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Abstract

MiBao: A Video Processing Middlebox

by

Siyuan He

Master of Science in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Randy H. Katz, Chair

Network video streaming such as video hosting websites and connected cameras are increas-
ingly popular. These applications bring new challenges to network administrators, such as
leakage of privacy information and exposure to inappropriate content. When network ad-
ministrators do not have control over end-hosts or processing video at individual end-hosts
results in duplicate computation or a large configuration burden, they can mitigate such
risks by inspecting video stream on the wire through Deep Packet Inspection (DPI). While
the rise of Software-Defined Networking (SDN) and middleboxes brings new functionalities
to existing networks, they are usually limited to fixed field processing.

In this thesis, we summarize the performance, architectural and format characteristics
of network video streaming, design and implement the MiBao Video Processing Middlebox,
and evaluate its overhead, effectiveness and scalability. Through allowing MiBao to vary
the parameters of a face detection algorithm with respect to load and leveraging on GPU
acceleration, MiBao can perform on-the-wire face detection and blur for up to four 1080p
video streams at 25 FPS with less than 100ms playback delay using an AWS g2.2xlarge EC2
instance. As a proof-of-concept, MiBao shows that with GPU and tunable algorithms, mid-
dleboxes can meet video packets’ delivery deadlines while performing complex computations.
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Chapter 1

Introduction

With increasing bandwidth, video streaming through the Internet has become pervasive.
Streaming sites such as YouTube readily provide millions of users with a variety of video
content[15]. Network enabled cameras such as the Nest Cam help households monitor their
property through the Internet [8]. While bringing convenience to people, these applications
also impose security and privacy risks such as leakage of private information through network
enabled security cameras [28] and exposure to inappropriate content from video streaming
websites [30, 54, 65]. To reduce the impact of such risks, video streams need to be inspected
and filtered for inappropriate content. Such demand creates new challenges for local network
administrators.

Similar to operations on web content, video inspection and filtering could be done at three
points in the network: source, destination and on the wire. At the source, video streaming
websites such as YouTube often remove inappropriate video when flagged by staff, users or
authorities [36]. Connected cameras such as the Nest Cam try to protect users’ privacy
through having a “Home” mode that allows users to turn off the camera when they do not
want to be filmed [5]. At the destination, users can install local Web Content-Filtering
Systems to filter content using URL blocking, keyword filtering and even artificial neural
networks (ANN) [41]. However, both methods have feasibility and overhead issues. On
one hand, the source of a video stream may not cooperate with users’ demands on content
inspection and filtering. While YouTube moderates its content, many websites do not; while
the Nest Cam has a convenient ON/OFF switch, other connected cameras may not. On the
other hand, filtering content at local machines requires redundant configuration at individual
end-hosts, especially for large enterprise networks with uniform policies. Even worse, such
filtering may not be feasible in mobile and low power devices where processing power is scarce.
Given the limitations of end-host inspection and filtering, performing these operations on
the wire through Deep Packet Inspection (DPI) becomes an advantageous solution.

However, while the rise of Software-Defined Networking (SDN) and middleboxes adds
new functionalities to existing networks at fast pace, few works have explored the solu-
tion for in-stream video processing. In the past, network administrators performed DPI
on non-video network traffic to protect security and privacy of local networks. Researchers
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have developed packet filters [44], firewalls at different layers, Intrusion Detection Systems
(IDS) [56], and exfiltration prevention devices [61]. Most of these appliances are limited
to fixed field processing and textual pattern matching, and are not capable of performing
complex operations on visual semantic content in video streams.

The top challenge for in-stream video processing is managing intensive computations
at scale while meeting video packets’ delivery deadlines and users’ functional requirements.
Firstly, as video processing tasks often involve unconventional middlebox operations on a
large block of application layer payload, such as encoding, decoding, signal processing, and
applying computer vision algorithms, their behavior on a network appliance was not well-
explored, let alone how the tasks behave at scale. Moreover, video content, especially real-
time captured ones, is only useful to receivers when delivered within a short deadline. This
characteristic limits the amount of time a video packet can stay in a middlebox to between
10 ms to 1 s, depending on the application. Lastly, while meeting these computational
constraints, the middlebox also needs to fulfill the functional requirements set by its user,
such as accuracy for a face detection middlebox. Due to these reasons, researchers in the
past did not have much confidence in building such middleboxes [18].

This paper explores the feasibility of building a video processing middlebox and the set
of requirements it must achieve. Recently, given the efficiency gain in GPU based computer
vision and video processing [53], we believe that it is feasible to build such a middlebox
with commodity hardware. To identify its requirements, we first summarize the timing,
architectural and format characteristics of network video streaming. Using this information,
we derive the latency and throughput requirements for a video processing middlebox. We
then design and implement MiBao, a middlebox that detects and blurs human faces in video
streams sent by connected cameras in order to protect users’ privacy.

Starting with a baseline implementation that hardly meets the requirements, we optimize
MiBao by relieving bottlenecks at encoding and face detection. We implement a tunable
context-aware face detection algorithm and experiment with its parameters to profile the
trade-offs between performance and accuracy. By exposing these parameters to the middle-
box controller, enabling GPU acceleration, and pipelining stages, MiBao can process up to
four 1080p video streams at 25 FPS with less than 100 ms playback delay overhead, less than
1% frame loss and more than 60% accuracy on an Amazon Web Service (AWS) g2.2xlarge
instance. We further optimize MiBao to work with multiple GPUs, enabling support for up
to twelve such video streams at the same accuracy on a g2.8xlarge instance.

One thing this thesis does not explore is security. While there are many video encryp-
tion algorithms that encrypt video streams at different stages, most of them still rely on
certificate-based methods such as SSL for key distribution [42]. If a middlebox is able to
catch the encryption key and knows which encryption algorithm is adopted by the video
stream, it can decrypt the video stream with ease. There are existing solutions such as SSL
Bumping through which a middlebox uses a forged certificate to perform a man in the middle
“attack” on the SSL key exchange [38, 35]. In our context, since the network administrator
is trusted by the local network users, this “attack” is legitimate. Moreover, as many net-
works have already deployed such technology, providing decryption for video will not incur
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additional configuration overhead. However, as video decryption and encryption may incur
extra computational cost, it may affect the performance of our middlebox. We leave this
part for future researchers to explore.
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Chapter 2

Network Video Streaming

2.1 Processing Time Constraints

In network video streaming, two delays affect the viewing experience: the inter-frame
delay and the playback delay. The inter-frame delay is the inverse of frame rate (e.g. 40 ms
for 25 FPS). A multi-threaded processing pipeline will not affect this delay if a single stage’s
processing time is less than the original inter-frame delay. The playback delay is the sum
of propagation and transmission delays from all stages, and an application’s requirement for
this delay creates processing time constraints that a video processing middlebox must meet,
which can be categorized into three types as shown in Table 2.1.

Table 2.1: Video Streaming Timing Constraints

Type Timeliness Interaction
Tolerable
Playback Delay

Processing
Time Constraint

1 Stored Video View-Only 10s 1s
2 Real-Time View-Only 1s 100ms
3 Real-Time Two-Way 100ms 10ms

Type 1, Stored Video, View Only: This type refers to real-time transmission of
stored video [70]. Video is played while being downloaded from a remote repository such
as YouTube and Netflix or through a distributed protocol such as BitTorrent. Users are
not sensitive to playback delay, but care more about playback smoothness that is given by
consistent inter-frame delays. Thus the maximum playback delay can be as large as tens of
seconds.

Type 2, Real-Time, View Only: This type refers to real-time generated video stream
that is transmitted one-way only. It includes all types of network enabled cameras and
live television broadcasts. Users are more sensitive to playback delay as a video’s content
has timeliness value. However, as video source do not expect immediate feedback from the
viewer, users’ tolerance on the playback delay can be as long as several seconds. For example,
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an IPTV application’s delay could be up to 6.5 seconds [40]. For connected cameras, the
common delay is about 1-10 seconds [29].

Type 3, Real-Time, Two-Way Interaction: This type refers to real-time video
streams that involve back and forth interactions between the source and the destination. It
includes all kinds of video conferencing applications in which the party at the video source
expects immediate feedback from the party at the destination. Users are very sensitive to
playback delay and can only tolerate it at the scale of human reaction, about 100 ms [20].

Therefore, when building video processing middleboxes, the additional delay due to mid-
dlebox processing should not exceed the original application’s delay by too much. If we set
our limit at 10% of the tolerable playback delay for the original application, the processing
time constraints for each type would be 1 s, 100 ms, and 10 ms respectively as shown in
Table 2.1.

2.2 Streaming Format

Raw	
Video

Compressed	
Video

Video	
Container

Application	
Payload

Transport	
Payload

Figure 2.1: Video Streaming Pipeline

When video is streamed over a network, it needs to be encoded to a smaller size, muxed
into a container format, packetized as a media streaming protocol payload and sent via ap-
propriate transport layer protocols as illustrated in Figure 2.1. When being played at the
destination, a video packet needs to go through the reverse procedures including depacketiz-
ing, demuxing and decoding before being displayed at an end-host. Each stage has a variety
of choices that an application can implement. Table 2.2 presents a summary of our discovery
on the choices available for each stage.

Table 2.2: Available Choices on Each Video Streaming Stage

Coding Format H.264, H.265, WMV, VPX, MPEG-2
Container Format MPEG-TS, MP4, FLV, ASF, 3GP, QuickTime, RMVB, or None
Media Streaming Protocol RTP, Apple HLS, Adobe HDS, RTMP, BitTorrent Live, Skype
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Coding Formats

Without encoding, a constant rate raw video stream includes a series of images called
frames. For raw video frames:

Frame Size = Color Depths× Height×Width× Channels

Thus an 8-bit RGB 1920×1080 frame takes 6.22 MB. At 25 frames per second (FPS), it
results in a data rate of 1.24 Gbit/s or 155 MB/s. Even with today’s network bandwidth
that averages to about 14.2 Mbps in 2015Q4 for the U.S. [23], such a rate is hardly achievable.
However, as a raw video stream involves duplicate and redundant information across pixels
and frames, various encoding algorithms were invented to reduce its size. For example, H.264,
a common coding format adopted by new applications, can reduce data rate of the above
video stream to 4.92 Mbit/s at normal quality [52]. Besides H.264, other protocols such as
VPX, WMV, MPEG-2, and H.265 also exist and are used by a variety of applications.

Container Formats

A container describes a schema that combines video, audio, subtitles and metadata into
a bitstream, allowing them to be stored or streamed over network. For streaming appli-
cations, common container formats include MPEG Transport Stream (MPEG-TS), Flash
Video (FLV), QuickTime, RMVB, and MP4. These container formats differ by their sup-
ported coding formats, ability to enforce copyright protection, etc. The choice of container
format largely depends on the choice of multimedia streaming protocol. However, for ap-
plications using Real-time Transport Protocol (RTP) [58], no container is needed as each
channel is streamed separately using different RTP connections.

Multimedia Streaming Protocols

When video is streamed over a network, a multimedia streaming protocol defines the
procedures to convert video into network packets. A multimedia streaming protocol can
be built on top of existing application protocols such as HTTP Live Streaming (HLS) [50],
HTTP Dynamic Streaming (HDS) [6] or BitTorrent Live Streaming [64]. It could be based
on TCP such as Silverlight [7], or UDP such as the previously mentioned RTP and Real
Time Messaging Protocol (RTMP) [51]. For Type 2 and 3 real-time applications, UDP is
usually chosen in favor of TCP as re-transmission of video packets voids their timeliness
value. Such choice limits the pool of multimedia streaming protocols to ones like RTP,
RTMP and the Skype Protocol [21]. For example, the Nest Cam streams H.264 encoded
video using a variation of RTP over UDP [26].
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Chapter 3

System Overview

3.1 Proposed Functionality

As a proof of concept, we aimed to build an exfiltration prevention middlebox that detects
and blurs faces in video streams sent by connected cameras in a local network. Upon success,
MiBao should be able to apply the same algorithm on videos sent by other applications in
Type 1 or 2 with a small tweak in the packet filter and protocol daemons. We did not target
Type 3 video streams as we wish to leave it for future work to explore.

Source1
Behind NAT

Source2
Behind NAT

Broker
Public IP

Viewer1
Behind NAT

Viewer2
Public IP

Viewer3
Public IP

Middlebox

Figure 3.1: Example Streaming Application

In particular, we chose the Nest Cam as the target video streaming application. It
encodes video in the H.264 format and uses a variation of the RTP protocol over UDP. To
simplify stream extraction, instead of reverse engineering Nest Cam’s streaming protocol, we
built a real-time streaming application using RFC 6184 [69] as its media streaming protocol.
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Table 3.1: Middlebox Specification

Item Description
Application Protocol RTP
Transport Protocol UDP
Coding Format H264
Resolution Up to 1920x1080
Number of Streams Up to 4
Frame Rate (FPS) Up to 25

Operation
Detect and blur ANY
face on the video stream

Additional Latency Less than 100 ms
Accuracy Above 60%

In our application, a connected camera sends a video-only stream to an online broker that
immediately forwards the video stream to viewers as shown in Figure 3.1. Since we use RFC
6184, no container is required. In the future, audio streams could be buffered alongside video
streams to maintain their synchronization with each other.

Since our target application falls in Type 2, MiBao should add no more than 100 ms
playback delay to the video stream. The face detection should perform with a reasonable
accuracy with a small number of false positives and false negatives. As a network appliance,
MiBao should be able to process multiple streams at the same time with minimum frame
loss and as much accuracy as possible. Given the above discussion about various goals and
constraints, we summarize MiBao’s specifications in Table 3.1.

3.2 Architectural Design

As shown in Figure 3.2, between the camera source and destination, MiBao inserts four
components into the network: Packet Filter, Gateway Daemon, Middlebox Daemon, and
Video Processor. Overall, the system is designed to be transparent to the video streaming
application so that no additional configuration is required.

Packet Filter

Our application transmits RTP-H.264 video streams through UDP port 5004 because
RFC 3551 [57] specifies 5004 and 5005 as the default data and control port pairs. Since
our main focus is on video processing instead of video stream extraction, we simplified the
Packet Filter by extracting any UDP packets with destination port number 5004. The Packet
Filter should reside on a local gateway where all local network traffic must pass through.
Extracted packets are then forwarded to the Gateway Daemon that typically runs on the
same machine.
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Source DestinationPacket	
Filter

Gateway	
Daemon

Middlebox	
Daemon

Video	
Processor

Control Traffic
Data Traffic

ip.proto != udp
OR udp.Dst_port != 5004 

ip.proto = udp
udp.Dst_port = 5004 

Stream Identifier:

struct StreamID {
Src_addr, Src_port,
Dst_addr, Dst_port}

H264 on udp-rtp

H264 on udp-rtp

Figure 3.2: Proposed Architecture

Gateway and Middlebox Daemon

The Gateway and Middlebox Daemons implement a simple protocol that manages streams
inspected by MiBao. They are two separate processes because we envision that the Video
Processor may need to run on a separate machine that has more computational power than
the local gateway. With this design, it is possible to put the middlebox on the cloud, which
was proven to have the benefits of lower maintenance cost and more flexible provisioning [60].

In detail, when the Gateway Daemon receives packets from the Packet Filter, it extracts
a 4-tuple from the UDP packets including: source address, source port, destination
address and destination port. This 4-tuple serves as a Stream ID to identify RTP
streams going out from the local network. When a new stream is identified by the Gate-
way Daemon, it contacts the Middlebox Daemon using the Stream ID to request a Video
Processor instance. The Middlebox Daemon will set up a new instance of Video Processor
to process and forward video to the stream’s original destination, and return the instance’s
network address and port number to the Gateway Daemon. Both the Gateway and Middle-
box daemons keep track of running Video Processor instances using in-memory hash tables
mapping from Stream ID to Video Processor instance information.

For the Middlebox Daemon, if a Video Processor instance has already been started for a
Stream ID, the Middlebox Daemon will only return the information of an existing instance.
If a Video Processor instance has quit for a Stream ID, the Middlebox Daemon will remove
it from the hash table and restart it at the next request for the same Stream ID.

For the Gateway Daemon, if a Stream ID has been mapped to a Video Processor instance,



CHAPTER 3. SYSTEM OVERVIEW 10

it would only perform a hash table lookup and forward the packet to the Video Processor.
When the hash table entry is first created upon a successful request from the Middlebox
Daemon, it puts an expiration timestamp, typically 10 minutes from current time, in the
entry. Once the timestamp expires and it is still receiving packets with the same Stream ID,
it will request Video Processor information from the Middlebox Daemon again to update the
expiration timestamp. Otherwise, it will remove the entry once timestamp expires. This is
not the ideal packet forwarding path since forwarding packets to the Gateway Daemon incur
an extra hop. Ideally, the Gateway Daemon should be able to modify the Packet Filter to
forward video streams directly to the Video Processor using Software Defined Networking
technologies such as OpenFlow [45]. However, as both the Packet Filter and the Gateway
Daemon run on the same machine and the overall traffic is small in our test system, this
imperfection does not affect our experimental results by large. Moreover, although UDP
packets for video streams are large in size, they are sent at a low rate comparable to the
video frame rate. Therefore, the hash table lookup will not happen very frequently and will
not add too large an overhead to MiBao for Type 1 and 2 applications.

For a video stream, the first few packets will be dropped by the Gateway Daemon until it
has a Video Processor instance for that stream. Therefore, for viewers, the video stream will
start with a large delay, but once started, the playback delay is comparable to the original
application without a middlebox.

Video Processor

The Video Processor is a separate process running on the same or different machine as
the Middlebox Daemon. As shown by the shaded boxes in Figure 3.3, the Video Processor
is a nine-stage pipeline. It performs UDP receive, RTP depacketize, H.264 decode, and color
space conversion to recover raw frame for processing. After processing, it restores the video
stream to its original format using the reverse procedures and sends packets to the stream’s
original destination as instructed by the Middlebox Daemon. All stages operate on the data
in-place as much as possible, minimizing memory copy overhead.

Depacketize
rtph264depay

Decode
avdec_h264

Processing
mibaofaceblur

Transport
udpsrc

Encode
x264enc (CPU)

nvh264enc (GPU)

Transport
udpsink

Queue
leak 

oldest

Queue
leak 

oldest

ColorSpace
videoconvert

ColorSpace
videoconvert

Packetize
rtph264pay

Figure 3.3: Video Processing Pipeline Configuration

3.3 Face Detection Algorithm

Among object detection algorithms, Haar feature-based cascade classifiers is an effective
and efficient algorithm [67]. Haar features are patterns of pixels that can be extracted from a
region of an image. By running a window across the entire image, an algorithm can recognize
tens of thousands of Haar features. In the training stage, feature detection is done on a large
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set of true positive and true negative examples, producing a set of Haar features that can
be used to identify humans’ faces. In the detection stage, the same feature detection is done
on the image and a comparison against the trained model will expose locations with high
probability for faces.

In MiBao, we use the Viola-Jones face detection framework [68]. Instead of detecting
over 160 thousand Haar features on the input frame, the Viola-Jones framework first reduces
the large feature set down to about 6000 and uses each of them in a weak classifier. It then
introduces the concept of Cascade of Classifiers by grouping the 6000 weak classifiers into
38 stages with 1, 10, 25, 25, and 50 features in the first five stages. For each window on
the image, the framework applies classifiers from each stage consecutively and the window
is discarded if not all classifiers are positive. This results in a robust and faster face detector
that can be applied on a single machine.
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Chapter 4

Video Processor Optimization

With the baseline design in Figure 3.3, MiBao hardly meets its specifications. The first
implementation could only process a single video stream at 7 FPS with more than one minute
playback delay overhead. The following steps were taken to reduce latency and improve the
throughput of the system.

4.1 Multi-threaded Pipeline

When the pipeline was first implemented, we observed an increasing length of delay as
time progressed. Moreover, the middlebox crashed after running for an extended amount of
time. By looking at memory utilization, we identified the issue to be UDP receiving buffer
overflow. This was because down-stream packet processing rate was much slower than up-
stream packet arrival rate. As a result, the output video became increasingly delayed as
later arrived packets are buffered for longer time. The system eventually crashed because of
buffer overflow.

To resolve this problem, we pipelined the Video Processor using multiple threads with
queue buffers inserted between adjacent stages as shown in Figure 3.3. To determine locations
of the queues, we measured processing time for each pipeline stage and discovered that the
majority of processing time was taken by Processing and Encoding. Therefore, we put two
queues at both the up-stream and down-stream sides of the Processing stage and configured
the queues to drop the oldest packet when full.

With just this modification, the delay became consistent and the memory footprint be-
came stable. However, the video stream is still significantly delayed because the queue is
always full and every frame has to wait to pass through the entire queue. Moreover, as
frames are being dropped, the resultant video stream experiences jitter.
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4.2 GPU H.264 Encoding

MiBao spends the second most amount of time on the Encode stage when using CPU-
based x264 codec [14]. If these resources could be freed, the Processing stage can use a
larger portion of CPU time and hence process frames faster. In fact, for H.264 encoding,
many graphics cards have embedded hardware encoders that use very little CPU resources.
Since our test machine has an NVIDIA graphics card, we adopted the NVIDIA Video Codec
SDK [9] to achieve this optimization.

4.3 Enable CUDA

A further optimization is moving the Viola-Jones face detection and blur operations to
the GPU. A typical NVIDIA GPU has thousands of CUDA cores that run SIMD tasks
in parallel. As mentioned in Section 3.3, the Viola-Jones face detection applies the same
cascade of classifiers on large number of windows on the image. Similarly, the box filter and
Gaussian filter convolve the same kernel for the entire image. Both tasks could be easily
parallelized by the GPU and enjoy a reduction in processing time and CPU usage [53].

4.4 Tunable Algorithm for Middlebox

Even with pipelining and GPU accelerators, processing still takes too much time. The
middlebox requires more than 50 ms to process a single 1920×1080 frame. For a 25 fps video
stream, an individual stage cannot take more than 40 ms. Further optimizations were taken
to bring processing time into the 40 ms limit.

Tunable Context Aware Algorithm

Although the Viola-Jones face detection is quite efficient, it does not store state between
consecutive video frames. Given face locations in a frame and assuming the color distribu-
tions on these faces vary little between frames, the face locations in the following M frames
can be obtained using CAMShift (Continuously Adaptive Meanshift), a fast algorithm that
tracks motions of objects using color distribution [25]. Moreover, if no face is detected in a
frame, we assume that no face will appear in the next T frames and therefore remain idle
in those T frames. With T and M as tunable parameters, we implemented a context-aware
algorithm similar to [11], as shown in Listing 4.1. As CAMShift and no-op involve less
computation than Viola-Jones face detection, larger T or M will result in faster process-
ing. However, as both assumptions become less valid when no face detection is performed
in a long time, larger T or M will reduce detection accuracy, creating a trade-off between
performance and accuracy.



CHAPTER 4. VIDEO PROCESSOR OPTIMIZATION 14

1 t , m = 0 , 0
2 while ( has frame ( ) ) :
3 frame = get f rame ( )
4 i f t > 0 :
5 t −= 1
6 e l i f m > 0 :
7 m −= 1
8 f a c e s = camsh i f t t r a ck ( frame )
9 b l u r f a c e s ( frame , f a c e s )
10 else :
11 f a c e s = v j d e t e c t f a c e ( frame )
12 i f len ( f a c e s ) > 0 :
13 m = M
14 i n i t c am sh i f t ( f a c e s )
15 b l u r f a c e s ( frame , f a c e s )
16 else :
17 t = T
18 send frame ( frame )

Listing 4.1: Pseudocode for tunable context-aware face detection algorithm using Viola-
Jones and CAMShift

Expose Algorithm Parameters to Middlebox

Our next step is to expose both parameters to the middlebox controller. Without expos-
ing them, the middlebox runs a rigid algorithm that is configured for a maximum load level,
Lmax, as shown in Figure 4.1. When load is below Lmax, the middlebox runs inefficiently
with unused resources. When load is above Lmax, the middlebox starts dropping frames. If
we assign zero accuracy to a lost frame, the average accuracy will fall sharply through a cliff.
However, by exposing algorithm parameters to the middlebox controller, the middlebox can
select parameters based on load level, trading accuracy with performance at run time.

Accuracy

LoadLmax

80%

60%
Without Parameter 

Exposure

With Parameter Exposure

Gain in Efficiency

Figure 4.1: Algorithm Behavior
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Chapter 5

Implementation

5.1 Packet Filter

The Packet Filter is built to run on a commodity machine running the Linux operating
system. The machine should consist of at least two network interfaces. One interface, WAN,
connects to the external network. Another interface, NET, connects to the local network.
As shown in Figure 5.1, for our experimental system, a TUN virtual interface is created
to act as a rendezvous point. NAT, DHCP and DNS are set up using the iptables and
dnsmasq packages between the WAN and TUN interfaces, providing both gateway and router
functionality. A Click Software Router [39] is set up between the TUN and NET interface
to provide the packet filter service. We used the Click Software Router to implement the
packet filter instead of iptables because we envision more sophisticated stream extraction
beyond UDP port number in the future.

WAN TUN NET
NAT
DHCP
DNS

Click	Router

Figure 5.1: Gateway Configuration

5.2 Gateway & Middlebox Daemon

The Gateway and Middlebox Daemons are implemented using Go as it provides an easy-
to-use thread programming model. The Middlebox Daemon sets up an HTTP server that
listens to requests in JSON format from the Gateway Daemon.
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5.3 Video Processor

The Video Processor is implemented using the GStreamer Framework [63]. Among a
number of available open source video processing frameworks including GStreamer, FFM-
peg [3], and VLC [13], we chose GStreamer because it is modular and uses GLib [4] to man-
age all low level interactions with the operating system such as memory allocation, thread
scheduling and cross platform compatibility. Using such a framework, we can focus our im-
plementation on video processing itself instead of logistics. In light of deploying middleboxes
on the cloud, the Video Processor is packed in a Docker container so that the Middlebox
Daemon can set up the Video Processor on multiple machines and limit its resources when
necessary.

In our GStreamer video processing pipeline, each stage in Figure 3.3 corresponds to
a GStreamer element. It includes sources that generate or obtain media streams, filters
that transform media streams, muxers and demuxers that combine or separate multimedia
streams, queues that store media content temporarily and sinks that store or send media
to a location. Data handles are transferred among elements by pointers unless specially
configured for copying, minimizing memory copy overhead as much as possible. It uses
GLib’s GObject system to implement these elements and Glib’s mainloop is used to handle
scheduling among various GObjects. All such elements are dynamically loaded to the main
program at run-time, providing a separation between the pipeline management and data
processing.

In particular, we created a special element called mibaofaceblur to implement our face
detection and blur algorithm using OpenCV [10], an open-source computer vision library.
In detail, this element receives a raw 8-bit RGB image buffer from up-stream, operates on
the buffer in-place, and pushes the processed buffer’s handler down-stream. It first converts
the RGB frame to grayscale and then runs face detection using cv::CascadeClassifier

class, the library’s implementation of the Viola-Jones face detection framework. The class
was initialized only once using OpenCV’s trained Haar Cascade model for frontal faces:
haarcascade frontalface default.xml. After detection, all faces are blurred twice using
a box filter and a Gaussian filter before the buffer is pushed.
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Chapter 6

Evaluation

6.1 Experiment Deployment

We conducted experiments to characterize MiBao’s performance. The application itself
is built using the architecture from Figure 3.1. For the online Broker, we used a t2.micro
instance from the AWS us-east-1a service zone [1]. The Broker runs a VLC [13] server
that receives video stream through RTP and distributes it over HTTP. For the local video
Source, we constructed a GStreamer pipeline that captures real-time video from a webcam,
encodes it in H.264, and sends it as RTP payload over UDP. As a GStreamer pipeline, it
runs across multiple platforms including the Raspberry Pi and OS X. The Viewer can be a
machine that runs a VLC player. For our experiment, it is a Macbook Pro running OS X.

The middlebox components were deployed on two machines: a Gateway and a Mid-
dlebox. For the Gateway, we used an x86 machine running Ubuntu 14.04 LTS with Core
2 Duo 7400 at 2.80 GHz and 4 GB RAM. It has a 1GbE interface (WAN) connected to an
external network and a 100MbE interface (NET) connected to an internal network. Both
the Packet Filter and the Gateway Daemon run on this machine. For the Middlebox, we
deployed it on the cloud where more GPU resources are available. Specifically, we used a
g2.2xlarge instance from the AWS us-west-2b service zone, which is an x86 Machine running
Ubuntu 14.04 LTS with 8-Core Xeon E5-2670 at 2.60 GHz with 15 GB RAM. It has a 1GbE
interface and an NVIDIA Grid K520 graphics card. Both the Middlebox Daemon and the
Video Processor run on this machine.

As shown in Figure 3.2, the Source is connected to the internal network and has Internet
access through the Gateway. Source, Gateway and Viewer are all located within Soda Hall
at UC Berkeley. The Middlebox is located in Oregon. The online broker is located in
Virginia. As both middlebox and destination are on the same cloud service provider with
high-bandwidth, low-latency links between them, the amount of additional delay is minimum,
even though they are located at different service zones. Moreover, as mentioned in Chapter 1,
middlebox security is not the main focus of this experiment and previous research has proven
that a middlebox on the cloud can be both efficient and secure [60].
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6.2 Test Data

As many experiments require running the Video Processor against the same video stream
multiple times, we played stored video at capturing rate to simulate the content of a video
surveillance camera. In particular, we took video data from the MOT16 Multiple Object
Tracking Benchmark [46], using the #08 and #12 video samples as our test examples. From
individual frames provided by the dataset, we reconstructed them into 25 FPS 1920× 1080
H.264 video streams at 4992 kbps.

6.3 Playback Delay

As discussed in Section 3.1, the playback delay of our application, which is the end-to-end
delay from the Source to the Viewer, should be smaller than 100 ms. To measure this delay,
a frame needs to carry a microsecond timestamp that is used to compute its end-to-end delay
at the Viewer. For measurement to be accurate, the Source and the Viewer must be on the
same machine that uses the same hardware clock.

Figure 6.1: Screenshot for Playback Delay Measurement

Since neither the RTP H.264 payload format nor the VLC streaming server provides
a reliable way to preserve metadata, the only way a video stream can carry a timestamp
is by embedding it in the video frames [33, 24]. To achieve that, we implemented a test
application that streams local screenshots to the remote broker and plays the video on the
local machine at 1440×900 resolution and 25 FPS. A microsecond timer is shown on the local
machine so that the final screenshot has nested windows of microsecond timers as shown in
Figure 6.1. The difference between the microsecond timer on the outermost layer and second-
to-outermost layer is therefore the true playback delay for the last frame. We then configure
our application to save a screenshot to local disk every second and later parse all screenshots
using the Tesseract OCR Engine [62] to obtain microsecond precision playback delays. We
have considered using a barcode to reduce the OCR error rate. However, since the barcode
method requires image rendering that takes more than 30 ms on our machine and we wanted
to obtain microsecond level measurement precision, the method was discarded.
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Using a wired connection, we conducted experiments for each step of the optimization in
Chapter 4 for 10 minutes each. As shown in Figure 6.2, the CDF of playback delay shows
that although our streaming application itself has a relatively large playback delay of about
1883 ms on average, the optimized middlebox only adds 51 ms to that delay, far less than the
100 ms target. While the baseline middlebox adds a large delay of 18770 ms, pipelining, GPU
encoding, CUDA and tunable algorithm reduce the delay by 16105 ms, 640 ms, 380 ms, 1594
ms respectively. Without the multi-threaded pipeline, buffer overflow causes the CDF for
baseline system to have a large variation and a long tail on the right. Pipelining solves this
problem and brings playback delay to a stable distribution. Besides pipelining, the tunable
algorithm has the second largest impact on reducing the playback delay, although the result
could be very specific to face detection and depend on the complexity of test video.
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No Middlebox           (1883ms)
Baseline                    (20653ms)
Pipelining                  (4548ms)
GPU Encoding          (3908ms)
CUDA                        (3528ms)
Tunable Algorithm     (1934ms)

Figure 6.2: CDF of Playback Delay

6.4 Element Processing Time

To understand how the workload is distributed among pipeline stages, we measured
processing time for each GStreamer element by parsing the GST SCHEDULING log. Similar to
measurements on the playback delay, we collected data for each step of the optimization.
Since the baseline system cannot handle 1080p video at 25 FPS, we reconstructed the video
at 4 FPS to prevent frame loss during evaluation. Moreover, since data blocks processed
by each element have different units, such as UDP packet for Transport, H.264 packet for
Decode and frame for Processing, we aggregated processing times for the entire video and
divided it by the total number of frames to show element processing time per frame.

As shown in Figure 6.3, each optimization step mostly reduces the element processing
time, with the only exception for CUDA. Although enabling CUDA reduces the overall
playback delay, it increases the time for face detection. This could be due to the memory copy
overhead between CPU RAM and GPU VRAM. However, since outsourcing the Processing
stage to CUDA frees CPU resources for other stages, the overall system enjoys a reduction
in playback delay. Lastly, we also observe that GPU encoding significantly reduces the time
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Figure 6.3: Element Processing Time Per Frame

taken by not only Encoding, but also the ColorSpace conversion stage before it. This is
because our GPU encoder accepts the same color format as the Processing stage output,
eliminating the need to perform a color space conversion.

6.5 Functional Evaluation with Tuning

To evaluate how varying Skip Frame (T) and CAMShift frame (M) changes MiBao’s
behavior, we fed MiBao with the same video multiple times at different T and M values, and
measured various metrics of the system. The video is played at 8 FPS to leave enough time
(125ms) for processing each frame, more than enough even at T=0 and M=0.
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Figure 6.4: Processing Time W vs T and M

Mean Processing Time vs T and M

Figure 6.4 confirms our expectation that Mean Processing Time is inversely related to T
and M. Moreover, the result also shows T has a greater impact on the mean processing time
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than that of M. This is expected because skipping a frame is still less time consuming than
doing CAMShift.

Quantify Accuracy

D

A

B

C

Relevance (rel)

Retrieved (ret)

Figure 6.5: Face Detection Bonding Boxes. A is True Positive (TP); C is False Positive
(FP); B is False Negative (FN); D is True Negative (TN)

The results of a face detection algorithm is given as a list of bounding boxes enclosing
the detected areas of faces. As shown in Figure 6.5, the Retrieved (ret) box represents
MiBao’s detection result, whereas the Relevance (rel) box represents the reference detection
result. We obtained the reference results using the Google Cloud Vision API because we
assume that Google’s API should produce much more accurate detection results than ours.
Both MiBao’s and the reference’s detection results are logged frame-by-frame to a local log,
indicating the frame index, number of faces, and list of bounding boxes. We then compared
both log to obtain an accuracy value for each frame, and average them for the entire video
to obtain the mean accuracy.

As discussed in Section 3.1, an accurate face detection algorithm should have very few
false negatives and false positives. To quantify accuracy based on this requirement, we first
adopted the Accuracy formula [47]:

Accuracy =
TP + TN

TP + TN + FP + FN

Using labels in Figure 6.5 and the relationship between rel and ret boxes:

Accuracy =
A + D

A + B + C + D
=

rel ∩ ret + (Total Area− rel ∪ ret)

Total Area

However, although this formula can give a normalized detection accuracy for a frame,
it does not serve our evaluation well. As the accuracy formula has true negative area D in
both numerator and denominator, when faces only cover a small portion of the frame, D
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dominates the formula and forces accuracy values close to 100%. This prohibits us from
examining the variations in accuracy when changing T and M. Instead, a better metric
for accuracy in our context is F-Measure [55] that is a combination of other two metrics,
Recall and Precision. Recall measures how much relevant detection is captured by our
detection and is defined as:

Recall =
TP

TP + FN
=

A

A + B
=

ref ∩ ret

rel

Precision measures how much of our detection is part of the relevance detection, and is
defined as:

Precision =
TP

TP + FP
=

A

A + C
=

ref ∩ ret

ret

F-Measure is the harmonic mean of the two metrics so that we take both over-detection
and under-detection into account. It is defined as:

F = 2× precision× recall

precision + recall

Therefore, in our experiments, “accuracy” is defined as the F-measure of our face de-
tection algorithm compared to Google’s Cloud Vision API.

F-Measure vs T and M
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Figure 6.6: F-Measure F vs T and M

Figure 6.6 shows that F-measure varies significantly with T and M, and has general
inverse relations with both parameters. In particular, F-Measure varies more with respect
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to changes in CAMShift Frames (M) than with respect to changes in Skip Frames (T). This
may likely be caused by how CAMShift fails to track a face by color without frequent-enough
calibration through Viola-Jones face detection, and faces do not appear and disappear in the
video often enough to penalize Frame Skip. Combining the findings from Section 6.5, we
suggest that when tuning the algorithm to save processing time, Skip Frame (T) should be
tuned in favor of CAMShift Frame (M).

F-Measure vs Mean Processing Time
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Figure 6.7: F-Measure F vs Processing Time W

Figure 6.7 shows a general direct relation between the F-measure and mean processing
time. There is a saturation region towards the right tail as our algorithm approaches its
accuracy limit. Moreover, at constant T value (dashed lines), increasing M without T results
in a more than proportional drop in F-measure than savings in mean processing time. On the
other hand, when increasing T at constant M (solid lines), we enjoy a more than proportional
saving in mean processing time than the drop in F-measure. This confirms our previous
conclusion that Skip Frame (T) should be tuned in favor of CAMShift frame (M).

6.6 Scalability Evaluation with Tuning

To test how MiBao behaves at scale, we conduct experiments by starting multiple Video
Processor instances at the same time. For each Video Processor instance, we feed it with 30s
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Figure 6.8: Frame Drop Rate vs Number of Streams

of test videos at 25 FPS. We start each video at 1 second succession so that the contents of
videos are not in-phase with each other in order to simulate real life use case. At 5 Mbit/s
per video stream and 1 Gbps network bandwidth, our test range, 1 to 10 streams, does not
make network bandwidth a limiting factor.

As shown in Figure 6.8, at T = 10, M = 10, MiBao can support 4 streams at 1% frame
loss and 60.0% accuracy by F-measure, with Precision = 76.8% and Recall = 65.0%. With
fewer streams, MiBao can be tuned to be more accurate. For example, with two streams,
MiBao can run at T=6 and M=3 with less than 1% frame loss and F-measure of 61.8%.
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Figure 6.9 illustrates the maximum accuracy by F-measure MiBao can provide with less
than 1% frame drop, given the increasing number of streams. Under smaller resolutions such
as 720p and 480p, MiBao is able to support more streams with more than 60% accuracy
by F-measure. Because of the 4 GB VRAM limitation, we could test at most seven 1080p
streams simultaneously on a g2.2xlarge instance.

Multiple GPUs

Since our middlebox relies heavily on GPU for its computation, we conducted a scalability
evaluation on a g2.8xlarge instance that has 4 times GPU, CPU and RAM resources than
the g2.2xlarge instance. It has a 10 GbE network link, making network bandwidth less of
a problem even with twenty 5 Mbit/s video streams. As shown in Figure 6.10, with 4x
resources, MiBao can process 4 streams at T=1, M=1 with F=62.1%, 8 streams at T=6,
M=3 with F=61.8%, and 12 streams at T=8, M=10 with F=59.6%.
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Chapter 7

Future Work

7.1 Online Algorithm Tuning

Currently, we determine algorithm parameters using profiling results from the past. While
this provides a quick way of generating load based parameters, the existing profile may not
represent the behavior of future workloads. Ideally, a control-loop should be developed to
actively change the two parameters with respect to the input queue size. When the input
queues of the Video Processor instances get larger, the Middlebox Daemon or the Video
Processor itself should increase T or M to speed up the processing rate and maintain the
queue at a reasonable size.

7.2 NIC-GPU Memory Optimization
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Figure 7.1: Current Memory Copy Among Devices

As our middlebox uses NIC, CPU and GPU at different stages, data is copied back and
forth among NIC Buffer, CPU RAM, and GPU VRAM. As shown in Figure 7.1, a video
packet is copied 6 times among devices in the Video Processor. Among them, three copies are
for encoded video frames and three copies are for raw video frames. While copying encoded
streams takes small amount of time, copying raw frames can take much longer. For example,



CHAPTER 7. FUTURE WORK 27

as the PCI-E 3.0 x16 bus used by the NVIDIA Grid K520 graphic card has a bandwidth
of 16 GB/s [16], a 6.22 MB 1080p raw frame needs at least 0.38 ms to be copied through
that bus and copying it three times adds at least 1 ms to the playback delay. The actual
overhead can be much larger as 16 GB/s is only the theoretical maximum and does not take
into account the start-up and tear-down cost of an inter-device data transfer operation.

To reduce such overhead, we could first implement stages between Decode and Encode

using GPU based solutions [37, 48] so that we only copy encoded frames to and from the GPU,
as shown in Figure 7.2. We could then implement algorithms to depacketize and packetize
RTP streams on the GPU. When all stages are implemented on the GPU, we could take
advantage of existing NIC-GPU memory optimizations to directly copy data between the
NIC buffer and VRAM [32, 66], reducing the number of memory copies to two as shown
in Figure 7.3. Given the playback delay of our current system, such an optimization may
enable Video Processing on Type 3 applications.
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Figure 7.2: Memory Copy with GPU Based Video Processing
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Figure 7.3: NIC-GPU Memory Optimization
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Chapter 8

Related Work

Our work contributes to and was inspired by a multidisciplinary group of researches in
middleboxes, Software-Defined Networking (SDN), computer vision algorithms, hardware
accelerated network devices.

8.1 Middlebox

The core of our work touches multiple aspects of middlebox technologies including packet
filters, deep packet inspection, and media gateways.

Packet Filters: Our middlebox relies on packet filters to extract video streams from
network traffic using the address and port number 4-tuple. In the past, a variety of user space
and kernel level packet filters were invented [44, 19, 22], allowing us to create packet filters
on commodity machines with ease. Recently, the development of SDN based approach such
as OpenFlow [45] makes our deployment even easier. Currently, we use the Click Software
Router [39] because it is easy to set up and our main focus is on the Video Processor instead
of the Packet Filter. In the future, the Packet Filter could be implemented more efficiently
in kernel space or on hardware.

Deep Packet Inspection: The motivations of our work lie in parallel with the de-
velopment of Deep Packet Inspection (DPI). Researchers have invented Intrusion Detection
Systems (IDS) [2, 56] to protect local users from exposing to inappropriate or dangerous
content. There are also Exfiltration prevention systems [12, 43, 61] that protect a local net-
work from accidental loss of private data. However, most of these applications are limited
to fixed field processing and textual pattern matching, and are not capable of performing
complex operations on visual semantic content in video streams.

Media Gateways: Researchers invented media gateways that are able to transcode
voice and video formats [59, 34, 17]. This kind of middlebox is useful in reducing end-host
workload for IPTV and video conferencing applications. However, a media gateway does not
analyze media content. Even if it does, it does not use as equally sophisticated computer
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vision algorithms as described in this paper and therefore is not functionally equivalent to
our middlebox.

8.2 Software-Defined Networking

While our work introduces a new network application, it is not useful unless deployed.
The rise of Software-Defined Networking (SDN) technologies eases the deployment of our
application. Software enabled network switches such as OpenFlow [45] and BESS [31] al-
low packet filters to be fully programmable. With this, the Gateway Deamon can directly
modify the flow table to redirect video traffic to its Video Processor without going through
the Gateway Daemon. Moreover, recent developments in Network Function Virtualization
(NFV) [49, 27] help facilitate the deployment of new network applications by handling low
level resources management. However, we observe that most NFV frameworks do not allo-
cate GPU resources. With more network appliances that use GPU, there is a greater need
for GPU provisioning through NFV platforms.

8.3 Computer Vision Algorithms

Our work replies on recent developments in computer visions algorithms such as the
Viola-Jones Face Detection Algorithm [68, 67] and the OpenCV library [10]. However, to
our knowledge, very few computer visions algorithms were specially designed for network
appliances. Thus, they did not take into account the requirement on processing time and
scalability. Our work demonstrates that, a tunable computer vision algorithm can maximize
resource usage in a middlebox while meeting the processing time constraint.

8.4 Hardware Accelerated Network Devices

Past research projects like PacketShader [32] have already integrated the GPU into net-
work appliances. They exploit GPU’s parallelism to accelerate traditional network opera-
tions. However, few of these projects explore the aspect of applying computer vision al-
gorithms on network traffic. While middleboxes in these projects do not provide the same
function as ours, we could utilize their memory optimization techniques to speed up our
computation, as described in Section 7.2.
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Chapter 9

Conclusion

We have presented MiBao, a Video Processing Middlebox that performs face detection
and blur on an H.264 encoded RTP-UDP video stream. Pipelining, GPU acceleration, and a
tunable context-aware face detection algorithm significantly reduce the processing time and
improve the throughput of our middlebox. Using an AWS g2.2xlarge instance, our middlebox
is able to process up to four 1080p video streams at 25 FPS with less than 100 ms playback
delay and more than 60% accuracy by F-measure.

As a proof of concept, our middlebox shows that video stream processing on the wire
using computer vision algorithms is not only feasible but also scalable. Deployment of such
middlebox will alleviate the concern over privacy leakage and inappropriate content exposure
through video streaming applications.
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