatch update, but
does so without the BSP global synchronization barrier. Instead, gradients are aggregated
whenever they are sent by workers, regardless of whether the worker had read an outdated
and stale parameter. Stale Synchronous Parallel parameter servers [65] enforce workers to not
drift apart by too many iterations; this turns the assumption of bounded delays into a systems
guarantee. Such parallel algorithms serve as a middle ground between coordination-free and
serializable methods. Nevertheless, because they are not in fact serializable, separate analysis
is still required to prove correctness.

Next, we take a closer examination of two parallel machine learning systems that are
particularly relevant to our approach.

GraphLab and PowerGraph

GraphLab [97] and PowerGraph [62] are parallel machine learning frameworks that exploit
sparse structure common in machine learning problems. Iterative transformations are centered
on individual vertices, and may read and write to data at the vertex, its edges, and its
neighboring vertices. In particular, the change function Λ in PowerGraph is restricted
to be commutative and associative, and acts only on an edge and its adjacent vertices.
Both PowerGraph and GraphLab provide different modes of execution, including simple
BSP, coordination-free, and asynchronous serializable (through either locking or BSP with
supersteps over maximal independent sets of the graph).



CHAPTER 2. BACKGROUND 16

Petuum

Petuum [135] is a general framework for parallel machine learning based on parameter servers.
Petuum supports both data parallelism, where data X is distributed for computation across
machines, and model parallelism, where the model parameters θ are partitioned. Roughly
speaking, data parallelism corresponds to our presentation of simple BSP in (2.22), (2.23),
(2.27), where λ’s are computed across workers and aggregated for a single transformation.
Model parallelism roughly corresponds to the iterative transformation defined by (2.19), with
workers holding the parameters in the read sets R(X(t)) and write sets W (X(t)) of iterations
which they are responsible for. However, serializability is not guaranteed by Petuum, as it
implements Stale Synchronous Parallel [65] consistency, which guarantees bounded but non-
zero delays. Petuum also tries to exploit ‘non-uniform convergence’ by scheduling iterations
that it believes will lead to greatest improvements.



17

Chapter 3

Approach

The objective of this dissertation is to present and evaluate a general approach for parallelizing
machine learning algorithms, expressible as iterative transformations, with the following
characteristics:

• Strong guarantees of correctness: Theoretical guarantees of accuracy, approximation, etc.
of our parallel machine learning algorithm are independent of the degree of parallelism,
and no worse than those of the serial algorithm.

• Scalable: Our parallel machine learning algorithms demonstrate good empirical speedups.
Ideally, we will provide guaranteed bounds on the speedups or coordination overheads of
the parallel algorithms, under assumptions on the computational system and problem.

• Verifiable and repeatable: The output of our parallel machine learning algorithms can
be checked. Ideally, multiple runs of the parallel algorithms generate the same output.
Verifiability and repeatability are desirable properties for software engineering, testing,
etc. and is important for the scientific process.

Our approach may be succinctly stated as applying concurrency control mechanisms for
parallelizing iterative transformation algorithms, by coordinating concurrency iterations.

Specifically, we view the serial machine learning algorithm through the iterative transfor-
mation framework, and treat each iteration as a database transaction. By examining and
understanding the semantics of the serial machine learning algorithm, we identify potential
conflicts and interference between concurrent transactions, i.e., situations where the output
of a transaction may influence the computation and output of another concurrent transaction.
We then design concurrency control mechanisms for avoiding or resolving such conflicts;
we choose techniques to incur the least expected coordination overheads for the algorithm
and problem. In doing so, our parallel algorithms are always, by design, guaranteed to be
serializable.

Any execution of our serializable parallel algorithm produces an outcome that is equivalent
to some serial execution of the iterations, specifically, where Tt is executed as the π(t)-th



CHAPTER 3. APPROACH 18

transaction. Since our serial algorithm admits arbitrary reordering of iterations as well,
the output of the parallel algorithm is equivalent to a valid output of the serial algorithm
under some ordering of iterations. Hence, serializability achieves the first objective of strong
guarantees of correctness — theoretical properties of the parallel algorithms’ outputs directly
translate from that of the serial algorithms, independently of the degree of parallelism.
Furthermore, if we log the transaction ordering of a serializable algorithm, we can always
verify that an implementation of the algorithm is producing the correct output by comparing
it against a serial run of the same transaction ordering.

In addition, most of the algorithms we parallelize using concurrency control will also be
deterministic.

Definition 3.1 (Determinism). Let A be a parallel algorithm taking as input a permutation
π and a set of non-random1 transactions {T1, . . . , TN} where Tt = (Tt,Λt, X

(t)), and let θ(t+1)

be defined as

θ
(π(t)+1)
k =

{
Tt,k(θ

(π(t))
k ,Λt({θ(π(t))

r : r ∈ R(X(t))}, X(t))) if k ∈ W (X(t))

θ
(π(t))
k otherwise

(3.1)

or more concisely

θ(π(t)+1) = Tt(θ
(π(t)),Λt(θ

(π(t)), X(t))) (3.2)

The parallel algorithm A is deterministic if every execution of A generates output θ(π(N)).

Like serializability, determinism is a statement about the parallel algorithm’s output, and
puts no constraint on the intermediate states during execution. However, determinism is a
stronger condition than serializability, since it enforces that the algorithm produces an output
according to the desired ordering. Determinism is also a sufficient (though not necessary)
condition for repeatability — running the algorithm twice with the same transactions and
ordering will reproduce the same output.

We illustrate our approach with the examples of sparse SGD and the Beta-Bernoulli
marginal Gibbs sampler.

Example 3.1 (Concurrency Control for Sparse Stochastic Gradient Descent (SGD)). We
consider a specialization of Example 2.1 where the gradient ∇θfi(θ;xi) is dependent only on
the non-zero support of xi, which we denote Si = {k : xi,k 6= 0}. Letting θSi = {θk : k ∈ Si},
we can write the gradient as ∇θfi(θSi ;xi) to emphasize this dependence. Examples of problems
with such structure include linear models such as linear regression and logistic regression.
The sparse SGD update is given by

θ
(t+1)
k =

θ
(t)
k − γt∇θfi(t)(θSi(t) ;xi(t))

∣∣
θS
i(t)

=θ
(t)
S
i(t)

if k ∈ Si(t)

θ
(t)
k otherwise

(3.3)

1 Randomness of stochastic algorithms can be encapsulated as a seed for a psuedo-random generator
within Tt, Λt, or X(t).



CHAPTER 3. APPROACH 19

with read and write sets R({xi(t)}) = W ({xi(t)}) = Si(t).
A simple approach for parallelizing sparse SGD would be to apply locking mechanisms.

Specifically, when a processor starts executing transaction t, it begins by requesting locks on
every coordinate in Si(t). After the successful acquisition of all locks, the gradient is computed
and the update is made to θS

i(t)
. Finally, the transaction is completed when all locks are

released.

We point out that the abovementioned simple locking scheme has been previously investi-
gated in [116] and shown to be heavy-handed in comparison with the proposed coordination-
free approach. In Chapter 7 we propose a different concurrency control approach that
amortizes the coordination overhead, and empirically outperforms the coordination-free
approach in sparse settings.

Example 3.2 (Concurrency Control for Marginal Beta-Bernoulli Gibbs Sampler). The
Bernoulli sampling of (2.16) can be expressed as a two-step process

ui ∼ Uniform(0, 1) (3.4)

xi|x1, . . . , xi−1, xi+1, . . . , xn =

{
0 if ui >

1+
∑
i′ 6=i xi′

1+n

1 otherwise
(3.5)

Each sampling (3.5) has read set R({xi}) = X\xi and write set W ({xi}) = {xi}, which could
cause transactions to be executed serially if a naive locking technique were used. However, we
observe that there is a weak dependence on each xi′, in the sense that if we were to flip the
value of xi′, there is only a 1

1+n
probability of the sampling of xi being affected. If we have p

other concurrent transactions, then the probability of sampling xi being affected is p
1+n

, which
is small for p << n.

We will keep the sum N
def
=
∑

i′ 6=i xi′ in our parallel algorithm to be read at the start of
each transaction Tt. While we cannot be sure that the read value of N will be equal to the
true value of N at the point of Tt’s serialization, we assume that the true value is bounded as
N ≤ N ≤ N . Hence, we can assign

xi|x1, . . . , xi−1, xi+1, . . . , xn =


0 if ui(1 + n) > 1 +N

1 if ui(1 + n) < 1 +N

UNK otherwise
(3.6)

where UNK is a placeholder token indicating that a decision cannot be made about xi.
A single process is then designated as the validator, which serializes the transactions and

determines the true value of N . As the validator processes each transaction, it checks that its
assumption on the bounds hold, and that its proposed value of xi is not UNK. If either of
those conditions fail, the transaction is rejected and retried, by either the proposal process or
by the validator itself; otherwise, the proposal is accepted and the transaction is committed,
whereupon the true values of xi and N are updated.



CHAPTER 3. APPROACH 20

The above two examples illustrate our approach for parallelizing iterative transformation
machine learning algorithms. In both cases, we first turn the updates into a set of transactions;
we then examine the semantics of the transactions’ operations to identify potential conflicts.
Depending on the nature of the conflicts and workload, we design concurrency control
mechanisms to produce a serializable parallel algorithm. We emphasize that there is no single
concurrency control mechanism that works for all iterative transformation algorithms. The
validation approach of Example 3.2, for instance, is heavily tied to the sampling equations
of the marginal Beta-Bernoulli Gibbs sampler. This trick could possibly be applied to
other algorithms with discrete sampling (see CC-2g in Chapter 6, for example), but is not
applicable to a problem such as the sparse SGD of Example 3.1.

By design, our parallel algorithms are serializable (or deterministic) and do not require
further analysis of correctness. Work is required, however, to quantify the theoretical
overheads of coordination and prove bounds on speedup. Assumptions on the system and /
or problem are typically made for the sake of the concurrency analysis, but are not necessary
for demonstrating correctness.

3.1 Comparison With Existing Parallel Machine
Learning Approaches

We now compare our approach of using concurrency control with the existing approaches to
parallel machine learning.

Simple BSP approaches

The simple BSP parallelization does not provide serializability except in easy cases, such as
when the change function Λ can be trivially factorized, or when the transformation function
T is commutative, associative, and distributed by Λ. While this covers many important
algorithms [39] including minibatch gradient descent for stochastic optimization, the BSP
abstraction fails when there are computational dependencies between iterations. Furthermore,
despite being ‘embarrassingly parallel’, BSP solutions often do not provide linear speedups in
practice. This failure may be due to poor systems efficiency (as processors have to wait for
the slowest stragglers [112]) or poor statistical efficiency (e.g. larger batch sizes in minibatch
SGD provides diminishing speedups [46, 88]).

Coordination-free approaches

The coordination-free and concurrency control approaches are dual to each other: while
coordination-free approaches are engineered to be fast and then shown to be correct un-
der assumptions, our concurrency control approach is engineered to be correct and then
demonstrated to be fast under assumptions. We reiterate that correctness and concur-
rency are important key objectives of both approaches; the two approaches differ in the



CHAPTER 3. APPROACH 21

choice of how the two objectives are traded-off against each other when dependencies in
the problem and algorithm make it impossible to perfectly attain both simultaneously. The
interactions between transactions leading to poorer approximations of the coordination-free
approach are also points where our concurrency control approach needs to coordinate to
ensure serializability. Therefore, the assumptions needed to demonstrate correctness of the
coordination-free approach are often related to the assumptions we make to prove scalability.
In the worst case, our parallel algorithms reduce to serial executions but maintain correctness
through serializability, whereas coordination-free approaches remain fast but produce poor
approximations.

We remark that despite the ‘naive’ parallelization, coordination-free approaches may not
achieve linear speedups in practice, due to a combination of poor systems efficiencies (e.g.
cache contention [108]) and poorer approximations with greater parallelism. Also, because
coordination-free algorithms are non-deterministic and non-serializable, they are difficult to
debug and test, and challenging to analyze.

GraphLab and PowerGraph

GraphLab [97] and PowerGraph [62] were among the first general machine learning systems to
employ concurrency control ideas from databases. These systems explicitly capture transaction
dependencies in advance through graph structure and then enforce these dependencies
through read / write locks on vertices and edges. In contrast, we typically employ a more
semantic notion of conflict, and generalize beyond simple read-write and write-write conflicts.
Operations in PowerGraph are also restricted to only commutative and associative updates.
Scalability and speedups in both systems are demonstrated empirically without theoretical
analysis.

Petuum

Petuum implements Stale Synchronous Parallel consistency instead of serializability, and
therefore suffers form the same qualitative issues as coordination-free approaches, namely,
results are non-repeatable, and approximations that require separate analysis for each
algorithm. While it is possible to enforce serializability by using a staleness setting of zero,
this reduces Petuum to either BSP or simple locking (as no worker is allowed to read a
parameter if another concurrent worker is computing an update for the parameter). Like
GraphLab and PowerGraph, Petuum uses a read / write notion of conflict.

3.2 Comparison With Transactional Databases
Unlike the traditional concurrency control mechanisms implemented in databases, our work
explores more general notions of conflict than read-write and write-write conflicts. For
example, we are able to parallelize the marginal Beta-Bernoulli Gibbs sampler of Example



CHAPTER 3. APPROACH 22

3.2 because we examined the semantics of the algorithm and exploited the weak dependencies
implicit in the marginal Gibbs sampler. One would not achieve any parallelism if one were to
plug this sampler directly into a standard transactional database.

Specializing the concurrency control approach to machine learning algorithms also affords
us several advantages over traditional transactional databases.

1. Throughput, not latency. We are only concerned with minimizing the total runtime
to complete all transactions, i.e., maximizing throughput, and not with the latency of
each individual transaction. Thus, our algorithms may choose to defer transactions for
later computation if it leads to a faster processing of other transactions.

2. Durability is secondary. The durability of individual transactions is unimportant, since
the input itself serves as a checkpoint from which we may regenerate the algorithm’s
output. This is particularly true for deterministic algorithms, but also for serializable
algorithms, because every transaction ordering leads to a valid outcome.

3. Known workload. All information about the workload, including data, computation,
and read / write sets, are known upfront. Hence, we can choose the concurrency control
technique that caters best to the algorithm’s parallelism. Furthermore, one could
implement algorithm- and data-specific optimizations, such as reordering transactions,
or finding optimal distributions for the computation and storage.



23

Chapter 4

Nonparametric Unsupervised Learning

4.1 Introduction
Much of existing literature on distributed machine learning algorithms has focused on
supervised learning, where the goal is to learn a mapping from datapoints to their respective
labels.

In this chapter1, we focus instead on unsupervised learning, where the goal is to learn
a global latent model and encodings of each data point in the latent model space. A
nonparametric unsupervised learning problem has a potentially infinite-dimensional latent
model that grows with the dataset size. The algorithms we examine in this chapter iteratively
search for the best encoding for each datapoint, growing the model as necessary to obtain
better representations. Such algorithms pose a particular challenge for parallelization: each
encoding is based on the current model, which could potentially be updated by other
concurrent iterations.

We explore the use of optimistic concurrency control (OCC) for distributed nonparametric
unsupervised learning. OCC exploits the infrequency of changes to the global latent model
to allow most iterations to run in parallel without blocking or waiting; potential conflicts are
detected through OCC validation and forced to serialize. Hence, our OCC algorithms are
serializable, and analysis is only necessary to guarantee optimal scaling performance.

We apply OCC to distributed nonparametric unsupervised learning—including but not
limited to clustering—and implement distributed versions of the DP-Means [84], BP-Means
[29], and online facility location (OFL) algorithms. We demonstrate how to analyze OCC in
the context of the DP-Means algorithm and evaluate the empirical scalability of the OCC
approach on all three of the proposed algorithms. The primary contributions of this chapter
are:

1. A concurrency control approach to distributing unsupervised learning algorithms.
1Work done as part of [109].



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 24

2. Reinterpretation of online nonparametric clustering in the form of facility location with
approximation guarantees.

3. Analysis of optimistic concurrency control for unsupervised learning.

4. Application to feature modeling and clustering.

The rest of this chapter is organized as follows. In Section 4.2, we present a general
pattern of nonparametric unsupervised learning algorithms in the iterative transformation
framework. We then discuss the application of OCC to this general pattern in Section
4.3, with three concrete examples of OCC versions of nonparametric unsupervised learning
algorithms. We theoretically analyze the correctness and overheads to scalability in Section
4.4, before empirically evaluating our distributed algorithms in Section 4.5. Related work is
presented in Section 4.6, and we conclude in Section 4.7.

4.2 Nonparametric Unsupervised Learning
Many machine learning problems can be classified as supervised learning problems: given
data {(xi, yi) : i = 1, . . . , N}, the goal of supervised learning is to learn a function g that
minimizes some regularized loss r(g) + 1

N

∑N
i=1 L(g(xi), yi), where L(g(x), y) is a measure of

difference between g(x) and y, and r is a regularizer that prefers simpler functions. This
problem is termed ‘classification’ when the labels {yi} are categorical, and ‘regression’ when
{yi} are ordinal.

In this chapter, we focus instead on unsupervised learning problems, where one is given
data {xi} with the goal of learning some latent structure of the data. The K-means
algorithm provides a paradigm example; here the inferential goal is to find K cluster centers
{µj : j = 1, . . . , K} and an assignment {zi : i = 1, . . . , K} where zi ∈ {1, . . . , K} such
that each center µj is representative of its cluster Cj = {xi : zi = j}, i.e., µj = 1

|Cj |
∑

xi∈Cj xi

and zi = arg minj ||xi − µj||22.
More generally, in unsupervised learning, one is given data {xi} and seeks

to learn a global latent model M and individual encodings {zi} to minimize
r(M) + 1

N

∑N
i=1 L(Decode(M, zi), xi). Here, Decode(M, zi) generates a representa-

tion for xi using the model M and encoding zi; for example, the decoder for K-means is
Decode({µj}, zi) = µzi . As before, L(·, ·) is a measure of difference, and r is a regularizer.

The algorithms we examine in this chapter have the general pattern given in Algorithm
4.1, iterating over datapoints to generate encodings based on the current model (Line 3). The
algorithm then checks (Line 4) that the encoding zi is a sufficiently good representation of
the datapoint xi; if not, it extends the model M (Line 5) so as to obtain a better encoding
(Line 7).

The general nonparametric unsupervised learning pattern Algorithm 4.1 can be cast as



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 25

Algorithm 4.1: Nonparametric Unsupervised Learning
Input: data {xi : i = 1, . . . , N}

1 while not converged do
2 for i = 1 to N do
3 zi ← Encode(M, xi)
4 if not isGoodRepresentation(Decode(M, zi), xi) then
5 Mnew ← ExtendModel(M, zi, xi)
6 M←M ∪Mnew

7 zi ← Encode(M, xi)

8 M← UpdateModel(M, {zi}, {xi})
Output: M, {zi : i = 1, . . . , N}

an iterative algorithm, using the change function Λi defined as

z′i = Encode(M, xi)

[Λi((M, zi), xi)]M =

{
M if isGoodRepresentation(Decode(M, z′i), xi)

M ∪ExtendModel(M, z′i, xi) otherwise

[Λi((M, zi), xi)]zi = Encode([Λi((M, zi), xi)]M, xi)

and the transformation function Ti as the identity function.

4.3 Optimistic Concurrency Control for Nonparametric
Unsupervised Learning

The challenge of parallelizing Algorithm 4.1 lies in the fact that each iteration (transaction)
depends on the model M but could also potentially extend M. We make two key observations
that enable a scalable parallelization: first, as the algorithm progresses, M is transformed
into an increasingly better representation, and thus ExtendModel is infrequently triggered;
secondly, if a transaction’s isGoodRepresentation test passes, it may be safely committed
without affecting serializability, since it does not alter the shared global model M. Our
OCC-inspired parallelization exploits these facts to allow most transactions to proceed without
blocking or waiting, only serializing them infrequently when model extensions are proposed.
This general approach is encapsulated in Algorithm 4.2. Most transactions complete upon
finding a good encoding (Line 4); some transactions propose extensions to the model and need
to be validated (Line 6). The validation is done serially (Line 7), repeating the transaction’s
work using the latest model.

Algorithm 4.2 is serializable, and also repeatable if we assume datapoints are processed in
order within the validation loop (Line 7). However, Algorithm 4.2 reorders transactions to
minimize blocking and waiting, and hence is not deterministic. A deterministic execution can
be obtained with additional overhead, as we show in Algorithm 4.3. In the first parallel loop
(Line 4), all datapoints are processed in parallel to identify potential model extensions which
are then serially validated (Line 8). The second parallel loop (Line 13) then completes the



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 26

Algorithm 4.2: OCC Serializable Nonparametric Unsupervised Learning
Input: data {xi : i = 1, . . . , N}

1 while not converged do
2 V = ∅
3 for i = 1 to N do in parallel
4 zi ← Encode(M, xi)
5 if not isGoodRepresentation(Decode(M, zi), xi) then
6 V ← V ∪ {i} // Add to V for validation

// Serially validate
7 for i ∈ V do
8 zi ← Encode(M, xi)
9 if not isGoodRepresentation(Decode(M, zi), xi) then

10 Mnew ← ExtendModel(M, zi, xi)
11 M←M ∪Mnew

12 zi ← Encode(M, xi)

13 M← UpdateModel(M, {zi}, {xi})
Output: M, {zi : i = 1, . . . , N}

encoding of each zi using the updated model comprising of all model extensions up to time
i. We assume that Encode is linear in M, i.e., there exists a merge operator t such that
Encode(M∪M′, x) = Encode(M, x)tEncode(M′, x), which allows us to reuse work and
write Line 15 instead of zi ← Encode(M0 ∪M+

i , xi).

Algorithm 4.3: OCC Deterministic Nonparametric Unsupervised Learning
Input: data {xi : i = 1, . . . , N}

1 while not converged do
2 V = ∅
3 M0 ←M

// Check for model extension proposals
4 for i = 1 to N do in parallel
5 zi ← Encode(M, xi)
6 if not isGoodRepresentation(Decode(M, zi), xi) then
7 V ← V ∪ {i} // Add to V for validation

// Serially validate model extensions
8 for i ∈ V do
9 zi ← Encode(M, xi)

10 if not isGoodRepresentation(Decode(M, zi), xi) then
11 Mnew

i ← ExtendModel(M, zi, xi)
12 M←M ∪Mnew

i

// Commit transactions with correct models
13 for i = 1 to N do in parallel
14 M+

i ←
⋃
i′≤iM

new
i′

15 zi ← zi tEncode(M+
i , xi)

16 M← UpdateModel(M, {zi}, {xi})
Output: M, {zi : i = 1, . . . , N}

In the sequel, we will present and analyze only the serializable versions, omitting the
obvious extension to deterministic algorithms.



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 27

Next, we present concrete OCC parallelization for three nonparametric unsupervised
learning algorithms from recent work, which have been obtained by taking Bayesian non-
parametric (BNP) models based on combinatorial stochastic processes such as the Dirichlet
process, the beta process, and hierarchical versions of these processes, and subjecting them
to small-variance asymptotics where the posterior probability under the BNP model is
transformed into a cost function that can be optimized [29]. The algorithms considered to
date in this literature have been developed and analyzed in the serial setting; our goal is to
explore distributed algorithms for optimizing these cost functions that preserve the structure
and analysis of their serial counterparts.

OCC-DP-means

Algorithm 4.4: Serial DP-means
Input: data {xi}Ni=1, threshold α

1 C ← ∅
2 while not converged do
3 for i = 1 to N do
4 µ∗ ← argminµ∈C ‖xi − µ‖
5 if ‖xi − µ∗‖ > α then
6 zi ← xi
7 C ← C ∪ xi // New cluster

8 else
9 zi ← µ∗ // Use nearest

10 for µ ∈ C do // Recompute Centers
11 µ← Mean({xi | zi = µ})

Output: Accepted cluster centers C

Algorithm 4.5: DPValidate
Input: Set of proposed cluster centers Ĉ

1 C ← ∅
2 for x ∈ Ĉ do
3 µ∗ ← argminµ∈C ‖x− µ‖
4 if ‖xi − µ∗‖ < α then // Reject
5 x ← µ∗ // Rollback Assgs

6 else
7 C ← C ∪ x // Accept

Output: Accepted cluster centers C

Algorithm 4.6: Parallel DP-means
Input: data {xi}Ni=1, threshold α
Input: Epoch size b and P processors
Input: Partitioning B(p, t) of data {xi}i∈B(p,t) to

processor-epochs where b = |B(p, t)|
1 C ← ∅
2 while not converged do
3 for epoch t = 1 to N/(Pb) do
4 Ĉ ← ∅ // New candidate centers
5 for p ∈ {1, . . . , P} do in parallel

// Process local data
6 for i ∈ B(p, t) do
7 µ∗ ← argminµ∈C ‖xi − µ‖

// Optimistic Transaction
8 if ‖xi − µ∗‖ > α then
9 zi ← xi

10 Ĉ ← Ĉ ∪ xi
11 else
12 zi ← µ∗ // Always Safe

// Serially validate clusters
13 C ← C ∪ DPValidate(Ĉ)
14 for µ ∈ C do // Recompute Centers
15 µ← Mean({xi | zi = µ})

Output: Accepted cluster centers C

We first consider the DP-means algorithm (Algorithm 4.4) introduced by [84]. Like the
K-means algorithm, DP-Means alternates between updating the cluster assignment zi for
each point xi and recomputing the centroids C = {µk}Kk=1 associated with each clusters.
However, DP-Means differs in that the number of clusters is not fixed a priori. Instead, if the
distance from a given data point to all existing cluster centroids is greater than a parameter
α, then a new cluster is created. While the second phase is trivially parallel, the process



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 28

of introducing clusters in the first phase is inherently serial. However, clusters tend to be
introduced infrequently, and thus DP-Means provides an opportunity for OCC.

In Algorithm 4.6 we present an OCC parallelization of the DP-Means algorithm in which
each iteration of the serial DP-Means algorithm is divided into N/(Pb) bulk-synchronous
epochs. The data is evenly partitioned {xi}i∈B(p,t) across processor-epochs into blocks of
size b = |B(p, t)|. During each epoch t, each processor p evaluates the cluster membership
of its assigned data {xi}i∈B(p,t) using the cluster centers C from the previous epoch and
optimistically proposes a new set of cluster centers Ĉ. At the end of each epoch the proposed
cluster centers, Ĉ, are serially validated using Algorithm 4.5. The validation process accepts
cluster centers that are not covered by (i.e., not within α of) already accepted cluster centers.
When a cluster center is rejected we update its reference to point to the already accepted
center, thereby correcting the original point assignment.

OCC Facility Location

Algorithm 4.7: Parallel OFL (serializ-
able)

Input: Same as DP-Means
1 for epoch t = 1 to N/(Pb) do Ĉ ← ∅
2 for p ∈ {1, . . . , P} do in parallel
3 for i ∈ B(p, t) do
4 d← minµ∈C ‖xi − µ‖
5 with probability min

{
d2, α2

}
/α2

6 Ĉ ← Ĉ ∪ (xi, d)

7 C ← C ∪ OFLValidate(Ĉ)
Output: Accepted cluster centers C

Algorithm 4.8: OFLValidate (serializ-
able)

Input: Set of proposed cluster centers Ĉ
1 C ← ∅
2 for (x, d) ∈ Ĉ do
3 d∗ ← minµ∈C ‖x− µ‖
4 with probability min

{
d∗2, d2

}
/d2

5 C ← C ∪ x // Accept

Output: Accepted cluster centers C

The DP-Means objective turns out to be equivalent to the classic Facility Location (FL)
objective:

J(C) =
∑
x∈X

min
µ∈C
‖x− µ‖2 + α2|C|,

which selects the set of cluster centers (facilities) µ ∈ C that minimizes the shortest distance
‖x− µ‖ to each point (customer) x as well as the penalized cost of the clusters α2 |C|. However,
while DP-Means allows the clusters to be arbitrary points (e.g., C ∈ RD), FL constrains
the clusters to be points C ⊆ F in a set of candidate locations F . Hence, we obtain a link
between combinatorial Bayesian models and FL allowing us to apply algorithms with known
approximation bounds to Bayesian inspired nonparametric models. As we will see in Section
4.4, our OCC algorithm provides constant-factor approximations for both FL and DP-means.

Facility location has been studied intensely. We build on the online facility location
(OFL) algorithm described by Meyerson [102]. The OFL algorithm processes each data



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 29

Algorithm 4.9: Parallel OFL (deter-
ministic)

Input: Same as DP-Means
Input: {ui : i = 1, . . . , N} where

ui ∼ Uniform(0, 1)

1 for epoch t = 1 to N/(Pb) do Ĉ ← ∅
2 for p ∈ {1, . . . , P} do in parallel
3 for i ∈ B(p, t) do
4 d← minµ∈C ‖xi − µ‖
5 if ui ≤ min

{
d2, α2

}
/α2 then

6 Ĉ ← Ĉ ∪ (xi, d)

7 C ← C ∪ OFLValidate(Ĉ)
Output: Accepted cluster centers C

Algorithm 4.10: OFLValidate (deter-
ministic)

Input: Set of proposed cluster centers Ĉ
1 C ← ∅
2 for (x, d) ∈ Ĉ do
3 d∗ ← minµ∈C ‖x− µ‖
4 if ui ≤ min

{
d∗2, α2

}
/α2 then

5 C ← C ∪ x // Accept

Output: Accepted cluster centers C

point x serially in a single pass by either adding x to the set of clusters with probability
min(1,minµ∈C ‖x− µ‖2 /α2) or assigning x to the nearest existing cluster. Using OCC
we are able to construct a distributed OFL algorithm (Algorithm 4.7) which is nearly
identical to the OCC-DP-means algorithm (Algorithm 4.6) but which provides strong
approximation bounds. The OCC-OFL algorithm differs only in that clusters are introduced
and validated stochastically—the validation process ensures that the new clusters are accepted
with probability equal to the serial algorithm.

OCC-BP-means

BP-means is an algorithm for learning collections of latent binary features, providing a way
to define groupings of data points that need not be mutually exclusive or exhaustive like
clusters.

As with serial DP-means, there are two phases in serial BP-means (Algorithm 4.11).
In the first phase, each data point xi is labeled with binary assignments from a collection
of features (zik = 0 if xi doesn’t belong to feature k; otherwise zik = 1) to construct a
representation xi ≈

∑
k zikfk. In the second phase, parameter values (the feature means

fk ∈ Ĉ) are updated based on the assignments. The first step also includes the possibility of
introducing an additional feature. While the second phase is trivially parallel, the inherently
serial nature of the first phase combined with the infrequent introduction of new features
points to the usefulness of OCC in this domain.

The OCC parallelization for BP-means follows the same basic structure as OCC-DP-
means. Each transaction operates on a data point xi in two phases. In the first, analysis
phase, the optimal representation

∑
k zikfk is found. If xi is not well represented (i.e.,

‖xi −
∑

k zikfk‖ > α), the difference is proposed as a new feature in the second validation
phase. At the end of epoch t, the proposed features {fnewi } are serially validated to obtain
a set of accepted features C̃. For each proposed feature fnewi , the validation process first



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 30

finds the optimal representation fnewi ≈∑fk∈C̃ zikfk using newly accepted features. If fnewi is
not well represented, the difference fnewi −∑fk∈C̃ zikfk is added to C̃ and accepted as a new
feature.

Finally, to update the feature means, let F be the K-row matrix of feature means.
The feature means update F ← (ZTZ)−1ZTX can be evaluated as a single transaction by
computing the sums ZTZ =

∑
i ziz

T
i (where zi is a K × 1 column vector so zizTi is a K ×K

matrix) and ZTX =
∑

i zix
T
i in parallel.

Here we show the Serial BP-Means algorithm (Algorithm 4.11) and a parallel implemen-
tation of BP-means using the OCC pattern (Algorithm 4.12 and Algorithm 4.13), similar to
OCC-DP-means. Instead of proposing new clusters centered at the data point xi, in OCC-
BP-means we propose features fnewi that allow us to obtain perfect representations of the
data point. The validation process continues to improve on the representation xi ≈

∑
k zikfk

by using the most recently accepted features fk′ ∈ Ĉ, and only accepts a proposed feature if
the data point is still not well-represented.

Algorithm 4.11: Serial BP-means
Input: data {xi}Ni=1, threshold α

1 Initialize zi1 = 1, f1 = N−1∑
i xi, K = 1

2 while not converged do
3 for i = 1 to N do
4 for k = 1 to K do
5 Set zik to minimize ‖xi −

∑K
j=1 zijfj‖22

6 if ‖xi −
∑K
j=1 zijfi,j‖22 > α2 then

7 Set K ← K + 1

8 Create feature fK ← xi −
∑K
k=1 zikfj

9 Assign ziK ← 1 (and ziK ← 0 for j 6= i)

10 F ← (ZTZ)−1ZTX

4.4 Analysis of Correctness and Scalability
We now establish the correctness and scalability of the proposed OCC algorithms. In contrast
to the coordination-free pattern in which scalability is trivial and correctness often requires
strong assumptions or holds only in expectation, the OCC pattern leads to simple proofs
of correctness and challenging scalability analysis. In many cases it is preferable to have
algorithms that are correct and probably fast rather than fast and possibly correct.

We first establish serializability:

Theorem 4.1 (Serializability). The distributed DP-means, OFL, and BP-means algorithms
are serially equivalent to DP-means, OFL and BP-means, respectively.

The proof (Appendix 4.A) of Theorem 4.1 is relatively straightforward and is obtained by
constructing a permutation function that describes an equivalent serial execution for each



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 31

Algorithm 4.12: Parallel BP-means
Input: data {xi}Ni=1, threshold α
Input: Epoch size b and P processors
Input: Partitioning B(p, t) of data {xi}i∈B(p,t) to processor-epochs where b = |B(p, t)|

1 C ← ∅
2 while not converged do
3 for epoch t = 1 to N/(Pb) do
4 Ĉ ← ∅ // New candidate features
5 for p ∈ {1, . . . , P} do in parallel

// Process local data
6 for i ∈ B(p, t) do

// Optimistic Transaction
7 for fk ∈ C do
8 Set zik to minimize ‖xi −

∑
j zijfj‖22

9 if ‖xi −
∑
j zijfj‖22 > α2 then

10 fnewi ← xi −
∑
j zijfj

11 zi ← zi⊕ fnewi

12 Ĉ ← Ĉ ∪ fnewi

// Serially validate features
13 C ← C ∪ BPValidate(Ĉ)
14 Compute ZTZ =

∑
i ziz

T
i and ZTX =

∑
i zix

T
i in parallel

15 Re-estimate features F ← (ZTZ)−1ZTX

Output: Accepted feature centers C

Algorithm 4.13: BPValidate
Input: Set of proposed feature centers Ĉ

1 C ← ∅
2 for fnew ∈ Ĉ do
3 for fk′ ∈ C do
4 Set zik′ to minimize ‖fnew −∑fj∈C zijfj‖

2
2

5 if ‖fnew −∑fj∈C zijfj‖
2
2 > α2 then

6 C ← C ∪
{
fnew −∑fj∈C zijfj

}
7 fnew ← {zij}fj∈C

Output: Accepted feature centers C

distributed execution. This proof technique can easily be extended to many other machine
learning algorithms, as we will show in later chapters.

Serializability allows us to easily extend important theoretical properties of the serial
algorithm to the distributed setting. For example, by invoking serializability, we can establish
the following result for the OCC version of the online facility location (OFL) algorithm:

Lemma 4.2. If the data is randomly ordered, then the OCC-OFL algorithm provides a
constant-factor approximation for the DP-means objective. If the data is adversarially ordered,
then OCC-OFL provides a log-factor approximation to the DP-means objective.



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 32

The proof (Appendix 4.A) of Lemma 4.2 is first derived in the serial setting then extended
to the distributed setting through serializability. In contrast to divide-and-conquer schemes,
whose approximation bounds commonly depend multiplicatively on the number of levels [103],
Lemma 4.2 is unaffected by distributed processing and has no communication or coarsening
tradeoffs. Furthermore, to retain the same factors as a batch algorithm on the full data,
divide-and-conquer schemes need a large number of preliminary centers at lower levels [103,
4]. In that case, the communication cost can be high, since all proposed clusters are sent at
the same time, as opposed to the OCC approach. We address the communication overhead
(the number of rejections) for our scheme next.

Scalability The scalability of the OCC algorithms depends on the number of transactions
that are rejected during validation (i.e., the rejection rate). While a general scalability analysis
can be challenging, it is often possible to gain some insight into the asymptotic dependencies
by making simplifying assumptions. In contrast to the coordination-free approach, we can
still safely apply OCC algorithms in the absence of a scalability analysis or when simplifying
assumptions do not hold.

To illustrate the techniques employed in OCC scalability analysis we study the DP-Means
algorithm. The scalability limiting factor of the DP-Means algorithm is determined by the
number of points that must be serially validated. In the following theorem we show that the
communication cost only depends on the number of clusters and processing resources and
does not directly depend on the number of data points. The proof is in App. 4.B.

Theorem 4.3 (DP-Means Scalability). Assume N data points are generated iid to form
a random number (KN) of well-spaced clusters of diameter α: α is an upper bound on the
distances within clusters and a lower bound on the distance between clusters. Then the
expected number of serially validated points is bounded above by Pb+E [KN ] for P processors
and b points per epoch.

Under the separation assumptions of the theorem, the number of clusters present in N
data points, KN , is exactly equal to the number of clusters found by DP-Means in N data
points; call this latter quantity kN . The experimental results in Figure 4.1 suggest that the
bound of Pb+ kN may hold more generally beyond the assumptions above. Since the master
must process at least kN points, the overhead caused by rejections is Pb and independent of
N .

To analyze the total running time, we note that after each of the N/(Pb) epochs the
master and workers must communicate. Each worker must process N/P data points,
and the master sees at most kN + Pb points. Thus, the total expected running time is
O(N/(Pb) +N/P + Pb).



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 33

4.5 Evaluation
For our experiments, we generated synthetic data for clustering (DP-means and OFL)
and feature modeling (BP-means). The cluster and feature proportions were generated
nonparametrically as described below. All data points were generated in R16 space. The
threshold parameter α was fixed at 1.

Clustering: The cluster proportions and indicators were generated simultaneously using
the stick-breaking procedure for Dirichlet processes—‘sticks’ are ‘broken’ on-the-fly to generate
new clusters as and when necessary.2 For our experiments, we used a fixed concentration
parameter θ = 1. Cluster means were sampled µk ∼ N(0, I16), and data points were generated
at xi ∼ N(µzi ,

1
4
I16).

Feature modeling: We use the stick-breaking procedure of [107] to generate feature
weights. Unlike with Dirichlet processes, we are unable to perform stick-breaking on-the-fly
with Beta processes. Instead, we generate enough features so that with high probability
(> 0.9999) the remaining non-generated features will have negligible weights (< 0.0001). The
concentration parameter was also fixed at θ = 1. We generated feature means fk ∼ N(0, I16)
and data points xi ∼ N(

∑
k zikfk,

1
4
I16).

Simulated experiments

(a) OCC-DP-means (b) OCC-OFL (c) OCC-BP-means

Figure 4.1: Simulated distributed DP-means, OFL and BP-means: expected number of data points proposed
but not accepted as new clusters / features is independent of size of data set.

To test the efficiency of our algorithms, we simulated the first iteration (one complete pass
over all the data, where most clusters / features are created and thus greatest coordination is
needed) of each algorithm in MATLAB. The number of data points, N , was varied from 256
to 2560 in intervals of 256. We also varied Pb, the number of data points processed in one
epoch, from 16 to 256 in powers of 2. For each value of N and Pb, we empirically measured
kN , the number of accepted clusters / features, and MN , the number of proposed clusters

2We chose to use stick-breaking procedures because the Chinese restaurant and Indian buffet processes
are inherently sequential. Stick-breaking procedures can be distributed by either truncation, or using OCC!



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 34

/ features. This was repeated 400 times to obtain the empirical average Ê[MN − kN ], the
number of rejections.

For OCC-DP-means, we observe Ê[MN − kN ] is bounded above by Pb (Fig. 4.1a), and
that this bound is independent of the data set size, even when the assumptions of Thm 4.3 are
violated. (We also verified that similar empirical results are obtained when the assumptions
are not violated; see Appendix 4.B.) As shown in Fig. 4.1b and Fig. 4.1c the same behavior
is observed for the OCC-OFL and OCC-BP-means algorithms.

Distributed implementation and experiments

We also implemented the distributed algorithms in Spark [139], an open-source cluster
computing system. The DP-means and BP-means algorithms were bootstrapped by pre-
processing a small number of data points (1/16 of the first Pb points)—this reduces the
number of data points sent to the master on the first epoch, while still preserving serializability
of the algorithms. Our Spark implementations were tested on Amazon EC2 by processing
a fixed data set on 1, 2, 4, 8 m2.4xlarge (memory-optimized, quadruple extra large, with 8
virtual cores and 64.8GiB memory) instances.

Ideally, to process the same amount of data, an algorithm and implementation with
perfect scaling would take half the runtime on 8 machines as it would on 4, and so on. The
plots in Figure 4.2 shows this comparison by dividing all runtimes by the runtime on one
machine.

DP-means: We ran the distributed DP-means algorithm on 227 ≈ 134M data points,
using α = 2. The block size b was chosen to keep Pb = 223 ≈ 8M constant. The algorithm
was run for 5 iterations (complete pass over all data in 16 epochs). We were able to get
perfect scaling (Figure 4.2a) in all but the first iteration, when the master has to perform the
most synchronization of proposed centers.

OFL: The distributed OFL algorithm was run on 220 ≈ 1M data points, using α =
2. Unlike DP-means and BP-means, we did not perform bootstrapping, as it would not
significantly improve speed-up. Also, OFL is a single pass (one iteration) algorithm. The
block size b was chosen such that Pb = 216 ≈ 66K data points are processed each epoch,
which gives us 16 epochs. Figure 4.2b shows that we get no scaling in the first epoch, where
all the work is performed by the master processing all Pb data points. In later epochs, the
master’s workload decreases as fewer data points are proposed, but the workers’ workload
increases as the total number of centers increases. Thus, scaling improves in the later epochs.

BP-means: Distributed BP-means was run on 223 ≈ 8M data points, with α = 1; block
size was chosen such that Pb = 219 ≈ 0.5M is constant. Five iterations were run, with 16
epochs per iteration. As with DP-means, we were able to achieve nearly perfect scaling; see
Figure 4.2c.



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 35

(a) OCC-DP-means (b) OCC-OFL (c) OCC-BP-means

Figure 4.2: Normalized runtime for distributed algorithms. Runtime of each iteration / epoch is divided
by that using 1 machine (P = 8). Ideally, the runtime with 2, 4, 8 machines (P = 16, 32, 64) should be
respectively 1/2, 1/4, 1/8 of the runtime using 1 machine. OCC-DP-means and BP-means obtain nearly
perfect scaling for all iterations. OCC-OFL rejects a lot initially, but quickly gets better in later epochs.

4.6 Additional Related Work
Others have proposed alternatives to locking and coordination-free parallelism for machine
learning algorithm design. Newman [106] proposed transforming the underlying model
to expose additional parallelism while preserving the marginal posterior. However, such
constructions can be challenging or infeasible and many hinder mixing or convergence.
Likewise, Lovell [96] proposed a reparameterization of the underlying model to expose
additional parallelism through conditional independence.

Additional work similar in spirit to ours using OCC-like techniques includes [49] who
proposed an approximate parallel sampling algorithm for the IBP which is made exact by
introducing an additional Metropolis-Hastings step, and [136] who proposed a look-ahead
strategy in which future samples are computed optimistically based on the likely outcomes of
current samples.

A great amount of work addresses scalable clustering algorithms [48, 40, 53]. Many
algorithms with provable approximation factors are streaming algorithms [103, 124, 33] and
inherently use hierarchies, or related divide-and-conquer approaches [4]. The approximation
factors in such algorithms multiply across levels [103], and demand a careful tradeoff be-
tween communication and approximation quality that is obviated in our framework. Other
approaches use core sets [12, 55]. A lot of methods [4, 13, 124] first collect a set of centers
and then re-cluster them, and therefore need to communicate all intermediate centers. Our
approach avoids that, since a center causes no rejections in the epochs after it is established:
the rejection rate does not grow with K. Still, as our examples demonstrate, our OCC
framework can easily integrate and exploit many of the ideas in the cited works.



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 36

4.7 Discussion
In this chapter we have shown how optimistic concurrency control can inspire the design
of distributed machine learning algorithms, preserving correctness, in most cases at a small
cost. We established the equivalence of our distributed OCC DP-means, OFL and BP-
means algorithms to their serial counterparts, thus preserving their theoretical properties.
In particular, the strong approximation guarantees of serial OFL translate immediately
to the distributed algorithm. Our theoretical analysis ensures OCC-DP-means achieves
high parallelism without sacrificing correctness. We implemented and evaluated all three
OCC algorithms on a distributed computing platform and demonstrate strong scalability in
practice.

4.A Proof of Serializability of Distributed Algorithms

Proof of Theorem 4.1 for DP-means

We note that both distributed DP-means and BP-means iterate over z-updates and cluster /
feature means re-estimation until convergence. In each iteration, distributed DP-means and
BP-means perform the same set of updates as their serial counterparts. Thus, it suffices to
show that each iteration of the distributed algorithm is serially equivalent to an iteration of
the serial algorithm.

Consider the following ordering on transactions:

• Transactions on individual data points are ordered before transactions that re-estimate
cluster / feature means are ordered.

• A transaction on data point xi is ordered before a transaction on data point xj if

1. xi is processed in epoch t, xj is processed in epoch t′, and t < t′

2. xi and xj are processed in the same epoch, xi and xj are not sent to the master
for validation, and i < j

3. xi and xj are processed in the same epoch, xi is not sent to the master for validation
but xj is

4. xi and xj are processed in the same epoch, xi and xj are sent to the master for
validation, and the master serially validates xi before xj

We show below that the distributed algorithms are equivalent to the serial algorithms
under the above ordering, by inductively demonstrating that the outputs of each transaction
is the same in both the distributed and serial algorithms.

Denote the set of clusters after the t epoch as Ct.
The first transaction on xj in the serial ordering has C0 as its input. By definition of our

ordering, this transaction belongs the first epoch, and is either (1) not sent to the master for



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 37

validation, or (2) the first data point validated at the master. Thus in both the serial and
distributed algorithms, the first transaction either (1) assigns xj to the closest cluster in C0 if
minµk∈C0 ‖xj − µk‖ < α, or (2) creates a new cluster with center at xj otherwise.

Now consider any other transaction on xj in epoch t.

Case 1: xj is not sent to the master for validation.

In the distributed algorithm, the input to the transaction is Ct−1. Since the transaction
is not sent to the master for validation, we can infer that there exists µk ∈ Ct−1 such
that ‖xj − µk‖ < α.

In the serial algorithm, xj is ordered after any xi if (1) xi was processed in an earlier
epoch, or (2) xi was processed in the same epoch but not sent to the master (i.e. does
not create any new cluster) and i < j. Thus, the input to this transaction is the set
of clusters obtained at the end of the previous epoch, Ct−1, and the serial algorithm
assigns xj to the closest cluster in Ct−1 (which is less than α away).

Case 2: xj is sent to the master for validation.

In the distributed algorithm, xj is not within α of any cluster center in Ct−1. Let Ĉt be
the new clusters created at the master in epoch t before validating xj. The distributed
algorithm either (1) assigns xj to µk∗ = argminµk∈Ĉt ‖xj − µk‖ if ‖xj − µk‖ ≤ α, or (2)
creates a new cluster with center at xj otherwise.

In the serial algorithm, xj is ordered after any xi if (1) xi was processed in an earlier
epoch, or (2) xi was processed in the same epoch t, but xi was not sent to the master (i.e.
does not create any new cluster), or (3) xi was processed in the same epoch t, xi was
sent to the master, and serially validated at the master before xj . Thus, the input to the
transaction is Ct−1 ∪ Ĉt. We know that xj is not within α of any cluster center in Ct−1,
so the outcome of the transaction is either (1) assign xj to µk∗ = argminµk∈Ĉt ‖xj − µk‖
if ‖xj − µk‖ ≤ α, or (2) create a new cluster with center at xj otherwise. This is exactly
the same as the distributed algorithm.

Proof of Theorem 4.1 for BP-means

The serial ordering for BP-means is exactly the same as that in DP-means. The proof for the
serializability of BP-means follows the same argument as in the DP-means case, except that
we perform feature assignments instead of cluster assignments.

Proof of Theorem 4.1 for OFL

Here we prove Theorem 4.1 that the distributed OFL algorithm is equivalent to a serial
algorithm.

(Theorem 4.1, OFL). We show that with respect to the returned centers (facilities), the
distributed OFL algorithm is equivalent to running the serial OFL algorithm on a particular



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 38

Processor 1 Processor 2 Processor P
B(1, 1) B(1, 2) . . . B(2, 1) B(2, 2) . . . B(P, 1) B(P, 2) . . .

Serial
B(1, 1) B(2, 1) . . . B(P, 1) B(1, 2) B(2, 2) . . . . . . B(P, NPb)

Figure 4.3: Illustration of distributed and serial order of blocks B(i, t) of length b for OFL.
The order within each block is maintained. Block B(i, t) is processed in epoch t by processor
pi.

permutation of the input data. We assume that the input data is randomly permuted and the
indices i of the points xi refer to this permutation. We assign the data points to processors
by assigning the first b points to processor p1, the next b points to processor p2, and so
on, cycling through the processors and assigning them batches of b points, as illustrated in
Figure 4.3. In this respect, our ordering is generic, and can be adapted to any assignments of
points to processors. We assume that each processor visits its points in the order induced by
the indices, and likewise the master processes the points of an epoch in that order.

For the serial algorithm, we will use the following ordering of the data: Point xi precedes
point xj if

1. xi is processed in epoch t and xj is processed in epoch t′, and t < t′, or

2. xi and xj are processed in the same epoch and i < j.

If the data is assigned to processors as outlined above, then the serial algorithm will process
the points exactly in the order induced by the indices. That means the set of points processed
in any given epoch t is the same for the serial and distributed algorithm. We denote by Ct
the global set of validated centers collected by OCC-OFL up to (including) epoch t, and by
C̃i the set of centers collected by the serial algorithm up to (including) point xi.

We will prove the equivalence inductively.

Epoch t = 1. In the first epoch, all points are sent to the master. These are the first
Pb points. Since the master processes them in the same order as the serial algorithm, the
distributed and serial algorithms are equivalent.

Epoch t > 1. Assume that the algorithms are equivalent up to point xi−1 in the serial
order, and point xi is processed in epoch t. By assumption, the set Ct−1 of global facilities for
the distributed algorithm is the same as the set C̃(t−1)Pb collected by the serial algorithm up
to point x(t−1)Pb. For notational convenience, let D(xi, Ct) = minµ∈Ct D(xi, µ) be the distance
of xi to the closest global facility.

The essential issue to prove is the following claim:

Claim 4.4. If the algorithms are equivalent up to point xi−1, then the probability of xi
becoming a new facility is the same for the distributed and serial algorithm.



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 39

The serial algorithm accepts xi as a new facility with probability min{1, D(xi, C̃i−1)/α2}.
The distributed algorithm sends xi to the master with probability min{1, D(xi, Ct−1)}. The
probability of ultimate acceptance (validation) of xi as a global facility is the probability of
being sent to the master and being accepted by the master. In epoch t, the master receives
a set of candidate facilities with indices between (t− 1)Pb+ 1 and tPb. It processes them
in the order of their indices, i.e., all candidates xj with j < i are processed before i. Hence,
the assumed equivalence of the algorithms up to point xi−1 implies that, when the master
processes xi, the set Ct−1 ∪ Ĉ equals the set of facilities C̃i−1 of the serial algorithm. The
master consolidates xi as a global facility with probability 1 if D(xi, C̃i−1 ∪ Ĉ) > α2 and with
probability D(xi, C̃i−1 ∪ Ĉ)/D(xi, Ct−1) otherwise.

We now distinguish two cases. If the serial algorithm accepts xi because D(xi, C̃i−1) ≥ α2,
then for the distributed algorithm, it holds that

D(xi, Ct−1) ≥ D(xi, Ct−1 ∪ Ĉ) = D(xi, C̃i−1) ≥ α2 (4.1)

and therefore the distributed algorithm also always accepts xi.
Otherwise, if D(xi, C̃i−1) < α2, then the serial algorithm accepts with probability

D(xi, C̃i−1)/α2. The distributed algorithm accepts with probability

P(xi accepted) = P(xi sent to master ) · P(xi accepted at master) (4.2)

=
D(xi, Ct−1)

α2
· D(xi, C̃i−1 ∪ Ĉ)

D(xi, Ct−1)
(4.3)

=
D(xi, C̃i−1)

α2
. (4.4)

This proves the claim.
The claim implies that if the algorithms are equivalent up to point xi−1, then they are

also equivalent up to point xi. This proves the theorem.

Proof of Lemma 4.2 (Approximation Bound)

We begin by relating the results of facility location algorithms and DP-means. Recall that
the objective of DP-means and FL is

J(C) =
∑
x∈X

min
µ∈C
‖x− µ‖2 + α2|C|. (4.5)

In FL, the facilities may only be chosen from a pre-fixed set of centers (e.g., the set of all data
points), whereas DP-means allows the centers to be arbitrary, and therefore be the empirical
mean of the points in a given cluster. However, choosing centers from among the data points
still gives a factor-2 approximation. Once we have established the corresponding clusters,
shifting the means to the empirical cluster centers never hurts the objective. The following
proposition has been a useful tool in analyzing clustering algorithms:



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 40

Proposition 4.5. Let C∗ be an optimal solution to the DP-means problem (4.5), and let CFL

be an optimal solution to the corresponding FL problem, where the centers are chosen from
the data points. Then

J(CFL) ≤ 2J(C∗).
Proof. (Proposition 4.5) It is folklore that Proposition 4.5) holds for the K-means objective,
i.e.,

min
C⊆X,|C|=k

n∑
i=1

min
µ∈C
‖xi − µ‖2 ≤ 2 min

C⊆X

n∑
i=1

min
µ∈C
‖xi − µ‖2. (4.6)

In particular, this holds for the optimal number K∗ = |C∗|. Hence, it holds that

J(CFL) ≤ min
C⊆X,|C|=K∗

n∑
i=1

min
µ∈C
‖xi − µ‖2 + α2K∗ ≤ 2J(C∗). (4.7)

With this proposition at hand, all that remains is to prove an approximation factor for
the FL problem.

Proof. (Lemma 4.2) First, we observe that the proof of Theorem 4.1 implies that, for any
random order of the data, the OCC and serial algorithm process the data in exactly the same
way, performing ultimately exactly the same operations. Therefore, any approximation factor
that holds for the serial algorithm straightforwardly holds for the OCC algorithm too.

Hence, it remains to prove the approximation factor of the serial algorithm. Let
CFL

1 , . . . , CFL
k be the clusters in an optimal solution to the FL problem, with centers

µFL
1 , . . . µFL

k . We analyze each optimal cluster individually. The proof follows along the
lines of the proofs of Theorems 2.1 and 4.2 in [102], adapting it to non-metric squared dis-
tances. We show the proof for the constant factor, the logarithmic factor follows analogously
by using the ring-splitting as in [102].

First, we see that the expected total cost of any point x is bounded by the distance to
the closest open facility y that is present when x arrives. If we always count in the distance
of ‖x− y‖2 into the cost of x, then the expected cost is γ(x) = α2‖x− y‖2/α2 + ‖x− y‖2 =
2‖x− y‖2.

We consider an arbitrary cluster C∗i and divide it into |C∗|/2 good points and |C∗|/2 bad
points. Let Di = 1

|CFL|
∑

x∈C∗i
‖x− µi‖ be the average service cost of the cluster, and let dg

and db be the service cost of the good and bad points, respectively (i.e., Di = (dg +db)/|CFL
i |).

The good points satisfy ‖x− µFL
i ‖ ≤ 2Di. Suppose the algorithm has chosen a center, say y,

from the points CFL
i . Then any other point x ∈ CFL

i can be served at cost at most

‖x− y‖2 ≤
(
‖x− µFL

i ‖+ ‖y − µFL
i ‖
)2

≤ 2‖x− µFL
i ‖2 + 4Di. (4.8)

That means once the algorithm has established a good center within CFL
i , all other good

points together may be serviced within a constant factor of the total optimal service cost



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 41

of CFL, i.e., at 2dg + 4(dg + db). The assignment cost of all the good points in CFL
i that

are passed before opening a good facility is, by construction of the algorithm and expected
waiting times, in expectation α2. Hence, in expectation, the cost of the good points in CFL

i

will be bounded by
∑

xgood γ(x) ≤ 2(2dg + 4dg + 4db + α2).
Next, we bound the expected cost of the bad points. We may assume that the bad points

are injected randomly in between the good points, and bound the servicing cost of a bad
point xb ∈ CFL

i in terms of the closest good point xg ∈ CFL
i preceding it in our data sequence.

Let y be the closest open facility to µFL
i when y arrives. Then

‖xb − y‖2 ≤ 2‖y − µFL
i ‖2 + 2‖xb − µFL‖2. (4.9)

Now assume that xg was assigned to y′. Then

‖y − µFL
i ‖2 ≤ ‖y′ − µFL

i ‖2 ≤ 2‖y′ − xg‖2 + 2‖xg − µFL‖2. (4.10)

From (4.9) and (4.8), it then follows that

‖xb − y‖2 ≤ 4‖y′ − xg‖2 + 4‖xg − µFL‖2 + 2‖xb − µFL‖2 (4.11)
= 2γ(xg) + 4‖xg − µFL‖2 + 2‖xb − µFL‖2. (4.12)

Since the data is randomly permuted, xg could be, with equal probability, any good point,
and in expectation we will average over all good points.

Finally, with probability 2/|CFL
i | there is no good point before xg. In that case, we will

count in xb as the most costly case of opening a new facility, incurring cost α2. In summary,
we can bound the expected total cost of CFL by∑

x good

γ(x) +
∑
x bad

γ(x)

≤ 12dg + 8db + α2 +
2CFL

2CFLα
2 + 2(2

2|CFL
i |

2|CFL|(12dg + 8db + α2) + 4dg + 2db) (4.13)

≤ 68dg + 42db + 4α2 ≤ 68J(CFL). (4.14)

This result together with Proposition 4.5 proves the lemma.

4.B Proof of Master Processing Bound for DP-means
(Theorem 4.3)

Proof. As in the theorem statement, we assume P processors, b points assigned to each
processor per epoch, and N total data points. We further assume a generative model for
the cluster memberships: namely, that they are generated iid from an arbitrary distribution
(πj)

∞
j=1. That is, we have

∑∞
j=1 πj = 1 and, for each j, πj ∈ [0, 1]. We see that there are

perhaps infinitely many latent clusters. Nonetheless, in any data set of finite size N , there



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 42

will of course be only finitely many clusters to which any data point in the set belongs. Call
the number of such clusters KN .

Consider any particular cluster indexed by j. At the end of the first epoch in which a
worker sees j, that worker (and perhaps other workers) will send some data point from j to
the master. By construction, some data point from j will belong to the collection of cluster
centers at the master by the end of the processing done at the master and therefore by the
beginning of the next epoch. It follows from our assumption (all data points within a single
cluster are within a α diameter) that no other data point from cluster j will be sent to the
master in future epochs. It follows from our assumption about the separation of clusters that
no points in other clusters will be covered by any data point from cluster j.

Let Sj represent the (random) number of points from cluster j sent to the master. Since
there are Pb points processed by workers in a single epoch, Nj is constrained to take values
between 0 and Pb. Further, note that there are a total of N/(Pb) epochs.

Let Aj,s,t be the event that the master is sent s data points from cluster j in epoch t. All
of the events {Aj,s,t} with s = 1, . . . , P b and t = 1, . . . , N/(Pb) are disjoint. Define A′j,0 to
be the event that, for all epochs t = 1, . . . , N/(Pb), zero data points are sent to the master;
i.e., A′j,0 :=

⋃
tAj,0,t. Then A′j,0 is also disjoint from the events {Aj,s,t} with s = 1, . . . , P b

and t = 1, . . . , N/(Pb). Finally,

A′j,0 ∪
Pb⋃
s=1

N/(Pb)⋃
t=1

Aj,s,t

covers all possible data configurations. It follows that

E[Sj] = 0 ∗ P[A′j,0] +
Pb∑
s=1

N/(Pb)∑
t=1

sP[Aj,s,t] =
Pb∑
s=1

N/(Pb)∑
t=1

sP[Aj,s,t]

Note that, for s points from cluster j to be sent to the master at epoch t, it must be the
case that no points from cluster j were seen by workers during epochs 1, . . . , t− 1, and then
s points were seen in epoch t. That is, P[Aj,s,t] = (1− πj)Pb(t−1) ·

(
Pb
s

)
πsj (1− πj)Pb−s.

Then

E[Sj] =

(
Pb∑
s=1

s

(
Pb

s

)
πsj (1− πj)Pb−s

)
·

N/(Pb)∑
t=1

(1− πj)Pb(t−1)


= πjPb ·

1− (1− πj)Pb·N/(Pb)
1− (1− πj)Pb

,

where the last line uses the known, respective forms of the expectation of a binomial random
variable and of the sum of a geometric series.

To proceed, we make use of a lemma.



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 43

Lemma 4.6. Let m be a positive integer and π ∈ (0, 1]. Then

1

1− (1− π)m
≤ 1

mπ
+ 1.

Proof. A particular subcase of Bernoulli’s inequality tells us that, for integer l ≤ 0 and real
x ≥ −1, we have (1 + x)l ≥ 1 + lx. Choose l = −m and x = −π. Then

(1− π)m ≤ 1

1 +mπ

⇔ 1− (1− π)m ≥ 1− 1

1 +mπ
=

mπ

1 +mπ

⇔ 1

1− (1− π)m
≤ mπ + 1

mπ
=

1

mπ
+ 1.

We can use the lemma to find the expected total number of data points sent to the master:

E
∞∑
j=1

Sj =
∞∑
j=1

ESj =
∞∑
j=1

πjPb ·
1− (1− πj)N
1− (1− πj)Pb

≤
∞∑
j=1

πjPb ·
(

1 +
1

πjPb

)
·
(
1− (1− πj)N

)
= Pb

∞∑
j=1

πj
(
1− (1− πj)N

)
+
∞∑
j=1

(
1− (1− πj)N

)
≤ Pb+

∞∑
j=1

P(cluster j occurs in the first N points)

= Pb+ E[KN ].

Conversely,

E
∞∑
j=1

Sj ≥
∞∑
j=1

πjPb = Pb.

Experiment

To demonstrate the bound on the expected number of data points proposed but not accepted
as new centers, we generated synthetic data with separable clusters. Cluster proportions are
generated using the stick-breaking procedure for the Dirichlet process, with concentration



CHAPTER 4. NONPARAMETRIC UNSUPERVISED LEARNING 44

parameter θ = 1. Cluster means are set at µk = (2k, 0, 0, . . . , 0), and generated data uniformly
in a ball of radius 1/2 around each center. Thus, all data points from the same cluster are at
most distance 1 from one another, and more than distance of 1 from any data point from a
different cluster.

We follow the same experimental framework in Section 4.5.

(a) DP-means, separable (b) OFL, separable

Figure 4.4: Simulated distributed DP-means and OFL: expected number of data points proposed but not
accepted as new clusters is independent of size of data set.

In the case where we have separable clusters (Figure 4.4), Ê[MN − kN ] is bounded from
above by Pb, which is in line with the above Theorem 4.3.



45

Chapter 5

Correlation Clustering

5.1 Introduction
Clustering items according to some notion of similarity is a major primitive in machine
learning. Correlation clustering (CC) serves as a basic means to achieve this goal: given a
similarity measure between items, the goal is to group similar items together and dissimilar
items apart. In contrast to other clustering approaches, the number of clusters is not
determined a priori, and good solutions aim to balance the tension between grouping all
items together versus isolating them.

cluster 1 cluster 2

cost = (#“�” edges inside clusters) + (#“+” edges across clusters) = 2

Figure 5.1: In the above graph, solid edges denote
similarity and dashed dissimilarity. The number of
disagreeing edges in the above clustering is 2; we color
these edges with red.

The simplest CC variant can be described
on a complete signed graph. Our input is a
graph G on n vertices, with +1 weights on
edges between similar items, and −1 edges
between dissimilar ones. Our goal is to gen-
erate a partition of vertices into disjoint sets
that minimizes the number of disagreeing
edges: this equals the number of “+" edges
cut by the clusters plus the number of “−"
edges inside the clusters. This metric is com-
monly called the number of disagreements.
In Figure 1, we give a toy example of a CC
instance.

Entity deduplication is the archetypal motivating example for correlation clustering, with
applications in chat disentanglement, co-reference resolution, and spam detection [51, 8, 52,
68, 24, 37]. The input is a set of entities (say, results of a keyword search), and a pairwise
classifier that indicates—with some error—similarities between entities. Two results of a
keyword search might refer to the same item, but might look different if they come from
different sources. By building a similarity graph between entities and then applying CC, the
hope is to cluster duplicate entities in the same group; in the context of keyword search, this



CHAPTER 5. CORRELATION CLUSTERING 46

implies a more meaningful and compact list of results. CC has been further applied to finding
communities in signed networks, classifying missing edges in opinion or trust networks [137,
31], gene clustering [15], and consensus clustering [52].

KwikCluster is the simplest CC algorithm that achieves a provable 3-approximation
ratio [5], and works in the following way: pick a vertex v at random (a cluster center), create
a cluster for v and its positive neighborhood N(v) (i.e., vertices connected to v with positive
edges), peel these vertices and their associated edges from the graph, and repeat until all
vertices are clustered. Beyond its theoretical guarantees, experimentally KwikCluster
performs well when combined with local heuristics [52].

KwikCluster is an inherently sequential iterative-transformation algorithm, and in
most cases of interest it requires many peeling rounds. This happens because a small number
of vertices are clustered per round. This can be a bottleneck for large graphs. Recently, there
have been efforts to develop scalable variants of KwikCluster [24, 37]. In [37] a distributed
peeling algorithm was presented in the context of MapReduce. Using an elegant analysis,
the authors establish a (3 + ε)-approximation in a polylogarithmic number of rounds. The
algorithm employs a simple step that rejects vertices that are executed in parallel but are
“conflicting"; however, we see in our experiments, this seemingly minor coordination step
hinders scale-ups in a parallel core setting. In the tutorial of [24], a sketch of a distributed
algorithm was presented. This algorithm achieves the same approximation as KwikCluster,
in a logarithmic number of rounds, in expectation. However, it performs significant redundant
work, per iteration, in its effort to detect in parallel which vertices should become cluster
centers.

Our contributions. In this chapter1, we present C4 and ClusterWild!, two parallel
CC algorithms that in practice outperform the state of the art, both in terms of running time
and clustering accuracy. C4 is a parallel version of KwikCluster that uses concurrency
control to establish a 3-approximation ratio. ClusterWild! is a simple to implement,
coordination-free algorithm that abandons consistency for the benefit of better scaling, while
having a provably small loss in the 3-approximation ratio.

C4 achieves a 3-approximation ratio, in a poly-logarithmic number of rounds, by enforcing
consistency between concurrently running peeling threads. Specifically, we use a combination
of BSP, locking-through-waiting, and monotone operations to achieve serializability. Locking
is used to prevent adjacent cluster centers, whereas monotone operations ensure non-centers
are assigned to the correct clusters. Our use of BSP for C4 serves only a theoretical purpose
to aid analysis of C4’s speedup; removal of the BSP barriers does not affect serializability,
and is in fact faster in practice.

ClusterWild! is a coordination-free parallel CC algorithm that waives consistency in
favor of speed. The cost that we pay is an arbitrarily small loss in ClusterWild!’s accuracy.
We show that ClusterWild! achieves a (3 + ε)OPT + O(ε · n · log2 n) approximation,
in a poly-logarithmic number of rounds, with provable nearly linear speedups. Our main

1Work done as part of [110].



CHAPTER 5. CORRELATION CLUSTERING 47

theoretical innovation for ClusterWild! is analyzing the coordination-free algorithm as a
serial variant of KwikCluster that runs on a “noisy" graph.

In our extensive experimental evaluation, we demonstrate that our algorithms gracefully
scale up to graphs with billions of edges. In these large graphs, our algorithms output a valid
clustering in less than 5 seconds, on 32 threads, up to an order of magnitude faster than
KwikCluster. We observe how, not unexpectedly, ClusterWild! is faster than C4, and
quite surprisingly, abandoning coordination in this parallel setting, only amounts to a 1% of
relative loss in the clustering accuracy. Furthermore, we compare against state of the art
parallel CC algorithms, showing that we consistently outperform these algorithms in terms
of both running time and clustering accuracy.

Notation G denotes a graph with n vertices and m edges. G is complete and only has ±1
edges. We denote by dv the positive degree of a vertex, i.e., the number of vertices connected
to v with positive edges. ∆ denotes the positive maximum degree of G, and N(v) denotes the
positive neighborhood of v; moreover, let Cv = {v,N(v)}. Two vertices u, v are neighbors in
G if u ∈ N(v) and vice versa. We denote by π a permutation of {1, . . . , n}.

5.2 Two Parallel Algorithms for Correlation Clustering
The formal definition of correlation clustering is given below.

Correlation Clustering. Given a graph G on n vertices, partition the vertices into an
arbitrary number k of disjoint subsets C1, . . . , Ck such that the sum of negative edges within
the subsets plus the sum of positive edges across the subsets is minimized:

OPT = min
1≤k≤n

min
Ci∩Cj=0,∀i 6=j
∪k

i=1Ci={1,...,n}

k∑
i=1

E−(Ci, Ci) +
k∑
i=1

k∑
j=i+1

E+(Ci, Cj)

where E+ and E− are the sets of positive and negative edges in G.

KwikCluster is a remarkably simple algorithm that approximately solves the above
combinatorial problem, and operates as follows. A random vertex v is picked, a cluster Cv is
created with v and its positive neighborhood, then the vertices in Cv are peeled from the
graph, and this process is repeated until all vertices are clustered.

KwikCluster can be equivalently executed, as noted by [24], if we substitute the random
choice of a vertex per peeling round, with a random order2 π preassigned to vertices, (see
Algorithm 5.1). That is, select a random permutation on vertices, then peel the vertex
indexed by π(1), and its neighbors. Remove from π the vertices in Cv and repeat this process.
Having an order among vertices makes the discussion of parallel algorithms more convenient.

2 In an abuse of notation, we will use π(i) to refer to the ith vertex in the ordering π, and π(v) (instead
of π−1(v)) to refer to the position of v in this ordering.



CHAPTER 5. CORRELATION CLUSTERING 48

Algorithm 5.1: KwikCluster with π
1 π = a random permutation of {1, . . . , n}
2 while V 6= ∅ do
3 Select the vertex v indexed by π(1)
4 Cv = {v,N(v)}
5 Remove clustered vertices from G and π

Algorithm 5.2: KwikCluster with
π, as iterative transformation algorithm
1 π = a random permutation of {1, . . . , n}
2 clusterID(1) = . . . = clusterID(n) =∞
3 for i = 1, . . . , |V | do
4 v = π(i)
5 if clusterID(v) 6=∞ then continue
6 clusterID(v) = π(v)
7 for u ∈ Γ(v) do
8 clusterID(u) = min(clusterID(u), π(v))

We may also view KwikCluster through the iterative transformation framework of Chap-
ter 2, which we present in Algorithm 5.2. Specifically, we use the change and transformation
functions

Λv(clusterID) =

{
∅ if clusterID(v) 6=∞
{v} ∪ (Γ(v) ∩ {u : clusterID(u) =∞}) if clusterID(v) =∞

[Tv(clusterID, λ)]u =

{
clusterID(u) if u ∈ λ
π(v) if u ∈ λ

C4: Parallel CC using Concurrency Control

Suppose we now wish to run a parallel version of KwikCluster, say on two threads:
one thread picks vertex v indexed by π(1) and the other thread picks u indexed by π(2),
concurrently. Can both vertices be cluster centers? They can, if and only if they are not
neighbors in G. If v and u are connected with a positive edge, then the vertex with the
smallest order wins. This is our concurrency rule #1. Now, assume that v and u are not
neighbors in G, and both v and u become cluster centers. Moreover, assume that v and u
have a common, unclustered neighbor, say w: should w be clustered with v, or u? We need
to follow what would happen with KwikCluster in Algorithm 5.1: w will go with the
vertex that has the smallest permutation number, in this case v. This is concurency rule
#2. Following the above simple rules, we develop C4, our serializable parallel CC algorithm.
Since, C4 constructs the same clusters as KwikCluster (for a given ordering π), it inherits
its 3-approximation by design. The above idea of identifying the cluster centers in rounds
was first used in [20] to obtain a parallel algorithm for maximal independent set (MIS).

C4, shown as Algorithm 5.3, starts by assigning a random permutation π to the vertices,
it then samples an active set A of n

∆
unclustered vertices; this sample is taken from the prefix

of π. After sampling A, each of the P threads picks a vertex with the smallest order in A,
then checks if that vertex can become a cluster center. We first enforce concurrency rule
#1: adjacent vertices cannot be cluster centers at the same time. C4 enforces it by making
each thread check the neighbors of the vertex, say v, that is picked from A. A thread will



CHAPTER 5. CORRELATION CLUSTERING 49

check in attemptCluster whether its vertex v has any preceding neighbors (according to
π) that are cluster centers. If there are none, it will go ahead and label v as cluster center,
and proceed with creating a cluster. If a preceding neighbor of v is a cluster center, then v
is labeled as not being a cluster center. If a preceding neighbor of v, call it u, has not yet
received a label (i.e., u is currently being processed and is not yet labeled as cluster center or
not), then the thread processing v, will wait on u to receive a label, essentially implementing
a lock on the variable clusterID(u). The major technical detail is in showing that this wait
time is bounded; we show that no more than O(log n) threads can be in conflict at the same
time, using a new subgraph sampling lemma [83].

Since C4 is serializable, it has to respect concurrency rule #2: if a vertex u is adjacent
to two cluster centers, then it gets assigned to the one with smaller permutation order. We
observe that the assignment uses a monotone min operator. It has recently been shown
[64, 7] that monotone operations can be executed without coordination and still achieve a
(eventually) consistent state. We exploit the monotonicity property in createCluster to
perform the cluster assignments without further coordination.

After processing all vertices in A, all threads are synchronized in bulk, the clustered
vertices are removed, a new active set is sampled, and the same process is repeated until
everything has been clustered. In the following section, we present the theoretical guarantees
for C4.

Algorithm 5.3: C4 & Cluster-
Wild!

Input: G, ε
1 clusterID(1) = . . . = clusterID(n) =∞
2 π = a random permutation of {1, . . . , n}
3 while V 6= ∅ do
4 ∆ = maximum vertex degree in G(V )
5 A = the first ε · n

∆
vertices in V [π]

6 while A 6= ∅ do in parallel
7 v = first element in A
8 A = A− {v}
9 if C4 then

10 attemptCluster(v)

11 else if ClusterWild! then
12 createCluster(v)

13 Remove clustered vertices from V and π

Output: {clusterID(1), . . . , clusterID(n)}.

Algorithm 5.4: createCluster(v)
1 clusterID(v) = π(v)
2 for u ∈ Γ(v) \ A do
3 clusterID(u) = min(clusterID(u), π(v))

Algorithm 5.5: attemptCluster(v)
1 if clusterID(u) =∞ and isCenter(v) then
2 createCluster(v)

Algorithm 5.6: isCenter(v)
1 for u ∈ Γ(v) do
2 //check friends (in order of π)
3 if π(u) < π(v) then
4 //if they precede you, wait
5 wait until clusterID(u) 6=∞
6 //till clustered
7 if isCenter(u) then
8 return 0
9 //friend is center, so you aren’t

10 return 1
11 //no earlier friend are centers, so you are



CHAPTER 5. CORRELATION CLUSTERING 50

ClusterWild!: Coordination-free Correlation Clustering

ClusterWild! speeds up computation by ignoring the first concurrency rule. It uniformly
samples unclustered vertices, and builds clusters around all of them, without respecting the
rule that cluster centers cannot be neighbors in G. In ClusterWild!, threads bypass the
attemptCluster routine; this eliminates the “waiting" part of C4. ClusterWild! samples
a set A of vertices from the prefix of π. Each thread picks the first ordered vertex remaining
in A, and using that vertex as a cluster center, it creates a cluster around it. It peels away the
clustered vertices and repeats the same process, on the next remaining vertex in A. At the
end of processing all vertices in A, all threads are synchronized in bulk, the clustered vertices
are removed, a new active set is sampled, and the parallel clustering is repeated. A careful
analysis along the lines of [37] shows that the number of rounds (i.e., bulk synchronization
steps) is only poly-logarithmic.

Quite unsurprisingly, ClusterWild! is faster than C4. Interestingly, abandoning
consistency does not incur much loss in the approximation ratio. We show how the error
introduced in the accuracy of the solution can be bounded. We characterize this error
theoretically, and show that in practice it only translates to only a relative 1% loss in the
objective. The main intuition of why ClusterWild! does not introduce too much error
is that the chance of two randomly selected vertices being neighbors is small, hence the
concurrency rules are infrequently broken.

5.3 Theoretical Guarantees
In this section, we bound the number of rounds required for each algorithms, and establish
the theoretical speedup one can obtain with P parallel threads. We proceed to present
our approximation guarantees. We would like to remind the reader that—as in relevant
literature—we consider graphs that are complete, signed, and unweighted. The omitted
proofs can be found in the Appendix.

Number of rounds and running time

Our analysis follows those of [20] and [37]. The main idea is to track how fast the maximum
degree decreases in the remaining graph at the end of each round.

Lemma 5.1. C4 and ClusterWild! terminate after O
(

1
ε

log n · log ∆
)
rounds w.h.p.

We now analyze the running time of both algorithms under a simplified BSP model. The
main idea is that the the running time of each “super step" (i.e., round) is determined by the
“straggling" thread (i.e., the one that gets assigned the most amount of work), plus the time
needed for synchronization at the end of each round.

Assumption 5.1. We assume that threads operate asynchronously within a round, and
synchronize at the end of a round. A memory cell can be written/read concurrently by



CHAPTER 5. CORRELATION CLUSTERING 51

multiple threads. The time spent per round of the algorithm is proportional to the time of the
slowest thread. The cost of thread synchronization at the end of each batch takes time O(P ),
where P is the number of threads. The total computation cost is proportional to the sum of
the time spent for all rounds, plus the time spent during the bulk synchronization step.

Under this simplified model, we show that both algorithms obtain nearly linear speedup,
with ClusterWild! being faster than C4, precisely due to lack of coordination. Our main
tool for analyzing C4 is a recent graph-theoretic result (Theorem 1 in [83]), which guarantees
that if one samples an O(n/∆) subset of vertices in a graph, the sampled subgraph has a
connected component of size at most O(log n). Combining the above, in the appendix we
show the following result.

Theorem 5.2. The theoretical running time of C4, on P cores and ε = 1/2, is upper bounded
by

O

((
m+ n log2 n

P
+ P

)
log n · log ∆

)
as long as the number of cores P is smaller than mini

ni
2∆i

, where ni
2∆i

is the size of the batch
in the i-th round of each algorithm. The running time of ClusterWild! on P cores is
upper bounded by

O

((
m+ n

P
+ P

)
log n · log ∆

ε2

)
for any constant ε > 0.

Approximation ratio

We now proceed with establishing the approximation ratios of C4 and ClusterWild!.

C4 is serializable and deterministic

It is straightforward that C4 obtains precisely the same approximation ratio as KwikCluster.
One has to simply show that for any permutation π, KwikCluster and C4 will output the
same clustering. This is indeed true, as the two simple concurrency rules mentioned in the
previous section are sufficient for C4 to be equivalent to KwikCluster.

Theorem 5.3. C4 achieves a 3-approximation ratio, in expectation.

ClusterWild! as a serial procedure on a noisy graph

Analyzing ClusterWild! is a bit more involved. Our guarantees are based on the fact that
ClusterWild! can be treated as if one was running a peeling algorithm on a “noisy" graph.
Since adjacent active vertices can still become cluster centers in ClusterWild!, one can
view the edges between them as “deleted," by a somewhat unconventional adversary. We
analyze this new, noisy graph and establish our theoretical result.



CHAPTER 5. CORRELATION CLUSTERING 52

Theorem 5.4. ClusterWild! achieves a (3 + ε) · OPT +O(ε · n · log2 n) approximation,
in expectation.

We provide a sketch of the proof, and delegate the details to the appendix. Since
ClusterWild! ignores the edges among active vertices, we treat these edges as deleted. In
our main result, we quantify the loss of clustering accuracy that is caused by ignoring these
edges. Before we proceed, we define bad triangles, a combinatorial structure that is used to
measure the clustering quality of a peeling algorithm.

A bad triangle in G is a set of three vertices, such that two pairs are joined with a positive
edge, and one pair is joined with a negative edge. Let Tb denote the set of bad triangles in
G.

To quantify the cost of ClusterWild!, we make the below observation.

Lemma 5.5. The cost of any greedy algorithm that picks a vertex v (irrespective of the
sampling order), creates Cv, peels it away and repeats, is equal to the number of bad triangles
adjacent to each cluster center v.

Lemma 5.6. Let Ĝ denote the random graph induced by deleting all edges between active
vertices per round, for a given run of ClusterWild!, and let τnew denote the number of
additional bad triangles that Ĝ has compared to G. Then, the expected cost of ClusterWild!
can be upper bounded as

E

{∑
t∈Tb

1Pt + τnew

}
,

where Pt is the event that triangle t, with end points i, j, k, is bad, and at least one of its end
points becomes active, while t is still part of the original unclustered graph.

We provide the proof for the above two lemmas in the Appendix. We continue with
bounding the second term E{τnew} in the bound of Lemma 5.6, by considering the number of
new bad triangles τnew,i created at each round i (in the following Ai, denotes the set of active
vertices at round i):

E {τnew,i} ≤
∑

(u,v)∈E+
i

Pr(u, v ∈ Ai) · |Ni(u) ∪Ni(v)| ≤
∑

(u,v)∈E+
i

(
ε

∆i

)2

· 2 ·∆i

≤ 2 · ε2 · Ei
∆i

≤ 2 · ε2 · n

where E+
i is the set of remaining positive and Ni(v) the neighborhood of vertex v at round i,

the second inequality is due to the fact that the size of the neighborhoods is upper bounded
by ∆i, the maximum positive degree at round i, and the probability bound is true since we
are sampling ni

∆i
vertices without replacement from a total of ni, the number of unclustered



CHAPTER 5. CORRELATION CLUSTERING 53

vertices at round i; the final inequality is true since Ei ≤ n · ∆i. Using the result that
ClusterWild! terminates after at most O(1

ε
log n log ∆) rounds, we get that3

E {τnew} ≤ O(ε · n · log2 n).

We are left to bound

E

{∑
t∈Tb

1Pt

}
=
∑
t∈Tb

pt.

To do that we use the following lemma.

Lemma 5.7. If pt satisfies
∀e,

∑
t:e⊂t∈Tb

pt
α
≤ 1,

then, ∑
t∈Tb

pt ≤ α ·OPT.

Proof. Let B∗ be one (of the possibly many) sets of edges that attribute a +1 in the cost of
an optimal algorithm. Then,

OPT =
∑
e∈B∗

1 ≥
∑
e∈B∗

∑
t:e⊂t∈Tb

pt
α

=
∑
t∈Tb

|B∗ ∩ t|︸ ︷︷ ︸
≥1

pt
α
≥
∑
t∈Tb

pt
α
.

Now, as with [37], we will simply have to bound the expectation of the bad triangles,
adjacent to an edge (u, v): ∑

t:{u,v}⊂t∈Tb

1Pt .

Let Su,v =
⋃
{u,v}⊂t∈Tb t be the union of the sets of nodes of the bad triangles that contain

both vertices u and v. Observe that if some w ∈ S\{u, v} becomes active before u and
v, then a cost of 1 (i.e., the cost of the bad triangle {u, v, w}) is incurred. On the other
hand, if either u or v, or both, are selected as pivots in some round, then Cu,v can be as
high as |S| − 2, i.e., at most equal to all bad triangles containing the edge {u, v}. Let
Auv = {u or v are activated before any other vertices in Su,v}. Then,

E [Cu,v] = E [Cu,v|Au,v] · Pr(Au,v) + E
[
Cu,v|ACu,v

]
· Pr(ACu,v)

≤ 1 + (|S| − 2) · Pr({u, v} ∩ A 6= ∅|S ∩ A 6= ∅)
≤ 1 + 2|S| · Pr(v ∩ A 6= ∅|S ∩ A 6= ∅)

3We skip the constants to simplify the presentation; however they are all smaller than 10.



CHAPTER 5. CORRELATION CLUSTERING 54

where the last inequality is obtained by a union bound over u and v. We now bound the
following probability:

Pr {v ∩ A 6= ∅| S ∩ A 6= ∅} =
Pr {v ∈ A} · Pr {S ∩ A 6= ∅ |v ∈ A}

Pr {S ∩ A 6= ∅}

=
Pr {v ∈ A}

Pr {S ∩ A 6= ∅}

=
Pr {v ∈ A}

1− Pr {S ∩ A = ∅} .

Observe that Pr {v ∈ A} = ε
∆
, hence we need to upper bound Pr {S ∩ A = ∅}. The prob-

ability, per round, that no positive neighbors in S become activated is upper bounded
by (

n−|S|
P

)(
n
P

) =

|S|∏
t=1

(
1− P

n− |S|+ t

)
≤
(

1− P

n

)|S|

=

[(
1− P

n

)n/P]|S|n/P
≤
(

1

e

)|S|n/P
.

Hence, we obtain the following bound

|S|Pr {v ∩ A 6= ∅| S ∩ A 6= ∅} ≤ ε · |S|/∆
1− e−ε·|S|/∆ .

We now know that |S| ≤ 2 ·∆ + 2 and also ε ≤ 1. Then,

0 ≤ ε · |S|
∆
≤ ε ·

(
2 +

2

∆

)
≤ 4.

Hence, we have

E(Cu,v) ≤ 1 + 2 · 4ε

1− exp{−4ε} .

The overall expectation is then bounded by

E

{∑
t∈Tb

1Pt + τnew

}
≤
(

1 + 2 · 4 · ε
1− e−4·ε

)
·OPT+O(ε·n·log2 n) ≤ (3 + ε)·OPT+O(ε·n·log2 n)

which establishes our approximation ratio for ClusterWild!.



CHAPTER 5. CORRELATION CLUSTERING 55

BSP Algorithms as a Proxy for Asynchronous Algorithms

Algorithm 5.7: C4 & ClusterWild! (asynchronous execution)
Input: G

1 clusterID(1) = . . . = clusterID(n) =∞
2 π = a random permutation of {1, . . . , n}
3 while V 6= ∅ do
4 v = first element in V
5 V = V − {v}
6 if C4 then attemptCluster(v)
7 else if ClusterWild! then createCluster(v)
8 Remove clustered vertices from V and π

Output: {clusterID(1), . . . , clusterID(n)}.

We would like to note that the analysis under the BSP model can be a useful proxy for
the performance of completely asynchronous variants of our algorithms. Specifically, see
Algorithm 5.7, where we remove the synchronization barriers.

The only difference between the asynchronous execution in Algorithm 5.7, compared to
Algorithm 5.3, is the complete lack of bulk synchronization, at the end of the processing of
each active set A. Although the analysis of the BSP variants of the algorithms is tractable,
unfortunately analyzing precisely the speedup of the asynchronous C4 and the approximation
guarantees for the asynchronous ClusterWild! is challenging. Note that the asynchronous
C4 is still serializable and deterministic and retains the 3-approximation ratio in expectation.
In our experimental section we test the completely asynchronous algorithms against the BSP
algorithms of the previous section, and observe that they perform quite similarly both in
terms of accuracy of clustering, and running times.

5.4 Additional Related Work
Correlation clustering was formally introduced by Bansal et al. [14]. In the general case,
minimizing disagreements is NP-hard and hard to approximate within an arbitrarily small
constant (APX-hard) [14, 32]. There are two variations of the problem: i) CC on complete
graphs where all edges are present and all weights are ±1, and ii) CC on general graphs with
arbitrary edge weights. Both problems are hard, however the general graph setup seems
fundamentally harder. The best known approximation ratio for the latter is O(log n), and a
reduction to the minimum multicut problem indicates that any improvement to that requires
fundamental breakthroughs in theoretical algorithms [47].

In the case of complete unweighted graphs, a long series of results establishes a 2.5
approximation via a rounded linear program (LP) [5]. A recent result establishes a 2.06
approximation using an elegant rounding to the same LP relaxation [35]. By avoiding the
expensive LP, and by just using the rounding procedure of [5] as a basis for a greedy algorithm
yields KwikCluster: a 3-approximation for CC on complete unweighted graphs.



CHAPTER 5. CORRELATION CLUSTERING 56

Variations of the cost metric for CC change the algorithmic landscape: maximizing
agreements (the dual measure of disagreements) [14, 128, 61], or maximizing the difference
between the number of agreements and disagreements [34, 6], come with different hardness
and approximation results. There are also several variants: chromatic CC [26], overlapping
CC [25], or CC with small number of clusters and added constraints that are suitable for
biology applications [114].

The way C4 finds the cluster centers can be seen as a variation of the MIS algorithm of
[20]; the main difference is that in our case, we “passively" detect the MIS, by locking on
memory variables, and by waiting on preceding ordered threads. This means, that a vertex
only “pushes" its cluster ID and status (cluster center/clustered/unclustered) to its neighbors,
versus “pulling" (or asking) for its neighbors’ cluster status. This saves a substantial amount
of computational effort. A sketch of the idea of using parallel MIS algorithms for CC was
presented in [24], where the authors suggest using Luby’s algorithm for finding an MIS, and
then using the MIS vertices as cluster centers. However, a closer look on this approach reveals
that there is fundamentally more work need to be done to cluster the vertices.

5.5 Experiments
Our parallel algorithms were all implemented in Scala—we defer a full discussion of the
implementation details to Appendix 5.C. We ran all our experiments on Amazon EC2’s
r3.8xlarge (32 vCPUs, 244Gb memory) instances, using 1-32 threads. The real graphs listed in

Graph # vertices # edges Description
DBLP-2011 986,324 6,707,236 2011 DBLP co-authorship network [21, 22, 23].
ENWiki-2013 4,206,785 101,355,853 2013 link graph of English part of Wikipedia [21, 22, 23].

UK-2005 39,459,925 921,345,078 2005 crawl of the .uk domain [21, 22, 23].
IT-2004 41,291,594 1,135,718,909 2004 crawl of the .it domain [21, 22, 23].

WebBase-2001 118,142,155 1,019,903,190 2001 crawl by WebBase crawler [21, 22, 23].

Table 5.1: Graphs used in the evaluation of our parallel algorithms.

Table 5.1 were each tested with 100 different random π orderings. We measured the runtimes,
speedups (ratio of runtime on 1 thread to runtime on p threads), and objective values obtained
by our parallel algorithms. For comparison, we also implemented the algorithm presented in
[37], which we denote as CDK for short4. Values of ε = 0.1, 0.5, 0.9 were used for C4 BSP,
ClusterWild! BSP and CDK. We present only representative plots of our results here; full
results are given in our appendix.

4 CDK was only tested on the smaller graphs of DBLP-2011 and ENWiki-2013, because CDK was
prohibitively slow, often 2-3 orders of magnitude slower than C4, ClusterWild!, and even serial Kwik-
Cluster.



CHAPTER 5. CORRELATION CLUSTERING 57

1 2 4 8 16 32
10

3

10
4

10
5

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, UK−2005

 

 

Serial

C4 As

C4 BSP ε=0.1

CW As

CW BSP ε=0.1

(a) Mean runtimes, UK-2005, ε = 0.1

1 2 4 8 16 32
10

3

10
4

10
5

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, IT−2004

 

 

Serial

C4 As

C4 BSP ε=0.5

CW As

CW BSP ε=0.5

(b) Mean runtimes, IT-2004, ε = 0.5

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, Webbase−2001

 

 

Ideal

C4 As

C4 BSP ε=0.9

CW As

CW BSP ε=0.9

(c) Mean speedup, WebBase, ε = 0.9

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000

ε

N
u
m

b
e
r 

o
f 
ro

u
n
d
s

Mean Number of Rounds

 

 

C4/CW BSP, UK−2005

C4/CW BSP, IT−2004

C4/CW BSP, Webbase−2001

C4/CW BSP, DBLP−2011

CDK, DBLP−2011

C4/CW BSP, ENWiki−2013

CDK, ENWiki−2013

(d) Mean number of synchronization rounds for
BSP algorithms

Figure 5.2: In the above figures, ‘CW’ is short for ClusterWild!, ‘BSP’ is short for the
bulk-synchronous variants of the parallel algorithms, and ‘As’ is short for the asynchronous
variants.

Runtimes

C4 and ClusterWild! are initially slower than serial, due to the overheads required for
atomic operations in the parallel setting. However, all our parallel algorithms outperform
serial KwikCluster with 3-4 threads. As more threads are added, the asychronous variants
become faster than their BSP counterparts as there are no synchronization barrriers. The
difference between BSP and asychronous variants is greater for smaller ε. ClusterWild! is
also always faster than C4 since there are no coordination overheads.



CHAPTER 5. CORRELATION CLUSTERING 58

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, ENWiki−2013

 

 

C4 BSP ε=0.9 Min

C4 BSP ε=0.9 Mean

C4 BSP ε=0.9 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(a) Percent of blocked vertices for C4, ENWiki-
2013. BSP run with ε = 0.9.

0 5 10 15 20 25 30 35
1

1.02

1.04

1.06

1.08

1.1

1.12

Number of threads

A
lg

o
 o

b
j 
v
a

lu
e

 :
 S

e
ri
a

l 
o

b
j 
v
a

lu
e

Objective Value Relative to Serial, DBLP−2011

 

 

CW BSP ε=0.9 mean

CW BSP ε=0.9 median

CW As mean

CW As median

CDK ε=0.9 mean

CDK ε=0.9 median

(b) Median objective values, DBLP-2011. CW
BSP and CDK run with ε = 0.9

Figure 5.3: In the above figures, ‘CW’ is short for ClusterWild!, ‘BSP’ is short for the
bulk-synchronous variants of the parallel algorithms, and ‘As’ is short for the asynchronous
variants.

Speedups

The asynchronous algorithms are able to achieve a speedup of 13-15x on 32 threads. The BSP
algorithms have a poorer speedup ratio, but nevertheless achieve 10x speedup with ε = 0.9.

Synchronization rounds

The main overhead of the BSP algorithms lies in the need for synchronization rounds. As ε
increases, the amount of synchronization decreases, and with ε = 0.9, our algorithms have
less than 1000 synchronization rounds, which is small considering the size of the graphs and
our multicore setting.

Blocked vertices

Additionally, C4 incurs an overhead in the number of vertices that are blocked waiting for
earlier vertices to complete. We note that this overhead is extremely small in practice—on all
graphs, less than 0.2% of vertices are blocked. On the larger and sparser graphs, this drops
to less than 0.02% (i.e., 1 in 5000) of vertices.

Objective value

By design, the C4 algorithms also return the same output (and thus objective value) as serial
KwikCluster. We find that ClusterWild! BSP is at most 1% worse than serial across
all graphs and values of ε. The behavior of asynchronous ClusterWild! worsens as threads



CHAPTER 5. CORRELATION CLUSTERING 59

are added, reaching 15% worse than serial for one of the graphs. Finally, on the smaller
graphs we were able to test CDK on, we find that CDK returns a worse median objective
value than both ClusterWild! variants.

5.6 Discussions
We presented two parallel algorithms for correlation clustering that admit provable nearly
linear speedups and approximation ratios. Our algorithms can cluster billion-edge graphs in
under 5 seconds on 32 cores, while achieving a 15× speedup. The two approaches complement
each other: when C4 is fast relative to ClusterWild!, we may prefer it for its guarantees
of accuracy; and when ClusterWild! is accurate relative to C4, we may prefer it for its
speed.

Both C4 and ClusterWild! are well-suited for a distributed setup since they run for
at most a polylogarithmic number of rounds. In the future, we intend to implement our
algorithms in a distributed environment, where synchronization and communication often
account for the highest cost.

5.A Proofs of Theoretical Guarantees

Number of rounds for C4 and ClusterWild!

Lemma 5.1. C4 and ClusterWild! terminate after O
(

1
ε

log n · log ∆
)
rounds w.h.p.

Proof. We split our proof in two parts.
For ClusterWild!, we wish to upper bound the probability

qt = Pr

{
v not clustered by round i+ t

∣∣∣∣degi+j(v) ≥ ∆i

2
, 1 ≤ j ≤ t

}
.

Observe that the above event happens either if no neighbors of v become activated by round
i + t, or if v itself does not become activated. Hence, qt can be upper bounded by the
probability that no neighbors of v become activated by round i+ t.

In the following, let di+j denote the degree of vertex v at roudn i+ j; for simplicity we
drop the round indices on n and P . The probability, per round, that no neighbors of v



CHAPTER 5. CORRELATION CLUSTERING 60

become activated is equal to5(
n−di+j
P

)(
n
P

) =
(n− P )!

(n− P − di+j)!
· (n− di+j)!

n!

=

∏di+j
t=1 (n− di+1 + t− P )∏di+j

t=1 (n− di+1 + t)
=

di+j∏
t=1

n− di+1 + t− P
n− di+1 + t

=

di+j∏
t=1

(
1− P

n− di+1 + t

)
≤
(

1− P

n

)di+j
≤
(

1− ε

∆i

)∆i/2

=

[(
1− ε

∆i

)∆i/ε
]ε/2
≤ e−ε/2.

where the last inequality is due to the fact that

(1− x)1/x < e−1 for all x ≤ 1.

Therefore, the probability of vertex v failing to be clustered after t rounds is at most
qt ≤ e−t·ε/2. Hence, we have that for any round i, the probability that any vertex has degree
more than ∆i/2 after t rounds is at most n · e−t·ε/2, due to a simple union bound. If we want
that that probability to be smaller than δ, then

n · e−t·ε/2 < δ ⇔ lnn− t · ε/2 < ln(δ)⇔ t >
2

ε
· ln(n/δ)

Hence, with probability 1− δ, after 2
ε
· ln(n/δ) rounds either all nodes of degree greater than

∆/2 are clustered, or the maximum degree is decreased by half. Applying this argument
log ∆ times yields the result, as the maximum degree of the remaining graph becomes 1.

For C4 the proof follows simply from the analogous proof of [20]. Consider any round
of the algorithm, and break it into k steps (each step, for each vertex in A that becomes a
cluster center). Let v be a vertex that has degree at most ∆/2, and is not active. During
step 1 of round 1, the probability that v is not adjacent to π(1) is at most 1− ε

2n
. If v is not

selected at step 1, then during step 2 of round 1, the probability that v is not adjacent to
the next cluster center is again at most 1 − ε

2n
. After processing all vertices in A, during

the first round, either v was clustered, or its degree became strictly less than ∆/2, or the
probability that neither of the previous happened is at most (1− ε

2n
)
ε∆
n ≤ 1− ε/2. It is easy

to see that after O(1
ε

log n) rounds vertex v will have either been clustered or its degree would
be smaller than ∆/2. Union bounding for n vertices and all rounds, we get that the max
degree of the remaining graph gets halved after O(1

ε
log n) rounds, hence the total number of

rounds needed is at most O(1
ε

log n log ∆), with high probability.
5This follows from a simple calculation on the pdf of the hypergeometric distribution.



CHAPTER 5. CORRELATION CLUSTERING 61

Running times

In this section, we prove the running time theorem for our algorithms. We first present the
following recent graph-theoretic result.

Theorem 5.8 (Theorem 1 in [83]). Let G be an undirected graph on n vertices, with maximum
vertex degree ∆. Let us sample each vertex independently with probability p = 1−ε

∆
and define

as G′ the induced subgraph on the activated vertices. Then, the largest connected component
of the resulting graph G′ has size at most O( 1

ε2
log n) with high probability.

To apply Theorem 5.8, we first need to convert it into a result for sampling without
replacement (instead of i.i.d. sampling).

Lemma 5.9. Let us define two sequences of binary random variables {Xi}ni=1, {Yi}ni=1. The
first sequence comprises n i.i.d. Bernoulli random variables with probability p, and the second
sequence a random subset of B random variables is set to 1 without replacement, where B is
integer that satisfies

(n+ 1) · p− 1 ≤ B < (n+ 1) · p.
Let us now define ρX = Pr (f(X1, . . . , Xn) > C) for some f (in our case this will be the

largest connected component of a subgraph defined on the sampled vertices) and some number
C, and similarly define ρY . Let us further assume that we have an upper bound on the above
probability ρX ≤ δ. Then, ρY ≤ n · δ.

Proof. By expanding ρX using law of total probability we have

ρX =
n∑
b=0

Pr

(
f(X1, . . . , Xn) > C

∣∣∣∣∣
n∑
i=1

Xi = b

)
· Pr

(
n∑
i=1

Xi = b

)

=
n∑
b=0

qb · Pr

(
n∑
i=1

Xi = b

)
(5.1)

where qb is the probability that f(X1, . . . , Xn) > C given that a uniformly random subset of
b variables was set to 1. Moreover, we have

ρY =
n∑
b=0

Pr

(
f(Y1, . . . , Yn) > C

∣∣∣∣∣
n∑
i=1

Yi = b

)
· Pr

(
n∑
i=1

Yi = b

)
(i)
=

n∑
b=0

qb · Pr

(
n∑
i=1

Yi = b

)
(ii)
= qB · 1 (5.2)

where (i) comes form the fact that Pr (f(Y1, . . . , Yn) > C |∑n
i=1 Yi = b) is the same as the

probability that that f(X1, . . . , Xn) > C given that a uniformly random subset of b variables



CHAPTER 5. CORRELATION CLUSTERING 62

where set to 1, and (ii) comes from the fact that since we sample without replacement in
Y ,we have that

∑n
i Yi = B always.

If we just keep the b = B term in the expansion of ρX we get

ρX =
n∑
b=0

qb · Pr

(
n∑
i=1

Xi = b

)
≥ qB · Pr

(
n∑
i=1

Xi = B

)
= ρY · Pr

(
n∑
i=1

Xi = B

)
(5.3)

since all terms in the sum are non-negative numbers. Moreover, since Xis are Bernoulli
random variables, then

∑n
i=1Xi is Binomially distributed with parameters n and p. We know

that the maximum of the Binomial pmf with parameters n and p occurs at Pr (
∑

iXi = B)
where B is the integer that satisfies (n+ 1) · p− 1 ≤ B < (n+ 1) · p. Furthermore we know
that the maximum value of the Binomial pmf cannot be less than 1

n
, that is

Pr

(
n∑
i=1

Xi = B

)
≥ 1

n
. (5.4)

If we combine (5.3) and (5.4) we get ρX ≥ ρY /n⇔ ρY ≤ n · δ.
Corollary 5.10. Let G be an undirected graph on n vertices, with maximum vertex ∆. Let
us sample ε · n

∆
vertices without replacement, and define as G′ the induced subgraph on the

activated vertices. Then, the largest connected component of the resulting graph G′ has size at
most

O

(
log n

ε2

)
with high probability.

We use this in the proof of our theorem that follows.

Theorem 5.2. The theoretical running time of C4, on P cores and ε = 1/2, is upper bounded
by

O

((
m+ n log2 n

P
+ P

)
log n · log ∆

)
as long as the number of cores P is smaller than mini

ni
2∆i

, where ni
2∆i

is the size of the batch
in the i-th round of each algorithm. The running time of ClusterWild! on P cores is
upper bounded by

O

((
m+ n

P
+ P

)
log n · log ∆

ε2

)
for any constant ε > 0.

Proof. We start with analyzing C4, as the running time of ClusterWild! follows from a
similar, and simpler analysis. Observe, that we operate on Bulk Synchronous Parallel model:
we sample a batch of vertices, P cores asynchronously process the vertices in the batch, and
once the batch is empty there is a bulk synchronization step. The computational effort spent
by C4 can be split in three parts: i) computing the maximum degree, ii) creating the clusters,
per batch, iii) syncronizing at the end of each batch.



CHAPTER 5. CORRELATION CLUSTERING 63

Computing ∆ and synchronizing cost Computing ∆i at the beginning of each batch,
can be implemented in time mi

P
+ logP , where each thread picks ni/P vertices and computes

locally their degrees, and inserts it to a sorted data structure (e.g., a B-tree that admits
parallel operations), and then we get the largest item in logarithmic time. Moreover, the
third part of the computation, i.e., synchronization among cores, can be done in O(P ). A
little more involved argument is needed for establishing the running time of the second part,
where the algorithms create the clusters.

Clustering cost For a single vertex v sampled by a thread, the time required by the thread
to process that vertex is the sum of the time needed to 1) wait inside the attemptCluster
for preceding neighbors (by the order of π), 2) “send" its π(v) to its neighbors, if v is
a cluster center, 3) if v is a cluster center, then for each u neighbors it will attempt to
update clusterID(u); however, this thread potentially competes with other threads that are
attempting to write in clusterID(u) at the same time.

Using Corollary 5.10, we can show that no more than O(log n) threads compete with
each other at the same time, with high probability. Observe, that in our sampling scheme of
batches of vertices, we are taking the first Bi = ε

∆i
· ni elements of a random prefix π. This

is equivalent to sampling Bi vertices without replacement from the graph Gi of the current
round. The result in Corollary 5.10, asserts that the largest connected component in the
sampled subgraph is at most O(log n), with high probability. This directly implies that a
thread cannot be waiting for more than O(log n) other threads inside attemptCluster(v).
Therefore, the time spent by each thread to wait on other threads in attemptCluster(v) is
upper bounded by the number of maximum threads that it can be neighbors with (which
assuming ε is set to 1/2) is at most O(log n), times the time it takes each of these threads
to be done with their execution, which is at most ∆i log n (even assuming the worst case
conflict pattern when updating at most ∆i entries in the clusterID array). Hence, for C4 the
processing time of a single vertex is upper bounded by O(∆i · log2 n).

Job allocation Now, observe that when each thread is done processing vertex, it picks the
next vertex from A (if A is not empty). This process essentially models a classical greedy
task allocation to cores, that leads to a 2 approximation in terms of the optimum weight
allocation; here the optimum allocation leads to a max weight among cores that is at most
equal to max(∆i, Bi∆i/P ). This implies that the running time on P asynchronous threads
of a single batch, is upperbounded by

O

(
max

(
∆i log n,

Bi∆i log2 n

P

))
= O

(
max

(
∆i log n,

ni log2 n

P

))
.

Assuming, that the number of cores, is always less than the batch size (a reasonable assumption,
as more cores, would not lead to further benefits), we obtain that the time for a single batch
is

O

(
Ei
P

+
ni log2 n

P
+ P

)
.



CHAPTER 5. CORRELATION CLUSTERING 64

Observe that a difference in ClusterWild!, is that waiting is avoided, hence, the running
time, per batch of ClusterWild! is

O

(
Ei
P

+
ni
P

+ P

)
.

Multiplying the above, with the number of rounds given by Lemma 5.1, we obtain the
theorem.

Approximation Guarantees

One can view the execution of ClusterWild! on G as having KwikCluster run on a “noisy
version" of G. A main issue is that KwikCluster never allows two neighbors in the original
graph to become cluster centers. Hence, since ClusterWild! ignores these edges among active
vertices, one can view these edges as “adverserially" deleted. The major technical contribution
of this work is to quantify how these “ignored" edges affect the quality of the output solution.
The following simple lemma presented in our main text, is useful in quantifying the cost of
the output clustering for any peeling algorithm.

Lemma 5.5. The cost of any greedy algorithm that picks a vertex v (irrespective of the
sampling order), creates Cv, peels it away and repeats, is equal to the number of bad triangles
adjacent to each cluster center v.

Proof. Consider the first step of the algorithm, for simplicity, and without loss of generality.
Let us define as Tin the number of vertex pairs inside Cv that are not neighbors (i.e., they are
joined by a negative edge). Moreover, let Tout denote the number of vertices outside Cv that
are neighbors with vertices inside Cv. Then, the number of disagreements (i..e, number of
misplaced pairs of vertices) generated by cluster Cv, is equal to Tin + Tout.

Observe that all the Tin edges are negative, and all Tout are positive ones. Let for example
(u,w) be one of the Tin negative edges inside , hence both u,w belong to (i.e., are neighbors
with v). Then, (u, v, w) forms a bad triangle. Similarly, for every edge that is incident to a
vertex in , with one end point say u′ ∈ and one w′ ∈ V \v, the triangle formed by (v, u′, w′),
is also a bad triangle.

Hence, all edges that are accounted for in the final cost of the algorithm (i..e, total number
of disagreements) are equal to the Tin + Tout bad triangles that include these edges and each
cluster center per round.

Let us now consider the set of all cluster centers generated by ClusterWild!; call these
vertices CCW. Then, consider the graph G′ that is generated by deleting all edges between
CCW. Observe that this is a random graph, since the set of edges deleted depends on the
specific random sampling that is performed in ClusterWild!. We will use the following simple
technical proposition to quantify how many more bad triangles G′ has compared to G.



CHAPTER 5. CORRELATION CLUSTERING 65

Proposition 5.11. Given any graph G with positive and negative edges, then let us obtain a
graph Ge where we have removed a single edge, e from G. Then, the Ge has at most ∆ more
bad triangles compared to G.

Proof. Let (i, j, k) be a bad triangle in G but not in Ge. Then it must be the case that e ∈ t.
WLOG let e = (i, j), and so k ∈ N(i)∪N(j). Since |N(i)∪N(j)| ≤ 2 max(degi, degj) ≤ 2∆,
there can be at most ∆ new bad triangles in Ge.

The above proposition is used to establish the τnew bound for Lemma 5.6. Now, assume a
random permutation π for which we run ClusterWild!, and let Â = ∪Rr=1Ar denote the
union of all active sets of vertices, for each round r of the algorithm. Moreover, let Ĝ, denote
the graph that is missing all edges between the vertices in the sets Ar. A simple way to
bound the clustering error of ClusterWild!, is splitting it in to two terms: the number
of old bad triangles of G adjacent to active vertices (i.e., we need to bound the expectation
of the event that an active vertex is adjacent to an “old" triangle), plus the number of all
new triangles induced by ignoring edges. Observe that this bound can be loose, since not all
“new" bad triangles of Ĝ count towards the clustering error, and some “old" bad triangles can
disappear. However, this makes the analysis tractable. Lemma 5.6 then follows.

Lemma 5.6. Let Ĝ denote the random graph induced by deleting all edges between active
vertices per round, for a given run of ClusterWild!, and let τnew denote the number of
additional bad triangles that Ĝ has compared to G. Then, the expected cost of ClusterWild!
can be upper bounded as

E

{∑
t∈Tb

1Pt + τnew

}
,

where Pt is the event that triangle t, with end points i, j, k, is bad, and at least one of its end
points becomes active, while t is still part of the original unclustered graph.

5.B Implementation Details
Our implementation is highly optimized in our effort to have practically scalable algorithms.
We discuss these details in this section.

Atomic and non-atomic variables in Java/Scala

In Java/Scala, processors maintain their own local cache of variable values, which could lead
to spinlocks in C4 or greater errors in ClusterWild!. It is necessary to enforce a consistent
view across all processors by the use of synchronization or AtomicReferences, but doing so
will incur high overheads that render the algorithm not scalable.

To mitigate this overhead, we exploit a monotonicity property of our algorithms—the
clusterID of any vertex is a non-increasing value. Thus, many of the checks in C4 and



CHAPTER 5. CORRELATION CLUSTERING 66

ClusterWild! may be sufficiently performed using only an outdated version of clusterID.
Hence, we may maintain both an inconsistent but cheap clusterID array as well as an expensive
but consistent atomic clusterID array. Most reads can be done using the cheap inconsistent
array, but writes must propagate to the consistent atomic array. Since each clusterID is
written a few times but read often, this allows us to minimize the cost of synchronizing values
without any substantial changes to the algorithm itself.

We point out that the same concepts may be applied in a distributed setting to minimize
communication costs.

Estimating but not computing ∆

As written, the BSP variants require a computation of the maximum degree ∆ at each round.
Since this effectively involves a scan of all the edges, it can be an expensive operation to
perform at each iteration. We instead use a proxy ∆̂ which is initialized to ∆ in the first
round, and halved every 2

ε
ln(n log ∆/δ) rounds.

With a simple modification to Lemma 5.1, we can see that w.h.p. any vertex with degree
greater than ∆̂ will either be clustered or have its degree halved after 2

ε
ln(n log ∆/δ) rounds,

so ∆̂ upper-bounds ∆ and our algorithms complete in logarithmic number of rounds.

Lazy deletion of vertices and edges

In practice, we do not remove vertices and edges as they are clustered, but simply skip over
them when they are encountered later in the process. We find that this approach decreases
the runtimes and overall complexity of the algorithm. (In particular, edges between vertices
adjacent to cluster centers may never be touched in the lazy deletion scheme, but must
nevertheless be removed in the proactive deletion approach.) Lazy deletions also allow us to
avoid expensive mutations of internal data structures.

Binomial sampling instead of fixed-size batches

Lazy deletion does introduce an extra complication, namely it is now more difficult to sample
a fixed-size batch of εni/∆i vertices, where ni is the number of remaining unclustered vertices.
This is because we do not maintain a separate set of ni unclustered vertices, nor explicitly
compute the value of ni.

We do, however, maintain a set of unprocessed vertices, that is, a suffix of π containing
ni unclustered vertices and mi clustered vertices that have not been passed through by the
algorithm. We may therefore resort to an i.i.d. sampling of these vertices, choosing each
with probability ε/∆i. Since processing an unprocessed but clustered vertex has no effect, we
effectively simulate an i.i.d. sampling of the ni unclustered vertices.

Furthermore, we do not have to actually sample each vertex—because π is a uniform
random permutation, it suffices to draw B ∼ Bin(ni + mi, ε/∆i) and extract the next B



CHAPTER 5. CORRELATION CLUSTERING 67

elements from π for processing, reducing the number of random draws from ni+mi Bernoullis
to a single Binomial.

All of our theorems hold in expectation when using i.i.d. sampling instead of fixed-size
batches.

Comment on CDK Implementation

A crucial difference between the CDK algorithm and our algorithms lies in the fact that
CDK might reject vertices from the active set, which are then placed back into the set of
unclustered vertices for potential selection at later rounds. Conversely, our algorithms ensure
that the active set is always completely processed, so any vertex that has been selected will
no longer be selected in an active set again. We are therefore able to exploit a single random
permutation π and use the tricks with lazy deletions and binomial sampling that are not
available to CDK, which instead has to perform the complete i.i.d. sampling. We believe
that this accounts for the largest difference in runtimes between CDK and our algorithms.

5.C Complete Experiment Results

Empirical mean runtimes.

For short, ‘CW’ is ClusterWild! and ‘As’ refers to the asynchronous variants. On larger
graphs, our parallel algorithms on 3-4 threads are faster than serial KwikCluster. On the
smaller graphs, the BSP variants have expensive synchronization barriers (relative to the small
amount of actual work done) and do not necessary run faster than serial KwikCluster; the
asynchronous variants do outperform serial KwikCluster with 4-5 threads. We were only
able to run CDK on the smaller graphs, for which CDK was 2-3 orders of magnitude slower
than serial. Note also that the BSP variants have improved runtimes for larger ε.

1 2 4 8 16 32
10

3

10
4

10
5

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, UK−2005

 

 

Serial

C4 As

C4 BSP ε=0.1

CW As

CW BSP ε=0.1

(a) UK-2005, ε = 0.1

1 2 4 8 16 32
10

3

10
4

10
5

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, UK−2005

 

 

Serial

C4 As

C4 BSP ε=0.5

CW As

CW BSP ε=0.5

(b) UK-2005, ε = 0.5

1 2 4 8 16 32
10

3

10
4

10
5

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, UK−2005

 

 

Serial

C4 As

C4 BSP ε=0.9

CW As

CW BSP ε=0.9

(c) UK-2005, ε = 0.9

Figure 5.4: Empirical mean runtimes for UK-2005.



CHAPTER 5. CORRELATION CLUSTERING 68

1 2 4 8 16 32
10

3

10
4

10
5

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, IT−2004

 

 

Serial

C4 As

C4 BSP ε=0.1

CW As

CW BSP ε=0.1

(a) IT-2004, ε = 0.1

1 2 4 8 16 32
10

3

10
4

10
5

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, IT−2004

 

 

Serial

C4 As

C4 BSP ε=0.5

CW As

CW BSP ε=0.5

(b) IT-2004, ε = 0.5

1 2 4 8 16 32
10

3

10
4

10
5

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, IT−2004

 

 

Serial

C4 As

C4 BSP ε=0.9

CW As

CW BSP ε=0.9

(c) IT-2004, ε = 0.9

Figure 5.5: Empirical mean runtimes for IT-2004.

1 2 4 8 16 32
10

3

10
4

10
5

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, Webbase−2001

 

 

Serial

C4 As

C4 BSP ε=0.1

CW As

CW BSP ε=0.1

(a) Webbase-2001, ε = 0.1

1 2 4 8 16 32
10

3

10
4

10
5

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, Webbase−2001

 

 

Serial

C4 As

C4 BSP ε=0.5

CW As

CW BSP ε=0.5

(b) Webbase-2001, ε = 0.5

1 2 4 8 16 32
10

3

10
4

10
5

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, Webbase−2001

 

 

Serial

C4 As

C4 BSP ε=0.9

CW As

CW BSP ε=0.9

(c) Webbase-2001, ε = 0.9

Figure 5.6: Empirical mean runtimes for Webbase-2001.

1 2 4 8 16 32
10

1

10
2

10
3

10
4

10
5

10
6

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, ENWiki−2013

 

 

Serial

C4 As

C4 BSP ε=0.1

CW As

CW BSP ε=0.1

CDK ε=0.1

(a) ENWiki-2013, ε = 0.1

1 2 4 8 16 32
10

1

10
2

10
3

10
4

10
5

10
6

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, ENWiki−2013

 

 

Serial

C4 As

C4 BSP ε=0.5

CW As

CW BSP ε=0.5

CDK ε=0.5

(b) ENWiki-2013, ε = 0.5

1 2 4 8 16 32
10

1

10
2

10
3

10
4

10
5

10
6

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, ENWiki−2013

 

 

Serial

C4 As

C4 BSP ε=0.9

CW As

CW BSP ε=0.9

CDK ε=0.9

(c) ENWiki-2013, ε = 0.9

Figure 5.7: Empirical mean runtimes for ENWiki-2013.



CHAPTER 5. CORRELATION CLUSTERING 69

1 2 4 8 16 32
10

1

10
2

10
3

10
4

10
5

10
6

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, DBLP−2011

 

 

Serial

C4 As

C4 BSP ε=0.1

CW As

CW BSP ε=0.1

CDK ε=0.1

(a) DBLP-2011, ε = 0.1

1 2 4 8 16 32
10

1

10
2

10
3

10
4

10
5

10
6

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, DBLP−2011

 

 

Serial

C4 As

C4 BSP ε=0.5

CW As

CW BSP ε=0.5

CDK ε=0.5

(b) DBLP-2011, ε = 0.5

1 2 4 8 16 32
10

1

10
2

10
3

10
4

10
5

10
6

Number of threads

M
e

a
n

 r
u

n
ti
m

e
 /

 m
s

Mean Runtime, DBLP−2011

 

 

Serial

C4 As

C4 BSP ε=0.9

CW As

CW BSP ε=0.9

CDK ε=0.9

(c) DBLP-2011, ε = 0.9

Figure 5.8: Empirical mean runtimes for DBLP-2011.

Empirical mean speedups.

The best speedups (14x on large graphs) are achieved by asynchronous ClusterWild!
which has the least coordination, followed by asynchronous C4 (13x on large graphs). The
BSP variants achieve up to 10x speedups on large graphs, with better speedups as ε increases.
On small graphs we obtain poorer speedups as the cost of any contention is magnified as
the actual work done is comparatively small. There are a couple of kinks at 10 and 16
threads, which we postulate is due to NUMA and hyperthreading effects—the EC2 r3.8xlarge
instances are equipped with 10-core Intel Xeon E5-2670 v2 (Ivy Bridge) processors with 32
vCPUs and hyperthreading.

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, UK−2005

 

 

Ideal

C4 As

C4 BSP ε=0.1

CW As

CW BSP ε=0.1

(a) UK-2005, ε = 0.1

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, UK−2005

 

 

Ideal

C4 As

C4 BSP ε=0.5

CW As

CW BSP ε=0.5

(b) UK-2005, ε = 0.5

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, UK−2005

 

 

Ideal

C4 As

C4 BSP ε=0.9

CW As

CW BSP ε=0.9

(c) UK-2005, ε = 0.9

Figure 5.9: Empirical mean speedups for UK-2005.



CHAPTER 5. CORRELATION CLUSTERING 70

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, IT−2004

 

 

Ideal

C4 As

C4 BSP ε=0.1

CW As

CW BSP ε=0.1

(a) IT-2004, ε = 0.1

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, IT−2004

 

 

Ideal

C4 As

C4 BSP ε=0.5

CW As

CW BSP ε=0.5

(b) IT-2004, ε = 0.5

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, IT−2004

 

 

Ideal

C4 As

C4 BSP ε=0.9

CW As

CW BSP ε=0.9

(c) IT-2004, ε = 0.9

Figure 5.10: Empirical mean speedups for IT-2004.

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, Webbase−2001

 

 

Ideal

C4 As

C4 BSP ε=0.1

CW As

CW BSP ε=0.1

(a) Webbase-2001, ε = 0.1

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, Webbase−2001

 

 

Ideal

C4 As

C4 BSP ε=0.5

CW As

CW BSP ε=0.5

(b) Webbase-2001, ε = 0.5

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, Webbase−2001

 

 

Ideal

C4 As

C4 BSP ε=0.9

CW As

CW BSP ε=0.9

(c) Webbase-2001, ε = 0.9

Figure 5.11: Empirical mean speedups for Webbase-2001.

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, ENWiki−2013

 

 

Ideal

C4 As

C4 BSP ε=0.1

CW As

CW BSP ε=0.1

(a) ENWiki-2013, ε = 0.1

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, ENWiki−2013

 

 

Ideal

C4 As

C4 BSP ε=0.5

CW As

CW BSP ε=0.5

(b) ENWiki-2013, ε = 0.5

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, ENWiki−2013

 

 

Ideal

C4 As

C4 BSP ε=0.9

CW As

CW BSP ε=0.9

(c) ENWiki-2013, ε = 0.9

Figure 5.12: Empirical mean speedups for ENWiki-2013.



CHAPTER 5. CORRELATION CLUSTERING 71

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, DBLP−2011

 

 

Ideal

C4 As

C4 BSP ε=0.1

CW As

CW BSP ε=0.1

CDK ε=0.1

(a) DBLP-2011, ε = 0.1

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, DBLP−2011

 

 

Ideal

C4 As

C4 BSP ε=0.5

CW As

CW BSP ε=0.5

CDK ε=0.5

(b) DBLP-2011, ε = 0.5

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

16

Number of threads

S
p

e
e

d
u

p

Mean Speedup, DBLP−2011

 

 

Ideal

C4 As

C4 BSP ε=0.9

CW As

CW BSP ε=0.9

CDK ε=0.9

(c) DBLP-2011, ε = 0.9

Figure 5.13: Empirical mean speedups for DBLP-2011.

Empirical objective values relative to mean objective value
obtained by serial algorithm.

0 5 10 15 20 25 30 35
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Number of threads

A
lg

o
 o

b
j 
v
a
lu

e
 :
 S

e
ri
a
l 
o
b
j 
v
a
lu

e

Objective Value Relative to Serial, UK−2005

 

 

CW BSP ε=0.1 mean

CW BSP ε=0.1 median

CW As mean

CW As median

(a) UK-2005, ε = 0.1

0 5 10 15 20 25 30 35
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Number of threads

A
lg

o
 o

b
j 
v
a
lu

e
 :
 S

e
ri
a
l 
o
b
j 
v
a
lu

e

Objective Value Relative to Serial, UK−2005

 

 

CW BSP ε=0.5 mean

CW BSP ε=0.5 median

CW As mean

CW As median

(b) UK-2005, ε = 0.5

0 5 10 15 20 25 30 35
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Number of threads

A
lg

o
 o

b
j 
v
a
lu

e
 :
 S

e
ri
a
l 
o
b
j 
v
a
lu

e

Objective Value Relative to Serial, UK−2005

 

 

CW BSP ε=0.9 mean

CW BSP ε=0.9 median

CW As mean

CW As median

(c) UK-2005, ε = 0.9

Figure 5.14: Empirical objective values relative to mean objective value obtained by serial
algorithm, for UK-2005.

0 5 10 15 20 25 30 35
1

1.05

1.1

1.15

1.2

Number of threads

A
lg

o
 o

b
j 
v
a
lu

e
 :
 S

e
ri
a
l 
o
b
j 
v
a
lu

e

Objective Value Relative to Serial, IT−2004

 

 

CW BSP ε=0.1 mean

CW BSP ε=0.1 median

CW As mean

CW As median

(a) IT-2004, ε = 0.1

0 5 10 15 20 25 30 35
1

1.05

1.1

1.15

1.2

Number of threads

A
lg

o
 o

b
j 
v
a
lu

e
 :
 S

e
ri
a
l 
o
b
j 
v
a
lu

e

Objective Value Relative to Serial, IT−2004

 

 

CW BSP ε=0.5 mean

CW BSP ε=0.5 median

CW As mean

CW As median

(b) IT-2004, ε = 0.5

0 5 10 15 20 25 30 35
1

1.05

1.1

1.15

1.2

Number of threads

A
lg

o
 o

b
j 
v
a
lu

e
 :
 S

e
ri
a
l 
o
b
j 
v
a
lu

e

Objective Value Relative to Serial, IT−2004

 

 

CW BSP ε=0.9 mean

CW BSP ε=0.9 median

CW As mean

CW As median

(c) IT-2004, ε = 0.9

Figure 5.15: Empirical objective values relative to mean objective value obtained by serial
algorithm, for IT-2004.



CHAPTER 5. CORRELATION CLUSTERING 72

0 5 10 15 20 25 30 35
1

1.05

1.1

1.15

Number of threads

A
lg

o
 o

b
j 
v
a
lu

e
 :
 S

e
ri
a
l 
o
b
j 
v
a
lu

e

Objective Value Relative to Serial, Webbase−2001

 

 

CW BSP ε=0.1 mean

CW BSP ε=0.1 median

CW As mean

CW As median

(a) Webbase-2001, ε = 0.1

0 5 10 15 20 25 30 35
1

1.05

1.1

1.15

Number of threads

A
lg

o
 o

b
j 
v
a
lu

e
 :
 S

e
ri
a
l 
o
b
j 
v
a
lu

e

Objective Value Relative to Serial, Webbase−2001

 

 

CW BSP ε=0.5 mean

CW BSP ε=0.5 median

CW As mean

CW As median

(b) Webbase-2001, ε = 0.5

0 5 10 15 20 25 30 35
1

1.05

1.1

1.15

Number of threads

A
lg

o
 o

b
j 
v
a
lu

e
 :
 S

e
ri
a
l 
o
b
j 
v
a
lu

e

Objective Value Relative to Serial, Webbase−2001

 

 

CW BSP ε=0.9 mean

CW BSP ε=0.9 median

CW As mean

CW As median

(c) Webbase-2001, ε = 0.9

Figure 5.16: Empirical objective values relative to mean objective value obtained by serial
algorithm, for Webbase-2001.

0 5 10 15 20 25 30 35
1

1.05

1.1

1.15

1.2

Number of threads

A
lg

o
 o

b
j 
v
a
lu

e
 :
 S

e
ri
a
l 
o
b
j 
v
a
lu

e

Objective Value Relative to Serial, ENWiki−2013

 

 

CW BSP ε=0.1 mean

CW BSP ε=0.1 median

CW As mean

CW As median

CDK ε=0.1 mean

CDK ε=0.1 median

(a) ENWiki-2013, ε = 0.1

0 5 10 15 20 25 30 35
1

1.05

1.1

1.15

1.2

Number of threads

A
lg

o
 o

b
j 
v
a
lu

e
 :
 S

e
ri
a
l 
o
b
j 
v
a
lu

e

Objective Value Relative to Serial, ENWiki−2013

 

 

CW BSP ε=0.5 mean

CW BSP ε=0.5 median

CW As mean

CW As median

CDK ε=0.5 mean

CDK ε=0.5 median

(b) ENWiki-2013, ε = 0.5

0 5 10 15 20 25 30 35
1

1.05

1.1

1.15

1.2

Number of threads

A
lg

o
 o

b
j 
v
a
lu

e
 :
 S

e
ri
a
l 
o
b
j 
v
a
lu

e

Objective Value Relative to Serial, ENWiki−2013

 

 

CW BSP ε=0.9 mean

CW BSP ε=0.9 median

CW As mean

CW As median

CDK ε=0.9 mean

CDK ε=0.9 median

(c) ENWiki-2013, ε = 0.9

Figure 5.17: Empirical objective values relative to mean objective value obtained by serial
algorithm, for ENWiki-2013.

0 5 10 15 20 25 30 35
1

1.02

1.04

1.06

1.08

1.1

1.12

Number of threads

A
lg

o
 o

b
j 
v
a

lu
e

 :
 S

e
ri
a

l 
o

b
j 
v
a

lu
e

Objective Value Relative to Serial, DBLP−2011

 

 

CW BSP ε=0.1 mean

CW BSP ε=0.1 median

CW As mean

CW As median

CDK ε=0.1 mean

CDK ε=0.1 median

(a) DBLP-2011, ε = 0.1

0 5 10 15 20 25 30 35
1

1.02

1.04

1.06

1.08

1.1

1.12

Number of threads

A
lg

o
 o

b
j 
v
a

lu
e

 :
 S

e
ri
a

l 
o

b
j 
v
a

lu
e

Objective Value Relative to Serial, DBLP−2011

 

 

CW BSP ε=0.5 mean

CW BSP ε=0.5 median

CW As mean

CW As median

CDK ε=0.5 mean

CDK ε=0.5 median

(b) DBLP-2011, ε = 0.5

0 5 10 15 20 25 30 35
1

1.02

1.04

1.06

1.08

1.1

1.12

Number of threads

A
lg

o
 o

b
j 
v
a

lu
e

 :
 S

e
ri
a

l 
o

b
j 
v
a

lu
e

Objective Value Relative to Serial, DBLP−2011

 

 

CW BSP ε=0.9 mean

CW BSP ε=0.9 median

CW As mean

CW As median

CDK ε=0.9 mean

CDK ε=0.9 median

(c) DBLP-2011, ε = 0.9

Figure 5.18: Empirical objective values relative to mean objective value obtained by serial
algorithm, for DBLP-2011.

Empirical percentage of blocked vertices.

Generally the number of blocked vertices increases with the number of threads and larger ε
values. C4 BSP has fewer blocked vertices than asynchronous C4, but at the cost of more
synchronization barriers. We point out that across all 100 runs of every graphs, the maximum



CHAPTER 5. CORRELATION CLUSTERING 73

percentage of blocked vertices is less than 0.25%; for large sparse graphs, the maximum
percentage is less than 0.025%, i.e., 1 in 4000.

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, UK−2005

 

 

C4 BSP ε=0.1 Min

C4 BSP ε=0.1 Mean

C4 BSP ε=0.1 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(a) UK-2005, ε = 0.1

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, UK−2005

 

 

C4 BSP ε=0.5 Min

C4 BSP ε=0.5 Mean

C4 BSP ε=0.5 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(b) UK-2005, ε = 0.5

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, UK−2005

 

 

C4 BSP ε=0.9 Min

C4 BSP ε=0.9 Mean

C4 BSP ε=0.9 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(c) UK-2005, ε = 0.9

Figure 5.19: Empirical percentage of blocked vertices for UK-2005.

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, IT−2004

 

 

C4 BSP ε=0.1 Min

C4 BSP ε=0.1 Mean

C4 BSP ε=0.1 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(a) IT-2004, ε = 0.1

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, IT−2004

 

 

C4 BSP ε=0.5 Min

C4 BSP ε=0.5 Mean

C4 BSP ε=0.5 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(b) IT-2004, ε = 0.5

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, IT−2004

 

 

C4 BSP ε=0.9 Min

C4 BSP ε=0.9 Mean

C4 BSP ε=0.9 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(c) IT-2004, ε = 0.9

Figure 5.20: Empirical percentage of blocked vertices for IT-2004.

0 5 10 15 20 25 30 35
0

0.002

0.004

0.006

0.008

0.01

0.012

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, Webbase−2001

 

 

C4 BSP ε=0.1 Min

C4 BSP ε=0.1 Mean

C4 BSP ε=0.1 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(a) Webbase-2001, ε = 0.1

0 5 10 15 20 25 30 35
0

0.002

0.004

0.006

0.008

0.01

0.012

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, Webbase−2001

 

 

C4 BSP ε=0.5 Min

C4 BSP ε=0.5 Mean

C4 BSP ε=0.5 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(b) Webbase-2001, ε = 0.5

0 5 10 15 20 25 30 35
0

0.002

0.004

0.006

0.008

0.01

0.012

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, Webbase−2001

 

 

C4 BSP ε=0.9 Min

C4 BSP ε=0.9 Mean

C4 BSP ε=0.9 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(c) Webbase-2001, ε = 0.9

Figure 5.21: Empirical percentage of blocked vertices for Webbase-2001.



CHAPTER 5. CORRELATION CLUSTERING 74

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, ENWiki−2013

 

 

C4 BSP ε=0.1 Min

C4 BSP ε=0.1 Mean

C4 BSP ε=0.1 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(a) ENWiki-2013, ε = 0.1

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, ENWiki−2013

 

 

C4 BSP ε=0.5 Min

C4 BSP ε=0.5 Mean

C4 BSP ε=0.5 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(b) ENWiki-2013, ε = 0.5

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, ENWiki−2013

 

 

C4 BSP ε=0.9 Min

C4 BSP ε=0.9 Mean

C4 BSP ε=0.9 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(c) ENWiki-2013, ε = 0.9

Figure 5.22: Empirical percentage of blocked vertices for ENWiki-2013.

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, DBLP−2011

 

 

C4 BSP ε=0.1 Min

C4 BSP ε=0.1 Mean

C4 BSP ε=0.1 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(a) DBLP-2011, ε = 0.1

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, DBLP−2011

 

 

C4 BSP ε=0.5 Min

C4 BSP ε=0.5 Mean

C4 BSP ε=0.5 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(b) DBLP-2011, ε = 0.5

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

Number of threads

%
 o

f 
b
lo

c
k
e
d
 v

e
rt

ic
e
s

% of Blocked Vertices, DBLP−2011

 

 

C4 BSP ε=0.9 Min

C4 BSP ε=0.9 Mean

C4 BSP ε=0.9 Max

C4 BSP Min

C4 BSP Mean

C4 BSP Max

(c) DBLP-2011, ε = 0.9

Figure 5.23: Empirical percentage of blocked vertices for DBLP-2011.



75

Chapter 6

Non-monotone Submodular
Maximization

6.1 Introduction
Many important problems including sensor placement [79], image co-segmentation [77], MAP
inference for determinantal point processes [60], influence maximization in social networks [76],
and document summarization [91] may be expressed as the maximization of a submodular
function. The submodular formulation enables the use of targeted algorithms [30, 105] that
offer theoretical worst-case guarantees on the quality of the solution. For several maximization
problems of monotone submodular functions (satisfying F (A) ≤ F (B) for all A ⊆ B), a
simple greedy algorithm [105] achieves the optimal approximation factor of 1 − 1

e
. The

optimal result for the wider, important class of non-monotone functions — an approximation
guarantee of 1/2 — is much more recent, and achieved by a double greedy algorithm by [30].

While theoretically optimal, in practice these algorithms do not scale to large real world
problems, since the inherently serial nature of the algorithms poses a challenge to leveraging
advances in parallel hardware. This limitation raises the question of parallel algorithms
for submodular maximization that ideally preserve the theoretical bounds, or weaken them
gracefully, in a quantifiable manner.

In this chapter1, we focus on the double greedy algorithm from the perspective of parallel
transaction processing systems. Specifically, we apply concurrency control to coordinate
transactions, thereby providing upper and lower bounds on the transactions’ read sets that
are exploited to allow most transactions to proceed in parallel. Key to this exploitation is our
insight that there is a low probability that concurrent transactions will affect one another’s
decisions. The resultant algorithm, CC-2g, is serializable and retains the optimality of the
double greedy algorithm at the expense of increased coordination.

We also develop a coordination free CF-2g algorithm, and show that a natural weaker
bound of the double greedy algorithm translates to a poorer approximation ratio.

1Work done as part of [111].



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 76

The primary contributions of this chapter are:

1. We propose two parallel algorithms for unconstrained non-monotone submodular maxi-
mization, which trade off parallelism and tight approximation guarantees.

2. We provide approximation guarantees for CF-2g and analytically bound the expected
loss in objective value for set-cover with costs and max-cut as running examples.

3. We prove that CC-2g preserves the optimality of the serial double greedy algorithm
and analytically bound the additional coordination overhead for covering with costs
and max-cut.

4. We demonstrate empirically using two synthetic and four real datasets that our parallel
algorithms perform well in terms of both speed and objective values.

The rest of the chapter is organized as follows. Section 6.2 discusses the problem of
submodular maximization and introduces the double greedy algorithm. Section 6.3 provides
background on concurrency control mechanisms. We describe and provide intuition for our
CF-2g and CC-2g algorithms in Section 6.4 and Section 6.5, and then analyze the algorithms
both theoretically (Section 6.6) and empirically (Section 6.7).

6.2 Submodular Maximization
A set function F : 2V → R defined over subsets of a ground set V is submodular if it
satisfies diminishing marginal returns: for all A ⊆ B ⊆ V and e /∈ B, it holds that
F (A∪{e})−F (A) ≥ F (B∪{e})−F (B). Throughout this chapter, we will assume that F is
nonnegative and F (∅) = 0. Submodular functions have emerged in areas such as game theory
[123], graph theory [57], combinatorial optimization [122], and machine learning [81, 19].
Casting machine learning problems as submodular optimization enables the use of algorithms
for submodular maximization [30, 105] that offer theoretical worst-case guarantees on the
quality of the solution.

While those algorithms confer strong guarantees, their design is inherently serial, limiting
their usability in large-scale problems. Recent work has addressed faster [11] and parallel
[104, 85, 134] versions of the greedy algorithm by [105] for maximizing monotone submodular
functions that satisfy F (A) ≤ F (B) for any A ⊆ B ⊆ V . However, many important
applications in machine learning lead to non-monotone submodular functions. For example,
graphical model inference [60, 119], or trading off any submodular gain maximization with
costs (functions of the form F (S) = G(S)− λM(S), where G(S) is monotone submodular
and M(S) a linear (modular) cost function), such as for utility-privacy tradeoffs [80], require
maximizing non-monotone submodular functions. For non-monotone functions, the simple
greedy algorithm in [105] can perform arbitrarily poorly (see Appendix 6.E for an example).
Intuitively, the introduction of additional elements with monotone submodular functions
never decreases the objective while introducing elements with non-monotone submodular



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 77

functions can decrease the objective to its minimum. For non-monotone functions, [30]
recently proposed an optimal double greedy algorithm that works well in a serial setting. In
this chapter, we study parallelizations of this algorithm.

The serial double greedy algorithm. The serial double greedy algorithm of [30] (Ser-
2g, in Algorithm 6.3) maintains two sets Ai ⊆ Bi. Initially, A0 = ∅ and B0 = V . In iteration
i, the set Ai−1 contains the items selected before item/iteration i, and Bi−1 contains Ai and
the items that are so far undecided. The algorithm serially passes through the items in V
and determines online whether to keep item i (add to Ai) or discard it (remove from Bi),
based on a threshold that trades off the gain ∆+(i) = F (Ai−1 ∪ i)− F (Ai−1) of adding i to
the currently selected set Ai−1, and the gain ∆−(i) = F (Bi−1 \ i)− F (Bi−1) of removing i
from the candidate set, estimating its complementarity to other remaining elements. For any
element ordering, this algorithm achieves a tight 1/2-approximation in expectation.

6.3 Concurrency Control with Coordinated Bounds
In this chapter we adopt a transactional view of the program state and explore parallelization
strategies through the lens of parallel transaction processing systems. We recast the program
state (the sets A and B) as data, and the operations (adding elements to A and removing
elements from B) as transactions. More precisely we reformulate the double greedy algorithm
(Algorithm 6.3) as a series of exchangeable, Read-Write transactions of the form:

Λe(A,B) :=

{
({e}, ∅) if ue ≤ [∆+(A,e)]+

[∆+(A,e)]++[∆−(B,e)]+

(∅, {e}) otherwise.
(6.1)

T ((A,B), λ) := (A ∪ λA, B − λB) (6.2)
Te(A,B) := T ((A,B), λe(A,B)) (6.3)

The transaction Te(A,B) := T (A,B,Λe(A,B)) is a function from the sets A and B to new
sets A and B based on the element e ∈ V and the predetermined random bits ue for that
element.

By composing the transactions Tn(Tn−1(. . . T1(∅, V ))) we recover the serial double-greedy
algorithm defined in Algorithm 6.3. In fact, any ordering of the serial composition of
the transactions recovers a permuted execution of Algorithm 6.3 and therefore the optimal
approximation algorithm. However, this raises the question: is it possible to apply transactions
in parallel? If we execute transactions Ti and Tj , with i 6= j, in parallel we need a method to
merge the resulting program states. In the context of the double greedy algorithm, we could
define the parallel, coordination-free, execution of two transactions as:

Ti(A,B) + Tj(A,B) := T (T ((A,B),Λi(A,B)),Λj(A,B)) (6.4)
= T ((A,B), (Λi(A,B)A ∪ Λj(A,B)A,Λi(A,B)B ∪ Λj(A,B)B)),



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 78

the union of the resulting A and the intersection of the resulting B. While we can easily
generalize (6.4) to many parallel transactions, we cannot always guarantee that the result
will be serializable, i.e., that it corresponds to a serial composition of transactions. As a
consequence, we cannot directly apply the analysis of Buchbinder et al. [30] to derive strong
approximation guarantees for the parallel execution.

In this chapter we adopt a coordinated bounds approach to parallel transaction processing
in which parallel transactions are constructed under bounds on the possible program state.
If the transaction could violate the bound then it is processed serially on the server. This
approach achieves a high degree of parallelism when the cost of constructing the transaction
dominates the cost of applying the transaction. By adjusting the definition of the bound we
can span a space of coordination-free to serializable executions.

Algorithm 6.1: Generalized trans-
actions with coordinated bounds
1 for p ∈ {1, . . . , P} do in parallel
2 while ∃ element to process do
3 e = next element to process
4 (ge, i) = requestGuarantee(e)
5 ∂i = propose(e, ge)
6 commit(e, i, ∂i) // Non-blocking

Algorithm 6.2: Commit transac-
tion i
1 wait until ∀j < i, processed(j) = true
2 Atomically
3 if ∂i = FAIL then

// Deferred proposal
4 ∂i = propose(e, S)

// Advance the program state
5 S← ∂i(S)

Figure 6.1: Algorithm for generalized transactions. Each transaction requests its position i in the commit
ordering, as well as the bounds ge that are guaranteed to hold when it commits. Transactions are also
guaranteed to be committed according to the given ordering.

In Figure 6.1 we describe the coordinated bounds transaction pattern. The clients
(Algorithm 6.1), in parallel, construct and commit transactions under bounded assumptions
about the program state S (i.e., the sets A and B). Transactions are constructed by
requesting the latest bound ge on S at logical time i and computing a change ∂i to S
(e.g., Add e to A). If the bound is insufficient to construct the transaction then ∂i = FAIL
is returned. The client then sends the proposed change ∂i to the server to be committed
atomically and proceeds to the next element without waiting for a response.

The server (Algorithm 6.2) serially applies the transactions advancing the program state
(i.e., adding elements to A or removing elements from B). If the bounds were insufficient and
the transaction failed at the client (i.e., ∂i = FAIL) then the server serially reconstructs and
applies the transaction under the true program state. Moreover, the server is responsible for
deriving bounds, processing transactions in the logical order i, and producing the serializable
output ∂n(∂n−1(. . . ∂1(S))).

In the case of submodular maximization, the cost of constructing the transaction depends
on evaluating the marginal gains with respect to changes in A and B while the cost of
applying the transaction reduces to setting a bit. Thus, distributing the work of proposals
over multiple threads allows database systems to achieve parallelism, even with the serial



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 79

commit process on the server. It is also essential that only a few transactions fail at the
client. Indeed, the analysis of these systems focuses on ensuring that the majority of the
transactions succeed.

6.4 CF-2g: Coordination-Free Double Greedy
Algorithm

The coordination-free approach attempts to reduce the need to coordinate guarantees and
the logical ordering. This is achieved by operating on potentially stale states: the transaction
guarantee reduces to requiring ge be a stale version of S, and the logical ordering is implicitly
defined by the time of commit. In using these weak guarantees, CF-2g is overly optimistically
assuming that concurrent transactions are independent, which could potentially lead to
erroneous decisions.

Algorithm 6.3: Ser-2g: serial dou-
ble greedy
1 A0 = ∅, B0 = V
2 for i = 1 to n do
3 ∆+(i) = F (Ai−1 ∪ i)− F (Ai−1)
4 ∆−(i) = F (Bi−1\i)− F (Bi−1)
5 Draw ui ∼ Unif(0, 1)

6 if ui <
[∆+(i)]+

[∆+(i)]++[∆−(i)]+
then

7 Ai := Ai−1 ∪ i
8 Bi := Bi−1

9 else
10 Ai := Ai−1

11 Bi := Bi−1\i

Algorithm 6.4: CF-2g: coord-free
double greedy
1 Â = ∅, B̂ = V
2 for p ∈ {1, . . . , P} do in parallel
3 while ∃ element to process do
4 e = next element to process
5 Âe = Â; B̂e = B̂

6 ∆max
+ (e) = F (Âe ∪ e)− F (Âe)

7 ∆max
− (e) = F (B̂e\e)− F (B̂e)

8 Draw ue ∼ Unif(0, 1)

9 if ue <
[∆max

+ (e)]+
[∆max

+ (e)]++[∆max
− (e)]+

then

10 Â(e)← 1

11 else B̂(e)← 0

Algorithm 6.4 is the coordination-free parallel double greedy algorithm.2 CF-2g closely
resembles the serial Ser-2g, but the elements e ∈ V are no longer processed in a fixed order.
Thus, the sets A,B are replaced by potentially stale local estimates (bounds) Â, B̂, where Â
is a subset of the true A and B̂ is a superset of the actual B on each iteration (see Lemma 6.1).
These bounding sets allow us to compute bounds ∆max

+ ,∆max
− which approximate ∆+,∆−

from the serial algorithm. We now formalize this idea.
To analyze the CF-2g algorithm we order the elements e ∈ V according to the commit

time (i.e., when Algorithm 6.4 line 8 is executed). Let ι(e) be the position of e in this total
ordering on elements. This ordering allows us to define monotonically non-decreasing sets Ai =

2We present only the parallelized probabilistic versions of [30]. Both parallel algorithms can be easily
extended to the deterministic version of [30]; CF-2g can also be extended to the multilinear version of [30].



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 80

ui 

Add A!

Rem. B!

0 

1 

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 3: Seq-2g: Sequential double greedy
1 A0 = ;, B0 = V
2 for i = 1 to n do
3 �+(i) = F (Ai�1 [ i)� F (Ai�1)

4 ��(i) = F (Bi�1\i)� F (Bi�1)
5 Draw ui ⇠ Unif(0, 1)

6 if ui <
[�+(i)]

+

[�+(i)]
+

+[��(i)]
+

then

7 Ai := Ai�1 [ i; Bi := Bi�1

8 else Ai := Ai�1; Bi := Bi�1\i

Algorithm 4: CF-2g: coord-free double greedy

1 Â = ;, B̂ = V
2 for p 2 {1, . . . , P} do in parallel
3 while 9 element to process do
4 e = next element to process
5 �max

+ (e) = F (Â [ e)� F (Â)

6 �max
� (e) = F (B̂\e)� F (B̂)

7 Draw ue ⇠ Unif(0, 1)

8 if ue <
[�max

+ (e)]+
[�max

+ (e)]++[�max
� (e)]+

then

9 Â(e) 1

10 else B̂(e) 0

Algorithm 5: CC-2g: concurrency control

1 Â = Ã = ;, B̂ = B̃ = V
2 for i = 1, . . . , |V | do processed(i) = false
3 ◆ = 0
4 for p 2 {1, . . . , P} do in parallel
5 while 9 element to process do
6 e = next element to process
7 (Âe, Ãe, B̂e, B̃e, i) = getGuarantee(e)
8 (result, ue) = propose(e, Âe, Ãe, B̂e, B̃e)
9 commit(e, i, ue, result)

Algorithm 6: CC-2g getGuarantee(e)

1 Ã(e) 1; B̃(e) 0
2 i = ◆; ◆ ◆ + 1

3 Âe = Â; B̂e = B̂

4 Ãe = Ã; B̃e = B̃

5 return (Âe, Ãe, B̂e, B̃e, i)

Algorithm 7: CC-2g propose

1 �min
+ (e) = F (Ãe)� F (Ãe\e)

2 �max
+ (e) = F (Âe [ e)� F (Âe)

3 �min
� (e) = F (B̃e)� F (B̃e [ e)

4 �max
� (e) = F (B̂e\e)� F (B̂e)

5 Draw ue ⇠ Unif(0, 1)

6 if ue <
[�min

+ (e)]+

[�min
+ (e)]++[�max

� (e)]+
then

7 result  1

8 else if ue >
[�max

+ (e)]+

[�max
+ (e)]++[�min

� (e)]+
then

9 result  �1

10 else result  fail
11 return (result, ue)

Algorithm 8: CC-2g: commit(e, i, ue, result)
1 wait until 8j < i, processed(j) = true
2 if result = fail then
3 �exact

+ (e) = F (Â [ e)� F (Â)

4 �exact
� (e) = F (B̂\e)� F (B̂)

5 if ue <
[�exact

+ (e)]+

[�exact
+ (e)]++[�exact

� (e)]+
then result  1

6 else result  �1

7 if result = 1 then Â(e) 1; B̃(e) 1

8 else Ã(e) 0; B̂(e) 0
9 processed(i) = true

(a) (b) (c)

4 Coordination Free Double Greedy Algorithm

The coordination-free approach attempts to reduce the need to coordinate guarantees and logical
ordering. This is achieved by operating on potentially stale states – the guarantee reduces to requiring
ge be a stale version of S, and logical ordering is implicitly defined by the time of commit. In using
these weak guarantees, CF-2g is overly optimistically assuming that concurrent transactions are
independent, which could potentially lead to erroneous decisions.

Alg. 4 is the coordination free parallel double greedy algorithm.1 CF-2g closely resembles the serial
Seq-2g, but the elements e 2 V are no longer processed in a fixed order. Thus, the sets A, B are
replaced by potentially stale “bounds” Â, B̂, where Â is a subset of the “true” A and B̂ is a superset

1We present only the parallelized probabilistic versions of [1]. Both parallel algorithms can be easily extended
to the deterministic version of [1]; CF-2g can also be extended to the multilinear version of [1].

4

(a) Ser-2g

ue 

Add A!

Rem. B!

0 

1 

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 3: Seq-2g: Sequential double greedy
1 A0 = ;, B0 = V
2 for i = 1 to n do
3 �+(i) = F (Ai�1 [ i)� F (Ai�1)

4 ��(i) = F (Bi�1\i)� F (Bi�1)
5 Draw ui ⇠ Unif(0, 1)

6 if ui <
[�+(i)]

+

[�+(i)]
+

+[��(i)]
+

then

7 Ai := Ai�1 [ i; Bi := Bi�1

8 else Ai := Ai�1; Bi := Bi�1\i

Algorithm 4: CF-2g: coord-free double greedy

1 Â = ;, B̂ = V
2 for p 2 {1, . . . , P} do in parallel
3 while 9 element to process do
4 e = next element to process
5 �max

+ (e) = F (Â [ e)� F (Â)

6 �max
� (e) = F (B̂\e)� F (B̂)

7 Draw ue ⇠ Unif(0, 1)

8 if ue <
[�max

+ (e)]+
[�max

+ (e)]++[�max
� (e)]+

then

9 Â(e) 1

10 else B̂(e) 0

Algorithm 5: CC-2g: concurrency control

1 Â = Ã = ;, B̂ = B̃ = V
2 for i = 1, . . . , |V | do processed(i) = false
3 ◆ = 0
4 for p 2 {1, . . . , P} do in parallel
5 while 9 element to process do
6 e = next element to process
7 (Âe, Ãe, B̂e, B̃e, i) = getGuarantee(e)
8 (result, ue) = propose(e, Âe, Ãe, B̂e, B̃e)
9 commit(e, i, ue, result)

Algorithm 6: CC-2g getGuarantee(e)

1 Ã(e) 1; B̃(e) 0
2 i = ◆; ◆ ◆ + 1

3 Âe = Â; B̂e = B̂

4 Ãe = Ã; B̃e = B̃

5 return (Âe, Ãe, B̂e, B̃e, i)

Algorithm 7: CC-2g propose

1 �min
+ (e) = F (Ãe)� F (Ãe\e)

2 �max
+ (e) = F (Âe [ e)� F (Âe)

3 �min
� (e) = F (B̃e)� F (B̃e [ e)

4 �max
� (e) = F (B̂e\e)� F (B̂e)

5 Draw ue ⇠ Unif(0, 1)

6 if ue <
[�min

+ (e)]+

[�min
+ (e)]++[�max

� (e)]+
then

7 result  1

8 else if ue >
[�max

+ (e)]+

[�max
+ (e)]++[�min

� (e)]+
then

9 result  �1

10 else result  fail
11 return (result, ue)

Algorithm 8: CC-2g: commit(e, i, ue, result)
1 wait until 8j < i, processed(j) = true
2 if result = fail then
3 �exact

+ (e) = F (Â [ e)� F (Â)

4 �exact
� (e) = F (B̂\e)� F (B̂)

5 if ue <
[�exact

+ (e)]+

[�exact
+ (e)]++[�exact

� (e)]+
then result  1

6 else result  �1

7 if result = 1 then Â(e) 1; B̃(e) 1

8 else Ã(e) 0; B̂(e) 0
9 processed(i) = true

(a) (b) (c)

4 Coordination Free Double Greedy Algorithm

The coordination-free approach attempts to reduce the need to coordinate guarantees and logical
ordering. This is achieved by operating on potentially stale states – the guarantee reduces to requiring
ge be a stale version of S, and logical ordering is implicitly defined by the time of commit. In using
these weak guarantees, CF-2g is overly optimistically assuming that concurrent transactions are
independent, which could potentially lead to erroneous decisions.

Alg. 4 is the coordination free parallel double greedy algorithm.1 CF-2g closely resembles the serial
Seq-2g, but the elements e 2 V are no longer processed in a fixed order. Thus, the sets A, B are
replaced by potentially stale “bounds” Â, B̂, where Â is a subset of the “true” A and B̂ is a superset

1We present only the parallelized probabilistic versions of [1]. Both parallel algorithms can be easily extended
to the deterministic version of [1]; CF-2g can also be extended to the multilinear version of [1].

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 3: Ser-2g: serial double greedy
1 A0 = ;, B0 = V
2 for i = 1 to n do
3 �+(i) = F (Ai�1 [ i)� F (Ai�1)

4 ��(i) = F (Bi�1\i)� F (Bi�1)
5 Draw ui ⇠ Unif(0, 1)

6 if ui <
[�+(e)]

+

[�+(e)]
+

+[��(e)]
+

then

7

8 Ai := Ai�1 [ i; Bi := Bi�1

9 else Ai := Ai�1; Bi := Bi�1\i

Algorithm 4: CF-2g: coord-free double greedy

1 Â = ;, B̂ = V
2 for p 2 {1, . . . , P} do in parallel
3 while 9 element to process do
4 e = next element to process
5 Âe = Â; B̂e = B̂

6 �max
+ (e) = F (Âe [ e)� F (Âe)

7 �max
� (e) = F (B̂e\e)� F (B̂e)

8 Draw ue ⇠ Unif(0, 1)

9 if ue <
[�max

+ (e)]+
[�max

+ (e)]++[�max
� (e)]+

then

10 Â(e) 1

11 else B̂(e) 0

Algorithm 5: CC-2g: concurrency control

1 Â = Ã = ;, B̂ = B̃ = V
2 for i = 1, . . . , |V | do processed(i) = false
3 ◆ = 0
4 for p 2 {1, . . . , P} do in parallel
5 while 9 element to process do
6 e = next element to process
7 (Âe, Ãe, B̂e, B̃e, i) = getGuarantee(e)
8 (result, ue) = propose(e, Âe, Ãe, B̂e, B̃e)
9 commit(e, i, ue, result)

Algorithm 6: CC-2g getGuarantee(e)

1 Ã(e) 1; B̃(e) 0
2 i = ◆; ◆ ◆ + 1

3 Âe = Â; B̂e = B̂

4 Ãe = Ã; B̃e = B̃

5 return (Âe, Ãe, B̂e, B̃e, i)

Algorithm 7: CC-2g propose

1 �min
+ (e) = F (Ãe)� F (Ãe\e)

2 �max
+ (e) = F (Âe [ e)� F (Âe)

3 �min
� (e) = F (B̃e)� F (B̃e [ e)

4 �max
� (e) = F (B̂e\e)� F (B̂e)

5 Draw ue ⇠ Unif(0, 1)

6 if ue <
[�min

+ (e)]+

[�min
+ (e)]++[�max

� (e)]+
then

7 result  1

8 else if ue >
[�max

+ (e)]+

[�max
+ (e)]++[�min

� (e)]+
then

9 result  �1

10 else result  FAIL
11 return (result, ue)

Algorithm 8: CC-2g: commit(e, i, ue, result)
1 wait until 8j < i, processed(j) = true
2 if result = FAIL then
3 �exact

+ (e) = F (Â [ e)� F (Â)

4 �exact
� (e) = F (B̂\e)� F (B̂)

5 if ue <
[�exact

+ (e)]+

[�exact
+ (e)]++[�exact

� (e)]+
then result  1

6 else result  �1

7 if result = 1 then Â(e) 1; B̃(e) 1

8 else Ã(e) 0; B̂(e) 0
9 processed(i) = true

4 Coordination-Free Double Greedy Algorithm

The coordination-free approach attempts to reduce the need to coordinate guarantees and the logical
ordering. This is achieved by operating on potentially stale states: the transaction guarantee reduces
to requiring ge be a stale version of S, and the logical ordering is implicitly defined by the time of
commit. In using these weak guarantees, CF-2g is overly optimistically assuming that concurrent
transactions are independent, which could potentially lead to erroneous decisions.

Alg. 4 is the coordination-free parallel double greedy algorithm.1 CF-2g closely resembles the serial
Ser-2g, but the elements e 2 V are no longer processed in a fixed order. Thus, the sets A, B are
replaced by potentially stale local estimates (bounds) Â, B̂, where Â is a subset of the true A and
B̂ is a superset of the actual B on each iteration. These bounding sets allow us to compute bounds
�max

+ ,�max
� which approximate �+,�� from the serial algorithm. We now formalize this idea.

1We present only the parallelized probabilistic versions of [2]. Both parallel algorithms can be easily extended
to the deterministic version of [2]; CF-2g can also be extended to the multilinear version of [2].

4

(b) CF-2g

ue 

Add A!

Rem. B!

0 

1 

Uncertainty !

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 3: Seq-2g: Sequential double greedy
1 A0 = ;, B0 = V
2 for i = 1 to n do
3 �+(i) = F (Ai�1 [ i)� F (Ai�1)

4 ��(i) = F (Bi�1\i)� F (Bi�1)
5 Draw ui ⇠ Unif(0, 1)

6 if ui <
[�+(i)]

+

[�+(i)]
+

+[��(i)]
+

then

7 Ai := Ai�1 [ i; Bi := Bi�1

8 else Ai := Ai�1; Bi := Bi�1\i

Algorithm 4: CF-2g: coord-free double greedy

1 Â = ;, B̂ = V
2 for p 2 {1, . . . , P} do in parallel
3 while 9 element to process do
4 e = next element to process
5 �max

+ (e) = F (Â [ e)� F (Â)

6 �max
� (e) = F (B̂\e)� F (B̂)

7 Draw ue ⇠ Unif(0, 1)

8 if ue <
[�max

+ (e)]+
[�max

+ (e)]++[�max
� (e)]+

then

9 Â(e) 1

10 else B̂(e) 0

Algorithm 5: CC-2g: concurrency control

1 Â = Ã = ;, B̂ = B̃ = V
2 for i = 1, . . . , |V | do processed(i) = false
3 ◆ = 0
4 for p 2 {1, . . . , P} do in parallel
5 while 9 element to process do
6 e = next element to process
7 (Âe, Ãe, B̂e, B̃e, i) = getGuarantee(e)
8 (result, ue) = propose(e, Âe, Ãe, B̂e, B̃e)
9 commit(e, i, ue, result)

Algorithm 6: CC-2g getGuarantee(e)

1 Ã(e) 1; B̃(e) 0
2 i = ◆; ◆ ◆ + 1

3 Âe = Â; B̂e = B̂

4 Ãe = Ã; B̃e = B̃

5 return (Âe, Ãe, B̂e, B̃e, i)

Algorithm 7: CC-2g propose

1 �min
+ (e) = F (Ãe)� F (Ãe\e)

2 �max
+ (e) = F (Âe [ e)� F (Âe)

3 �min
� (e) = F (B̃e)� F (B̃e [ e)

4 �max
� (e) = F (B̂e\e)� F (B̂e)

5 Draw ue ⇠ Unif(0, 1)

6 if ue <
[�min

+ (e)]+

[�min
+ (e)]++[�max

� (e)]+
then

7 result  1

8 else if ue >
[�max

+ (e)]+

[�max
+ (e)]++[�min

� (e)]+
then

9 result  �1

10 else result  fail
11 return (result, ue)

Algorithm 8: CC-2g: commit(e, i, ue, result)
1 wait until 8j < i, processed(j) = true
2 if result = fail then
3 �exact

+ (e) = F (Â [ e)� F (Â)

4 �exact
� (e) = F (B̂\e)� F (B̂)

5 if ue <
[�exact

+ (e)]+

[�exact
+ (e)]++[�exact

� (e)]+
then result  1

6 else result  �1

7 if result = 1 then Â(e) 1; B̃(e) 1

8 else Ã(e) 0; B̂(e) 0
9 processed(i) = true

(a) (b) (c)

4 Coordination Free Double Greedy Algorithm

The coordination-free approach attempts to reduce the need to coordinate guarantees and logical
ordering. This is achieved by operating on potentially stale states – the guarantee reduces to requiring
ge be a stale version of S, and logical ordering is implicitly defined by the time of commit. In using
these weak guarantees, CF-2g is overly optimistically assuming that concurrent transactions are
independent, which could potentially lead to erroneous decisions.

Alg. 4 is the coordination free parallel double greedy algorithm.1 CF-2g closely resembles the serial
Seq-2g, but the elements e 2 V are no longer processed in a fixed order. Thus, the sets A, B are
replaced by potentially stale “bounds” Â, B̂, where Â is a subset of the “true” A and B̂ is a superset

1We present only the parallelized probabilistic versions of [1]. Both parallel algorithms can be easily extended
to the deterministic version of [1]; CF-2g can also be extended to the multilinear version of [1].

4

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 3: Seq-2g: Sequential double greedy
1 A0 = ;, B0 = V
2 for i = 1 to n do
3 �+(i) = F (Ai�1 [ i)� F (Ai�1)

4 ��(i) = F (Bi�1\i)� F (Bi�1)
5 Draw ui ⇠ Unif(0, 1)

6 if ui <
[�+(i)]

+

[�+(i)]
+

+[��(i)]
+

then

7 Ai := Ai�1 [ i; Bi := Bi�1

8 else Ai := Ai�1; Bi := Bi�1\i

Algorithm 4: CF-2g: coord-free double greedy

1 Â = ;, B̂ = V
2 for p 2 {1, . . . , P} do in parallel
3 while 9 element to process do
4 e = next element to process
5 �max

+ (e) = F (Â [ e)� F (Â)

6 �max
� (e) = F (B̂\e)� F (B̂)

7 Draw ue ⇠ Unif(0, 1)

8 if ue <
[�max

+ (e)]+
[�max

+ (e)]++[�max
� (e)]+

then

9 Â(e) 1

10 else B̂(e) 0

Algorithm 5: CC-2g: concurrency control

1 Â = Ã = ;, B̂ = B̃ = V
2 for i = 1, . . . , |V | do processed(i) = false
3 ◆ = 0
4 for p 2 {1, . . . , P} do in parallel
5 while 9 element to process do
6 e = next element to process
7 (Âe, Ãe, B̂e, B̃e, i) = getGuarantee(e)
8 (result, ue) = propose(e, Âe, Ãe, B̂e, B̃e)
9 commit(e, i, ue, result)

Algorithm 6: CC-2g getGuarantee(e)

1 Ã(e) 1; B̃(e) 0
2 i = ◆; ◆ ◆ + 1

3 Âe = Â; B̂e = B̂

4 Ãe = Ã; B̃e = B̃

5 return (Âe, Ãe, B̂e, B̃e, i)

Algorithm 7: CC-2g propose

1 �min
+ (e) = F (Ãe)� F (Ãe\e)

2 �max
+ (e) = F (Âe [ e)� F (Âe)

3 �min
� (e) = F (B̃e)� F (B̃e [ e)

4 �max
� (e) = F (B̂e\e)� F (B̂e)

5 Draw ue ⇠ Unif(0, 1)

6 if ue <
[�min

+ (e)]+

[�min
+ (e)]++[�max

� (e)]+
then

7 result  1

8 else if ue >
[�max

+ (e)]+

[�max
+ (e)]++[�min

� (e)]+
then

9 result  �1

10 else result  fail
11 return (result, ue)

Algorithm 8: CC-2g: commit(e, i, ue, result)
1 wait until 8j < i, processed(j) = true
2 if result = fail then
3 �exact

+ (e) = F (Â [ e)� F (Â)

4 �exact
� (e) = F (B̂\e)� F (B̂)

5 if ue <
[�exact

+ (e)]+

[�exact
+ (e)]++[�exact

� (e)]+
then result  1

6 else result  �1

7 if result = 1 then Â(e) 1; B̃(e) 1

8 else Ã(e) 0; B̂(e) 0
9 processed(i) = true

(a) (b) (c)

4 Coordination Free Double Greedy Algorithm

The coordination-free approach attempts to reduce the need to coordinate guarantees and logical
ordering. This is achieved by operating on potentially stale states – the guarantee reduces to requiring
ge be a stale version of S, and logical ordering is implicitly defined by the time of commit. In using
these weak guarantees, CF-2g is overly optimistically assuming that concurrent transactions are
independent, which could potentially lead to erroneous decisions.

Alg. 4 is the coordination free parallel double greedy algorithm.1 CF-2g closely resembles the serial
Seq-2g, but the elements e 2 V are no longer processed in a fixed order. Thus, the sets A, B are
replaced by potentially stale “bounds” Â, B̂, where Â is a subset of the “true” A and B̂ is a superset

1We present only the parallelized probabilistic versions of [1]. Both parallel algorithms can be easily extended
to the deterministic version of [1]; CF-2g can also be extended to the multilinear version of [1].

4

(c) CC-2g

Figure 6.2: Illustration of algorithms. (a) Ser-2g computes a threshold based on the true values ∆+,
∆−, and chooses an action based by comparing a uniform random ui against the threshold. (b) CF-2g
approximates the threshold based on stale Â, B̂, possibly choosing the wrong action. (c) CC-2g computes
two thresholds based on the bounds on A, B, which defines an uncertainty region where it is not possible
to choose the correct action locally. If the random value ue falls inside the uncertainty interval than the
transaction FAILS and must be recomputed serially by the server; otherwise the transaction holds under all
possible global states.

{e′ : e′ ∈ A, ι(e′) < i} where A is the final returned set, and monotonically non-increasing sets
Bi = Ai∪{e′ : ι(e′) ≥ i}. The sets Ai, Bi provide a serialization against which we can compare
CF-2g; in this serialization, Algorithm 6.3 computes ∆+(e) = F (Aι(e)−1 ∪ e) − F (Aι(e)−1)

and ∆−(e) = F (Bι(e)−1\e)− F (Bι(e)−1). On the other hand, CF-2g uses stale versions3 Âe,
B̂e: Algorithm 6.4 computes ∆max

+ (e) = F (Âe ∪ e)− F (Âe) and ∆max
− (e) = F (B̂e\e)− F (B̂e).

The next lemma shows that Âe, B̂e are bounding sets for the serialization’s sets
Aι(e)−1, Bι(e)−1. Intuitively, the bounds hold because Âe, B̂e are stale versions of Aι(e)−1,
Bι(e)−1, which are monotonically non-decreasing and non-increasing sets. Appendix 6.A gives
a detailed proof.

Lemma 6.1. In CF-2g, for any e ∈ V , Âe ⊆ Aι(e)−1, and B̂e ⊇ Bι(e)−1.

Corollary 6.2. Submodularity of F implies for CF-2g ∆+(e) ≤ ∆max
+ (e), and ∆−(e) ≤

∆max
− (e).

The error in CF-2g depends on the tightness of the bounds in Corollary 6.2. We analyze
this in Section 6.6.

For some functions F , we can maintain sketches or statistics to aid the computation of ∆max
+ ,

∆max
− , and still obtain the bounds given in Corollary 6.2. In Appendix 17, we consider functions

of separable sums, which are useful for applications such as document summarization [91].
Specifically we consider functions of the form F (X) =

∑L
l=1 g

(∑
i∈X∪Sl wl(i)

)
− λ∑i∈X v(i),

where Sl ⊆ V are (possibly overlapping) groups of elements in the ground set, g is a
non-decreasing concave scalar function, and wl(i) and v(i) are non-negative scalar weights.

3 For clarity, we present the algorithm as creating a copy of Â, B̂, Ã, and B̃ for each element. In practice,
it is more efficient to update and access them in shared memory. Nevertheless, our theorems hold for both
settings.



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 81

6.5 CC-2g: Concurrency Control for the Double
Greedy Algorithm

Algorithm 6.5: CC-2g: concurrency control double greedy
1 Â = Ã = ∅, B̂ = B̃ = V
2 for i = 1, . . . , |V | do processed(i) = false
3 ι = 0
4 for p ∈ {1, . . . , P} do in parallel
5 while ∃ element to process do
6 (e, Âe, Ãe, B̂e, B̃e, i) = getGuarantee()
7 (result, ue) = propose(e, Âe, Ãe, B̂e, B̃e)
8 commit(e, i, ue, result)

Algorithm 6.6: CC-2g getGuaran-
tee()
1 e = next element to process
2 Ã(e)← 1; B̃(e)← 0
3 do atomically
4 i = ι
5 ι← ι+ 1

6 Âe = Â; B̂e = B̂

7 Ãe = Ã; B̃e = B̃

8 return (e, Âe, Ãe, B̂e, B̃e, i)

Algorithm 6.7: CC-2g propose
1 ∆min

+ (e) = F (Ãe)− F (Ãe\e)
2 ∆max

+ (e) = F (Âe ∪ e)− F (Âe)

3 ∆min
− (e) = F (B̃e)− F (B̃e ∪ e)

4 ∆max
− (e) = F (B̂e\e)− F (B̂e)

5 Draw ue ∼ Unif(0, 1)

6 if ue <
[∆min

+ (e)]+

[∆min
+ (e)]++[∆max

− (e)]+
then

7 result ← 1

8 else if ue >
[∆max

+ (e)]+

[∆max
+ (e)]++[∆min

− (e)]+
then

9 result ← −1

10 else result ← FAIL
11 return (result, ue)

Algorithm 6.8: CC-2g getGuaran-
tee(), deterministic
1 do atomically
2 i = ι
3 e = π(i)

4 Ã(e)← 1; B̃(e)← 0
5 ι← ι+ 1

6 Âe = Â; B̂e = B̂

7 Ãe = Ã; B̃e = B̃

8 return (e, Âe, Ãe, B̂e, B̃e, i)

Algorithm 6.9: CC-2g: commit(e,
i, ue, result)
1 wait until ∀j < i, processed(j) = true
2 if result = FAIL then
3 ∆exact

+ (e) = F (Â ∪ e)− F (Â)

4 ∆exact
− (e) = F (B̂\e)− F (B̂)

5 if ue <
[∆exact

+ (e)]+
[∆exact

+ (e)]++[∆exact
− (e)]+

then
6 result ← 1

7 else result ← −1

8 if result = 1 then Â(e)← 1; B̃(e)← 1

9 else Ã(e)← 0; B̂(e)← 0
10 processed(i) = true

The concurrency control-based double greedy algorithm2, CC-2g, is presented in Algo-
rithm 6.5, and closely follows the meta-algorithm of Algorithm 6.1 and Algorithm 6.2. Unlike



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 82

in CF-2g, the concurrency control mechanisms of CC-2g ensure that concurrent transactions
are serialized when they are not independent.

Serializability is achieved by maintaining sets Â, Ã, B̂, B̃, which serve as upper and lower
bounds on the true state of A and B at commit time. Each thread can determine locally if
a decision to include or exclude an element can be taken safely. Otherwise, the proposal is
deferred to the commit process (Algorithm 6.9) which waits until it is certain about A and B
before proceeding.

The commit order is given by ι(e), which is the value of ι in line 5 of Algorithm 6.5. We
define Aι(e)−1, Bι(e)−1 as before with CF-2g. Additionally, let Âe, B̂e, Ãe, and B̃e be the
sets that are returned by Algorithm 6.6.3 Indeed, these sets are guaranteed to be bounds on
Aι(e)−1, Bι(e)−1:

Lemma 6.3. In CC-2g, ∀e ∈ V , Âe ⊆ Aι(e)−1 ⊆ Ãe\e, and B̂e ⊇ Bι(e)−1 ⊇ B̃e ∪ e.

Intuitively, these bounds are maintained by recording potential effects of concurrent
transactions in Ã, B̃, and only recording the actual effects in Â, B̂; we leave the full proof to
Appendix 6.A. Furthermore, by committing transactions in order ι, we have Â = Aι(e)−1 and
B̂ = Bι(e)−1 during commit.

Lemma 6.4. In CC-2g, when committing element e, we have Â = Aι(e)−1 and B̂ = Bι(e)−1.

Corollary 6.5. Submodularity of F implies that the ∆’s computed by CC-2g satisfy
∆min

+ (e) ≤ ∆exact
+ (e) = ∆+(e) ≤ ∆max

+ (e) and ∆min
− (e) ≤ ∆exact

− (e) = ∆−(e) ≤ ∆max
− (e).

By using these bounds, CC-2g can determine when it is safe to construct the transaction
locally. For failed transactions, the server is able to construct the correct transaction using
the true program state. As a consequence we can guarantee that the parallel execution of
CC-2g is serializable.

Using Algorithm 6.6 only guarantees serializability but not deterministic execution, since
the commit order ι(e) may not correspond to the order in which elements are processed
on Line 1 of Algorithm 6.6. To make CC-2g deterministic, we can enforce that these two
orderings concur with each other — Algorithm 6.8 guarantees this by extracting e from π
and incrementing the commit order within the same atomic block. This requires additional
coordination overhead, and for the rest of this chapter, we consider only the serializable
version of CC-2g.

6.6 Analysis of Algorithms
Our two algorithms trade off performance and strong approximation guarantees. The CF-2g
algorithm emphasizes speed at the expense of the approximation objective. On the other hand,
CC-2g emphasizes the tight 1/2-approximation at the expense of increased coordination.
In this section we characterize the reduction in the approximation objective as well as the
increased coordination. Our analysis connects the degradation in CC-2g scalability with the



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 83

degradation in the CF-2g approximation factor via the maximum inter-processor message
delay τ .

Approximation of CF-2g double greedy

Theorem 6.6. Let F be a non-negative submodular function. CF-2g solves the unconstrained
problem maxA⊂V F (A) with worst-case approximation factor E[F (ACF)] ≥ 1

2
F ∗− 1

4

∑N
i=1E[ρi],

where ACF is the output of the algorithm, F ∗ is the optimal value, and ρi = max{∆max
+ (e)−

∆+(e),∆max
− (e)−∆−(e)} is the maximum discrepancy in the marginal gain due to the bounds.

The proof (Appendix 6.A) of Theorem 6.6 follows the structure in [30]. Theorem 6.6
captures the deviation from optimality as a function of width of the bounds which we
characterize for two common applications.

Example: max graph cut. For the max cut objective we bound the expected dis-
crepancy in the marginal gain ρi in terms of the sparsity of the graph and the maximum
inter-processor message delay τ . By applying Theorem 6.6 we obtain the approximation
factor E[F (AN)] ≥ 1

2
F ∗ − τ #edges

2N
which decreases linearly in both the message delays and

graph density. In a complete graph, F ∗ = 1
2
#edges, so E[F (AN )] ≥ F ∗

(
1
2
− τ

N

)
, which makes

it possible to scale τ linearly with N while retaining the same approximation factor.
Example: set cover. Consider the simple set cover function, F (A) =

∑L
l=1 min(1, |A ∩

Sl|) − λ|A| = |{l : A ∩ Sl 6= ∅}| − λ|A|, with 0 < λ ≤ 1. We assume that there is some
bounded delay τ . Suppose also the Sl’s form a partition, so each element e belongs to exactly
one set. Then,

∑
eE[ρe] ≥ τ + L(1− λτ ), which is linear in τ but independent of N .

Correctness of CC-2g

Theorem 6.7. CC-2g is serializable and therefore solves the unconstrained submodular
maximization problem maxA⊂V F (A) with approximation E[F (ACC)] ≥ 1

2
F ∗, where ACC is

the output of the algorithm, and F ∗ is the optimal value.

The key challenge in the proof (Appendix 6.A) of Theorem 6.7 is to demonstrate that
CC-2g guarantees a serializable execution. It suffices to show that CC-2g takes the same
decision as Ser-2g for each element – locally if it is safe to do so, and otherwise deferring
the computation to the server. As an immediate consequence of serializability, we recover the
optimal approximation guarantees of the serial Ser-2g algorithm.

Scalability of CC-2g

Whenever a transaction is reconstructed on the server, the server needs to wait for all earlier
elements to be committed, and is also blocked from committing all later elements. Each failed
transaction effectively constitutes a barrier to the parallel processing. Hence, the scalability
of CC-2g is dependent on the number of failed transactions.



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 84

We can directly bound the number of failed transactions (details in Appendix 6.B) for
both the max-cut and set cover example problems. For the max-cut problem with a maximum
inter-processor message delay τ we obtain the upper bound 2τ #edges

N
. Similarly for set cover

the expected number of failed transactions is upper-bounded by 2τ . As a consequence, the
coordination costs of CC-2g grows at the same rate as the reduction in accuracy of CF-2g.
Moreover, the CC-2g algorithm will slow down in settings where the CF-2g algorithm
produces sub-optimal solutions.

6.7 Evaluation
We implemented the parallel and serial double greedy algorithms in Java / Scala. Experiments
were conducted on Amazon EC2 using one cc2.8xlarge machine, up to 16 threads, for 10
repetitions. We measured the runtime and speedup (ratio of runtime on 1 thread to runtime
on p threads). For CF-2g, we measured F (ACF) − F (ASer), the difference between the
objective value on the sets returned by CF-2g and Ser-2g. We verified the correctness of
CC-2g by comparing the output of CC-2g with Ser-2g. We also measured the fraction
of transactions that fail in CC-2g. Our parallel algorithms were tested on the max graph
cut and set cover problems with two synthetic graphs and three real datasets (Table 6.1).
We found that vertices were typically indexed such that nearby vertices in the graph were
also close in their indices. To reduce this dependency, we randomly permuted the ordering of
vertices.

Graph # vertices # edges Description
Erdos-Renyi 20,000,000 ≈ 2× 109 Each edge is included with probability 5× 10−6.

ZigZag 25,000,000 2,025,000,000
Expander graph. The 81-regular zig-zag product between

the Cayley graph on Z2500000 with generating
set {±1, . . . ,±5}, and the complete graph K10.

Friendster 10,000,000 625,279,786 Subgraph of social network. [87]
Arabic-2005 22,744,080 631,153,669 2005 crawl of Arabic web sites [21, 22, 23].
UK-2005 39,459,925 921,345,078 2005 crawl of the .uk domain [21, 22, 23].
IT-2004 41,291,594 1,135,718,909 2004 crawl of the .it domain [21, 22, 23].

Table 6.1: Synthetic and real graphs used in the evaluation of our parallel algorithms.

We summarize of the key results here with more detailed experiments and discussion
in Appendix 6.D. Runtime, Speedup: Both parallel algorithms are faster than the serial
algorithm with three or more threads, and show good speedup properties as more threads are
added (∼ 10x or more for all graphs and both functions). Objective value: The objective
value of CF-2g decreases with the number of threads, but differs from the serial objective
value by less than 0.01%. Failed transactions: CC-2g fails more transactions as threads
are added, but even with 16 threads, less than 0.015% transactions fail, which has negligible
effect on the runtime / speedup.



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 85

0 5 10 15
0

0.5

1

1.5

2

2.5

3

# threads

R
u
n
ti
m

e
 r

e
la

ti
v
e
 t
o
 s

e
q
u
e
n
ti
a
l

Runtime, relative to sequential

 

 

Ser−2g
CC−2g
CF−2g

(a)

0 5 10 15
0

5

10

15

# threads

S
p
e
e
d
u
p

Speedup for Max Graph Cut

 

 

Ideal

CC−2g, IT−2004

CF−2g, IT−2004

CC−2g, ZigZag

CF−2g, ZigZag

(b)

0 5 10 15
0

5

10

15

# threads

S
p
e
e
d
u
p

Speedup for Set Cover

 

 

Ideal

CC−2g, IT−2004

CF−2g, IT−2004

CC−2g, ZigZag

CF−2g, ZigZag

(c)

0 5 10 15
−1

0

1

2

3

4
x 10

−3

# threads

%
 d

e
c
re

a
s
e
 i
n
 F

(A
)

CF−2g % Decrease in F(A)
Max Graph Cut

 

 

Friendster
Arabic−2005
UK−2005
IT−2004
ZigZag
Erdos−Renyi

(d)

0 5 10 15
0

1

2

3

4
x 10

−4

# threads

%
 d

e
c
re

a
s
e

 i
n

 F
(A

)

CF−2g % Decrease in F(A)
Set Cover

 

 

Friendster
Arabic−2005
UK−2005
IT−2004
ZigZag
Erdos−Renyi

(e)

0 5 10 15
0

0.005

0.01

0.015

# threads

%
 f

a
ile

d
 t

x
n

s

CC−2g % Failed Txns
Max Graph Cut

 

 

Friendster
Arabic−2005
UK−2005
IT−2004
ZigZag
Erdos−Renyi

(f)

Figure 6.3: Experimental results. Figure 6.3a – runtime of the parallel algorithms as a ratio to that of the
serial algorithm. Each curve shows the runtime of a parallel algorithm on a particular graph for a particular
function F . Figure 6.3b, 6.3c – speedup (ratio of runtime on one thread to that on p threads). Figure 6.3d,
6.3e – % difference between objective values of Ser-2g and CF-2g, i.e. [F (ACF)/F (ASer) − 1] × 100%.
Figure 6.3f – percentage of transactions that fail in CC-2g on the max graph cut problem.

Adversarial ordering

To highlight the differences in approaches between the two parallel algorithms, we conducted
experiments on a ring Cayley expander graph on Z106 with generating set {±1, . . . ,±1000}.
The algorithms are presented with an adversarial ordering, without permutation, so vertices
close in the ordering are adjacent to one another, and tend to be processed concurrently.
This causes CF-2g to make more mistakes, and CC-2g to fail more transactions. While
more sophisticated partitioning schemes could improve scalability and eliminate the effect
of adversarial ordering, we use the default data partitioning in our experiments to highlight
the differences between the two algorithms. As Figure 6.4 shows, CC-2g sacrifices speed to
ensure a serializable execution, eventually failing on > 90% of transactions. On the other
hand, CF-2g focuses on speed, resulting in faster runtime, but achieves an objective value
that is 20% of F (ASer). We emphasize that we contrived this example to highlight differences
between CC-2g and CF-2g, and we do not expect to see such orderings in practice.



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 86

0 5 10 15
0

50

100

150

200

250

300

Runtime on EC2: 
Ring Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

 

 

Ser−2g

CC−2g

CF−2g

(a)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
Ring Set Cover

Number of threads
S

p
e
e
d
−

u
p
 f
a
c
to

r

 

 

Ideal

CC−2g

CF−2g

(b)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

C
C

−
2
g
: 
F

ra
c
ti
o
n
 o

f 
tx

n
s
 f
a
ile

d

Number of threads

Ring Set Cover

 

 

0 5 10 15
0

0.2

0.4

0.6

0.8

1

C
F

−
2
g
: 
F

ra
c
ti
o
n
 o

f 
F

(A
) 

d
e
c
re

a
s
e

CC−2g: failed txns

CC2F: F(A) decrease

(c)

Figure 6.4: Experimental results for set cover problem on a ring expander graph demonstrating that for
adversarially constructed inputs we can reduce the optimality of CF-2g and increase coordination costs for
CC-2g.

6.8 Related Work
Similar approach: Coordination-free solutions have been proposed for stochastic gradient
descent [116] and collapsed Gibbs sampling [3]. More generally, parameter servers [89, 65]
apply the coordination-free approach to larger classes of problems. [109] applied concurrency
control to parallelize some unsupervised learning algorithms. Similar problem: Distributed
and parallel greedy submodular maximization is addressed in [104, 85, 134], but only for
monotone functions.

6.9 Discussions
By adopting the transaction processing model from parallel database systems, we presented
two approaches to parallelizing the double greedy algorithm for unconstrained submodular
maximization. We quantified the weaker approximation guarantee of CF-2g and the addi-
tional coordination of CC-2g, allowing one to trade off between performance and objective
optimality. Our evaluation on large scale data demonstrates the scalability and tradeoffs
of the two approaches. Moreover, as the approximation quality of the CF-2g algorithm
decreases so does the scalability of the CC-2g algorithm. The choice between the algorithm
then reduces to a choice of guaranteed performance and guaranteed optimality.

We believe there are a number of areas for future work. One can imagine a system
that allows a smooth interpolation between CF-2g and CC-2g. While both CF-2g and
CC-2g can be immediately implemented as distributed algorithms, higher communication
costs and delays may pose additional challenges. Finally, other problems such as constrained
maximization of monotone / non-monotone functions could potentially be parallelized with
the coordination-free and concurrency control frameworks.



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 87

6.A Proofs of Theoretical Guarantees

Proofs of Ãe, Âe, B̃e, B̂e as bounds on Aι(e)−1 and Bι(e)−1

Lemma 6.1. In CF-2g, for any e ∈ V , Âe ⊆ Aι(e)−1, and B̂e ⊇ Bι(e)−1.

Proof. For any element e, we write Te to denote the time at which Algorithm 6.4 line 8 is
executed. Consider any element e′ ∈ V . If e′ ∈ Âe, it must be the case that the algorithm
set Â(e′) to 1 (line 10) before Te, which implies ι(e′) < ι(e), and hence e′ ∈ Aι(e)−1. So
Âe ⊆ Aι(e)−1.

Similarly, if e′ 6∈ B̂e, then the algorithm set B̂(e′) to 0 (line 11) before Te, so ι(e′) < ι(e).
Also, e′ 6∈ A because the execution of line 11 excludes the execution of line 10. Therefore,
e′ 6∈ Aι(e)−1, and e′ 6∈ Bι(e)−1. So B̂e ⊇ Bι(e)−1.

Lemma 6.3. In CC-2g, ∀e ∈ V , Âe ⊆ Aι(e)−1 ⊆ Ãe\e, and B̂e ⊇ Bι(e)−1 ⊇ B̃e ∪ e.

Proof. Clearly, e ∈ B̃e ∪ e but e 6∈ Ãe\e. By definition, e ∈ Bι(e)−1 but e 6∈ Aι(e)−1. CC-2g
only modifies Â(e) and B̂(e) when committing the transaction on e, which occurs after
obtaining the bounds in getGuarantee(e), so e ∈ B̂e but e 6∈ Âe.

Consider any e′ 6= e. Suppose e′ ∈ Âe. This is only possible if we have committed the
transaction on e′ before the call getGuarantee(e), so it must be the case that ι(e′) < ι(e).
Thus, e′ ∈ Aι(e)−1.

Now suppose e′ ∈ Aι(e)−1. By definition, this implies ι(e′) < ι(e) and e′ ∈ A. Hence, it
must be the case that we have already set Ã(e′)← 1 (by the ordering imposed by ι on Line
5), but never execute Ã(e′)← 0 (since e′ ∈ A), so e′ ∈ Ãe.

An analogous argument shows e′ 6∈ B̂e =⇒ e′ 6∈ Bι(e)−1 =⇒ e′ 6∈ B̃e ∪ e.

Lemma 6.4. In CC-2g, when committing element e, we have Â = Aι(e)−1 and B̂ = Bι(e)−1.

Proof. Algorithm 6.9 Line 1 ensures that all elements ordered before e are committed, and
that no element ordered after e are committed. This suffices to guarantee that e′ ∈ Â ⇐⇒
e′ ∈ Aι(e)−1 and e′ ∈ B̂ ⇐⇒ e′ ∈ Bι(e)−1.

Proof of serial equivalence of CC-2g

Theorem 6.7. CC-2g is serializable and therefore solves the unconstrained submodular
maximization problem maxA⊂V F (A) with approximation E[F (ACC)] ≥ 1

2
F ∗, where ACC is

the output of the algorithm, and F ∗ is the optimal value.



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 88

Proof. We will denote by Aiseq, Bi
seq the sets generated by Ser-2g, reserving Ai, Bi for sets

generated by the CC-2g algorithm. It suffices to show by induction that Aiseq = Ai and
Bi
seq = Bi. For the base case, A0 = ∅ = A0

seq, and B0 = V = B0
seq. Consider any element

e. The CC-2g algorithm includes e ∈ A iff ue < [∆min
+ (e)]+([∆min

+ (e)]+ + [∆max
− (e)]+)−1 on

Algorithm 6.5 Line 6 or ue < [∆exact
+ (e)]+([∆exact

+ (e)]+ + [∆exact
− (e)]+)−1 on Algorithm 6.9 Line

5. In both cases, Corollary 6.5 implies ue < [∆+(e)]+([∆+(e)]+ + [∆−(e)]+)−1. By induction,
Aι(e)−1 = A

ι(e)−1
seq and Bι(e)−1 = B

ι(e)−1
seq , so the threshold is exactly that computed by Ser-2g.

Hence, the CC-2g algorithm includes e ∈ A iff Ser-2g includes e ∈ A. (An analogous
argument works for the case where e is excluded from B.)

Proof of bound for CF-2g

We follow the proof outline of [30].
Consider an ordering ι inducted by running CF-2g. For convenience, we will use i to

flexibly denote the element e and its ordering ι(e).
Let OPT be an optimal solution to the problem. Define Oi := (OPT ∪Ai)∩Bi. Note that

Oi coincides with Ai and Bi on elements 1, . . . , i, and Oi coincides with OPT on elements
i+ 1, . . . , n. Hence,

Oi\(i+ 1) ⊇ Ai

Oi ∪ (i+ 1) ⊆ Bi.

Lemma 6.8. For every 1 ≤ i ≤ n, ∆+(i) + ∆−(i) ≥ 0.

Proof. This is just Lemma II.1 of [30].

Lemma 6.9. Let ρi = max{∆max
+ (e)−∆+(e),∆max

− (e)−∆−(e)}. For every 1 ≤ i ≤ n,

E[F (Oi−1)− F (Oi)] ≤ 1

2
E[F (Ai)− F (Ai−1) + F (Bi)− F (Bi−1) + ρi].

Proof. We follow the proof outline of [30]. First, note that it suffices to prove the inequality
conditioned on knowing Ai−1, Âi and B̂i, then applying the law of total expectation. Under
this conditioning, we also know Bi−1, Oi−1, ∆+(i), ∆max

+ (i), ∆−(i), and ∆max
− (i).

We consider the following 6 cases.

Case 1: 0 < ∆+(i) ≤ ∆max
+ (i), 0 ≤ ∆max

− (i). Since both ∆max
+ (i) > 0 and ∆max

− (i) > 0, the
probability of including i is just ∆max

+ (i)/(∆max
+ (i) + ∆max

− (i)), and the probability of



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 89

excluding i is ∆max
− (i)/(∆max

+ (i) + ∆max
− (i)).

E[F (Ai)− F (Ai−1)|Ai−1, Âi, B̂i] =
∆max

+ (i)

∆max
+ (i) + ∆max

− (i)
(F (Ai−1 ∪ i)− F (Ai−1))

=
∆max

+ (i)

∆max
+ (i) + ∆max

− (i)
∆+(i)

≥ ∆max
+ (i)

∆max
+ (i) + ∆max

− (i)
(∆max

+ (i)− ρi)

E[F (Bi)− F (Bi−1)|Ai−1, Âi, B̂i] =
∆max
− (i)

∆max
+ (i) + ∆max

− (i)
(F (Bi−1\i)− F (Bi−1))

=
∆max
− (i)

∆max
+ (i) + ∆max

− (i)
∆−(i)

≥ ∆max
− (i)

∆max
+ (i) + ∆max

− (i)
(∆max
− (i)− ρi)

E[F (Oi−1)− F (Oi)|Ai−1, Âi, B̂i]

=
∆max

+ (i)

∆max
+ (i) + ∆max

− (i)
(F (Oi−1)− F (Oi−1 ∪ i))

+
∆max
− (i)

∆max
+ (i) + ∆max

− (i)
(F (Oi−1)− F (Oi−1\i))

=


∆max

+ (i)

∆max
+ (i)+∆max

− (i)
(F (Oi−1)− F (Oi−1 ∪ i)) if i 6∈ OPT

∆max
− (i)

∆max
+ (i)+∆max

− (i)
(F (Oi−1)− F (Oi−1\i)) if i ∈ OPT

≤


∆max

+ (i)

∆max
+ (i)+∆max

− (i)
(F (Bi−1\i)− F (Bi−1)) if i 6∈ OPT

∆max
− (i)

∆max
+ (i)+∆max

− (i)
(F (Ai−1 ∪ i)− F (Ai−1)) if i ∈ OPT

=


∆max

+ (i)

∆max
+ (i)+∆max

− (i)
∆−(i) if i 6∈ OPT

∆max
− (i)

∆max
+ (i)+∆max

− (i)
∆+(i) if i ∈ OPT

≤


∆max

+ (i)

∆max
+ (i)+∆max

− (i)
∆max
− (i) if i 6∈ OPT

∆max
− (i)

∆max
+ (i)+∆max

− (i)
∆max

+ (i) if i ∈ OPT

=
∆max

+ (i)∆max
− (i)

∆max
+ (i) + ∆max

− (i)

where the first inequality is due to submodularity: Oi−1\i ⊇ Ai−1 and Oi−1 ∪ i ⊆ Bi−1.



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 90

Putting the above inequalities together:

E

[
F (Oi−1)− F (Oi)− 1

2

(
F (Ai)− F (Ai−1) + F (Bi)− F (Bi−1) + ρi

)∣∣∣∣Ai−1, Âi, B̂i

]
≤ 1/2

∆max
+ (i) + ∆max

− (i)

[
2∆max

+ (i)∆max
− (i)−∆max

− (i)(∆max
− (i)− ρi)

−∆max
+ (i)(∆max

+ (i)− ρi)
]
− 1

2
ρi

=
1/2

∆max
+ (i) + ∆max

− (i)

[
− (∆max

+ (i)−∆max
− (i))2 + ρi(∆

max
+ (i) + ∆max

− (i))

]
− 1

2
ρi

≤
1
2
ρi(∆

max
+ (i) + ∆max

− (i))

∆max
+ (i) + ∆max

− (i)
− 1

2
ρi

= 0.

Case 2: 0 < ∆+(i) ≤ ∆max
+ (i), ∆max

− (i) < 0. In this case, the algorithm always choses to
include i, so Ai = Ai−1 ∪ i, Bi = Bi−1 and Oi = Oi−1 ∪ i:

E[F (Ai)− F (Ai−1)|Ai−1, Âi, B̂i] = F (Ai−1 ∪ i)− F (Ai−1) = ∆+(i) > 0

E[F (Bi)− F (Bi−1)|Ai−1, Âi, B̂i] = F (Bi−1)− F (Bi−1) = 0

E[F (Oi−1)− F (Oi)|Ai−1, Âi, B̂i] = F (Oi−1)− F (Oi−1 ∪ i)

≤
{

0 if i ∈ OPT
F (Bi−1\i)− F (Bi−1) if i 6∈ OPT

=

{
0 if i ∈ OPT
∆−(i) if i 6∈ OPT

≤ 0

<
1

2
E[F (Ai)− F (Ai−1) + F (Bi)− F (Bi−1) + ρi|Ai−1, Âi, B̂i]

where the first inequality is due to submodularity: Oi−1 ∪ i ⊆ Bi−1.

Case 3: ∆+(i) ≤ 0 < ∆max
+ (i), 0 < ∆−(i) < ∆max

− (i). Analogous to Case 1.

Case 4: ∆+(i) ≤ 0 < ∆max
+ (i), ∆−(i) ≤ 0. This is not possible, by Lemma 6.8.

Case 5: ∆+(i) ≤ ∆max
+ (i) ≤ 0, 0 < ∆−(i) ≤ ∆max

− (i). Analogous to Case 2.

Case 6: ∆+(i) ≤ ∆max
+ (i) ≤ 0, ∆−(i) ≤ 0. This is not possible, by Lemma 6.8.

We will now prove the main theorem.



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 91

Theorem 6.6. Let F be a non-negative submodular function. CF-2g solves the unconstrained
problem maxA⊂V F (A) with worst-case approximation factor E[F (ACF)] ≥ 1

2
F ∗− 1

4

∑N
i=1E[ρi],

where ACF is the output of the algorithm, F ∗ is the optimal value, and ρi = max{∆max
+ (e)−

∆+(e),∆max
− (e)−∆−(e)} is the maximum discrepancy in the marginal gain due to the bounds.

Proof. Summing up the statement of Lemma 6.9 for all i gives us a telescoping sum, which
reduces to:

E[F (O0)− F (On)] ≤ 1

2
E[F (An)− F (A0) + F (Bn)− F (B0)] +

1

2

n∑
i=1

E[ρi]

≤ 1

2
E[F (An) + F (Bn)] +

1

2

n∑
i=1

E[ρi].

Note that O0 = OPT and On = An = Bn, so E[F (An)] ≥ 1
2
F ∗ − 1

4

∑
iE[ρi].

Example: max graph cut

Let Ci = (Ai−1\Âi) ∪ (B̂i\Bi−1) be the set of elements concurrently processed with i but
ordered after i, and Di = Bi\Ai be the set of elements ordered after i. Denote Āi =

V \(Âi ∪ Ci ∪Di) = {1, . . . , i}\Âi be the elements up to i that are not included in Âi. Let
wi(S) =

∑
j∈S,(i,j)∈E w(i, j). For the max graph cut function, it is easy to see that

∆+ ≥ −wi(Âi)− wi(Ci) + wi(Di) + wi(Āi)

∆max
+ = −wi(Âi) + wi(Ci) + wi(Di) + wi(Āi)

∆− ≥ +wi(Âi)− wi(Ci) + wi(Di)− wi(Āi)
∆max
− = +wi(Âi) + wi(Ci) + wi(Di)− wi(Āi)

Thus, we can see that ρi ≤ 2wi(Ci).
Suppose we have bounded delay τ , so |Ci| ≤ τ . Then wi(Ci) has a hypergeometric

distribution with mean deg(i)
N

τ , and E[ρi] ≤ 2τ deg(i)
N

. The approximation of the hogwild
algorithm is then E[F (An)] ≥ 1

2
F ∗−τ #edges

2N
. In sparse graphs, the hogwild algorithm is off by

a small additional term, which albeit grows linearly in τ . In a complete graph, F ∗ = 1
2
#edges,

so E[F (An)] ≥ F ∗
(

1
2
− τ

N

)
, which makes it possible to scale τ linearly with N while retaining

the same approximation factor.

Example: set cover

Consider the simple set cover function, for λ < L/N :

F (A) =
L∑
l=1

min(1, |A ∩ Sl|)− λ|A| = |{l : A ∩ Sl 6= ∅}| − λ|A|.



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 92

We assume that there is some bounded delay τ .
Suppose also that the sets Sl form a partition, so each element e belongs to exactly one

set. Let nl = |Sl| denote the size of Sl. Given any ordering π, let etl be the tth element of Sl
in the ordering, i.e. |{e′ : π(e′) ≤ π(etl) ∧ e′ ∈ Sl}| = t.

For any e ∈ Sl, we get

∆+(e) = −λ+ 1{Aι(e)−1 ∩ Sl = ∅}
∆max

+ (e) = −λ+ 1{Âe ∩ Sl = ∅}
∆−(e) = +λ− 1{Bι(e)−1\e ∩ Sl = ∅}

∆max
− (e) = +λ− 1{B̂e\e ∩ Sl = ∅}

Let η be the position of the first element of Sl to be accepted, i.e. η = min{t : etl ∈ A∩Sl}.
(For convenience, we set η = nl if A ∩ Sl = ∅.) We first show that η is independent of π: for
η < nl,

P (η|π) =
∆max

+ (eηl )

∆max
+ (eηl ) + ∆max

− (eηl )

η−1∏
t=1

∆max
− (etl)

∆max
+ (etl) + ∆max

− (etl)

=
1− λ

1− λ+ λ

η−1∏
t=1

λ

1− λ+ λ

= (1− λ)λη−1,

and P (η = nl|π) = λη−1.
Note that, ∆max

− (e) − ∆−(e) = 1 iff e = enll is the last element of Sl in the ordering,
there are no elements accepted up to B̂e

nl
l
\enll , and there is some element e′ in B̂e

nl
l
\enll that

is rejected and not in Bι(e
nl
l )−1. Denote by ml ≤ min(τ, nl − 1) the number of elements

before enll that are inconsistent between B̂e
nl
l

and Bι(e
nl
l )−1. Then E[∆max

− (enll )−∆−(enll )] =

P (∆max
− (enll ) 6= ∆−(enll )) is

λnl−1−ml(1− λml) = λnl−1(λ−ml − 1) ≤ λnl−1(λ−min(τ,nl−1) − 1) ≤ 1− λτ .

If λ = 1, ∆max
+ (e) ≤ 0, so no elements before enll will be accepted, and ∆max

− (enll ) = ∆−(enll ).
On the other hand, ∆max

+ (e)−∆+(e) = 1 iff (Aι(e)−1\Âe) ∩ Sl 6= ∅, that is, if an element
has been accepted in A but not yet observed in Âe. Since we assume a bounded delay, only



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 93

the first τ elements after the first acceptance of an e ∈ Sl may be affected.

E

[∑
e∈Sl

∆max
+ (e)−∆+(e)

]
= E[#{e : e ∈ Sl ∧ eηl ∈ Aι(e)−1 ∧ eηl 6∈ Âe}]
= E[E[#{e : e ∈ Sl ∧ eηl ∈ Aι(e)−1 ∧ eηl 6∈ Âe} | η = t, π(etl) = k]]

=

nl∑
t=1

N−n+t∑
k=t

P (η = t, π(etl) = k)E[#{e : e ∈ Sl ∧ eηl ∈ Aι(e)−1 ∧ eηl 6∈ Âe} | η = t, π(etl) = k]

=

nl∑
t=1

P (η = t)
N−n+t∑
k=t

P (π(etl) = k)E[#{e : e ∈ Sl ∧ eηl ∈ Aι(e)−1 ∧ eηl 6∈ Âe} | η = t, π(etl) = k].

Under the assumption that every ordering π is equally likely, and a bounded delay τ ,
conditioned on η = t, π(etl) = k, the random variable #{e : e ∈ Sl ∧ eηl ∈ Aι(e)−1 ∧ eηl 6∈ Âe}
has hypergeometric distribution with mean nl−t

N−kτ . Also, P (π(etl) = k) = nl
N

(
n−1
t−1

)(
N−n
k−t

)
/
(
N−1
k−1

)
,

so the above expression becomes

E

[∑
e∈Sl

∆max
+ (e)−∆+(e)

]

=

nl∑
t=1

P (η = t)
N−n+t∑
k=t

nl
N

(
n−1
t−1

)(
N−n
k−t

)(
N−1
k−1

) n− t
N − kτ

=
nl
N
τ

nl∑
t=1

P (η = t)
N−n+t∑
k=t

(
k−1
t−1

)(
N−k
n−t

)(
N−1
n−1

) n− t
N − k (symmetry of hypergeometric)

=
nl
N
τ

nl∑
t=1

P (η = t)(
N−1
n−1

) N−n+t∑
k=t

(
k − 1

t− 1

)(
N − k − 1

n− t− 1

)

=
nl
N
τ

nl∑
t=1

P (η = t)(
N−1
n−1

) (
N − 1

n− 1

)
(Lemma 6.10, a = N − 2, b = nl − 2, j = 1)

=
nl
N
τ

nl∑
t=1

P (η = t)

=
nl
N
τ.

Since ∆max
+ (e) ≥ ∆+(e) and ∆max

− (e) ≥ ∆max
− (e), we have that ρe ≤ ∆max

+ (e) −∆+(e) +



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 94

∆max
− (e)−∆−(e), so

E

[∑
e

ρe

]
= E

[∑
e

∆max
+ (e)−∆+(e) + ∆max

− (e)−∆−(e)

]

=
∑
l

E

[∑
e∈Sl

∆max
+ (e)−∆+(e)

]
+ E

[∑
e∈Sl

∆max
− (e)−∆−(e)

]

≤ τ

∑
l nl
N

+ L(1− λτ )
= τ + L(1− λτ ).

Note that E [
∑

e ρe] does not depend on N and is linear in τ . Also, if τ = 0 in the sequential
case, we get E [

∑
e ρe] ≤ 0.

6.B Upper Bound on Expected Number of Failed
Transactions

Let N be the number of elements, i.e. the cardinality of the ground set. Let Ci = (Ai−1\Âi)∪
(B̂i\Bi−1). We assume a bounded delay τ , so that |Ci| ≤ τ for all i.

We call element i dependent on i′ if ∃A,F (A ∪ i)− F (A) 6= F (A ∪ i′ ∪ i)− F (A ∪ i′) or
∃B,F (B\i)−F (B) 6= F (B∪ i′\i)−F (B∪ i′), i.e. the result of the processing i′ will affect the
computation of ∆’s for i. For example, for the graph cut problem, every vertex is dependent
on its neighbors; for the separable sums problem, i is dependent on {i′ : ∃Sl, i ∈ Sl, i′ ∈ Sl}.

Let ni be the number of elements that i is dependent on. Now, we note that if Ci does
not contain any elements on which i is dependent, then ∆max

+ (i) = ∆+(i) = ∆min
+ (i) and

∆max
− (i) = ∆−(i) = ∆min

− (i), so i will not fail. Conversely, if i fails, there must be some
element i′ ∈ Ci such that i is dependent on i′.

E(number of failed transactions) =
∑
i

P (i fails)

≤
∑
i

P (∃i′ ∈ Ci, i depends on i′)

≤
∑
i

E

[∑
i′∈Ci

1{i depends on i′}
]

≤
∑
i

τni
N

The last inequality follows from the fact that
∑

i′∈Ci 1{i depends on i′} is a hypergeometric
random variable and |Ci| ≤ τ .



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 95

Note that the bound established above is generic to functions F , and additional knowledge
of F can lead to better analyses on the algorithm’s concurrency.

Upper bound for max graph cut

By applying the above generic bound, we see that the number of failed transactions for max
graph cut is upper bounded by τ

N

∑
i ni = τ 2#edges

N
.

Upper bound for set cover

For the set cover problem, we can provide a tighter bound on the number of failed items. We
make the same assumptions as before in the CF-2g analysis, i.e. the sets Sl form a partition
of V , there is a bounded delay τ .

Observe that for any e ∈ Sl, ∆min
− (e) 6= ∆max

− (e) if B̂e\e ∩ Sl 6= ∅ and B̃e\e ∩ Sl = ∅.
This is only possible if enll 6∈ B̃e and B̃e ⊃ Âe ∩ Sl = ∅, that is π(e) ≥ π(enll ) − τ and
∀e′ ∈ Sl, (π(e′) < π(enll )− τ) =⇒ (e′ 6∈ A). The latter condition is achieved with probability
λnl−ml , where ml = #{e′ : π(e′) ≥ π(enll )− τ}. Thus,

E
[
#{e : ∆min

− (e) 6= ∆max
− (e)}

]
= E[ml 1(∀e′ ∈ Sl, (π(e′) < π(enll )− τ) =⇒ (e′ 6∈ A))]

= E[E[ml 1(∀e′ ∈ Sl, (π(e′) < π(enll )− τ) =⇒ (e′ 6∈ A))|u1:N ]]

= E[ml E[1(∀e′ ∈ Sl, (π(e′) < π(enll )− τ) =⇒ (e′ 6∈ A))|u1:N ]]

= E[mlλ
nl−ml ]

≤ λ(nl−τ)+E[ml]

= λ(nl−τ)+E[E[ml|π(enll ) = k]]

= λ(nl−τ)+

N∑
k=nl

P (π(enll ) = k)E[ml|π(enll ) = k]].

Conditioned on π(enll ) = k, ml is a hypergeometric random variable with mean nl−1
k−1

τ . Also



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 96

P (π(enll ) = k) = nl
N

(
nl−1

0

)(
N−nl
N−k

)
/
(
N−1
N−k

)
. The above expression is therefore

E
[
#{e : ∆min

− (e) 6= ∆max
− (e)}

]
= λ(nl−τ)+

N∑
k=nl

nl
N

(
nl−1

0

)(
N−nl
N−k

)(
N−1
N−k

) nl − 1

k − 1
τ

= λ(nl−τ)+
nl
N
τ

N∑
k=nl

(
N−k

0

)(
k−1
nl−1

)(
N−1
nl−1

) nl − 1

k − 1
(symmetry of hypergeometric)

= λ(nl−τ)+
nl
N

τ(
N−1
nl−1

) N∑
k=nl

(
N − k

0

)(
k − 2

nl − 2

)
= λ(nl−τ)+

nl
N

τ(
N−1
nl−1

)(N − 1

nl − 1

)
(Lemma 6.10, a = N − 2, b = nl − 2, j = 2, t = nl)

= λ(nl−τ)+
nl
N
τ.

Now we consider any element e ∈ Sl with π(e) < π(enll )− τ that fails. (Note that enll ∈ B̂e

and B̃e, so ∆min
− (e) = ∆max

− (e) = λ.) It must be the case that Âe ∩ Sl = ∅, for otherwise
∆min

+ (e) = ∆max
+ (e) = −λ and it does not fail. This implies that ∆max

+ (e) = 1− λ ≥ ui. At
commit, if Aι(e)−1 ∩ Sl = ∅, we accept e into A. Otherwise, Aι(e)−1 ∩ Sl 6= ∅, which implies
that some other element e′ ∈ Sl has been accepted. Thus, we conclude that every element
e ∈ Sl that fails must be within τ of the first accepted element eηl inSl. The expected number
of such elements is exactly as we computed in the CF-2ganalysis: nl

N
τ .

Hence, the expected number of elements that fails is upper bounded as

E[#failed transactions] ≤
∑
l

(1 + λ(nl−τ)+)
nl
N
τ

≤
∑
l

2
nl
N
τ

= 2τ.

Technical Lemma
Lemma 6.10.

∑a−b+t
k=t

(
k−j
t−j

)(
a−k+j
b−t+j

)
=
(
a+1
b+1

)
.



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 97

Proof.

a−b+t∑
k=t

(
k − j
t− j

)(
a− k + j

b− t+ j

)

=
a−b∑
k′=0

(
k′ + t− j
t− j

)(
a− k′ − t+ j

b− t+ j

)

=
a−b∑
k′=0

(
k′ + t− j

k′

)(
a− k′ − t+ j

a− b− k′
)

(symmetry of binomial coeff.)

= (−1)a−b
a−b∑
k′=0

(−t+ j − 1

k′

)(−b+ t− j − 1

a− b− k′
)

(upper negation)

= (−1)a−b
(−b− 2

a− b

)
(Chu-Vandermonde’s identity)

=

(
a+ 1

a− b

)
(upper negation)

=

(
a+ 1

b+ 1

)
(symmetry of binomial coeff.)

6.C Parallel Algorithms for Separable Sums
For some functions F , we can maintain sketches / statistics to aid the computa-
tion of ∆max

+ , ∆max
− , ∆min

+ , ∆min
− . In particular, we consider functions of the form

F (X) =
∑L

l=1 g
(∑

i∈X∪Sl wl(i)
)
− λ

∑
i∈X v(i), where Sl ⊆ V are (possibly overlap-

ping) groups of elements in the ground set, g is a non-decreasing concave scalar
function, and wl(i) and v(i) are non-negative scalar weights. An example of such
functions is set cover F (A) =

∑L
l=1 min(1, |A ∪ Sl|) − λ|A|. It is easy to see that

F (X ∪ e)− F (X) =
∑

l:e∈Sl

[
g
(
wl(e) +

∑
i∈X∪Sl wl(i)

)
− g

(∑
i∈X∪Sl wl(i)

)]
− λv(e). Define

α̂l =
∑

j∈Â∪Sl

wl(j), α̂l,e =
∑

j∈Âe∪Sl

wl(j), α
ι(e)−1
l =

∑
j∈Aι(e)−1∪Sl

wl(j).

β̂l =
∑

j∈B̂∪Sl

wl(j), β̂l,e =
∑

j∈B̂e∪Sl

wl(j), β
ι(e)−1
l =

∑
j∈Bι(e)−1∪Sl

wl(j).



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 98

CF-2g for separable sums F

Algorithm 6.10 updates α̂l and β̂l, and computes ∆max
+ (e) and ∆max

− (e) using α̂l,e and β̂l,e.
Following arguments analogous to that of Lemma 6.1, we can show:

Lemma 6.11. For each l and e ∈ V , α̂l,e ≤ α
ι(e)−1
l and β̂l,e ≥ β

ι(e)−1
l .

Corollary 6.12. Concavity of g implies that ∆’s computed by Algorithm 6.10 satisfy

∆max
+ (e) ≥

∑
Sl3e

[
g(α

ι(e)−1
l + wl(e))− g(α

ι(e)−1
l )

]
− λv(e) = ∆+(e),

∆max
− (e) ≥

∑
Sl3e

[
g(β

ι(e)−1
l − wl(e))− g(β

ι(e)−1
l )

]
+ λv(e) = ∆−(e),

The analysis of Section 6.6 follows immediately from the above.

Algorithm 6.10: CF-2g for separable sums
1 for e ∈ V do Â(e) = 0
2

3 for l = 1, . . . , L do α̂l = 0, β̂l =
∑
e∈Sl

wl(e)

4
5 for p ∈ {1, . . . , P} do in parallel
6 while ∃ element to process do
7 e = next element to process
8 ∆max

+ (e) = −λv(e) +
∑
Sl3e g(α̂l + wl(e))− g(α̂l)

9 ∆max
− (e) = +λv(e) +

∑
Sl3e g(β̂l − wl(e))− g(β̂l)

10 Draw ue ∼ Unif(0, 1)

11 if ue <
[∆max

+ (e)]+

[∆min
+ (e)]++[∆max

− (e)]+
then

12 Â(e)← 1
13 for l : e ∈ Sl do
14 α̂l ← α̂l + wl(e)

15 else
16 for l : e ∈ Sl do
17 β̂l ← β̂l − wl(e)

CC-2g for separable sums F

Analogous to the CF-2g algorithm, we maintain α̂l, β̂l and additionally α̃l =
∑

j∈Ã∪Sl wl(j)

and β̃l =
∑

j∈B̃∪Sl wl(j). Following the arguments of Lemma 6.3 and Corollary 6.5, we can
show the following.

Lemma 6.13. α̂l,e ≤ αι(e)−1 ≤ α̃l,e − wl(e) and β̂l,e ≥ βι(e)−1 ≥ β̃l,e + wl(e)



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 99

Corollary 6.14. Concavity of g implies that the ∆’s computed by Algorithm 6.11 satisfy:

∆max
+ (e) = −λv(e) +

∑
Sl3e

[g(α̂l,e + wl(e))− g(α̂l,e)]

≥ −λv(e) +
∑
Sl3e

[
g(α̂

ι(e)−1
l + wl(e))− g(α̂

ι(e)−1
l )

]
= ∆+(e)

≥ −λv(e) +
∑
Sl3e

[g(α̃l,e)− g(α̃l,e − wl(e))] = ∆min
+ (e),

∆max
− (e) = λv(e) +

∑
Sl3e

[
g(β̂l,e − wl(e))− g(β̂l,e)

]
≥ λv(e) +

∑
Sl3e

[
g(β̂

ι(e)−1
l − wl(e))− g(β̂

ι(e)−1
l )

]
= ∆−(e)

≥ λv(e) +
∑
Sl3e

[
g(β̃

ι(e)−1
l )− g(β̃

ι(e)−1
l + wl(e))

]
= ∆min

− (e).

The analysis of Section 6.6 and 6.6 follows immediately from the above.

Algorithm 6.11: CC-2g for separable sums
1 for e ∈ V do Â(e) = Ã(e) = 0, B̂(e) = B̃(e) = 1
2
3 for l = 1, . . . , L do
4 α̂l = α̃l = 0

5 β̂l = β̃l =
∑
e∈Sl

wl(e)

6 for i = 1, . . . , |V | do processed(i) = false
7
8 ι = 0
9 for p ∈ {1, . . . , P} do in parallel

10 while ∃ element to process do
11 e = next element to process
12 (α̂·,e, α̃·,e, β̂·,e, β̃·,e) = getGuarantee(e)
13 (result, ue) = propose(e, α̂·,e, α̃·,e, β̂·,e, β̃·,e)
14 commit(e, i, ue, result)



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 100

Algorithm 6.12: CC-2g
getGuarantee(e) for separa-
ble sums
1 Ã(e)← 1; B̃(e)← 0
2 for l : e ∈ Sl do
3 α̃l ← α̃l + wl(e)

4 β̃l ← β̃l − wl(e)
5 i = ι; ι← ι+ 1

6 α̂·,e = α̂·; β̂·,e = β̂·
7 α̃·,e = α̃·; β̃·,e = β̃·
8 return (α̂·,e, α̃·,e, β̂·,e, β̃·,e)

Algorithm 6.13: CC-2g
propose(e, α̂·,e, α̃·,e, β̂·,e, β̃·,e) for separable sums
1 ∆min

+ (e) = −λv(e) +
∑
Sl3e g(α̃l)− g(α̃l − wl(e))

2 ∆max
+ (e) = −λv(e) +

∑
Sl3e g(α̂l + wl(e))− g(α̂l)

3 ∆min
− (e) = +λv(e) +

∑
Sl3e g(β̃l)− g(β̃l + wl(e))

4 ∆max
− (e) = +λv(e) +

∑
Sl3e g(β̂l − wl(e))− g(β̂l)

5 Draw ue ∼ Unif(0, 1)

6 if ue <
[∆min

+ (e)]+

[∆min
+ (e)]++[∆max

− (e)]+
then result ← 1

7 else if ue >
[∆max

+ (e)]+

[∆max
+ (e)]++[∆min

− (e)]+
then result ← −1

8 else result ← FAIL
9 return (result, ue)

Algorithm 6.14: CC-2g commit(e, i, ue,result) for separable sums
1 wait until ∀j < i, processed(j) = true
2 if result = FAIL then
3 ∆exact

+ (e) = −λv(e) +
∑
Sl3e g(α̂l + wl(e))− g(α̂l)

4 ∆exact
− (e) = +λv(e) +

∑
Sl3e g(β̂l − wl(e))− g(β̂l)

5 if ue <
[∆exact

+ (e)]+
[∆exact

+ (e)]++[∆exact
− (e)]+

then result← 1

6 else result← −1

7 if result= 1 then
8 Â(e)← 1; B̃(e)← 1
9 for l : e ∈ Sl do

10 α̂l ← α̂l + wl(e)

11 β̃l ← β̃l + wl(e)

12 else
13 Ã(e)← 0; B̂(e)← 0
14 for l : e ∈ Sl do
15 α̃l ← α̃l − wl(e)
16 β̂l ← β̂l − wl(e)

17 processed(i) = true



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 101

6.D Complete Experiment Results

0 5 10 15
0

50

100

150

200

Runtime on EC2: 
Erdos−Renyi Max Graph Cut

Number of threads

R
u
n
ti
m

e
 /
 s

 

 

Ser−2g

CC−2g

CF−2g

(a)

0 5 10 15
0

100

200

300

400

500

600

700

Runtime on EC2: 
Erdos−Renyi Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

 

 

Ser−2g

CC−2g

CF−2g

(b)

0 5 10 15
0

50

100

150

200

Runtime on EC2: 
ZigZag Max Graph Cut

Number of threads

R
u
n
ti
m

e
 /
 s

 

 

Ser−2g

CC−2g

CF−2g

(c)

0 5 10 15
0

200

400

600

800

Runtime on EC2: 
ZigZag Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

 

 

Ser−2g

CC−2g

CF−2g

(d)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
Erdos−Renyi Max Graph Cut

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

 

 

Ideal

CC−2g

CF−2g

(e)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
Erdos−Renyi Set Cover

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

 

 

Ideal

CC−2g

CF−2g

(f)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
ZigZag Max Graph Cut

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

 

 

Ideal

CC−2g

CF−2g

(g)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
ZigZag Set Cover

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

 

 

Ideal

CC−2g

CF−2g

(h)

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−8

CF−2g decrease in F(A): 
Erdos−Renyi Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f 
F

(A
) 

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

 

 

Ser−2g

CF−2g

(i)

0 5 10 15
0

0.5

1

1.5

2
x 10

−7

CF−2g decrease in F(A): 
Erdos−Renyi Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f 
F

(A
) 

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

 

 

Ser−2g

CF−2g

(j)

0 5 10 15
0

0.5

1

1.5

2

2.5
x 10

−8

CF−2g decrease in F(A): 
ZigZag Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f 
F

(A
) 

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

 

 

Ser−2g

CF−2g

(k)

0 5 10 15
0

0.2

0.4

0.6

0.8

1
x 10

−7

CF−2g decrease in F(A): 
ZigZag Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f 
F

(A
) 

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

 

 

Ser−2g

CF−2g

(l)

0 5 10 15
0

0.5

1

1.5

2
x 10

−5

CC−2g fraction failed txns: 
Erdos−Renyi Max Graph Cut

Number of threads

F
ra

c
ti
o

n
 o

f 
tx

n
s
 f

a
ile

d

(m)

0 5 10 15
0

1

2

3

4
x 10

−6

CC−2g fraction failed txns: 
Erdos−Renyi Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f 
tx

n
s
 f
a
ile

d

(n)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−5

CC−2g fraction failed txns: 
ZigZag Max Graph Cut

Number of threads

F
ra

c
ti
o

n
 o

f 
tx

n
s
 f

a
ile

d

(o)

0 5 10 15
0

1

2

3

4
x 10

−6

CC−2g fraction failed txns: 
ZigZag Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f 
tx

n
s
 f
a
ile

d

(p)

Figure 6.5: Experimental results on Erdos-Renyi and ZigZag synthetic graphs.



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 102

0 5 10 15
0

50

100

150

200

250

Runtime on EC2: 
Friendster Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

 

 

Ser−2g

CC−2g

CF−2g

(a)

0 5 10 15
0

50

100

150

200

Runtime on EC2: 
Arabic−2005 Set Cover

Number of threads
R

u
n
ti
m

e
 /
 s

 

 

Ser−2g

CC−2g

CF−2g

(b)

0 5 10 15
0

50

100

150

200

250

300

350

Runtime on EC2: 
UK−2005 Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

 

 

Ser−2g

CC−2g

CF−2g

(c)

0 5 10 15
0

100

200

300

400

Runtime on EC2: 
IT−2004 Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

 

 

Ser−2g

CC−2g

CF−2g

(d)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
Friendster Set Cover

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

 

 

Ideal

CC−2g

CF−2g

(e)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
Arabic−2005 Set Cover

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

 

 

Ideal

CC−2g

CF−2g

(f)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
UK−2005 Set Cover

Number of threads
S

p
e

e
d

−
u

p
 f

a
c
to

r

 

 

Ideal

CC−2g

CF−2g

(g)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
IT−2004 Set Cover

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

 

 

Ideal

CC−2g

CF−2g

(h)

0 5 10 15
0

0.5

1

1.5

2

2.5

3
x 10

−6

CF−2g decrease in F(A): 
Friendster Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f 
F

(A
) 

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

 

 

Ser−2g

CF−2g

(i)

0 5 10 15
0

1

2

3

4

5

6
x 10

−7

CF−2g decrease in F(A): 
Arabic−2005 Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f 
F

(A
) 

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

 

 

Ser−2g

CF−2g

(j)

0 5 10 15
0

0.5

1

1.5

2
x 10

−7

CF−2g decrease in F(A): 
UK−2005 Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f 
F

(A
) 

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

 

 

Ser−2g

CF−2g

(k)

0 5 10 15
0

1

2

3

4
x 10

−7

CF−2g decrease in F(A): 
IT−2004 Set Cover

Number of threads
F

ra
c
ti
o
n
 o

f 
F

(A
) 

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

 

 

Ser−2g

CF−2g

(l)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−5

CC−2g fraction failed txns: 
Friendster Set Cover

Number of threads

F
ra

c
ti
o

n
 o

f 
tx

n
s
 f

a
ile

d

(m)

0 5 10 15
0

0.2

0.4

0.6

0.8

1
x 10

−5

CC−2g fraction failed txns: 
Arabic−2005 Set Cover

Number of threads

F
ra

c
ti
o

n
 o

f 
tx

n
s
 f

a
ile

d

(n)

0 5 10 15
0

1

2

3

4
x 10

−6

CC−2g fraction failed txns: 
UK−2005 Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f 
tx

n
s
 f
a
ile

d

(o)

0 5 10 15
0

1

2

3

4

5

6
x 10

−6

CC−2g fraction failed txns: 
IT−2004 Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f 
tx

n
s
 f
a
ile

d

(p)

Figure 6.6: Set cover on 4 real graphs.



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 103

0 5 10 15
0

10

20

30

40

50

60

Runtime on EC2: 
Friendster Max Graph Cut

Number of threads

R
u

n
ti
m

e
 /

 s

 

 

Ser−2g

CC−2g

CF−2g

(a)

0 5 10 15
0

20

40

60

80

100

Runtime on EC2: 
Arabic−2005 Max Graph Cut

Number of threads
R

u
n
ti
m

e
 /
 s

 

 

Ser−2g

CC−2g

CF−2g

(b)

0 5 10 15
0

50

100

150

200

Runtime on EC2: 
UK−2005 Max Graph Cut

Number of threads

R
u
n
ti
m

e
 /
 s

 

 

Ser−2g

CC−2g

CF−2g

(c)

0 5 10 15
0

50

100

150

200

250

Runtime on EC2: 
IT−2004 Max Graph Cut

Number of threads

R
u
n
ti
m

e
 /
 s

 

 

Ser−2g

CC−2g

CF−2g

(d)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
Friendster Max Graph Cut

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

 

 

Ideal

CC−2g

CF−2g

(e)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
Arabic−2005 Max Graph Cut

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

 

 

Ideal

CC−2g

CF−2g

(f)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
UK−2005 Max Graph Cut

Number of threads
S

p
e

e
d

−
u

p
 f

a
c
to

r

 

 

Ideal

CC−2g

CF−2g

(g)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
IT−2004 Max Graph Cut

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

 

 

Ideal

CC−2g

CF−2g

(h)

0 5 10 15
−2

0

2

4

6

8
x 10

−7

CF−2g decrease in F(A): 
Friendster Max Graph Cut

Number of threads

F
ra

c
ti
o

n
 o

f 
F

(A
) 

d
e

c
re

a
s
e

 v
s
 S

e
r−

2
g

 

 

Ser−2g

CF−2g

(i)

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5

CF−2g decrease in F(A): 
Arabic−2005 Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f 
F

(A
) 

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

 

 

Ser−2g

CF−2g

(j)

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5

CF−2g decrease in F(A): 
UK−2005 Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f 
F

(A
) 

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

 

 

Ser−2g

CF−2g

(k)

0 5 10 15
0

0.2

0.4

0.6

0.8

1
x 10

−5

CF−2g decrease in F(A): 
IT−2004 Max Graph Cut

Number of threads
F

ra
c
ti
o
n
 o

f 
F

(A
) 

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

 

 

Ser−2g

CF−2g

(l)

0 5 10 15
0

1

2

3

4

5
x 10

−5

CC−2g fraction failed txns: 
Friendster Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f 
tx

n
s
 f
a
ile

d

(m)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−4

CC−2g fraction failed txns: 
Arabic−2005 Max Graph Cut

Number of threads

F
ra

c
ti
o

n
 o

f 
tx

n
s
 f

a
ile

d

(n)

0 5 10 15
0

2

4

6

8
x 10

−5

CC−2g fraction failed txns: 
UK−2005 Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f 
tx

n
s
 f
a
ile

d

(o)

0 5 10 15
0

1

2

3

4

5

6

7
x 10

−5

CC−2g fraction failed txns: 
IT−2004 Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f 
tx

n
s
 f
a
ile

d

(p)

Figure 6.7: Max graph cut on 4 real graphs.



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 104

0 5 10 15
0

50

100

150

200

250

300

Runtime on EC2: 
Ring Set Cover

Number of threads

R
u
n
ti
m

e
 /
 s

 

 

Ser−2g

CC−2g

CF−2g

(a)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
Ring Set Cover

Number of threads
S

p
e

e
d

−
u

p
 f

a
c
to

r
 

 

Ideal

CC−2g

CF−2g

(b)

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

CF−2g decrease in F(A): 
Ring Set Cover

Number of threads

F
ra

c
ti
o
n
 o

f 
F

(A
) 

d
e
c
re

a
s
e
 v

s
 S

e
r−

2
g

 

 

Ser−2g

CC−2g

CF−2g

(c)

0 5 10 15
0

0.2

0.4

0.6

0.8

1

CC−2g fraction failed txns: 
Ring Set Cover

Number of threads

F
ra

c
ti
o

n
 o

f 
tx

n
s
 f

a
ile

d

(d)

0 5 10 15
0

2

4

6

8

10

12

Runtime on EC2: 
Ring Max Graph Cut

Number of threads

R
u

n
ti
m

e
 /

 s

 

 

Ser−2g

CC−2g

CF−2g

(e)

0 5 10 15
0

5

10

15

Speed−up on EC2: 
Ring Max Graph Cut

Number of threads

S
p

e
e

d
−

u
p

 f
a

c
to

r

 

 

Ideal

CC−2g

CF−2g

(f)

0 5 10 15
−10

−8

−6

−4

−2

0

2

4
x 10

−7

CF−2g decrease in F(A): 
Ring Max Graph Cut

Number of threads
F

ra
c
ti
o

n
 o

f 
F

(A
) 

d
e

c
re

a
s
e

 v
s
 S

e
r−

2
g

 

 

Ser−2g

CC−2g

CF−2g

(g)

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

CC−2g fraction failed txns: 
Ring Max Graph Cut

Number of threads

F
ra

c
ti
o
n
 o

f 
tx

n
s
 f
a

ile
d

(h)

Figure 6.8: Experimental results for ring graph on set cover problem.

6.E Illustrative Examples
The following examples illustrate how (i) the simple (uni-directional) greedy algorithm may
fail for non-monotone submodular functions, and (ii) where the coordination-free double
greedy algorithm can run into trouble.

Greedy and non-monotone functions

For illustration, consider the following toy example of a non-monotone submodular function.
We are given a ground set V = {v0, v1, v2, . . . , vk} of k + 1 elements, and a universe U =
{u1, . . . , uk}. Each element vi in V covers elements Cov(vi) ⊆ U of the universe. In addition,
each element in V has a cost c(vi). We are aiming to maximize the submodular function

F (S) =
∣∣∣ ⋃
v∈S

Cov(v)
∣∣∣−∑

v∈S

c(v). (6.5)

Let the costs and coverings be as follows:

Cov(v0) = U c(v0) = k − 1 (6.6)
Cov(vi) = ui c(vi) = ε < 1/k2 for all i > 0. (6.7)

Then the optimal solution is S∗ = V \ v0 with F (S∗) = k − kε.
The greedy algorithm of [105] always adds the element with the largest marginal gain.

Since F (v0) = 1 and F (vi) = 1 − ε for all i > 0, the algorithm would pick v0 first. After



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 105

that, any additional element only has a negative marginal gain, F ({v0, vi}) − F (v0) = −ε.
Hence, the algorithm would end up with a solution F (v0) = 1 or worse, which means an
approximation factor of only approximately 1/k.

For the double greedy algorithm, the scenario would be the following. If v0 happens to be
the first element, then it is picked with probability

P (v0) =
[F (v0)− F (∅)]+

[F (v0)− F (∅)]+ + [F (V \ v0)− F (V )]−
=

1

1 + (k − 1)
=

1

k
. (6.8)

If v0 is selected, nothing else will be added afterwards, since [F (v0, vi)− F (v0)]+ = 0. If it
does not pick v0, then any other element is added with a probability of

P (vi | ¬v0) =
[F (vi)− F (∅)]+

[F (vi)− F (∅)]+ + F (V \ {v0, vi})− F (V \ v0)]−
=

1− ε
1− ε = 1. (6.9)

If v0 is not the first element, then any element before v0 is added with probability
p(vi) = 1− ε, and as soon as an element vi has been picked, v0 will not be added any more.
Hence, with high probability, this algorithm returns the optimal solution. The deterministic
version surely does.

Coordination vs no coordination

The following example illustrates the differences between coordination and no coordination.
In this example, let V be split into m disjoint groups Gj of equal size k = |V |/m, and let

F (S) =
m∑
j=1

min{1, |S ∩Gj|} −
|S ∩Gj|

k
. (6.10)

A maximizing set S∗ contains one element from each group, and F (S∗) = m−m/k.
If the sequential double greedy algorithm has not picked an element from a group, it will

retain the next element from that group with probability

1− 1/k

1− 1/k + 1/k
= 1− 1/k. (6.11)

Once it has sampled an element from a group Gj , it does not pick any more elements from Gj ,
and therefore |S ∩Gj| ≤ 1 for all j and the set S returned by the algorithm. The probability
that S does not contain any element from Gj is k−k —fairly low. Hence, with probability
1−m/kk the algorithm returns the optimal solution.

Without coordination, the outcome heavily depends on the order of the elements. For
simplicity, assume that k is a multiple of the number q of processors (or q is a multiple of
k). In the worst case, the elements are sorted by their groups and the members of each
group are processed in parallel. With q processors working in parallel, the first q elements
from a group G (up to shifts) will be processed with a bound Â that does not contain any



CHAPTER 6. NON-MONOTONE SUBMODULAR MAXIMIZATION 106

element from G, and will each be selected with probability 1− 1/k. Hence, in expectation,
|S ∩Gj| = min{q, k}(1− 1/k) for all j.

If q > k, then in expectation k−1 elements from each group are selected, which corresponds
to an approximation factor of

m(1− k−1
k

)

m(1− 1/k)
=

1

k − 1
. (6.12)

If k > q, then in expectation we obtain an approximation factor of

m(1− q(1−1/k)
k

)

m(1− 1/k)
= 1− q

k
+

1

k − 1
(6.13)

which decreases linearly in q. If q = k, then the factor is 1/(q − 1) instead of 1/2.



107

Chapter 7

Sparse Stochastic Updates

7.1 Introduction
In this chapter1, we focus on the parallelization of sparse stochastic update algorithms (Section
7.A), which includes a large class of popular optimization algorithms such as SGD, SVRG,
and SAGA.

Following the seminal work of Hogwild! [116], many studies have demonstrated that
near-linear speedups are achievable on a variety of machine learning tasks via asynchronous,
lock-free, coordination-free implementations [117, 143, 138, 94, 50, 133, 67, 101]. In all of
these studies, classic algorithms are parallelized by simply running parallel and asynchronous
model updates without locks nor coordination. These lock-free, asynchronous algorithms
exhibit speedups even when applied to large, non-convex problems, as demonstrated by deep
learning systems such as Google’s Downpour SGD [44] and TensorFlow [1], and Microsoft’s
Project Adam [38].

While these techniques have been remarkably successful, many of the papers cited above
require delicate and tailored analyses to understand the benefits of asynchrony for the
particular learning task at hand. Moreover, in non-convex settings, we currently have little
quantitative insight into how much speedup is gained from asynchrony and how much accuracy
may be lost.

We present Cyclades, a general framework for lock-free, asynchronous machine learn-
ing algorithms that obviates the need for specialized analyses. Cyclades runs updates
asynchronously and maintains serializability, i.e., it produces an outcome equivalent to a
serial execution of the updates. Furthermore, Cyclades is deterministic — given the serial
algorithm’s ordering of updates, Cyclades is able to produce the same output as the serial
algorithm. Hence, any algorithm parallelized by our framework inherits the correctness proof
of the serial counterpart without modifications. Additionally, if a particular heuristic serial
algorithm is popular, but does not have a rigorous analysis, such as backpropagation on

1Work done as part of [108].



CHAPTER 7. SPARSE STOCHASTIC UPDATES 108

neural networks, Cyclades still guarantees that its execution will return a serially equivalent
output.

Cyclades achieves serializability and determinism by using BSP and scheduling to
temporally and spatially separate conflicting updates. Within each BSP batch, Cyclades
partitions updates among cores in a way that ensures that there are no conflicts between
cores. Such a partition can always be found efficiently by leveraging a powerful result on
graph phase transitions [82]. When applied to our setting, this result guarantees that a
sufficiently small BSP batch of updates will have only a logarithmic number of conflicts. This
allows us to evenly partition model updates within the batch across cores, with the guarantee
that all conflicts are spatially localized within each core. The global BSP synchronization
barriers prevents conflicts across batches, and enables Cyclades to obtain good intra-batch
load-balancing.

Given enough problem sparsity, Cyclades guarantees a nearly linear speedup, while
inheriting all the qualitative properties of the serial counterpart of the algorithm, e.g., proofs
for rates of convergence. Enforcing a deterministic execution in Cyclades comes with
additional practical benefits. Determinism is helpful for hyperparameter tuning, or locating
the best model produced by the asynchronous execution, since experiments are reproducible,
and solutions are easily verifiable. Moreover, a Cyclades program is easy to debug, because
bugs are repeatable and we can examine the step-wise execution to localize them.

A significant benefit of the update partitioning in Cyclades is that it induces considerable
access locality compared to the more unstructured nature of the memory accesses during
Hogwild!. Cores will access the same data points and read/write the same subset of model
variables. This has the additional benefit of reducing false sharing across cores. Because of
these gains, Cyclades can actually outperform Hogwild! in practice on sufficiently sparse
problems, despite appearing to require more computational overhead. Remarkably, because
of the added locality, even a single threaded implementation of Cyclades can actually be
faster than serial SGD. In our SGD experiments for matrix completion and word embedding
problems, Cyclades can offer a speedup gain of up to 40% compared to that of Hogwild!.
Furthermore, for variance reduction techniques such as SAGA [45] and SVRG [74], Cyclades
yields better accuracy and more significant speedups, with up to 5× performance gains over
Hogwild!-type implementations.

The remainder of our paper is organized as follows. Section 7.2 establishes some pre-
liminaries. Details and theory of Cyclades are presented in Section 7.3. We present our
experiments in Section 7.4, we discuss related work in Section 7.5, and then conclude with
Section 7.6.

7.2 The Algorithmic Family of Stochastic-Updates
We study parallel asynchronous iterative algorithms on the computational model used by [116],
and similar to the partially asynchronous model of [18]: a number of cores have access to the



CHAPTER 7. SPARSE STOCHASTIC UPDATES 109

same shared memory, and each of them can read and update components of the model x in
parallel from the shared memory.

In this chapter, we consider a large family of randomized algorithms that we will refer to
as Stochastic Updates (SU). The main algorithmic component of SU focuses on updating
small subsets of a model variable x, that lives in shared memory, according to prefixed access
patterns, as sketched by Algorithm 7.1.

Algorithm 7.1: Stochastic Updates
pseudo-algorithm
Input: x; f1, . . . , fn;u1, . . . , un;D;T .

1 for t = 1 : T do
2 Sample i ∼ D
3 //Update global model on Si
4 xSi = ui(xSi , fi)

Output: x

......

u1

u2

un

x1
x2

xd

u1

u2

un

sample

conflict graph

Figure 7.1: The above bipartite graph Gu (left) links
an update ui to a variable xj when an update needs
to access (read or write) the variable. From Gu we
obtain the conflict graph Gc (right), whose max degree
is ∆. If Gc is sufficiently sparse, we expect that it
is possible to parallelize updates without too many
conflicts. Cyclades exploits this intuition.

In Algorithm 7.1 each set Si is a subset of the coordinate indices of x, and each function fi
only operates on the subset Si of coordinates, i.e., both its domain (read set) and co-domain
(write set) are inside Si), and ui is a local update function that computes a vector with
support on Si using as input xSi and fi. Moreover, T is the total number of iterations,
and D is the distribution with support {1, . . . , n} from which we draw i. As we explain
in Appendix 7.A, several machine learning and optimization algorithms belong to the SU
algorithmic family, such as stochastic gradient descent (SGD), with or without weight decay
and regularization, variance-reduced learning algorithms like SAGA and SVRG, and even
some combinatorial graph algorithms.

The Stochastic Updates algorithm is also a specialization of the iterative transformation
framework to transactions with the same read and write sets, i.e., Si = R(fi) = W (fi).
Specifically, using the change function Λi(xSi , fi) = ui(x

(t)
Si , fi) and transformation function

Ti,k(x, λSi) = 1{k 6∈Si}xk + 1{k∈Si}λk, we can rewrite (2.3) as

x
(t+1)
k =

{
Ti,k(x

(t),Λi(x
(t)
Si , fi)) if k ∈ Si

x
(t)
k otherwise

(7.1)

=

{
[ui(x

(t)
Si , fi))]k if k ∈ Si

x
(t)
k otherwise

(7.2)



CHAPTER 7. SPARSE STOCHASTIC UPDATES 110

The Updates Conflict Graph A useful construction for our developments is the conflict
graph between updates, which can be generated from the bipartite graph between the updates
and the model variables. We define these graphs below, and provide an illustrative sketch in
Figure 7.1.

Definition 7.1. We denote as Gu the bipartite update-variable graph between the updates
u1, . . . , un and the d model variables. In Gu an update ui is linked to a variable xj, if ui
requires to read or write xj. We let Eu denote the number of edges in the bipartite graph, and
also denote as ∆L the left max vertex degree of Gu, and as ∆L its average left degree.

Definition 7.2. We denote by Gc a conflict graph on n vertices, each corresponding to an
update ui. Two vertices of Gc are linked with an edge, if and only if the corresponding updates
share at least one variable in the bipartite-update graph Gu. We also denote as ∆ the max
vertex degree of Gc.

We stress that the conflict graph is never actually constructed, but serves as a useful
concept for understanding Cyclades.

Our Main Result By exploiting the structure of the above graphs and through a light-
weight and careful sampling and allocation of updates, Cyclades is able to guarantee the
following result for SU algorithms, which we establish in the following sections.

Theorem 7.1 (informal). Let us consider an SU algorithm A defined through n update rules,
where the conflict max degree between the n updates is ∆, and the sampling distribution D
is uniform with (or without) replacement from {1, . . . , n}. Moreover, assume that we wish
to run A for T = Θ(n) iterations, and that ∆L

∆L
≤ √n. Then on up to P = Õ( n

∆·∆L
) cores,

Cyclades guarantees a Ω̃(P ) speedup over A, while outputting the same solution x as A
would do after the same random set of T iterations.2

We will now provide some simple examples of how the above parameters, and guarantees
translate for specific problem cases.

Many machine learning applications often seek to minimize the empirical risk

min
x

1

n

n∑
i=1

`i(a
T
i x)

where ai represents the ith data point, x is the model we are trying to fit, and `i is a loss
function that tells us how good of a fit a model is with respect to data point i. Several
problems can be formulated in the above way, such as logistic regression, least squares, support
vector machines (SVMs) for binary classification, and others. If we attempt to solve the above
problem using SGD (with or without regularization), or via variance reduction techniques

2Ω̃(·) and Õ(·) hide polylog factors.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 111

like SVRG and SAGA, then (as we show in Appendix 7.A) the sparsity of the ui updates
is determined by the gradient of a single sampled data point i. For the aforementioned
problems, this will be proportional to

(
d
du
`i(u)

∣∣
u=aTi x

)
ai, hence the sparsity of the update is

defined by the non-zero support of datapoint ai. In the induced bipartite update-variable
graph of this problem, we have ∆L = maxi ||ai||0, and the maximum conflict degree ∆ is the
maximum number of data points ai that share at least one of the d features. As a toy example,
let n

d
= Θ(1) and let the non-zero support of ai be of size nδ and uniformly distributed.

Then, one can show that with overwhelmingly high probability ∆ = Õ(n1/2+δ) and hence
Cyclades achieves an Ω̃(P ) speedup on up to P = Õ(n1/2−2δ) cores.

Consider the following generic minimization problem

min
x1,...,xm1

min
y1,...,ym2

m1∑
i=1

m2∑
j=1

φi,j(xi, yj)

where φi,j is a convex function of a scalar. The above generic formulation captures several
problems like matrix completion and matrix factorization [115] (where φi,j = (Ai,j − xTi yj)2),
word embeddings [9] (where φi,j = Ai,j(log(Ai,j)− ‖xi + xj‖2

2 − C)2), graph k-way cuts [116]
(where φi,j = Ai,j‖xi − xj‖1), and others. Let m1 = m2 = m for simplicity, and assume that
we aim to minimize the above by sampling a single function φi,j and then updating xi and
yj using SGD. Here, the number of update functions is proportional to n = m2, and for the
above setup each gradient update with respect to the sampled function φi,j(xi, yj) is only
interacting with the variables xi and yj, i.e., only two variable vectors out of the 2m many
(i.e., ∆L = 2). Moreover, the previous imply a conflict degree of at most ∆ = 2m. In this
case, Cyclades can provably guarantee an Ω̃(P ) speedup for up to P = O(m) cores.

In our experiments we test Cyclades on several problems including least squares,
classification with logistic models, matrix factorization, and word embeddings, and several
algorithms including SGD, SVRG, and SAGA. We show that in most cases it can significantly
outperform the Hogwild! implementation of these algorithms, if the data is sparse.

We would like to note, that there are several cases where there might be a few outlier
updates with extremely high conflict degree. In Appendix 7.E, we prove that if there are no
more than O(nδ) vertices of high conflict degree ∆o, and the rest of the vertices have max
degree at most ∆, then the result of Theorem 7.1 still holds in expectation.

In the following section, we establish the technical results behind Cyclades and provide
the details behind our parallelization framework.

7.3 Cyclades: Shattering Dependencies
Cyclades consists of three computational components as shown in Figure 7.2.

It starts by sampling (according to a distribution D) a number of B updates from the
graph shown in Figure 7.1, and assigns a label to each of them (a processing order). We
note that in practice the sampling is done on the bipartite graph, which avoids the need to



CHAPTER 7. SPARSE STOCHASTIC UPDATES 112

Allocation

Sample Batch + Connected Components

Core1 Core 2 Core p

Asynchronous and Lock-free Stochastic Updates

Core1 Core 2 Core p

SU SU SU

Batch Synchronization

sample C.C.

conflict-graph

Figure 7.2: Cyclades carefully samples updates, then finds conflict-groups, and allocates them
across cores. Then, each core asynchronously updates the shared model, without incurring any
read/write conflicts. This is possible by processing all the conflicting updates within the same core.
After the processing of a batch is completed, the above is repeated, for as many iterations as required.

actually construct the conflict graph. After sampling, it computes the connected components
of the sampled subgraph induced by the B sampled updates, to determine the conflict groups.
Once the conflicts groups are formed, it allocates them across P cores. Finally, each core
processes locally the conflict groups of updates that it has been assigned, following the order
that each update has been labeled with. The above process is then repeated, for as many
iterations as needed.

The key component of Cyclades is to carry out the sampling in such a way that we
have as many connected components as possible, and all of them of small size, provably.
In the next subsections, we explain how each part is carried out, and provide theoretical
guarantees for each of them individually, which we combine at the end of this section for our
main theorem.

Frugal sampling shatters conflicts. A key technical aspect that we exploit in Cyclades
is that appropriate sampling and allocation of updates can lead to near optimal parallelization
of sparse SU algorithms. To do that we expand upon the following result established in [82].



CHAPTER 7. SPARSE STOCHASTIC UPDATES 113

Theorem 7.2. Let G be a graph on n vertices, with maximum vertex degree ∆. Let us sample
each vertex independently with probability p = 1−ε

∆
and define as G′ the induced subgraph on

the sampled vertices. Then, the largest connected component of G′ has size at most 4
ε2

log n,
with high probability.

The above result pays homage to the giant component phase transition phenomena in
random Erdos-Renyi graphs. What is surprising is that a similar phase transition can apply
for any given graph!

Adapting to ML-friendly sampling procedures. In practice, for most SU algorithms
of interest, the sampling distribution of updates is either with or without replacement from
the n updates. As it turns out, morphing Theorem 7.2 into a with-/without-replacement
result is not straightforward. We defer the analysis needed to Appendix 7.B, and present our
main theorem about graph sampling here.

Theorem 7.3. Let G be a graph on n vertices, with maximum vertex degree ∆. Let us sample
B = (1− ε) n

∆
vertices with or without replacement, and define as G′ the induced subgraph on

the sampled vertices. Then, the largest connected component of G′ has size at most O( logn
ε2

),
with high probability.

The key idea from the above theorem is that if one samples no more than B = (1− ε) n
∆

vertices, then there will be at least O (ε2B/logn) conflict groups to allocate across cores, all of
size at most O (log n/ε2). Moreover, since there are no conflicts between different conflict-
groups, the processing of updates per any single group will never interact with the variables
corresponding to the updates of another conflict group.

The next step of Cyclades is to form and allocate the connected components (CCs)
across cores, and do so efficiently. We address this in the following subsection. In the following,
for simplicity we carry our analysis for the with-replacement sampling case, but it can be
readily extended to the without-replacement sampling case.

Identifying Groups of Conflict via CCs In Cyclades, we sample batches of updates
of size B = (1− ε) n

∆
multiple times, and for each batch we need to identify the conflict groups

across the updates. Let us refer to Gi
u as the subgraph induced by the ith sampled batch of

updates on the update-variable bipartite graph Gu. In the following we always assume that
we sample at most nb = c · ∆

1−ε batches, where c ≥ 1 is a constant that does not depend on n.
This number of batches results in a constant number of passes over the dataset.

Identifying the conflict groups in Gi
u can be done with a connected components (CC)

algorithm. The main question we need to address is what is the best way to parallelize this
graph partitioning part. There are two avenues that we can take for this, depending on the
number of cores P at our disposal. We can either parallelize the computation of the CCs of a
single batch (i.e., compute the CCs of Gi

u on P cores), or we can compute in parallel the CCs
of all nb batches, by allocating the sampled graphs Gi

u to cores, so that each of them can



CHAPTER 7. SPARSE STOCHASTIC UPDATES 114

compute the CCs of its allocated subgraphs. Depending on the number of available cores,
one technique can be better than the other. In Appendix 7.C we provide the details of this
part, and prove the following result:

Lemma 7.4. Let the number of cores by bounded as P = O( n
∆∆L

), and let ∆L
∆L
≤ √n. Then,

the overall computation of CCs for nb = c · ∆
1−ε batches, each of size B = (1− ε) n

∆
, costs no

more than O(Eu log2 n
P

).

Allocating Updates to Cores Once we compute the CCs (i.e., the conflicts groups of
the sampled updates), we have to allocate them across cores. Once a core has been assigned
with CCs, it will process the updates included in these CCs, according to the order that
each update has been labeled with. Due to Theorem 7.3, each connected component will
contain at most O( logn

ε2
) updates. Assuming that the cost of the j-th update in the batch

is wj, the cost of a single connected component C will be wC =
∑

j∈C wj. To proceed with
characterizing the maximum load among the P cores, we assume that the cost of a single
update ui, for i ∈ {1, . . . , n}, is proportional to the out-degree of that update —according to
the update-variable graph Gu— times a constant cost which we shall refer to as κ. Hence,
wj = O(dL,j · κ), where dL,j is the degree of the j-th left vertex of Gu. In Appendix 7.D
we establish that a near-uniform allocation of CCs according to their weights leads to the
following guarantee.

Lemma 7.5. Let the number of cores by bounded as P = O( n
∆∆L

), and let ∆L
∆L
≤ √n. Then,

computing the stochastic updates across all nb = c · ∆
1−ε batches can be performed in time

O(E log2 n
P
· κ), with high probability, where κ is the per edge cost for computing one of the n

updates defined on Gu.

Stitching the pieces together Now that we have described the sampling, conflict com-
putation, and allocation strategies, we are ready to put all the pieces together and detail
Cyclades in full. Let us assume that we sample a total number of nb = c · ∆

1−ε batches of
size B = (1− ε) n

∆
, and that each update is sampled uniformly at random. For the i-th batch

let us denote as Ci1, . . . Cimi the connected components on the induced subgraph Gi
u. Due to

Theorem 7.3, each connected component C contains a number of at most O( logn
ε2

) updates,
and each update carries an ID (the order of which it would have been sampled by the serial
algorithm). Using the above notation, we give the pseudocode for Cyclades in Algorithm
7.2.

Note that the inner loop that is parallelized (i.e., the SU processing loop in lines 6 –
9), can be performed asynchronously; cores do not have to synchronize, and do not need
to lock any memory variables, as they are all accessing non-overlapping subset of x. This
also provides for better cache coherence. Moreover, each core potentially accesses the same
coordinates several times, leading to good cache locality. These improved cache locality and



CHAPTER 7. SPARSE STOCHASTIC UPDATES 115

Algorithm 7.2: Cyclades
Input: Gu, T, B.

1 Sample nb = T/B subgraphs G1
u, . . . , G

nb
u from Gu

2 Cores compute in parallel CCs for sampled subgraphs
3 for batch i = 1 : nb do
4 Allocation of Ci1, . . . Cimi

to P cores
5 for each core in parallel do
6 for each allocated component C do
7 for each update j (in order) from C do
8 xSj = uj(xSj , fj)

Output: x

coherence properties experimentally lead to substantial performance gains as we see in the
next section.

We can now combine the results of the previous subsection to obtain our main theorem
for Cyclades.

Theorem 7.6. Let us assume any given update-variable graph Gu with average, and max
left degree ∆L and ∆L, such that ∆L

∆L
≤ √n, and with induced max conflict degree ∆. Then,

Cyclades on P = O( n
∆·∆L

) cores, with batch sizes B = (1 − ε) n
∆

can execute T = c · n
updates, for any constant c ≥ 1, selected uniformly at random with replacement, in time

O
(
Eu · κ
P
· log2 n

)
,

with high probability.

Observe that Cyclades bypasses the need to establish convergence guarantees for the
parallel algorithm. Hence, it could be the case for many applications of interest that although
we might not be able to analyze how “well” the serial SU algorithm might perform in terms of
the accuracy of the solution, Cyclades can provide black box guarantees for speedup, since
our analysis is completely oblivious to the qualitative performance of the serial algorithm.
This is in contrast to recent studies similar to [41], where the authors provide speedup
guarantees via a convergence-to-optimal proof for an asynchronous SGD on a nonconvex
problem. Unfortunately these proofs can become complicated especially on a wider range of
nonconvex objectives.

In the following section we show that Cyclades is not only useful theoretically, but can
consistently outperform Hogwild! on sufficiently sparse datasets.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 116

7.4 Evaluation

Implementation and Setup

We implemented Cyclades in C++ and tested it on a variety of problems and datasets
described below. We tested a number of stochastic updates algorithms, and compared
against their Hogwild! (i.e., asynchronous and lock-free) implementations — in some cases,
there are no theoretical foundations for these Hogwild! implementations, even if they
work reasonably well in practice. Since Cyclades is intended to be a general approach
for parallelization of stochastic updates algorithms, we do not compare against algorithms
designed and tailored for specific applications, nor do we expect Cyclades to outperform
every such highly-tuned, well-designed, specific algorithm.

Our experiments were conducted on a machine with 72 CPUs (Intel(R) Xeon(R) CPU
E7-8870 v3, 2.10 GHz) on 4 NUMA nodes, each with 18 CPUs, and 1TB of memory. We ran
both Cyclades and Hogwild! with 1, 4, 8, 16 and 18 threads pinned to CPUs on a single
NUMA node (i.e., the maximum physical number of cores possible, for a single node), so that
we can avoid well-known cache coherence and scaling issues across different nodes [140]. We
note that distributing threads across NUMA nodes significantly increased running times for
both Cyclades and Hogwild!, but was relatively worse for Hogwild!. We believe this is
due to the poorer locality of Hogwild!, which results in more cross-node communication. In
this paper, we exclusively focus our study and experiments on parallelization within a single
NUMA node, and leave cross-NUMA node parallelization for future work, while referring
the interested reader to a recent study of the various tradeoffs of ML algorithms on NUMA
aware architectures [140].

In our experiments, we measure overall running times which include the overheads for
computing connected components and allocating work in Cyclades. Separately, we also
measure running times for performing the stochastic updates by excluding the Cyclades
coordination overheads. We also compute the objective value at the end of each epoch (i.e.,
one full pass over the data). We measure the speedups for each algorithm as

time of the parallel algorithm to reach ε objective
time of the serial algorithm to reach ε objective

where ε was chosen to be the smallest objective value that is achievable by all parallel
algorithms on every choice of number of threads. That is, ε = maxA,T mine f(XA,T,e) where
XA,T,e is the model learned by algorithm A on T threads after e epochs. The serial algorithm
used for comparison is Hogwild! running serially on one thread.

In Table 7.1 we list some details of the datasets that we use in our experiments. The
stepsizes and batch sizes used for each problem are listed in Table 7.2, along with dataset
and problem details. In general, we chose the stepsizes to maximize convergence without
diverging. Batch sizes were picked to optimize performance for Cyclades.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 117

Dataset # datapoints # features
Density (average

Commentsnumber of features
per datapoint)

NH2010 48,838 48,838 4.8026 Topological graph of 49
Census Blocks in New Hampshire.

DBLP 5,425,964 5,425,964 3.1880 Authorship network of 1.4M authors
and 4M publications, with 8.65M edges.

MovieLens ∼10M 82,250 200 10M movie ratings from 71,568 users
for 10,682 movies.

EN-Wiki 20,207,156 213,272 200 Subset of English Wikipedia dump.

Table 7.1: Details of datasets used in our experiments.

Problem Algorithm Dataset
Hogwild! Cyclades Batch Average # Average size
Stepsize Stepsize Size of connected of connected

components components

Least squares SAGA NH2010 1× 10−14 3× 10−14 1,000 792.98 1.257
DBLP 1× 10−5 3× 10−4 10,000 9410.34 1.062

Graph eigen SVRG NH2010 1× 10−5 1× 10−1 1,000 792.98 1.257
DBLP 1× 10−7 1× 10−2 10,000 9410.34 1.062

Matrix comp SGD MovieLens 5× 10−5 5,000 1663.73 3.004Weighted SGD
Word embed SGD EN-Wiki 1× 10−10 4,250 2571.51 1.653

Table 7.2: Stepsizes and batch sizes for the various learning tasks in our evaluation. We selected
stepsizes that maximize convergence without diverging. We also chose batch sizes to maximize
performance of Cyclades. We further list the average size of connected components and the average
number of connected components in each batch. Typically there are many connected components
with small average size, which leads to good load balancing for Cyclades.

Learning tasks and algorithmic setup

Least squares via SAGA The first problem we consider is least squares:

min
x

1

n
‖Ax− b‖2

2 = min
x

1

n

n∑
i=1

(aTi x− bi)2

which we will solve using the SAGA algorithm [45], an incrimental gradient algorithm with
faster than SGD rates on convex, or strongly convex functions. In SAGA, we initialize
gi = ∇fi(x0) and iterate the following two steps

xk+1 = xk − γ ·
(
∇fsk(xk)− gsk +

1

n

n∑
i=1

gi

)
gsk = ∇fsk(xk).

where fi(x) = (aTi x − bi)2 and ∇fi(x) = 2
(
aTi x− bi

)
ai. In the above iteration it is useful

to observe that the updates can be performed in a sparse and “lazy” way. That is for any



CHAPTER 7. SPARSE STOCHASTIC UPDATES 118

updates where the sampled gradients ∇fsk have non-overlapping support, we can still run
them in parallel, and apply the vector of gradient sums at the end of a batch “lazily”. We
explain the details of the lazy updates in Appendix 7.A. This requires computing the number
τj of skipped gradient sum updates for each lazily updated coordinate j, which may be
negative in Hogwild! due to re-ordering of updates. We thresholded τj when needed in
the Hogwild! implementation, as this produced better convergence for Hogwild!. Unlike
other experiments, we used different stepsizes γ for Cyclades and Hogwild!, as Hogwild!
would often diverge with larger stepsizes. The stepsizes chosen for each were the largest
such that the algorithms did not diverge. We used the DBLP and NH2010 datasets for this
experiment, and set A as the adjacency matrix of each graph. For NH2010, the values of b
were set to population living in the Census Block. For DBLP we used synthetic values: we
set b = Ax̃+ 0.1z̃, where x̃ and z̃ were generated randomly. The SAGA algorithm was run
for up to 500 epochs for each dataset.

Graph eigenvector via SVRG Given an adjacency matrix A, the top eigenvector of
ATA is useful in several applications such as spectral clustering, principle component analysis,
and others. In a recent work, [72] proposes an algorithm for computing the top eigenvector
of ATA by running intermediate SVRG steps to approximate the shift-and-invert iteration.
Specifically, at each step SVRG is used to solve

min
1

2
xT (λI − ATA)x− bTx = min

n∑
i=1

(
1

2
xT
(
λ

n
I − aiaTi

)
x− 1

n
bTx

)
.

According to [72], if we initialize y = x0 and assume ‖ai‖ = 1, we have to iterate the following
updates

xk+1 = xk − γ · n · (∇fsk(xk)−∇fsk(y)) + γ · ∇f(y)

where after every T iterations we update y = xk, and the stochastic gradients are of the form
∇fi(x) =

(
λ
n
I − aiaTi

)
x− 1

n
b.

We apply Cyclades to SVRG with dense linear gradients (see Appendix 7.A) for
parallelizing this problem, which uses lazy updates to avoid dense operations on the entire
model x. This requires computing the number of skipped updates, τj, for each lazily
updated coordinate, which may be negative in Hogwild! due to re-ordering of updates.
In our Hogwild! implementation, we thresholded the bookkeeping variable τj (described
in Appendix 7.A), as we found that this produced faster convergence. The rows of A are
normalized by their `2-norm, so that we may apply the SVRG algorithm of [72] with uniform
sampling. Two graph datasets were used in this experiment. The first, DBLP [78], is an
authorship network consisting of 1.4M authors and 4M publications, with 8.65M edges. The
second, NH2010 [131], is a weighted topological graph of 49 Census Blocks in New Hampshire,
with an edge between adjacent blocks, for a total of 234K edges. We ran SVRG for 50 and
100 epochs for NH2010 and DBLP respectively.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 119

Matrix completion via SGD In the matrix completion problem, we are given a partially
observed n×m matrix M , and wish to factorize it as M ≈ UV where U and V are low rank
matrices with dimensions n× r and r ×m respectively. This may be achieved by optimizing

min
U,V

∑
(i,j)∈Ω

(Mi,j − Ui,·V·,j)2

where Ω is the set of observed entries, which can be approximated by SGD on the observed
samples. The objective can also be regularized as:

min
U,V

∑
(i,j)∈Ω

(Mi,j−Ui,·V·,j)2+
λ

2
(‖U‖2

F+‖V ‖2
F ) = min

U,V

∑
(i,j)∈Ω

(
(Mi,j − Ui,·V·,j)2 +

1

|Ω|
λ

2
(‖U‖2

F + ‖V ‖2
F )

)
.

The regularized objective can be optimized by weighted SGD, which samples (i, j) ∈ Ω and
updates

Ui′,· ←
{

(1− γλ)Ui,· − γ · |Ω| · 2(Ui,·V·,j −Mi,j)(V·,j)
T if i = i′

(1− γλ)Ui′,· otherwise

and analogously for V·,j In our experiments, we chose a rank of r = 100, and ran SGD and
weighted SGD for 200 epochs. We used the MovieLens 10M dataset [63] containing 10M
ratings for 10,000 movies by 72,000 users.

Word embedding via SGD Semantic word embeddings aim to represent the meaning
of a word w via a vector vw ∈ Rr. In a recent work by [9], the authors propose using a
generative model, and solving for the MLE which is equivalent to:

min
{vw},C

∑
w,w′

Aw,w′(log(Aw,w′)− ‖vw + vw′‖2
2 − C)2,

where Aw,w′ is the number of times words w and w′ co-occur within τ words in the corpus.
In our experiments we set τ = 10 following the suggested recipe of the aforementioned paper.
We can approximate the solution to the above problem by SGD: we can repeatedly sample
entries Aw,w′ from A and update the corresponding vectors vw, vw′ . In this case the update is
of the form as:

vw = vw + 4γAw,w′(log(Aw,w′)− ‖vw + vw′‖2
2 − C)(vw + vw′)

and identically for vw′ Then, at the end of each full pass over the data, we update the constant
C by its locally optimal value, which can be calculated in closed form:

C ←
∑

w,w′ Aw,w′(log(Aw,w′)− ‖vw + vw′‖2
2)∑

w,w′ Aw,w′
.

In our experiments, we optimized for a word embedding of dimension r = 100, and tested on
a 80MB subset of the English Wikipedia dump available at [100]. The dataset contains 213K
words and A has 20M non-zero entries. For our experiments, we run SGD for 200 epochs.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 120

Speedup and Convergence Results

In this subsection, we present the bulk of our experimental findings. Our extended and
complete set of results can be found in Appendix 7.F.

Cyclades, 1 threads

HogWild!, 1 threads

Cyclades, 8 threads

HogWild!, 8 threads

Cyclades, 18 threads

HogWild!, 18 threads

102

Time/s

106

O
b
je

ct
iv

e
 V

a
lu

e

(a) Least Squares,
DBLP, SAGA

100

Time/s

100

102

104

106

108

O
b
je

ct
iv

e
 V

a
lu

e

(b) Graph Eig.,
NH2010, SVRG

102

Time/s

100

O
b
je

ct
iv

e
 V

a
lu

e

(c) Mat. Comp., 10M,
`2-SGD

100 102

Time/s

102

104

O
b
je

ct
iv

e
 V

a
lu

e

(d) Word2Vec, EN-
Wiki, SGD

Figure 7.3: Convergence of Cyclades and Hogwild! in terms of overall running time with
1, 8, 16, 18 threads. Cyclades is initially slower, but ultimately reaches convergence faster
than Hogwild!.

1 2 4 6 8 10 12 14 16 18
Number of threads

1

2

3

4

5

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(a) Least Squares,
DBLP, SAGA

1 2 4 6 8 10 12 14 16 18
Number of threads

0.5

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(b) Graph Eig.,
NH2010, SVRG

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(c) Mat. Comp., 10M,
`2-SGD

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

12

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(d) Word2Vec, EN-
Wiki, SGD

Figure 7.4: Speedup of Cyclades and Hogwild! versus number of threads. On multiple
threads, Cyclades always reaches ε objective faster than Hogwild!. In some cases
Cyclades is faster than Hogwild! even on 1 thread, due to better cache locality. In Figs.
7.4a and 7.4b, Cyclades exhibits significant gains, since Hogwild! suffers from asynchrony
noise for which we had to use comparatively smaller stepsizes to prevent divergence.

Least squares When running SAGA for least squares, we found that Hogwild! was
divergent with the large stepsizes that we were using for Cyclades (Figure 7.6). Thus, in
the multi-thread setting, we were only able to use smaller stepsizes for Hogwild!, which
resulted in slower convergence than Cyclades, as seen in Figure 7.3a. The effects of a
smaller stepsize for Hogwild! are also manisfested in terms of speedups in Figure 7.4a,
since Hogwild! takes a longer time to converge to an ε objective value.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 121

Graph eigenvector The convergence of SVRG for graph eigenvectors is shown in Figure
7.3b. Cyclades starts off slower than Hogwild!, but always produces results equivalent
to the convergence on a single thread. Conversely, Hogwild! does not exhibit the same
behavior on multiple threads as it does serially—in fact, the error due to asynchrony causes
Hogwild! to converge slower on multiple threads. This effect is clearly seen on Figs. 7.4b,
where Hogwild! fails to converge faster than the serial counterpart, and Cyclades attains
a significantly better speedup on 16 threads.

Matrix completion and word embeddings Figures 7.3c and 7.3d show the convergence
for the matrix completion and word embeddings problems. Cyclades is initially slower
than Hogwild! due to the overhead of computing connected components. However, due
to better cache locality and convergence properties, Cyclades is able to reach a lower
objective value in less time than Hogwild!. In fact, we observe that Cyclades is faster
than Hogwild! when both are run serially, demonstrating that the gains from (temporal)
cache locality outweigh the coordination overhead of Cyclades. These results are reflected
in the speedups of Cyclades and Hogwild! (Figs. 7.4c and 7.4d). Cyclades consistently
achieves a better speedup (9− 10× on 18 threads) compared to that of Hogwild! (7− 9×
on 18 threads).

Runtime Breakdown

Partitioning and allocation costs The cost of partitioning and allocation for Cyclades
is given in Table 7.3, relatively to the time that Hogwild! takes to complete one epoch
of stochastic updates (i.e., a single pass over the dataset). For matrix completion and the
graph eigenvector problem, on 18 threads, Cyclades takes the equivalent of 4-6 epochs of
Hogwild! to complete its partitioning, as the problem is either very sparse or the updates
are expensive. For solving least squares using SAGA and word embeddings using SGD, the
cost of partitioning is equivalent to 11-14 epochs of Hogwild! on 18 threads. However, we
point out that partitioning and allocation is a one-time cost which becomes cheaper with
more stochastic update epochs. Additionally, we note that this cost can become amortized
quickly due to the extra experiments one has to run for hyperparameter tuning, since the
graph partitioning is identical across different stepsizes one might want to test.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 122

# Least Squares Least Squares Graph Eig. Graph Eig. Mat. Comp. Mat. Comp. Word2Vec
threads SAGA SAGA SVRG SVRG SGD Weighted SGD SGD

NH2010 DBLP NH2010 DBLP MovieLens MovieLens EN-Wiki
1 1.9155 2.2245 0.9039 0.9862 0.7567 0.5507 0.5299
4 4.1461 4.6099 1.6244 2.8327 1.8832 1.4509 1.1509
8 6.1157 7.6151 2.0694 4.3836 3.2306 2.5697 1.9372
16 11.7033 13.1351 3.2559 6.2161 5.5284 4.6015 3.5561
18 11.5580 14.1792 4.7639 6.7627 6.1663 5.5270 3.9362

Table 7.3: Cost of partitioning and allocation. The table shows the ratio of the time that Cyclades
consumes for partition and allocation over the time that Hogwild! takes for 1 full pass over the
dataset. On 18 threads, Cyclades takes between 4-14 Hogwild! epochs to perform partitioning.
Note however, this computational effort is only required once per dataset.

Stochastic updates running time When performing stochastic updates, Cyclades has
better cache locality and coherence, but requires synchronization after each batch. Table 7.4
shows the time for each method to complete a single pass over the dataset, only with respect to
stochastic updates (i.e., here we factor out the partitioning time). In most cases, Cyclades
is faster than Hogwild!. In the cases where Cyclades is not faster, the overheads of
synchronizing outweigh the gains from better cache locality and coherency. However, in
some of these cases, synchronization can help by preventing errors due to asynchrony that
lead to worse convergence, thus allowing Cyclades to use larger stepsizes and maximize
convergence speed.

# Mat. Comp. Mat. Comp. Word2Vec Graph Eig. Graph Eig. Least Squares Least Squares
threads SGD `2-SGD SGD SVRG SVRG SAGA SAGA

MovieLens MovieLens EN-Wiki NH2010 DBLP NH2010 DBLP
Cyc Hog Cyc Hog Cyc Hog Cyc Hog Cyc Hog Cyc Hog Cyc Hog

1 2.76 2.87 3.69 3.84 9.85 10.25 0.07 0.07 11.54 11.50 0.04 0.04 5.01 5.25
4 1.00 1.17 1.27 1.51 2.98 3.35 0.04 0.04 4.60 4.81 0.03 0.03 1.93 1.96
8 0.57 0.68 0.71 0.86 1.61 1.89 0.03 0.03 2.86 3.03 0.01 0.01 1.04 1.03
16 0.35 0.40 0.42 0.48 0.93 1.11 0.02 0.02 2.03 2.15 0.01 0.01 0.59 0.55
18 0.32 0.36 0.37 0.40 0.86 1.03 0.02 0.02 1.92 2.01 0.01 0.01 0.52 0.51

Table 7.4: Time, in seconds, to complete one epoch (i.e. full pass of stochastic updates over the
data) by Cyclades and Hogwild!. Lower times are highlighted in boldface. Cyclades is usually
faster than Hogwild!, due to its better cache locality and coherence properties.

Diminishing stepsizes

In the previous experiments we used constant stepsizes. Here, we investigate the behavior
of Cyclades and Hogwild! in the regime where we decrease the stepsize after each
epoch. In particular, we ran the matrix completion experiments with SGD (with and without
regularization), where we multiplicatively updated the stepsize by 0.95 after each epoch.
The convergence and speedup plots are given in Figure 7.5. Cyclades is able to achieve a
speedup of up to 6− 7× on 16− 18 threads. On the other hand, Hogwild! is performing



CHAPTER 7. SPARSE STOCHASTIC UPDATES 123

worse comparatively to its performance with constant stepsizes (Figure 7.4c). The difference
is more significant on regularized SGD, where we have to perform lazy updates (Appendix
7.A), and Hogwild! fails to achieve the same optimum as Cyclades with multiple threads.
Thus, on 18 threads, Hogwild! obtains a maximum speedup of 3×, whereas Cyclades
attains a speedup of 6.5×.

Cyclades, 1 threads

HogWild!, 1 threads

Cyclades, 8 threads

HogWild!, 8 threads

Cyclades, 18 threads

HogWild!, 18 threads

102

Time/s

100

0.6

0.7

0.8

0.9

O
b
je

ct
iv

e
 V

a
lu

e

(a) Convergence, SGD

102

Time/s

100

0.7

0.8

0.9

O
b
je

ct
iv

e
 V

a
lu

e

(b) Convergence, `2-SGD

1 2 4 6 8 10 12 14 16 18
Number of threads

1

2

3

4

5

6

7

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(c) Speedup, SGD

1 2 4 6 8 10 12 14 16 18
Number of threads

1

2

3

4

5

6

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(d) Speedup, `2-SGD

Figure 7.5: Convergence and speedups for SGD and weighted SGD with diminishing stepsizes
for the matrix completion on the MovieLens dataset. In this case, Cyclades outperforms
Hogwild! by achieving up to 6-7x speedup, when Hogwild! achieves at most 5x speedup
for 16-18 threads. For the weighted SGD algorithm, we used lazy updates (Appendix 7.A),
in which case Hogwild! on multiple threads gets to a worse optimum.

Binary Classification and Dense Coordinates

Filtering # filtered # remaining
% features features

0.048% 1,555 3,228,887
0.047% 1,535 3,228,907
0.034% 1,120 3,229,322
0.028% 915 3,229,527
0.016% 548 3,229,894

Figure 7.8: Filtering of features in URL
dataset. with a total of 3,230,442 features
before filtering. The maximum percentage
of features filtered is less than 0.05%.

In addition to the above experiments, here we
explore settings where Cyclades is expected to
perform poorly due to the inherent density of up-
dates (i.e., for data sets with dense features). In
particular, we test Cyclades on a classification
problem for text based data, where a few features
appear in most data points. Specifically, we run
classification for the URL dataset [99] contains
∼ 2.4M URLs, labeled as either benign or mali-
cious, and 3.2M features, including bag-of-words
representation of tokens in the URL.

For this classification task, we used a logis-
tic regression model, trained using SGD. By its
power-law nature, the dataset consists of a small

number of extremely dense features which occur in nearly all updates. Since Cyclades
explicitly avoids all conflicts, for these dense cases it will have a schedule of SGD updates
that leads to poor speedups. However, we observe that most conflicts are caused by a small
percentage of the densest features. If these features are removed from the dataset, Cyclades



CHAPTER 7. SPARSE STOCHASTIC UPDATES 124

Overall running time / s

106

108

1010

1012

1014

1016

O
b
je

ct
iv

e
 v

a
lu

e

HogWild! γ=2e-05

HogWild! γ=1e-05

Cyclades γ=0.0003

Figure 7.6: Convergence of Cyclades
and Hogwild! on least squares using
SAGA, with 16 threads, on DBLP dataset.
Hogwild! diverges with γ > 10−5; thus,
we were only able to use a smaller step
size γ = 10−5 for Hogwild! on multiple
threads. For Hogwild! on 1 thread (and
Cyclades on any number of threads), we
could use a larger stepsize of γ = 3×10−4.

0.02% 0.04%
Filtering Percentage

1

2

4

8

16

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

Figure 7.7: Speedups of Cyclades and
Hogwild! on 16 threads, for different per-
centage of dense features filtered. When
only a very small number of features are
filtered, Cyclades is almost serial. How-
ever, as we increase the percentage from
0.016% to 0.048%, the speedup of Cy-
clades improves and almost catches up
with Hogwild!.

is able to obtain much better speedups. To that end, we ran Cyclades and Hogwild!
after filtering the densest 0.016% to 0.048% of features. The number of features that are
filtered are shown in Table 7.8.

The speedups that are obtained by Cyclades and Hogwild! on 16 threads for different
filtering percentages are shown in Figure 7.7. Full results of the experiment are presented
in Figure 7.9 and in Appendix 7.F. Cyclades fails to get much speedup when nearly all
the features are used, however, as more dense features are removed, Cyclades obtains a
better speedup, almost equalling Hogwild!’s speedup when 0.048% of the densest features
are filtered.

7.5 Additional Related work
Parallel stochastic optimization has been studied under various guises, with literature stretch-
ing back at least to the late 60s [36]. The end of Moore’s Law coupled with recent advances
in parallel and distributed computing technologies have triggered renewed interest [144, 145,
59, 2, 120, 71] in the theory and practice of this field. Much of this contemporary work is
built upon the foundational work of Bertsekas, Tsitsiklis et al. [18, 130].

[116] introduced Hogwild!, a completely lock-free and asynchronous parallel stochastic
gradient descent (SGD), in shared-memory multicore systems. Inspired by Hogwild!’s



CHAPTER 7. SPARSE STOCHASTIC UPDATES 125

102

Time/s

0.2

0.3

0.4

0.5

0.6

0.7

O
b
je

ct
iv

e
 V

a
lu

e

(a) Convergence, 0.016%

102

Time/s

0.3

0.4

0.5

0.6

0.7

O
b
je

ct
iv

e
 V

a
lu

e
(b) Convergence, 0.034%

102

Time/s

0.3

0.4

0.5

0.6

0.7

O
b
je

ct
iv

e
 V

a
lu

e

(c) Convergence, 0.047%

102

Time/s

0.3

0.4

0.5

0.6

0.7

O
b
je

ct
iv

e
 V

a
lu

e

(d) Convergence, 0.048%

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(e) Speedup, 0.016%

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(f) Speedup, 0.034%

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(g) Speedup, 0.047%

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(h) Speedup, 0.048%

Figure 7.9: Convergence and speedups of Cyclades and Hogwild! on 1, 4, 8, 16, 18
threads, for different percentage of dense features filtered.

success at achieving nearly linear speedups for a variety of machine learning tasks, several
authors developed other lock-free and asynchronous optimization algorithms, such as parallel
stochastic coordinate descent [94, 92]. Additional work in first order optimization and
beyond [50, 133, 66, 67, 56], extending to parallel iterative linear solvers [93, 10], has further
demonstrated that linear speedups are generically possible in the asynchronous shared-
memory setting. Moreover, [118] proposes an analysis for asynchronous parallel, but dense,
SVRG, under assumptions similar to those found in [116]. The authors of [41] offer a new
analysis for the “coordinate-wise” update version of Hogwild! using martingales, with
similar assumptions to [116], that however can be applied to some non-convex problems.
Furthermore, [90] presents an analysis for stochastic gradient methods on smooth, potentially
nonconvex functions. Finally, [113] introduces a new framework for analyzing coordinate-wise
fixed point stochastic iterations.

Recently, [101] provided a new analysis for asynchronous stochastic optimization by
interpreting the effects of asynchrony as noise in the iterates. This perspective of asycnhrony
as noise in the iterates was used in [110] to analyze a combinatorial graph clustering algorithm.

Parallel optimization algorithms have also been developed for specific subclasses of
problems, including L1-regularized loss minimization [28] and matrix factorization [115].

Calvin [129] and Bohm [54] are general purpose deterministic databases which execute
transactions in batches. Both Calvin and Bohm assign an ordering to transactions prior to
their execution – the ‘determinism’ refers to this agreed ordering across processors, which is
used to minimize contention during the execution phase. While both databases are serializable,
the user has little or no control over the ordering which the transactions are processed. In
contrast, Cyclades guarantees that transactions (or stochastic updates) respect the user-
given ordering. This is of particular importance for many stochastic update algorithms which



CHAPTER 7. SPARSE STOCHASTIC UPDATES 126

require that the updates are executed with a uniformly random permutation.
Additionally, Calvin, Bohm, and Cyclades differ significantly in their execution method-

ologies. Calvin replicates transactions to be executed at every replica where elements of the
write set are found. Bohm partitions transactions across processors, but also allows processors
to process other transactions that are blocking their execution. Both approaches result in
possible redundant processing and could lead to poor cache coherency3. Cyclades partitions
both transactions and memory when performing the stochastic updates, and hence has no
redundant work nor cache contention. In exchange, Cyclades may suffer from poorer load
balance in higher contention workloads to maintain this better partitioning. As an important
consequence of our partitioning choice, we are able to provide theoretical guarantees on
Cyclades’s speedup, which are not available in either [129] or [54].

7.6 Discussions
We presented Cyclades, a general framework for lock-free parallelization of stochastic
optimization algorithms, while maintaining serializability and determinism. Our framework
can be used to parallelize a large family of stochastic updates algorithms in a conflict-free
manner, thereby ensuring the parallelized algorithm produces the same result as its serial
counterpart. Theoretical properties, such as convergence rates, are therefore preserved by the
Cyclades-parallelized algorithm, and we provide a single unified theoretical analysis that
guarantees near linear speedups.

By eliminating conflicts across processors within each batch of updates, Cyclades is
able to avoid all asynchrony errors and conflicts, and leads to better cache locality and cache
coherence than Hogwild!. These features of Cyclades translate to near linear speedups
in practice, where it can outperform Hogwild!-type of implementations by up to a factor of
5×, in terms of speedups

In the future, we intend to explore hybrids of Cyclades with Hogwild!, pushing the
boundaries of what is possible in a shared-memory setting. We are also considering solutions
for scaling out in a distributed setting, where the cost of communication is significantly
higher.

7.A Algorithms in the Stochastic Updates family
Here we show that several algorithms belong to the Stochastic Updates (SU) family. These
include the well-known stochastic gradient descent, iterative linear solvers, stochastic PCA
and others, as well as combinations of weight decay updates, variance reduction methods,
and more. Interestingly, even some combinatorial graph algorithms fit under the SU umbrella,

3 Bohm optimizes for cache coherency during the concurrency control phase, when the database is
partitioned across processors, but not during the execution phase, when work (but not data) is partitioned.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 127

such as the maximal independent set, greedy correlation clustering, and others. We visit
some of these algorithms below.

Stochastic Gradient Descent (SGD) Given n functions f1, . . . , fn, one often wishes to
minimize the average of these functions:

min
x

1

n

n∑
i=1

fi(x).

A popular algorithm to do so —even in the case of non-convex losses— is the stochastic
gradient descent:

xk+1 = xk − γk · ∇fik(xk).
In this case, the distribution D for each sample ik is usually a with or without replacement
uniform sampling among the n functions. For this algorithm the conflict graph between the
n possible different updates is completely determined by the support of the gradient vector
∇fik(xk).

Weight decay and regularization Similar to SGD, in some cases we might wish to
regularize the objective with an `2 term and solve instead the following optimization:

min
x

1

n

n∑
i=1

fi(x) +
η

2
||x||22.

In this case, the update is a weighted version of the “non-regularized" SGD:

xk+1 = (1− γkη) · xk − γk · ∇fik(xk).

The above stochastic update algorithm can be also be written in the SU language. Although
here for each single update the entire model has to be updated with the new weights, we
show below that with a simple technique it can be equivalently expressed so that each update
is sparse and the support is again determined by the gradient vector ∇fik(xk).

First order techniques with variance reduction Variance reduction is a technique
that is usually employed for (strongly) convex problems, where we wish to minimize the
variance of SGD in order to achieve better rates. A popular way to do variance reduction is
either through SVRG or SAGA, where a “memory” factor is used in the computation of each
gradient update rule. For SAGA we have

xk+1 = xk − γ ·
(
∇fsk(xk)− gsk +

1

n

n∑
i=1

gi

)
gsk = ∇fsk(xk).



CHAPTER 7. SPARSE STOCHASTIC UPDATES 128

For SVRG the update rule is

xk+1 = xk − γk · (∇fik(xk)−∇fik(y) + g)

where g = ∇f(y), and y is updated every T iterations of the previous form to be equal to the
last xk iterate. Again, although at first sight the above updates seem to be dense, we show
below how we can equivalently rewrite them so that the update-conflict graph is completely
determined by the support of the gradient vector ∇fik(xk).

Combinatorial graph algorithms Interestingly, even some combinatorial graph problems
can be phrased in the SU language: greedy correlation clustering (The Pivot Algorithm [5])
and the maximal independent set (these are in fact identical algorithms). In the case of
correlation clustering, we are given a graph G vertices joined with either positive or negative
edges. Here the objective is to create a number of clusters so that the number of vertex
pairs that are sharing negative edges within clusters, plus the number of pairs that are
sharing positive edges across clusters, is minimized. For these cases, there exists a very simple
algorithm that obtains a 3 approximation for the above objective: randomly sample a vertex,
create a cluster with that vertex and its neighborhood, remove that cluster from the graph,
and repeat. The above procedure is amenable to the following update rule: Can we put some
time indices below?

[xk+1]N(v) = min([xk]N(v), v)

where x is intialized to ∞, and at each iteration we sample v uniformly among those with
label xv =∞, and N(v) denotes the neighborhood of a vertex in G. Interestingly, we can
directly apply the same guarantees of the main Cyclades theorem here. An optimized
implementation of Cyclades for correlation clustering was developed in [110].

To reiterate, all of the above algorithms, various combinations of them, and further
extensions can be written in the language of SU, as presented in Algorithm 7.2.

Lazy Updates

For the cases of weight decay/regularization, and variance reduction, we can reinterpret their
inherently dense updates in an equivalent sparse form. Let us consider the following generic
form of updates:

xj ← (1− µj)xj − νj + hij(xSi) (7.3)

where hij(xSi) = 0 for all j 6∈ Si. Each stochastic update therefore reads from the set Si but
writes to every coordinate. However, it is possible to make updates lazily only when they
are required. Observe that if τj updates are made, each of which have hij(xSi) = 0, then we



CHAPTER 7. SPARSE STOCHASTIC UPDATES 129

could rewrite these τj updates in closed form as

xj = (1− µj)τjxj − νj
τj∑
k=1

(1− µj)k (7.4)

= (1− µj)τjxj −
νj
µj

(1− µj) (1− (1− µj)τj) . (7.5)

This allows the stochastic updates to only write to coordinates in Si and defer writes to other
coordinates. This procedure is described in Algorithm 7.3. With Cyclades it is easy to
keep track of τj, since we know the deterministic order of each stochastic update. On the
other hand, it is unclear how a Hogwild! approach would behave with additional noise in
τj due to asynchrony. In fact, Hogwild! could possibly result in negative values of τj, and
in practice, we find that it is often useful to threshold τj by max(0, τj).

Algorithm 7.3: Lazy Stochastic Updates pseudo-algorithm
Input: x; f1, . . . , fn; u1, . . . , un; g1, . . . , gn; D; T .

1 Initialize ρ(j) = 0.;
2 for t = 1 : T do
3 sample i ∼ D;
4 xSi = read coordinates Si from x;
5 for j ∈ Si do
6 τj = t− ρ(j)− 1.;
7 xj ← (1− µj)τjxj − νj

∑τj
k=1(1− µj)k.;

8 xj ← (1− µj)xj − νj + hij(xSi).;
9 ρ(j)← t.

Output: x

Weight decay and regularization The weighted decay SGD update is a special case of
Eq 7.3, with µj = ηγ and νj = 0. Eq 7.5 becomes xj ← (1− ηγ)τjxj.

Variance reduction with sparse gradients Suppose ∇fi(x) is sparse, such that
[∇fi(x)]j = 0 for all x and j 6∈ Si. Then we can perform SVRG and SAGA using lazy
updates, with µj = 0. Just-in-time updates for SAG (a similar algorithm to SAGA) were
introduced in [121]. For SAGA, the update Eq 7.4 becomes

xj ← xj − γτjgj

where gj =
[

1
n

∑n
i=1 yk,i

]
j
is the jth coordinate of the average gradient. For SVRG, we instead

use gj = [∇f(y)]j.

SVRG with dense linear gradients Suppose instead that the gradient is dense, but
has linear form [∇fi(x)]j = λjxj − κj + h̃ij(xSi), where h̃ij(xSi) = 0 for j 6∈ Si. The SVRG



CHAPTER 7. SPARSE STOCHASTIC UPDATES 130

stochastic update on the jth coordinate is then

xj ← xj − γ
(
λjxj − κj + h̃ij(xSi)− λjyj + κj − h̃ij(ySi) + gj

)
= (1− γλj)xj − γgj − γ

(
h̃ij(xSi)− h̃ij(ySi)

)
where gj = [∇f(y)]j as above. This fits into our framework with µj = γλj, νj = γgj, and
hij(xSi) = −γ

(
h̃ij(xSi)− h̃ij(ySi)

)
.

7.B With and Without Replacement Proofs
In this Appendix, we show how the sampling and shattering Theorem 7.2 can be restated for
sampling with, or without replacement to establish Theorem 7.3.

Let us define three sequences of binary random variables {Xi}ni=1, {Yi}ni=1, and {Zi}ni=1.
{Xi}ni=1 consists of n i.i.d. Bernoulli random variables, each with probability p. In the second
sequence {Yi}ni=1, a random subset of B random variables is set to 1 without replacement.
Finally, in the third sequence {Zi}ni=1, we draw B variables with replacement, and we set
them to 1. Here, B is integer that satisfies the following bounds

(n+ 1) · p− 1 ≤ B < (n+ 1) · p.

Now, consider any function f , that has a “monotonicity" property:

f(x1, . . . , xi, . . . , xn) ≥ f(x1, . . . , 0, . . . , xn), for all i = 1, . . . , n.

Let us now define

ρX = Pr (f(X1, . . . , Xn) > C)

ρY = Pr (f(Y1, . . . , Yn) > C)

ρZ = Pr (f(Z1, . . . , Zn) > C)

for some number C, and let us further assume that we have an upper bound on the above
probability

ρX ≤ δ.

Our goal is to bound ρY and ρZ . By expanding ρX using the law of total probability we have

ρX =
n∑
b=0

Pr

(
f(X1, . . . , Xn) > C

∣∣∣∣∣
n∑
i=1

Xi = b

)
· Pr

(
n∑
i=1

Xi = b

)
=

n∑
b=0

qb · Pr

(
n∑
i=1

Xi = b

)

where qb = Pr (f(X1, . . . , Xn) > C |∑n
i=1Xi = b), denotes the probability that

f(X1, . . . , Xn) > C given that a uniformly random subset of b variables was set to



CHAPTER 7. SPARSE STOCHASTIC UPDATES 131

1. Moreover, we have

ρY =
n∑
b=0

Pr

(
f(Y1, . . . , Yn) > C

∣∣∣∣∣
n∑
i=1

Yi = b

)
· Pr

(
n∑
i=1

Yi = b

)
(i)
=

n∑
b=0

qb · Pr

(
n∑
i=1

Yi = b

)
(ii)
= qB · 1 (7.6)

where (i) comes form the fact that Pr (f(Y1, . . . , Yn) > C |∑n
i=1 Yi = b) is the same as the

probability that that f(X1, . . . , Xn) > C given that a uniformly random subset of b variables
where set to 1, and (ii) comes from the fact that since we sample without replacement in Y ,
we have that

∑n
i Yi = B always.

In the expansion of ρX , we can keep the b = B term, and lower bound the probability to
obtain:

ρX =
n∑
b=0

qb · Pr

(
n∑
i=1

Xi = b

)

≥ qB · Pr

(
n∑
i=1

Xi = B

)
= ρY · Pr

(
n∑
i=1

Xi = B

)
(7.7)

since all terms in the sum are non-negative numbers. Moreover, sinceXis are Bernoulli random
variables, their sum

∑n
i=1Xi is Binomially distributed with parameters n and p. We know that

the maximum of the Binomial pmf with parameters n and p occurs at Pr (
∑

iXi = B) where
B is the integer that satisfies the upper bound mentioned above: (n+1)·p−1 ≤ B < (n+1)·p.
Furthermore, the maximum value of the Binomial pmf, with parameters n and p, cannot be
less than the corresponding probability of a uniform element:

Pr

(
n∑
i=1

Xi = B

)
≥ 1

n
. (7.8)

If we combine (7.7) and (7.8) we get

ρX ≥ ρY /n⇔ ρY ≤ n · δ. (7.9)

The above establish a relation between the without replacement sampling sequence {Yi}ni=1,
and the i.i.d. uniform sampling sequence {Xi}ni=1.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 132

Then, for the last sequence {Zi}ni=1 we have

ρZ =
n∑
b=0

Pr

(
f(Z1, . . . , Zn) > C

∣∣∣∣∣
n∑
i=1

Zi = b

)
· Pr

(
n∑
i=1

Zi = b

)
(i)
=

B∑
b=1

qb · Pr

(
n∑
i=1

Zi = b

)
(7.10)

(ii)

≤
(

max
1≤b≤B

qb

)
·

B∑
b=1

Pr

(
n∑
i=1

Zi = b

)
(iii)
= qB = ρY ≤ n · δ,

where (i) comes from the fact that Pr (
∑n

i=1 Zi = b) is zero for b = 0 and b > B, (ii) comes
by applying Hölder’s Inequality, and (iii) holds since f is assumed to have the monotonicity
property:

f(x1, . . . , xi, . . . , xn) ≥ f(x1, . . . , 0, . . . , xn),

for any sequence of variables x1, . . . , xn. Hence, for any b1 ≥ b2

Pr

(
f(Z1, . . . , Zn) > C

∣∣∣∣∣
n∑
i=1

Zi = b1

)
≥ Pr

(
f(Z1, . . . , Zn) > C

∣∣∣∣∣
n∑
i=1

Zi = b2

)
. (7.11)

In conclusion, we have upper bounded ρZ and ρY by

ρZ ≤ ρY ≤ n · ρX ≤ n · δ. (7.12)

Application to Theorem 7.3: For our purposes, the above bound Eq. (7.12) allows us
to assert Theorem 7.3 for with replacement, without replacement, and i.i.d. sampling, with
different constants. Specifically, for any graph G, the size of the largest connected component
in the sampled subgraph can be expressed as a function fG(x1, . . . , xn), where each xi is an
indicator for whether the ith vertex was chosen in the sampling process. Note that fG is a
monotone function, i.e., fG(x1, . . . , xi, . . . , xn) ≥ fG(x1, . . . , 0, . . . , xn) since adding vertices to
the sampled subgraph may only increase (or keep constant) the size of the largest connected
component. We note that the high probability statement of Theorem 7.2, can be restated
so that the constants in front of the size of the connected components accomodate for a
statement that is true with probability 1− 1/nζ , for any constant ζ > 1. This is required
to take care of the extra n factor that appears in the bound of Eq. 7.12, and to obtain
Theorem 7.3.

7.C Parallel Connected Components Computation
As we will see in the following, the cost of computing CCs in parallel will depend on the
number of cores so that uniform allocation across them is possible, and the number of



CHAPTER 7. SPARSE STOCHASTIC UPDATES 133

edges that are induced by the sampled updates on the bipartite update-variable graph Gu

is bounded. As a reminder we denote as Gi
u the bipartite subgraphs of the update-variable

graph Gu, that is induced by the sampled updates of the i-th batch. Let us denote as Ei
u the

number of edges in Gi
u.

Following the sampling recipe of our main text (i.e., sampling each update per batch
uniformly and with replacement), let us assume here that we are sampling c · n updates
in total, for some constant c ≥ 1. Assuming that the size of each batch is B = (1 − ε) n

∆
,

the total number of sampled batches will be nb = c
1−ε∆. The total number of edges in the

induced sampled bipartite graphs is a random variable that we denote as

Z =

nb∑
i=1

Ei
u.

Observe that EZ = c · Eu. Using a simple Hoeffding concentration bound we can see that

Pr {|Z − cEu| > (1 + δ)c · Eu} ≤ 2e
− 2c2·(1+δ)2E2

u
c·n∆2

L ≤ 2e
−2c·(1+δ)2·n∆

2
L

∆2
L

where ∆L is the max left degree of the bipartite graph Gu and ∆L is its average left degree.
Now assuming that

∆L

∆L
≤ √n

we obtain
Pr {|Z − cEu| > log n · c · Eu} ≤ 2e−c·log2 n.

Hence, we get the following simple lemma:

Lemma 7.7. Let ∆L
∆L
≤ √n. Then, the total number of edges Z =

∑nb
i=1E

i
u across the nb =

c
1−ε∆ sampled subgraphs G1

u, . . . , G
nb
u is less than O(Eu log n) with probability 1− n−Ω(logn).

Now that we have a bound on the number of edges in the sampled subgraphs, we can
derive the complexity bounds for computing CCs in parallel. We will break the discussion
into the not-too-many- and many-core regime.

The not-too-many cores regime. In this case, we sample nb subgraphs, allocate them
across P cores, and let each core compute CCs on its allocated subgraphs using BFS or DFS.
Since each batch is of size B = (1− ε) n

∆
, we need nb = bc · n/Bc = c · b ∆

1−εc batches to cover
c · n updates in total. If the number of cores is

P = O

(
∆L

∆L
·∆
)
,

then the max cost of a single CC computation on a subgraph (which is O(B∆L)) is smaller
than the average cost across P cores, which is O(Z/P ). This implies that a uniform allocation
is possible, so that P cores can share the computational effort of computing CCs. Hence, we
can get the following lemma:



CHAPTER 7. SPARSE STOCHASTIC UPDATES 134

Lemma 7.8. Let the number of cores be P = O
(

∆L
∆L
·∆
)
, and let us sample O(∆) batches,

where each batch is of size O( n
∆

). Then, each core will not spend more than O
(
Eu logn

P

)
time

in computing CCs, with high probability.

The many-cores regime. When P >> ∆L
∆L

the uniform balancing of the above method
will break, leaving no room for further parallelization. In that case, we can use a very simple
“push-label” CC algorithm, whose cost on P cores and arbitrary graphs with E edges and
max degree ∆ is O(max{E

P
,∆} · Cmax), where Cmax is the size of the longest-shortest path,

or the diameter of the graph [75]. This parallel CC algorithm is given below, where each core
is allocated with a number of vertices

Algorithm 7.4: Cyclades push-label
1 Initialize shared cc(v) variables to vertexIDs;
2 for i = 1 : length of longest shortest path do
3 for v in the allocated vertex set do
4 for all u that are neighbors of v do
5 Read cc(v) from shared memory;
6 if cc(u) > cc(v) then
7 Update shared cc(u)← min(cc(u), cc(v))

The above simple algorithm can be significantly slow for graphs where the longest-shortest
path is large. Observe, that in the sampled subgraphs Gi

u the size of the shortest-longest
path is always bounded by the size of the largest connected component. By Theorem 7.3
that is bounded by O

(
logn
ε2

)
. Hence, we obtain the following lemma.

Lemma 7.9. For any number of cores P = O( n
∆·∆L

), computing the connected component of

a single sampled graph Gi
u can be performed in time O(E

i
u logn
P

), with high probability.

Since, we are interested in the overall running time for nb batches of the CC algorithm,
we can see that the above lemma simply boils down to the following:

Corollary 7.10. For any number of cores P = O( n
∆·∆L

), computing the connected component
for all sampled graph G1

u, . . . , G
nb
u can be performed in time O(E log2 n

P
).

In practice it seems to be that parallelizing the CC computation using the not-too-many
core regime policy is significantly more scalable.

7.D Allocating the Conflict Groups
After we have sampled a single batch (i.e., a subgraph Gi

u), and computed the CCs for it, we
have to allocate the connected components of that sampled subgraph across cores. Observe



CHAPTER 7. SPARSE STOCHASTIC UPDATES 135

that each connected component will contain at most log n updates, each ordered according to
the a serial predetermined order. Once a core has been assigned all the CCs, it will process
all the updates included in the CCs according to the order that each update has been labeled
with.

Now assuming that the cost of the i-th update is wi, the cost of a single connected
component C will be wC =

∑
i∈C wi. We can now allocate the CCs accross cores so that the

maximum core load is minimized, using the following 4/3-approximation algorithm (i.e., an
allocation with max load that is at most 4/3 times the maximum between the max weight,
and the sum of weights divided by P ):

Algorithm 7.5: Greedy allocation
Input: {w1, . . . , wm} % weights to be allocated

1 b1 = 0, . . . , bP = 0 % empty buckets;
2 w = sorted stack of the weights (descending order);
3 for i = 1 : m do
4 w = pop(w);
5 add w to bucket bi with least sum of weights;

To proceed with characterizing the maximum load among the P cores, we assume that
the cost of a single update Ui is proportional to the out-degree of that update —according to
the update-variable graph Gu— times a constant cost which we shall refer to as κ. Hence,
wi = O(dL,i · κ), where dL,i is the degree of the i-th left vertex of Gu.

Observe that the total cost of computing the updates in a single sampled subgraph Gi
u is

proportional to O(Ei
u ·κ). Moreover, observe that the maximum weight among all CCs cannot

be more than O(∆L log nκ) where ∆L is the max left degree of the bipartite update-variable
graph Gu.

Lemma 7.11. We can allocate CCs such that the maximum load among cores is
O
(

max
{
Eiu
P
,∆L log n

}
· κ
)
, with high probability, where κ is the per edge cost for computing

one of the n updates defined on Gu.

If P = O
(

n
∆·∆L

)
then the average weight will be larger than the maximum divided by a

log n factor, and a near-uniform allocation of CCs according to their weights possible. Since,
we are interested in the overall running time for nb batches, we can see that the above lemma
simply boils down to the following:

Corollary 7.12. For any number of cores P = O( n
∆·∆L

), computing the stochastic updates
of the allocated connected component for all sampled graphs (i.e., batches) G1

u, . . . , G
nb
u can be

performed in time O(E log2 n
P
· κ).



CHAPTER 7. SPARSE STOCHASTIC UPDATES 136

7.E Robustness against High-degree Outliers
Here, we discuss how Cyclades can guarantee nearly linear speedups when there is a
sublinear O(nδ) number of high-conflict updates, as long as the remaining updates have small
degree.

Assume that our conflict graph Gc defined between the n update functions has a very high
maximum degree ∆o. However, consider the case where there are only O(nδ) nodes that are
of that high-degree, while the rest of the vertices have degree much smaller (on the induced
subgraph by the latter vertices), say ∆. According to our main analysis, our prescribed batch
sizes cannot be greater than B = (1− ε) (1−ε)n

∆o
. However, if say ∆o = Θ(n), then that would

imply that B = O(1), hence there is not room for parallelization by Cyclades. What we
will show, is that by sampling according to B = (1− ε)n−O(nδ)

∆
, we can on average expect a

parallelization that is similar to the case where the outliers are not present in the conflict
graph. For a toy example see Figure 7.10.

�o = 6

� = 2

Figure 7.10: The above conflict graph has a vertex with high degree (i.e., ∆o = 6), and the remaining
of the graph has maximum induced degree ∆ = 2. In this toy case, when we sample roughly n−1

∆ = 3

vertices, more often than not, the large degree vertex will not be part of the sampled batch. This
implies that when parallelizing with Cyclades these cases will be as much parallelizable as if the
high degree vertex was not part of the graph. Each time we happen to sample a batch that includes
the max. degree vertex, then essentially we lose all flexibility to parallelize, and we have to run the
serial algorithm. What we establish rigorously is that “on average" the parallelization will be as
good as one would hope for even in the case where the outliers are not present.

Our main result for the outlier case follows:

Lemma 7.13. Let us assume that there are O(nδ) outlier vertices in the original conflict
graph G with degree at most ∆o, and let the remaining vertices have degree (induced on
the remaining graph) at most ∆. Let the induced update-variable graph on these low degree
vertices abide to the same graph assumptions as those of Theorem 7.6. Moreover, let the
batch size be bounded as

B ≤ min

{
(1− ε)n−O(nδ)

∆
, O

(
n1−δ

P

)}
.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 137

Then, the expected runtime of Cyclades will be O
(
Eu·κ
P
· log2 n

)
.

Proof. Let wis denote the total work required for batch i if that batch contains no outlier
notes, and wio otherwise. It is not hard to see that ws =

∑
iw

i
s = O

(
Eu·κ
P
· log2 n

)
and

wo =
∑

iw
i
s = O

(
Eu · κ · log2 n

)
Hence, the expected computational effort by Cyclades

will be

ws · Pr{a random batch contains no outliers}+ wo Pr{a random batch contains outliers}

where

Pr{a random batch contains no outliers} = Ω

((
1− 1

n1−δ

)B)
≥ 1−O

(
B

n1−δ

)
(7.13)

Hence the expected running time will be proportional to O
(
Eu·κ
P
· log2 n

)
, if O(Eu·κ

P
· log2 n) =

O(Eu · κ · log2 n · B
n1−δ ), which holds when B = O

(
n1−δ
P

)
.

7.F Complete Experiment Results
In this section, we present the remaining experimental results that were left out for brevity
from our main experimental section. In Figures 7.11 and 7.12, we show the convergence
behaviour of our algorithms, as a function of the overall time, and then as a function of the
time that it takes to perform only the stochastic updates (i.e., in Figure 7.12 we factor out
the graph partitioning, and allocation time). In Figure 7.13, we provide the complete set of
speedup results for all algorithms and data sets we tested, in terms of the number of cores.
In Figure 7.14, we provide the speedups in terms of the the computation of the stochastic
updates, as a function of the number of cores. Then, in Figures 7.15 – 7.18, we present the
convergence, and speedups of the overal computation, and then of the stochastic updates
part, for our dense feature URL data set. Finally, in Figure 7.19 we show the divergent
behavior of Hogwild! for the least square experiments with SAGA, on the NH2010 and
DBLP datasets.

Our overall observations here are similar to the main text. One additional note to make
is that when we take a closer look to the figures relative to the times and speedups of
the stochastic updates part of Cyclades (i.e., when we factor out the time of the graph
partitioning part), we see that Cyclades is able to perform stochastic updates faster
than Hogwild! due to its superior spatial and temporal access locality patterns. If the
coordination overheads for Cyclades are excluded, we are able to improve speedups, in some
cases by up to 20-70% (Table 7.5). This suggests that by further optimizing the computation
of connected components, we can hope for better overall speedups of Cyclades.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 138

Mat. Comp. Mat. comp Word2Vec Graph Eig. Graph Eig. Least Squares Least Squares
SGD `2-SGD SGD SVRG SVRG SAGA SAGA

MovieLens MovieLens EN-Wiki NH2010 DBLP NH2010 DBLP
Overall
Speedup 8.8010 7.6876 10.4299 2.9134 4.7927 4.4790 4.6405
Speedup of
Updates 9.0453 7.9226 11.4610 3.4802 5.5533 4.6998 8.1133
% change 2.7759% 3.0580% 9.8866% 19.4551% 15.8718% 4.9285% 74.8408%

Table 7.5: Speedups of Cyclades at 16 threads. Two versions speedups are given for each
problem: (1) with the overall running time, including the coordination overheads, and (2)
using only the running time for stochastic updates. Speedups using only stochastic updates
are up to 20% better, which suggests we could potentially observe larger speedups by further
optimizing the computation of connected components.

Cyclades, 1 threads

HogWild!, 1 threads

Cyclades, 8 threads

HogWild!, 8 threads

Cyclades, 18 threads

HogWild!, 18 threads

100

Time/s

1024

1026

O
b
je

ct
iv

e
 V

a
lu

e

(a) LS, NH2010,
SAGA

102

Time/s

106

O
b
je

ct
iv

e
 V

a
lu

e

(b) LS, DBLP, SAGA

100

Time/s

100

102

104

106

108

O
b
je

ct
iv

e
 V

a
lu

e

(c) Graph Eig.,
NH2010, SVRG

102

Time/s

100

102

104

106

108

1010

1012

O
b
je

ct
iv

e
 V

a
lu

e

(d) Graph Eig., DBLP,
SVRG

102

Time/s

100

O
b
je

ct
iv

e
 V

a
lu

e

(e) Mat. Comp., 10M,
`2-SGD

102

Time/s

100

O
b
je

ct
iv

e
 V

a
lu

e

(f) Mat. Comp., 10M,
SGD

100 102

Time/s

102

104

O
b
je

ct
iv

e
 V

a
lu

e

(g) Word2Vec, EN-
Wiki, SGD

Figure 7.11: Convergence of Cyclades and Hogwild! on various problems, using 1, 8,
16 threads, in terms of overall running time. Cyclades is initially slower, but ultimately
reaches convergence faster than Hogwild!.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 139

Cyclades, 1 threads

HogWild!, 1 threads

Cyclades, 8 threads

HogWild!, 8 threads

Cyclades, 18 threads

HogWild!, 18 threads

100

Time/s

1024

1026

O
b
je

ct
iv

e
 V

a
lu

e

(a) LS, NH2010,
SAGA

102

Time/s

106

O
b
je

ct
iv

e
 V

a
lu

e

(b) LS, DBLP, SAGA

100

Time/s

100

102

104

106

O
b
je

ct
iv

e
 V

a
lu

e

(c) Graph Eig.,
NH2010, SVRG

102

Time/s

100

102

104

106

108

O
b
je

ct
iv

e
 V

a
lu

e

(d) Graph Eig., DBLP,
SVRG

102

Time/s

100

O
b
je

ct
iv

e
 V

a
lu

e

(e) Mat. Comp., 10M,
`2-SGD

102

Time/s

100

O
b
je

ct
iv

e
 V

a
lu

e

(f) Mat. Comp., 10M,
SGD

100 102

Time/s

102

104

O
b
je

ct
iv

e
 V

a
lu

e

(g) Word2Vec, EN-
Wiki, SGD

Figure 7.12: Convergence of Cyclades and Hogwild! on various problems, using 1, 8, 16
threads, in terms of running time for stochastic updates.

1 2 4 6 8 10 12 14 16 18
Number of threads

1

2

3

4

5

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(a) LS, NH2010,
SAGA

1 2 4 6 8 10 12 14 16 18
Number of threads

1

2

3

4

5

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(b) LS, DBLP, SAGA

1 2 4 6 8 10 12 14 16 18
Number of threads

0.5

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(c) Graph Eig.,
NH2010, SVRG

1 2 4 6 8 10 12 14 16 18
Number of threads

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(d) Graph Eig., DBLP,
SVRG

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(e) Mat. Comp., 10M,
`2-SGD

1 2 4 6 8 10 12 14 16 18
Number of threads

1

2

3

4

5

6

7

8

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(f) Mat. Comp., 10M,
SGD

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

12

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(g) Word2Vec, EN-
Wiki, SGD

Figure 7.13: Speedup of Cyclades and Hogwild! on various problems, using 1, 4, 8, 16
threads, in terms of overall running time. On multiple threads, Cyclades always reaches ε
objective faster than Hogwild!. In some cases (7.13a, 7.13e, 7.13g), Cyclades is faster
than Hogwild! on even 1 thread, as Cyclades has better cache locality.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 140

1 2 4 6 8 10 12 14 16 18
Number of threads

1

2

3

4

5

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(a) LS, NH2010,
SAGA

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(b) LS, DBLP, SAGA

1 2 4 6 8 10 12 14 16 18
Number of threads

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(c) Graph Eig.,
NH2010, SVRG

1 2 4 6 8 10 12 14 16 18
Number of threads

1

2

3

4

5

6

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(d) Graph Eig., DBLP,
SVRG

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(e) Mat. Comp., 10M,
`2-SGD

1 2 4 6 8 10 12 14 16 18
Number of threads

1

2

3

4

5

6

7

8

9

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(f) Mat. Comp., 10M,
SGD

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

12

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(g) Word2Vec, EN-
Wiki, SGD

Figure 7.14: Speedup of Cyclades and Hogwild! on various problems, using 1, 4, 8, 16
threads, in terms of running time for stochastic updates.

Cyclades, 1 threads

HogWild!, 1 threads

Cyclades, 8 threads

HogWild!, 8 threads

Cyclades, 18 threads

HogWild!, 18 threads

102

Time/s

0.2

0.3

0.4

0.5

0.6

0.7

O
b
je

ct
iv

e
 V

a
lu

e

(a) 0.016%

102

Time/s

0.3

0.4

0.5

0.6

0.7

O
b
je

ct
iv

e
 V

a
lu

e

(b) 0.028%

102

Time/s

0.3

0.4

0.5

0.6

0.7

O
b
je

ct
iv

e
 V

a
lu

e

(c) 0.047%

102

Time/s

0.3

0.4

0.5

0.6

0.7

O
b
je

ct
iv

e
 V

a
lu

e

(d) 0.048%

Figure 7.15: Convergence of Cyclades and Hogwild! on the malicious URL detection
problem, using 1, 4, 8, 16 threads, in terms of overall running time, for different percentage
of features filtered.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 141

Cyclades, 1 threads

HogWild!, 1 threads

Cyclades, 8 threads

HogWild!, 8 threads

Cyclades, 18 threads

HogWild!, 18 threads

100 102

Time/s

0.2

0.3

0.4

O
b
je

ct
iv

e
 V

a
lu

e

(a) 0.016%

100 102

Time/s

0.3

0.4

0.5

O
b
je

ct
iv

e
 V

a
lu

e

(b) 0.028%

100 102

Time/s

0.3

0.4

0.5

0.6

O
b
je

ct
iv

e
 V

a
lu

e

(c) 0.047%

100 102

Time/s

0.3

0.4

0.5

0.6

O
b
je

ct
iv

e
 V

a
lu

e

(d) 0.048%

Figure 7.16: Convergence of Cyclades and Hogwild! on the malicious URL detection
problem, in terms of running time for stochastic updates, for different percentage of features
filtered.

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(a) 0.016%

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(b) 0.028%

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(c) 0.047%

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(d) 0.048%

Figure 7.17: Speedup of Cyclades and Hogwild! on the malicious URL detection problem,
using 1, 4, 8, 16 threads, in terms of overall running time, for different percentage of features
filtered.

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(a) 0.016%

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(b) 0.028%

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

12

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(c) 0.047%

1 2 4 6 8 10 12 14 16 18
Number of threads

2

4

6

8

10

12

S
p
e
e
d
u
p
 r

e
la

ti
v
e
 t

o
 s

e
ri

a
l

Cyclades

HogWild!

(d) 0.048%

Figure 7.18: Speedup of Cyclades and Hogwild! on the malicious URL detection problem,
in terms of running time for stochastic updates, for different percentage of features filtered.



CHAPTER 7. SPARSE STOCHASTIC UPDATES 142

100

Overall running time / s

1030
1038
1046
1054
1062
1070
1078
1086
1094

10102
10110

O
b
je

ct
iv

e
 v

a
lu

e

HogWild! γ=2e-14

HogWild! γ=1e-14

Cyclades γ=3e-14

(a) Least squares, NH2010, SAGA

Overall running time / s

106

108

1010

1012

1014

1016
O

b
je

ct
iv

e
 v

a
lu

e
HogWild! γ=2e-05

HogWild! γ=1e-05

Cyclades γ=0.0003

(b) Least squares, DBLP, SAGA

Figure 7.19: Convergence of Cyclades and Hogwild! on least squares using SAGA, with
16 threads, on the NH2010 and DBLP datasets. Cyclades was able to converge using larger
stepsizes, but Hogwild! often diverged with the same large stepsize. Thus, we were only
able to use smaller stepsizes for Hogwild! in the multi-threaded setting.



143

Chapter 8

Conclusion & Future Directions

In this dissertation, we have proposed the use of concurrency control techniques for scalable
parallel machine learning. We demonstrated and evaluated our approach for parallelizing
various machine learning algorithms for problems such as nonparametric unsupervised learning,
graph clustering, submodular maximization, and sparse stochastic optimization.

Our proposed parallel algorithms are serializable or even deterministic, which serves to
decouple the system from the algorithm. This confers the following advantages:

• Theoretical guarantees of correctness are preserved, independently of parallelism. Analy-
sis of correctness of the parallel algorithm is thus simplified by a reduction to the serial
algorithm. Unlike the coordination-free approach, we do not make further approxima-
tions or worsen errors for the sake of greater parallelism.

• Output is repeatable and reproducible, independently of hardware and parallelism. One
may compare the output of the parallel algorithm against a simpler implementation
of the serial algorithm, giving greater confidence that the parallel implementation is
correct. Since the output is deterministic and independent of the underlying hardware,
it can always be reproduced by others and independently verified.

These strong guarantees come at a cost of greater coordination overhead relative to the
coordination-free approach. Moreover, while the concurrency control approach admits a
relatively straightforward analysis of correctness, its complexity is shifted to the design and
implementation of the parallel algorithm. However, one should note that the tight coupling
between systems and algorithms in the coordination-free approach also necessitates a careful
implementation in order to achieve good scalability, as has been observed in [140].

Despite the greater coordination overheads, our theoretical analyses prove that the
concurrency control approach is scalable. Empirical evaluations also demonstrate that the
concurrency control approach is competitive with, if not outperforming, the coordination-free
approach in terms of speed, while producing higher-quality results.



CHAPTER 8. CONCLUSION & FUTURE DIRECTIONS 144

Future Directions

Although we have established the feasibility of the concurrency control approach, it remains
an open question as to whether there is a characterization of machine learning algorithms
that are amenable to this approach. We have found some commonalities in our algorithms
that afforded us opportunities for parallelism:

• A transaction that does not change the global state can be committed immediately
(OCC-DP-means, OCC-OFL, OCC-BP-means).

• Sampling of discrete random variables have low probability of being affected by small
changes to the sampling distribution (OCC-OFL, CC-2g).

• Transactions with sparse dependencies on the global state (i.e., small read and write
sets) have low chance of conflict (Cyclades, C4).

• Monotone operations can be correctly executed without coordination (C4).

Heuristically, the algorithms we parallelized in this dissertation have the properties of bounded
changes and / or weak dependencies, i.e., each transaction makes small changes to the global
state with possibly low probability, and the output of each transaction is unaffected by either
small changes to the global state or changes to a small subset of the global state. A formalism
of this heuristic is left as future work, and could serve as a means of identifying a class of
machine learning algorithms for parallelization.

Another potential direction of future work involves the interpolation between the concur-
rency control and coordination-free approaches. As previously noted, the concurrency control
approach introduces coordination exactly at the points where the coordination-free approach
makes errors. In many cases, we have both the concurrency control and coordination-free
algorithms (e.g., C4/ClusterWild!, CC-2g/CF-2g, Cyclades/Hogwild!) for which we
understand the scalability of the concurrency control algorithm and the error approximation
of its coordination-free counterpart. One could imagine designing an intermediate approach
that introduces the concurrency control coordination for the worst-offending transactions
with highest errors, thereby using minimal coordination to achieve maximal control. The
theoretical analysis would provide guidance for smoothly trading-off accuracy and correctness
for speed and scalability.



145

Bibliography

[1] Martín Abadi et al. “TensorFlow: A system for large-scale machine learning”. In:
Proceedings of the 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI). Savannah, Georgia, USA. 2016.

[2] Alekh Agarwal and John C Duchi. “Distributed delayed stochastic optimization”. In:
Advances in Neural Information Processing Systems. 2011, pp. 873–881.

[3] Amr Ahmed et al. “Scalable inference in latent variable models”. In: International
conference on Web search and data mining (WSDM). Vol. 51. 2012, pp. 1257–1264.

[4] N. Ailon, R. Jaiswal, and C. Monteleoni. “Streaming K-means approximation”. In:
Advances in Neural Information Processing Systems (NIPS) 22. Vancouver, 2009.

[5] Nir Ailon, Moses Charikar, and Alantha Newman. “Aggregating inconsistent informa-
tion: ranking and clustering”. In: Journal of the ACM (JACM) 55.5 (2008), p. 23.

[6] Noga Alon et al. “Quadratic forms on graphs”. In: Inventiones mathematicae 163.3
(2006), pp. 499–522.

[7] Tom J Ameloot, Frank Neven, and Jan Van den Bussche. “Relational transducers for
declarative networking”. In: Journal of the ACM (JACM) 60.2 (2013), p. 15.

[8] Arvind Arasu, Christopher Ré, and Dan Suciu. “Large-scale deduplication with con-
straints using dedupalog”. In: Data Engineering, 2009. ICDE’09. IEEE 25th Interna-
tional Conference on. IEEE. 2009, pp. 952–963.

[9] Sanjeev Arora et al. “RAND-WALK: A latent variable model approach to word
embeddings”. In: arXiv preprint arXiv:1502.03520 (2015).

[10] Haim Avron, Alex Druinsky, and Anshul Gupta. “Revisiting asynchronous linear
solvers: Provable convergence rate through randomization”. In: Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International. IEEE. 2014, pp. 198–207.

[11] A. Badanidiyuru and J. Vondrák. “Fast algorithms for maximizing submodular func-
tions”. In: SODA. 2014.

[12] Mihai Bǎdoiu, Sariel Har-Peled, and Piotr Indyk. “Approximate Clustering via Core-
sets”. In: Proc. of the 34th Annual ACM Symposium on Theory of Computing (STOC).
Montreal, 2002.



BIBLIOGRAPHY 146

[13] B. Bahmani et al. “Scalable Kmeans++”. In: Proc. of the 38th International Conference
on Very Large Data Bases (VLDB). Istanbul, 2012.

[14] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. “Correlation Clustering”. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science. IEEE Computer
Society. 2002, pp. 238–238.

[15] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. “Clustering gene expression patterns”.
In: Journal of computational biology 6.3-4 (1999), pp. 281–297.

[16] Philip A Bernstein and Nathan Goodman. “Concurrency control in distributed database
systems”. In: ACM Computing Surveys (CSUR) 13.2 (1981), pp. 185–221.

[17] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control
and Recovery in Database Systems. Addison- Wesley, 1987.

[18] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation:
numerical methods. Vol. 23. Prentice hall Englewood Cliffs, NJ, 1989.

[19] J. Bilmes. Deep Mathematical Properties of Submodularity with Applications to Machine
Learning. NIPS Tutorial. 2013.

[20] Guy E Blelloch, Jeremy T Fineman, and Julian Shun. “Greedy sequential maximal
independent set and matching are parallel on average”. In: Proceedings of the twenty-
fourth annual ACM symposium on Parallelism in algorithms and architectures. ACM.
2012, pp. 308–317.

[21] P. Boldi and S. Vigna. “The WebGraph Framework I: Compression Techniques”. In:
WWW. 2004.

[22] P. Boldi et al. “Layered Label Propagation: A MultiResolution Coordinate-Free Order-
ing for Compressing Social Networks”. In: WWW. ACM Press, 2011.

[23] P. Boldi et al. “UbiCrawler: A Scalable Fully Distributed Web Crawler”. In: Software:
Practice & Experience 34.8 (2004), pp. 711–726.

[24] Francesco Bonchi, David Garcia-Soriano, and Edo Liberty. “Correlation clustering:
from theory to practice”. In: Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM. 2014, pp. 1972–1972.

[25] Francesco Bonchi, Aristides Gionis, and Antti Ukkonen. “Overlapping correlation
clustering”. In: Data Mining (ICDM), 2011 IEEE 11th International Conference on.
IEEE. 2011, pp. 51–60.

[26] Francesco Bonchi et al. “Chromatic correlation clustering”. In: Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM. 2012, pp. 1321–1329.

[27] Stephen Boyd et al. “Distributed Optimization via Alternating Direction Method of
Multipliers”. In: Foundations and Trends in Machine Learning 3 (2010), pp. 1–122.



BIBLIOGRAPHY 147

[28] Joseph K Bradley et al. “Parallel coordinate descent for l1-regularized loss minimiza-
tion”. In: arXiv preprint arXiv:1105.5379 (2011).

[29] Tamara Broderick, Brian Kulis, and Michael I. Jordan. “MAD-Bayes: MAP-based
asymptotic derivations from Bayes”. In: Proc. of the 30th International Conference on
Machine Learning (ICML). 2013.

[30] N. Buchbinder et al. “A Tight Linear Time (1/2)-Approximation for Unconstrained
Submodular Maximization”. In: FOCS. 2012.

[31] N Cesa-Bianchi et al. “A correlation clustering approach to link classification in signed
networks”. In: Annual Conference on Learning Theory. Microtome. 2012, pp. 34–1.

[32] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. “Clustering with qual-
itative information”. In: Foundations of Computer Science, 2003. Proceedings. 44th
Annual IEEE Symposium on. IEEE. 2003, pp. 524–533.

[33] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. “Better streaming algo-
rithms for clustering problems”. In: Proc. of the 35th Annual ACM Symposium on
Theory of Computing (STOC). 2003.

[34] Moses Charikar and Anthony Wirth. “Maximizing quadratic programs: extending
Grothendieck’s inequality”. In: Foundations of Computer Science, 2004. Proceedings.
45th Annual IEEE Symposium on. IEEE. 2004, pp. 54–60.

[35] Shuchi Chawla et al. “Near Optimal LP Rounding Algorithm for Correlation Clustering
on Complete and Complete K-partite Graphs”. In: Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing. STOC ’15. Portland, Oregon,
USA, 2015, pp. 219–228.

[36] Daniel Chazan and Willard Miranker. “Chaotic relaxation”. In: Linear algebra and its
applications 2.2 (1969), pp. 199–222.

[37] Flavio Chierichetti, Nilesh Dalvi, and Ravi Kumar. “Correlation clustering in MapRe-
duce”. In: Proceedings of the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM. 2014, pp. 641–650.

[38] Trishul Chilimbi et al. “Project adam: Building an efficient and scalable deep learning
training system”. In: 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14). 2014, pp. 571–582.

[39] Cheng-Tao Chu et al. “Map-reduce for machine learning on multicore”. In: NIPS. Vol. 6.
Vancouver, BC. 2006, pp. 281–288.

[40] A. Das et al. “Google news personalization: Scalable online collaborative filtering”. In:
Proc. of the 16th World Wide Web Conference. Banff, 2007.

[41] Christopher M De Sa et al. “Taming the wild: A unified analysis of hogwild-style
algorithms”. In: Advances in Neural Information Processing Systems. 2015, pp. 2674–
2682.



BIBLIOGRAPHY 148

[42] Christopher De Sa, Kunle Olukotun, and Christopher Ré. “Ensuring rapid mixing
and low bias for asynchronous Gibbs sampling”. In: arXiv preprint arXiv:1602.07415
(2016).

[43] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing on large
clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[44] Jeffrey Dean et al. “Large scale distributed deep networks”. In: Advances in Neural
Information Processing Systems. 2012, pp. 1223–1231.

[45] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. “SAGA: A fast incremental
gradient method with support for non-strongly convex composite objectives”. In:
Advances in Neural Information Processing Systems. 2014, pp. 1646–1654.

[46] Ofer Dekel et al. “Optimal distributed online prediction”. In: Proceedings of the 28th
International Conference on Machine Learning (ICML-11). 2011, pp. 713–720.

[47] Erik D Demaine et al. “Correlation clustering in general weighted graphs”. In: Theo-
retical Computer Science 361.2 (2006), pp. 172–187.

[48] I. Dhillon and D.S. Modha. “A data-clustering algorithm on distributed memory
multiprocessors”. In: Workshop on Large-Scale Parallel KDD Systems. 2000.

[49] F. Doshi-Velez et al. “Large Scale Nonparametric Bayesian Inference: Data Paralleli-
sation in the Indian Buffet Process”. In: Advances in Neural Information Processing
Systems (NIPS) 22. Vancouver, 2009.

[50] John Duchi, Michael I Jordan, and Brendan McMahan. “Estimation, optimization,
and parallelism when data is sparse”. In: Advances in Neural Information Processing
Systems. 2013, pp. 2832–2840.

[51] Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vassilios S Verykios. “Duplicate
record detection: A survey”. In: Knowledge and Data Engineering, IEEE Transactions
on 19.1 (2007), pp. 1–16.

[52] Micha Elsner and Warren Schudy. “Bounding and comparing methods for correlation
clustering beyond ILP”. In: Proceedings of the Workshop on Integer Linear Programming
for Natural Langauge Processing. Association for Computational Linguistics. 2009,
pp. 19–27.

[53] A. Ene, S. Im, and B. Moseley. “Fast clustering using MapReduce”. In: Proc. of the
17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. San Diego,
2011.

[54] Jose M Faleiro and Daniel J Abadi. “Rethinking serializable multiversion concurrency
control”. In: Proceedings of the VLDB Endowment 8.11 (2015), pp. 1190–1201.

[55] D. Feldman, A. Krause, and M. Faulkner. “Scalable Training of Mixture Models via
Coresets”. In: Advances in Neural Information Processing Systems (NIPS) 24. Granada,
2011.



BIBLIOGRAPHY 149

[56] Hamid Reza Feyzmahdavian, Arda Aytekin, and Mikael Johansson. “An Asynchronous
Mini-Batch Algorithm for Regularized Stochastic Optimization”. In: arXiv preprint
arXiv:1505.04824 (2015).

[57] A. Frank. “Submodular functions in graph theory”. In: Discrete Mathematics 111
(1993), pp. 231–243.

[58] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database systems: the
complete book. 2nd. Pearson Prentice Hall, 2009.

[59] Rainer Gemulla et al. “Large-scale matrix factorization with distributed stochastic
gradient descent”. In: Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM. 2011, pp. 69–77.

[60] J. Gillenwater, A. Kulesza, and B. Taskar. “Near-optimal MAP inference for deter-
minantal point processes”. In: Advances in Neural Information Processing Systems
(NIPS). 2012.

[61] Ioannis Giotis and Venkatesan Guruswami. “Correlation clustering with a fixed number
of clusters”. In: Proceedings of the seventeenth annual ACM-SIAM symposium on
Discrete algorithm. ACM. 2006, pp. 1167–1176.

[62] Joseph E Gonzalez et al. “PowerGraph: Distributed Graph-Parallel Computation on
Natural Graphs.” In: OSDI. Vol. 12. 1. 2012, p. 2.

[63] GroupLens. MoveLens 10M dataset. 2009. url: http://grouplens.org/datasets/
movielens/10m/ (visited on 01/28/2016).

[64] Joseph M Hellerstein. “The declarative imperative: experiences and conjectures in
distributed logic”. In: ACM SIGMOD Record 39.1 (2010), pp. 5–19.

[65] Q. Ho et al. “More Effective Distributed ML via a Stale Synchronous Parallel Parameter
Server”. In: NIPS. 2013.

[66] Mingyi Hong. “A Distributed, Asynchronous and Incremental Algorithm for Nonconvex
Optimization: An ADMM Based Approach”. In: arXiv preprint arXiv:1412.6058
(2014).

[67] Cho-Jui Hsieh, Hsiang-Fu Yu, and Inderjit S Dhillon. “PASSCoDe: Parallel ASyn-
chronous Stochastic dual Co-ordinate Descent”. In: arXiv preprint arXiv:1504.01365
(2015).

[68] Bilal Hussain et al. An evaluation of clustering algorithms in duplicate detection.
Tech. rep. 2013.

[69] Alexander Ihler and David Newman. Bounding Sample Errors in Approximate Dis-
tributed Latent Dirichlet Allocation. Tech. rep. Information and Computer Science,
University of California, Irvine, 2009.

[70] Alexander Ihler and David Newman. “Understanding Errors in Approximate Dis-
tributed Latent Dirichlet Allocation”. In: Knowledge and Data Engineering, IEEE
Transactions on 24.5 (2012), pp. 952–960.

http://grouplens.org/datasets/movielens/10m/
http://grouplens.org/datasets/movielens/10m/


BIBLIOGRAPHY 150

[71] Martin Jaggi et al. “Communication-efficient distributed dual coordinate ascent”. In:
Advances in Neural Information Processing Systems. 2014, pp. 3068–3076.

[72] Chi Jin et al. “Robust Shift-and-Invert Preconditioning: Faster and More Sample Effi-
cient Algorithms for Eigenvector Computation”. In: arXiv preprint arXiv:1510.08896
(2015).

[73] Matthew J. Johnson, James Saunderson, and Alan S. Willsky. “Analyzing Hogwild
Parallel Gaussian Gibbs Sampling”. In: Advances in Neural Information Process-
ing Systems 26. 2013, pp. 2715–2723. url: http://media.nips.cc/nipsbooks/
nipspapers/paper_files/nips26/1267.pdf.

[74] Rie Johnson and Tong Zhang. “Accelerating stochastic gradient descent using predictive
variance reduction”. In: Advances in Neural Information Processing Systems. 2013,
pp. 315–323.

[75] U Kang, Charalampos E Tsourakakis, and Christos Faloutsos. “Pegasus: A peta-
scale graph mining system implementation and observations”. In: Data Mining, 2009.
ICDM’09. Ninth IEEE International Conference on. IEEE. 2009, pp. 229–238.

[76] D. Kempe, J. Kleinberg, and E. Tardos. “Maximizing the spread of influence through
a social network”. In: ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD). 2003.

[77] G. Kim et al. “Distributed Cosegmentation via Submodular Optimization on
Anisotropic Diffusion”. In: Int. Conference on Computer Vision (ICCV). 2011.

[78] KONECT. DBLP network dataset. May 2015. url: http://konect.uni-koblenz.
de/networks/dblp-author (visited on 01/28/2016).

[79] A. Krause and C. Guestrin. “Submodularity and its Applications in Optimized Infor-
mation Gathering: An Introduction”. In: ACM Transactions on Intelligent Systems
and Technology 2.4 (2011).

[80] A. Krause and E. Horvitz. “A Utility-Theoretic Approach to Privacy in Online Services”.
In: JAIR 39 (2010).

[81] A. Krause and S. Jegelka. Submodularity in Machine Learning – New Directions. ICML
Tutorial. 2013.

[82] Michael Krivelevich. “The Phase Transition in Site Percolation on Pseudo-Random
Graphs”. In: The Electronic Journal of Combinatorics 23.1 (2016), pp. 1–12.

[83] Michael Krivelevich. “The phase transition in site percolation on pseudo-random
graphs”. In: arXiv preprint arXiv:1404.5731 (2014).

[84] Brian Kulis and Michael I. Jordan. “Revisiting k-means: New Algorithms via Bayesian
Nonparametrics”. In: Proc. of 29th International Conference on Machine Learning
(ICML). Edinburgh, 2012.

[85] R. Kumar et al. “Fast greedy algorithms in MapReduce and streaming”. In: SPAA.
2013.

http://media.nips.cc/nipsbooks/nipspapers/paper_files/nips26/1267.pdf
http://media.nips.cc/nipsbooks/nipspapers/paper_files/nips26/1267.pdf
http://konect.uni-koblenz.de/networks/dblp-author
http://konect.uni-koblenz.de/networks/dblp-author


BIBLIOGRAPHY 151

[86] Hsiang-Tsung Kung and John T Robinson. “On optimistic methods for concurrency
control”. In: ACM Transactions on Database Systems (TODS) 6.2 (1981), pp. 213–226.

[87] J. Leskovec. Stanford Network Analysis Project. 2011. url: http://snap.stanford.
edu/.

[88] Mu Li et al. “Efficient mini-batch training for stochastic optimization”. In: Proceedings
of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM. 2014, pp. 661–670.

[89] Mu Li et al. “Parameter Server for Distributed Machine Learning”. In: Big Learn
workshop, at NIPS. Lake Tahoe, 2013.

[90] Xiangru Lian et al. “Asynchronous Parallel Stochastic Gradient for Nonconvex Opti-
mization”. In: arXiv preprint arXiv:1506.08272 (2015).

[91] H. Lin and J. Bilmes. “A Class of Submodular Functions for Document Summarization”.
In: The 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies. 2011.

[92] Ji Liu and Stephen J Wright. “Asynchronous stochastic coordinate descent: Parallelism
and convergence properties”. In: SIAM Journal on Optimization 25.1 (2015), pp. 351–
376.

[93] Ji Liu, Stephen JWright, and Srikrishna Sridhar. “An asynchronous parallel randomized
Kaczmarz algorithm”. In: arXiv preprint arXiv:1401.4780 (2014).

[94] Ji Liu et al. “An Asynchronous Parallel Stochastic Coordinate Descent Algorithm”. In:
ICML 2014. 2014, pp. 469–477.

[95] Ji Liu et al. “An asynchronous parallel stochastic coordinate descent algorithm”. In:
arXiv preprint arXiv:1311.1873 (2013).

[96] D. Lovell et al. “ClusterCluster: Parallel Markov Chain Monte Carlo for Dirichlet
Process Mixtures”. In: ArXiv e-prints (Apr. 2013). arXiv: 1304.2302 [stat.ML].

[97] Yucheng Low et al. “Distributed GraphLab: a framework for machine learning and data
mining in the cloud”. In: Proceedings of the VLDB Endowment 5.8 (2012), pp. 716–727.

[98] Chenxin Ma et al. “Adding vs. Averaging in Distributed Primal-Dual Optimization”.
In: Proceedings of the 32nd International Conference on Machine Learning (ICML-15).
2015, pp. 1973–1982.

[99] Justin Ma et al. “Identifying suspicious URLs: an application of large-scale online
learning”. In: Proceedings of the 26th Annual International Conference on Machine
Learning. ACM. 2009, pp. 681–688.

[100] Matt Mahoney. Large Text Compression Benchmark. 2006. url: http://mattmahoney.
net/dc/text.html (visited on 01/28/2016).

[101] Horia Mania et al. “Perturbed iterate analysis for asynchronous stochastic optimization”.
In: arXiv preprint arXiv:1507.06970 (2015).

http://snap.stanford.edu/
http://snap.stanford.edu/
http://arxiv.org/abs/1304.2302
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/text.html


BIBLIOGRAPHY 152

[102] A. Meyerson. “Online Facility Location”. In: Proc. of the 42nd Annual Symposium on
Foundations of Computer Science (FOCS). Las Vegas, 2001.

[103] A. Meyerson et al. “Clustering data streams: Theory and practice”. In: IEEE Transac-
tions on Knowledge and Data Engineering 15.3 (2003), pp. 515–528.

[104] B. Mirzasoleiman et al. “Distributed Submodular Maximization: Identifying Repre-
sentative Elements in Massive Data”. In: Advances in Neural Information Processing
Systems 26. 2013.

[105] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. “An analysis of approximations for
maximizing submodular set functions—I”. In: Mathematical Programming 14.1 (1978),
pp. 265–294.

[106] D. Newman et al. “Distributed Inference for Latent Dirichlet Allocation”. In: Advances
in Neural Information Processing Systems (NIPS) 20. Vancouver, 2007.

[107] John Paisley, David Blei, and Michael I Jordan. “Stick-breaking Beta processes and
the Poisson process”. In: Proc. of the 15th International Conference on Artificial
Intelligence and Statistics (AISTATS). 2012.

[108] Xinghao Pan et al. “Cyclades: Conflict-free asynchronous machine learning”. In: Ad-
vances in Neural Information Processing Systems. 2016, pp. 2568–2576.

[109] Xinghao Pan et al. “Optimistic concurrency control for distributed unsupervised
learning”. In: Advances in Neural Information Processing Systems. 2013, pp. 1403–
1411.

[110] Xinghao Pan et al. “Parallel correlation clustering on big graphs”. In: Advances in
Neural Information Processing Systems. 2015, pp. 82–90.

[111] Xinghao Pan et al. “Parallel double greedy submodular maximization”. In: Advances
in Neural Information Processing Systems. 2014, pp. 118–126.

[112] Xinghao Pan et al. “Revisiting distributed synchronous SGD”. In: arXiv preprint
arXiv:1604.00981 (2016).

[113] Z. Peng et al. “ARock: an Algorithmic Framework for Asynchronous Parallel Coordinate
Updates”. In: arXiv preprint arXiv:1506.02396 (2015).

[114] Gregory J Puleo and Olgica Milenkovic. “Correlation Clustering with Constrained
Cluster Sizes and Extended Weights Bounds”. In: arXiv preprint arXiv:1411.0547
(2014).

[115] Benjamin Recht and Christopher Ré. “Parallel stochastic gradient algorithms for large-
scale matrix completion”. In: Mathematical Programming Computation 5.2 (2013),
pp. 201–226.

[116] Benjamin Recht et al. “Hogwild: A lock-free approach to parallelizing stochastic
gradient descent”. In: Advances in Neural Information Processing Systems. 2011,
pp. 693–701.



BIBLIOGRAPHY 153

[117] Ben Recht et al. “Factoring nonnegative matrices with linear programs”. In: Advances
in Neural Information Processing Systems. 2012, pp. 1214–1222.

[118] Sashank J Reddi et al. “On Variance Reduction in Stochastic Gradient Descent and
its Asynchronous Variants”. In: arXiv preprint arXiv:1506.06840 (2015).

[119] C. Reed and Z. Ghahramani. “Scaling the Indian Buffet Process via Submodular
Maximization”. In: Int. Conference on Machine Learning (ICML). 2013.

[120] Peter Richtárik and Martin Takáč. “Parallel coordinate descent methods for big data
optimization”. In: arXiv preprint arXiv:1212.0873 (2012).

[121] Mark Schmidt, Nicolas Le Roux, and Francis Bach. “Minimizing finite sums with the
stochastic average gradient”. In: arXiv preprint arXiv:1309.2388 (2013).

[122] A. Schrijver. Combinatorial Optimization – Polyhedra and efficiency. Springer, 2002.

[123] L. S. Shapley. “Cores of Convex Games”. In: International Journal of Game Theory
1.1 (1971), pp. 11–26.

[124] M. Shindler, A. Wong, and A. Meyerson. “Fast and accurate K-means for large
Datasets”. In: Advances in Neural Information Processing Systems (NIPS) 24. Granada,
2011.

[125] Virginia Smith et al. “CoCoA: A General Framework for Communication-Efficient
Distributed Optimization”. In: arXiv preprint arXiv:1611.02189 (2016).

[126] Alexander Smola and Shravan Narayanamurthy. “An architecture for parallel topic
models”. In: Proceedings of the VLDB Endowment 3.1-2 (2010), pp. 703–710.

[127] Evan R Sparks et al. “MLI: An API for distributed machine learning”. In: Data Mining
(ICDM), 2013 IEEE 13th International Conference on. IEEE. 2013, pp. 1187–1192.

[128] Chaitanya Swamy. “Correlation clustering: maximizing agreements via semidefinite
programming”. In: Proceedings of the fifteenth annual ACM-SIAM symposium on
Discrete algorithms. Society for Industrial and Applied Mathematics. 2004, pp. 526–
527.

[129] Alexander Thomson et al. “Calvin: fast distributed transactions for partitioned database
systems”. In: Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data. ACM. 2012, pp. 1–12.

[130] John N Tsitsiklis, Dimitri P Bertsekas, and Michael Athans. “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms”. In: IEEE transactions
on automatic control 31.9 (1986), pp. 803–812.

[131] UF Sparse Matrix Collection. DIMACS10/nh2010. 2014. url: http://cise.ufl.
edu/research/sparse/matrices/DIMACS10/nh2010.html (visited on 01/28/2016).

[132] Leslie G. Valiant. “A bridging model for parallel computation”. In: Communications
of the ACM 33.8 (1990), pp. 103–111.

http://cise.ufl.edu/research/sparse/matrices/DIMACS10/nh2010.html
http://cise.ufl.edu/research/sparse/matrices/DIMACS10/nh2010.html


BIBLIOGRAPHY 154

[133] Yu-Xiang Wang et al. “Asynchronous Parallel Block-Coordinate Frank-Wolfe”. In: stat
1050 (2014), p. 22.

[134] K. Wei, R. Iyer, and J. Bilmes. “Fast Multi-stage submodular maximization”. In: Int.
Conference on Machine Learning (ICML). 2014.

[135] Eric P Xing et al. “Petuum: A new platform for distributed machine learning on big
data”. In: IEEE Transactions on Big Data 1.2 (2015), pp. 49–67.

[136] Tianbing Xu and Alexander Ihler. “Multicore Gibbs Sampling in Dense, Unstructured
Graphs”. In: Proc. of the 14th International Conference on Artificial Intelligence and
Statistics (AISTATS). 2011.

[137] Bo Yang, William K Cheung, and Jiming Liu. “Community mining from signed social
networks”. In: Knowledge and Data Engineering, IEEE Transactions on 19.10 (2007),
pp. 1333–1348.

[138] Hyokun Yun et al. “NOMAD: Non-locking, stOchastic Multi-machine algorithm
for Asynchronous and Decentralized matrix completion”. In: arXiv preprint
arXiv:1312.0193 (2013).

[139] Matei Zaharia et al. “Spark: Cluster computing with working sets”. In: Proc. of the
2nd USENIX Conference on Hot Topics in Cloud Computing. 2010.

[140] Ce Zhang and Christopher Ré. “DimmWitted: A study of main-memory statistical
analytics”. In: Proceedings of the VLDB Endowment 7.12 (2014), pp. 1283–1294.

[141] Wei Zhang et al. “Staleness-aware async-sgd for distributed deep learning”. In: arXiv
preprint arXiv:1511.05950 (2015).

[142] Yuchen Zhang and Michael I Jordan. “Splash: User-friendly programming interface for
parallelizing stochastic algorithms”. In: arXiv preprint arXiv:1506.07552 (2015).

[143] Yong Zhuang et al. “A fast parallel sgd for matrix factorization in shared memory
systems”. In: Proceedings of the 7th ACM conference on Recommender systems. ACM.
2013, pp. 249–256.

[144] Martin Zinkevich, John Langford, and Alex J Smola. “Slow learners are fast”. In:
Advances in Neural Information Processing Systems. 2009, pp. 2331–2339.

[145] Martin Zinkevich et al. “Parallelized stochastic gradient descent”. In: Advances in
Neural Information Processing Systems. 2010, pp. 2595–2603.


	Contents
	Introduction
	Contributions
	Organization and Key Results

	Background
	Iterative Transformations
	Concurrency Control
	Parallel Machine Learning Approaches

	Approach
	Comparison With Existing Parallel Machine Learning Approaches
	Comparison With Transactional Databases

	Nonparametric Unsupervised Learning
	Introduction
	Nonparametric Unsupervised Learning
	Optimistic Concurrency Control for Nonparametric Unsupervised Learning
	Analysis of Correctness and Scalability
	Evaluation
	Additional Related Work
	Discussion
	Proof of Serializability of Distributed Algorithms
	Proof of Master Processing Bound for DP-means (Theorem 4.3)

	Correlation Clustering
	Introduction
	Two Parallel Algorithms for Correlation Clustering
	Theoretical Guarantees
	Additional Related Work
	Experiments
	Discussions
	Proofs of Theoretical Guarantees
	Implementation Details
	Complete Experiment Results

	Non-monotone Submodular Maximization
	Introduction
	Submodular Maximization 
	Concurrency Control with Coordinated Bounds 
	CF-2g: Coordination-Free Double Greedy Algorithm 
	CC-2g: Concurrency Control for the Double Greedy Algorithm 
	Analysis of Algorithms 
	Evaluation 
	Related Work 
	Discussions
	Proofs of Theoretical Guarantees
	Upper Bound on Expected Number of Failed Transactions
	Parallel Algorithms for Separable Sums
	Complete Experiment Results
	Illustrative Examples

	Sparse Stochastic Updates
	Introduction
	The Algorithmic Family of Stochastic-Updates
	Cyclades: Shattering Dependencies
	Evaluation
	Additional Related work
	Discussions
	Algorithms in the Stochastic Updates family
	With and Without Replacement Proofs
	Parallel Connected Components Computation
	Allocating the Conflict Groups
	Robustness against High-degree Outliers
	Complete Experiment Results

	Conclusion & Future Directions
	Bibliography

