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Abstract

Large-Scale Analysis of Modern Code Review Practices and Software Security in
Open Source Software

by
Christopher Thompson

Doctor of Philosophy in Computer Science
University of California, Berkeley
Professor David Wagner, Chair

Modern code review is a lightweight and informal process for integrating changes into
a software project, popularized by GitHub and pull requests. However, having a rich
empirical understanding of modern code review and its effects on software quality and
security can help development teams make intelligent, informed decisions, analyzing
the costs and the benefits of implementing code review for their projects, and provide
insight on how to support and improve its use.

This dissertation presents the results of our analyses on the relationships between
modern code review practice and software quality and security, across a large popu-
lation of open source software projects. First, we describe our neural network-based
quantification model which allows us to efficiently estimate the number of security
bugs reported to a software project. Our model builds on prior quantification-optimized
models with a novel regularization technique we call random proportion batching. We
use our quantification model to perform association analysis of very large samples of
code review data, confirming and generalizing prior work on the relationship between
code review and software security and quality. We then leverage timeseries change-
point detection techniques to mine for repositories that have implemented code review
in the middle of their development. We use this dataset to explore the causal treatment
effect of implementing code review on software quality and security. We find that im-
plementing code review may significantly reduce security issues for projects that are al-
ready prone to them, but may significantly increase overall issues filed against projects.
Finally, we expand our changepoint detection to find and analyze the effect of using au-
tomated code review services, finding that their use may significantly decrease issues
reported to a project. These findings give evidence for modern code review being an
effective tool for improving software quality and security. They also suggest that the
development of better tools supporting code review, particularly for software security,
could magnify this benefit while decreasing the cost of integrating code review into a
team’s development process.
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Chapter 1

Introduction

Code inspections are costly and formal, and frequently not performed as often as they
maybe should be. In comparison, modern code review is lightweight, informal, and
frequently integrated into the tools already used by developers. In modern code review,
reviewers leave comments (in the form of feedback, discussion, or suggested changes)
on changes before they are integrated into the codebase. The goals of modern code
review are to ensure that the code is free of defects, that it follows team conventions,
that it solves problems in a reasonable way, and is generally of high quality.

All of this makes modern code review a particularly interesting software engineer-
ing process to study. There has been much research into code review process and how
it relates to software quality in general [2, 3, 42, 65], but the connection to the security
of software has been less thoroughly explored. Software security is a form of software
quality, but there is reason to believe that software vulnerabilities may be different
from general software defects [10, 43, 68].

Heitzenrater and Simpson [30] called for the development of a “secure software
development economics” to provide a foundation for reasoning about investments into
software development processes for software security. As Heitzenrater and Simpson
write, “Management is often reluctant to make investments in security processes or
procedures without a business case demonstrating a tangible return on investment.”
Having a rich theoretical and empirical understanding of software process and its
effects on software quality and security can help development teams make intelligent,
informed decisions trading off the costs and the benefits of different practices. As part
of this decision, teams must balance security and functionality expenditure. However,
modern code review potentially benefits both, while being a lightweight (and lower
cost) process compared to formal code inspections. Furthermore, costs to deal with
errors increase as development continues [30]. Modern code review can catch issues
before changes are integrated.

Czerwonka, Greiler, and Tilford [15] argue that code review, as it is currently im-
plemented, can lack usefulness and be an expensive commitment. Their (admittedly
exaggerated) title, “Code Reviews Do Not Find Bugs: How the Current Code Review
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Practice Slows Us Down”, belies a more complex complaint: Based on data within Mi-
crosoft, they find that code review can have outsized and often ignored costs, while
the effects are less well understood than we might think. For example, code reviews
often fail to find any issues that require blocking the change from being integrated,
and current practices may not be optimally applied (particularly in terms of review
priority and reviewer assignment).

Modern code review can be considered to be expensive, disruptive, or slow. It is
often viewed as an obstacle to productivity, at best grudgingly performed. Code review
needs more research (what do we know about it) and development (how can we make
better tools to help with it). Prioritizing important review (by component or type of
change, for example), improving usefulness of review with better tools, and automating
the routine review tasks (e.g., style issues) to improve the review process can all help
reduce the perceived costs of code review. But development teams can only adequately
consider the costs if they also understand the benefits.

Our goal is to better understand how code review coverage and participation af-
fect security. Empirical evidence for the relationship between code review process and
software security (and software quality) could help improve code review automation
and tools or encourage the adoption of code review process. Prior work in this area
has primarily been limited to case studies of a small handful of software projects [42,
44, 65]. To the best of our knowledge, we present the first large-scale analyses of the
relationship between code review and software security in open source projects.

Modern code review can be one part of a broader set of secure software develop-
ment processes, but we need measures of the effectiveness of code review to be able
to evaluate investments into code review processes. In this dissertation, we focus on
more precisely understanding the effects of code review practice, as commonly imple-
mented in open source software projects using pull requests. We provide evidence that
code review coverage is positively correlated with software quality and software se-
curity. Furthermore, we show that by implementing thorough code review practices,
some open source software projects may improve the security of their software. We
believe this evidence adds credence to the usefulness of modern code review practices.
Finally, we show that automated code review may greatly improve software quality,
motivating further development of tools supporting code review.

The remainder of this thesis is organized as follows. We begin with an overview of
the modern code review process in Chapter 2, covering the state of research into code
review and research related to this thesis. Chapter 3 presents an overview of quan-
tification models, and our neural-network based quantifier for estimating the number
of security issues reported to a project. Chapter 4 presents our correlational study
of code review practices and software quality and security. Chapter 5 presents our
changepoint-based treatment detection technique, and our quasi-experimental study
of the causal effects of code review practices on software quality and security. Finally,
in Chapter 5.6 we draw conclusions, summarize the main contributions of this thesis,
and discuss potential directions for future research.
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We have made our datasets, analysis scripts, and software are available online [63].

Thesis Contributions

We show that:

• Quantification models can be a powerful tool for estimating quantities of interest
for large-scale studies where hand-labeling would be impossible. Our quantification-
optimized neural network can estimate the fraction of security issues in a set of
issues with only 4% error. (Chapter 3)

• Projects with fewer merged pull requests that are unreviewed (merged by their
creator without any comments) tend to have fewer overall issues filed against
them, as well as fewer security bugs reported in their issue trackers. (Chapter 4)

• Projects that on average have more review comments per pull request (comments
on specific lines of code) tend to have fewer overall issues filed against them, but
we found no relationship with security bugs. (Chapter 4)

• Combining timeseries changepoint analysis and quasi-experimental design method-
ology allows us to test the causal relationship between code review practices and
software quality and security. (Chapter 5)

• The implementation of modern code review may reduce security issues for projects
that are prone to them, but can increase the number of overall issues reported
to projects. (Chapter 5)

• The use of automated code review services can have a stronger effect than peer
code review for reducing overall issues. It may be particularly effective for projects
with little existing code review practices. However, we found no such effect on se-
curity bugs. (Chapter 5)
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Chapter 2

Background

Formal software inspection generally involves a separate team of inspectors examining
a portion of the code to generate a list of defects to later be fixed [2]. In contrast, modern
code review is much more lightweight, focusing on reviewing small sets of changes
before they are integrated into the project. In addition, modern code review can be
much more collaborative, with both reviewer and author working to find the best fix
for a defect or solution to an architectural problem [56].

Modern code review is also often about more than finding defects. Code review can
help transfer knowledge, improve team awareness, or improve the quality of solutions
to software problems [3]. It also has a positive effect on understandability and collec-
tive ownership of code [7].

GitHub,1 the largest online repository hosting service, encourages modern code
review through its pull request system. For open source projects, a pull request (often
shortened to “PR”) is an easy way to accept contributions from outside developers.
Pull requests provide a single place for discussion about a set of proposed changes
(“discussion comments”), and for comments on specific parts of the code itself (“review
comments”). They also assist with code review by showing diffs of the changes made,
and integrate with a host of third-party code analysis and testing tools. Figure 2.1
shows an example of a pull request on a GitHub repository.

An example of a pull request-based review process is to require that all commits go
through pull requests and have a minimum amount of review. For example, a project
might require any change be approved by at least one reviewer who is knowledge-
able about the component being modified before that change is merged into the main
branch of the repository. (This is similar to the policy used by the Chromium browser
project [13].)

However, not all projects have such a strictly defined or enforced development pro-
cess, or even consistently review changes made to their code base. Code review cover-
age is a metric for what proportion of changes are reviewed before being integrated

1https://github.com

https://github.com
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Figure 2.1: A pull request on GitHub. Pull requests provide a single place for discus-
sion about a set of proposed changes, and for comments on specific parts of the code
itself. Here, we see a user contributing a new feature for Electron (https://github.com/
electron/electron). They summarize their changes and refer to a prior issue. Their
commits are listed, and a reviewer can load them to view a diff of all of the changes
made. Below, a reviewer has written an inline code review comment regarding a snip-
pet of code that is potentially unsafe. This project requires approval from specific re-
viewers before a pull request can be merged.

https://github.com/electron/electron
https://github.com/electron/electron
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into the code base for a project. Previous case studies have examined the effects of code
review coverage on software quality [42, 65] and software vulnerabilities [44] among
a handful of large software projects. We extend and generalize these prior studies by
performing quantitative analysis of these effects in a very large corpus of open source
software repositories on GitHub.

2.1 Related Research

The nature of vulnerabilities
Software security is a form of software quality, but there is reason to believe that soft-
ware vulnerabilities may be different from general software defects. Camilo et al. [10]
examined 374,686 bugs and 703 post-release vulnerabilities in the Chromium project,
and found that vulnerabilities tend to be distributed differently throughout software
than general defects (that is, files with the highest defect density did not intersect
with those with the highest vulnerability density). Meneely et al. [43] examined 68
vulnerabilities in the Apache HTTP Server project and traced them back to the com-
mits that originally contributed the vulnerable code. They found that vulnerabilities
were connected to changes with higher churn (more lines of code added and removed;
vulnerability-contributing commits had more than twice as much churn on average)
and newer developers than those connected to general defects. Zaman et al. [68] did
a case study of the Firefox project and found that vulnerabilities tended to be fixed
faster than general defects, but their bug reports tended to be reopened more often.
Ozment and Schechter [51] found evidence that the number of foundational vulnera-
bilities reported in OpenBSD decreased as a project aged, but new vulnerabilities are
reported as new code is added.

Edmundson et al. [16] examined the effects of manual code inspection on a piece
of web software with known and injected vulnerabilities. They found that no reviewer
was able to find all of the vulnerabilities, that experience did not necessarily reflect
accuracy or effectiveness (the effects were not statistically significant), and that false
positives were correlated with true positives (𝑟 = 0.39). It seems difficult to predict
the effectiveness of targeted code inspection for finding vulnerabilities.

Code review and software quality and security
McIntosh et al. [42] studied the connection between code review coverage and partic-
ipation and software quality in a case study of the Qt, VTK, and ITK projects, which
use the Gerrit code review tool.2 They used multiple linear regression models to ex-
plain the relationship between the incidence of post-release defects (defects in official
releases of software) and code review coverage (the proportion of self-reviewed changes,

2https://www.gerritcodereview.com/

https://www.gerritcodereview.com/
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the proportion of hastily reviewed changes, and the proportion of changes without dis-
cussion). They used keyword search on the commit messages to determine whether
each change fixes a defect (a “bug-fixing commit”). These keywords included words
like “bug”, “fix”, “defect”, or “patch”. For general defects, they found that both review
coverage and review participation are negatively associated with post-release defects.

Meneely et al. [44] analyzed the socio-technical aspects of code review and security
vulnerabilities in the Chromium project (looking at a single release). They labeled
each source code file as “vulnerable” if it was fixed for a specific CVE3 after the re-
lease, or “neutral” if not. They measured both the thoroughness of reviews of changes
to files (the total number of reviews, reviewers, and participants a file had; the aver-
age number of reviewers per code review who did not participate; the percentage of
reviews with three or more reviewers; and the percentage of reviews that exceeded
200 lines per hour, a threshold for “fast” reviews [36]), and socio-technical familiarity
(whether the reviewers had prior experience on fixes to vulnerabilities and how famil-
iar the reviewers and owners were with each other). They performed an association
analysis among all these metrics, and found that vulnerable files tended to have many
more reviews. In contrast to the results of McIntosh et al., vulnerable files also had
more reviewers and participants, which may be evidence of a “bystander apathy” effect.
These files also had fewer security-experienced participants. They conclude that secu-
rity code review is much more nuanced than the “many eyes make all bugs shallow”
argument—a diversity of eyes may play a bigger role.

In a similar vein, Rahman et al. [54] found that reviewer expertise was a promising
metric to use for recommending useful reviewers for pull requests in GitHub. They
proposed a system that leveraged relevant cross-project work history (prior review
experience on changes involving the same technologies or external libraries). They
evaluated their recommendation tool with a study of 10 commercial projects (with
13,081 pull requests) and 6 open source projects (with 4,034 pull requests), and found
that their technique provides 85-92% recommendation accuracy.

Bosu et al. [8] studied factors that improve the quality and usefulness of code re-
views. They began by performing qualitative interviews with developers at Microsoft.
Their interviews yielded 145 comments rated on their usefulness, which they supple-
mented by manually analyzing another 844 review comments. They used this dataset
to develop an automated classifier that can distinguish between useful and not useful
review comments, and then applied their classifier to over a million review comments
on five Microsoft projects. They found that reviewer experience and the size of the
changesets have an effect on the usefulness of reviews.

Vasilescu et al. [67] investigated the use of continuous integration (CI) services in
GitHub repositories. A common use of continuous integration is to automate running
the test suite for a piece of software on every commit before integration. On GitHub,

3A CVE (Common Vulnerabilities and Exposures) identifier, sometimes simply referred to as “a
CVE”, is a unique reference to a publicly known security vulnerability.
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there are continuous integration services that integrate directly into the pull request
interface, showing whether the proposed changes in a pull request can be cleanly
merged into the project. Vasilescu et al. looked at a sample of 223 repositories that
used the popular Travis-CI service. They selected repositories that were not forks;
had not been deleted; were at least one year old; received both direct commits and pull
requests; were written in Java, Python, or Ruby; had at least 10 changes (commits or
pull requests) during the last month; and had at least 10 contributors. This included
several popular open source projects (such as rails and elasticsearch). They found that
direct code modifications (those pushed directly to the main repository) were more
common than pull requests, and, perhaps surprisingly, were more likely to result in
successful builds than pull requests. However, they did not attempt to analyze why this
might be the case, or to control for other potentially confounding factors. Continuous
integration is promising as a tool for automating many code review tasks, improving
the efficacy and consistency of code review while reducing its overall costs. In Chap-
ter 5 we look at the use of automated code review services, one form of continuous
integration tooling, to see if they have an effect on software quality and security.

Programming languages and software quality and security
Ray et al. [55] looked at the effects of programming languages on software quality. For
the top 19 programming languages on GitHub, they took the top 50 repositories for
each (by number of “stars”), and then filtered out the bottom quartile by number of com-
mits, giving them a dataset of 729 repositories. They categorized languages into differ-
ent classes by programming paradigm (Procedural, Scripting, or Functional), compi-
lation class (Static or Dynamic), type class (Strong or Weak), and memory class (Man-
aged or Unmanaged). They counted defects by detecting “bug-fix commits”—commits
that fix a defect, found by matching error-related keywords, which included “bug”, “fix”,
“issue”, “mistake”, “incorrect”, “fault”, “defect”, and “flaw”. They categorized bugs into
seven categories based on their cause and impact. To do this, they first randomly chose
10% of the bug-fix commits and used keyword search to categorize them with potential
bug types. Then, they used those categorized commits to train an SVM-based classifier
using the bag-of-words features for each commit message. They manually annotated
180 randomly chosen bug fixes, equally distributed across all of their bug categories.
They had 75% precision and 83.33% recall for the “Security” category. Their best per-
formance was for the “Concurrency” category, with 100% precision and 90.91% recall.
They then used their classifier to predict the categories of their entire corpus of bug-
fix commits, and used a negative binomial regression model to model the relationship
between the number of bug-fix commits and the language categories of a project. They
specifically chose negative binomial regression as it correctly models non-negative in-
teger responses (in their case, the number of bug-fix commits) that may have overdis-
persion (where the response variance is greater than the mean). We use the same
type of model for our analysis of the number of issues and security issues a project
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has. They found that some languages have a greater association with defects than
other languages, but the effect is small. They also found that language has a greater
impact on specific categories of defects than it does on defects in general. For example,
procedural, static, weakly-typed, and unmanaged languages (such as C) had a high
proportion of memory bugs.

Ruef et al. [58] created a “Build It Break It Fix It” contest design to gather evi-
dence of how team composition, tools, methods, processes, and programming language
choices affect the correctness, performance, and security of software. The contests used
a fixed programming task, but were open ended in how teams approached and built the
software. The second phase of the contests involved teams finding flaws (in correctness
and security) in the software produced by other teams. The third phase allowed teams
to submit patches to address each flaw found in their software. Ruef et al. designed
the contest structure to try to provide incentives for each team to follow the tasks
closely and in the expected manner—to maximize the correctness, performance, and
security of the software they built. However, there was no assignment of techniques,
languages, or process among the teams—they were allowed to freely choose how they
developed their software (thus it was not a randomized experiment). They found that
while teams using C and C++ had the most efficient software, they were much more
likely to have security flaws (and almost all the increased security flaws were related
to memory-safety issues). Similarly, memory-safe but statically-typed languages were
less likely to have security flaws. Teams with diverse programming language knowl-
edge created more secure code. They also found that breaking teams that were also
successful building teams were better at finding security bugs.
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Chapter 3

Quantification of Security Issues

An earlier version of the work in this chapter appears in the Pro-
ceedings of the 13th International Conference on Predictive Mod-
els and Data Analytics in Software Engineering (PROMISE) [64].

Ultimately, our studies involve statistical techniques to explore the relationship
between code review and security using archival data. To measure security outcomes,
we count the number of security bugs reported against a particular project and use
this as a proxy measure of the security of the project.

The challenge is that this would seem to require examining each issue reported on
the GitHub issue tracker for each project in our samples. For our association analysis
in the next chapter on 2,881 repositories, we would have to examine 464,280 issues to
determine whether each issue is security-related or not. It seems infeasible to manu-
ally label each issue as a security bug or non-security bug. Instead, we use machine
learning techniques to construct a quantifier that can estimate, for each project, the
proportion of issues that are security-related. Our approach is an instance of quantifi-
cation, which is concerned with estimating the distribution of classes in some pool of
instances: e.g., estimating the fraction of positive instances, or in our case, estimating
the fraction of issues that are security-related. Quantification was originally formal-
ized by Forman [19] and has since been applied to a variety of fields, from sentiment
analysis [20] to political science [31] to operations research [19]. We build on the tech-
niques in the literature and extend them to construct an accurate quantifier for our
purposes.

One of the insights of the quantification literature is that it can be easier to esti-
mate the fraction of instances (out of some large pool) that are positive than to classify
individual instances. In our setting, we found that accurately classifying whether an
individual issue is a security bug is a difficult task (reaching at best 80-85% classifi-
cation accuracy). In contrast, quantification error can be smaller than classification
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error (the same models achieved around 8% average absolute quantification error—
see “RF CC” in Figure 3.2). Intuitively, the false positives and the false negatives of
the classifier can cancel each other out when the proportion is being calculated.1

For our research goals, the crucial insight is that we are only concerned with esti-
mating the aggregate proportion of security issues in a repository, rather than any of
the individual labels (or predicting the label of a new issue). In particular, our regres-
sion models only require knowing a count of how many security issues were reported
against a particular project, but not the ability to identify which specific issues were
security-related. Thus, quantification makes it possible to analyze very large data sets
and achieve more accurate and generalizable results from our regression models.

Using our best methods described below, we were able to build a quantifier that
estimates the fraction of issues that are security-related with an average absolute
error of only 4%.

We distinguish our task of quantification from prior work in vulnerability predic-
tion models. For example, Gegick et al. [21] developed a predictive model to identify
software components with the highest security risk. We refer the reader to Hall et
al. [29], which reviewed 208 fault prediction studies from 2000-2010 and provides
a good overview of this space. We are concerned about textual issues reported in a
project’s issue tracker, rather than identifying vulnerable components in the project’s
source code. Our goal is not prediction, where we would want to correctly label each
new instance we see (such as has been addressed in work by Gegick [22], where their
text-based bug report classifier was able to successfully classify 78% of security bug re-
ports). Instead, the goal of our models is to estimate the proportion of positive (security-
related) instances (issues) in an existing population.

3.1 Basic Quantification Techniques

We start by reviewing background material on quantification. Quantification is a su-
pervised machine learning task: we are given a training set of labeled instances (𝑥𝑖, 𝑦𝑖).
Now, given a test set 𝑆, the goal is to estimate what fraction of instances in 𝑆 are from
each class. Quantification differs from standard supervised learning methods in that
the class distribution of the training set might differ from the class distribution of the
test set: e.g., the proportion of positive instances might not be the same.

Many classifiers work best when the proportion of positive instances in the test set
is the same as the proportion of positive instances in the training set (i.e., the test set
and training set have the same underlying distribution). However, in quantification,
this assumption is violated: we train a single model on a training set with some fixed
proportion of positives, and then we will apply it to different test sets, each of which
might have a different proportion of positives. This can cause biased results, if care

1In practice, this independence of errors may not hold, but many quantification techniques focus on
adjusting for such bias.
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is not taken. Techniques for quantification are typically designed to address this chal-
lenge and to tolerate differences in class distribution between the training set and
test set [19]; a good quantification approach should be robust to variations in class
distribution.

Several methods for quantification have been studied in the literature. The “naive”
approach to quantification, called Classify and Count (CC) [19], predicts the class dis-
tribution of a test set by using a classifier to predict the label 𝑦𝑖 for each instance and
then counting the number of instances with each label to estimate the proportion of
positive instances:

�̂� = 1
𝑁 ∑

𝑖
𝑦𝑖.

In other words, we simply classify each instance in the test set and then count what
fraction of them were classified as positive.

The Adjusted Count (AC) method [19] tries to estimate the bias of the underlying
classifier and adjust for it. Using 𝑘-fold cross-validation, the classifier’s true positive
rate (𝑡𝑝𝑟) and false positive rate (𝑓 𝑝𝑟) can be estimated. For our experiments, we used
𝑘 = 10 (a common default for cross-validation folds [38]). The adjusted predicted pro-
portion is then

�̂�𝐴𝐶 = �̂� − 𝑓 𝑝𝑟
𝑡𝑝𝑟 − 𝑓 𝑝𝑟 .

Some classifiers (such as logistic regression) output not only a predicted class 𝑦,
but also a probability score—an estimate of the probability that the instance has class
𝑦. The Probabilistic Adjusted Classify and Count (PACC) method builds on the AC
method by using the probability estimates from the classifier instead of the predicted
labels [6]. It uses estimates of the expected true positive and false positive rates (com-
puted using cross-validation, as with AC). The adjusted predicted proportion is then

�̂�𝑃𝐴𝐶𝐶 = �̂� − E[𝑓 𝑝𝑟]
E[𝑡𝑝𝑟] − E[𝑓 𝑝𝑟].

3.2 Quantification Error Optimization

More recently, researchers have proposed training models to optimize the quantifica-
tion error directly instead of optimizing the classification error and then correcting it
post-facto [4, 17, 46]. Forman was the first to use Kullback-Leibler Divergence (KLD),
which measures the difference between two probability distributions, as a measure
of quantification error [19]. For quantification, KLD measures the difference between
the true class distribution and the predicted class distribution. Given two discrete
probability distributions 𝑃 and �̂�, the KLD is defined as

KLD(𝑃|�̂�) = ∑
𝑖

𝑃(𝑖) log 𝑃(𝑖)
�̂�(𝑖)

.
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The KLD is the amount of information lost when �̂� is used to approximate 𝑃.
In quantification, 𝑃 represents the true class distribution (e.g., proportion of posi-

tive and negative instances) and �̂� the predicted distribution (according to the output
of the model). A lower KLD indicates that the model will be more accurate at the
quantification task. Thus, rather than training a model to maximize accuracy (as is
typically done for classification), for quantification we can train the model to minimize
KLD.

Esuli and Sebastiani [17] use structured prediction (based on SVMperf [34, 35])
to train a SVM classifier that minimizes the KLD loss. They call their quantifier
SVM(KLD), and it has been used for sentiment analysis tasks [20]. However, we were
unable to reproduce comparable KLD scores on simple test datasets, and found the ex-
isting implementation difficult to use. Other researchers report subpar performance
from SVM(KLD) compared to the simpler CC, AC, or PACC quantification methods for
sentiment analysis tasks [50].

3.3 NNQuant and Randomized Proportion Batching

Building on the idea of optimizing for quantification error instead of accuracy, we
construct NNQuant, a neural network quantifier trained using TensorFlow [1] to min-
imize the KLD loss. TensorFlow allows us to create and optimize custom machine
learning models and has built-in support for minimizing the cross-entropy loss. We
express the KLD in terms of the cross entropy via

KLD(𝑃|�̂�) = 𝐻(𝑃, �̂�) − 𝐻(𝑃),

that is, the difference of the cross entropy of 𝑃 and �̂� and the entropy of 𝑃. Because
for any given training iteration the entropy of the true class distribution 𝐻(𝑃) will be
constant, minimizing the cross entropy 𝐻(𝑃, �̂�) will also minimize the KLD.

We implement a fully-connected feed-forward network with two hidden layers of
128 and 32 neurons, respectively. The hidden layers use the ReLU activation function.
The final linear output layer is computed using a softmax function so that the output
is a probability distribution. Training uses stochastic gradient descent with random
batches, using the gradient of the cross entropy loss between the predicted batch class
distribution and the true batch class distribution. A reduced version of the network
architecture is shown in Figure 3.1.

Naive random batching can cause the neural network to simply learn the class
distribution of the training set. To combat this, we implemented random proportion
batching: for each batch, we initially set the batch to contain a random sample of in-
stances from the training set; then we randomly select a proportion of positives 𝑝 (from
some target range of proportions) and select a maximum-size subset of the initial set
such that the sub-batch proportion is 𝑝; finally, we evaluate the model’s KLD on that
sub-batch. This objective function is equivalent to minimizing the model’s average



Chapter 3. Quantification of Security Issues 14

x0

x1

x2

x3

x4

x5

Input layer
(415 features)

Hidden layer
(128 neurons)

Hidden layer
(32 neurons)

y1

y2

Output layer
(2 neurons)

Figure 3.1: A reduced-size version of our neural network architecture, with fewer neu-
rons at each layer but the same network design. Our neural network quantifier is a
fully-connected feed forward network with two hidden layers of 128 and 32 neurons,
with 415 input features and 2 output neurons. Each layer except the output layer in-
cludes a bias neuron (yellow), which is connected only to the neurons in the next layer.
The hidden layers use the ReLU activation function. The output layer uses the softmax
activation function so that the output is a probability distribution.

KLD, where we are averaging over a range of proportions 𝑝 for the true proportion of
positives. This training procedure acts as a form of regularization, forcing the model to
be accurate at the quantification task over a wide range of values for the true propor-
tion 𝑝 of positives, and thus provides robustness to variations in the class distribution.
Pseudocode for our training procedure is shown in Algorithm 1.

Our network architecture is kept intentionally simple, and as shown below, it per-
forms very well. The number of hidden layers and their sizes were chosen to be small
enough to train quickly while still allowing the model to learn non-linear relationships
that a simpler linear model could not, but other applications of our techniques may re-
quire tweaking the size of the network. We leave heavy optimization of the network
design or testing of alternative architectures to future work.
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Data: Training data (𝑋 , 𝑦) with binary (0, 1) labels, batch size 𝑏, proportions
𝑝𝑠, max steps 𝑛

Result: A trained network
begin

for 𝑠𝑡𝑒𝑝 ← 1 … 𝑛 do
Shuffle training data;
Split training data into batches of size 𝑏;
for 𝑏𝑎𝑡𝑐ℎ ∈ 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 do

Choose a random proportion 𝑝 ∈ 𝑝𝑠;
𝑠𝑢𝑏_𝑏𝑎𝑡𝑐ℎ ← MaxSizeSubsetWithProportion(𝑏𝑎𝑡𝑐ℎ, 𝑝);
𝑦𝑡𝑟𝑢𝑒 ← mean(𝑠𝑢𝑏_𝑏𝑎𝑡𝑐ℎ𝑦);
𝑦𝑝𝑟𝑒𝑑 ← Predict(𝑠𝑢𝑏_𝑏𝑎𝑡𝑐ℎ𝑋);
𝑙𝑜𝑠𝑠 ← KLD(𝑦𝑡𝑟𝑢𝑒, 𝑦𝑝𝑟𝑒𝑑);
Update the network using 𝑙𝑜𝑠𝑠;

end
end

end
Algorithm 1: Pseudocode of the random-proportion batching training procedure
used in NNQuant.

3.4 Feature Extraction

In all of our quantification models we used the following features. We extract features
from the text of the issue using the “bag-of-words” approach over all 1- and 2-grams.
We extract all of the text from each issue, remove all HTML markup and punctua-
tion from the text, stem each word (remove affixes, such as plurals or “-ing”) using
the WordNet [53] lemmatizer provided by the Natural Language Toolkit (NLTK) [40],
compute token counts, and apply a term-frequency inverse document frequency (TF-
IDF) transform [59] to the token counts. Separately, we also extract all of the labels
(tags) from each issue, normalize them to lowercase,2 and apply a TF-IDF transform
to obtain additional features. We also count the number of comments on each issue,
and extract the primary language of the repository. The combination of all of these
were used as our features for our quantifiers.

2To avoid the potential for overfitting due to interaction with how we selected issues to be hand-
labeled, we remove the tag “security” if present.
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3.5 Methodology

To train and evaluate our quantifiers, we hand-labeled 1,097 issues to indicate which
ones were security issues and which were not. We reserved 10% of them (110 issues)
as a test set, and used the remaining 987 issues as a training set.

We selected the 1,097 issues carefully, to reduce class imbalance. Because security
issues are such a small fraction of the total population of issues, simply selecting a
random subset of issues would have left us with too few security issues in the training
and test sets. Therefore, we used the tags on each issue as a heuristic to help us find
more issues that might be security-related. In particular, we collected a set of issues
with the “security” tag, and a set of issues that lacked the “security” tag; both sets
were taken from issues created from January 2015 to April 2016, using the GitHub
Archive (issue events in the GitHub Archive before 2015 did not have tag information).
We restricted the non-security-tagged issues to one per repository, in order to prevent
any single project from dominating our dataset. We did not limit the security-tagged
issues, due to the limited number of such issues. This left us with 84,652 issues without
the “security” tag and 1,015 issues with the “security” tag. We took all of the security-
tagged issues along with a random sample of 2,000 of the non-security-tagged issues
and scraped all of the text and metadata for each issue using the GitHub API:

• The owner and name of the repository

• The name of the user who created the issue

• The text of the issue

• The list of any tags assigned to the issue

• The text of all comments on the issue

• The usernames of the commenters

• The time the issue was created

• The time the issue was last updated

• The time the issue was closed (if applicable)

We then hand-labeled 1,097 of these issues, manually inspecting each to determine
it was a “security bug”. We considered an issue filed against the repository to be a secu-
rity bug if it demonstrated a defect in the software that had security implications or fell
into a known security bug class (such as buffer overruns, use-after-free, XSS, CSRF),
even if it was not specifically described in that way in the bug report. We treated the
following as not being security bugs:

• Out-of-date or insecure dependencies
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• Documentation issues

• Enhancement requests not related to fundamental insecurity of existing soft-
ware

We compensated for the generally low prevalence of security bugs by hand-labeling
more of the issues from our “security”-tagged set. After hand-labeling we had 224
security bug issues and 873 non-security bug issues. This dataset is available in our
accompanying online materials [63].

Table 3.1 shows the top repositories included in the set of “security”-tagged issues
we labeled. Despite not constraining the number of issues per repository, no single
repository appears to dominate our sample of security issues.

Table 3.1: Top 20 repositories in our set of “security”-tagged issues that we ended up
hand-labeling and including in our quantifier dataset. The largest contributor, own-
cloud/core only accounted for 39 “security”-tagged issues. It does not appear that any
single repository dominated our dataset.

Repository # Issues
owncloud/core 39
zcash/zcash 32
grpc/grpc 31
uclibs/scholar_uc 25
NixOS/nixpkgs 21
pavel-pimenov/flylinkdc-r5xx 18
GEWIS/gewisweb 14
defuse/php-encryption 12
AdguardTeam/AdguardForWindows 12
okulbilisim/ojs 10
chocolatey/choco 10
thaliproject/Thali_CordovaPlugin 9
brave/browser-laptop 9
GDG-Ukraine/gdg.org.ua 9
Electric-Coin-Company/zcash 9
oraj-360/oraj360tool 8
mozilla/id.webmaker.org 8
education/classroom 8
UprootLabs/gngr 8
Nubisproject/nubis-meta 8

The “security” tag on GitHub had a precision of 37% and a recall of 99% when
compared to our hand-labeling. This very low precision validates our decision to hand-
label issues and develop quantification models to analyze our main repository corpus.
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3.6 Evaluation

We implemented and tested a variety of quantifiers. We tested CC, AC, and PACC
with logistic regression, SVM, random forest, and XGBoost [12] classifiers under a va-
riety of settings, along with various configurations of our neural network-based quan-
tifier. Figure 3.2 shows the relative error over all proportions 𝑝 ∈ [0.0, 1.0] for the
top-performing quantifiers. Our neural network quantifier, when trained on propor-
tions of positives in the range [0.0, 0.1] (the “low range”), performed the best on our
test set, with the lowest mean absolute error (0.04) and the lowest mean KLD (0.01),
so we adopt it for all our subsequent analyses.

Finally, Figure 3.4 shows the relative error over only low proportions 𝑝 ∈ [0.0, 0.2]
for the same quantifiers. The relative performance of the quantifiers is similar to
the performance for the full range, but the full range neural network quantifier out-
performs the others in this restricted interval.
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Figure 3.2: Plots of predicted proportion vs. true proportion for our quantifiers on our
reserved test set. The dotted line marks the line 𝑦 = 𝑥, which represents the ideal (a
quantifier with no error); closer to the dotted line is better. Each quantifier is labeled
with the mean absolute error over all proportions and the standard error of that mean.
Our “low range” neural network quantifier trained over 𝑝 ∈ [0.0, 0.1] shows the best
performance, with a mean absolute error of only 4%.
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Figure 3.3: Plots of KLD loss vs. true proportion for our quantifiers on our reserved
test set. Lower is better. Each quantifier is labeled with the mean KLD loss over all
proportions and the standard error of that mean. Our “low range” neural network
quantifier trained over 𝑝 ∈ [0.0, 0.1] shows the best performance, with a mean KLD
of only 0.01.
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Figure 3.4: Plots of predicted proportion vs. true proportion for our quantifiers on our
reserved test set for only low proportions 𝑝 ∈ [0.0, 0.2]. The dotted line marks the line
𝑦 = 𝑥, which represents the ideal (a quantifier with no error); closer to the dotted line
is better. Each quantifier is labeled with the mean absolute error over all proportions
in that interval and the standard error of that mean.
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Chapter 4

Association Analysis of Code Review

An earlier version of the work in this chapter appears in the Pro-
ceedings of the 13th International Conference on Predictive Mod-
els and Data Analytics in Software Engineering (PROMISE) [64].

Empirical evidence for the relationship between code review process and software
security (and software quality) has the potential to help improve code review automa-
tion and tools as well as to encourage the adoption of code review processes. Prior work
in this area has primarily been limited to case studies of a small handful of software
projects.

In this chapter, we extend and generalize that prior work in order to better under-
stand the relationship between code review coverage and participation and software
quality and software security. To do this, we gather a very large dataset from GitHub
(2,881 projects in 139 languages, with 464,280 issues and 354,548 pull requests), and
use a combination of quantification techniques and multiple regression modeling to
study the relationship between code review coverage and participation and software
quality and security. We control for confounding effects such as team size, project size,
project age, project popularity, and memory safety. To be able to perform such a large-
scale association analysis on GitHub repositories, where hand-labeling the almost
500,000 issues in our sample would be prohibitively expensive, we use our quantifi-
cation techniques from the previous chapter to estimate the number of security bugs
reported to each repository in our sample.

We find that code review coverage has a significant relationship with software secu-
rity. We confirm prior results that found a relationship between code review coverage
and software defects. Most notably, we find evidence of a negative relationship between
code review of pull requests and the number of security bugs reported in a project. Our
results suggest that implementing code review policies within the pull request model
of development may have a positive effect on the quality and security of software.
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4.1 Data Processing

We focused our investigation on the population of GitHub repositories that had at least
10 pushes, 5 issues, and 4 contributors from 2012 to 2014. This is a conservatively low
threshold for projects that have had at least some active development, some active use,
and more than one developer, and thus a conservatively low threshold for projects that
might benefit from having a set code review process. We used the GitHub Archive [28],
a collection of all public GitHub events (including new commits, forks, pull requests,
and issues), which is hosted on Google BigQuery [27], to generate a list of all such
repositories. This gave us 48,612 candidate repositories in total. From this candidate
set, we randomly sampled 5,000 repositories.1

We wrote a scraper to pull all non-commit data (such as descriptions and issue and
pull request text and metadata) for a GitHub repository through the GitHub API [25],
and used it to gather data for each repository in our sample. After scraping, we had
4,937 repositories (due to some churn in GitHub repositories being moved or deleted).

We queried GitHub to obtain the top three languages used by each repository, ac-
cording to GitHub’s own heuristics [26]. For each such language, we manually labeled
it on two independent axes:

• Whether it is a programming language (versus a markup language like HTML,
a configuration language like YAML, etc.) or not

• Whether it is memory-safe or not

A programming language is “memory-safe” if its programs are protected from a variety
of defects relating to memory accesses (see Szekeres et al. [62] for a systematization of
memory safety issues). For example, Python is considered a “memory-safe” language
as all array accesses are bounds-checked at runtime.

Starting from the set of repositories we scraped, we filtered out those that failed to
meet our minimum criteria for analysis:

• Repositories with a created_at date later than their pushed_at date (these had
not been active since being created on GitHub; 13 repositories)

• Repositories with fewer than 5 issues (these typically had their issue trackers
moved to a different location; 264 repositories)

• Repositories with fewer than 4 contributors (these typically were borderline cases
where our initial filter on distinct committer e-mail addresses over-estimated the
number of GitHub users involved; 1,008 repositories)

• Repositories with no pull requests (406 repositories)
1Due to the limitations of scraping the live GitHub API for the data required, we chose take a large

sample rather than analyzing the full set of candidate repositories.
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Table 4.1: Summary of our sample of GitHub repositories. See Tables 4.3, 4.4, and 4.5
for more details about these metrics. We note that here “security issues” refers to the
estimate of our quantifier.

Mean Min 25% Median 75% Max

Stars 425.230 0 8 46 237 33 880
Forks 107.655 0 6 23 77 5989
Contributors 24.506 4 6 11 25 435
Age (days) 1132.282 0.308 736.426 1112.877 1518.748 3047.529
Code Size (KB) 3364.896 0.089 77.627 271.952 1100.207 471 603.800
Issues

Overall 161.152 5 19 47 143 8381
Security 7.173 0 1 2 6 273
Security/Overall 0.051 0 0.009 0.039 0.070 0.68

Churn
Total 79 353.810 0 681 4710 27 406 46 293 722
Unreviewed 36 484.250 0 0 205 3412 46 291 762

Pull Requests
Total 123.064 1 12 34 95 9060
Unreviewed 15.913 0 0 2 10 1189

Per Pull Request
Review comments 0.026 0 0 0 0 17
Commenters 0.749 0 0 1 1 5

• Repositories where the primary language is empty (GitHub did not detect any
language for the main content of the repository, so we ruled these as not being
software project repositories; 83 repositories)

• Repositories where the primary language is not a programming language (a con-
servative heuristic for a repository not being a software project; 245 repositories)

• Repositories with a dedicated channel for security issues (1 repository)

This left us with 2,881 repositories in 139 languages, containing 464,280 issues and
354,548 pull requests. Table 4.1 shows a summary of the repositories in our sample.
Table 4.2 lists the top languages used in our repository sample and the total number
of bytes in files of each. We use this dataset for our regression analysis in Section 4.2.

We found that, in our entire sample, security bugs make up 4.5% of all issues (as
predicted by our final trained quantifier; see Chapter 3 for how we derived this es-
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Table 4.2: Top primary languages in our repository sample.

Language # Repositories Median Primary Size (KB)

JavaScript 660 192.81
Python 418 217.67
Ruby 315 99.69
Java 305 563.47
PHP 268 302.13
C++ 172 1122.69
C 140 1626.69
C# 83 513.72
Shell 62 29.75
Objective-C 58 296.60

timate). This proportion is similar to but slightly higher than the results of Ray et
al. [55] where 2% of bug fixing commits were categorized as security-related.2

4.2 Regression Design

In our study design, we seek to answer the following four research questions:

(RQ1) Is there a relationship between code review coverage and the number of issues
in a project?

(RQ2) Is there a relationship between code review coverage and the number of security
bugs reported to a project?

(RQ3) Is there a relationship between code review participation and the number of
issues in a project?

(RQ4) Is there a relationship between code review participation and the number of
security bugs reported to a project?

We use negative binomial regression modeling to describe the relationship between
code review coverage (the proportion of changes receiving at least some review) and
participation (the extent of review on average) and both the number of issues and the
number of security bugs filed on each project (our response variables). In our models

2Ray et al. [55] categorized bug fixing commits by training a support vector machine using a subset
of commit messages selected using keyword search (for a variety of categories) and predicting the cat-
egories of the remaining commits. They reported having between 70-100% accuracy and 69-91% recall
for the different categories they studied.
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Table 4.3: Description of the control metrics.

Metric Description Rationale

Forks Number of repository
forks

The more forks a repository has, the greater number
of users are contributing pull requests to the project.

Watchers Number of repository
watchers

Watchers are users who get notifications about
activity on a project. The more watchers a repository
has, the more active eyes and contributors it likely
has.

Stars Number of repository
stars

A proxy for the popularity of a project. On GitHub,
users interested in a project can “star” the repository.
More popular projects, with more users, will tend to
have more bug reports and more active development.

Code Size Size of code in repository
(in bytes)

Larger projects have more code. Larger code bases
have a greater attack surface, and more places in
which defects can occur.

Churn Sum of added and
removed lines of code
among all merged pull
requests

Code churn has been associated with defects [48, 49].

Age Age of repository
(seconds)

The difference (in seconds) between the time the
repository was created and the time of the latest
commit to the repository. Ozment and Schechter [51]
found evidence that the number of foundational
vulnerabilities reported in OpenBSD decreased as a
project aged, but new vulnerabilities are reported as
new code is added.

Pull Requests Total number of pull
requests in a project

The number of pull requests is used as a proxy for
the churn in the code base, which has been
associated with both software quality [47, 48] and
software security [61].

Memory-Safety Whether all three of the
top languages for a
project are memory-safe

Software written in non-memory-safe languages
(e.g., C, C++, Objective-C) are vulnerable to entire
classes of security bugs (e.g., buffer-overflow,
use-after-free, etc.) that software written in
memory-safe languages are not [62]. Therefore, we
might expect that such software would inherently
have more security bugs.

Contributors Number of authors that
have committed to a
project

The number of contributors to a project can increase
the heterogeneity of the code base, but can also
increase the number and quality of code reviews and
architectural decisions.
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Table 4.4: Description of the code review coverage metrics (RQ 1, 2).

Metric Description Rationale

Unreviewed Pull
Requests

The number of pull
requests in a project that
were merged without any
code review

A pull request merged by the same author
who created it, without any discussion,
implies that the changes have not been
code reviewed. Such changes may be more
likely to result in both general
defects [42] and security bugs [44].

Unreviewed Churn The total churn in a
project from pull requests
that were merged without
any code review

While churn may induce defects in
software, code review may help prevent
some defects introduced by churn. We
would expect that the lower the amount of
unreviewed churn, the lower the number
of defects introduced.

Table 4.5: Description of the code review participation metrics (RQ 3, 4).

Metric Description Rationale

Average Commenters Median number of
commenters on pull
requests in a project

Prior work has shown that too many
distinct commenters on change requests
can actually have a negative impact on
software quality [44].

Average Discussion
Comments

Median number of
general discussion
comments on pull
requests in a project

We expect that increased discussion on a
pull request may be indicative of more
thorough code review.

Average Review
Comments

Median number of
comments on specific
lines of code in pull
requests in a project

We expect that more review comments
mean more specific changes are being
requested during code review, which may
be indicative of more thorough code
review.
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we also include a number of control explanatory variables (such as the age, size, churn,
number of contributors, and stars for each repository). Tables 4.3, 4.4, and 4.5 explain
each of our explanatory variables.

Negative binomial models are well suited for discrete counts, allow for non-normal
residuals, and constrain the predictions to non-negative values, improving the fit and
power of our analysis [41, 57]. Similarly, Ray et al. [55] used negative binomial models
for their analysis of programming languages and bug-fix commits. Negative binomial
models are also able to handle overdispersion, where the response variance is higher
than other discrete models would assume (such as a Poisson model, where the mean
and variance of the response are equal). Simple tests by fitting a quasi-Poisson model
to our data show that our response variables are clearly overdispersed. Bcause of this
overdispersion, a standard Poisson model would underestimate the standard errors of
its coefficients, while using a negative binomial model gives us more accurate standard
error estimates. We refer the reader to [57] and [41] for a more in-depth look at the
background and applications of discrete count regression modeling and the negative
binomial model.

Precisely, our models are negative binomial models with a log link function, which
means that the log of the dependent variable (ln(𝑦)) is a linear combination of the
predictors, plus an error term. This means that the coefficients have a multiplicative
effect in the 𝑦-scale. These multiplicative effects are often referred to as “incidence
rate ratios” or “risk ratios” (the latter is often used in epidemiology, and is the term
we will use going forward).

To reduce collinearity, before building our regression models we check the pair-
wise Spearman rank correlation (𝜌) between our explanatory variables. We use Spear-
man rank correlation since our explanatory variables are not necessarily normally
distributed. For any pair that is highly correlated (|𝜌| > 0.7 [45]), we only include one
of the two in our model. This resulted in us dropping the number of forks (too highly
correlated with the number of stars) and the number of watchers (also too highly cor-
related with the number of stars). For our review coverage models, the amount of
unreviewed churn was highly correlated with the number of number of unreviewed
pull requests, so we chose to keep only the number of unreviewed pull requests.

To determine whether the coefficients for each explanatory variable are signifi-
cantly different from zero, we perform a Wald z-test on each to determine a p-value.
If a coefficient is not significantly different from zero (𝑝 > 0.05), we do not report the
coefficient in our model summary.
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Table 4.6: Negative binomial association analysis model risk ratios. Listed are the
risk ratios for each of the explanatory variables, when significant. These are the ex-
ponentiated coefficients of the models, and they indicate the relative (multiplicative)
change in the dependent variable (number of overall issues or number of security is-
sues) given a one-unit change of the explanatory variable. Each model also includes
the code size, total churn, age, number of contributors, number of stars, number of
pull requests, and memory safety for each repository. The full models, including all
covariates, are listed in Appendix A.

Dependent variable
Issues Security Issues

(1) (2) (3) (4)

unreviewed
pull re-
quests

1.0030*** 1.0017***

commenters
per pr

⋄ ⋄

review
comments
per pr

0.9087* ⋄

⋄ 𝑝 ≥ 0.05; * 𝑝 < 0.05; ** 𝑝 < 0.01; *** 𝑝 < 0.001

4.3 Results

RQ1: Is there a relationship between code review coverage and the number
of issues in a project?
Prior work has found significant effects between code review coverage and defects in
an analysis of three large software projects [42]. To investigate this relationship on a
more general sample, we build a negative binomial model using the number of overall
issues in a repository as the response variable, and the number of unreviewed (but
integrated) pull requests as the explanatory variable. The model is presented in Ta-
ble 4.6 as model (1).

The amount of unreviewed churn is too highly correlated with the number of un-
reviewed pull requests to include in the model. We chose to keep the number of unre-
viewed pull requests as it is a simpler metric, and we argue is easier to reason about as
part of an operational code review process. For completeness, we analyzed the model
that used the amount of unreviewed churn instead and found that it had no noticeable
effect on model performance. The same was true for RQ2.

We find a small but significant positive relationship between the number of unre-
viewed pull requests in a project and the number of issues the project has. Projects



Chapter 4. Association Analysis 30

0 200 400 600

100

200

300

400

500

600

700

Unreviewed PRs

Is
su

es

0 200 400 600

4

6

8

10

12

Unreviewed PRs

S
ec

ur
ity

 Is
su

es

Figure 4.1: The marginal relationship between unreviewed pull requests and overall
issues (left) and security issues (right). The relationship with security issues is weaker
than the relationship with overall issues (having a risk ratio of 1.0017 versus 1.0030).

with more unreviewed pull requests tend to have more issues. Holding other variables
constant, with an increase of 10 unreviewed pull requests we would expect to see 3.02%
more issues. The relationship between the number of unreviewed pull requests and
the number of overall issues is shown in Figure 4.1.

RQ2: Is there a relationship between code review coverage and the number
of security bugs reported to a project?
To explore this question, we replace the response variable of our previous model with
the number of security bugs (as predicted by our quantifier for each project). The model
is presented in Table 4.6 as model (3).

We find a small but significant positive relationship between the number of inte-
grated pull requests that are unreviewed and the number of security bugs a project has.
Projects with more unreviewed pull requests tend to have a greater number of security
bugs, when controlling for the total numbers of pull requests and issues. Holding other
variables constant, with an increase of 10 unreviewed pull requests, we would expect
to see 1.70% more security bugs. The relationship between the number of unreviewed
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pull requests and the number of security issues is shown in Figure 4.1.

RQ3: Is there a relationship between code review participation and the num-
ber of issues in a project?
To explore this question, we alter our model to use a response variable of the number
of issues in a project, and we replace our main explanatory variable with the median
number of commenters on pull requests and the median number of review comments
per pull request in each project. The model is presented in Table 4.6 as model (2). We
did not include the median number of discussion comments in the model as it was
highly correlated with the median number of commenters. We chose to keep the me-
dian number of commenters and the median number of review comments, to capture
both aspects of participation (diversity of participation and quality of participation).

We do not find a significant relationship between the median number of commenters
on pull requests and the total number of issues. However, we did find a small but sig-
nificant negative relationship between the median number of review comments per
pull request and the log number of issues a project has. Projects that, on average,
have more review comments per pull request tend to have fewer issues. Holding other
variables constant, increasing the median review comments per pull request by 1 we
would expect to see 9.13% fewer issues. The size and uncertainty of these relationships
are shown in Figure 4.2.

RQ4: Is there a relationship between code review participation and the num-
ber of security bugs reported to a project?
To explore this question, we change the response variable in our previous model to be
the number of security bugs reported in a project. We do not find a significant relation-
ship between the median number of commenters on pull requests and the number of
security bugs. This result is in contrast with that found by Meneely et al. [44]. While
they found that vulnerable files in the Chromium project tended to have more review-
ers per SLOC and more reviewers per review, we were unable to replicate the effect.
(We note that we looked for an effect across across projects, taking a single average
for each project, instead of across files within a single project.) We also did not find
a significant relationship between the median number of review comments per pull
request and the number of security bugs reported.
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Figure 4.2: The marginal relationship between commenters per pull request and over-
all issues (left) and review comments per pull request and overall issues (right). We
did not find a significant relationship between the average number of commenters and
overall issues.

4.4 Threats to Validity

Construct validity
In order to handle the scale of our sample, we used a machine-learning based quanti-
fier to estimate the dependent variable in our security models (the number of security
bugs reported in a project). A quantifier with low precision (high variance in its error)
or one that was skewed to over-predict higher proportions could cause spurious effects
in our analysis. We tested our quantifiers on a sample of real issues from GitHub repos-
itories and selected a quantifier model that has good accuracy and high precision (low
variance) in its estimations across a wide range of proportions.

This also means that the dependent variable includes some noise (due to quantifier
error). We do not expect errors in quantification to be biased in a way that is correlated
to code review practices. Regression models are able to tolerate this kind of noise.
Statistical hypothesis testing takes this noise into account; the association we found
is significant at the 𝑝 < 0.001 level (Table 4.6).

We manually label issues as “security bugs” to train our quantifier. We have a spe-
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cific notion of what a security bug is (see Section 4.1), but we have weak ground truth.
We used one coder, and there is some grey area in our definition. Our use of quantifi-
cation should mitigate this somewhat (particularly if the grey area issues are equally
likely to be false positives as false negatives, and thus cancel out in the aggregate).

Ideally, we would prefer to be able to measure the security of a piece of software di-
rectly, but this is likely impossible. Security metrics are still an area of active research.
In this study we use the number of security issues as an indirect measure of the secu-
rity of a project, rather than trying to directly assess the security of the software itself.
This limits the conclusions that can be drawn from our results, as we cannot directly
measure and analyze the security of the projects in our dataset.

Our main metric of review coverage (whether a pull request has had any partic-
ipation from a second party) is somewhat simplistic. One concern is if open source
projects tend to “rubber stamp” pull requests (a second participant merges or signs off
on a pull request without actually reviewing it): our metric would count this as code
review, while it should not be counted. It is also possible that some code review occurs
out-of-band and we would not measure it.

Some of our control explanatory variables are proxies for the underlying constructs
we are trying to control for. The number of stars and watchers are a proxy for the
popularity and user base of a project. The number of contributors to a project are a
proxy for its activity and team size. These proxies may be incomplete in capturing the
underlying constructs.

External validity
We intentionally chose a broad population of GitHub repositories in order to try to
generalize prior case study-based research on code review and software quality. Our
population includes many small or inactive repositories, so our sample may not be
representative of security-critical software or very popular software. Looking at top
GitHub projects might be enlightening, but would limit the generalizability of the
results, and might limit the ability to gather a large enough sample.

While GitHub is the largest online software repository hosting service, there may
be a bias in open source projects hosted on GitHub, making our sample not truly repre-
sentative of open source software projects. One concern is that many security critical
or very large projects are not on GitHub, or only mirrored there (and their issue track-
ing and change requests happen elsewhere). For example, the Chromium and Firefox
browsers, the WebKit rendering engine, the Apache Foundation projects, and many
other large projects fall into this category. Additionally, sampling from GitHub limits
us to open source software projects. Commercial or closed source projects may exhibit
different characteristics.
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Effect of Choice of Quantifier
Prior work in defect prediction has found that the choice of machine learning model
can have a significant effect on the results of defect prediction studies [9, 24]. We re-
peated our regression analysis using the naive classify-and-count technique with a ran-
dom forest classifier model (“RF CC”). This was the best performing of our non-neural
network quantification models (see “RF CC” in Figure 3.2). The regression models
produced using the predictions from this quantifier had the same conclusions as our
results in Section 4.3, but with smaller effect sizes on the explanatory variables, and
some differences in the effects of the controls. This is likely due to the fact that the
RF CC model tends to under-predict the number of security issues compared to our
chosen neural network model.

4.5 Discussion

We have presented the results of a large-scale study of code review coverage and partic-
ipation as they relate to software quality and software security. Our results indicate
that code review coverage has a small but significant effect on both the total number of
issues a project has and the number of security bugs. Additionally, our results indicate
that code review participation has a small but significant effect on the total number
of issues a project has, but it does not appear to have an effect on the number of secu-
rity bugs. Overall, code review appears to reduce the number of bugs and number of
security bugs.

These findings partially validate the prior case study work of McIntosh et al. [42]
and Meneely et al. [44]. However, we did not replicate Meneely’s finding of increased
review participation having a positive relationship with vulnerabilities. More work
would be required to determine if this is a difference in our metrics or a difference in
the populations we study. Our results suggest that implementing code review policies
within the pull request model of development may have a positive effect on the quality
and security of software. However, our analysis only shows correlation. In the next
chapter we will explore how to determine if there is a causative effect of code review
on quality and security, and how effective it is as a treatment.
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Chapter 5

Causal Treatment Effects of Code Review

Previously, we explored the relationships between code review practices and both soft-
ware security and software quality using correlative methods. In this chapter, we tease
apart the questions from Chapter 4 to consider code review process as a “treatment”
that can be applied to software projects generally, exploring the causal effects of these
practices on software security and software quality. As in medicine, measuring the
treatment effect allows a comparison of treatments, and a weighing of their effective-
ness against their costs (and potential side effects). We hope that understanding the
treatment effect of implementing code review processes allows for more informed (and
economically motivated) decisions for improving software quality and security.

The gold-standard for measuring treatment effects is the randomized controlled
trial. In an ideal experiment, we would:

• Recruit active software projects that currently only use direct commits,

• Randomly assign half of the projects to start integrating all changes via pull
requests with at least one peer reviewer (the other half would continue without
change),

• Measure the development behavior before and after the intervention,

• Measure the state of the security and quality of each project before and after the
intervention.

However, performing real-world, randomized experiments on software process is
difficult and potentially cost-prohibitive. Even studies on smaller artificial tasks tend
to lack random assignment of the observed variables of interest (such as the “Build
It Break It Fix It” contests [58]). Real world software development often happens at
large scales, where experimental units are bigger and more complex, and harder for
researchers to recruit and manipulate. Meanwhile, retrospective analysis of changes
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in industrial settings have proven useful for exploring the effects of changes in soft-
ware process (such as Microsoft’s analysis of switching to use formal unit testing pro-
cesses [39]), but they fall into the broad category of non-experiments.

We tackle this problem by taking advantage of the longitudinal data provided by
GitHub and the GitHub Archive to perform quasi-experiments on the effects of code
review as a software security and software quality intervention. Our insight is the use
of timeseries changepoint detection to allow us to find cases of code review “treatment”
among a very large set of GitHub projects.

Some variations of quasi-experiments are sometimes called natural experiments,
where the intervention was exogenously applied, outside the control of the researchers
or the units. For interventions that are difficult (or potentially impossible) for the
researchers to assign, natural experiments have allowed research into the effects of
changes in areas such as government structure [23] or specific policy implementa-
tions [32]. Other quasi-experiment designs take advantage of observational or archival
data (as we do), or are used in cases where it is difficult or unethical for the researchers
to randomly assign treatment to units [11, 14, 18]. For example, research into ed-
ucational interventions has had ethical challenges with random treatment assign-
ment and some have focused designs on giving interventions to lower achieving stu-
dents [33].

One benefit of quasi-experimental designs like ours over true experiments (such as
randomized control trials) is that they minimize threats to ecological validity, as we are
observing software projects as they occur in the real world, rather than in an artificial
setting. Additionally, the use of archival data reduces any testing effect on our sample.
In other designs, the participants can know what they are being tested on, potentially
influencing their behavior. In contrast with a non-experimental observational study,
our quasi-experimental design meets both the time-causality and treatment/control
comparisons requirements for causal inference.

5.1 Changepoint Detection

We use a timeseries changepoint detection approach to identify candidate reposito-
ries for our treatment group by detecting repositories that demonstrate a significant
change in code review coverage (that is, repositories where there is a single point in
time where the level of code review coverage before and after are significantly differ-
ent). Similarly, we can use the absence of change to pick a control group of repositories
where little or no change in code review coverage occurred.

Changepoint detection (sometimes called change detection or step analysis) is a
method to statistically identify times when a parameter underlying a stochastic pro-
cess or timeseries changes [5]. This allows us to segment timeseries by changes in
their underlying processes. While online change detection is used in many detection
applications, in our setting we are able to use offline techniques such as statistical hy-
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pothesis testing or maximum likelihood estimation, finding the best possible splits in
the available data. This can yield a better trade-off for false alarm versus misdetection
rates.

One (simplified) way of thinking about single changepoint detection is that we are
searching the space of all possible splits in the timeseries for the split which maximizes
the difference of the means before and after the split. We can then test whether the
change is statistically significant.

More complicated techniques reduce the number of split points that we have to
check or allow finding multiple changepoints (finding all significant changes in mean).
For our purposes, we only require finding a single, maximal changepoint in our archival
timeseries data. This technique is sometimes called “At-Most-One-Change” (or AMOC)
changepoint detection. We use a cumulative sum (CUSUM) statistic [52], which does
not rely on assumptions about the data being normally distributed. For an overview
of changepoint detection and how the various techniques function, we refer the reader
Bassevile’s book on the subject [5], as well as Killick’s description of the changepoint

R package [37].
Figure 5.1 shows an example of a changepoint in the mean of code review coverage

on a repository from one of our treatment groups. We apply changepoint detection
techniques to our code review coverage metric of GitHub repositories over time (the
fraction of all pushes and pull requests that receive some code review). Repositories
that show a large and statistically significant change in code review coverage can thus
be efficiently detected and selected for inclusion in our treatment groups. Similarly,
we find repositories that demonstrate no detectable change in code review (and stay
under a “no treatment” threshold of such activity) for inclusion in our control group.

5.2 Data Collection

To select the repositories for our treatment and control groups, we use the data in the
GitHub Archive [28]. We build our treatment and control groups from the population
of repositories that were active in 2015 through July 2017. For this selection, we define
“active” as repositories having in both 2015 and 2016 at least 50 issues, 50 pushes, and
10 actors;1 and in 2017, the equivalent activity (for 7/12 of the year) of 29 issues, 29
pushes, and 6 actors.

We use BigQuery to select repositories that meet these requirements, giving us
a subpopulation of 4,004 repositories. Further, we then use BigQuery to gather each
merged pull request and push to each repository, to measure their code review coverage
over time. We apply the same criteria for “unreviewed” pull requests as in Chapter 4,
except here we also count direct pushes of commits to any default branch as unreviewed
changes. To avoid double-counting pushes, we remove any pushes that resulted from

1We use the term “actor” to mean unique user causing an event we counted. For our selection here,
this means unique users creating an issue or generating a push.
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Figure 5.1: An example of a code review coverage timeseries plot showing a clear
changepoint in coverage in mid-2016. This is the repository silx-kit/pyFAI, which
our technique detects. Before the changepoint, it has 1.6% review coverage. After the
changepoint, it has 86.5% review coverage. The points in the plot show each push and
merged pull request for the repository, and whether it was reviewed or not (with added
jitter to show density—each individual pull request is either reviewed or not). The
yellow line is a LOESS fit line (on the points before jitter was added) to demonstrate
the local trend in coverage and the sharp change at the changepoint.

a pull request being merged, by matching the SHA of the head commit of pushes with
the SHA of the merge commit of pull requests.

Using that aggregate code review data, we use the “AMOC” changepoint detection
method (with a non-parametric test statistic) from the R changepoint package [37] to
detect changepoints in the code review coverage in each repository. We use a manual
penalty value of 0.1 (chosen as a low threshold for change and manually validated as
reasonable against a small sample of projects) and a minimum segment length of 1/4
the total number of events in each repository (so that we have a minimum number of
events and time to compare on either side of the changepoint).

From the results of our changepoint detection, we select three groups:

• A control group of repositories that showed no significant change in code review
coverage, and had an overall coverage under 25% (1,689 cases).

• A high treatment group of repositories in which we found a significant change
in code review coverage, and the coverage before the change was under 25% and
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Figure 5.2: The distribution of code review coverage for the two groups: repositories
that did not have a changepoint, and those that did. The review coverage is split into
before- and after-changepoint periods. For the no changepoint group (when split at
their mid-point in time) over 50% of such repositories had review coverage under 25%
both before and after. For repositories with changepoints, over 50% of such repositories
began with under 25% code review coverage, but over 50% ended with more than 75%
coverage. These distributions motivated our control and treatment cut-off thresholds.

the coverage after the change was at least 75% (45 cases).

• A medium treatment group of repositories in which we found a significant
change in code review coverage, and the coverage before the change was under
25%, but the coverage after the change was at least 50% but less than 75% (113
cases).

Figure 5.2 shows the distribution of review coverage for repositories in which we
found a changepoint and those we did not. The medians before and after for each group
motivate our control and high-treatment group cutoff thresholds.

Once we have selected our treatment and control groups, we then gather the full
text of all issues, the full text of the README file, and the general metadata for each
repository. We split the issues into before- and after-changepoint periods (we refer to
these as “pre-test” and “post-test” going forward). For our control group, we split at the
midpoint in time of our collection period (16 April 2016). For the issues in each time
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period we apply the same security issue quantifier as used in Chapter 4 to estimate
the number of security bugs reported before and after the changepoint.

We then clean and filter our selected repositories as follows:

• Remove repositories with a dedicated channel for security issues (such as a secu-

rity@ email address—we would not be able to find security issues in their issue
tracker; 13 repositories from our control group)

• Remove repositories with a blank primary language or where the primary lan-
guage is not a programming language (these are generally non-software reposito-
ries such as documents, datasets, or static webpages; 12 repositories with blank
primary language, 90 repositories with a non-programming primary language)

• Remove repositories that are forks of another repository, where both parent and
child are currently active (we lose the ability to capture all development on the
project; 14 repositories)

After cleaning and filtering, we were left with 1,576 control cases, 102 medium
treatment cases, and 42 high treatment cases. They encompass 145 languages, with
1,063,342 issues (43,907 of them security bugs, or 4% of all issues). Table 5.1 gives a
summary of each group, and Table 5.2 shows the top primary languages for reposito-
ries in our selection.

Scatterplots showing the relationship between each explanatory variable we in-
cluded in our models and the number of post-test security and overall issues are shown
in Figure 5.3 and Figure 5.4.

Automated Code Review
To further demonstrate the broader usefulness of our changepoint treatment detection
technique, we examined the use of automated code review services on GitHub. A num-
ber of services are available that integrate with pull requests, which automatically
review the changes for style problems or common mistakes. We looked at three auto-
mated code review tools: Hound,2 Codacy,3 and Ebert.4 These three tools all create
comments on the original pull request with bot accounts, which allows us to measure
comments created by these services using the GitHub Archive data.

We measured each pull request in our repository population for whether they have
any bot comments from these services, and computed changepoints using our same
detection technique as before. For our control group, we selected all repositories that
never had any bot comments over our entire collection period. For our treatment group,
we selected all repositories that had no bot comments before their changepoint, with

2https://houndci.com
3https://www.codacy.com
4https://ebertapp.io/
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Figure 5.3: Scatterplots of explanatory variables and post-test security issues. Scales
are log transformed as many variables have very large ranges. Loess local regression
lines are plotted on top of the points to more clearly show the trends of each group.

any non-zero number of bot comments after. Before cleaning and filtering our selec-
tion, we had 3,803 control cases and 9 treatment cases. After filtering (using the same
steps as before), we had 3,535 control cases and 8 treatment cases. Table 5.3 gives a
summary of our final control and treatment groups.

We additionally measured the code review coverage before and after the implemen-
tation of automated tools (or the midpoint, for the repositories that did not implement
automated review) to control for pre-existing code review practices.

5.3 Experimental Design

In a randomized controlled trial, the randomized group assignment creates equivalent
groups—any variation between participants is evenly spread between groups, control-
ling for all variation in even confounding factors that had not been considered by the
experimenter. As we cannot randomly assign repositories to the treatment and con-
trol groups, our treatment and control groups give us a non-equivalent groups design
quasi-experiment. Our quasi-experimental design is heavily influenced by the work of
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Figure 5.4: Scatterplots of explanatory variables and post-test overall issues. Scales
are log transformed as many variables have very large ranges. Loess local regression
lines are plotted on top of the points to more clearly show the trends of each group.

Shadish, Cook, and Campbell on experimental and quasi-experimental designs [60],
and the work of Trochim on research methods [66].

We seek to answer the following four research questions:

(RQ1) Does implementing code review improve software quality?

(RQ2) Does implementing code review improve software security?

(RQ3) Does using automated code review services improve software quality?

(RQ4) Does using automated code review services improve software security?

Our hypothesis was that, up to some point, higher dosage (more code review cov-
erage) decreases the number of both security and general software bugs reported to a
project. For our study, we looked at two different dosage levels (our high and medium
treatment groups) compared to our control group.

For each period, we measure the aggregate code review coverage (the fraction of
changes that had at least some review), the total number of issues filed during that
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Table 5.1: Summary of our sample of GitHub repositories, by group.

Control (n=1576) Medium (n=102) High (n=42)

mean (sd) mean (sd) mean (sd)

Stars 1888.07 (4479.99) 2539.17 (5529.44) 1703.21 (2446.84)
Age (days) 1491.53 (573.71) 1385.38 (593.05) 1452.20 (660.14)
Code Size (MB) 5.86 (21.53) 2.99 (4.96) 4.48 (7.64)
Pull Requests

pre-test 61.88 (105.76) 168.07 (378.00) 141.76 (166.69)
post-test 70.53 (118.63) 495.75 (1305.18) 287.21 (206.94)

Pushes
pre-test 596.75 (838.65) 597.70 (1086.03) 367.67 (239.14)
post-test 500.71 (780.30) 156.72 (229.71) 50.21 (40.90)

Overall Changes
pre-test 658.63 (901.54) 765.76 (1423.63) 509.43 (363.04)
post-test 571.24 (843.16) 652.47 (1505.39) 337.43 (242.18)

Review Coverage
pre-test 0.07 (0.06) 0.13 (0.07) 0.17 (0.06)
post-test 0.10 (0.07) 0.63 (0.06) 0.80 (0.03)

Security Issues
pre-test 12.51 (17.85) 14.31 (26.28) 13.67 (18.29)
post-test 12.48 (26.73) 19.94 (43.16) 10.86 (13.08)

Overall Issues
pre-test 303.70 (401.51) 351.43 (567.97) 271.98 (260.49)
post-test 305.30 (681.99) 444.92 (678.41) 258.52 (237.69)

period, and the total number of issues filed during that period that were security issues
(as estimated by our security issue quantifier, as described in Chapter 3).

To test for treatment effects, we consider two ways in which code review may affect
security and quality outcomes. First, we can look for an average treatment effect, where
there is a separation in post-test results between the average of the treatment group
and the average of the control group, after conditioning on covariates. Second, we can
look for interaction effects between the treatment assignment and our pre-test score,
where the effect of treatment is greater for units with higher pre-test scores. In the
context of software security and quality this may make more sense: a project that is
already more defect prone may benefit more from code review as there are more defects
to catch early on in the development process. We test for both by including interaction
terms between our group assignment and our pre-test covariate in all of our models.
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Table 5.2: Top primary languages in our repository sample.

Language # Repositories Median Primary Size (KB)
(Control, Medium, High)

JavaScript 338 (303, 24, 11) 933 (932, 980, 500)
Java 290 (274, 13, 3) 2148 (2166, 1842, 1626)
Python 202 (178, 15, 9) 1246 (1267, 598, 1311)
C++ 183 (173, 6, 4) 3106 (3136, 2788, 3142)
PHP 153 (144, 8, 1) 1606 (1532, 1688, 7824)
C 106 (101, 3, 2) 2222 (2211, 1739, 9713)
C# 97 (86, 10, 1) 2185 (2169, 2332, 17561)
Ruby 63 (57, 5, 1) 763 (763, 2141, 208)
Go 28 (21, 4, 3) 602 (492, 929, 967)
Shell 24 (22, 2, 0) 481 (604, 14, –)

Building on the regression analysis techniques we used in Chapter 4, due to our
heavily skewed (and constrained domain) response variables, we apply count regres-
sion models for software quality and security, where our response is a count of overall
issues or security issues. To account for our non-equivalent groups, we include a va-
riety of potentially confounding covariates in the model. We only include covariates
measured before the point of intervention (the changepoint for treatment cases or the
midpoint for control cases).

We also note that simpler, log-normalized linear models using ordinary least squares
regression performed particularly poorly in diagnostic tests for our data. While log-
transforming the response variable can sometimes approximate normal residuals, our
data is too heavily skewed (and truncated at zero), particularly for security issues.

Then, we repeat both models, but with the two treatment groups combined together.
This gives us a larger sample size for our treatment group, giving us more statistical
power, and allowing us to consider the effects for any repository which implements at
least moderate code review practices.

Finally, we modify the models for both overall issues and security issues to look
for treatment effects for the use of automated code review services. We include the
same covariates as before, including the pre-test review coverage in order to control
for pre-existing code review practices. We include interaction terms between the group
assignment and both the pre-test value (issues or security issues) and the pre-test
review coverage.
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Table 5.3: Summary of our sample of GitHub repositories for automated code review
usage, by group.

Control (n=3535) Treatment (n=8)

mean (sd) mean (sd)

Stars 2533.40 (7127.83) 822.50 (974.29)
Age (days) 1513.00 (590.14) 1392.85 (432.75)
Code Size (MB) 5.52 (19.11) 1.95 (3.85)
Pull Requests

pre-test 194.37 (454.14) 310.12 (220.67)
post-test 239.27 (608.88) 186.38 (129.43)

Pushes
pre-test 564.69 (825.74) 552.50 (390.90)
post-test 351.81 (671.89) 105.38 (89.74)

Overall Changes
pre-test 759.06 (1169.49) 862.62 (539.41)
post-test 591.08 (1011.20) 291.75 (183.36)

Review Coverage
pre-test 0.18 (0.15) 0.29 (0.15)
post-test 0.32 (0.26) 0.51 (0.23)

Security Issues
pre-test 14.92 (24.81) 16.00 (19.91)
post-test 14.89 (33.69) 7.88 (9.61)

Overall Issues
pre-test 360.01 (525.07) 359.00 (267.45)
post-test 366.07 (690.51) 189.62 (160.69)

5.4 Results

RQ1: Does code review improve software quality?
To investigate the causal effect of code review coverage on software quality, we build
a negative binomial regression model using the number of overall post-test issues in a
repository as the response variable, and the group assignment (under treatment cod-
ing compared to the control group) as our main explanatory variables. Our pre-test
covariates include the number of pushes and merged pull requests, the size of the
repository, the number of stars, the age of the repository, the pre-test code review cov-
erage, and the duration of the pre-test period. We include an interaction term between
the pre-test number of issues and the group assignment. The model is presented in
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Table 5.4.
We find that our medium treatment group has a significant negative interaction

with the number of pre-test issues, while our high treatment group has a significant
positive interaction with the number of pre-test issues. For repositories with higher
numbers of pre-test issues, we find that our medium treatment group had fewer post-
test issues than our control group, while our high treatment group had more post-test
issues. For example, for repositories with 1500 pre-test issues (holding other variables
constant), we would expect that those implementing moderate code review would have
248 fewer post-test issues than our control group, and those implementing stringent
code review would have 2,097 more issues than our control group. This interaction is
shown in Figure 5.5.

It is possible that our group selection is connected to some unmeasured confounds
for the highest rate of code review. One hypothesis could be that despite requiring
pull requests, projects in the high treatment group may be more likely to have quick
or “drive-by” comments rather than substantive review. A project that reviews most
changes (like in our medium treatment group) may actually encourage more thorough
and useful review.

Table 5.4: Negative binomial models of effects of our medium and high treatment
groups on software quality and security. Listed are the risk ratios for our treatment
groups and their interaction effect with the pre-test numbers of issues and security
issues, when significant. Each model also includes the code size, age, number of stars,
memory safety, pre-test issues (and pre-test security issues for the security model), pre-
test pushes, pre-test pull requests, pre-test review coverage, and the number of days
in the pre-test period for each repository. The full models, including all covariates, are
listed in Appendix A.

Dependent variable (post-test)
Issues Security Issues

(1) (2)

medium treatment 1.5780*** 1.9289***
medium:pre-test issues 0.9995***
medium:pre-test security issues 0.9778***
high treatment ⋄ ⋄
high:pre-test issues 1.0008*
high:pre-test security issues ⋄

⋄ 𝑝 ≥ 0.05; * 𝑝 < 0.05; ** 𝑝 < 0.01; *** 𝑝 < 0.001
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Table 5.5: Marginal effect of treatment on overall issues (with 95% confidence inter-
vals). The predicted number of overall post-test issues at various pre-test issue counts
while holding the other variables constant at their median.

Pre-test overall issues

Group 100 500 1000 2500

Control 182.25 310.16 602.88 4427.70
(176.44–188.26) (304.20–321.84) (564.30–644.10) (3651.74–5368.53)

Medium 274.58 388.33 598.89 2196.89
(243.93–309.09) (346.60–435.07) (504.82–710.50) (1411.48–3419.33)

High 177.88 408.63 1155.68 26 144.01
(144.59–218.82) (325.90–512.35) (703.65–1898.11) (6218.15–109921.69)
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Figure 5.5: The marginal effect between the treatment groups and control groups
over a range of pre-test issues. We see that as the number pre-test issues increases,
the medium treatment group tends to have fewer issues, while the high treatment
group tends to have more issues.
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Table 5.6: Marginal effect of treatment on security issues (with 95% confidence inter-
vals). The predicted number of post-test security issues at various pre-test security
issue counts while holding the other variables constant at their median.

Pre-test security issues

Group 0 10 50 100

Control 6.04 8.52 33.68 187.66
(5.71–6.39) (8.17–8.89) (29.96–37.86) (144.67–243.42)

Medium 11.66 13.13 21.09 38.15
(9.70–14.00) (11.15–15.45) (15.75–28.25) (21.02–69.28)

High 6.77 8.96 27.42 111.04
(4.87–9.41) (6.81–11.77) (16.05–46.83) (35.03–352.00)

RQ2: Does code review improve software security?
To investigate the causal effect of code review coverage on software security, we build
a negative binomial regression model using the post-test number of security issues as
the response variable, and the group assignment (under treatment coding compared
to the control group) as our main explanatory variable. We add the number of overall
issues in the pre-test to our set of covariates. We include an interaction term between
the pre-test number of security issues and the group assignment. The model is pre-
sented in Table 5.4.

We found that the medium treatment group had a significantly higher baseline
post-test number of security issues, but it also had a significant negative interaction ef-
fect with the pre-test number of security issues. At higher pre-test security issues, the
medium treatment group had lower post-test security issues than the control group.

One way of interpreting this is that implementing code review is more effective for
repositories that were already more prone to security issues. However, with the high
treatment group, we did not find any significant treatment or interaction effect. The
effect of the medium treatment group for higher pre-test security issues is shown more
clearly visually in Figure 5.6.

For example, if a project with 50 security issues implemented moderate code re-
view (at least 50% coverage), holding other variables constant, we would expect that
they would have 12.6 fewer security issues after, compared to projects that did not
implement code review.

Two-group Design
Due to the high error in the fit for our high treatment group in our three group anal-
ysis, we also performed an analysis with our two treatment groups combined into a
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Figure 5.6: The marginal effect between the treatment groups and control groups
over a range of pre-test rates. We see that as the pre-test number of security issues
increases, the medium treatment group tends to have significantly lower post-test pro-
portions of security issues. However, the high treatment group has too much variance
(as shown here by its confidence interval band) for us to find statistically significant
effects.

Table 5.7: Negative binomial models for the effect of a single combined treatment
group on software quality and security. Listed are the risk ratios for our treatment
group and its interaction effect with the pre-test numbers of issues and security issues,
when significant. Each model also includes the code size, age, number of stars, memory
safety, pre-test issues (and pre-test security issues for the security model), pre-test
pushes, pre-test pull requests, pre-test review coverage, and the number of days in the
pre-test period for each repository. The full models, including all covariates, are listed
in Appendix A.

Dependent variable (post-test)
Issues Security Issues

(1) (2)

treatment 1.3867*** 1.6559***
treatment:pre-test issues 0.9998*
treatment:pre-test security issues 0.9840***

⋄ 𝑝 ≥ 0.05; * 𝑝 < 0.05; ** 𝑝 < 0.01; *** 𝑝 < 0.001
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Figure 5.7: The marginal effect between the combined treatment group and the con-
trol group over a range of pre-test values, for both overall issues (left) and security
issues (right). We see that the interaction effect is much stronger for security issues
than for overall issues.

single group. This gives us greater statistical power for asking a slightly simpler ques-
tion: does implementing at least some code review affect the quality and security of a
project? We repeat the same analyses as in Sections 5.4 and 5.4, but combine the data
for our medium and high treatment groups into a single treatment group.

These models are shown in Table 5.7. We see in both models that for the combined
treatment group there is a significant negative interaction effect between the pre-test
value and the treatment, although the effect is much larger for security issues than
for overall issues. For a wide range of pre-test values, the treatment appears to have
little or no effect on overall issues, but for higher security pre-test values there is a
clear treatment effect. These interaction effects are visualized in Figure 5.7.
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Table 5.8: Negative binomial models of effects of automated code review usage on
software quality and security. Listed are the risk ratios for our treatment group and
its interaction effect with the pre-test numbers of issues and security issues and pre-
test review coverage, when significant. Each model also includes the code size, age,
number of stars, memory safety, pre-test issues (and pre-test security issues for the
security model), pre-test pushes, pre-test pull requests, pre-test review coverage, and
the number of days in the pre-test period for each repository. The full models, including
all covariates, are listed in Appendix A.

Dependent variable (post-test)
Issues Security Issues

(1) (2)

treatment 0.1984*** ⋄
treatment:pre-test issues ⋄
treatment:pre-test security issues ⋄
treatment:pre-test review coverage ⋄ ⋄

⋄ 𝑝 ≥ 0.05; * 𝑝 < 0.05; ** 𝑝 < 0.01; *** 𝑝 < 0.001

RQ3-4: Does automatic code review improve software quality and security?
Following the same methodology as before, we construct negative binomial regression
models to analyze the effects of automated code review on overall issues and secu-
rity issues. We did not find any significant effect of automated code review on post-
intervention security issues, but we found a strong effect on the overall number of
post-intervention issues. These models are shown in Table 5.8. We included interac-
tions with both the number of issues and the review coverage for each repository, but
we did not find significant interactions effects. Overall, controlling for a number of
covariates, our treatment group had 80% fewer overall issues than our control group
after the intervention (95% CI: 38.3%–93.6%).

5.5 Threats to Validity

Construct validity
The concerns raised in Chapter 4 apply to our analysis of treatment effects, as we are
measuring most of the same metrics here as we did during our regression analysis.
We are ultimately measuring treatment effects on proxies for the underlying software
quality and security of projects.
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Internal validity
The lack of randomized assignment in our quasi-experiment means that it is harder to
rule out unobserved confounding variables. Since we cannot guarantee that our treat-
ment and control groups are identical across all observed and unobserved covariates,
we may inadvertently select cases such that they have differing baseline maturation
rates of outcomes (overall issues and security issues), or our treatment cases may have
started with much higher (or lower) outcomes than our control and we could see a re-
gression toward the mean.

First, it is possible that a project will become more popular and actively used over
time, and thus receive more issues filed against it (both security issues and general
defects). This may be particularly true for security issues, as a popular project will
be more likely to provide the economic incentives for security auditing and outside
exploitation. Similarly, as a project matures, the quality and architecture of its code
may improve, as well as the quality of its other development processes (e.g., use of test-
ing), which could cause a project to naturally have fewer defects. These two directions
(popularity and maturity) could yield opposite effects.

We examined potential differing rates of maturation by dividing the pre-test and
post-test periods in half for each repository (the size of these periods is shown in Ta-
ble 5.9), and counting the number of overall issues and security issues in each sub-
period. We plot the average issues and security issues in each sub-period for each
group in Figure 5.8, along with the average number of pull requests and total changes.
We see that all three groups had similar maturation patterns over the pre-test peri-
ods, but the number of issues and security issues in the control group stays constant
during the post-test period. This could indicate a selection bias that might artificially
make the treatment outcomes appear worse—our control group may contain reposi-
tories that became increasingly less active, masking an actual positive effect of code
review on software quality. Additionally, if this is the case, we may be underestimat-
ing the magnitude of the effect of code review on software security. Finally, looking
at the maturation of changes and pull requests over time, we see consistent changes
across all three groups, but, as might be expected, implementing code review involves
a shift from direct pushes to using pull requests, so we see a sharp growth in the rate
of pull requests for our treatment groups.

Quantifier reliability

We also use the divided pre-test and post-test measurements of security issues to mea-
sure the reliability of our quantifier. We estimate the number of security issues in each
sub-period, and then compare their sum to the estimate over the entire period. This
split-half reliability gives us an estimate of the reliability of our quantification esti-
mates over the various changepoint splits used in our analysis. If our quantifier is
highly reliable, we would expect highly consistent estimates when the changepoint is
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Figure 5.8: Covariates by group, over four sub-periods (two halves of the pre-test
period and two halves of the post-test period). Each covariate is normalized by the
number of days in the sub-period. We see similar development maturation in the pre-
test across groups, although the medium treatment group is consistently the most
active, with the most overall issues and security issues per day.

Table 5.9: Distribution of days in the pre-test and post-test periods, by group.

Days in period Mean Min 25% Median 75% Max

Pre-test 472.8 209 471 471 471 813
Control 471 471 471 471 471 471
Medium 485.7 209 433 458.5 547 813
High 527.6 346 447 508 611.8 764

Post-test 438.2 98 440 440 440 702
Control 440 440 440 440 440 440
Medium 425.3 98 364 452.5 478 702
High 383.4 147 299.2 403 464 565
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only shifted slightly in time. Comparing the split-half-and-combine measurements to
our full period estimates, we find a mean absolute error of 0.44 issues for the pre-test
period and 1.17 issues for the post-test period. The distributions of these errors are
summarized in Table 5.10.

Table 5.10: Distribution of the error of our split-half-and-combine measurements com-
pared to the full period estimates.

Mean Min 25% Median 75% Max

Absolute Error
Pre-Test 0.4404 0 0 0 1 11
Post-Test 1.171 0 0 1 1 173

Relative Error
Pre-Test −0.0971 −11 0 0 0 10
Post-Test −0.9199 −173 −1 0 0 19

External validity
We draw our treatment and control groups from a wide population of GitHub reposito-
ries, as in our regression models in Chapter 4 (see Section 4.4 for more about possible
validity concerns of using GitHub repositories as our population). It is possible that
the effects we found only hold at the specific variation of treatment found in our sam-
ple. The effects might not hold for other levels or manners of code review. It is also
possible that the effect only holds for issues reported to a GitHub project. Other de-
fects, bugs, or security vulnerabilities, in other software or platforms, may not have
the same causal relationship with code review as measured in this work.

Treatment effects
Our treatment group repositories often have at most partial treatment application
(that is, they do not have perfect code review coverage). Additionally, our control group
is not necessarily devoid of any code review. However, our experimental design can still
detect the effects of a difference in treatment levels. We hypothesize that code review
becomes most useful when applied consistently within a project, but our results do not
allow us to determine what level of consistency is required to see an effect. At best, we
can determine what level is sufficient for an effect to be visible.
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5.6 Discussion

While our treatment analysis generally aligns with the associations we found in Chap-
ter 4, our results paint a more complex picture of the relationship between code review
and software quality and security. Our results seem to indicate that code review may
(confoundingly) cause an increase in the number of issues reported to a project. This
could happen for a variety of reasons—one plausible explanation is that code review
is linked to increased engagement and participation in general, which leads to more
users and more people reporting more bugs (rather than this being a fundamental in-
crease in defects). Additionally, code review itself could be correlated with increased
use of the issue tracker for project management purposes, which we would be unable
to detect.

However, despite this potential increased use and reporting, we found a negative
treatment effect on security issues. We might expect that the real effect on the security
of the software to be even greater, as the expansion of reporting may suppress the
effect in our analysis. In general, our results provide evidence that implementing code
review can reduce both overall defects and security bugs for some projects, but these
benefits may be limited to particularly defect-prone projects.

Additionally, the variance of outcomes for our treatment groups were very high,
indicating that projects should implement code review intentionally and thoughtfully.
Rather than treating code review as a panacea that will eliminate bugs, it may be bet-
ter to think of it (as any other process to be implemented) as something to be tailored
to the particular project and developers, and then measured and tested as it is used.
This applies to both the benefits and costs of adding additional process. Each project
will have different costs for performing code review (although these costs may go down
over time as developers become more comfortable with it) and costs for having bugs
and security vulnerabilities. It can also be useful to consider modern code review as
only a part of a broad secure software development life cycle (which would include
other processes such as design review, testing regimes, and response processes).

There are existing tools and research that attempt to reduce the costs of modern
code review. Our analysis of several existing automated code review services found
that adding these tools can greatly decrease overall issues compared to projects that
did not use them. While we did not find any effect on security issues, the value propo-
sition for automated code review tools is particularly great. The costs that concerned
Czerwonka et al. [15] (particularly in terms of time spent to perform reviews and
turnaround time for a developer to be blocked waiting to receive reviews) could be
dramatically improved with the use of such automated tools. Our results provide some
evidence for the potential effectiveness of improving code review more broadly through
the development of supporting tools. However, our treatment group only included 8
cases, limiting our ability to generalize this result.

More broadly, we feel that our changepoint detection technique could be applicable
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to a variety of observational studies. The main constraint is that there need to be a
sufficient number of needles in the proverbial haystack to be able to have the statistical
power necessary to detect potentially small effects (or effects with high variance).
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Conclusions

Our work in this dissertation takes a first step to quantify, on a generalizable sam-
ple of open source software projects, the effects of code review practices on software
quality and security. Focusing on code review coverage and participation, we found
broadly generalizable correlations between code review practices and both software
quality and security. We then took our association results a step further by using
timeseries archival data to test for causal treatment effects of implementing modern
code review in software projects on their quality and security, finding that code review
does appear to improve software security, but it may actually increase the number of
overall issues reported to a project. Further work is needed to determine the “dosage”
levels for code review practices in order to see effects on software quality and security.
Our research supports the practices of mandatory and thorough code review for defect-
prone or security-sensitive components, but we caution that code review should not be
taken as a kind of panacea for bugs. Individual projects should implement code review
thoughtfully, measuring its impact and benefits, and its costs on developer productiv-
ity. Our hope is that our estimation of the treatment effects of code review process as
an intervention for both software quality and security will help development teams
make more informed and economically motivated decisions about their development
processes.

We were able to perform our large-scale studies thanks to our quantification tech-
niques, without which we would not have been able to label the large datasets we
worked with. Our novel techniques for implementing and optimizing quantifiers using
neural networks could be useful for any quantitative study where manual labeling of
quantities of interest is prohibitively expensive at scale.

Finally, our research supports the development of tools to support code review. As
we argued in the beginning of this dissertation, both the costs and effectiveness of code
review matter for its adoption by development teams. Adding new processes involves
investment in both time and cost. We believe that our analysis of automated code re-
view services provides evidence that automation, even if it only detects “low-hanging
fruit” defects, can improve software quality. While we only analyzed the use of a small
number of relatively simple automated tools, more complex tools and services, particu-
larly ones focused on software security, could have a great impact on software security
while maintaining low investment costs.
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Appendix A

Full regression models

The tables in this appendix show our full negative binomial regression models with
untransformed coefficients and standard errors.

• Table A.1 shows the full models from our association analysis in Chapter 4.

• Table A.2 shows the full models with untransformed coefficients and standard
errors from our main treatment analysis in Chapter 5.

• Table A.3 shows the full models with untransformed coefficients and standard
errors from our treatment analysis with a single combined treatment group in
Chapter 5.

• Table A.4 shows the full models for our automated code review treatment analy-
sis in Chapter 5.
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Table A.1: Full association analysis models. We report here the full coefficients and model parame-
ters for each of our four negative binomial regression models from Chapter 4. The coefficients here are
the untransformed parameters, along with their standard errors.

Dependent variable
Issues Security Issues

(1) (2) (3) (4)
(Intercept) 3.635** 3.678*** 6.822e−1*** 7.247e−1***

(6.185e−2) (6.301e−3) (6.980e−2) (7.103e−2)
code size (KB) 1.368e−6 1.490e−6 −2.040e−7 −3.215e−7

(9.761e−7) (9.796e−7) (1.136e−6) (1.145e−6)
churn (KLOC) 8.242e−6 5.715e−5** 7.898e−6 3.254e−5

(2.276e−5) (2.183e−5) (2.305e−5) (2.203e−5)
age (days) 4.167e−4*** 4.070e−4*** 6.958e−5 7.039e−5

(3.482e−5) (3.543e−5) (3.899e−5) (3.962e−5)
contributors 2.995e−3*** 2.631e−3*** −3.213e−4 −5.048e−4

(6.400e−4) (6.456e−4) (7.073e−4) (7.153e−4)
stars 2.359e−4*** 2.271e−4*** −8.253e−5*** −8.349e−5***

(1.597e−5) (1.602e−5) (1.837e−5) (1.841e−5)
pull requests 1.681e−3*** 2.050e−3*** −1.095e−4 6.317e−5

(7.188e−5) (6.517e−5) (8.842e−5) (7.693e−5)
memory safety 1.391e−1** 1.521e−1** 5.887e−2 6.258e−2

(5.165e−2) (5.176e−2) (5.817e−2) (5.825e−2)
unreviewed pull requests 2.971e−3*** 1.686e−3***

(4.099e−4) (4.271e−4)
commenters per pr −3.650e−2 −5.263e−2

(2.839e−2) (3.191e−2)
review comments per pr −9.571e−2* −5.146e−2

(4.496e−2) (5.860e−2)
n 2881
𝜃 0.909 0.906 0.927 0.924

(0.021) (0.021) (0.032) (0.031)
Null deviance 5561.800 5542.200 5898.900 5586.100
Null d.f. 2880
Residual deviance 3326.900 3328.500 3086.200 3085.800
Residual d.f. 2872 2871 2871 2870
AIC 32 610 32 626 14 517 14 524
2*log-likelihood −32 590.387 −32 603.705 −14 494.788 −14 500.216

* 𝑝 < 0.05; ** 𝑝 < 0.01; *** 𝑝 < 0.001



Chapter A. Full regression models 67

Table A.2: Full treatment analysis models, for three groups. We report here the full coefficients and
model parameters for both negative binomial regression models for three groups from Chapter 5. The
coefficients here are the untransformed parameters, along with their standard errors.

Dependent variable
Issues Security Issues

(1) (2)
(Intercept) 6.359*** 2.363***

(1.916e−1) (2.889e−1)
code size (KB) 2.371e−6*** 1.503e−6

(6.504e−7) (9.699e−7)
age (days) −1.233e+1*** −1.450e+1***

(2.016) (3.101)
stars 1.526e−5*** 5.333e−6

(3.601e−6) (5.481e−6)
memory safety 9.895e−2** 1.480e−1**

(3.476e−2) (5.363e−2)
pre-test

issues 1.329e−3*** 1.998e−4*
(4.433e−5) (7.913e−5)

security issues 3.436e−2***
(1.504e−3)

pushes 1.171e−4*** 3.808e−5
(2.193e−5) (3.253e−5)

pull requests 1.127e−4 7.870e−4***
(1.285e−4) (1.974e−4)

review coverage −2.474e−1 −1.455***
(2.405e−1) (3.698e−1)

days −2.653e−3*** −1.004e−3
(3.914e−4) (5.892e−4)

medium treatment 4.562e−1*** 6.569e−1***
(6.690e−2) (9.594e−2)

medium:pre-test −4.628e−4*** −2.250e−2***
(1.016e−4) (3.333e−3)

high treatment −9.929e−2 1.136e−1
(1.277e−1) (1.701e−1)

high:pre-test 7.500e−4* −6.382e−3
(3.280e−4) (6.798e−3)

n 1720
𝜃 3.438 1.759

(0.114) (0.070)
Null deviance 4675.300 3498.200
Null d.f. 1719 1719
Residual deviance 1794.200 1858.800
Residual d.f. 1706 1705
AIC 21 364 11 217
2*log-likelihood −21 334.379 −11 184.519

* 𝑝 < 0.05; ** 𝑝 < 0.01; *** 𝑝 < 0.001
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Table A.3: Full treatment analysis models, for two groups. We report here the full coefficients and
model parameters for both negative binomial regression models for two groups from Chapter 5. The
coefficients here are the untransformed parameters, along with their standard errors.

Dependent variable
Issues Security Issues

(1) (2)
(Intercept) 6.460*** 2.527***

(1.895e−1) (2.861e−1)
code size (KB) 2.338e−6*** 1.466e−6

(6.525e−7) (9.729e−7)
age (days) −1.227e+1*** −1.450e+1***

(2.020) (3.106)
stars 1.514e−5*** 5.501e−6

(3.612e−6) (5.493e−6)
memory safety 9.612e−2** 1.450e−1**

(3.485e−2) (5.372e−2)
pre-test

issues 1.333e−3*** 1.957e−4*
(4.445e−5) (7.922e−5)

security issues 3.445e−2***
(1.504e−3)

pushes 1.134e−4*** 3.720e−5
(2.200e−5) (3.260e−5)

pull requests 1.285e−4 7.630e−4***
(1.288e−4) (1.951e−4)

review coverage −3.293e−1 −1.516***
(2.398e−1) (3.683e−1)

days −2.850e−3*** −1.333e−3*
(3.872e−4) (5.838e−4)

treatment 3.269e−1*** 5.043e−1***
(5.987e−2) (8.608e−2)

treatment:pre-test issues −2.063e−4***
(9.814e−5)

treatment:pre-test security issues −1.612e−2***
(3.051e−3)

n 1720
𝜃 3.416 1.750

(0.113) (0.070)
Null deviance 4645.500 3483.000
Null d.f. 1719 1719
Residual deviance 1794.700 1858.300
Residual d.f. 1708 1707
AIC 21 372 11 219
2*log-likelihood −21 346.304 −11 191.494

* 𝑝 < 0.05; ** 𝑝 < 0.01; *** 𝑝 < 0.001
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Table A.4: Full treatment analysis models for automated code review usage. We report here the full
coefficients and model parameters for both negative binomial regression models for automated code
review usage from Chapter 5. The coefficients here are the untransformed parameters, along with their
standard errors.

Dependent variable
Issues Security Issues

(1) (2)
(Intercept) 7.163*** 2.821

(1.829) (3.628)
code size (KB) 2.467e−6*** 3.431e−6***

(5.330e−7) (7.626e−7)
age (days) −1.698e+1*** −2.098e+1***

(1.454) (2.192)
stars 1.310e−5*** 2.417e−7

(1.571e−6) (2.299e−6)
memory safety 7.981e−2** 1.413e−1***

(2.691e−2) (4.041e−2)
pre-test

issues 1.226e−3*** 2.144e−4***
(2.741e−5) (4.983e−5)

security issues 2.781e−2***
(8.851e−4)

pushes 1.589e−4*** 1.370e−4***
(1.752e−5) (2.509e−5)

pull requests −2.002e−4*** −2.647e−4***
(3.564e−5) (5.109e−5)

review coverage 5.825e−1*** 4.274e−1***
(8.076e−2) (1.195e−1)

days −4.163e−3 −1.750e−3
(3.882e−3) (7.702e−3)

treatment −1.617** −1.403
(5.672e−1) (9.003e−1)

treatment:pre-test issues 1.126e−3
(1.033e−3)

treatment:pre-test security issues 1.251e−2
(2.760e−2)

treatment:pre-test review coverage 2.423 1.679
(2.480) (3.702)

n 3543
𝜃 2.986 1.552

(0.068) (0.041)
Null deviance 9718.200 7254.200
Null d.f. 3542 3542
Residual deviance 3722.500 3833.100
Residual d.f. 3530 3529
AIC 45 177 23 934
2*log-likelihood −45 149.220 −23 903.897

* 𝑝 < 0.05; ** 𝑝 < 0.01; *** 𝑝 < 0.001
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