
Design of a Lightweight Serial Link Generator for Test
Chips

John Wright

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-220
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-220.html

December 15, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Contents

1 Introduction 1

1.1 Problem Statement and Related Work . 2

1.2 Organization . 2

2 Analog Frontend 3

2.1 Design Specifications . 3

2.2 SPLASH2 . 4

2.2.1 Background . 4

2.2.2 ADC Interface . 4

2.2.3 TX and RX Design . 5

2.3 Hurricane 1 . 6

2.4 Hurricane 2 . 7

3 Digital Back-end 10

3.1 SPLASH2 . 10

3.1.1 ADC Interface . 10

3.1.2 Physical Design . 21

3.2 Hurricane 1 . 23

3.2.1 High BandWidth InterFace (HBWIF) v1.0 23

3.2.2 Physical Design . 29

3.3 Hurricane 2 . 30

3.3.1 High BandWidth InterFace (HBWIF) v2.0 30

3.3.2 Physical Design . 35

4 Results 37

5 Conclusion 39

5.1 Future Work . 39

ii

List of Figures

2.1 SPLASH2/Hurricane 1 frontend block diagram. 6

2.2 TX CML driver. 7

2.3 Hurricane 1 daughterboard. 8

2.4 Hurricane 2 analog IP block diagram. 9

3.1 Hittite 5831 ADC functional diagram. 11

3.2 Hittite 5831 timing diagram. 12

3.3 SPLASH2 ADC interface. 13

3.4 SPLASH2 alignment. 14

3.5 SPLASH2 XOR and word map circuit. 14

3.6 PRBS7 LFSR example. 15

3.7 Bit error rate tracker (BERT) block diagram. 16

3.8 SPLASH2 example scan bits. 18

3.9 SPLASH2 clocking diagram. 22

3.10 SPLASH2 layout. 22

3.11 HBWIF system diagram. 23

3.12 Hurricane 1 HBWIF lane micro-architecture. 24

3.13 Hurricane 1 HBWIF synchronization state machine. 26

3.14 Hurricane 1 layout. 29

3.15 Hurricane 2 TileLink switcher. 31

3.16 Hurricane 2 HBWIF lane. 32

3.17 Hurricane 2 HBWIF lane back-end (HbwifLaneBackend). 32

3.18 Hurricane 2 HBWIF lane micro-architecture (HbwifTileLinkMemSerDes). . 33

3.19 Hurricane 2 DDR4 controller wrapper. 34

3.20 Hurricane 2 layout. 35

3.21 Hurricane 2 HBWIF lane layout. 36

4.1 Post-layout simulated TX eye diagram. 37

4.2 Hurricane 1 HBWIF waveforms during an FADD unit test. 38

iii

4.3 log10(BER) plot versus FPGA TX phase interpolator value (1M samples). . 38

iv

Acknowledgement

I would like to thank my advisor, Bora Nikolić, for his guidance on this work and motiva-

tion to complete this report; Nandish Mehta for his receiver design; Vighnesh Iyer for his

contributions to testing and FPGA design; Stevo Bailey, Ben Keller, Palmer Dabbelt, Colin

Schmidt, Howie Mao, and the rest of the SPLASH2 and Hurricane teams for system-level

integration, design, and verification; Andreia Cathelin and STMicroelectronics for technol-

ogy access and fabrication; NASA JPL and DARPA PERFECT for funding; and my fiancée

Xuan Luong for her support with everything else.

v

Abstract

This report describes the design of a serial link generator using the hardware construction

language Chisel and its use in the fabrication of three chips in a 28nm FDSOI process.

This work includes the design of a memory interface, bit error rate tracker, analog-to-digital

converter interface, and control interfaces. Silicon results demonstrate its e�cacy in an Agile

design methodology.

vi

Chapter 1

Introduction

As with any industry, the design of integrated circuits is becoming progressively more auto-

mated, resulting in increased productivity and fewer hours spent on menial tasks. To this

end, agile design methodologies [1] are becoming increasingly possible as technology plat-

forms stabilize and IP o↵erings grow. Key components of agile design flows, circuit and RTL

generators are useful not only for rapid prototyping, but also production-quality designs [1].

The Rocket chip generator [2] is a powerful tool for generating processor subsystems from a

wide selection of tunable parameters.

Rocket chip has been used as a vehicle to build application-specific integrated circuits

(ASICs) which demonstrate a variety of novel circuit techniques, including fine-grained DVFS

using switched-capacitor DC-DC converters [3] and photonic interconnects [4]. Notably ab-

sent from early Rocket-chip-based ASICs has been a high bandwidth o↵-chip memory inter-

face. These chips have used a slow interface known as the Host-Target InterFace (HTIF) for

tethering the chip to an FPGA board, which serves as both a configuration and a memory

interface [5]. This work describes a generator-based approach to high bandwidth memory

interface design. By combining low-complexity serial link IP with a Rocket-chip-compatible

digital back-end generator, many configurations of serial memory interfaces can be imple-

mented rapidly, in keeping with agile design principles.

1

1.1 Problem Statement and Related Work

Memory bandwidth is a bottleneck for modern processing systems [6] [7]. Modern memory

interface standards, such as DDR4 [8], are large and expensive circuits which require signifi-

cant up-front non-recurring engineering (NRE) resources to complete. This NRE and/or die

area can sometimes be cost prohibitive for otherwise small and inexpensive test chips.

Standards exist for chip-to-chip communication over serial links, including Interlaken [9],

Aurora [10], and others. These standards will typically define a line code (a mapping of data

bits to physically transmitted bits), a framing scheme, flow control mechanism, interconnect

interface, and sometimes an error or redudancy check. These are frequently implemented on

FPGAs using graphical tools such as Xilinx Vivado, and contain myriad configuration options

selected in the Graphical User Interface (GUI). Such implementations can be classified as

generators, however the reliance on GUIs and proprietary code hinder the ability to create

higher-level generators with these blocks.

In this work, a Chisel[11]-based approach is presented, which allows for e�cient system-

level integration. A high-bandwidth interface for test chips that provides a reasonable trade-

o↵ between size/complexity/design time and performance is described. The scope of this

work includes the design of the digital back-end generator and the design of the physical

link. It comprises a simple serial interface used to forward memory tra�c to an o↵-the-shelf

FPGA board, leveraging the FPGA resources to emulate high bandwidth memory.

1.2 Organization

This work has spanned three test chips fabricated in STMicroelectronics 28nm Fully-Depleted

Silicon-on-Insulator (FDSOI) technology. The three chips, from least to most recent, are

SPLASH2, Hurricane 1, and Hurricane 2. Chapter 2 will discuss the three iterations of the

analog frontend in chronological order. Chapter 3 will discuss the two distinctly di↵erent

versions of the digital back-end (SPLASH2 vs. Hurricane 1/2).

2

Chapter 2

Analog Frontend

The analog frontend (also referred to as physical IP, frontend, and SerDes) was designed

to be compatible with the voltage, current, and speed requirements of the Xilinx GTX

interface [12]. The goal was to create a double-data-rate (DDR), current-mode logic (CML),

source-synchronous transmitter and receiver that would work at speeds approaching 10Gbps,

but relies on the GTX interface’s equalization and pre-emphasis for a good eye opening.

SPLASH2 would serve as a preliminary test vehicle, with both functional and test modes

available. The links would then be re-used on Hurricane chips with more complex back-ends

and system integration to communicate with a Xilinx ZC706 [13] board. For the most part,

the core analog components of the frontend were unchanged between chips, however cycles

of learning through integration prompted changes to the digital interface of the analog IP.

2.1 Design Specifications

The specs for the analog frontend were chosen to comply with those in the Xilinx GTX user

guide [12]. These include a maximum datarate of 10Gbps (5GHz), 8 lanes, 62.5mVpp to

1.0Vpp adjustable TX swing, 750mV TX common-mode voltage, and 0.3V to 0.8V RX

common-mode range.

3

Figure 4.1 shows an example TX eye at maximum swing with 50mV supply ripple. These

links were not designed with a specific channel model in mind, so a lumped RC load was

used to simulate the receiver. Future improvements to the frontend generation will allow

specific channels to be targeted (see section 5.1).

2.2 SPLASH2

2.2.1 Background

SPLASH2 is a prototype for a single-chip planetary radio-frequency spectrometer. The

system comprises a serial link subsystem and a generator-based digital spectrometer, which

includes a polyphase filter bank (PFB), a fast fourier transform (FFT), and an accumulator.

The serial link subsystem is designed to receive raw sample data from an ADC and pack it

into a larger array to be sent to the spectrometer core.

2.2.2 ADC Interface

The serial links communicate to a 26 GSps Analog Devices (formerly Hittite Microwave

Corporation) 5831 ADC [14]. The SPLASH2 ASIC is bonded to the board and connects to

the ADC or FPGA using an FPGA Mezzanine Card (FMC) connector, as shown in Figure

2.3. Details on the digital interface are in section 3.1.1 and a model of the ADC is shown

in Figure 3.1. The Hittite 5831 has a negative common-mode voltage[14], so it is required

to AC couple the links by inserting a series capacitor between the SPLASH2 ASIC and the

ADC. The DC voltage is then set with a bias circuit on the ADC board. Because of this,

it is important to maintain a “DC Balanced” signal by using the XOR pin to modulate the

output. This will prevent severe inter-symbol interference (ISI) due to changes to the DC

level.

4

2.2.3 TX and RX Design

The analog IP is a 10Gbps DDR 50⌦-terminated CML transceiver (Figure 2.1), subdivided

into a single TX and three RX. The transmitter comprises one di↵erential CML driver

(Figure 2.2), a digital single-ended-to-di↵erential predriver consiting of two inverter chains,

and a 2-bit to 1-bit DDR multiplexer. Each of the three receivers contains a di↵erent

sampler topology (Strong Arm[15][16], Double-Tail[17], and a novel architecture). Only one

of the three receivers is active at a time, the purpose being to test the performance of each

separately.

There are four component circuits in the receiver datapath. First is an resistively-loaded

di↵erential amplifier (preamp) to improve sensitivity, followed by a digital sense amplifier.

The sense amplifier output is fed into a latch, which converts the dynamic signal from the

sense amplifier ouptut to a static CMOS signal. Each receiver unit contains two preamps,

two samplers, and two latches one each for the rising and falling edge of the clock. Finally

there is a retiming circuit which aligns both the rising and falling data samples onto the

rising edge of the clock, suitable for use in the digital logic back-end.

The receiver also contains a variety of configuration registers to control bias currents

and clock tuning settings, which are omitted from Figure 2.1. The input to the receiver

is terminated with two 50⌦ resistors tied to a configurable common-mode-voltage. The

common mode voltage is supplied externally, and can be bypassed to high impedance for

DC-coupled applications.

The transmitter and receiver each receive reference currents (nominally 500mA and

60 µA, respectively) provided by on-chip current mirrors. The reciever also receives an

additional o↵set reference current of nominally 5 µA. This o↵set reference current is used to

introduce a three-bit o↵set current (four thermometer coded units + sign) into the preamp

di↵erential pair to cancel any mismatch-induced o↵set. The transmitter reference current is

supplied via 4 on-chip PMOS current mirrors, which are themselves supplied by an on-chip

NMOS current mirror. The receiver currents are supplied directly from on-chip NMOS cur-

rent mirrors. Each reference current mirror has an additional output current fed to a pad

for testing observability.

5

Preamp

Preamp

50 Ω

50 Ω

RXP

RXN

VCM

SR
Latch

SR
Latch

Delay

Retiming
2

11
scan_rx_delay[10:0]

rx_clk

rx_data[1:0]

Digital
Preamp

CML
Driver

TXP

TXN

tx_data[0]

tx_data[1]

tx_clk

TX

RX

Figure 2.1: SPLASH2/Hurricane 1 frontend block diagram.

Each transceiver has a number of configuration pins which are driven by a digital back-

end. In SPLASH2, a single scan chain is used to set the state of all IP on the chip. Each

transceiver also has four clock pins: one for each receiver and one for the transmitter. The

receiver has many configuration settings to control bias currents to the preamp, o↵set current,

rising and falling edge clock delays, and other modes. The transmitter has far fewer- the

only ones of interest being XOR (to invert the polarity of the output signals), enable (to

turn the transmitters on), and swing (to adjust the output current and voltage). All of these

settings are described in 3.1.1.

2.3 Hurricane 1

As described earlier, the purpose of these links is to interface with a ZC706 [13] FPGA board

using a daughterboard (Figure 2.3). The analog blocks are unchanged from SPLASH2. Like

6

50 Ω50 Ω

tx_swing

out_n

in_n

out_p

in_p

Figure 2.2: TX CML driver.

SPLASH2, Hurricane 1 also contains eight lanes. However, the current mirroring scheme

is slightly modified in that there are no longer any mirrored currents going to pads for

observability. The physical design is also di↵erent and is described in section 3.2.

2.4 Hurricane 2

Hurricane 2 contained numerous improvements to the analog block to make it more integration-

friendly, reflecting the cycles of learning from SPLASH2 and Hurricane 1 (see 2.4. The IP

has a single clock pin (fast clk) which toggles at the line rate, and two of the redundant

RX slices are removed. The serializer and deserializer have been moved into the analog IP,

so that the boundary interface is the same clock domain as the back-end RTL. The clock di-

vider is also placed inside the IP- this allows control over the skew between the clocks which

drive the serializer and deserializer. This clock divider produces the clock which drives the

digital back-end logic, slow clk. Its data rate is a function of the digital interface’s parallel

data width (W
data

), which is 10 for Hurricane 2. The slow clk frequency is determined by

Equation 2.1.

7

Figure 2.3: Hurricane 1 daughterboard.

f

slow clk

=
f

fast clk

· 2
W

data

=
f

fast clk

5
(2.1)

As a result, slow clk is an output of the block, and is used as the source clock for the

entire lane back-end during the lane place and route. The reset synchronizers are also placed

inside the IP out of convenience, and a synchronized reset is output along with the clock.

The block has an input reset signal which is driven by the primary chip-level SCR file. Figure

2.4 illustrates the components of the full Hurricane 2 analog IP. The dotted line indicates

the extend of the SPLASH2/Hurricane 1 analog IP; blocks to the right of this line are new

to Hurricane 2.

The three current references, TX I

ref

, RX I

ref

, and RX I

off

are mirrored internally

insead of provided separately. A single 50µA reference current is required for the block,

which reduces the total number of refernce currents required on chip.

8

The lanes have been reorganized into two “banks,” each having its own chip-level reference

current and common-mode voltage. This enables groupings of lanes to be independent of

each other, helping with chip-level analog signal routing. As a result the chip-level current

mirroring scheme needs only two four-output NMOS currrent mirrors.

Preamp

Preamp

50 Ω

50 Ω

RXP

RXN

VCM

SR
Latch

SR
Latch

Delay

Retiming
2

11
scan_rx_delay[10:0]

fast_clk

rx_data[9:0]

Digital
Preamp

CML
Driver

TXP

TXN

tx_data[9:0]

Deserializer
10

Serializer

/ 5

10

slow_clk

reset_in

reset_out

Figure 2.4: Hurricane 2 analog IP block diagram.

9

Chapter 3

Digital Back-end

This section describes the various digital back-ends created over the development of this

work. All are built as generators using Chisel[11], a scala-embedded language for constructing

hardware. SPLASH2 and Hurricane 1 were developed using Chisel2, and Hurricane 2 was de-

veloped using Chisel3. All extensively use a feature of Chisel called a BlackBox, which allows

Analog IP and Verilog modules to be instantiated inside Chisel modules. The transceivers,

serializer/deserializers (SPLASH2/Hurricane 1 only), clock dividers (SPLASH2/Hurricane

1 only), and current mirrors are all BlackBoxes. Future verisons of Chisel3 will support

an analog wire feature that will make integration of analog BlackBoxes like current mirrors

easier.

3.1 SPLASH2

3.1.1 ADC Interface

The ADC has two 4-bit (3-bit data + overrange) data channels which run at half the sample

rate (see Figure 3.1. Each bit of the 4-bit data packet is sent in parallel over 4 di↵erential

serial links (lanes). These 4-bit data packets are demultiplexed over two physical data

channels, X and Y, for a total of 8 signals (see Figure 3.2 This poses a challenge to the

10

back-end design, as each link is not independent from the others, so the lanes must be

aligned.

Figure 3.1: Hittite 5831 ADC functional diagram [14].

11

Figure 3.2: Hittite 5831 timing diagram [14].

The 5831 part provides two pins which assist in aligning the lanes: inhibit and XOR

[14]. The inhibit pin will force the output data to zero, and the XOR pin will modulate the

output data. Equation 3.1 shows the relationship between the these pins, the output data,

and the sampled data.

output[i] = xor � (inhibit · sample[i]) (3.1)

By sending a known XOR pattern with inhibit asserted, the back-end is able to measure

the skew between links and adjust a per-lane programmable delay. Sampled data moves

from the two-bit receiver interface, clocked at the fast clock frequency, to the deserializer.

A divide-by-8 clock divider connects generates the slow clock from the fast clock. This

12

divide ratio determines the output bitwidth of the deserializer, which is 2 ·R
deser

= 16. The

serializer input is also determined in this manner, and is also 16. The data from each lane,

post-alignment, is merged into a 128-bit vector to be XOR’ed and passed to the spectrometer

core. A 32-entry, 4-bit word map is included to allow use with other interfaces. This word

map is implemented as a LUT, programmed via the scan chain.

Figure 3.4 illustrates the hardware that implements this algorithm. Note that the XOR

signal is also used after alignment to assist in DC balancing the channels. The importance

of DC balance is outlined in section 2.2.2. Figure 3.3 outlines the board-level SPLASH2

system.

Figure 3.3: SPLASH2 ADC interface.

13

fast_clk

slow_clk

/8 Clock Divider

2:16
Deserializer

16:2
Serializer

2 16

fast_clk

2

slow_clk

16

tx_data

16 16 16

16

Shifter
(>>)

16

} 32 16

(All registers on slow_clk)
fine_skew_control

coarse_skew_control

16
To

 T
ra

ns
ce

iv
er

}128

raw

(o
th

er
 la

ne
s)

Figure 3.4: SPLASH2 alignment.

128
128

in[3:0] out[3:0]

LUT[63:0]
x 32

4 x 32
data[3:0][31:0]

raw[127:0]

-n
Z

16

x 8

5
scan_xor_delay[4:0]

scan_bitmap[63:0]

64

16
xor[15:0]

inhibit[15:0]

PRBS7

PRBS7_SLOW

SQUARE

SQUARE_SLOW

16

16

16

16

2

x 16

scan_xor_select[1:0]

scan_inhibit

Figure 3.5: SPLASH2 XOR and word map circuit.

14

Bit Error Rate Tracker (BERT)

SPLASH2 includes a single Bit Error Rate Tracker (BERT) circuit [18]. This is a test circuit

which is used in place of the ADC back-end. The BERT provides three Pseudo-Random Bit

Sequence (PRBS) stimuli (PRBS7, PRBS15, and PRBS31 standards). When connected to

an FPGA producing an identical sequence or in loopback mode (TX jumpered to RX), the

BERT circuit is put into seed mode, which uses the incoming data to set the state of a linear

feedback shift register (LFSR). An example of a PRBS7 LFSR is shown in Figure 3.6

+

x[7]x[6]x[5]
out

x[4]x[3]x[2]x[1]x[0]

Figure 3.6: PRBS7 LFSR example.

Once the LFSR state is seeded with at least N samples (N being the order of the LFSR),

the state of the trasmitting LFSR is known, and future bit sequences can be calculated.

Under the assumption that the seeded value is correct (which is likely true for low bit error

rates), the subsequent data can be XORed with the expected data to obtain error bits,

which are then accumulated over a long period of time. For PRBS7 and PRBS15, only one

deserialized cycle is required for seeding since the deserialized data width (16) is larger than

the LFSR order.

The implementation of BERT used on SPLASH2 o↵ers a number of features migrated

from previous work [18]. Section 3.1.1 includes every control pin and its function.

15

TX

2:16
SerDes

PRBS7

PRBS15

PRBS31

RX

16

16

16

16

2

2

tx_out

rx_in

tx_in

rx_out

Clock / 8fast_clk
slow_clk

digital_backend_clk

16

PRBS7
seed

PRBS15
seed

PRBS31
seed

mode

mode

mode

16

16

16

16

16

16

16

Pop
Count

16

+

+

16

error_count

bit_count

Figure 3.7: Bit error rate tracker (BERT) block diagram.

Listing 1 shows the SPLASH2 transceiver interface written in Chisel.

16

1 package hurricane_hbwif
2
3 import Chisel._
4 import ChiselError._
5
6 class TransceiverRxConfig extends Bundle {
7 // Global config bits
8 val cvd = Bits(INPUT, width = 9)
9 val delay = Bits(INPUT, width = 3)

10 // Slice 1 config bits
11 val ioff1 = Bits(INPUT, width = 8)
12 val ioffen1 = Bits(INPUT, width = 3)
13 val irefen1 = Bits(INPUT, width = 3)
14 val it1 = Bits(INPUT, width = 10)
15 val sw1 = Bits(INPUT, width = 4)
16 val clken1 = Bool(INPUT)
17 // Slice 2 config bits
18 val ioff2 = Bits(INPUT, width = 8)
19 val ioffen2 = Bits(INPUT, width = 3)
20 val irefen2 = Bits(INPUT, width = 3)
21 val it2 = Bits(INPUT, width = 10)
22 val sw2 = Bits(INPUT, width = 4)
23 val clken2 = Bool(INPUT)
24 // Slice 3 config bits
25 val ioff3 = Bits(INPUT, width = 8)
26 val ioffen3 = Bits(INPUT, width = 3)
27 val irefen3 = Bits(INPUT, width = 3)
28 val it3 = Bits(INPUT, width = 10)
29 val sw3 = Bits(INPUT, width = 4)
30 val rx3del = Bits(INPUT, width = 8)
31 val clken3 = Bool(INPUT)
32 // VCM on/off switch
33 val vcmsw = Bool(INPUT)
34 }
35
36 class TransceiverTxConfig extends Bundle {
37 val en = Bool(INPUT)
38 val xor = Bool(INPUT)
39 val swing = Bits(INPUT, width = 4)
40 }
41
42 class TransceiverIO(num_clocks: Int = 4) extends Bundle {
43
44 // high speed clock input(s)
45 val clks = Vec.fill(num_clocks) { Bool(INPUT) }
46
47 // rx pad inputs
48 val rx_inp = Bool(INPUT)
49 val rx_inn = Bool(INPUT)
50
51 // tx pad inputs
52 val tx_outp = Bool(OUTPUT)
53 val tx_outn = Bool(OUTPUT)
54
55 // rx internal outputs
56 val rx_out1 = Bits(OUTPUT, width = 2)
57 val rx_out2 = Bits(OUTPUT, width = 2)
58 val rx_out3 = Bits(OUTPUT, width = 2)
59
60 // tx internal inputs
61 val tx_in = Bits(INPUT, width = 2)
62
63 // config stuff
64 val rx_config = new TransceiverRxConfig
65 val tx_config = new TransceiverTxConfig
66
67 // analog stuff
68 val rx_vcm = Bool(INPUT)
69 val tx_iref = Bool(INPUT)
70 val rx_iref = Bool(INPUT)
71 val rx_ioff = Bool(INPUT)
72 }
73
74 class Transceiver(num_clocks: Int = 4) extends BlackBox {
75 val io = new TransceiverIO(num_clocks)
76
77 moduleName = "hurricane_hbwif_top"
78 }

Listing 1: SPLASH2 transceiver Chisel2 BlackBox code.

17

Scan Chain

The SPLASH2 scan chain is automatically generated using custom Chisel objects. A Chisel

object was written to allow Chisel nets to be assigned as scan nets, and a second chisel object

generates the scan registers and stitches them together. Chisel also outputs an address map

of these scan registers in a variety of formats (including LATEX!). Listings 2 and 3 shows the

Chisel code used to generate scan registers. Figure 3.1.1 shows sample scan bits for a single

lane.

Name Description MSB LSB R/W
s 0 cvd RX Clock Vernier Delay 756 764 W
s 0 delay RX Clock Delay 765 767 W
s 0 io↵1 RX O↵set Current Setting (Slice 1) 768 775 W
s 0 io↵en1 RX O↵set Current Enable (Slice 1) 776 778 W
s 0 irefen1 RX Reference Current Enable (Slice 1) 779 781 W
s 0 it1 RX Tail Current Setting (Slice 1) 782 791 W
s 0 sw1 RX Current Mirror Control (Slice 1) 792 795 W
s 0 clken1 RX Clock Enable (Slice 1) 796 796 W
s 0 io↵2 RX O↵set Current Setting (Slice 2) 797 804 W
s 0 io↵en2 RX O↵set Current Enable (Slice 2) 805 807 W
s 0 irefen2 RX Reference Current Enable (Slice 2) 808 810 W
s 0 it2 RX Tail Current Setting (Slice 2) 811 820 W
s 0 sw2 RX Current Mirror Control (Slice 2) 821 824 W
s 0 clken2 RX Clock Enable (Slice 2) 825 825 W
s 0 io↵3 RX O↵set Current Setting (Slice 3) 826 833 W
s 0 io↵en3 RX O↵set Current Enable (Slice 3) 834 836 W
s 0 irefen3 RX Reference Current Enable (Slice 3) 837 839 W
s 0 it3 RX Tail Current Setting (Slice 3) 840 849 W
s 0 sw3 RX Current Mirror Control (Slice 3) 850 853 W
s 0 rx3del RX Delay (Slice 3) 854 861 W
s 0 clken3 RX Clock Enable (Slice 3) 862 862 W
s 0 vcmsw Common-Mode Voltage Enable 863 863 W

Figure 3.8: SPLASH2 example scan bits.

18

1 object ScanChain {
2
3 val write_regs = ListBuffer[ScanReg]()
4 val read_regs = ListBuffer[ScanReg]()
5 def regs: ListBuffer[ScanReg] = { write_regs ++ read_regs }
6 val scan_update = Bool()
7 val scan_clk = Bool()
8 val scan_in = Bool()
9 val names = HashMap[String,Int]()

10
11 val read_scan_in = Bool()
12
13 def scan_out: Bool = { regs.last.io.scan_out }
14 def data_bits: Int = { regs.foldLeft(0) { (x,y) => (if(y.dummy) 0 else y.width) + x}}
15 def read_bits: Int = { read_regs.foldLeft(0) { (x,y) => x + y.width }}
16
17 def addReg(sr: ScanReg, name: String): Bits = {
18 if (sr.read_only) {
19 if (read_regs.isEmpty) {
20 sr.io.scan_in := read_scan_in
21 } else {
22 sr.io.scan_in := read_regs.last.io.scan_out
23 }
24 read_regs.append(sr)
25
26 } else {
27 if (write_regs.isEmpty) {
28 sr.io.scan_in := scan_in
29 } else {
30 sr.io.scan_in := write_regs.last.io.scan_out
31 }
32 write_regs.append(sr)
33 }
34 sr.io.scan_update := scan_update
35 sr.io.scan_clk := scan_clk
36
37 // check the name list
38 if (names.contains(name)) {
39 names(name) += 1
40 sr.net_name = "s_" + name + "_" + names(name).toString
41 sr.setName("ScanReg_" + name + "_" + names(name).toString)
42 } else {
43 names(name) = 1
44 sr.net_name = "s_" + name
45 sr.setName("ScanReg_" + name)
46 }
47 sr.io.data
48 }
49
50 def finish = { read_scan_in := write_regs.last.io.scan_out }
51
52 def config: ListBuffer[(String,Int,Int,Boolean)] = {
53 var idx = 0
54 regs.map { x =>
55 idx += x.width
56 if (x.msb_to_lsb) {
57 (x.net_name, idx - 1, idx - x.width, x.read_only)
58 } else {
59 (x.net_name, idx - x.width, idx - 1, x.read_only)
60 }
61 }
62 }
63
64 def width: Int = { regs.foldLeft(0) { _ + _.width } }
65
66 // Note: removed output methods for brevity
67 }

Listing 2: SPLASH2 scan generator Chisel2 code.

19

1 class ScanReg(
2 val width: Int = 1,
3 //val init: Int = 0,
4 val read_only: Boolean = false,
5 val mod_type: String = null,
6 var net_name: String = "unknown",
7 val msb_to_lsb: Boolean = true,
8 val dummy: Boolean = true
9) extends Module {

10 val io = new Bundle {
11 val scan_clk = Bool(INPUT)
12 val scan_in = Bool(INPUT)
13 val scan_update = Bool(INPUT)
14 val scan_out = Bool(OUTPUT)
15 val data = Bits(width = width)
16 }
17
18 def setName(n: String) { name = n; named = true } // hack, this is in the current chisel version
19
20 //val slices = List.fill(width) { Module(new ScanRegSlice(init = init, read_only = read_only, mod_type = mod_type)) }
21 val slices = List.fill(width) { Module(new ScanRegSlice(read_only = read_only, mod_type = mod_type)) }
22 val scan_wires = List.fill(width+1) { UInt(width = 1) }
23
24 slices.map { _.io.scan_clk := io.scan_clk }
25 slices.map { _.io.scan_update := io.scan_update }
26
27 scan_wires(0) := io.scan_in
28 slices.zipWithIndex.map { x => scan_wires(x._2+1) := x._1.io.scan_out }
29 slices.zipWithIndex.map { x => x._1.io.scan_in := scan_wires(x._2) }
30
31 io.scan_out := scan_wires(width)
32 if (read_only) {
33 io.data.dir = INPUT
34 if (msb_to_lsb) {
35 slices.zipWithIndex.map { x => x._1.io.data := io.data(width-x._2-1) }
36 } else {
37 slices.zipWithIndex.map { x => x._1.io.data := io.data(x._2) }
38 }
39 } else {
40 io.data.dir = OUTPUT
41 if (msb_to_lsb) {
42 io.data := slices.slice(1,width).map { _.io.data }.foldLeft(slices(0).io.data) { Cat(_,_) }
43 } else {
44 io.data := slices.slice(0,width-1).reverse.map { _.io.data }.foldLeft(slices(width-1).io.data) { Cat(_,_) }
45 }
46 }
47 }

Listing 3: SPLASH2 scan register Chisel2 code.

20

3.1.2 Physical Design

SPLASH2 was assembled using a Synopsys tool flow. As described in section 3.1.1, the

data from each link communicates to a common digital back-end, which itself communicates

synchronously to the spectrometer core. A consequence of this design is that the entire chip

must be synchronous. SPLASH2 has two clocks: a fast clock which toggles at the link data

rate, and a slow clock which is divided by the (de)serialization factor 8. The slow clock is

distributed to the digital back-end and spectrometer core, and the fast clock is distributed to

the analog IPs. Figure 3.9 shows the clocking of this chip. Because of the large area of this

chip and the synchronization requirements, timing targets were not met because of issues at

clock crossing boundaries. This issue is fixed in future chips (see the Hurricane sections) by

using a di↵erent clocking scheme.

The serializer/deserializer (SerDes) block is synthesized, placed and routed along with

the rest of the RTL. While there were actually few issues with timing in this block, Hurricane

2 shows that it is easier to include the serializer and deserializer as custom logic within the

transceiver macro itself. This also has the added benefit of only requiring a single sink per

lane for the fast clock.

Figure 3.10 shows a layout of the die, which is 2.034mm x 1.621mm. The transceivers

are placed around the outside of the chip, marked by magenta rectangles. The input clock

receivers are marked by cyan rectangles, and the PLL is marked by a yellow rectangle.

21

CLK
RXTXRX

/8

SerDes Backend

TXRX

/8

SerDes Backend

…

Figure 3.9: SPLASH2 clocking diagram.

Figure 3.10: SPLASH2 layout.22

3.2 Hurricane 1

3.2.1 High BandWidth InterFace (HBWIF) v1.0

Hurricane HBWIF is a tunneled NASTI-over-Serial memory interface using high-speed serial

links. NASTI (Not A STandard Interconnect) is an on-chip memory interconnect proto-

col. HBWIF communicates to an (o↵-chip) FPGA via 10Gbps DDR 50⌦-terminated CML

drivers and receivers. HBWIF has multiple memory ports which connect to the outer mem-

ory system using the NASTI interface. An example block diagram for the HBWIF use case

is included in Figure 3.11.

FMC

HBWIF Lanes

FIWBH Lanes

A
bs

tra
ct

io
n

TileLink

L2 Cache

TileLink

Converter and Map

DDR4
Module

DDR
Controller

PCB

Camera

FPGA

ASIC

Camera
Link

Cable

AXI AXI

Rocket

Figure 3.11: HBWIF system diagram.

23

There are 8 total lanes within HBWIF, each comprising a transceiver, SerDes, 8b/10b

encoder, synchronization engine, and bu↵er (Figure 3.12). Each lane contains a number of

control registers, which are configured using a Simple Memory Interface (SMI) port, which is

accessed by the processor as Memory-Mapped IO (MMIO). There are two possible memory

configurations for HBWIF, 1-channel and 8-channel. In the 1-channel configuration, only

lane 0 is used.

HBWIF can also be bypassed (the default setting), in which case the backup memory

port is used to access main memory. The backup memory port uses the HTIF as a physical

layer. When HBWIF is bypassed, the lanes are in test mode, and control and status registers

are still readable and writeable. During test mode, the lanes send and receive a PRBS, auto-

locking to the PRBS on the receive end. Bit errors are tracked in a per-lane Bit Error Rate

Tracker (BERT) module, which is accessed via the SMI interface. There is no real-time bit

error tracking during memory interface mode.

8b/10b
Encoder

8b/10b
Decoder Response Buffer

valid

data[7:0]

control

valid

data[7:0]

control

encoded[9:0]

encoded[9:0]To
 T

ra
ns

ce
iv

er

valid

resp[:]

AtoS
Serializer

valid

req[:]

ready

valid

req[:]

ready

valid

resp[:]

ready

N
A

ST
I I

nt
er

fa
ce

AtoS
Deserializer

10:2
SerDes

% 5
Clock

tx_in[1:0]

rx_out[1:0]

fast_clk slow_clk

Figure 3.12: Hurricane 1 HBWIF lane micro-architecture.

Bit Error Rate Tracker (BERT)

A bit error rate tracker (BERT) engine is included per lane. This circuit is unchanged from

SPLASH2 except that the bitwidth is changed from 16 bits to 10 bits. A multiplexer is used

to choose TX deserialized data from the BERT back-end or the HBWIF back-end. Both

blocks receive the RX deserialized data. See 3.1.1 for more information.

24

Bu↵er

Hurricane 1 processes NASTI memory requests as soon as they are received. A counter keeps

track of the number of in-flight requests. It is incremented whenever a new request is issued

and decremented whenever a response is read by the memory system. When the memory

system is not ready to receive a response (i.e. response ready is low), the responses are

stored in a resposne bu↵er of parameterizable depth. If the total number of in-flight memory

requests reaches the bu↵er depth, the request ready signal will deassert, preventing new

requests from firing until responses are dequeued from the bu↵er.

Synchronization

A simple synchronization state machine is included to ensure that the FPGA is brought up

and ready to receive memory tra�c (Figure 3.13). The procedure is as follows:

• Reset: The lane waits in reset until it is put into memory mode with a write of 1 to

the mem en register.

• Sync: The lane will emit a synchronization symbol over the lane, which is encoded as

an 8b/10b control word (see section 3.2.1).

• Ack: The lane will wait in the ack state until it receives an acknowledgment symbol

from the FPGA, which is also encoded as an 8b/10b control word.

• Idle: Once the acknowledgement has been received, the lane is ready in the idle state. It

will transition into the busy state when a valid memory request is received. During this

state, mem req ready is set to 1, which allows a valid memory request to be received.

• Busy: After a valid memory request is received, the constituent signals of the NASTI

request are converted into a single wide vector (the AtoS block in Figure 3.12). This

wide vector is serialized into 8-bit bytes and sent sequentially over the TX channel. In

this state mem req ready is set to 0 to disallow incoming memory requests.

• Last: During the final state, the last 8-bit byte is sent. This state is functionally similar

to the busy state, but mem req ready is set to 1 to allow a new request to begin.

25

Reset

Sync

Ack

Idle

BusyLast

mem_en = 1

1 cycle
ack = 1
sync = 1

sync = 0

sync = 0

req_valid = 1

last = 1

req_valid = 0

req_valid = 1

Figure 3.13: Hurricane 1 HBWIF synchronization state machine.

8b/10b Encoder/Decoder

HBWIF uses 8b/10b [19] as a line code to provide DC balance and word alignment. The

8b/10b code is implemented in Chisel using a Seq of bit patterns to create a mapping. A

single register holds the running disparity (RD) state for the transmit side, and is used to

select the proper encoded word to output over the TX channel of the two possible codes.

In this implementation, the receive side ignores the current running disparity and simply

decodes whatever 10-bit word was received. This is allowed as the 8b/10b decoding is

surjective. The decoder must receive at least one comma symbol, which contains a series of

five sequential 1s or five sequential 0s, to align. The valid signal of the decoded output will

remain low until a valid comma sequence is detected. Commas between HBWIF packets are

otherwise ignored.

HBWIF uses only a select few control symbols for synchronization and commas. K.28.5

is used as the comma sequence, although any other comma besides K.28.7 is detectable and

valid for alignment. K.28.7 is disallowed in the HBWIF implementation as it complicates

26

comma detection. K.28.0 is used as the SYNC symbol, and K.28.4 is used as the ACK

symbol.

Serializer/Deserializer

The Hurricane 1 serializer/deserializer is implemented in Verilog RTL and is placed-and-

routed with other parts of the outer memory system of the chip. This block is wrapped in

a Chisel BlackBox to be used within the Chisel domain. A 3-bit counter keeps track of the

fast clock edge index within a slow clock cycle (which is one-fifth the fast clock rate). The

slow-clock-synchronized reset is used to reset the counter to zero, which then rolls-over to

zero every five cycles. This RTL is shown in Listing 4.

On every 0th fast clock cycle, the serializer latches a 10-bit word from the slow clock

domain into a register clocked by the fast clock. On every other fast clock cycle, this register

is shifted right by two bit positions. The serialized data is selected from the bottom two bit

positions each cycle- this data feeds directly into the analog IP.

The deserializer contains a shift register that latches two bits at a time from the RX

output of the analog IP. Every fast clock cycle this is shifted to the right by two bit positions,

until ten total bits are captured (five cycles). A ten-bit shadow register is clocked by the

slow clock and fed by the parallel output of this shift register. This register will prevent the

data from changing during a slow clock cycle, which would lead to setup and hold violations

in the digital back-end.

27

1 always @(posedge fast_clk) begin
2 if (io_reset) begin
3 io_rx_out <= 0;
4 count <= 0;
5 end else begin
6
7 // rx shift register
8 for(i = 1; i < NDIVBY; i = i + 1) begin
9 rx_buffer[i*2-2] <= rx_buffer[i*2];

10 rx_buffer[i*2-1] <= rx_buffer[i*2+1];
11 end
12 rx_buffer[2*NDIVBY-1] <= rx_in_d[1];
13 rx_buffer[2*NDIVBY-2] <= rx_in_d[0];
14
15 if (count == (NDIVBY-1)) begin
16 // This will hold the outputs for an entire slow clock cycle
17 io_rx_out <= rx_buffer;
18 tx_buffer <= io_tx_in;
19 count <= 0;
20 end else begin
21 count <= count + 1;
22
23 // tx shift register
24 for(i = 1; i < NDIVBY; i = i + 1) begin
25 tx_buffer[i*2-2] <= tx_buffer[i*2];
26 tx_buffer[i*2-1] <= tx_buffer[i*2+1];
27 end
28 tx_buffer[2*NDIVBY-1] <= 1’b0;
29 tx_buffer[2*NDIVBY-2] <= 1’b0;
30 end
31 end
32 end

Listing 4: Hurricane 1 serializer/deserializer RTL.

28

3.2.2 Physical Design

Figure 3.14 shows the GDS of Hurricane 1, which highlights the two Rocket cores and the L2

cache in white. The eight magenta rectangles identify the locations of the serial link analog

IP. In this design, the digital back-ends are placed and routed flat along with the rest of the

uncore, which is the region of the chip that is not either of the cores or the L2 cache. Because

each lane is independent and interfaces with the rest of the chip through an asynchronous

interface, the quality of results is superior to SPLASH2. Timing was closed at a digital

back-end frequency of over 750MHz at the slow corner, corresponding to a maximum fast

clock of 3.75GHz or 7.5Gbps. In practice this frequency was not achieved because of the

channel quality and lack of equalization in the analog IP (see Chapter 4).

Figure 3.14: Hurricane 1 layout.

The tools were given a distinct fast and slow clock per lane, with an instance of the clock

divider per lane to allow the tool to deskew between fast and slow clocks individually. Each

fast clock is a clone of the master fast clock, which is the output of a clock multiplexer that

selects from the two on-chip LVDS receivers, a single-ended clock receiver, and the on-chip

PLL output. Allowing the tool to place these clocks played a role in improving the quality of

29

results. However, the blockage caused by the L2 placement resulted in routing congestion-

a problem that could be fixed with additional floorplanning cycles.

3.3 Hurricane 2

3.3.1 High BandWidth InterFace (HBWIF) v2.0

Organization

In version 2.0, HBWIF (now with the Hurricane prefix dropped) was separated into its own

repository for reusability. The links exist separately, and a chip-level configuration is used

to assemble the two parts. HBWIF v2.0 was designed using an alpha version of Chisel3:

https://github.com/freechipsproject/chisel3.

TileLink Switcher

TileLink [20] is an on-chip interconnect protocol used by Rocket to drive memory tra�c

through the cache hierarchy. HBWIF v2.0 supports TileLink natively instead of NASTI.

Hurricane 2 leverages this by including a programmable TileLink crossbar called the TileLink

switcher (Figure 3.15), which allows the user to select how many HBWIF lanes to use and

customize the memory channel mapping. Each HBWIF lane may provide tra�c for one or

more memory channel, while each memory channel will map directly to a single lane. The

TileLink switcher also includes a port for the LBWIF (Low BandWidth InterFace), which is a

slow CMOS interface used to bring up the chip before the serial links are active. Configuring

the switcher to use this port is handled in the same way as configuring the HBWIF mapping.

The TileLink switcher settings are memory-mapped control registers that may be written to

using LBWIF commands or by a program running on the core.

30

https://github.com/freechipsproject/chisel3

TileLink Switcher

L2

HBWIF
Lane

HBWIF
Lane

HBWIF
Lane

HBWIF
Lane LBWIF

TL 2
AXI

DDR
Controller

To FPGA
(SlowIO)

To FPGA (GTX)

DDR PHY

DFI

To DDR4

Figure 3.15: Hurricane 2 TileLink switcher.

Lane Hierarchy

HBWIF v2.0 has more explicit hierarchy within a single lane than the previous generation.

Each lane can be divided into three constituent parts based on clock domain: the analog

transceiver IP, the digital lane back-end, and the asynchronous crossings. The analog IP is

the only block which receives the data-rate fast clock. As mentioned in section 2.4, the slow

clock is generated by the analog IP. This clock becomes the source clock for the entirety of

the digital back-end, and the lane-side (response enqueue and request dequeue) ports of the

asynchronous crossings. The uncore-side of the asynchronous crossings (response dequeue

and request enqueue) are driven by the uncore’s clock. This organization improves the

31

readability of the Chisel code, as the clock override is only needed in a single instance.

HbwifLaneBackendTransceiver

10

10
data_tx

data_rx

slowClkfastClk

transceiverData_tx

transceiverData_rx

clock
resetOut reset

resetIn

scr

mem
TileLink

TileLink

TileLink

TileLink

clock

reset

mem

scr

system_clock
system_reset

hbwifReset fastClk

tx

rx

iref

iref

tx

rx

Figure 3.16: Hurricane 2 HBWIF lane.

The digital back-end (HbwifLaneBackend) contains a BERT for testing, a local SCRFile

for writing configuration registers and reading status registers, and the primary datapath

block; This block is called HbwifTileLinkMemSerDes in Hurricane 2. There is a simple

multiplexer to select between the BERT and memory modes.

BERT SCRFile

HbwifTileLinkMemSerDes
10

10

10

10

Transceiver configuration

TileLink

TileLink
mem

scr

data_tx

data_rx

Figure 3.17: Hurricane 2 HBWIF lane back-end (HbwifLaneBackend).

The HbwifTileLinkMemSerDes is similar to what existed in Hurricane 1, sans serializ-

er/deserializer and clock divider, which are incorporated into the analog IP. Notable addi-

tions are the CRC generator/checker and the retransmit feature, and names of the component

blocks are also updated to reflect the TileLink protocol. Figure 3.18 contains a schematic of

the HbwifTileLinkMemSerDes.

32

Grant
Filter

8b/10b
Encoder

8b/10b
Decoder

Grant
Deserializer

Grant
Buffer

valid

data[7:0]

control

valid

data[7:0]

control

encoded[9:0]

encoded[9:0]To
 T

ra
ns

ce
iv

er

valid

grant[:]

Acquire
Serializer

Acquire
Table

valid

grant[:]

valid

acquire[:]

ready

first() client_xact_id

valid

acquire[:]

ready

valid

grant[:]

ready

C
lie

nt
U

nc
ac

he
d-

Ti
le

Li
nk

IO

Figure 3.18: Hurricane 2 HBWIF lane micro-architecture (HbwifTileLinkMemSerDes).

The retransmit feature will resend a memory request if a response is not received within

a programmable number of cycles. This feature is meant for unreliable channels to improve

resiliency, but is disabled by default and enabled by writing to a specific SCR. When enabled,

the Acquire table will store a local copy of every memory request along with a timestamp.

Each cycle these timestamps are decremented; when zero is reached, the memory request is

attempted again. With each response, the ID of the transaction is passed to the Acquire

table and the entry is removed.

The Acquire serializer takes a TileLink Acquire (uncached memory request) and breaks

it into bytes of data. Each byte of data is passed to the 8b/10b encoder which directly drives

the TX data input of the transceiver. After each acquire is sent, a CRC checksum equal

to the modular sum of all bytes trasmitted is sent. The Acquire deserializer (not pictured)

on the FPGA will check this checksum and drop any transaction that fails. Such dropped

transactions would be retransmitted once the timeout is reached.

The Grant deserializer will receive bytes of data from the 8b/10b decoder and attempt

to construct a TileLink Grant (uncached memory response). Like the Acquire channel, a

CRC is sent after the data bytes and is checked by the Grant deserializer. Any incorrect

CRC will result in a dropped Grant; causing the transaction to timeout. This will result

in the memory transaction being performed again, which is acceptable because the memory

system will not attempt to modify data in a location until the previous memory request has

been acknowledged.

Once a successful Grant is constructed, the Acquire table is signaled to drop the entry

33

as mentioned above, and the Grant is entered into the Grant bu↵er. This bu↵er is designed

to be as large as needed to store all responses from the maximum number of Acquire table

entries. The number of entries should not exceed the number of L2 transactors, as this will

result in storage that cannot be filled, wasting area.

The FPGA code that cooperates with this circuit behaves in nearly the same manner,

except that retransmission is not needed on the FPGA. There is therefore no equivalent

to the Acquire table; only a Grant serializer, Acquire deserializer, and Acquire bu↵er are

needed. The 8b/10b principle of operation is unchanged from Hurricane 1.

DDR4 Comparison

Hurricane 2 contains a DDR4 controller and PHY graciously provided by Cadence Design

Systems. Presence of this controller and the serial links will allow a true performance compar-

ison between the two methods. From this, a model will be built to extrapolate performance

on chips which do not have a DDR4 PHY but have serial links. Figure 3.19 shows the incor-

poration of the DDR4 PHY into the Hurricane 2 Chisel code. A Chisel BlackBox wrapper

around both the Cadence-supplied controller RTL (written in Verilog) and the PHY was

created, and the AXI and AHB ports were tied into the TileLink crossbar using protocol

converters. Additionally, SCR values were allocated to configure settings not covered by the

controller’s AHB configuration interface.

DDR
PHY

A
na

lo
g

Po
rts

To
 D

D
R

DDR
Controller

DFI

Chisel wrapper
AXI4

AHB

TL2AXI

TL2AHB

MMIO

TL1

TL1

SCRs
TL1

Switcher

Figure 3.19: Hurricane 2 DDR4 controller wrapper.

34

3.3.2 Physical Design

A GDS of Hurricane 2 is shown in Figure 3.20. Hurricane 2 consists of a single Rocket

core with a two-lane Hwacha vector accelerator, a 256 KiB L2 cache, a DDR4 PHY, and

8 HBWIF lanes. Of these, Hwacha, Rocket, and the HBWIF lanes were implemented as

hierarchical blocks which were individually placed and routed before being placed inside the

top level of the chip. This strategy is helpful for many reasons, including improving clock

tree synthesis, shortening tool runtime, and reducing routing complexity.

The HBWIF lanes are indicated as magenta rectangles in Figure 3.20. In addition to being

a hierarchical cell, each HBWIF lane is a multiply instantiated module (MIM), meaning that

they are identical copies of each other. This reduces the system complexity and allows the

individual lane to be optimized before being stamped many times on the chip. Use of this

technique further improved the quality of results from Hurricane 1, and led to a chip that

met the 1GHz timing target for the digital back-end.

Figure 3.20: Hurricane 2 layout.

35

The floorplan of a HBWIF lane is shown in Figure 3.21. Each HBWIF lane contains a

single transceiver IP and SRAMs used for the Acquire table and Grant bu↵er. In Figure 3.21

the transceiver IP is located in the top right corner; the remaining boxes are SRAMs. Pins are

located on the bottom edge of the lane only, as this block is tiled with other lanes abutting to

the left and right at the top level. Custom RDL routing to the bumps is included within the

lane, but not shown in Figure 3.21. This custom routing ensures consistent, matched-length

traces.

Figure 3.21: Hurricane 2 HBWIF lane layout.

Hurricane 2 contains two banks of HBWIF lanes: one on the top edge of the chip and

one on the bottom. The bottom bank of lanes is mirrored about the X axis to keep the

digital pins towards the inside of the chip. Each bank has a chip-level bias current input

and 4-output current mirror to supply biases to each lane. Each bank also has a chip-level

common-mode voltage input that is connected to each lane. This style of design removes

the need to run long analog wires across the chip, which would cause congestion and lead to

analog signal integrity issues.

36

Chapter 4

Results

A simulation of the TX eye width and height, using a lumped RC model for the channel,

is shown in Figure 4.1. This plot is generated using 50 mV of noise superimposed on the

supply.

Figure 4.1: Post-layout simulated TX eye diagram (no channel model).

Figure 4.2 demonstrates the movement of memory tra�c over the serial links on Hurricane

1. Each yellow bar corresponds to a burst of tra�c that is smaller than the timescale of the

37

image.

Figure 4.2: Hurricane 1 HBWIF waveforms during an FADD unit test.

Because the on-chip links do not have clock recovery, the phase is adjusted using the

Xilinx GTX part’s integrated TX phase interpolators. A calibration routine automatically

selects the center of the eye by measuring the bit error rate over a million samples and

selecting the phase interpolator code in the center of the eye. The phase interpolators are

7-bit (a maximum of 127) and express a small amount of nonlinearity, as shown in Figure

4.3.

-7

-6

-5

-4

-3

-2

-1

0

0 60 120 180 240 300 360

lo
g1
0(
BE

R)

Raw	Phase	Interpolator	Value	(Degrees)

log10(BER)	vs	Raw	Phase	Interpolator	Value,	1M	Samples

Figure 4.3: log10(BER) plot versus FPGA TX phase interpolator value (1M samples).

38

Chapter 5

Conclusion

In summary, a lightweight serial link interface generator has been designed. This includes

the custom design of a CML, dual data rate serial link IP as well as a Chisel-based RTL

generator. Using this generator, 3 chips of varying complexity have been taped out in

STMicroelectronics 28nm FDSOI technology.

Generator-based design is instrumental in accelerating the design of prototypes and test

chips. This approach has enabled teams of four to eight graduate students were able to tape

out the three chips described in this report in less than a two year time span. This work

will help future teams to create chips with higher memory bandwidths at very low cost,

enabling future architecture and circuit innovations and providing reasonable data points

for performance extrapolation.

5.1 Future Work

An improvement to this work is a generator-based approach to the frontend design. This

would facilitate reusability and accelerate the design cycle of our test chips. There is a

staggered e↵ort to produce serial link generators using the Berkeley Analog Generator (BAG)

[21] framework. We have plans to integrate this serial link generator with the back-end

39

generator to produce a complete subsystem generator for improved automation.

Testing of this system is ongoing. We expect Hurricane 2 silicon in the Fall of 2017,

which will allow us to compare the latencies of our approach to an actual production DDR

interface to determine the e�cacy of this work. While this work is not intended to compete

with production-quality interfaces on power or performance, we expect that the results of

this work will be adequate to extrapolate the performance of our test chips to full-scale

designs., we expect that the performance of this work will be adequate to extrapolate the

performance of our test chips to full-scale designs.

40

Bibliography

[1] B. Nikolić, J. Bachrach, E. Alon, K. Asanović, and D. Patterson, “Specialization for en-

ergy e�ciency using agile development,” in 2015 Fourth Berkeley Symposium on Energy

E�cient Electronic Systems (E3S), Oct 2015, pp. 1–2.

[2] K. Asanović, R. Avižienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,

D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The rocket chip generator,” EECS Depart-

ment, University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[3] Y. Lee, B. Zimmer, A. Waterman, A. Puggelli, J. Kwak, R. Jevtic, B. Keller, S. Bailey,

M. Blagojevic, P. F. Chiu, H. Cook, R. Avižienis, B. Richards, E. Alon, B. Nikolić, and

K. Asanović, “Raven: A 28nm risc-v vector processor with integrated switched-capacitor

dc-dc converters and adaptive clocking,” in 2015 IEEE Hot Chips 27 Symposium (HCS),

Aug 2015, pp. 1–45.

[4] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Water-

man, J. M. Shainline, R. R. Avižienis, S. Lin et al., “Single-chip microprocessor that

communicates directly using light,” Nature, vol. 528, no. 7583, pp. 534–538, 2015.

[5] Y. Lee, A. Waterman, R. Avižienis, H. Cook, C. Sun, V. Stojanović, and K. Asanović,

“A 45nm 1.3GHz 16.7 double-precision GFLOPS/W RISC-V processor with vector

accelerators,” in ESSCIRC 2014 - 40th European Solid State Circuits Conference (ES-

SCIRC), Sept 2014, pp. 199–202.

[6] C. Ding and K. Kennedy, “The memory of bandwidth bottleneck and its amelioration

by a compiler,” in Proceedings 14th International Parallel and Distributed Processing

Symposium. IPDPS 2000, 2000, pp. 181–189.

41

[7] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni,

A. Vandercappelle, and P. G. Kjeldsberg, “Data and memory optimization techniques

for embedded systems,” ACM Trans. Des. Autom. Electron. Syst., vol. 6, no. 2, pp.

149–206, Apr. 2001. [Online]. Available: http://doi.acm.org/10.1145/375977.375978

[8] L. Thayer, “High speed interface for dynamic random access memory (DRAM),”

Oct 2013, uS Patent 8,554,991. [Online]. Available: https://www.google.com/patents/

US8554991

[9] Interlaken Protocol Definition, Cortina Systems and Cisco Systems, Oct 2008,

rev 1.2. [Online]. Available: http://www.interlakenalliance.com/Interlaken Protocol

Definition v1.2.pdf

[10] Aurora 8B/10B Protocol Specification, Xilinx, Oct 2014, v2.3. [On-

line]. Available: https://www.xilinx.com/support/documentation/ip documentation/

aurora 8b10b protocol spec sp002.pdf

[11] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Aviienis, J. Wawrzynek, and

K. Asanovi, “Chisel: Constructing hardware in a scala embedded language,” in DAC

Design Automation Conference 2012, June 2012, pp. 1212–1221.

[12] 7 Series FPGAs GTX/GTH Transceivers User Guide, Xilinx, Dec 2016, v1.12.

[Online]. Available: https://www.xilinx.com/support/documentation/user guides/

ug476 7Series Transceivers.pdf

[13] ZC706 Evaluation Board for the Zynq-7000 XC7Z045 All Programmable SoC User

Guide, Xilinx, Mar 2016, v1.6. [Online]. Available: https://www.xilinx.com/support/

documentation/boards and kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf

[14] 3-BIT 26 GSPS ANALOG-TO-DIGITAL CONVERTER W/ OVERRANGE,

INHIBIT, AND 1:2 DEMUX, Analog Devices, v02.0713. [Online]. Available: http:

//www.analog.com/media/en/technical-documentation/data-sheets/hmcad5831.pdf

[15] T. Kobayashi, K. Nogami, T. Shirotori, Y. Fujimoto, and O. Watanabe, “A current-

mode latch sense amplifier and a static power saving input bu↵er for low-power archi-

tecture,” in 1992 Symposium on VLSI Circuits Digest of Technical Papers, June 1992,

pp. 28–29.

42

http://doi.acm.org/10.1145/375977.375978
https://www.google.com/patents/US8554991
https://www.google.com/patents/US8554991
http://www.interlakenalliance.com/Interlaken_Protocol_Definition_v1.2.pdf
http://www.interlakenalliance.com/Interlaken_Protocol_Definition_v1.2.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_protocol_spec_sp002.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_8b10b_protocol_spec_sp002.pdf
https://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
https://www.xilinx.com/support/documentation/user_guides/ug476_7Series_Transceivers.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/hmcad5831.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/hmcad5831.pdf

[16] J. Montanaro, R. T. Witek, K. Anne, A. J. Black, E. M. Cooper, D. W. Dobberpuhl,

P. M. Donahue, J. Eno, W. Hoeppner, D. Kruckemyer, T. H. Lee, P. C. M. Lin, L. Mad-

den, D. Murray, M. H. Pearce, S. Santhanam, K. J. Snyder, R. Stehpany, and S. C.

Thierauf, “A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor,” IEEE Journal of

Solid-State Circuits, vol. 31, no. 11, pp. 1703–1714, Nov 1996.

[17] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, and B. Nauta, “A double-tail

latch-type voltage sense amplifier with 18ps setup+hold time,” in 2007 IEEE Inter-

national Solid-State Circuits Conference. Digest of Technical Papers, Feb 2007, pp.

314–605.

[18] N. Mehta, C. Sun, M. Wade, S. Lin, M. Popovic, and V. Stojanovic, “A 12Gb/s, 8.6

mApp input sensitivity, monolithic-integrated fully di↵erential optical receiver in CMOS

45nm SOI process,” in ESSCIRC Conference 2016: 42nd European Solid-State Circuits

Conference, Sept 2016, pp. 491–494.

[19] A. X. Widmer and P. A. Franaszek, “A DC-balanced, partitioned-block, 8B/10B trans-

mission code,” IBM Journal of Research and Development, vol. 27, no. 5, pp. 440–451,

Sept 1983.

[20] H. Cook, “Productive design of extensible on-chip memory hierarchies,” Ph.D.

dissertation, EECS Department, University of California, Berkeley, May 2016. [Online].

Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-89.html

[21] J. W. Crossley, “BAG: A designer-oriented framework for the development of

AMS circuit generators,” Ph.D. dissertation, EECS Department, University of

California, Berkeley, Dec 2014. [Online]. Available: http://www2.eecs.berkeley.edu/

Pubs/TechRpts/2014/EECS-2014-195.html

43

	Introduction
	Problem Statement and Related Work
	Organization

	Analog Frontend
	Design Specifications
	SPLASH2
	Background
	ADC Interface
	TX and RX Design

	Hurricane 1
	Hurricane 2

	Digital Back-end
	SPLASH2
	ADC Interface
	Physical Design

	Hurricane 1
	High BandWidth InterFace (HBWIF) v1.0
	Physical Design

	Hurricane 2
	High BandWidth InterFace (HBWIF) v2.0
	Physical Design

	Results
	Conclusion
	Future Work

