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Abstract

Communication Avoidance for Algorithms with Sparse All-to-all Interactions

by

Penporn Koanantakool

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Katherine Yelick, Chair

In parallel computing environments from multicore systems to cloud computers and su-
percomputers, data movement is the dominant cost in both running time and energy usage.
Even worse, hardware trends suggest that the gap between computing and data movement,
both in memory systems and interconnect networks, will continue to grow. Minimizing
communication is therefore necessary in devising scalable parallel algorithms. This work dis-
cusses parallelizing kernels in applications ranging from chemistry and cosmology to machine
learning.

We have developed new communication-avoiding algorithms for problems with all-to-
all interactions such as many-body and matrix computations, taking into account their
sparsity patterns, either from cutoff distance, symmetry, or data sparsity. Our algorithms
are communication-efficient (some are provably optimal) and scalable to tens of thousands
of processors, exhibiting orders of magnitude speedup over more commonly used algorithms.

These all-to-all computational patterns arise in scientific simulations and machine learn-
ing. The last part of the thesis will present a case study of communication-avoiding sparse-
dense matrix multiplication as used in graphical model structure learning. The resulting
high-performance sparse inverse covariance matrix estimation algorithm enables processing
high-dimensional data with arbitrary underlying structures at a scale that was previously in-
tractable, e.g., 1.28 million dimensions (over 800 billion parameters) in under 21 minutes on
24,576 cores of a Cray XC30. Our method is used to automatically estimate the underlying
functional connectivity of the human brain from resting-state fMRI data. The results show
good agreement with a state-of-the-art clustering, which used manual intervention, from the
neuroscience literature.
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Chapter 1

Introduction

Data movement, whether between levels of memory hierarchy or between processors over
the network, is the most expensive operation in both time and energy, and hardware trends
suggest the gap between its cost and the cheaper arithmetic cost will only grow [64, 77, 11].
Data movement is especially costly in a distributed memory supercomputer, cluster, or cloud
setting where the cost of interprocessor communication is at least 4 orders of magnitude
higher than the cost of a floating-point operation (flop). One approach to bridging the
growing performance gap, along with addressing the increasing energy concerns [61], is the
design of new algorithms that provably minimize communication.

This thesis presents a set of algorithms that are designed to avoid network communication
in a parallel environment. The algorithms address a class of problems that require some form
of all-to-all style computation that includes N-body methods and matrix multiplication, and
also scenarios that are in some sense sparse due to features such as distance cutoff or matrix
sparsity. The algorithms use a common strategy of data replication to avoid communication,
and they are parameterized over the number of replicas of a given input or output data struc-
ture. The work includes formal communication complexity analysis, communication lower
bounds, and experimental analysis for new parallel implementations on high performance
computing systems. Many of the algorithms presented here are communication-optimal,
and some are one to two orders of magnitude faster than algorithms commonly used in
practice.

While most algorithm complexity analysis typically focuses on computational costs as
measured by arithmetic or logical operations, there is also significant prior work in mod-
eling communication costs and communication-avoiding algorithms. In addition, there are
both automatic and manual approaches to minimizing communication. In the remainder
of this chapter we will summarize the most relevant areas of prior work, starting with
communication-avoiding algorithms, and then covering lower bounds and communication
optimality. We then formalize the notion of all-to-all style algorithms and sparsity that are
addressed in our work. Finally, we highlight some of the major contributions in this thesis
and give a roadmap to the rest of the thesis.
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1.1 Communication Avoidance

Computing speeds have been improving at a rate much faster than those of memory and net-
work. The exponentially-growing performance discrepancy has been discussed for decades.
There has been extensive research on maximizing data locality, both manually and automat-
ically. This section gives a brief overview of previous efforts, starting from serial programs, to
parallel shared-memory programs, and finally parallel distributed-memory programs, which
are the domain of our work.

Serial programs. Typical memory optimizations include register tiling (loop unroll-and-
jam), cache tiling (loop blocking), loop skewing, strip-mining, loop interchange, array padding,
memory alignment, prefetching, etc. These processes are tedious and hardware-dependent.
The research to delegate these tasks to optimizing compilers began as soon as the 1960s [72,
181, 7, 152, 36].

Parallel shared-memory programs. As compilers started to vectorize and parallelize
codes [112, 115], the transformations were adapted to support shared memory programs as
well. Data parallelism where processors split the data equally and update the part they own
is the most common parallelization approach, but it is not always communication-efficient.
Iteration space tiling [180, 179] performs dependency analysis and applies loop transforma-
tions and tiling to promote appropriate concurrency and data reuse. The name iteration
space tiling reflects the fact that tiling consecutive loops corresponds to geometrically tiling
(partitioning) the iteration space consisting of all possible tuples of loop indices. There are
two main questions: what loop transformations to perform [124, 137], and what are the
best tile sizes [114, 49, 157, 108]. While iteration space tiling can lead to algorithms with
replication, such as those presented in this thesis, the prior work in this area did not include
lower bound analysis or distributed-memory operations.

Current software tools are built on the premise that computing is the most expensive
component [170], but the increasing need for data locality prompts the developments of
many software extensions and also new programming models. OpenMP [53] does not have a
native way to specify data distribution or give task scheduling guidelines based on locality,
but there are extensions that do [140, 94]. Cilk [32] and Intel Threading Building Blocks
(TBB) [156] are parallel runtime extensions to the C and C++ language, respectively. They
both use work-stealing approach that balance the load well, but lack the consideration of
data reuse. Locality supports are again being implemented by third parties as extensions [1,
125, 90].

Parallel distributed-memory programs. Distributed-memory compiler work came to
attention in the late 1980s and is still ongoing [37, 155, 154, 85, 27], however, they have
not been widely adopted yet. Most parallelizations and optimizations are still done by hand,
using distributed parallel programming languages or runtimes such as MPI [89], UPC [39],
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UPC++ [17], X10 [46], Chapel [43], Charm++ [101], etc., all equipped with features to
manage data distribution and locality.

Optimization techniques are different for each type of applications, for example, tree-
based N-body simulations [183] replicate the top levels of the tree structure, particle-in-cell
simulations [128] replicate grid cells, stencil computations [55] replicate particles in the ghost
zones, graph algorithms use graph partitioning to minimize communication [35, 78], sparse-
matrix dense-vector multiplications and sparse-sparse matrix multiplications use hypergraph
partitioning [42, 22], etc. Again, while the techniques are known to improve performance,
they lack rigorous proofs of optimality and memory/performance tradeoffs presented in this
thesis.

1.2 Communication Optimality

Last section described various approaches to decrease communication, this section discusses
algorithms that provably minimize communication. There are two costs associated with
communication: latency and bandwidth. To assess how well an algorithm avoids communi-
cation, we derive communication lower bounds on latency and bandwidth and compare to
the algorithm costs.

Definition 1.2.1. Communication Optimality. An algorithm is communication-optimal if
its latency and bandwidth costs match their corresponding lower bounds for the problem.

Our work is motivated by recent developments of communication lower bounds and
communication-optimal algorithms in linear algebra, starting with the matrix multiplica-
tion problem Cm×n = Am×qBq×n,

for i = 0 : m, j = 0 : n, k = 0 : q
cij += aik × bkj,

where lowercase letters refer to matrix elements.
In 1981, Hong and Kung introduced communication lower bounds for sequential matrix

multiplication [98]. Aggarwal et al. gave the parallel matrix multiplication lower bounds in
1990, assuming unlimited memory, together with an algorithm that attains the bounds [4].
These memory-independent bounds are reproduced separately by Irony et al. [96] in 2004,
where they also presented memory-dependent lower bounds, although none of the algorithms
at that time attained the lower bounds for all possible memory sizes. The existing algorithms
are either optimal for minimal memory size, i.e., when each processor only has enough
memory to store 1/p of data, such as Cannon’s [38] and SUMMA [80] algorithms (also called
2D algorithms), or optimal for maximal memory size, requiring each processor to be able to
store 1/p2/3 of each matrix such as the so-called 3D algorithms [4, 3]. In 2011, Solomonik
and Demmel introduced the 2.5D communication-avoiding algorithm [167] which stores c/p
of data in memory. c is a tunable parameter ranging between 1 to 3

√
p, allowing the algorithm

to interpolate between 2D (c = 1) and 3D (c = 3
√
p) algorithms. By selecting the largest c
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(a) 2D algorithms
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(b) 2.5D algorithms

p1/3

p1/3

p1/3

(c) 3D algorithms

Figure 1.1: How 2D, 2.5D, and 3D algorithms partition the matrix multiplication iteration space
between p processors. 2.5D algorithms interpolate between the 2D and 3D algorithms with its
tunable parameter c (replication factor).

that fits in memory, the algorithm was proven communication-optimal for any memory size
and any number of processors. Compared to the non-replicating version (minimal memory,
i.e., c = 1), the 2.5D algorithm decreases latency and bandwidth costs by factors of c3/2 and
c1/2, respectively.

Replication can be interpreted as partitioning the iteration space rather than the data
themselves among processors, similar to iteration space tiling in compiler optimization.
Chamberlain et al. [44] discussed this in distributed-memory setting without being application-
specific in 1999, although their goal was to expose more parallelism. Figure 1.1 shows how
the 2D, 2.5D, and 3D algorithms partition (tile) the iteration space, each (i, j, k) coordinate
representing the calculation of cij += aikbkj. 2D algorithms partition the C matrix among
the processors. Each processor is responsible for calculating all computations related to the
part of C that it owns. 2.5D and 3D algorithms partition the iteration space among the
processors rather than the data.

Definition 1.2.2. Communication-avoiding algorithms are algorithms that replicate data
and reformulate computation to asymptotically (in c) reduce communication.

The lower bounds for matrix multiplication were generalized to a larger class of dense
linear algebra problems [23], and later to any loop nests with array subscripts that are affine
functions of loop indices [47, 107, 48]. Many more communication-avoiding algorithms for
linear algebra or three-nested-loop applications emerged, most are provably communication-
optimal, achieving large improvements over common non-replicating algorithms, shown in
Table 1.1. (See Ballard et al.’s survey [20] for more details on lower bounds and optimality.)
This motivates us to apply the communication-avoiding techniques to other applications.
Our work focuses on algorithms with all-to-all interactions since they require a significant
amount of communication by nature.
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Computation Algorithm Communication Optimality
Largest speedup reported

in the cited paper(s)

Dense matmul

3D [3, 135, 44] Optimal only in maximal memory case N/A
2.5D [165] Optimal for square matrices 12× over non-replicating version
CARMA [60]
(recursive)

Optimal for all matrices
141× over ScaLAPACK
(rectangular multiplications)

Strassen’s
dense matmul

CAPS [21] Optimal 2.84× over non-replicating version

Sparse matmul
3D-SpGEMM
[25]+[14]

Optimal when matrix sparsities are
similar (Erdős-Rényi matrices)

3× over Trillinos

Cholesky
Block recursion [171] Optimal N/A
2.5D [81] Optimal ∼1× over non-replicating version

LU
Block recursion [172] Optimal N/A
2.5D [167] Optimal 1.37× over non-replicating version

Tall-skinny QR TSQR-HR [24] Optimal 3.6× over ScaLAPACK
Symmetric
band reduction

CASBR [19] N/A (no known lower bounds) 6× over PLASMA

Krylov subspace
methods

CA-KSM [40] N/A (no tight lower bounds) 4.2× over non-replicating version

All-pairs
shortest paths

2.5D DC-APSP [166] Optimal 6.2× over non-replicating version

Table 1.1: Communication optimality and empirical speedups of communication-avoiding algorithms, i.e.,
algorithms that can exploit memory larger than the minimal required (1/p of data) to asymptotically com-
municate less. Dense matmul and sparse matmul refer to dense-dense and sparse-sparse matrix-matrix
multiplication, respectively. Maximal memory means the maximum benificial memory usage according to
the memory-independent lower bounds (1/p2/3 of data for matmul). Speedups reported are compared to
either non-replicating algorithms or existing software libraries. These numbers are from the cited papers only
and are not meant to be comprehensive as later literature may report larger speedups. All other algorithms
listed communication-optimal are optimal for all memory sizes, except for the 3D matmul algorithms in the
first row.

1.3 All-to-all Algorithms

By all-to-all algorithms, we refer to nested loops where each output data point requires
inputs subscripted with all possible values of all other loop indices that are not indexing the
output.

Definition 1.3.1. An all-to-all algorithm is of the form,

for i0 = 0 : I0, i1 = 0 : I1, . . . , iy−1 = 0 : Iy−1

for iy = 0 : Iy, iy+1 = 0 : Iy+1, . . . , iz−1 = 0 : Iz−1

Y (i0, i1, . . . , iy−1) = f (X0(φ0(I)), X1(φ1(I)), . . . , Xm−1(φm−1(I))) ,

where

• Y is a y-dimensional output array,

• Xj is an xj-dimensional input array,

• i0, i1, . . . , iz−1 are loop indices, i0, i1, . . . , iz−1, I0, I1, . . . , Iz−1 ∈ N.
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• I = (i0, i1, . . . , iz−1) is a tuple of all loop indices,

• φj: Nz → Nxj is a function mapping a z-tuple of all indices to an xj-tuple to index Xj,

• f : Rm → R is a function calculating an output from m input values, assuming its
output fully depends on all m input values and is not trivially some constant for all
arguments,

• N is the set of nonnegative integers (natural numbers), and

• R is the set of real numbers.

Many important scientific problems are all-to-all. The N-body problem, one of the seven
most common scientific kernels to a large number of significant applications (a.k.a. “seven
dwarfs” [10]), has an all-to-all interaction pattern. It simulates a system of n particles
(bodies) over time. In each timestep, it computes the total force F (i) on each particle i from
all other particle j,

for i = 0 : n, j = 0 : n
F (i) += interact(Q(i), Q(j)),

where Q(i) represents the necessary information of particle i such as position, charge, mass,
etc.

The N-body simulation is widely used in molecular dynamics [150, 164, 161] and astro-
physics [175, 91]. Its all-pairs interaction pattern also occurs in many other applications such
as database join, collision detection in computer graphics, all-against-all genome comparison
to study genome evolution in comparative genomics [116, 120, 83, 178, 8, 153], and many
more. This thesis explores the N-body problem in the context of molecular dynamics, but
our algorithms directly apply to all other similar applications.

All-pairs interactions have O(n2) complexity. Two common optimizations to save com-
putation time are (1) interacting only particles within a limited distance from each other,
and (2) utilizing force symmetry. (1) For short-range forces, far-away particles have little
force contributions, and we can interact only particles within a cutoff distance from each
other. This introduces sparsity to the interaction space. We call this cutoff sparsity. (2)
According to Newton’s third law of motion, the force from particle i to j is equal to the
negative force from particle j to i, fij = −fji. We do not need to compute fji if we have
already computed fij. This cuts the amount of work by a half. We call this symmetry
sparsity. We derive communication-optimal algorithms for the direct 2-way interaction N-
body problems without and with these sparsities in Chapter 3. Chapter 4 generalizes the
algorithm to support k-way interactions,

for i0 = 0 : n, i1 = 0 : n, . . . , ik−1 = 0 : n
F (i0) += interact(Qi0 , Qi1 , . . . , Qik−1

).

The matrix multiplication problem is also all-to-all in a sense that each output cij needs
to go through all values of the index k from A and B. Even though matrix multiplication
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has been thoroughly studied, there has been relatively little work on sparse-dense matrix-
matrix multiplication. Sparse-dense matrix multiplication is an important kernel in increas-
ing number of applications in many fields, including linear algebra [105, 76, 176, 68], graph
algorithms [173], computer security [97, 84], and statistical and machine learning [106, 142].
Chapter 5 shows that the existing communication-optimal dense-dense and sparse-sparse
matrix multiplications are not optimal in this case (or when the numbers of nonzeroes of the
two operands are of different orders of magnitude). We propose new communication-avoiding
“1.5D” algorithms that achieved up to 100× speedup from existing, more commonly used
2D/2.5D/3D algorithms. Chapter 7 uses our communication-avoiding sparse-dense matrix
multiplication kernels to implement a large-scale sparse inverse covariance matrix estimator
for graphical model learning in machine learning.

1.4 Contributions

This thesis makes three types of contributions: lower bounds, algorithms, and implementa-
tions. We give the communication lower bounds for the following problems:

• All-pairs 2-way interaction N-body problem.

• All-unique-triplets 3-way interaction N-body problem.

• All-unique-tuples k-way interaction N-body problem without and with large cutoff
distance.

• Sparse-dense matrix-matrix multiplication.

All our algorithms presented in the thesis are provably communication-optimal or commu-
nication-efficient, i.e., perform asymptotically less communication than previous algorithms:

• A communication-optimal all-pairs 2-way interaction N-body algorithm.

• A communication-optimal all-unique-triplets 3-way interaction N-body algorithm.

• A communication-optimal all-unique-tuples k-way interaction N-body algorithm that
handles large cutoff distance.

• A family of communication-avoiding sparse-dense matrix-matrix multiplication algo-
rithms based on 1-dimensional matrix partitioning that is provably more communi-
cation-efficient than previously known algorithm when one matrix operand has much
fewer nonzeroes than the other.

• Two novel communication-avoiding algorithm variants to implement a sparse inverse
covariance matrix estimator based on a pseudo likelihood method, composed of our
previous communication-avoiding sparse-dense matrix-matrix multiplication kernels.

Lastly, we give highly scalable implementations and performance results demonstrating
their efficiency in practice:
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• An all-pairs 2-way N-body implementation demonstrating near perfect strong scaling
on two distributed-memory machines, attaining up to 11.8× speedup over its non-
communication-avoiding version.

• 1- and 2-dimensional simulation space cutoff 2-body implementations demonstrating
up to 2× speedups and good scalability on two distributed-memory machines.

• An all-unique-triplets 3-way N-body implementation demonstrating perfect strong scal-
ing on a distributed-memory machine, attaining up to 42× speedup.

• An efficient sparse-dense matrix-matrix multiplication that outperforms existing, more
commonly used communication-avoiding algorithms by up to a 100× speedup. The
implementation is openly available on Bitbucket [12].

• Two large-scale sparse inverse covariance estimation implementations (HP-CONCORD)
which, to the best of our knowledge, are the first distributed-memory regression-based
pseudo likelihood optimization implementations. Our implementations outperformed
an existing sparse inverse covariance method and demonstrated high scalability, allow-
ing us to analyze high-dimensional data with arbitrary underlying structures at a scale
that was previously intractable, e.g., 1.28 million dimensions (over 800 billion parame-
ters) in under 21 minutes on 24,576 cores of a CrayXC30 machine. HP-CONCORD is
publicly available on Bitbucket [12] and as a user-installed module at National Energy
Research Scientific Computing Center (NERSC).

• A case study using HP-CONCORD to automatically recover the underlying human
brain connectivity from a resting state fMRI dataset. Our analysis shows good agree-
ment with a state-of-the-art clustering, which used manual intervention and significant
domain knowledge, from the neuroscience literature.

1.5 Outline

The rest of this thesis is organized as follows: Chapter 2 explains common notation and ter-
minology we will use throughout the thesis. Chapter 3 presents the 2-way interaction N-body
problem, without and with cutoff distance and support for symmetry. Chapter 4 discusses
many-body interactions, starting with the all-unique-triplets 3-way interaction N-body prob-
lem and generalizing the algorithm to handle the all-unique-tuples k-way interaction N-body
problem with cutoff. Chapter 5 switches context to the sparse-dense matrix-matrix multi-
plication problem, to which we apply communication-avoiding techniques similar to those of
Chapter 3 to gain large speedups. Chapter 6 generalizes the sparse-dense matrix multipli-
cation kernels in Chapter 5 and gives more implementation details necessary for Chapter 7.
Chapter 7 is a case study of sparse inverse covariance matrix estimation, where we com-
pose multiple communication-avoiding 1.5D matrix multiplication kernels from Chapter 6
together and apply necessary changes to other intermediate operation to keep the data repli-
cated throughout. Finally, we conclude in Chapter 8.
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Chapter 2

Preliminaries

This chapter details our system assumptions, performance metrics, communication lower
bounds, and terms that will be used throughout the dissertation.

2.1 Performance Model

We assume a distributed system of homogeneous processors connected through the network.
Our metric is time. We model the total running time by the computation and communi-
cation costs on the critical path per processor, assuming that work must be performed on
more than one processor so the communication costs cannot be trivially zero. We further
divide communication costs into latency and bandwidth costs. A w-word message from one
processor to another processor takes α + wβ units of time, where α is the fixed cost for a
message (latency cost) and β is the time to send a word (reciprocal bandwidth). The total
running time is therefore

Ttotal = Fγ + Sα +Wβ, (2.1)

where F is the number of flops computed by a processor, γ is the time per flop, S is the
number of messages, and W is the total number of words sent in all messages combined. We
assume γ, α, and β are fixed and usually count F, S, and W to compare algorithms. This
model can also be modified to support energy as a metric [61].

2.2 Communication Lower Bounds

To measure how well our algorithms avoid communication, we derive communication lower
bounds on the number of messages (S) and words (W ) for each particular problem. If our
algorithms attain the lower bounds, then they are communication-optimal and require no
further improvement, i.e., other algorithms that perform the same, or sufficiently similar,
arithmetic operations cannot do better.
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Throughout this thesis, we follow the framework first established for matrix multiplication
by Irony et al. [96]. We sketch the idea of the lower bound here, see [23] for details. Let Z
be the total number of arithmetic operations a processor has to perform to solve a problem
and M be the size of memory available to one processor. Let F be the upper bound of the
number of useful arithmetic operations, i.e., those that make progress towards the goal of
Z operations, that each processor can do with the locally available O(M) words, without
communication. Then, the lower bound of the number of messages is Ω(Z/F ) since, for each
F operations, each processor needs at least one message to fill the memory with new data.
Each message can contain at most O(M) words, so the lower bound of the number of words
is Ω(Z/F ·M). Therefore,

S = Ω

(
Z

F

)
, W = Ω

(
Z ·M
F

)
. (2.2)

Z is trivially the problem’s computational complexity divided equally among processors,
i.e, Z = O(n3/p) for direct matrix multiplication of size n, where p is the number of proces-
sors. M depends on the hardware. The most challenging part is finding F . Ballard et al. [23]
proved that F = O(M3/2) for all direct-linear-algebra-like applications, which we will use to
prove the lower bounds of sparse-dense matrix-matrix multiplication in Chapter 5. Christ et
al. [47] generalized the idea to cover any loop nests with subscripts that are affine functions
of loop indices and proved that F = O(M s) where s is the solution of a linear program from
loop index coefficients of all subscripts. Our N-body lower bounds in Chapter 3 and 4 can
be reproduced with Christ et al.’s framework [47].

2.3 Processor Topology and Replication

Our algorithms logically arrange the processors into a d-dimensional torus, denoted with P .
Let p be the total number of processors and pi the number of processors in the ithdimension.
We use the Python “:” operator to refer to a range of array elements, i.e., x : y refers to the
range [x, y). Our indexing is zero-based and cyclic, e.g.,

P (i0, i1, . . . , id−1) = P (i0 mod p0, i1 mod p1, . . . , id−1 mod pd−1).

Table 2.1 summarizes our notation.
In parallel algorithms, the minimum amount of data a processor can hold is 1/p of data.

To asymptotically avoid communication, our algorithms store c times more data, which we
also refer to as c layers. Replicating c copies means grouping processors into p/c teams of c
each and splitting data between teams. All team members hold and cooperate on the same
data that is c/p times the size of the full data set.

Figure 2.1 shows how topologies partition data, without and with replication. Figure 2.1a-
2.1c map p = 8 processors to a 1-dimensional data array of size n. (This can also be seen
as a 1D block-column partitioning of a matrix of size m × n.) Each processor holds cn/p
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Notation Meaning

P Logical d-dimensional torus of processors.
p Total number of processors.
pi Number of processors in the ithdimension, 0 ≤ i < d.
: Python range notation. x : y means the range [x, y).

P (i, j, k) Processor at coordinate (i, j, k).
P (x1:x2, :, k) Processors (i, j, k) where x1 ≤ i < x2 and 0 ≤ j < p1.

c Replication factor, i.e., number of processors in a team.

Table 2.1: Common notation throughout the dissertation.

0 1 2 3 4 5 6 7

p

(a) c = 1 copy
(no replication)

1 3 5 7

0 2 4 6

p/c teams c layers

(b) c = 2 copies
(showing layers)

0, 1 2, 3 4, 5 6, 7

p

(c) c = 2 copies
(compact form)

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

p1

p0

(d) c = 1 copy
(no replication)

7

9 11 13 15

0 2 4 6

8 10 12 14

p1

p0

c layers

(e) c = 2 copies
(showing layers)

0, 1 2, 3 4, 5 6, 7

8, 9 10,11 12,13 14,15

p1

p0

(f) c = 2 copies
(compact form)

Figure 2.1: Mappings of processor meshes and data, without and with replication. Each
submatrix is labeled with the processor rank(s) that it resides on. (a)-(c): p = 8 processors
with 1-dimensional array data. (d)-(f): p = 16 processors with 2-dimensional array data
(e.g., matrices).

elements. When c = 1, shown in Figure 2.1a, it becomes normal work partitioning with no
replication. Figure 2.1b shows how we replicate c = 2 copies by logically arrange processors
into 4 teams by 2 layers. All team members hold the same array part. In other words, each
layer partitions the array equally. Figure 2.1c shows the same partitioning as Figure 2.1b,
but draws just one copy of the array and lists all processor ranks that own that part together
to save space. Similarly, Figure 2.1d-2.1f map p = 16 processors to a 2-dimensional array of
size m× n (e.g., matrices). Figure 2.1d shows the non-replicating case where processors are
arranged into a 2× 8 mesh. Figure 2.1e and 2.1f shows the mesh with c = 2 copies (layers),
where 8 processor teams are arranged into a 2× 4 mesh.
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Operation Description S W

Shift Shifting by distance d along the kth dimension means
each P (..., ik, ...) sending w words to P (..., ik + d, ...)
and receiving w words from P (..., ik − d, ...), simulta-
neously.

O(1) O(w)

Broadcast Sends w words to all p processors. O(log p) O(w log p)

Reduce Sums a vector of w words from each of p processors
in an element-wise manner to produce a vector of w
results.

O(log p) O(w log p)

Gather Gathers w words from each of p processors and creates
wp words on the gather root.

O(log p) O(wp log p)

Alltoall All p processors exchange w words with each other. O(log p) O(wp log p)

Table 2.2: Common communication operations and their costs when operating on w words.

2.4 Communication Operations

Table 2.2 lists common communication operations that occur in most chapters and their
costs when operating on w words. Because we assume a fully connected network without
congestion, the latency and bandwidth costs are independent of the distance between pro-
cessors. Each processor can only send a single message at a time, so we assume collective
operations, such as broadcasts, are done in a log-depth tree [45].

2.5 Matrix Notation

We use capital letters to represent matrices. Let X{h×w} denote a partitioning of a matrix
X into an h × w grid of equal size submatrices. The same tuple indexing applies here, for
example,

X{h×w}(i, :) = [X{h×w}(i, 0)|...|X{h×w}(i, w − 1)].

For brevity, we will drop the unnecessary submatrix index if the matrix is only partitioned
in one dimension, i.e.,

X{1×w}(i) = X{1×w}(0, i).

We will refer to matrix elements as a corresponding lowercase letter with subscript. xij
means the element in row i and column j of matrix X.

Let nnz(·) denote the number of nonzeroes of a matrix. We use this notation for dense
matrices as well because it allows us to simplify notation and compare asymptotic results
for matrices with different sparsity and aspect ratios.
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Chapter 3

2-way N-Body

The gravitational N-body problem simulates the dynamics of a system of n particles (bod-
ies). It is widely used in many fields of science and engineering such as molecular dynamics,
astrophysics, fluid dynamics, material science, etc. Its most compute-intensive part is the
calculation of the total force, F (i), on a given particle i,

F (i) = −∇

[
φ1(Q(i)) +

∑
i6=j

φ2(Q(i), Q(j)) +
∑

i6=j 6=k 6=i

φ3(Q(i), Q(j), Q(k)) + . . .

]
, (3.1)

where Q(i) refers to the position of particle i, ∇ is the gradient operator, and φk is the k-
body potential energy function. We call the calculation of the kth term over all k-tuples the
k-body problem.1 This series is believed to be rapidly convergent, i.e., each subsequent term
has less effect than the previous term, despite its much higher computational complexity.
Typical applications get sufficiently accurate results with just pairwise interactions [69] and
the term N-body generally refers to this 2-body problem.

There are two approaches to computing 2-body interactions: direct and approximate. Di-
rect methods calculate all required O(n2) interactions. Approximate or tree-based methods
treat a group of sufficiently far away particles as one big particle and compute significantly
fewer interactions. For example, the Barnes-Hut algorithm [28] processes O(n log n) inter-
actions and the Fast Multipole Method (FMM) [87] computes O(n) interactions. We will
focus on the direct-interaction 2-body problem. Even for the approximate algorithms, the
O(n2) calculations on nearby particles tend to dominate running time, so the direct problem
is still of interest.

Using a framework developed by Ballard et al. [23], we give lower bounds on the com-
munication in terms of the numbers of messages and words sent along the critical path. We
show that previous work only attains the lower bound in specific cases, while our algorithm
has a tunable paramether, a replication factor c, that can be tuned to always attain the

This chapter is based on joint work previously published in “A Communication-Optimal N-Body Algo-
rithm for Direct Interactions”[65].

1Not to be confused with the many-body problem in quantum mechanics.
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lower bounds. With enough memory for c copies of the particles, we can theoretically re-
duce bandwidth and latency costs by factors up to c and c2, respectively. This effect is also
observable in practice: performance results from two high-performance computing systems
indicate that our algorithm achieves nearly perfect strong scaling with the right choice of c.
We find that maximizing c may not yield the best performance in practice because collective
cost increases with c and also sometimes fail to scale logarithmically as our model assumes,
so c should be treated as a tuning parameter.

In this chapter we will show:

• A derivation of the lower bounds on communication for an N-body simulation timestep.
The bounds capture both the number of messages and the number of words sent along
the critical path.

• An algorithm for particle interactions that achieves the lower bound for a fixed mem-
ory size. The algorithm allows finite cutoff distances beyond which interactions have
constant or zero effect.

• Performance results demonstrating attainable speedups from the new algorithm on two
distributed-memory machines.

This chapter is organized as follows. Section 3.1 derives the communication lower bounds
for the N-body problem. Section 3.2 reviews related work. Section 3.3 gives the communica-
tion-avoiding N-body algorithm, proves its optimality, and presents performance results from
experiments on two supercomputers. Section 3.4 generalizes the algorithm to include a cutoff
radius beyond which particles have constant effect. Again, we give a proof of optimality and
performance results from real systems. Section 3.5 extends the algorithm to utilize force
symmetry. Section 3.6 describes further directions.

3.1 Communication Lower Bounds

Our communication-avoiding algorithm was motivated by an examination of communication
lower bounds for the N-body problem. Recall the general lower bounds on latency S and
bandwidth W from Equation (2.2),

S = Ω

(
Z

F

)
, W = Ω

(
Z ·M
F

)
. (3.2)

Theorem 3.1. The maximum number of force evaluations that can be computed with M
particles is O(M2).

Proof. Figure 3.1 shows the interaction space of the N-body problem, sometimes called the
force matrix. Each coordinate (i, j) represents the interactions between particles i and j.
We would like to upper-bound the size of V , the set of interactions a processor can compute
with O(M) particles in memory. Let Vi and Vj be the set of indices i and j in the set V ,
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Figure 3.1: The force matrix (iteration space) for the all-pairs N-body problem. Each coordinate
(i, j) represents the interaction between particles i and j. Vertical and horizontal axes show the
indices i and j, respectively. Each processor computes interactions in an area V . Vi and Vj are the
projections of V on axes i and j, i.e., the sets of i and j indices.

i.e., the projection of V onto axes i and j in Figure 3.1. Denote the cardinality of a set by
| · |. Then,

|V | ≤ |Vi||Vj|,

since |Vi||Vj| is the size of the bounding box that contains V (a special case of Loomis and
Whitney’s inequality [127]). Because Vi and Vj must fit in memory, |Vi| and |Vj| can be at
most O(M), therefore, |V | ≤ O(M2).

The number of force evaluations that can be computed with M particles can be upper-
bounded as F2-body = O(M2). This upper bound, which represents the maximal amount of
potential data-reuse, yields the communication lower bounds

S2-body = Ω

(
Z

M2

)
, W2-body = Ω

(
Z

M

)
.

We use the terms particle and word interchangably here because we are analyzing asymptotic
costs and each particle is of size O(1) words.

All-pairs interactions

If all interactions of n particles are computed on p processors in a load-balanced fashion, each
processor must compute O(n2/p) force evaluations, yielding the following communication
lower bounds

S2-body = Ω

(
n2

p ·M2

)
, W2-body = Ω

(
n2

p ·M

)
. (3.3)
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M being in the denominator of these lower bounds suggests that increased memory size
allows less communication. In the parallel case, it turns out that given extra memory, data-
replication can be used to lower the communication cost. In fact, many existing N-body
algorithms already use data replication, as we detail below. The novelty of our algorithm is
that we parameterize the number of data copies and minimize communication for any amount
of memory, as done for 2.5D algorithms [167] for dense linear algebra. 2.5D algorithms are
a memory-aware extension of 3D algorithms [57, 3, 4, 29, 99], which use p1/3 copies of data
on p processors.

For convenience, we write M as a multiple of n/p, the minimum data required for each
processor. Let M = O(cMn/p), where cM ∈ Z+. The lower bounds in Equation (3.3)
become,

S2-body = Ω

(
p

c2
M

)
, W2-body = Ω

(
n

cM

)
. (3.4)

Next, we derive the memory-independent lower bounds. Using Figure 3.1 again, let V
be the set of interactions the processor with the largest load has to compute. |V | must be
at least the total amount of work divided equally among processors,

|V | ≥ n2

p
. (3.5)

We relate |V | to the total input size |Vi|+ |Vj| necessary to compute V ,

|V | ≤ |Vi||Vj|

≤ 1

2
|Vi|2 + |Vi||Vj|+

1

2
|Vj|2 =

1

2
(|Vi|+ |Vj|)2. (3.6)

Putting Equations (3.5) and (3.6) together, we have,

1

2
(|Vi|+ |Vj|)2 ≥ n2

p

|Vi|+ |Vj| ≥
√

2
n
√
p
.

Since Vi can be the same as Vj, that processor must hold at least (
√

2n/
√
p)/2 = n/

√
2p

particles. Assuming every processor starts with just n/p particles in their memory, they
must communicate at least n/

√
2p − n/p words, using at least 1 messages. Therefore, the

memory-independent lower bounds are,

S2-body = Ω (1) , W2-body = Ω

(
n
√
p

)
, (3.7)

equivalent to the memory-dependent lower bounds when cM =
√
p. Any cM >

√
p gets the

same lower bounds in Equation (3.7).
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Cutoff interactions

In molecular dynamics simulations, it is common to impose a cutoff on direct force interaction
evaluations. Force interactions decay with distance, so their evaluation can be truncated by
ignoring interactions between particles which lie beyond some cutoff distance. Typically, a
correction term accounts for the contribution of long-distance interactions. Since the long-
distance contribution to the potential is smooth, grid-based solvers are often employed to
evaluate this correction. Instead of analyzing the costs associated with computing long-
range interactions, we will instead focus on the analysis of direct interactions within the
cutoff distance.

Our lower bounds extend trivially to the case where direct interactions are truncated
within a cutoff. The only modification to the argument is a difference in the total number of
computations which is now not n2, but rather F = nk, where k is the number of interactions
necessary for each particle. The lower bounds on the number of messages and words that
must be sent are

Scutoff = Ω

(
nk

p ·M2

)
, Wcutoff = Ω

(
nk

p ·M

)
. (3.8)

Substituting M = cMn/p, we get,

Scutoff = Ω

(
k

n
· p
c2
M

)
, Wcutoff = Ω

(
k

cM

)
. (3.9)

For the memory-independent lower bounds, consider the processor with the largest set
of interactions V . Again, |V | must be at least 1/p of the total amount of work,

|V | ≥ nk

p
(3.10)

Combining Equations (3.10) and (3.6), we have,

1

2
(|Vi|+ |Vj|)2 ≥ nk

p

|Vi|+ |Vj| ≥

√
2nk

p
.

Similar to the all-pairs case, since Vi and Vj can be the same, the processor needs at least√
2nk/p/2 =

√
nk/(2p) particles to compute V . Assuming each processor starts with n/p

particles in memory, the processor must communicate at least
√
nk/(2p)−n/p words, using

at least 1 message. We assume that
√
nk/(2p) − n/p > 0 (in other words, k > 2n/p),

otherwise, the problem would be trivial and does not require communication, which is not
the focus of our work. The memory-independent lower bounds are,

Scutoff = Ω (1) , Wcutoff = Ω

(√
nk

p

)
, (3.11)
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equivalent to the memory-dependent lower bounds when cM =
√
kp/n. Any cM >

√
kp/n

would yield the same lower bounds.

3.2 Previous Work

In this section, we review related algorithms, analyze their communication costs, and show
that they are communication optimal only in extreme cases: when there is minimal memory
available (M = O(n/p), cM = 1) or maximal memory available (M ≥ O(n/

√
p), cM ≥√

p). We discuss (1) all-pairs interaction algorithms (particle and force decompositions), (2)
algorithms for interactions with cutoff radius (special decomposition and neutral territory
methods), and (3) some of their applications.

All-pairs interaction

Particle decomposition. The näıve approach for parallelizing N-body simulations is to
assign each processor n/p particles (particle decomposition) and make it compute all the
interactions for its n/p particles with all other particles [73]. One way to carry out the
calculations is to use a simple ring/systolic scheme: All processors logically form a ring.
Each processor stores its n/p particles in two buffers. The first buffer is fixed. The other
buffer is used to exchange particles with other processors. For p rounds, each processor
alternates between interacting all its particles (in the fixed buffer) with all particles in the
exchange buffer and shifting the n/p particles in the exchange buffer around to its right
neighbor, receiving new particles from its left neighbor. (The shift direction does not matter
and can be reversed.) The amount of communication required along the critical path is

Sparticle = O(p), Wparticle = O(n),

since each processor sends a message per round, each message containing n/p particles. This
algorithm stores O(n/p) words in memory. (The actual storage requirement is 2n/p, but we
are using asymptotic costs so we drop the constant 2.) According to the lower bounds in
Equation (3.4), this algorithm is communication-optimal only if there is minimal memory
available (cM = 1). If there is more memory available (cM > 1), it is suboptimal.

Force decomposition. Plimpton pointed out that, by assigning each processor a block of
force interactions rather than particles (force decomposition), communication is reduced [150],
but did not prove if the algorithm is communication-optimal. In particular, n2 total inter-
actions need to be computed, and each of p processors computes an n/

√
p-by-n/

√
p block of

the interactions. Thus, each processor requires only 2n/
√
p particles to compute its interac-

tions and must return 2n/
√
p force contributions. Assuming the particle locations are not

initially replicated and the forces must be collected at the end, a broadcast and a reduction
is required to communicate these data sets. Thus the total communication costs are

Sforce = O(log(p)), Wforce = O(n/
√
p).
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Ignoring the log(p) factor, we get Sforce = O(1). With respect to the particle decomposition,
force decomposition reduces latency by a factor of p and bandwidth by a factor of

√
p.

However, the memory usage goes up by a factor of
√
p since each particle is replicated

√
p

times. According to Equation (3.7), this algorithm is communication-optimal when memory
is at least the maximal effective amount (cM ≥

√
p), but it cannot run at all otherwise

(cM <
√
p). It also requires that p is a perfect square, which is quite restrictive in practice.

Interactions with cutoff distance

Spatial decomposition. A spatial decomposition is a natural choice for parallelizing prob-
lems with a cutoff distance. In such a decomposition, each processor owns all particles in a
region of the physical simulation domain. Consequently, processors must only communicate
with their neighbors, with the number of neighbors given by the ratio of the cutoff with
respect to the length of the simulation box and the dimensionality of the problem space. For
instance, given some cutoff δ spanning b processor boxes, each processor must communicate
with O(bd) processors, where d is the dimensionality of the simulation space. If processors
form pairs to compute their particles interaction, a message of size O(n/p) is required be-
tween each pair of interacting processors, assuming particles are uniformly distributed. This
spatial decomposition algorithm has a communication cost of

Sspatial = O(bd), Wspatial = O(nbd/p). (3.12)

To compare with the lower bounds in Equation 3.9, we find k, the expected number of inter-
actions per particle. The ratio of the cutoff volume to the simulation volume is bd/p. There
are n particles scattered uniformly across the simulation space, so k = nbd/p. Rewriting
Equation 3.12 in terms of k,

Sspatial = O

(
k

n
· p
)
, Wspatial = O(k).

Therefore, the spatial decomposition is only communication optimal in the case of minimal
memory M = O(n/p). Is it suboptimal for any larger M ’s (cM > 1).

Neutral territory methods. Force decomposition can be done when a cutoff is imposed
on interactions, but physical locality must now be considered in the algorithm. Hybrids
between force and spatial decomposition can ensure necessary locality to provide communi-
cation optimality and yield the methods most commonly used in practice currently. They
assume uniform particle density and bin particles to processors according to their positions.
Generally, these methods can be defined as ‘neutral territory’ (NT), since force interactions
are computed on processors which do not necessarily own either of the interacting particles
in their assigned spatial territory. These algorithms achieve the communication costs

SNT = O(1), WNT = O

(
nbd/2

p

)
,
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which is asymptotically optimal for the unlimited memory case cM ≥ O(
√
nk/p) according

to the lower bounds for cutoff interactions in Equation 3.11 (k = nbd/p).
Snir proposed a hybrid between a spatial and a force decomposition for cutoff interactions

in 3-dimensional space in [164]. Snir’s algorithm performs a multicast of particle locations
to a set of nearby processors. Snir also gave lower bounds on the communication cost for
this problem which showed the optimality of his algorithm asymptotically. However, Snir
did not consider the limited-memory scenario.

The neutral territory method [161] was introduced by Shaw independently of Snir and
achieves the same asymptotic cost. Shaw’s algorithm selects a 3-dimensional import region
that has a volume smaller than that of Snir’s by a constant factor.

The midpoint method [33] is another interesting variation of neutral territory methods.
In the midpoint method, a processor computes all interactions for which the midpoint of the
interacting particles lies in the processor’s territory. While the method is not asymptotically
optimal, it has a smaller import region for small-to-medium number of processors, depending
on the ratio of the cutoff volume to the simulation space volume. The method also has
advantages in latency and throughput on torus networks, and can be generalized to many-
body interactions.

Existing applications

Existing molecular dynamics applications that employ neutral territory decompositions al-
ready utilize the knowledge that replication can lower communication costs, although they
do not necessarily meet the lower bounds.

NAMD [148] is a parallel molecular dynamics simulation package which runs on top of
the Charm++ runtime system [100]. Charm++ is an object-based parallel framework which
decomposes work and data into ‘chare’ objects. Arrays of chare objects are dynamically
mapped to processors by the runtime system. Chares communicate with each other via
asynchronous message invocations.

NAMD employs an algorithm that decomposes particles spatially into an array of ‘patch’
chare objects and decomposes forces into ‘compute’ chare objects. Patches communicate
particle data to compute objects and compute objects send force contributions back to
patches. This algorithm employs data replication: The patch size does not depend on the
number of processors but is selected so that one patch (sometimes two) is slightly wider
that the cutoff distance, so each patch only need to interact with nearest patches [30]. Its
dynamic scheduling aims to schedule nearby compute objects to the same processor as much
as possible while maintaining load balance.

The neutral territory method as described by Shaw [161] is employed by the special-
ized supercomputer Anton [162]. This supercomputer is designed to run parallel molecular
dynamics simulations at high efficiency. The architecture was co-designed with considera-
tion for the 3D structure of the spatial decomposition and the neutral territory interaction
algorithm.
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Desmond [34] is a general-purpose molecular dynamics package developed in association
with Anton. Desmond uses the midpoint method to evaluate direct interactions. This
software achieves good absolute performance and scalability on modern architectures such
as the BlueGene/P.

3.3 Interactions with No Cutoff Radius

This section addresses simulations in which every particle interacts with every other particle.
We present a communication-optimal algorithm for computing interactions between all pairs
of particles, provide a proof of its optimality, and present performance results from our
implementation.

Our algorithm can use variable amounts of memory and is communication-optimal for a
given machine configuration whenever the maximum available memory is used. It encom-
passes both the particle decomposition (optimal for minimal memory) and the force decom-
position (optimal for unconstrained memory and can only be run with processor counts that
are perfect squares) approaches, but we also prove it is communication-optimal for every
constrained memory situation between those. Moreover, even in the unlimited memory sce-
nario, our algorithm can outperform the force decomposition approach in practice because
there is a collection cost that increases with memory usage. The sweet spot that minimizes
the total running time lies between the minimal and maximal memory size and can only be
attained by our algorithm, as we will show in the experimental results.

The all-pairs interaction algorithm

The communication-avoiding algorithm, given in Algorithm 1, uses p processors to compute
interactions between a set Q of n particles. The algorithm also takes as input a replication
factor c describing the number of times the set of particles is replicated in available memory.
The processors are logically arranged into a grid P of size p/c teams by c layers (processors
per team). Particles are distributed evenly among the teams into local subsets Qt (for team
t), and teams are responsible for computing updates to their local subset. Each processor
has two buffers: a fixed buffer, Bf , which remains stationary throughout the computation
and an exchange buffer, Bx, which is shifted around to receive new particles from other
processors.

The algorithm proceeds as follows. A team leader, P (t, 0), reads Qt into Bf and broad-
casts Bf to the rest of the team, P (t, :). Each team member makes a second copy in Bx.
Each processor P (t, `) then shifts Bx along the 0th dimension of P , with the shift distance `
(its layer ID). Then, for p/c2 steps, each processor shifts Bx by c and, upon receiving a new
set of particles, updates Qt accordingly. Finally, sum-reductions within each team combine
the updates. Figure 3.2 illustrates the algorithm with teams being columns and layers being
rows.
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Algorithm 1 CA-All-Pairs-2-Body

Input: Replication factor c, the number of extra copies of the particles.
Input: P , a processor grid arranged into p/c teams by c layers. Each team P (t, :) has c

members, the first one being a team leader.
Input: Set Q of n particles divided evenly among team leaders into local subsets Qt.
Output: An updated set Q.
1: for P (t, �) in parallel do
2: P (t, 0) reads Qt into the fixed buffer Bf .
3: P (t, 0) broadcasts Bf to P (t, :).
4: Copy Bf to exchange buffer Bx.
5: Shift Bx by � along the 0th dimension.
6: for p/c2 steps do
7: Shift Bx by c along the 0th dimension.
8: Update particles in Bf based on effects of Bx.
9: end for
10: end for
11: Sum-reduce updates within P (t, :).

p/c processor teams

n particles

c

oo oo oo oo oo oo oo oo oo oo oo oo oo oo oo ooBf

Bx

1

2

3

Figure 3.2: Illustration of Algorithm 1. Columns are the processor teams and rows are the layers.
We only draw one row of the fixed buffer Bf because every team member has the same content (Qt

for team t). The exchange buffer Bx is shown for all processors. The color boxes trace the path
of the fifth team’s particles. The labels show: (1) the initial broadcast step within a team; (2) the
skewing of particles according to the row index; (3) the first of p/c2 shifts and updates. Not shown
is a final reduction within a column to combine updates.

Our algorithm “interpolates” between the particle decomposition and force decomposition
algorithms of Plimpton [150]. In fact, either decomposition falls out at extreme values of c.
When c = 1, the algorithm resembles a particle decomposition with simple point-to-point
shifting, and each team of one processor is responsible for computing all forces on its subset
of particles. Similarly, when c =

√
p, the algorithm uses a force decomposition.
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Communication optimality

We analyze the communication cost along the critical path to show communication optimal-
ity. The cost can be expressed as the sum of costs of three phases: the initial broadcast and
skewing, the shifting steps, and the final reduction. First, each of p/c teams executes a broad-
cast of O(cn/p) words among c processors. Assuming logarithmic collective performance, the
broadcast can be completed in parallel with log (c) messages. Then, each processor skews its
particles row-wise in parallel, sending O(cn/p) words in O(1) messages. Next, the processors
perform p/c2 shifting steps in which they send O(1) messages of O(cn/p) words, yielding
a subtotal cost of O(p/c2) messages and O(n/c) words. A final reduction moves O(cn/p)
words in log (c) messages. Asymptotically, the total cost is

SCA−allpairs = O
( p
c2

)
, WCA−allpairs = O

(n
c

)
, (3.13)

which matches the lower bounds in Equation (3.4) when we use the maximum memory
available (c = cM). Hence, our algorithm is communication-optimal regardless of the memory
size.

Performance results

We built a simple particle simulation that uses our algorithm and measured its performance
on two machines from different vendors. Our code simulates particles moving in a two-
dimensional space with reflective boundary conditions. The particles exert a repulsive force
on each other that drops off with the square of their distance. The force is symmetric,
although we do not apply optimizations to exploit the symmetry. The particles are 52 bytes
in size (one 32-bit integer for particle ID and six double-precision variables for position,
velocity, and acceleration in x and y coordinates).

We ran our experiments on two platforms, Hopper and Intrepid. Hopper was a 6,384
node Cray XE-6 machine located at NERSC. Each node had two 12-core, AMD MagnyCours
processors running at 2.1 GHz, yielding 24 cores per node and 153,216 cores in total.2 Nodes
were connected in a three-dimensional torus via the Cray Gemini interconnect. Intrepid [95]
was a 163,480 core IBM Blue Gene/P machine located at ALCF. Each node consisted of one
quad-core, 850 MHz PowerPC processor connected in a three-dimensional torus. We wrote
all of these codes in C using MPI.

Since Blue Gene/P provided topology-aware partitions, we modified the code to utilize
topology-aware collectives provided by the DCMF communication layer [71]. In doing so, we
were able to fully exploit the bidirectional network links and minimize network contention.
We found that replacing P/c2 point-to-point shifts within the rows with P/c2 broadcasts
across the rows improved performance because the bidirectionality of the torus provides
twice the bandwidth of a point-to-point send along a single link.

2Given Hopper had 24 cores per node, runs that saturate all cores often have factors of 3 in them that
make our choice of experimental parameters seem odd. Powers-of-two numbers can be recovered by dividing
by 3 in most cases.
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(a) Cray XE-6, 6,144 cores, 24,576 particles.
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(b) Cray XE-6, 24,576 cores, 196,608 particles.
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(c) Blue Gene/P, 8,192 cores, 32,768 particles.
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(d) Blue Gene/P, 32,768 cores, 262,144 particles.

Figure 3.3: The effect of the replication factor c on execution time for small and large problems
on Cray XE-6 and Blue Gene/P. Figure 3.3a shows monotonically decreasing communication with
increasing c, as predicted by the model. In contrast, Figure 3.3b shows the best performance when
c = 16; this is the point at which the communication pattern strikes a balance between collective
and point-to-point costs. Similar are the conclusions for Blue Gene/P on Figures 3.3c and 3.3d.

Our experiments sought to understand: (1) the effect of increased replication factors
for fixed machine sizes and problem sizes, and (2) the strong scaling performance for all
replication factors across a fixed problem size.
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Scaling the replication factor

The model predicts that communication cost should drop by factors between c and c2 for
increased c. In practice, we find this to be accurate for small c. Figures 3.3a and 3.3b show
the breakdown of communication and computation time for 24K-particle and 196K-particle
simulations on 6K and 24K cores of Cray XE-6, respectively. When c = 1, communication
costs represent significant portions of execution time. As c increases, we see communication
costs more-than-halving until c = 16. When c = 64 in the larger simulation, we see a greater
cost than when c = 16, even though the model predicts better performance for the pure force
decomposition. (Our algorithm is equivalent to force decomposition when c =

√
p, which

cannot be run here because our processor counts are not perfect squares:
√

6,144 = 78.38
and
√

24,576 = 156.77. Judging from the increasing trend in collective cost, it is unlikely
that the force decomposition will be faster.) We believe the communication pattern at this
point best balances the costs of collective and point-to-point communication. We do not plot
the initial broadcast cost because it is negligible. The computing time decreases slightly as
we increase c even though all replication factors compute the same amount of flops. This is
because larger replication factors have more particles to interact locally in each round and
can utilize cache more efficiently.

Figures 3.3c and 3.3d show the execution time breakdown for 32K-particle and 262K-
particle simulations on 8K and 32K cores of Blue Gene/P, respectively. We plot two runs
for c = 1. The tree bar represents a run which utilized a special network for collective
operations involving the whole partition. Alternatively, we forced the use of the regular 3D-
torus for the no-tree run. The specialized network is effective for the näıve implementation of
the interaction algorithm, but our algorithm eventually outperforms the hardware-assisted
variant by using the torus intelligently. For runs that just use the torus, we see a 99.5%
reduction in communication time. We also see the slightly decreasing trend in computation
time here.

Strong scaling performance

We ran additional experiments to assess the strong scaling performance of the algorithm.
Figure 3.4 shows the data from 196K and 262K particle runs on Cray XE-6 and Blue Gene/P,
respectively. Our algorithm achieves nearly perfect strong scaling with the right choice of c.

3.4 Finite Cutoff Distance

Our communication-avoiding algorithm can be generalized to the case where particles have
no effect beyond a cutoff radius δ, or their effect can be approximated by a constant value.
Like previous work, our algorithm is a hybrid between spatial decomposition and force de-
composition, except that it is ‘territorial’ (as opposed to ‘neutral territory’), i.e., processors
compute forces on the particle sets they own. Again, our algorithm is communication-
optimal for all memory sizes (not just the extreme cases as shown for spatial decomposition
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(a) Cray XE-6, 196,608 particles.
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(b) Blue Gene/P, 262,144 particles

Figure 3.4: Strong scaling performance on Cray XE-6 and Blue Gene/P. For the given
problem sizes, our algorithm achieves nearly perfect strong scaling with the appropriate
choice of replication factor.

and neutral territory methods) and is the only algorithm that can use intermediate memory
size which can perform better that maximal memory size in practice. Here, we describe the
algorithm in one-dimensional space, explain how it can be generalized to higher dimensional
spaces, show that communication-optimality still holds, and give performance results from
1D- and 2D-problem-space experiments on Cray XE-6 and Blue Gene/P.

The 1D interaction algorithm

The algorithm for distance-limited interactions in one dimension can be described as the
algorithm for interactions with no cutoff plus two key refinements. First, we assume a spatial
decomposition of particles among teams, i.e. each team is responsible for the particles in
a particular region of the simulation space. Unlike the all-pairs interactions case which
handles any particle distribution (all particles will interact with each other anyway), we
assume a uniform distribution for load balance. If the particles are not uniformly distributed,
some processors will have more particles to interact than others and take longer time to
compute, causing all other processors idle and preventing good parallel efficiency. Second,
the algorithm performs shifts modulo the cutoff distance, not the edge of the simulation
space as before. Let b be the number of processor teams δ spans and let w be the width
of the simulation space, assuming, without loss of generality, that the simulation space is
square. Then, b/(p/c) = δ/w and therefore the total number of teams a team has to interact
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Figure 3.5: An illustration of Algorithm 2, the communication-avoiding algorithm for
distance-limited interactions in one-dimensional simulation space. Labels (1) and (2) show
the initial broadcast within a team and row-wise skewing. Label (3) shows the first of 2b/c
shifts that “wrap around” at the cutoff radius.

Algorithm 2 CA-1D-CUTOFF-2-Body

Input: b, the number of processors spanned by the cutoff distance.
Input: Replication factor c, the number of extra copies of the particles.
Input: P , a processor grid of shape p/c-by-c.
Input: Set Q of n particles divided spatially among team leaders into local subsets Qt.
Output: An updated set Q.
1: for P (t, �) in parallel do
2: P (t, 0) reads Qt into the fixed buffer Bf .
3: P (t, 0) broadcast Bf to P (t, :).
4: Copy Bf to exchange buffer Bx of size �nc/p�.
5: Shift Bx by � along the 0th dimension modulo the cutoff window.
6: for 2b/c steps do
7: Shift Bx by c along the 0th dimension modulo the cutoff window.
8: Update particles in Bf based on effect of Bx.
9: end for
10: end for
11: Sum-reduce updates within P (t, :).

with is,

2b+ 1 = 2
δp

wc
+ 1 (3.14)

Figure 3.5 illustrates the algorithm for simulations in 1D space. Algorithm 2 shows the
pseudocode.
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Figure 3.6: The communication-avoiding algorithm for distance limited interactions in two-
dimensional simulation space. This example shows 100 processors arranged into 25 teams
with 4 replication layers. The arrows indicate the transfer of particles between processors
for different steps: (a) Broadcast among team members. (b) Initial skew. (c) Shifts during
the second iteration. (d) Shifts during the third (final) iteration.

Generalization for higher dimensional spaces

As in the 1D case, we assume a uniform particle distribution and a spatial decomposition of
particles among processors teams. Broadcasts and reductions still occur along the c dimen-
sion, and shifts of magnitude c occur in the hyperplane perpendicular to the c dimension.
The easiest way to traverse the neighbors in the high-dimensional cutoff mesh is to linearize
the space, calculate shifts in 1D, and map the shifting pattern back into the original space.
Figure 3.6 shows shifts through a 2D space with 25 teams and a replication factor of 4.
Communication avoidance becomes especially important in higher dimensions because the
number of neighbors is exponential in the dimensionality of the problem space.

Communication optimality

Analysis of the communication costs along the critical path is similar to that of the all-
pairs interaction algorithm. The initial broadcast sends O(cn/p) words to c processors using
log (c) messages, and the initial skewing sends O(1) messages of size O(cn/p) words. In
a d-dimensional simulation space, each processor team has to interact with (2b + 1)d =
O(bd) teams. Each team has c processors, so this takes O(bd/c) shifting steps in which
each processor sends O(1) message of O(cn/p) words, resulting in a total cost of O(bd/c)
messages and O(bdn/p) words. The final reduction sends O(cn/p) words in log (c) messages.
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Dominated by the shifting costs, the total communication costs of the algorithm are,

SCA-cutoff = O

(
bd

c

)
, WCA-cutoff = O

(
bdn

p

)
(3.15)

Equation (3.9) gives the lower bounds for interactions with cutoff radius assuming each
particle only needs to do k interactions. Since k/n = O(bd/(p/c)), rewriting Equation (3.15)
with bd = O(kp/cn), we have

SCA-cutoff = O

(
k

n
· p
c2

)
, WCA-cutoff = O

(
k

c

)
,

which match the communication lower bounds when c = cM . This means our algorithms
can always be communication optimal by using maximum memory available.

Performance results

We extended our codes from Section 3.3 to support cutoff radius in 1D and 2D problem
space with spatial decomposition. We ran our experiments on the same systems. Our setup
ensures that the particle distribution remains nearly uniform throughout the simulation.
We chose the cutoff radius to be 1/4 of the simulation space to allow reasonably many
choices of c. Lastly, we did not utilize Blue Gene/P’s topology-aware collectives because the
communication pattern did not match the interconnect topology.

Scaling the replication factor

Figure 3.7 shows the running time per timestep for varying replication factor c in the 1D
and 2D problem space. The additional cost of updating the spatial decomposition at every
timestep is labeled as reassignment time in the plot.

For small values of c, the plots show the expected decrease in communication time (be-
tween a factor of 1/2 and 1/4 as we double c). However, for large c the cost of the reduction
step grows considerably, yielding poorer overall performance than intermediate c values. We
believe this effect is primarily caused by collectives’ inability to scale logarithmically when
communication teams reach a certain size. Fortunately, our algorithm can be tuned to find
the replication factor that provides the best balance between collective and point-to-point
performance.

Costs due to shifting appear to stagnate after a few c values, unlike in Section 3.3 where
they approached zero. This is because of nontrivial load imbalance from our choice of
boundary condition. Reflective boundary condition causes processors assigned to regions
near the boundary of the simulation space have fewer interactions to compute than processors
in the middle. Figure 3.8 shows an example in the first two rounds of calculation. This
kind of load imbalance does not occur for interactions between all pairs because a spatial
decomposition is not required in that case.

The average computation time is again lower at larger c’s because there are more particles
to interact locally in each round, gaining better cache efficiency.
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Figure 3.7: The effect of increased replication factors on execution time for 1D- and 2D-space
simulations with a cutoff radius.
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p0

Cutoff window

Simulation space

Cutoff window

Round 1 Round 2

b boxes

p1

Figure 3.8: The first two rounds of a 2D space cutoff algorithm. The cutoff spans b = 2
boxes. The cutoff window shown is for the processor at the top left of the simulation space
(in blue). Green color shows the position in the cutoff window that is being interacted with
each processor. The area in gray indicates processors that are idle in that round.

Strong scaling performance

Figure 3.9 shows the strong scaling performance of 1D and 2D simulations with 196K par-
ticles on Cray XE-6 and 262K particles on Blue Gene/P. From the graphs, we make several
observations. First, the largest available replication factor never gives best results. Second,
there is a general trend that for a given replication factor, the algorithm exhibits sub-optimal
performance on smaller machines due to load imbalance. Lastly, although we do not see clear
benefits at small scale, the best replication of the communication-avoiding algorithm yields
roughly double the efficiency of a non-replicating algorithm on the largest machine sizes (24K
cores on Cray XE-6 and 32K cores on Blue Gene/P).

Our cutoff-distance results attain lower strong-scaling efficiency than the all-pairs case.
We primarily attribute this fact to load imbalance caused by our choice of physical domain
decomposition. More specifically, processors assigned to regions near the boundary of the
simulation space have fewer interactions to compute than processors in the middle, leading
to increased idle time and critical path length. Secondly, we did not use topology-aware
collectives during the shift communication phase on Blue Gene/P; consequently, we utilized
only half the bandwidth available to the experiment in Section 3.3 because we did not take
advantage of the bidirectionality of the torus.
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(a) 1D-cutoff, Cray XE-6, 196,608 particles.
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(b) 2D-cutoff, Cray XE-6, 196,608 particles.
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(c) 1D-cutoff, Blue Gene/P, 262,144 particles.
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(d) 2D-cutoff, Blue Gene/P, 262,144 particles.

Figure 3.9: Strong scaling performance of 1D and 2D simulations with cutoff radius.
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3.5 Taking Advantage of Symmetry

According to Newton’s third law, the force on particle i from particle j is equal to the
negative force on particle j from particle i, fji = −fij. We can save the computation by
a half if we only interact unique pairs of particles, i.e., (i, j) and (j, i) are the same pair.
Our communication-avoiding algorithms only need two quick modifications to support this
symmetry: (1) halving the number of rounds (assuming 2 | p/c2), and (2) making team
leaders P (t, 0) compute one additional round. Let h = p/2c be half the number of processor
teams. In this additional round, P (i, 0) and P (i+h, 0) for any 0 ≤ i < h will have the same
particle sets in their buffers: Qi and Qi+h. So, we let P (i, 0) compute the interactions of Qi

with the first half of Qi+h and P (i+h) compute the interactions of Qi with the latter half of
Qi+h. Algorithm 3 shows how to extend the communication-avoiding all-pairs algorithm in
Algorithm 1. Figure 3.10 illustrates how each processor gradually fills the force interaction
space. Similar modifications can be made for the cutoff version.

Algorithm 3 CA-All-Pairs-with-Symmetry

Input: Replication factor c, the number of extra copies of the particles.
Input: P , a processor grid arranged into p/c teams by c layers. Each team P (t, :) has c

members, the first one being a team leader.
Input: Set Q of n particles divided evenly among team leaders into local subsets Qt.
Output: An updated set Q.

1: for P (t, `) in parallel do
2: P (t, 0) reads Qt into the fixed buffer Bf .
3: P (t, 0) broadcasts Bf to P (t, :).
4: Copy Bf to exchange buffer Bx.
5: Shift Bx by ` along the 0th dimension.
6: for 1/2 · p/c2 steps do
7: Interact particles in Bf and Bx, updating both buffers.
8: Shift Bx by c along the 0th dimension.
9: end for

10: if t < p/2c then
11: P (t, 0) interacts the first half of particles in Bx with Bf , updating both buffers.
12: else
13: P (t, 0) interacts the latter half of particles in Bf with Bx, updating both buffers.
14: end if
15: Shift Bx by p/2c− ` so Qt would be back in Bx of team t.
16: end for
17: Sum-reduce updates within P (t, :) from both buffers Bf and Bx.
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Figure 3.10: How processors partition the iteration space (force matrix) to take advantage
of force symmetry. Here, p = 32 processors are divided into 8 teams of c = 4 team members.
Each team P (t, :) owns and is responsible for updating the particle set Qt. Each number
t� inside each cell (Qx, Qf ) means processor P (t, �) computes the interactions between Qx

in the exchange buffer Bx and Qf in the fixed buffer Bf . In round 0, each P (t, �) interacts
Qt with Qt+�, covering the numbered cells in blue and white. P (t, 0) then computes one
additional round (the green cells), interacting half the interactions between Qt and Qt+p/2c.
The load is still balanced despite the additional round since, in round 0, P (t, 0) computes
interactions of particles in the same set Qt which is only half as many interactions as other
team members.

3.6 Conclusions

We have presented an N-body algorithm for direct interactions that uses extra memory to
replicate particles and asymptotically reduce communication. We analyzed the lower bounds
on communication, and showed that the new algorithm is optimal in communication. Our
new algorithm encompasses prior approaches, some of which also use replication, and de-
generates to them in extreme cases. We also presented an experimental analysis on tens of
thousands of cores for both BlueGene/P and Cray XE-6, which show that with the appro-
priate choice of replication factor, our algorithm achieves nearly perfect strong scaling by
striking a balance between point-to-point and collective communication costs. One exam-
ple shows a speedup of over 11.8× from communication avoidance. While the benefits of
communication avoidance are best for small problems on large numbers of cores, the abso-
lute communication overhead for the optimized algorithms is low, resulting in good absolute
performance.
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While the theoretical analysis would suggest maximizing the amount of replication to√
p if memory is available, we found this was not always optimal in practice. We, therefore,

leave as open the question of how to select the replication factor c, which is typically close
to the

√
p limit and can be autotuned at runtime by trying multiple factors. Even using

the maximum value of c may be acceptable: for the all-pairs algorithm, the best value of c
differed by no more than 16% in any experiment, and most experiments revealed less than
2% difference.

At the time our work was first published, it was one of the early applications of communica-
tion-avoidance theory beyond numerical linear algebra. This suggests a general strategy for
communication avoidance through replication, a technique used previously to increase par-
allelism or decrease synchronization [129]. Since then, the theory has been generalized to
cover any loop nests with subscripts that are affine functions of the loop indices [47, 107,
48]. We also further applied the replication technique to the many-body problem, which is
presented in Chapter 4.
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Chapter 4

k-way N-Body

The parallel k-way N-body (k-body) problem is relatively unexplored compared to the 2-
body problem discussed in Chapter 3. Molecular dynamics applications traditionally focused
on pairwise interactions because they yield qualitatively valid results for most applications,
and k-body’s O(nk) complexity was infeasible to compute on supercomputers decades ago.
However, some phenomena can only be captured through many-body potentials, and there
has been increasing interest in k-body, especially 3-body, interactions. This chapter focuses
on the 3-body problem then generalizes to the k-body problem with cutoff distance.

Many-body potentials are significant in both atomic systems and molecular systems [69].
They enable more accurate modeling of specific materials such as metals and ceramics [151].
4-body potentials are used in protein folding [79, 41]. 3-body potentials are the most com-
monly used after 2-body potentials and are required to capture some properties such as phase
equilibria in noble gases [131] and the second virial coefficient in systems such as water [133,
144].

The parallel 3-body problem poses a complicated symmetry challenge. It is trivial to
exploit the force symmetry fij = −fji in the 2-body problem, and the cost of ignoring
symmetry is only a factor of two. However, in the 3-body problem, there are n(n − 1)(n −
2)/6 unique triplets, so there are roughly 6 times more triplet interactions if we do not
eliminate redundant triplets. At O(n3) scale, this is costly. It is even worse for larger
values of k as the symmetry factor grows with k!. Multiple efforts have been put into
avoiding redundancy and balancing work over processors, but none of these consider the
communication complexity of the algorithms. Even though the problem is compute-intensive,
communication takes time and energy and still comes into play when scaling aggressively.
Our goal is to develop algorithms that are optimal in both computation (exploitation of
symmetries and load balance) and communication.

We present two communication-avoiding algorithms that are both computation and com-
munication optimal, one for all-triplets interactions and the other for interactions with cutoff

This chapter is based on work previously published in “A Computation- and Communication-Optimal
Parallel Direct 3-Body Algorithm”[109].



CHAPTER 4. k-WAY N-BODY 37

distance. We derive lower bounds for communication along the critical path and prove that
both algorithms achieve their bounds. By making c replicas, they can reduce by factors
of c3 latency (number of messages) and c2 bandwidth (number of words). We also present
experimental results of the all-triplets algorithms on two large-scale machines.

Our contributions in this chapter are:

• Derivation of the communication lower bounds for k-body methods (k ≥ 2) with or
without cutoff.

• A new all triplets algorithm for 3-body calculations without cutoff that is provably
optimal in computation and communication and has provably better load balance than
previous work.

• A new class of algorithms for any k-body interaction (k ≥ 2) with cutoff, where the
cutoff limits interactions to less than 1/3 of the domain. These algorithms are also
provably optimal in communication and computation.

• Application of replication to further avoid communication asymptotically.

• An implementation of the 3-body algorithm for massively parallel machines, including
support for hybrid (shared and distributed memory) parallelism.

• Performance results showing near perfect strong scaling on tens of thousands of cores
and the tradeoff between communication and load imbalance of the communication-
avoiding technique

This chapter is organized as follows. Section 4.1 describes previous many-body algo-
rithms. Section 4.2 derives communication lower bounds for the all-triplets problem. Sec-
tion 4.3 gives the all-triplets algorithm and extends it to support replication. Section 4.4
shows performance results of the all-triplets algorithm. Section 4.5 adds cutoff, general-
izes to any k-body interaction, and proves the communication lower bounds and optimality.
Section 4.6 concludes and discusses future work.

4.1 Background and Previous Work

3-Body and other k-body Algorithms

The work on the parallel 3-body problem has begun rather recently, with the earliest papers
in 1993 [141]. Similar to the 2-body problems, there are direct and approximate approaches,
most of which took a direct approach. Nakano et al. [141] proposed a domain decomposi-
tion algorithm with multiple-time-step (MTS) to compute 2- and 3-body forces with cutoff
distance. The MTS method divided the force on a particle into two components, primary
and secondary. The primary force comes from interactions with particles within radius r
and is rapidly varying. The secondary force comes from interactions from particles outside
the radius and is relatively slowly changing. The primary force is calculated every timestep,
while the secondary force is calculated every n timesteps where 5 ≤ n ≤ 15, i.e., it has its
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(a) Isometric view (b) IJ plane.

(c) IK plane (d) JK plane.

Figure 4.1: Illustration of the 3-body force cube of a system of n = 24 particles. Shown in
red is the set of all unique elements where (i < j < k).

own larger timestep. They used a separable 3-body calculation, i.e., decomposing a 3-body
force calculation (i, j, k) to two 2-body interactions (i, j) and (i, k).

Li et al. [121, 122, 123] extended the 2-body’s n-by-n force matrix [150] to an n-by-n-by-n
force cube, as shown in Figure 4.1. The goal is to compute only unique triplets (i, j, k) where
i < j < k, shown in red circles forming a tetrahedron. They presented four ways to assign
work to processors: Force, Cyclic, Balanced Cyclic, and Precise Decompositions. Force
Decomposition (FD) [122] partitions the force cube into subcubes, prunes redundant
subcubes from the job list, then assigns each subcube to a processor. Since not all subcubes
have the same computation load – subcubes (i, j, k) where i �= j �= k have the most load
and i = j = k the least, – the FD algorithm suffered the most load imbalance among all the
algorithms they considered.

Cyclic Decomposition (CD) [121, 122, 123] slices the force cube into n planes and
assigns planes cyclically to processors (processor r gets planes r, r + p, r + 2p, etc.). It still
incurs a slight load imbalance as processors that are assigned earlier planes always have
less load than processors with later planes. This led to Balanced Cyclic Decomposition
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(a) Slice Symmetric Distribution (b) Volume Symmetric Distribution

Figure 4.2: Two ways to select unique triplets to process by Sumanth et al. [169]. Different
colors are used for illustration purposes only and have no special meaning, i.e., they do not
represent how processors partition work.

(BD) [122, 123], which cyclically assigns odd planes first, then cyclically assigns even planes
in reverse order to balance out excess load.

Precise decomposition (PD) [122] counts exactly how many elements are to be com-
puted in each plane and assigns consecutive planes that have closest to perfect load to each
processor. All of the latter three algorithms performed marginally better than FD. Still, none
of them achieved high parallel efficiency. PD, BD, and CD were at 50% parallel efficiency
while FD was at 40% on a system with only 35 processors.

Also based on partitioning the force cube, Sumanth et al. [169] exploited the symmetry to
select a different subset of triplets, rather than the tetrahedron-shaped subset, to compute so
that there is an equal number of unique elements to compute in each plane (Slice Symmetric)
or volume space (Volume Symmetric), as shown in Figure 4.2. Circles are the force elements
to be processed. Colors are for illustration purpose only, i.e., they do not indicate how
processors partition work. Figure 4.2a selects the triplets so each plane has the same number
of triplets. Processors just need to process the same number of planes to be load balanced,
regardless of how the planes are assigned to processors. Figure 4.2b selects the triplets that
are uniformly distributed throughout the cubes. To maintain load balance, all processors only
need to compute the same number of subcubes. Nevertheless, very few performance results
are presented, most of which focused on load balance; none mentioned communication time.
The communication is not likely to scale well given that each plane involves all particles.
They stated that cutoff distance can be supported but did not provide details.

Kunaseth et al. [113] proposed a systematic way to compute k-body interactions with
cutoff (k-tuple computation in their terminology). Their Shift-Collapse algorithm uses a
cell-based method: (1) partition simulation space volume into disjoint cells (2) bin particles
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geometrically into cells, (3) generate a cell search-space containing all tuples that must
be computed based on the interaction/cutoff rules, and (4) prune out redundant k-tuples.
Despite the excessive work of generating all possible k-level neighbor cell combinations, their
algorithm performed very well at large scale.

Our work addresses these direct interaction methods, but there are also approximate
algorithms for k-body scenarios [118], although none address parallelization.

4.2 Communication Lower Bounds

Recall the general lower bounds on latency S and bandwidth W from Equation (2.2),

S = Ω

(
Z

F

)
, W = Ω

(
Z ·M
F

)
.

Let n be the total number of particles in the system and p be the number of processors.
The direct 3-body problem requires O(n3) interactions, so each processor has to do Z =
O(n3/p) work. If each processor has a memory of size M words, it can perform at most
F = O(M3) useful work.

Theorem 4.1. The maximum number of 3-body force evaluations that can be computed with
M particles is O(M3).

Proof. The interaction space is a force cube where each coordinate (i, j, k) represents the
interactions between particles i, j and k. We would like to upper-bound the size of V , the
set of interactions a processor can compute with O(M) particles in memory. Let Vi, Vj, and
Vk be the set of indices i, j, and k in the set V . Denote the cardinality of a set by | · |. Then,

|V | ≤ |Vi||Vj||Vk|,

since that is the maximum number of Cartesian products possible (a special case of Loomis
and Whitney’s inequality [127]). Because Vi, Vj, and Vk must fit in memory, |Vi|, |Vj|,
|Vk| ≤ O(M), therefore, |V | ≤ O(M3).

Thus, the lower bounds for the 3-body problem are,

S = Ω

(
n3/p

M3

)
, W = Ω

(
n3/p

M2

)
. (4.1)

We write M as a multiple of the minimum number of particles each processor must store
(n/p): M = cMn/p where cM ∈ Z+. The lower bounds become,

S = Ω

(
p2

c3
M

)
, W = Ω

(
np

c2
M

)
. (4.2)
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For the memory-independent lower bounds, let V be the set of interactions the processor
with the largest load has to compute. |V | cannot be less than the total amount of work
divided equally among processors,

|V | ≥ n3

p
. (4.3)

We relate |V | to the total input size |Vi|+ |Vj|+ |Vk| necessary to compute V ,

|V | ≤ |Vi||Vj||Vk|

≤ 1

3!
(|Vi|+ |Vj|+ |Vk|)3. (4.4)

Putting Equations (4.3) and (4.4) together, we have,

1

3!
(|Vi|+ |Vj|+ |Vk|)3 ≥ n3

p

|Vi|+ |Vj|+ |Vk| ≥
3
√

3!
n
3
√
p
.

Since Vi, Vj, and Vk can all be the same, the processor must hold at least ( 3
√

3!n/ 3
√
p)/3

particles. Assuming every processor starts with just n/p particles in their memory, they
must communicate at least ( 3

√
3!n/ 3

√
p)/3−n/p words, using at least 1 messages. Therefore,

the memory-independent lower bounds are,

S = Ω (1) , W = Ω

(
n
3
√
p

)
, (4.5)

equivalent to the memory-dependent lower bounds when cM = p2/3. Any cM > p2/3 gets the
same lower bounds in Equation (4.5).

4.3 Algorithms

Instead of visually partitioning the force cube, our approach starts from extending Algo-
rithm 1 (without replication) from Chapter 3 or the systolic/ring algorithm in [92] by adding
a buffer to hold the third body in a triplet. We start by forming a näıve algorithm that is
load-balanced but does not utilize symmetries and is not communication-optimal. We then
progressively improve the other two aspects in the next three versions. The first version
(All-Unique Triplets) removes computational redundancy while retaining load balance.
The second version merges some computations in the first version together to save a con-
stant factor of communication. The third version applies replication to the second version to
reduce the communication asymptotically. This last version achieves all three of our goals
(load balance, redundancy freedom, and communication optimality).
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Algorithm 4 Näıve All-Triplets

Input: P , a ring of p processors.
Input: Set Q of n particles divided into p equal subsets Qi.
Output: The updated set Q.

1: for P (i) in parallel do
2: Read Qi into B0 and copy them into B1 and B2.
3: for p steps do
4: for p steps do
5: Update particles in B0 based on B1 and B2.
6: Shift B2 by 1.
7: end for
8: Shift B1 by 1.
9: end for

10: end for

Näıve all-triplets algorithm

Let Q be the set of all particles in the system. We divide Q into p equal disjoint subsets
of n/p particles, Q0, Q1, . . . , Qp−1 (no replication yet). We arrange the processors into a
ring (1D torus). Processor P (i) owns and updates the particles in Qi, i.e., keeping track
of forces applied to them and moving them accordingly in each timestep. Each processor
has three buffers, B0, B1, and B2, to hold the particle subsets (Qi, Qj, Qk), 0 ≤ i, j, k < p.1

The algorithm simply mimics a sequential three-nested loops code. The buffer B0 is fixed
and P (i) goes through all possible pairs of (Qj, Qk) by shifting buffers B1 and B2 around.
Particle interactions for each triplet of subsets (Qi, Qj, Qk) are computed by forming all
possible triplets using one particle from each buffer, say, B0[x], B1[y], and B2[z], calculating
all 3-body forces on B0[x] from B1[y] and B2[z], and accumulating the forces within B0[x].
The algorithm alternates between computing interactions and exchanging particle subsets
with other processors, as shown in Algorithm 4.

Because all processors do the same amount of work in between every shift, the algo-
rithm is load balanced. However, it ignores symmetries and computes all forces redundantly.
Communication-wise, it shifts O(n/p) words for O(p2) rounds with at most 2 messages per
round. Therefore the costs are,

Snäıve = O(p2), Wnäıve = O(np), (4.6)

achieving the lower bounds in equation (4.2) only when cM = 1. In other words, it is not
communication-optimal if the memory has space to store extra particles (cM ≥ 2).

1This is not replication. There are always 3 buffers for the 3-body problem and we treat this factor of 3
as a constant, i.e., each processor stores O(n/p) when it does not replicate.
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All-unique-triplets algorithm

Next, we utilize symmetry by calculating all forces related to all particles in a triplet at once.
For this, we need to form only unique subsets of particles. If our algorithm forms a triplet
(Qi, Qj, Qk), it should never form any other five permutations, (Qi, Qk, Qj), (Qj, Qi, Qk),
(Qj, Qk, Qi), (Qk, Qi, Qj), and (Qk, Qj, Qi).

First, we confirm that none of the processors can process the same triplet in the same
round, with only one minor exception.

Lemma 4.2. If P (i) has Qx in a buffer B ∈ {B0, B1, B2}, P (i+ d) has Qx+d in its B.

Proof. Algorithm 4 starts with P (i) holding Qi in all buffers, so the condition is true in the
beginning. Assume that P (i) has Qx and the condition is true before a shift. Shifting by a
distance s causes P (i) to take the particle subset Qx−s from P (i − s) and P (i + d) to take
Qx+d−s from P (i+ d− s). Since the condition holds after one shift, it holds throughout the
algorithm by induction.

Lemma 4.3. At any point in time, all processors hold different triplets of particle subsets,
except when 3 | p and the triplet is of the form (Qx, Qx+p/3, Qx+2p/3), 0 ≤ x < p.

Proof. We will prove by contradiction. Assume that P (i) and P (j), j 6= i have the same
triplet. Let the particle subset indices at P (i) be x0, x1, and x2 where 0 ≤ x0 ≤ x1 ≤ x2 < p.
Write P (j) as P (i+d), 0 ≤ d < p then by Lemma 4.2, P (j) has the subset indices x0+d, x1+d,
and x2 + d. Since the indexing wraps around, there are three cases:

Case 1: (x0 + d) mod p ≤ (x1 + d) mod p ≤ (x2 + d) mod p
The following conditions must hold for P (i) and P (j) to have equivalent triplets,

x0 + d ≡ x0 (mod p),

x1 + d ≡ x1 (mod p),

x2 + d ≡ x2 (mod p).

This means d ∈ {0, p, 2p, . . .}, which contradicts the assumption that 0 < d < p.

Case 2: (x2 + d) mod p ≤ (x0 + d) mod p ≤ (x1 + d) mod p
The following conditions must hold for P (i) and P (j) to have equivalent triplets,

x2 + d ≡ x0 (mod p), (4.7)

x0 + d ≡ x1 (mod p), (4.8)

x1 + d ≡ x2 (mod p). (4.9)

Summing Equations (4.7), (4.8) and (4.9) together, we get,

3d ≡ 0 mod p,
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meaning d ∈ {0, p/3, 2p/3, ...}. d = p/3 and 2p/3 only happen when 3 | p and both imply
that the triplet is of the form Qx, Qx+p/3, Qx+2p/3, as stated in the lemma. The other
values of d contradict the assumption that 0 < d < p.

Case 3: (x1 + d) mod p ≤ (x2 + d) mod p ≤ (x0 + d) mod p
The following conditions must hold for P (i) and P (j) to have equivalent triplets,

x1 + d ≡ x0 (mod p), (4.10)

x2 + d ≡ x1 (mod p), (4.11)

x0 + d ≡ x2 (mod p). (4.12)

Summing Equations (4.10), (4.11) and (4.12) together, we get,

3d ≡ 0 mod p

The same analysis as Case 2 follows.

Lemma 4.3 ensures that, if all processors start with unique particle subset triplets and all
particle exchanges are done by shifting, no two processors can hold the same triplet in the
same round. Next, we need to find a shifting pattern that avoids redundant triplets across
rounds. Algorithm 5 makes two changes to Algorithm 4 to make this possible. First, instead
of fixing B0 and shifting just B1 and B2, it shifts all three buffers. Second, it changes the
number of times a particular buffer is to be shifted before switching to another buffer. The

Algorithm 5 All-Unique-Triplets

Input: P , a ring of p processors.
Input: Set Q of n particles divided into p equal subsets Qi.
Output: The updated set Q.

1: for P (i) in parallel do
2: Read Qi into B0 and copy them into B1 and B2.
3: b← 2 // The 2nd buffer is picked for illustration purpose.
4: for each phase d ∈ {0, 1, ..., bp/3c − 1} do
5: for p− 3d rounds do
6: Update all 3-body interactions in B0, B1 and B2.
7: Shift Bb by 1.
8: end for
9: b← (b+ 1) mod 3 // Switch buffer to shift.

10: end for
11: if 3 | p then // Special case.
12: Calculate the b i

p/3
cth third of the interactions of the three buffers.

13: end if
14: end for
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new shifting scheme is surprisingly simple: shift B2 by one p times, shift B0 by one p − 3
times, shift B1 by one p− 6 times, then back to shifting B2 by one p− 9 times, keep shifting
buffers in a round-robin manner until the number of times to shift is p mod 3. (The buffers
can be picked in any order in the beginning, but must reoccur in the same order until the
end.) If p is a multiple of 3, one additional round is required at the end.

Figure 4.3 shows the complete system status of Algorithm 5 for p = 9 processors. The
number at the beginning of each row is absolute round number. Nine column groups on the
right side represent the nine processors. The three columns in each group list what particle
subsets (the number i of Qi) are in B0, B1, and B2, respectively. On the left are boxes and
dashes depicting (Qi, Qj, Qk) that are in buffers B0, B1, and B2 of P (0). Red, green, and blue
boxes represent B0, B1, and B2, respectively. Dashes mean not in the buffer. For example,
at round 10, the red, green, and blue boxes are at indices 8, 0, and 1, meaning P (i) has
(Qi+8, Qi+0, Qi+1). We call triplets of distances like (8, 0, 1) offset patterns (sometimes we
will write just 801 for brevity). The algorithm consists of bp/3c phases. In phase d, a buffer
is shifted by one p− 3d times. At the end of each phase, a new buffer is shifted.

In the first round, each processor calculates interactions between its own particles. In
rounds 2-9, it calculates interactions between two of its own particles and those of succes-

012345678 P0 P1 P2 P3 P4 P5 P6 P7 P8

1: ◼-------- 000 111 222 333 444 555 666 777 888
2: ◼-------◼ 008 110 221 332 443 554 665 776 887
3: ◼------◼- 007 118 220 331 442 553 664 775 886
4: ◼-----◼-- 006 117 228 330 441 552 663 774 885
5: ◼----◼--- 005 116 227 338 440 551 662 773 884
6: ◼---◼---- 004 115 226 337 448 550 661 772 883
7: ◼--◼----- 003 114 225 336 447 558 660 771 882
8: ◼-◼------ 002 113 224 335 446 557 668 770 881
9: ◼◼------- 001 112 223 334 445 556 667 778 880

10: ◼◼------◼ 801 012 123 234 345 456 567 678 780
11: ◼◼-----◼- 701 812 023 134 245 356 467 578 680
12: ◼◼----◼-- 601 712 823 034 145 256 367 478 580
13: ◼◼---◼--- 501 612 723 834 045 156 267 378 480
14: ◼◼--◼---- 401 512 623 734 845 056 167 278 380
15: ◼◼-◼----- 301 412 523 634 745 856 067 178 280

16: -◼-◼----◼ 381 402 513 624 735 846 057 168 270
17: -◼-◼---◼- 371 482 503 614 725 836 047 158 260
18: -◼-◼--◼-- 361 472 583 604 715 826 037 148 250

19: ◼--◼--◼-- 360 471 582 603 714 825 036 147 258

Phase 0:
All boxes are at least 0 
position apart.

Shift B2 by one
9 rounds

Phase 1:
All boxes are at least 1 
position apart.

Shift B0 by one
6 rounds

Phase 2:
Boxes are ≥2 positions apart.

Shift B1 by one
3 rounds

Special round:
Shift B2 by one 

Offset patterns

Figure 4.3: Illustration of the all-unique-triplets algorithm. There are 19 rounds; each row shows
what parts of particles are in what buffer in each round. Offset patterns are drawn in read, green,
and blue on the left side. In the first nine rounds, the red and green boxes are both in processor 0.
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sive left neighbors, starting with the immediate left and moving further left cyclically until
reaching its right neighbor. Then it switches to shifting the red buffer (B0) to avoid getting
a repeat offset pattern.

During the next 9− 3 = 6 rounds, interactions between itself and its right neighbor are
calculated with the moving buffer, starting from its left neighbor and stopping short before
reaching the right neighbor to avoid getting the same offset pattern as round 10 (recall that
the permutation does not matter).

Then, the green buffer is shifted 3 times to compute interactions of particle subsets that
are at least one neighbor apart. Again, it has to stop at round 18 or it will generate the
same offset patterns as round 16. Finally, the blue buffer is shifted to cover the pattern with
equally spaced boxes, which is the special case when p is divisible by 3. Notice that P (i)
has the same triplet of particle subsets as those of P (i+ p/3) and P (i+ 2p/3). To maintain
load balance, let each third of the processors calculate each third of the interactions in this
case. (P (i) calculates the b i

p/3
cth third of interactions.)

After computing all interactions, the particle subsets are sent back to their owner pro-
cessors, which will combine all interactions and update their positions. See Algorithm 5 for
pseudocode.

Correctness

Here we provide a formal proof that Algorithm 5 generates every unique triplet of particle
subsets Q0, Q1, . . . , Qp−1, and that no redundancy occurs apart from the special case when
3 | p. Lemma 4.4 shows that phase d generates all offset patterns that all boxes are at least
d apart, with two boxes exactly d apart. We will look at this as a balls-and-bins problem,
but the bins will be organized cyclically, i.e., as a ring.

Lemma 4.4. Given a cyclic list of p bins, b0, b1, . . . , bp−1, 3 balls (R, G, and B) and a fixed
distance d, there are exactly p − 3d possible ways of placing the balls into bins such that R
and G are distance d apart and B is at least d away from both R and G.

Exactly d bins apart 
from each other

0 1 2 3 4 5 6 7 8 9 10 11 12

◼ _ _ ◼ _ _ ◼◼◼◼◼ _ _

At least d bins apart 
from red or green

Figure 4.4: The number of ways to put R and G exactly d apart and B at least d bins away
from the first two. (d = 2 in this case.)
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Proof. Figure 4.4 shows an example when p = 12. R, G, and B are shown as red, green,
and blue squares, respectively. Let us put R at position 0, G at position d, then the B can
be from position 2d to p− 1− d. Any position greater than p− 1− d will make B less than
d away from R. There are (p− 1− d)− 2d+ 1 = p− 3d positions, therefore there are p− 3d
patterns.

Next, we show in Lemma 4.5 that Algorithm 5 will not generate redundant patterns and
prove the algorithm correctness in Theorems 4.6 and 4.7.

Lemma 4.5. Throughout all rounds, Algorithm 5 does not generate redundant offset pat-
terns.

Proof. The algorithm generates all offset patterns following the proof of Lemma 4.4, starting
from d = 0 to d = bp/3c − 1. In the same phase d, one buffer is moving by the other two
is fixed, so no offset pattern will occur twice. Between different phases d1 < d2, since all
boxes in an offset pattern in phase d2 are at least d2 > d1 apart, the offset pattern cannot
be equivalent to those of phase d1 in which at least two boxes are d1 apart.

Theorem 4.6. No redundant triplets (2 or more triplets that are permutations of each other)
will be produced by Algorithm 5, with the exception of the special case in lines 11-13.

Proof. We will prove by contradiction. Assume that Algorithm 5 generates redundant
triplets, then there are three possible cases:

Case 1: The redundant triplets come from different processor during the same round
(the same offset pattern).
By Lemma 4.3, no redundancy within an offset pattern can occur, excluding the spacial
case. So, this case cannot happen.

Case 2: The redundant triplets come from the same processor across different rounds.
By Lemma 4.5, this is not possible.

Case 3: The redundant triplets come from different processors across different rounds.
Let P (i) and P (j) be the two processors that have the same triplet (Qa, Qb, Qc). We can
express the triplet indices as terms of offsets (x, y, z) from P (i) and (m,n, o) from P (j),

i+ x ≡ j +m (mod p),

i+ y ≡ j + n (mod p),

i+ z ≡ j + o (mod p),

which gives us,

i− j ≡ m− x (mod p) ≡ n− y (mod p) ≡ o− z (mod p).

This means (x, y, z) and (m,n, o) are the same offset pattern and that the algorithm will
only pick one of them by construction. Hence, no redundancy occurs.
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Theorem 4.7. Algorithm 5 generates all unique triplets.

Proof. There are p+p(p−1) +
(
p
3

)
unique triplets, p for (Qi, Qi, Qi), p(p−1) for (Qi, Qi, Qj)

where i 6= j, and
(
p
3

)
for (Qi, Qj, Qk) where i 6= j 6= k 6= i. We will show that the algorithm

generates exactly this many unique triplets. In phase 0, there are p rounds, the first round
generating p unique triplets of the form (Qi, Qi, Qi) and the rest p − 1 rounds generating
p(p − 1) unique triplets of the form (Qi, Qi, Qj). Now, we count the total number of box
patterns generated by the algorithm from phase 1 onward, excluding the special pattern
(0, p/3, 2p/3), and show that they generate the rest

(
p
3

)
unique triplets. Let q and r be the

quotient and remainder of p/3, so p = 3q + r where q = bp/3c and r ∈ {0, 1, 2}.
q∑

d=1

(p− 3d) =

q∑
d=1

p− 3

q∑
d=1

d

= pq − 3q(q + 1)

2

= p

(
p− r

3

)
− 1

2
· (p− r)

(
p− r

3
+ 1

)
=

1

6
· (p− r)(p+ r − 3)

=


p2 − 3p

6
if 3 | p

(p− 1)(p− 2)

6
otherwise

Each pattern creates p unique triplets. When 3 - p, the algorithm produces

(p− 1)(p− 2)

6
· p =

(
p

3

)
unique triplets. When 3 | p, the algorithm does one extra round and forms p/3 additional
unique triplets. Therefore, it generates a total of

p2 − 3p

6
· p+ p/3 = p

(
p2 − 3p+ 2

6

)
=
p(p− 1)(p− 2)

6
=

(
p

3

)
unique triplets. This completes the proof.

Computation Optimality

There are two kinds of computation optimality we are looking for: avoiding non-redundant
computation and ensuring load balance. Lemma 4.6 indicates that no triplets are repeated
and therefore proves the first point.

There are three possible workload numbers, depending on the offset pattern. Let m = n/p
be the number of particles each processor owns. If all three buffers contain same particle
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subsets, e.g., offset pattern 000, the load is
(
m
3

)
. If two buffers have same particle subsets

and the other is different, e.g., offset pattern 001, the load is m
(
m
2

)
. Otherwise, the load is

m3.
However, since all processors are always working on the same offset pattern, the load will

always be balanced, assuming n is a multiple of p for simplicity. If p - n, there will be a
negligible load imbalance as we make n mod p processors hold dn/pe particles and the rest
holds bn/pc particles.

Communication Optimality

The algorithm sends a message each round for
∑q

d=1(p − 3d) = O(p2) rounds, therefore
a total of O(p2) messages. Each message contains n/p words, so the bandwidth used is
O(p2 · n/p) = O(np). These costs match the lower bounds derived in equation (4.2) with
c = 1 (no replication, M = 1 · n/p) so the algorithm is communication optimal if and only
if the memory is not large enough to replicate.

Still, the bounds only indicate optimality in an asymptotic sense. Algorithm 5 can save
at least a constant factor more; we can calculate the case where more than one particle is
from the same particle subset without really having to store them in multiple buffers, i.e.,
processing (Qi, Qi, Qj) when (Qi, Qj, Qk) are in the buffers. These computations can be
embedded into some other rounds.

Algorithm 6 outlines one of the numerous ways to do so. The only change is to skip
the first p rounds in Algorithm 5 and do more computation at some specific rounds. P (i)
now starts with (Qi−1, Qi, Qi+1) in the buffers instead of (Qi, Qi, Qi). The algorithm still
alternates between interacting and shifting as before, but the number of shifts starts from
p− 3. Extra calculations are performed in the first p− 3 rounds. Rounds 10-19 of Figure 4.3
also shows the complete system status of Algorithm 6. To see how this works, let us follow
the interactions of Q0. In the first round interactions are computed on these combinations
of buffers: (B1, B1, B1), (B1, B1, B2), (B0, B0, B2), and (B0, B1, B1), in addition to the usual
(B0, B1, B2), to get interactions of offset patterns 000, 001, 002, and 800. Offset patterns
700 to 300 are computed in the next p-4 rounds from the (B0, B1, B1) interactions.

Algorithm 6 has similar asymptotic costs as Algorithm 5 but sends p fewer messages and
n fewer words in the exact costs. The load is still balanced since all processors are still
computing the same distance patterns every round.

Incorporating 1- and 2-body interactions

For simplicity, most previous 3-body algorithms compute 3-body potentials separately from
those of 1- and 2-body potentials because the work is partitioned differently. With our
approach, 1- and 2-body potentials can be computed together with 3-body the same way we
‘embed’ the first p rounds of Algorithm 5 into Algorithm 6 and the load will still be perfectly
balanced without any extra effort.
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Algorithm 6 Embedded All-Unique-Triplets

Input: P , a ring of p processors.
Input: Set Q of n particles divided into p equal subsets Qi.
Output: The updated set Q.

1: for P (i) in parallel do
2: Read Qi into B0 and copy them into B1 and B2. // Has (Qi, Qi, Qi).
3: Shift B0 by 1 and shift B2 by -1. // Has (Qi−1, Qi, Qi+1).
4: b← 0
5: Calculate all (B1, B1, B1), (B1, B1, B2), and (B0, B0, B2) interactions
6: for each phase d ∈ {1, 2, ..., bp/3c − 1} do
7: for p− 3d rounds do
8: if d = 1 then
9: Calculate all (B0, B1, B1) interactions.

10: end if
11: Update all 3-body interactions in B0, B1 and B2.
12: Shift Bb by 1.
13: end for
14: b← (b+ 1) mod 3 // Switch buffer to shift.
15: end for
16: if 3 | p then // Special case.
17: Calculate the b i

p/3
cth third of the interactions of the three buffers.

18: end if
19: end for

Geometric Meaning

Since previous algorithms pick subsets of elements in the force cube to compute, it is inter-
esting to see the subsets formed by our algorithm as well. For simplicity, let us focus on just
Algorithm 5. (Algorithm 6 produces a slightly different subset because of the (B0, B1, B1)
interactions.)

Let C be the set of the elements in the force cube that is to be computed. In those
related approaches [121, 122, 169], C only depends on the number of particles, n, and is
invariant to the number of processors, p. In contrast, our algorithm picks a new subset Cp
for every p. For example, Figure 4.5 shows these subsets for n = 24 particles and p = 2, 3, 4,
and 6. Red, green, blue, yellow, cyan, and magenta indicate the elements computed by
P (0), P (1), . . . , P (5), respectively. All these subsets are equivalent to the big-tetrahedron-
shaped subset a single processor would compute:

CT = {(i, j, k) ∈ Z | 0 ≤ i < j < k < n}.

To provide the intuition for the shape of the subsets, we illustrate the case where n = 24
and p = 6 step-by-step from step 1 to 10 in Figure 4.6, 4.7, and 4.8. Subfigures in the left
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(a) n = 24, p = 2 (b) n = 24, p = 3

(c) n = 24, p = 4 (d) n = 24, p = 6

Figure 4.5: Subsets of computed elements for n = 24 and p = 2, 3, 4, 6 for Algorithm 5.

column show the actual force elements that are computed (i, j, and k shows the particles from
buffers B0, B1, and B2, respectively.) while the ones in the right column show the equivalent
force elements in the tetrahedron for p = 1, i.e., elements (i, j, k) with 0 ≤ i < j < k < n.

The force cube is partitioned into p × p × p subcubes and each processor processes a
subcube in each step. A processed subcube has three possible shapes depending on its
coordinates: a tetrahedron at position (i, i, i), a triangular prism at position (i, i, j), and a
cube at position (i, j, k).

Shifting buffers b0, b1, and b2 corresponds to moving periodically to process a new subcube
along the i-, j-, and k-axis, respectively. Since the algorithm only shifts one buffer at a time
before calculating interactions, the rays of processed subcubes extend in a one-dimensional
manner, in parallel to the corresponding axis, and make a right-angle turn to move along
another axis when another buffer is shifted.

In this example, 6 rays of processed subcubes start at diagonal positions in the first step
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(a) round 1 (b) round 1 (reflected)

(c) round 2 (d) round 2 (reflected)

(e) round 3 (f) round 3 (reflected)

(g) round 4 (h) round 4 (reflected)

Figure 4.6: Computed elements for n = 24 and p = 6 for Algorithm 5 at rounds 1-4.
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(a) round 5 (b) round 5 (reflected)

(c) round 6 (d) round 6 (reflected)

(e) round 7 (f) round 7 (reflected)

Figure 4.7: Computed elements for n = 24 and p = 6 for Algorithm 5 at rounds 5-7.
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(a) round 8 (b) round 8 (reflected)

(c) round 9 (d) round 9 (reflected)

(e) round 10 (f) round 10 (reflected)

Figure 4.8: Computed elements for n = 24 and p = 6 for Algorithm 5 at rounds 8-10.
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(Figure 4.6a), with the subcubes being filled in tetrahedron shape. Then they extend 5
subcubes along the k-axis because of 5 right-shifts on b2 (Figure 4.6c to Figure 4.7c), turn
and extend along the i-axis 3 times because of 3 right-shifts on b0 (Figure 4.7e to Figure 4.8c).
Finally, they make last turns and extend 1 subcube along j-axis because of one last right-
shift on buffer b1 (Figure 4.8e). Note that roughly a third of these last subcubes are filled
due to the special case where 3 | p.

Communication-Avoiding All-Triplets Algorithm

This section applies the communication-avoiding (CA) technique to Algorithm 6. The main
concept is that each processor stores more particles and cooperates on computing interactions
with other processors who also have the same particle subsets.

Let us store c times more particles and arrange P logically into a p/c-by-c 2D torus instead
of a p-ring. We divide particles into p/c equal subsets of cn/p particles, Q0, Q1, . . . , Qp/c−1,
and let processors P (i, :) own Qi and cooperate on computing forces and updating them as
a team.

The communication-avoiding algorithm behaves similarly to Algorithm 6 with p/c pro-
cessors; the only difference is that it divides all the rounds (lines in Figure 4.3) among
processors on the same team, then performs a reduction on particles inside the teams first
before sending particles back to owner processor teams.

Not all rounds have the same computation costs so round distribution has to be done
wisely to avoid severe load imbalance. Currently, they are partitioned into consecutive
rounds with accumulated load closest to the perfect load. Equation (4.13) predicts the cost
to compute the rth round, where m = cn/p represents the number of particles in each buffer.
Again, it is trivial to support 1- and 2-body computation within the algorithm by updating
the cost equation accordingly.

cost(r) =


m3 + 3m

(
m
2

)
+
(
m
3

)
if r = 0

m3 +m
(
m
2

)
if 0 < r < p/c− 3

m3/3 if last round and 3 | p
m3 otherwise

(4.13)

The communication-optimal 3-body algorithm is shown in Algorithm 7. The get schedule
function is introduced. It takes a processor’s team number and layer ID (rank within its
team) as inputs and indicates for each processor what rounds in the absolute round number
of Algorithm 6 it should compute (variables start and end), what particle subsets should
be in each buffer at the start (an array srcs containing three particle subset numbers), and
what buffer should be shifted (b). The processor then handles the calculation of each round
the same way as Algorithm 6 would. The function change buffer takes in the absolute round
number and the processor’s layer ID (rank within team) and determine if it should switch
the buffer being shifted.
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Algorithm 7 Communication-Avoiding All-Triplets

Input: P , a 2D torus of p/c teams by ` layers.
Input: Set Q of n particles divided into p/c equal subsets Qi.
Output: The updated set Q.

1: for P (i, `) in parallel do
2: Read Qi into B0 and copy them into B1 and B2.
3: (b, srcs , start , end)← get schedule(i, `)
4: for buf ∈ {0, 1, 2} do
5: Shift Bbuf by i− srcsbuf . // Forms the starting (Qsrcs0 , Qsrcs1 , Qsrcs2) triplet.
6: end for
7: for r ∈ [start, end) do
8: Calculate interactions between all three buffers.
9: Shift Bb by 1.

10: if change buffer(r) then
11: b← (b+ 1) mod 3
12: end if
13: end for
14: Send particles in each buffer back to the `thprocessor of the owner team.
15: Add the forces on from the other 2 copies of Qi in B1 and B2 to B0.
16: Do a sum-reduction of B0 between P (i, :).
17: end for

Figure 4.3 can be used for illustration again; this time it is for 36 processors with repli-
cation factor c = 4. Processors are divided into 9 teams, resulting in a total of 10 rounds
of interactions (rounds 10-19). According to equation (4.13), processors in rows 0, 1, 2, and
3 will compute rounds 10-11, 12-13, 14-15, and 16-19, respectively. Then processors on the
same team do a column reduction to get total interactions computed by all processors in the
team before sending particles back to their owners, which will proceed to update them as
usual.

The overall communication is now carried in two dimensions. When processors separately
calculate their shares of interactions in the team, they only need to shift horizontally in a
ring as before. The additional direction comes from the column reduction at the end where
team members need to communicate vertically. Regarding communication costs, there are
p/c columns so there will be O(p2/c2) total rounds. Dividing the rounds to c groups, each
processor does approximately O(p2/c3) rounds. A message is sent per round, so O(p2/c3)
messages are sent during shifting phases. Only O(log c) messages are required for column
reduction so we can consider the total number of messages sent to be just O(p2/c3). Each
message is of size cn/p, therefore the bandwidth used is O(p2/c3)·cn/p = O(np/c2). Since the
costs match the lower bounds in (4.2), we conclude the communication-avoiding algorithm
is communication optimal.

There is a constraint on the replication factor c. If there are more processors per team
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than the number of rounds to compute, then some processor rows will be idle and the
computation efficiency will decrease. Hence, we want

c ≤
(
p/c

3

)
÷ (p/c)

6c3 ≤ (p− c)(p− 2c). (4.14)

Any c that satisfies inequality (4.14) guarantees that all processor rows are utilized. Explicit
solution of c is omitted due to its length and complexity. Simplifying inequality (4.14) to
c3 ≤ p2, we get the asymptotic upper bound of c,

c = O(p2/3), (4.15)

which is consistent with the maximum effective cM in Section 4.2.

Extension to k-body interactions

The same offset pattern approach can be used to calculate all-k-tuple interactions and will
preserve load balance. However, finding a way to generate all unique offset patterns is more
complicated. We have not derived them because we do not have a use case for more than
all-triplets interactions yet. Below are some of the challenges

• There are more offset patterns that create redundancy within themselves, which are
tedious to handle. For example, in 4-body problem at p = 8 and c = 1, offset patterns
�� − − �� − −, � − � − � − �−, and many others create redundancy because 4
is not a prime number.

• It is nontrivial to find an efficient shifting pattern where only one message is sent per
round (only one buffer is shifted).

4.4 Performance Results

As a demonstration, we implemented Algorithm 7 with C and MPI. A particle is of size 80
bytes, consisting of one integer for particle ID, three double-precision variables for the x,
y, and z coordinates, three double-precision variables for x, y, and z velocities, and three
double-precision variables for x, y, and z accelerations. The Axilrod-Teller potential [13] is
used for 3-body interactions. The Newton’s third law of motion still applies. The 3-body
force symmetry properties are as follows: the force on particle i from particle j alone in a
triplet (i, j, k) is equal to the negative force on particle j from particle i alone, fi(j)k = −fj(i)k.
There two other equalities: fij(k) = −fk(i)j and fji(k) = −fki(j). The total force on particle
i from both particle j and k, denoted by fi(jk) is simply the sum of fi(j)k and fij(k). The
sum of the total force on particles i and j is equal to the negative total force on particle k,
fi(jk) + fj(ik) = −fk(ij). Our implementation computes each total force fi(jk), fj(ik) and fk(ij)
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directly all at once from many shared terms within a triplet, for examples, square distances,
cube distances, and distances to the 5th between all pairs of particles. We did not overlap
communication since we wanted explicit communication time to fully measure the effect
of the algorithm and because it is also a good indicator of energy usage. The correctness
verification was done by comparing the algorithm’s outputs to those of a sequential program
at small problem sizes and confirming that the difference was no greater than a threshold
relative to n and p. (The difference is caused by floating-point round-off errors due to
different summation orders and could be prevented by using reproducible summation [58].)
We benchmarked the program on two platforms with different network topology, Mira at
Argonne Leadership Computing Facility (ALCF) and Edison at National Energy Research
Scientific Computing Center (NERSC).

Mira is a 10 PFLOPS IBM Blue Gene/Q supercomputer with a 5D torus network and
topology-aware task mapping. There are 49,152 compute nodes, each has a 16-core PowerPC
A2 1.6GHz processor with 4 hardware threads and 16 GB of memory.

Edison is a 2.57 PFLOPS Cray XC30 supercomputer consisting of 5,576 compute nodes.
Each node is equipped with 2 sockets of 12-core Intel Ivy Bridge processor at 2.4GHz and
64 GB memory. The machine has Cray Aries interconnection with Dragonfly topology.

While we used flat MPI with one MPI process per core on Cray XC30, we implemented
hybrid MPI/OpenMP version for Blue Gene/Q to fully utilize its 4 hardware threads per
core. Using one MPI process per core, we ran 1, 2, and 4 OpenMP threads per MPI process
and selected the best results.

Effects of replication

Figures 4.9 shows time breakdowns per timestep of the program as we vary the replication
factor c. The green, blue, red, yellow, and purple bars are the computation, setup, shifting,
idle, and allreduce times, respectively. Setup time is the time to load required particle subsets
to buffers at the beginning of the timestep and the time to send particles back to their owners
at the end of the timestep combined. Idle time is the average time each processor has to
wait for its teammates to reach the reduction point. Allreduce time is the reduction time
among column teams.

Figures 4.9a and 4.9b are small-scale results – 8K particles on 1K cores on Blue Gene/Q
and 6K particles on 1.5K cores on Cray XC30. Figure 4.9c and 4.9d are large-scale re-
sults – 16K particles on 8K cores on Blue Gene/Q and the extreme case, 24K particles on
24K cores on Cray XC30. All four graphs demonstrate a same decreasing trend in shifting
time, i.e., between 4 to 8 times reduction as c doubles. This is consistent with the bounds
in equation (4.2) which says the algorithm can save factors of c3 in messages and c2 in
bandwidth.

Up to 99.98% reduction in communication time, idle time included, is observed in the
experiment. Maximum overall speedup occurs at the extreme scale at one particle per core,
22.13× on 16K cores on Blue Gene/Q (breakdown graph not shown) and 41.85× on 24K
cores on Cray XC30.
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(a) Blue Gene/Q, 1,024 cores, 8,192 particles.
(8 particles per core)
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(b) Cray XC30, 1,536 cores, 6,144 particles.
(4 particles per core)
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(c) Blue Gene/Q, 8,192 cores, 16,384 particles.
(2 particles per core)
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(d) Cray XC30, 24,576 cores, 24,576 particles.
(1 particle per core)

Figure 4.9: Time breakdown for each replication factor in small- and large-scale experiments
on Blue Gene/Q and Cray XC30.
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(a) Blue Gene/Q, 16,384 particles
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(b) Cray XC30, 24,576 particles.

Figure 4.10: Strong scaling on Blue Gene/Q and Cray XC30. Larger c’s perform better as
the number of cores increases, vice versa for smaller c’s. Some large c’s are available only
with sufficiently many cores.
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Computation times are mostly equal as expected. For Blue Gene/Q, the computation
time where c ≤ 4 is significantly larger than others because each thread has too little work
to do. As c increases, there are more interactions to compute per thread so the computation
times are equal from c > 4. This shows that replication also helps maintain computation
efficiency.

Idle time indicates load imbalance. It increases with c because storing more particles
means more interactions per round and also fewer rounds to distribute among the processor
rows (a.k.a. team members). Load balance is harder to maintain at coarser grain. However,
this imbalance can be predicted and thus avoided since the work partitioning is static and
does not depend on input data.

Scalability

Figure 4.10 shows strong scaling on Blue Gene/Q and Cray XC30, with 16K and 24K parti-
cles, respectively. The y-axis is relative efficiency compared to one node, which is estimated
from running the program on one node for 2,048 and 3,072 particles on Blue Gene/Q and
Cray XC30, respectively. The red line at 1 indicates ideal efficiency and other lines are effi-
ciencies for each replication factor c from 1 to 256. The benchmark achieved perfect strong
scaling at 99% efficiency for all machine sizes on both machines with the best c.

In general, larger c’s perform better than smaller c’s with more cores. Some replication
factors are only available with sufficiently many cores since more memory is available with
more cores.

4.5 Extension for Cutoff Distance

This section extends the all-triplets algorithm to support a cutoff distance. Unlike pairwise
interactions in which there is only one obvious way to apply the cutoff distance δ, it is more
complicated in the 3-body case. There have been various ways of applying cutoff distance to
3-body interactions, from triplets in which at least a pair of particles is less than δ apart [50,
113], triplets where all particles are less than δ apart [130], to triplets where the sum of all
distances from the center of mass is less than δ [144], etc. We opted to follow the second
approach where all particles have to be less than δ from each other because the first approach
does not preserve Newton’s third law [130] and because of its simplicity.

The limited interaction distance helps simplify the process of forming unique k-tuples. We
first discuss our k-body cutoff algorithm for 1-dimensional simulation space, then mention
how to extend it to support higher dimensional space. We use arrange P into a 1D torus and
use domain decomposition, i.e., map P to the simulation space, and let them own particles in
their range. We assume that the particles are uniformly distributed and the cutoff distance
δ is large enough to span b ≥ 1 processor boxes, but smaller than half the simulation space
(b < p/2). Define the cutoff window wi as a 2b+ 1-wide window centered at P (i),

wi = {i− b, . . . , i− 1, i, i+ 1, . . . , i+ b} mod p.
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Figure 4.11: 10 processors in a 1D-space simu-
lation. The cutoff distance spans b = 3 boxes
and each processor process k-tuples by moving
only to the right of its box.
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P(1)’s processing range

P(3)’s processing range

Figure 4.12: Redundancy happens if the
cutoff distance is more than half the simu-
lation space length, i.e., (1, 3) for 2-body,
(1, 3, 3) for 3-body, and so on.

For example, Figure 4.11 shows p = 10 processors with cutoff distance b = 3 boxes. We
draw two cutoff windows, w4 in blue and w5 in green. Let 	 be the periodic difference
operator,

j 	 i =

{
j − i if |j − i| ≤ p/2
sign(i− j)(p− |j − i|) otherwise

We use ≤i to compare processor ranks from P (i)’s point of view, j ≤i k if j 	 i ≤ k 	 i.
Our algorithm makes each P (i) process k-tuples of particle subsets (Qi, Qi2 , . . . , Qik)

where i ≤i i2 ≤i i3 ≤i . . . ≤i ik ≤i (i + b) mod p, i.e., starting from itself and moving
only to the right, up to the right border of the cutoff window, when picking other Qs. The
key to avoiding redundancy is to make sure that any processors within b boxes from each
other order all processors in their intersected cutoff windows the same way. For example,
in Figure 4.12 there are 4 processors with cutoff distance spanning 2 boxes, long enough for
P (3) to be on the right of P (1) (1 ≤1 3) and P (1) to also be on the right of P (3) (3 ≤3 1). In
this case, P (1) and P (3) will produce redundant k-tuples. We will show that, by enforcing
the cutoff distance to be less than half the simulation space length, this cannot happen.

Lemma 4.8. Given b < p/2, for any 0 ≤ i < p, if x ≤i y, then x ≤j y for all x, y, j ∈ wi.

Proof. Assume there exists some x, y, j ∈ wi where x ≤i y but x >j y. Then the cutoff range
must wrap around like in Figure 4.12. The farthest distance between x and y when x ≤i y is
b where x = i and y = (i+ b) mod p. Likewise, the farthest distance between y and x when
y ≤j x is b where y = j and x = (j + b) mod p. This means if we keep walking to the right
from x, passing y, and back to x again, the distance cannot have been more than b+ b = 2b.
Since this distance is also p (we just walked through the whole simulation space), we have
p ≤ 2b, which contradicts the assumption.

Next, we prove that our algorithm produces all unique k-tuples with no repeats.

Lemma 4.9. Any k-tuple of particle subsets (Qi1 , Qi2 , . . . , Qik), 0 ≤ i1, i2, . . . ik < p, that all
k indices are within b boxes from each other is processed by exactly one processor.
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Proof. Let j1, j2, . . . , jk be the permutation of the indices such that ij1 ≤i1 ij2 ≤i1 . . . ≤i1 ijk ,
then, by Lemma 4.8, ij1 ≤im ij2 ≤im . . . ≤im ijk for all 1 ≤ m ≤ k. Therefore, P (ij1) is the
only processor to compute this tuple, since ij1 appears to be on the left side of the cutoff
window to all other P (im),m 6= j1. Note that it is not possible for P (ij1) to miss this tuple
since ij1 ≤ij1 ij2 ≤ij1 . . . ≤ij1 ijk ≤ij1 (ij1 + b) mod p.

To simulate k-nested loops, each processor has k buffers, B0, B1, . . . , Bk−1 and alternates
between shifting and computing interactions as shown in Algorithm 8. We shift each buffer
by -1 to mimic the serial schedule. Consider a 1-dimensional problem space with p ≥ 7 and
b = 3 boxes, P (0) will process particle subset triplets in this order: 000, 001, 002, 003, 011,
012, 013, 022, 023, 033. When a non-innermost loop changes, all loops nested in it also need
to change its buffer. For example, from 003 to 011, or from 013 to 022. This requires more
than one shifts per round. To retain one shift per round, we rely on the fact the all the loops
nested inside need the same particle subset as the changed loop, so instead of shifting all
of them, we just copy the particle subset over. Back to the 003-to-011 example, instead of
shifting buffer B1 by -1 and B2 by -2, we just shift B1 by -1 and copy the particle subset in
B1 to B2.

d-dimensional Space

Regardless of the dimensionality of the problem space, every processor always computes
the same tuple positions relative to their cutoff window, for example, if P (i) is computing
(Qi+x, Qi+y, Qi+z) mod p then any other P (j) is computing (Qj+x, Qj+y, Qj+z) mod p. So
everything from the 1D case extends naturally here. In fact, we can just map bd voxels of
the d-dimension cutoff volume to 1D and use the schedule of the 1D version.

Computation Optimality

Again, we are looking for two kinds of optimality – no redundant work and load balance.
Lemma 4.9 indicates that no k-tuple is computed twice and thus proves the first property.
The load balance depends on particle distribution. If particles are uniformly distributed,
all processors will compute an equal number of interactions every round and the load is
balanced. Otherwise, there will be load imbalance.

Communication Optimality

Here we derive the communication lower bounds for the uniformly-distributed cutoff case.
For a d-dimensional problem space, let f be the ratio of the cutoff window volume to the
problem space volume,

f =
(2bc + 1)d

p
.
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Algorithm 8 Parallel K-Body Cutoff Algorithm

Input: P , a ring of p processors.
Input: Set Q of n particles divided and binned into p equal subsets Qi.
Input: b, the number of processor boxes the cutoff distance spans.
Output: The updated set Q.

1: for P (i) in parallel do
2: Copy Qi to B0, . . . , Bk−1.
3: for i2 = 0 : b do
4: for i3 = i2 : b do
5: . . .
6: for ik−1 = ik−2 : b do
7: for ik = ik−1 : b do
8: Compute all interactions between particles in buffers B0, . . . , Bk−1.
9: if ik < b then // Do not shift if the outer loop is going to shift.

10: Shift Bk−1 by -1.
11: end if
12: end for
13: if ik−1 < b then
14: Shift Bk−2 by -1.
15: end if
16: Copy Bk−2 to Bk−1.
17: end for
18: . . .
19: if i3 < b then
20: Shift B3 by -1.
21: end if
22: Copy B3 to B4, B5, . . . , Bk−1.
23: end for
24: Shift B2 by -1.
25: Copy B2 to B3, B4, . . . , Bk−1.
26: end for
27: end for
28: Update my particles.

This means a particle has about fn particles in its cutoff volume and needs O((fn)k−1)
interactions. The total work is O

(
n · (fn)k−1

)
and thus each processor has work Z =

O(fk−1nk/p). Let us continue to write M , the memory available to a per processor, as
cMn/p. The maximum useful work a processor can do with M particles in memory is
O(Mk), therefore, F = O(ckMn

k/pk). Substituting this into equation (2.2), we get the general
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communication lower bounds for k-body problem,

S = Ω

(
fk−1pk−1

ckM

)
, W = Ω

(
nfk−1pk−2

ck−1
M

)
. (4.16)

For example, let f = 1.0, k = 3 and we get the same lower bounds as in equation (4.2). The
case where f = 1.0, k = 2 also matches the 2-body communication lower bounds previously
derived in Chapter 3.

For the memory-independent lower bounds, let V be the set of interactions the processor
with the largest load has to compute. |V | cannot be less than the total amount of work
divided equally among processors,

|V | ≥ fk−1nk

p
. (4.17)

We relate |V | to the total input size
k−1∑
i=0

|Vi| necessary to compute V ,

|V | ≤ |V0||V1| . . . |Vk−1|

≤ 1

k!

(
k−1∑
i=0

|Vi|

)k

. (4.18)

Putting Equations (4.17) and (4.18) together, we have,

1

k!

(
k−1∑
i=0

|Vi|

)k

≥ fk−1nk

p

k−1∑
i=0

|Vi| ≥
k
√
k!nf

k−1
k p−

1
k .

Since V0, V1, . . . , Vk−1 can all be the same, the processor must hold at least k
√
k!nf

k−1
k p−

1
k /k

particles. Assuming every processor starts with just n/p particles in their memory, they must

communicate at least k
√
k!nf

k−1
k p−

1
k /k − n/p words, using at least 1 messages. Assuming

k
√
k!nf

k−1
k p−

1
k /k > n/p, the memory-independent lower bounds are,

S = O (1) , W = O
(
nf

k−1
k p−

1
k

)
, (4.19)

equivalent to the memory-dependent lower bounds when cM = f
k−1
k p

k−1
k . Any cM >

f
k−1
k p

k−1
k gets the same lower bounds in Equation (4.19).

Now we analyze the communication costs of Algorithm 8. Since particles are distributed
evenly and processors are responsible of equal domain size, there are roughly fp processor
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cells within a processor’s cutoff volume and O(fp) rounds are required to go through all of
them. With k-way interaction, a processor needs to loop through all cells in range for k − 1
levels, totaling of O

(
(fp)k−1

)
rounds. It sends a message per round. The program stores

n/p particles in memory. Therefore, the total communication costs are,

S = O
(
kfk−1pk−1

)
, W = O

(
knfk−1pk−2

)
,

which are optimal if the memory does not have enough space to replicate (cM = 1).

Communication-Avoiding Algorithm

A communication-avoiding algorithm can be derived the same way as it was for the all-triplets
section. In brief, we divide processors into p/c teams with c team members each. Each team
owns cn/p particles. All processors in a team cooperate to compute interactions for the
particle subset their team owns. Work should be partitioned in a way that each processor
calculates close to 1/c of all interactions of the subset. Finally, processors participate in a
team sum-reduce to merge all interactions together, then update the particles. Due to the
lack of space, we will only prove its communication optimality.

Assume once again that particles are uniformly distributed and let f be the ratio of the
cutoff volume to the problem space volume. There are p/c teams, each has to interact with
approximately O(fp/c) particle parts from other teams. O

(
(fp/c)k−1

)
rounds of interactions

are required in k-way interactions. If the work is partitioned perfectly, a processor has to
compute O

(
(fp/c)k−1/c

)
rounds. Assuming optimal shifting schedule (1 message per round)

is used, the total communication costs are

S = O

(
fk−1pk−1

ck

)
, W = O

(
nfk−1pk−2

ck−1

)
,

which are communication-optimal when we choose c = cM .

4.6 Conclusions

This chapter presented a direct long-range 3-body algorithm and proved that it is both com-
putation and communication optimal. We also provided a communication-avoiding version
that, by making c replicas, decreases the total number of messages and bandwidth usage by
c3 and c2, respectively.

The communication-avoiding algorithm introduces some load imbalance, but it is pre-
dictable based on a given replication factor, c, and grows with increasing values of c. Thus,
there is a tradeoff between reducing shifting time through bandwidth and latency reductions
and increasing idle time. Since we know the amount of load imbalance for each c ahead of
time and the increase in reduction time is insignificant compared to shifting time, we suggest
picking large c’s with reasonably small load imbalance.
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Large-scale experimental results on up to 16K cores on a Blue Gene/Q and 24K cores on a
Cray XC30 were consistent with the communication costs predicted for the communication-
avoiding algorithm and also exhibited strong scalability. The algorithm exhibited up to
99.98% reduction in communication time and 41.85× speedup relative to the version without
replication, enabling strong scaling up to 99% efficiency.

Finally, we presented a generalized algorithm that supports k-body computations with
a large cutoff distance that limits interactions to 1/3 of the total particles. We derived
the communication lower bounds for this k-body algorithm and showed that it is also both
computation and communication optimal.

We believe that our algorithmic framework, which represents a class of algorithms for
various values of k and varying amounts of memory for replication is flexible enough to be
useful in multiple application settings. The algorithms were provably optimal in communi-
cation and computation, and had bounded load imbalance. Overall, this work has shown
the importance of both communication avoidance and computation avoidance for scalable
k-body algorithms in both a theoretical and experimental setup.
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Chapter 5

Sparse-Dense Matrix-Matrix
Multiplication

Based on prior work on avoiding communication in matrix multiplication algorithms, we
make several contributions in this chapter. We first provide communication lower bounds for
parallel sparse-dense matrix-matrix multiplication (SpDM3) algorithms. We then introduce
efficient parallel algorithms, together with a rigorous analysis of their communication costs.
We also provide performance results on up to ten thousands of cores using sparse matrices
with both uniform and skewed nonzero distributions. Finally, we analyze the SpDM3 problem
within an iterative algorithm.

5.1 Background and Previous Work

Computing the product of a sparse matrix with a dense matrix is an understudied primitive
in numerical linear algebra, but is important in several higher level algorithms.. In this
chapter, we focus on the case where both matrices have fairly large dimensions, in contrast
to the well-studied case in iterative methods where the dense matrix can be viewed as a
small set of column vectors, typically fewer than 100 columns. [5].

Sparse-dense matrix-matrix multiplication, or SpDM3 in short, has applications in a
diverse set of application domains involving both scientific simulations and data analysis
problems. Examples include the all-pairs shortest-paths problem [173] in graph analytics,
non-negative matrix factorization [105] for dimensionality reduction, a novel formulation of
the restriction operation [136] in Algebraic Multigrid, quantum Monte Carlo simulations for
large chemical systems [159], interior-point methods for semidefinite programming [76], the
siting problem in terrain modeling [146], block eigenvalue problems where the number of

This chapter is based on joint work previously published in “Communication-Avoiding Parallel Sparse-
Dense Matrix-Matrix Multiplication”[111].
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eigenvalues to be estimated is large (more than 1,000) [176, 68], attribute inference attacks
in computer security [97, 84], and deep convolutional networks [106] in machine learning.

Another application in statistics and machine learning is sparse inverse covariance selec-
tion (ICS) and related problems [62, 182, 75, 147, 103, 174]. ICS estimation is used for data
analysis to identify the most important probabilistic relationships between various features
of a given population. Its computational burden can be cubic in the number of dimen-
sions [75, 147, 103] per iteration and, hence, easily becomes intractable as dimensionality
increases beyond a few thousand. To improve scalability, a divide-and-conquer approach
has been developed for a shared memory architecture [93]; however, we know of none that
take advantage of parallel distributed memory computing environments. More recently, an
algorithm based on sparse linear algebra was developed [142] for computing the CONCORD
estimator [103]. The running time of this ICS estimation algorithm, CONCORD-ISTA, is
dominated by the solution of two SpDM3 problems at every iteration. Hence, a fast parallel
SpDM3 would significantly increase CONCORD-ISTA’s scalability and improve its running
time. CONCORD-ISTA and additional examples of computational algorithms that can ben-
efit from SpDM3 are further discussed in Section 5.5.

There has been relatively little work on the SpDM3 problem. Bader and Heinecke [18]
presented cache-oblivious algorithms based on space-filling curves, together with their high-
performance shared memory implementations. Greiner and Jacob [88] presented I/O-efficient
serial algorithms and related lower bounds. Ortega et al. [143] provided an efficient GPU
implementation. In terms of multi-node parallelism, the literature is even sparser. Pietra-
caprina et al. [149] gave lower bounds on the number of rounds it takes to compute the sparse
matrix product in MapReduce. The only multi-node implementation we are aware of is pub-
lished in 2016 [2], which was after we had published our work. The scope is also different.
They focus on structured matrices using hypergraph partitioning and only test scaling up to
2,048 cores. Our approach focuses on general matrices, including those arising in machine
learning problems that often lack any clear structure, and replication, demonstrating scaling
results up to over ten thousand cores.

Communication-avoiding algorithms aim to reformulate linear algebra operations to min-
imize the communication costs [23, 59]. In the case of dense-dense matrix multiplication, all
2D, 2.5D, and 3D algorithms are optimal, given two different assumptions about available
memory [96]. 2.5D and 3D algorithms, however, further minimize the cost of communication
relative to 2D algorithms, at the expense of more memory usage [167]. Sparse-sparse matrix
multiplication is more complicated due to different sparsity patterns. Lower bounds are only
known for Erdős-Rényi matrices, for which optimal 2.5D/3D algorithms have also been pro-
posed [25]. The efficient implementation of the 2.5D/3D sparse-sparse matrix multiplication
algorithm on distributed-memory architectures has been done only recently [14].
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(a) Voxel subset V . (b) 1D algorithms (c) 2D algorithms (d) 3D algorithms

Figure 5.1: The matrix multiplication computational cuboid. We call algorithms kD if they
split k dimensions of the cube.

5.2 Communication Lower Bounds

We compute the parallel matrix-matrix multiplication C = A × B. A is a sparse, m × q
matrix, B is a dense, q × n matrix, and C is an m × n matrix which is usually dense,
depending on the sparsity pattern of A and the size of q. For theoretical analysis and lower
bounds, we assume that the nonzeroes in A are uniformly distributed, as in the Erdős-Rényi
model [70], and that there are d nonzeroes per row on average. For experimental analysis,
we also use more realistic sparsity patterns. Note that all analyses can be easily extended
to the reverse case where A is dense and B is sparse.

The iteration space for the problem can be seen as an m×n× q cuboid where each voxel
(i, j, k) represents the computation cij += aik · bkj. All p processors partition the cuboid
and compute the voxels in their subsets. Figure 5.1a shows the computational cuboid, an
example voxel subset V , and its projections onto the A, B, and C planes.

For simplicity of presentation, we assume that all matrices are square with length n
in this section, although our analysis and implementations will handle the more general
case. Following our earlier notation, let M be the size in words of the fast memory each of
our p processing elements has. Let F be the total number of flops to multiply A and B,
F = O(dn2). The general lower bounds for communication along the critical path from [23],

S = Ω

(
F

p
√
M3

)
, W = Ω

(
F

p
√
M

)
, (5.1)

trivially apply here. To relate M to our problem parameters, we assume that M can fit
at most c copies of all three matrices, i.e., M = O(cn2/p). Substituting for F and M into
Equation (5.1) gives us the lower bounds,

Scompute = Ω

(
d
√
p

nc3/2

)
, Wcompute = Ω

(
dn
√
pc

)
.

Adding the bandwidth cost of reading the input matrices and writing the output matrices,
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the communication lower bounds are

S = Ω

(
d
√
p

nc3/2

)
, W = Ω

(
dn
√
pc

+
n2

p

)
. (5.2)

5.3 Algorithms

Here we discuss existing parallel algorithms and present a few new variants. The algorithms
are categorized based on how they partition the computational cuboid [25]. We call an
algorithm a kD algorithm if it partitions k dimensions of the cuboid. (See Figures 5.1b-5.1d.)
The constants on the leading order terms can be compared across all analyzed algorithms,
so we are going to write the constants inside the big-O notation even though they do not
affect the asymptotic values.

1D algorithms

1D algorithms partition only one dimension of the cuboid, i.e., slicing the cuboid into planes.
They logically arrange processors into a ring (1D torus) topology and partition matrices
along a single dimension. Only one matrix needs to be passed around. The algorithms
alternate between shifting the matrix and computing a local multiplication based on the
newly received matrix part. We only analyze communicating A since it is asymptotically
cheaper than communicating B or C, given our assumptions that the dimensions of B are
relatively large. Recall that we will use nnz(·) to represent the number of elements in a
matrix, whether it is sparse or dense.

1D block column:

All matrices are in block column layout. Processor P (i) has A{1×p}(i) and B{1×p}(i), and is
responsible for computing C{1×p}(i). For p rounds, each processor multiplies local A and B,
accumulates to result to the local C, then shifts A to get the new part of A. In round k,
P (i) calculates A{1×p}(i+ k)B{p×p}(i+ k, i). After p rounds, we have the full multiplication,

C{1×p}(i) =

p−1∑
k=0

A{1×p}(i+ k)B{p×p}(i+ k, i) (5.3)

= AB(i).

See Figure 5.2b (with c = 1) and Algorithm 9 for illustration and pseudocode. Each round
a processor sends one message of size nnz(A)/p words. Therefore, the communication costs
are,

S = O(p), W = O(nnz(A)).
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Algorithm 9 1D block column or inner product

Input: P , a 1-dimensional processor mesh of size p.
Input: A, partitioned in block-row or block-column layout to p equal parts so A(i) is in

buffer Ã on P (i).
Input: B, distributed so B{1×p}(i) is in buffer B̃ on P (i).
Output: C = AB, distributed so C{1×p}(i) is in buffer C̃ on P (i).

1: for each P (i), in parallel, do
2: C̃ ← 0.
3: for k ∈ {0, 1, . . . , p− 1} do
4: if 1D block column then
5: C̃ ← C̃ + ÃB̃{p×1}(i+ k). . Multiplies A with an appropriate block of B̃.
6: else if 1D block inner product then
7: C̃{p×1}(i+ k)← ÃB̃. . Stores the result into an appropriate block of C̃.
8: end if
9: Shift Ã by 1.

10: end for
11: end for

1D block inner product:

A is in block row layout. B and C are in block column layout. P (i) owns A{p×1}(i) and
B{1×p}(i), and must compute C{1×p}(i). We shift A to get C in block column layout. In
round k, P (i) computes,

C{p×p}(i+ k, i) = A{p×1}(i+ k)B{1×p}(i).

After p rounds, the whole matrix C is filled. See Figure 5.2d (with c = 1) and Algorithm 9
for illustration and pseudocode. Each round a processor sends one message of size nnz(A)/p
so the communication costs are the same as the 1D block column variant,

S = O(p), W = O(nnz(A)).

1D block row and 1D block outer product require passing dense matrices B or C
around, so they are omitted.

2D algorithms

2D algorithms split two dimensions of the computational cuboid, e.g., into pencils of length
q. They logically arrange processors into a 2D grid of size pm× pn. There are many variants
including Cannon’s algorithm [4] and SUMMA [80]. Since both algorithms have similar costs,
we will only discuss the stationary-C SUMMA algorithm because it is more generalizable
and more widely used. We assume pm = pn =

√
p for simplicity.
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2D SUMMA calculates b outer products, where b is a blocking factor. Here we assume
b =
√
p. All matrices are stored in 2D block layout; each is of size n/

√
p× n/√p. Processor

P (i, j) owns A{
√
p×√p}(i, j) and B{

√
p×√p}(i, j) and computes C{

√
p×√p}(i, j). In round k,

P (i, k) broadcasts its A to P (i, :) and P (k, j) broadcasts its B to P (:, j). All processors then
calculate

A{
√
p×√p}(i, k)B{

√
p×√p}(k, j),

and accumulate the product in their local C’s. After
√
p rounds, we have,

C{
√
p×√p}(i, j) =

√
p−1∑
k=0

A{
√
p×√p}(i, k)B{

√
p×√p}(k, j)

= A(i)B(j).

See Figure 5.2a and Algorithm 10 (with c = 1) for illustration and pseudocode. There are√
p broadcasts of A (log

√
p messages and nnz(A)/p words each), and

√
p broadcasts of B

(log
√
p messages and nnz(B)/p words each). Therefore,

S=O(2
√
p log

√
p), W=O

(
nnz(A)+nnz(B)

√
p

log
√
p

)
.

2.5D and 3D algorithms

2.5D and 3D algorithms partition all three dimensions of the computational cuboid, e.g.,
into subcubes, length-n/2 pencils, etc.

2.5D and 3D SUMMA algorithms [3, 167] utilize replication to avoid communication.
It logically arranges processors into a 3D pm × pn × c mesh. In essence, it is c layers of 2D

A C

B

...0 1

...0 1

...0 1

...0 1

...0 1

...0 1

..
.

...0 1

..
.

...0 1

..
.

...0 1

m

l

n

(a) 2.5D SUMMA ABC

0 ...
0 ...

0 ...1 p-1

0 ...1 p-1

lc/p

m

n/p

A C

B

(b) 1.5D Column A

0 ... 0 ...

0 ...

A C

B

0 ...

lc/p

m

0 ...

nc/p

0 ...

(c) 1.5D Column ABC

0 ...1
0 ...1

0 ...1
0 ...1

0 ...1

p
/c
   -1

l

nc/p

A C

B

..
.

0

1

..
.

0

1

..
.

0

1

p/c                       -1

0 ...1

p
/c
   -1

mc
p

(d) 1.5D Inner ABC

Figure 5.2: Processor mesh layouts for 1.5D and 2.5D algorithms. Matrix names at the end
indicate that they are being replicated. (Substituting c = 1 gives corresponding 1D and 2D
algorithms.)
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Algorithm 10 2.5D SUMMA (Substitute c = 1 for 2D SUMMA)

Input: P , a processor grid of size
√
p/c×

√
p/c× c.

Input: A, distributed so A{p/c×p/c}(i, j) is on P (i, j, :).
Input: B, distributed so B{p/c×p/c}(i, j) is on P (i, j, :).
Output: C = AB, distributed so C{p/c×p/c}(i, j) is in buffer C̃ on P (i, j, 0).

1: for each P (i, j, `), in parallel, do
2: C̃ ← 0.
3: for k ∈ {`d, `d+ 1, . . . , `d+ d− 1} do
4: P (i, k, `) broadcasts A(i, k) to buffer Ã of P (i, :, `).
5: P (k, j, `) broadcasts B(k, j) to buffer B̃ of P (:, j, `).
6: C̃ ← C̃ + ÃB̃.
7: end for
8: P (i, j, 0) sumreduces C̃ from P (i, j, :). . Stores output.
9: end for

SUMMA algorithm with pm×pn processor grids, except that each layer only computes 1/c of
the outer products. We assume pm = pn =

√
p/c for simplicity, as illustrated in Figure 5.2a.

Algorithm 10 shows the pseudocode. The 2D and 3D algorithms are special cases of the
2.5D algorithm where c = 1 and 3

√
p, respectively. Therefore, from now on we will use the

word 2.5D algorithms to represent all 2D, 2.5D, and 3D algorithms.
Converting from a 2D layout to a 2.5D layout requires preprocessing. We call this repli-

cation since it also makes c processors hold the same blocks of each matrix. This can be done
by exchanging blocks within a group of c processors and on each processor concatenating
into larger blocks. The algorithm partitions all matrices into

√
p/c×

√
p/c equal parts and

arranges the processors so that A(i, j), B(i, j), and C(i, j) are on P (i, j, :). These P (i, j, :)
cooperate as a team on computing C(i, j). There are a total of

√
p/c outer products. Each

layer is responsible for (
√
p/c)/c = d outer products. P (i, j, `) calculates

C{
√

p
c
×
√

p
c}(i, j) =

`d+d−1∑
k=`d

A{
√

p
c
×
√

p
c}(i, k)B{

√
p
c
×
√

p
c}(k, j).

In round k, P (i, k, `) broadcasts its A to P (i, :, `) and P (k, j, `) broadcasts its B to
P (:, j, `), then each processor computes the product. After d rounds, P (i, j, :) do a sum
reduction on C to get the final result. This costs d broadcasts of A (log

√
p/c messages

and c · nnz(A)/p log
√
p/c words each), d broadcasts of B (log

√
p/c messages and c ·

nnz(B)/p log
√
p/c words each), and one reduction of C (log c messages and c·nnz(C)/p log c

words).
As for the replication cost, we will model it as P (i, j, 0) gathering all matrices from

P (i, j, :) then broadcasting the concatenated matrices back to them. Replicating A takes one
gather (log c messages and c · nnz(A)/p log c words) and one broadcast (log c messages and
c·nnz(A)/p log c words). Replicating B takes one gather (log c messages and c·nnz(B)/p log c
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words) and one broadcast (log c messages and c · nnz(B)/p log c words). Let Wrep represent
the bandwidth costs of replication and reduction combined,

Wrep =
2 nnz(A) + 2 nnz(B) + nnz(C)

p
c log c.

The total communication costs are,

S = O

(
2

√
p

c3/2
log

√
p

c
+ 5 log c

)
,

W = O

(
nnz(A) + nnz(B)

√
pc

log

√
p

c
+Wrep

)
.

1.5D algorithms

2.5D algorithms communicate at least one dense matrix while 1D algorithms can limit the
movement to just the sparse matrix A. This section applies replication to 1D algorithms to
avoid more communication. The first algorithm simply increases the size of matrix A that is
stored locally. The latter two algorithms are similar to the communication-avoiding N -body
algorithms in Chapter 3 which also operate on a ring topology. We will still use c for the
replication factor.

1.5D block column replicating A (ColA):

We start by replicating just the sparse matrix A c times, 1 ≤ c ≤ p. As shown in Algo-
rithm 11, processor P (i) has A{1×p/c}(i/c) and B{1×p}(i), and computes

C{1×p}(i) =

p/c−1∑
k=0

A{1×p/c}(i+ k)B{p/c×p}(i+ k, i),

Algorithm 11 1.5D block column replicating A (ColA)

Input: P , a 1-dimensional processor mesh of size p.
Input: A, distributed so A{1×p/c}(bi/cc) is in buffer Ã on P (i).
Input: B, distributed so B{1×p}(i) is in buffer B̃ on P (i).
Output: C = AB, distributed so C{1×p}(i) is in buffer C̃ on P (i).

1: for each P (i), in parallel, do
2: C̃ ← 0.
3: for k ∈ {0, 1, . . . , p/c− 1} do
4: C̃ ← C̃ + ÃB̃{p/c×1}(bi/cc+ k).
5: Shift Ã by c.
6: end for
7: end for
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Figure 5.3: Example computations of 1.5D block column A, 1.5D block column ABC, and
1.5D block inner product ABC on 8 processors. Numbers in the grid are processor ranks. B
is fixed so it is drawn only once.

where k is the round number. Figure 5.2b illustrates the layout. See Figure 5.3a for an
example with p = 8 and c = 2. For p/c rounds, each processor computes the product and
shifts A among processors in the same layer by one. Latency cost is improved by a factor of
c, but the total bandwidth cost stays the same since the message size is also increased by c.
Replicating A takes 2 log c messages and 2c · nnz(A)/p log c words. The total costs are,

S = O(2 log c+ p/c),

W = O

(
2c · nnz(A)

p
log c+ nnz(A)

)
.

1.5D block inner product replicating A (InnerA): InnerA also replicates just the
sparse matrix A, but has A in a block row layout and B in a block column layout, forming
an inner product. Processor P (i) has A{p/c×1}(i/c) and B{1×p}(i). InnerA has the same
communication costs and output layout as ColA so we omit further analysis.

1.5D block column replicating all matrices (ColABC):

Next, we investigate paying an extra cost of also replicating the dense matrices B and C in
an attempt to reduce more shifting costs asymptotically. This algorithm groups p processors
into a p/c× c grid. See Figure 5.2c for illustration. P (i, :) have A1×p/c(i) and B1×p/c(i), and
work as a team to compute

C{1×p/c}(i) =

p/c−1∑
κ=0

A{1×p/c}(κ)B{p/c×p/c}(κ, j).

All c team members split these p/c summation terms equally. P (i, `) computes p/c2 = d
terms from κ = ld to (l + 1)d − 1. This computation pattern can be done by first shifting
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Algorithm 12 1.5D block column replicating all matrices (ColABC)

Input: P , a 2-dimensional processor mesh of size p/c× c.
Input: A, distributed so A{1×p/c}(i) is in buffer Ã on P (i, :).
Input: B, distributed so B{1×p/c}(i) is in buffer B̃ on P (i, :).
Output: C = AB, distributed so C{1×p/c}(i) is in buffer C̃ on P (i, :).

1: for each P (i, `), in parallel, do
2: d← p/c2. . The number of rounds each processor needs to do.
3: Shift Ã by `d. . Initial shift so P (i, `) has A(i+ `d).
4: C̃ ← 0.
5: for k ∈ {`d, `d+ 1, . . . , `d+ d− 1} do
6: C̃ ← C̃ + ÃB̃{p/c×1}(i+ k).
7: Shift Ã by 1.
8: end for
9: P (i, 0) sumreduces C̃ from P (i, :).

10: end for

A in the same layer by distance `d (to jump to the starting point), then all processors can
alternate between multiplication and shifting by one as usual for d rounds, and reduce C at
the end. In other words: ColABC takes d rounds. In round k, P (i, `) calculates,

C{1×p/c}(:, i) =
`d+d−1∑
k=`d

A{1×p/c}(k)B{p/c×p/c}(k, j).

Figure 5.3b shows an example with p = 8 and c = 2. Algorithm 12 shows the pseudocode.
Replication and reduction cost the same as 2.5D SUMMA’s. The matrix A is shifted

p/c2 times, so it takes p/c2 messages and p/c2 · c · nnz(A)/p = nnz(A)/c words. The total
communication costs are,

S = O
(

5 log c+
p

c2

)
, W = O

(
nnz(A)

c
+Wrep

)
.

1.5D block inner product replicating all matrices (InnerABC):

Next, we apply replication to the inner product algorithm. This algorithm also groups p
processors into p/c × c grid, except this time P (i, :) have A{p/c×1}(i) and B{1×p/c}(i), and
compute C{1×p/c}(i) together as a team. See Figure 5.2d and Algorithm 13 for illustration
and pseudocode.

There are p/c block inner products to do, and each team member does p/c2 = d of them.
P (i, `) computes

C{p/c×p/c}(i+ k, i) = A{p/c×1}(i+ k)B{1×p/c}(i)

for `d ≤ k < (` + 1)d. It does so by initially shifting A by `d to start at the required
offset then alternating between multiplication and shifting by one for d rounds. Finally,
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Algorithm 13 1.5D block inner product replicating all matrices (InnerABC)

Input: P , a 2-dimensional processor mesh of size p/c× c.
Input: A, distributed so A{p/c×1}(i) is in buffer Ã on P (i, :).
Input: B, distributed so B{1×p/c}(i) is in buffer B̃ on P (i, :).
Output: C = AB, distributed so C{1×p/c}(i) is in buffer C̃ on P (i, :).

1: for each P (i, `), in parallel, do
2: d← p/c2. . The number of rounds each processor needs to do.
3: Shift Ã by `d. . Initial shift so P (i, `) has A(i+ `d).
4: for k ∈ {`d, `d+ 1, . . . , `d+ d− 1} do
5: C̃{p/c×1}(i+ k)← ÃB̃.
6: Shift Ã by 1.
7: end for
8: P (i, 0) gathers C̃ from P (i, :).
9: end for

the algorithm gathers the final matrix C to P (i, 0) on the first layer. Figure 5.3c shows an
example with p = 8 and c = 2.

Shifting A costs p/c2 messages and nnz(A)/c words. Gathering C costs the same as
reduction asymptotically, so the total communication costs are,

S = O
(

5 log c+
p

c2

)
, W = O

(
nnz(A)

c
+Wrep

)
.

Comparison

We compare our 1.5D algorithms, ColA, ColABC, and InnerABC, with the classic 2.5D
SUMMA algorithm which will be called SummaABC from now on, with ABC indicating
that it replicates all three matrices. Table 5.1 summarizes all communication costs of all
replicating algorithms. The costs of 1D and 2D algorithms can be obtained by substituting
c = 1 into 1.5D and 2.5D algorithms, respectively. None of the presented algorithms obtained
the communication lower bounds, although SummaABC has quite similar costs.

Communication consists of three phases, replication, propagation, and collection. Repli-
cation is the gathering of neighboring matrices and the broadcasting of the concatenated
matrix and is only used in .5D algorithms. Propagation is the communication within the
multiplication steps to get the necessary blocks for each local multiplication. It corresponds
to the shiftings of A in 1D and 1.5D algorithms, and the broadcastings of A and B in 2.5D
algorithms. Collection refers to reduction or gathering of C at the end after all multiplica-
tions are done which only occurs in .5D algorithms.

Even though ColABC and InnerABC have the same asymptotic costs, InnerABC uses
gather in the collection phase which can be significantly faster than ColABC’s reduction in
practice. They also store matrices in different layouts, which can have different local matrix
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Algorithms
#messages = S #words = W

Replication Propagation Collection Replication Propagation Collection

1.5D Col A 2 log c
p

c
- 2

nnz(A)

p
c log c nnz(A) -

1.5D Col ABC 4 log c
p

c2
log c 2

nnz(A) + nnz(B)

p
c log c

nnz(A)

c

nnz(C)

p
c log c

1.5D Inner ABC 4 log c
p

c2
log c 2

nnz(A) + nnz(B)

p
c log c

nnz(A)

c

nnz(C)

p
c log c

2.5D SUMMA ABC 4 log c 2

√
p

c3/2
log

√
p

c
log c 2

nnz(A) + nnz(B)

p
c log c

nnz(A) + nnz(B)
√
pc

log

√
p

c

nnz(C)

p
c log c

Table 5.1: Algorithm communication costs. Uppercase letters at the end of algorithm names
indicate the matrices being replicated.

multiplication efficiencies. The storage format for C is key to performance in some context
as well. We will discuss this in Section 5.5.

There are limits to the effective replication factors for each algorithm. For ColA, c = p
corresponds to replicating the whole matrix A. Therefore, c ≤ p is the limit. ColABC and
InnerABC have c ≤ √p, since when c =

√
p, each processor layer only computes one round

of local matrix multiplication – any larger c’s would leave some layer(s) idle. The same
reasoning applies to SummaABC algorithm whose upper limit is c ≤ 3

√
p in which case each

layer only computes one outer product.
Latency costs are not dependent on matrix inputs, but purely on the number of pro-

cessors p and the replication factor c. Out of all three phases, the propagation cost grows
fastest with p and is the dominating cost. The best latency cost for propagation is O(1)
and is attainable by all algorithms with their highest effective c’s. However, higher c’s mean
more memory requirement and increased bandwidth costs for replication and collection. For
a fixed c, SummaABC achieves lowest latency costs.

Bandwidth costs are based on the number of words sent. It can be computed from
latency costs (number of messages sent) and message size (number of words sent in each
message). Most analysis in prior work for dense-dense or sparse-sparse cases assumes the
message sizes for matrices A and B are the same, which is not reasonable in many cases,
especially for sparse-dense matrix multiplication. In that case, SummaABC also minimizes
bandwidth costs altogether and is the best algorithm overall. This assumption does not hold
in our case, and one can utilize less bandwidth by moving A more and moving B less often
than SummaABC does, at the expense of higher latency costs. For example, ColA only
moves the sparse matrix A around. It is most likely to have the lowest overall bandwidth
cost, but it has the highest latency cost. ColABC and InnerABC opt to replicate the dense
matrix B to achieve asymptotically lower propagation latency and bandwidth than ColA.
They also have to move the dense matrix C in the collection phase. In other words, they
send (2 nnz(B) + nnz(C))/p · c log c more words to reduce the propagation bandwidth from
nnz(A) to nnz(A)/c. In most practical scenarios, nnz(A) � nnz(B), nnz(C), so p has to
be considerably large for this trade-off to pay off. When ColABC and InnerABC are not
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Figure 5.4: The areas that each algorithm has the theoretically lowest overall bandwidth cost. The
X-axis is the ratio of nnz(A) versus nnz(B). The Y-axis is the number of processors. There are
three subgraphs for three different nnz(C) : nnz(B) ratios which are delineated by the jagged lines
within each plot. 1.5D ABC stands for both Col ABC and InnerABC. The area for 1.5D ABC
includes the area for 1.5D Col A. The best replication factors for the best algorithm at each data
point are shown in colors. ColA is best for sparser matrices or lower concurrency while SummaABC
is the opposite. 1.5D ABC algorithms help improve the scalability of ColA.

replicating, they have equal overall bandwidth costs to ColA. SummaABC moves the dense
matrix B in every phase, so it is unlikely to beat any of the 1.5D algorithms in terms of
bandwidth when A is very sparse. It will be preferable again when nnz(A) becomes closer
to nnz(B), decreasing the message-size imbalance, or when the number of processors grows
large (since it minimizes latency).

It is best to obtain hardware parameters to determine this latency-bandwidth trade-
off across the various algorithms. However, we can gain some intuition over where each
algorithm is most suitable for without being specific to any particular machine. We found
that the bandwidth costs are more prominent in our experiments, so we focus our analysis
on those costs for simplicity. To eliminate one variable, we divide the bandwidth costs in
Table 5.1 with nnz(B) and represent the nonzero ratios nnz(A)/ nnz(B) and nnz(C)/ nnz(B)
with f and g, respectively. Knowing g, we can plot with p and f as axes and search for the
best algorithm over all possible c’s at each point. We picked three different values of g, 1:1
in Figure 5.4a, 11.67:1 in Figure 5.4b, and 0.38:1 in Figure 5.4c. For an SpDM3 problem,
nnz(C) : nnz(B) ≈ m : q and can be interpreted as the tallness of matrix A. For example,
1:1 means a square A, 11.67:1 applies to a tall A, and 0.38:1 refers to a short-wide A. We
draw black lines to separate regions in which different algorithms are optimal and use colors
to show the best replication factors for the optimal algorithm. The best replication factor
for ColA is always 1 because increasing c does not reduce bandwidth. The area in which
ColA wins is a subset of the area that ColABC and InnerABC win because ColABC at c = 1
is equivalent to ColA. The graphs confirm the intuition from the earlier analysis that ColA
is most suitable for very sparse matrices or small-scale runs. ColABC and InnerABC can
help improve scalability to some level, but eventually SummaABC wins as we move towards
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larger concurrency or denser matrices.
Since this analysis is based on just nnz(A), nnz(B), and nnz(C), it is trivially applicable

to sparse-sparse matrix-matrix multiplication (of different sparsities and/or sizes) or even
dense-dense matrix-matrix multiplication (of different sizes).

5.4 Performance Results

We implemented all four algorithms listed in Table 5.1 using C++ and MPI. A is stored
in zero-based indexing Compressed Sparse Row (CSR) format. B and C are stored in
row-major format, except where noted. We used the multi-threaded Intel® Math Kernel
Library (MKL) for local sparse-dense matrix-matrix multiplication (mkl dcsrmm). (The
Compressed Sparse Column (CSC) format would scale better in terms of storage for the
blocked column algorithms, but we found MKL’s multiplication routine for the CSC format
(mkl dcscmm) significantly slower than the CSR’s (mkl dcsrmm), so we used CSR format
in all implementations.) We ran our experiments on Edison, a Cray XC30 machine at the
National Energy Research Scientific Computing Center (NERSC). Edison has a Cray Aries
interconnect with a Dragonfly topology and consists of 5,576 compute nodes, each with 2
sockets of 12-core Intel Ivy Bridge processors running at 2.4GHz and with 64 GB memory.
We used Intel’s C++ compiler (icpc) version 15.0.1, Intel MKL version 11.2.1, and Cray
MPICH version 7.3.1. All benchmarks are run with 2 MPI processes per node and 12-way
multi-threaded MKL operation per process (hybrid configuration). We did not utilize Intel’s
Hyper-Threading Technology nor Turbo Boost Technology since these would have led to
high performance variance.

Trends in Communication Costs

Figure 5.5 shows the cost breakdown of all algorithms running on 3,072 processors (256 MPI
processes). A is an Erdős-Rényi matrix with n=65,536 and 41 nonzeroes per row on average
(0.0625% nonzeroes). The first two bars on the left belongs to SummaABC where all three
matrices are replicated 1 (i.e., not at all) and 4 times, respectively. The next group is the
ColA algorithm in which A is partitioned into block columns and replicated with the factors
(c) shown above the algorithm’s name. The last two groups are ColABC and InnerABC with
similar replication factors (c) shown in each label. All costs in the stacked bars are average
costs over all processors. We exclude the bar for ColABC at c = 16 from Figure 5.5 because
it is too tall.

The computation times in green are unequal even though all algorithms do the same
amount of work. This is because the local MKL matrix-multiplication routine has varying
efficiency for different shapes of input matrices. Figure 5.6 shows MKL performance for all
of the relevant shapes and explains the variability in computation time in our algorithms.
In general, MKL performs better on larger matrices, since they have higher computational
intensity, although there is a dropoff in one case, perhaps due to suboptimal blocking. Sum-
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Figure 5.6: Single-node MKL ma-
trix multiplication efficiency for dif-
ferent matrix shapes used in Fig-
ure 5.5. n refers to different matrix-
multiplication shapes for each algo-
rithm: n × n × n for SummaABC,
65K×n×256 for ColA, 65K×n×n for
ColABC, and n × 65K × n for Inner-
ABC. For these problems, n=4096c
for SummaABC and n=256c for the
rest.

maABC performs 4K× 4K× 4K local matrix multiplications when c = 1, and 8K× 8K× 8K
when c = 4. ColA does 64K× 256c× 256 local matrix multiplications for 1 ≤ c ≤ 256. Co-
lABC does 64K×256c×256c local matrix multiplications for 1 ≤ c ≤ 16. Finally, InnerABC
does 256c× 64K× 256c local matrix multiplications for 1 ≤ c ≤ 16.

Sometimes we found nontrivial variability across processors within an algorithm, even
though all are performing roughly the same number of local multiplications on the same
shape of matrices. We believe this is due to differences in the nonzero pattern of A that
lead to different cache effects. To separate idle time due to load imbalance from useful
computation or communication, there is an extra barrier after the computation phase for
these time breakdown graphs. The barrier time can be substantial and is shown in gray on
top of the computation time. The total height of the stacked bars is the average total runtime
of the run with barriers. We also show the maximum total runtime across all processors from
similar runs without barriers in black dotted line.

For any of the algorithms with c > 1 for A or B, the time to replicate those matrices
is shown in bright red and blue, respectively. Replication times increase linearly with c as
predicted, although barrier costs decrease with c since the set of processors involved in a
barrier is smaller.

In each step within the multiplication algorithm, the local matrices are broadcast or
shifted right after local matrix multiplication. The time to propagate A (shift or broadcast),
and propagate B (broadcast) are in brown and purple, respectively. ColA reduces latency
by a factor of c but does not reduce bandwidth, and its shift time stays the same but with
moderate variance, which could be because it sends many small messages. Both ColABC
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and InnerABC reduce latency by a factor of c2 and bandwidth by a factor of c, so we expect
between two to four times reduction in shift or broadcast time as we double c. This trend
might not be apparent in the graph since the duration is very short and there might be some
overheads introduced. The SummaABC algorithm reduces latency by a factor of c3/2 and
bandwidth by a factor of

√
c, and the graph shows a decrease in communication time by a

factor of between
√

4 = 2 to 43/2 = 8 as c is quadrupled. Since the factor seems closer to 2,
it means that bandwidth is more prominent than latency on Edison, for our problem.

ColABC and SummaABC require a reduction of matrix C while InnerABC gathers C
at the end. All of these are shown in yellow as collection cost. Even though gather asymp-
totically costs the same as reduce, in practice, it can cost much less, because each processor
only sends a message of size ranging from n2/p to cn2/p, depending on its position in the
gather tree, instead of all cn2/p in reduction. InnerABC has the best overall cost. Com-
paring the timing without barriers, it is 16.83 times faster (at c = 1) than the best running
time of SummaABC (also at c = 1), whose communication time is the worst because it also
propagates the dense matrix.

Scalability

Figure 5.7 shows strong scaling performance on 384 to 12,288 cores for 65,536 × 65,536
Erdős-Rényi matrices with 1% nonzeroes for A. All our non-cost-breakdown graphs were run
without barriers. For each algorithm at each number of cores, we report the best speedup
over all available replication factors (c), so the graphs are not expected to be smooth or
monotonic. Since the problem cannot fit into one node, we timed the multiplication on 2
nodes (48 cores) with the same hybrid MPI configuration and excluded communication time
for a baseline. We estimated the serial running time by multiplying this measured time by
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Figure 5.7: Strong scaling of an Erdős-
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Fig.
Number of processors

384 768 1,536 3,072 6,144 12,288

5.7 2, 1 ,1,1 1,1,1, 2 2,1,1, 8 1,2,1, 16 2,2,2, 32 4,1,4, 8

5.9a 2,1, 1 ,1 1,1, 1 ,2 2,1, 1 ,4 1,1,1, 8 2,2,2, 16 4,2,2, 32

5.9b 2,1,1, 2 1,1,1, 2 2,1,1, 4 1,1,1, 8 2,2,2, 16 4,2,2, 32

5.11a 2,1,1, 2 1,1,1, 8 2,1,1, 8 1,2,1, 16 2,2,2, 8 -
5.12a - 1,1, 1 ,64 2,1, 1 ,64 1,2, 1 ,64 2,2, 1 ,64 -

5.13a 2,1, 1 ,32 1,1, 1 ,32 2,1, 1 ,32 1,1, 1 ,32 2,1,1, 32 -

Table 5.2: The best replication factors (c) for each strong or weak scaling graph in this chapter.
Each cell lists the replication factors of the algorithms in the following order: SummaABC, ColABC,
InnerABC, and ColA. The winning algorithm in each cell is circled. A dash means we did not run
an experiment for that configuration.

48. The black dotted line indicates the ideal speedup.
The superlinear speedup of ColA and ColABC at the beginning was because of signif-

icantly faster computation time (again due to different MKL performance with different
matrix sizes, see the trends in Figure 5.8). They both fell to sublinear speedup at larger
scales where the edge in computation time was gone and the increasing communication time
dominated. ColABC was also faster than InnerABC because of the faster computation time.
SummaABC was outperformed by ColA by factors from 3.25× to 4.89×, but it still has
decent scalability.

We report the best replication factors in Table 5.2. This experiment maps to a line in
Figure 5.4a at nnz(A)/ nnz(B) = 1% from 32 to 1,024 MPI processes. The figure predicts
any of the 1.5D algorithms could win with c = 1 (or any c in case of ColA), which is true
because ColABC wins at 384 cores with c = 1, then ColA wins the rest with c > 1. We also
see larger replication factors as the number of cores increases, consistent with the trend in
Figure 5.4. Most algorithms have best c’s greater than 1 on 6,144 cores onwards.

Non-uniform Distribution

Next, we experiment with matrices with non-uniform nonzero distribution. A Graph500 ma-
trix A is generated with RMAT parameters a = 0.57, b = 0.19, c = 0.19, and d = 0.05 [86].
Using these parameters, RMAT is known to create a matrix with skewed distribution (ap-
proximating a power-law distribution if some noise is added [160]) of nonzero row and column
counts. We deviated from the average edge factor (nonzero row/column count) suggested
by the Graph500 benchmark to stay consistent with the density of Erdős-Rényi matrices we
used. We also modified our 1.5D algorithms to partition work based on equal number of
nonzeroes (using greedy algorithm) instead of number of rows or columns to mitigate the
expected load imbalance. We still partition matrices based on equal numbers of rows and
columns for SummaABC.
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Figure 5.9: Weak Scaling of square Erdős-Rényi and Graph500 matrices with fixed d = 164 nonze-
roes per row on p = 384, 768, 1536, 3072, 6144, and 12288 cores of Cray XC30 with corresponding
matrix sizes of n = 4096, 8192, 16384, 32768, 65536, and 131072 (4%, 2%, 1%, 0.5%, 0.25%, and
0.125% nonzeroes), respectively. Flops rates from only the computation time are shown in dotted
lines and explain the performance jump of the algorithms around 768 and 1,536 cores. The skewed
distribution for this particular Graph500 matrix does not introduce substantial load imbalance,
yielding similar performance to Erdős-Rényi’s. It also increases the computation efficiency in some
cases. Due to a problem with the default MKL routine we used, InnerABC in (b) was run with a
different routine and shouldn’t be compared to any other lines in our graphs.

Figure 5.9 compares weak scaling performance of Erdős-Rényi versus Graph500 matrices.
We fix the number of nonzeroes per row to d = 164 and vary the number of cores from 384 to
12,288 cores. We start with 4,096× 4,096 matrices (4% nonzeroes) on 384 cores and double
the matrix size as we double the number of cores, ending with 131,072 × 131,072 (0.125%
nonzeroes) matrices on 12,288 cores. Some points from Graph500 have better performance
than Erdős-Rényi because of faster computation time. This might be due to the different
structures of nonzeroes. Dotted lines show the weak scaling of the actual computation times
of each algorithm. Due to problems running the zero-based CSR, row-major version of the
MKL routine (mkl dcsrmm), the data for InnerABC in Figure 5.9b were collected with one-
based CSR, column-major version of the same routine which is slower, and therefore should
not be compared to other algorithms in this figure.

We still observe the same performance trend for all algorithms in the Graph500 results
without any significant load imbalance. ColA has the highest speedup over SummaABC at
12,288 cores, with 9.64× speedup for Erdős-Rényi matrix and 9.94× speedup for Graph500
matrix.

Real-world Matrices

Our final experiments test on three real-world matrices of different shapes from the University
of Florida Sparse Matrix Collection [56]. Each of these sparse matrices (A) is multiplied by
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(a) Mouse gene
(mouse gene.mtx)

(b) Simplicial complexes
(shar te-b2.mtx)

(c) Stochastic linear programming
(stormg2-125.mtx)

Figure 5.10: Nonzero structures of the real-world matrices.

a generated dense matrix B of the same size as AT .
Mouse gene network (mouse gene.mtx) from V. Belcastro is a square, symmetric

matrix of size 45,101× 45,101 with 28,967,291 nonzeroes (degree d = 642.28, 1.424% nonze-
roes). Figure 5.10a shows its nonzero structure, plotted with MATLAB’s spy function. The
structure looks dense because the nonzeroes are scattered all over the matrix and MATLAB’s
smallest dot size is still too big to show the sparseness. Figure 5.11a and Figure 5.11b show
its strong-scaling graph from 384 to 6,144 cores and its cost-breakdown graph on 768 cores.
See Figure 5.4a at nnz(A)/ nnz(B) = 1.42% for its bandwidth plot. The data for InnerABC
at 3,072 and 6,144 cores are collected with one-based CSR, column-major mkl dcsrmm due
to the same issue mentioned in Section 5.4. Again, this one-based version is slower than
our default zero-based version so these two data points are not comparable to the rest of
the points in the figure. We get similar results to past experiments, except this time we see
noticeably more load imbalance despite the greedy partitioning. ColA still performs best,
followed by InnerABC, ColABC, and SummaABC. The maximum speedup is 5.27× from
ColA over SummaABC on 384 cores.

Simplicial complexes (shar te2-b2.mtx) from V. Welker is a tall matrix with di-
mensionality 200,200 × 17,160 with 600,600 nonzeroes (degree d = 3, 0.0175% nonzeroes).
Figure 5.10b shows its nonzero structure. Figure 5.12a illustrates strong scaling performance
from 768 to 6,144 cores. We started from 768 cores because the data were too big to fit in
16 nodes (384 cores). Figure 5.12b shows cost breakdown on 1,536 cores. The corresponding
bandwidth plot is shown in Figure 5.4b. We observed mild load imbalance. The computation
time for ColA and ColABC is higher than others because their local matrix shapes are tall
and skinny. InnerABC has local matrices with better aspect ratio, so it performs best in this
scenario. The reduction time for ColABC and SummaABC is also high because the resulting
matrix C is fairly large. The message sizes are very skewed: nnz(C) � nnz(B) � nnz(A).
The highest speedup is 38.24× at 1,536 cores, between InnerABC and SummaABC.
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Figure 5.11: Strong scaling and cost-breakdown results from multiplying the Mouse gene
network matrix (mouse gene.mtx ) (45,101×45, 101, 1.42% nonzeroes) with a dense 45,101×
45,101 matrix. ColA performs the best again as this configuration is well in its bandwidth-
winning region (a vertical line at 1.42% in Figure 5.4a from 32 to 512 MPI processes). The
performance drop of InnerABC at p=3K and 6K cores is because these points were run with
a less efficient MKL routine due to an issue with the default MKL routine we use throughout
the chapter.
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Figure 5.12: Strong scaling and cost-breakdown results from multiplying the Simplicial
complexes matrix (shar te2-b2.mtx ) (200,200 × 17,160, 0.0175% nonzeroes) with a dense
17,160 × 200,200 matrix. InnerABC wins over ColA because ColA does tall-skinny local
matrix multiplications which are significantly slower than InnerABC’s wider local matrices.
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Figure 5.13: Strong scaling and cost-breakdown results from multiplying the Stochastic linear
programming problem matrix (stormg2-215.mtx ) (66,185×172,431, 0.0038% nonzeroes) with
a dense 172,431× 66,185 matrix.

Stochastic linear programming problem (stormg2-125.mtx) from C. Meszaros
is a short-wide matrix of size 66,185 × 172,431 with 433,256 nonzeroes (degree d = 6.55,
0.0038%). Figure 5.10c shows its nonzero structure. Figure 5.13a and Figure 5.13b show
its strong scaling graph from 384 to 6,144 cores and its cost breakdown graph on 768 cores.
According to the bandwidth plot in Figure 5.4c, any of the 1.5D algorithms could win.
Again, InnerABC wins with c = 1 because of faster computation time. We also observed
load imbalance. The largest speedup is 99.55×, between InnerABC and SummaABC at
1,536 cores.

5.5 Consecutive Multiplications

The last section shows that, for a single multiplication, replicating dense matrices B and C
usually does not pay off. The situation is different in iterative algorithms with consecutive
multiplications where the input matrices A and B in the next iteration come from already
replicated matrices. For example, if the next iteration’s A comes from some post-processing
of the matrix C = AB from the previous iteration and B stays the same, the new A is
already replicated during the collection phase of C. (Or vice versa if B is the changing
matrix instead of A.) We only have to pay the costs of replicating A and B once at the
beginning, and the costs can be amortized over all iterations. If the savings in propagation
costs accumulated throughout all iterations is larger than the one-time replication costs of
A and B and the recurring overhead of collecting C, then it is worth replicating the dense
matrices. This section illustrates various iterative methods that can potentially benefit from
using SpDM3.
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Block eigenvalue problems multiply a sparse n × n matrix A with a dense n × k matrix
B every iteration. Usually k < 100 and sparse-matrix multiple-dense-vector multiplication
is used. With the emergence of big data, the problem size becomes larger, and some ap-
plications [68, 176] may want up to k > 1000 eigenvalues, making this an SpDM3 problem.
Nonnegative matrix factorization finds a rank-k factorization WH of matrix A. Either W
or H (or both) can be enforced to be sparse [105, 104], therefore, in each iteration there is a
sparse-dense or dense-sparse n× k×n multiplication. In primal-dual interior-point methods
for semidefinite programming, the sparsity of the data matrix A can be exploited when com-
puting the search direction [76]. A matrix multiplication TAU , where T and U are dense,
square matrices and A is a sparse, square data matrix, is calculated every iteration.

Many algorithms in statistics and machine learning are iterative: A semi-supervised clas-
sification with graph convolutional networks [106] computes AX every iteration. A is a
sparse n× n matrix and X is a dense n× c matrix where c is the number of features and is
often larger than 1,000. Attribute inference [97, 84] multiplies a sparse, square social media
graph M with a dense, square posterior probability matrix P every iteration. In sparse
inverse covariance matrix estimation, the covariance matrix S is square and dense, while the
estimate Ω is square and enforced to be sparse. For example, CLIME-ADMM [174] computes
SΩ every iteration, CONCORD-ISTA [142] computes ΩS every iteration, etc.

We will use the consecutive sparse-dense square matrix multiplications from CONCORD-
ISTA [142] as our case study. The analysis framework developed in this chapter can be
applied to specific scenarios, such as those in Chapter 7. Let X denote a matrix of dimension
n× ρ, where n-rows are independent observations of a ρ-dimensional random vector. Such a
matrix can represent data from various scientific disciplines including neuroscience, biology,
and even social sciences. For example, X may be fMRI scan data collected for n time periods
over ρ voxels [52], expressions of ρ genes from n individuals [26], or voting patterns [26]. In
many high dimensional datasets, dimensions of matrix X is such that n� ρ, which we will
assume is the case here.

The sample covariance matrix S = XTX is dense and ρ × ρ. To find Ω, the sparse
ρ× ρ estimate, an SpDM3(W = ΩS) is computed every iteration. The replication costs (red
and blue bars in Figure 5.5) is only paid once. The propagation costs (brown and purple)
and computation costs (green and gray) recur every iteration. CONCORD-ISTA uses an
element-wise soft-thresholding operator which depends on the total magnitude of gij where
G = W+W T , so a per-iteration reduction is needed for ColABC and SummaABC. ColA and
InnerABC store an entire element gij on a single layer so they do not need to pay collection
costs in each iteration. Suppose there are s iterations. Excluding the transpose, the total
bandwidth costs are

WColA = 2
nnz(A)

p
c log c+ nnz(A)s,

WColABC = 2
nnz(A) + nnz(B)

p
c log c+

(
nnz(A)

c
+

nnz(C)

p
c log c

)
s,
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WInnerABC = 2
nnz(A) + nnz(B)

p
c log c+

(
nnz(A)

c

)
s+

nnz(C)

p
c log c,

WSUMMA = 2
nnz(A) + nnz(B)

p
c log c+(

nnz(A) + nnz(B)
√
pc

log

√
p

c
+

nnz(C)

p
c log c

)
s.

If s is large enough then both the replication and collection terms of InnerABC with dense
matrices can be amortized, making InnerABC more desirable since it does not move any dense
matrix in propagation, does not need to collect every iteration, and it has potentially better
propagation cost than ColA. Figure 5.14 illustrates the area each algorithm would have the
lowest bandwidth cost for 10 and 20 iterations of multiplication. The area where InnerABC
is best intuitively increases with the number of iterations. We discuss the implementation
of CONCORD-ISTA in detail in Chapter 7.
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Figure 5.14: Predicting the best algorithms based on optimizing for the lowest overall bandwidth
cost after 10 and 20 iterations where each point represents a given machine size and ratio of input
matrix sizes. The X-axis is the ratio of nnz(A) versus nnz(B). The Y-axis is the number of
processors.

5.6 Conclusions

We presented four variations on parallel sparse-dense matrix-matrix multiplication (SpDM3),
all based on a traditional O(n3) algorithm, but using different approaches to replicating
data and partitioning work to minimize communication costs. One of these is the 2.5D
SUMMA algorithm, and the other three represent new parallelization strategies specific to a
setting involving sparse matrices. We derived communication lower bounds for the problem,
then presented an analysis of new and existing algorithms, and compared their costs both
theoretically and experimentally on over 10 thousand cores. The problem was motivated by
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iterative algorithms in machine learning, and both our experiments and cost analysis break
the running time into parts to show how the algorithms would compare in such a setting —
some parts are one-time costs and others occur at each iteration.

Our analysis shows that no single algorithm is optimal for all settings, but that the choice
depends on sparsity, matrix size, available memory, and machine size. We show that when
the theoretical analysis shows a difference in cost, it is a good predictor of which algorithm
to use. The theory is quite general and uses the number of matrix entries (nonzeroes) of each
matrix, independent of whether the matrix is dense or sparse. Thus, while our experiment
focuses on the dense-sparse case, the algorithms are relevant to other settings in which one
of the two matrices is much larger or denser than another. We give guidelines on how to
choose between algorithms in terms of graphs indicating what part of the input parameter
space each algorithm would have the lowest bandwidth cost. The four algorithms each have
benefits for some cases:

• SummaABC (previously known) is best with relatively dense matrices or very large
processor counts. Because it moves all matrices during multiplication, it is suboptimal
when one is significantly smaller or sparser.

• ColA is better with sparser A matrices or smaller scale parallelism. (An analogous
algorithm that replicates B would work for the dense-sparse case.)

• ColABC and InnerABC generally work well in the same range as ColA, but also
in the intermediate range between ColA and SummaABC in both matrix density and
processor count. They have equivalent theoretical communication costs, but InnerABC
is faster in practice, sometimes substantially so.

Since sparse matrices rarely have more than a few percent of nonzeroes, the majority
of SpDM3 will be in ColA’s area, which means the best algorithm could be ColA for a
particular c ≥ 1, ColABC with c = 1, or InnerABC with c = 1. Our experimental results
matched this trend. We observed up to 100× speedup of the best of our algorithms over
SummaABC. Replicating ColABC or InnerABC will likely be more beneficial in consecutive
multiplications rather than in single multiplication.

Our models correctly predict the trends of all communication costs and generally predict
the faster algorithms and parameter settings, but they do not consider computation cost and
are therefore not predictive of total runtime. In practice, MKL library performance varies
when matrix shapes are different and in some cases due to different sparsity patterns, with
the usual observation that larger matrices and low aspect ratio matrices run at a higher
machine efficiency. This is not accounted for in our theory, but the low communication
algorithms also tend to have larger local matrices, so it adds to the benefit. This omission in
the model does lead to substantial mispredictions of computation time that sometimes are a
deciding factor in which algorithm wins, for example, it often is a tie-breaker between ColA,
ColABC at c = 1, and InnerABC at c = 1. ColA and ColABC both have faster computation
time when they replicate, but ColABC also replicates the dense matrix and has to pay a
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much higher cost to get to the same computation efficiency as ColA. This, combined with the
cost of its reduction meant we found it to be inferior to both ColA and InnerABC. Because
of this, InnerA (blocked inner product replicating only A) might be worth investigating as
well. A future analysis should take this unequal local computation efficiency into account.
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Chapter 6

Generalizing 1.5D Matrix
Multiplication

Chapter 5 presented a set of parallelization strategies for matrix multiplication based on the
relative size of the matrix and the machine size. But in many real application scenarios,
there are variations on simple matrix multiplication, such as handling symmetric matrices
or transposed inputs or outputs. In addition, we will want to generalize the 1.5D algorithms
from Chapter 5 to allow for a set of distinct replication factors for each matrix to optimize
performance. In this chapter, we will develop variations on the algorithms to address these
concerns, focusing on the problems that will be necessary for the CONCORD-ISTA case
study in Chapter 7.

6.1 Mixing Replication Factors in 1.5D Matrix

Multiplication

The 1.5D algorithms in Chapter 5 calculate C = AB where A is sparse, B and C are
dense, and nnz(A)� nnz(B), nnz(C). They rotate only the cheaper matrix A and replicate
either all matrices equally or just A. We showed that replicating all matrices can be more
beneficial for our consecutive multiplications case study. However, limiting all matrices to
the same replication factor might prevent us from fully utilizing the memory. If c is the
largest replication factor that all three matrices can fit in memory, it is likely that we can
store A cA > c times and decrease more communication since B and C are much larger than
A. Larger A’s can save computation time as well since larger/rounder matrix multiplications
are more efficient in practice. (See Figure 5.5, 5.6, and 5.8 for examples.) This, along with
different system latency and bandwidth characteristics and various nnz(A) : nnz(B) : nnz(C)
ratio, motivates us to support different replication factors for A, B, and C.

For completeness, we consider all possible 1D variants and give corresponding 1.5D al-
gorithms. Each variant is a unique combination of the matrix layouts and the matrix being
rotated. Table 6.1 lists all possible combinations of layouts (block row or block column) for
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Layout Rotatable
matrix

Algorithm
nameA B C

Row Row Row B Row
Row Row Col - -
Row Col Row B Inner-B
Row Col Col A Inner-A
Col Row Row -

Outer
Col Row Col -
Col Col Row - -
Col Col Col A Col

Table 6.1: List of all possible 1D algorithms. Row stands for block row layout. Col stands for block column
layout. Dash (-) means the multiplication cannot be completed by rotating any of the matrices. Outer
algorithm stores A in block column layout and B in block row layout but does not follow the layout for C
in the table. It stores the entire matrix C.

all three matrices. For each combination, we list the matrices (A, B, and C) that can be
rotated to make the full multiplication possible. As the matrix being rotated dictates the
layout of one matrix, each layout combination has only one rotatable matrix, none of them
being C. A dash (-) means the combination is not realizable by rotating any matrix.

There are 5 feasible combinations: Row, Inner-B, Inner-A, Outer, and Col. The word
Inner refers to A having block row layout and B having block column layout, forming inner
products. The letter A and B after Inner refers to the matrix being rotated, which controls
the layout of C: Inner-A has C in block column layout and Inner-B has C in block row
layout. Outer has A and B in block column and block row layout, forming outer products.
In the Outer algorithm, every processor holds an entire copy of C, so the layout is neither
block row or block column. Our multiple-replication-factor scheme works with Row, Inner-B,
Inner-A, and Col, but does not work with Outer. We will discuss the first four variants in
details, describe Outer briefly, and analyze communication costs at the end.

The high-level approach remains: (1) we divide processors into teams, (2) each team
owns particular parts of A, B, and C, and (3) all team members work together to compute
the part of C that they own. Many algorithm properties depend on what matrix is being
shifted, so from now on we will call the rotating operand (either A or B) R and the fixed
operand (B or A) F . Let cR and cF be the replication factors of R and F . We introduce
two separate processor meshes, PR and PF . PR is of size p/cR × cR and partitions R into
p/cR equal parts, with R(iR) on PR(iR, :). Similarly, PF is of size p/cF × cF and partitions
F into p/cF equal parts, with F (iF ) on PF (iF , :). A processor P (i) is both PR(iR, `R) and
PF (iF , `F ). The mapping for any processor mesh PX is iX = bi/cXc and `X = i mod cX .
The replication factor and layout of C is the same as those of F ’s. See Figure 6.1 and 6.2
for illustrations.

Processors PF (iF , :) cooperate on multiplying all p/cR blocks of the rotating matrix R
with F (iF ) that they own. Instead of giving each team member consecutive blocks of R
(see Figure 5.3b and 5.3c for examples), we make team members calculate interleaved blocks
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Figure 6.1: Inner-A. Processors PB(iB, :) compute C(iB) together. The numbers on the matrix
parts are the ranks of the processors that they reside on. Here, p = 16 and (cA, cB) is (2, 4) in (a)
and (4, 2) in (b). The first line shows the original layouts of A and B. The second line (Round 0)
shifts A by δ to compute the first cB blocks of C(iB). The third line (Round 1) shifts A by cB and
computes the rest of C.
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Figure 6.2: Inner-B. Processors PA(iA, :) compute C(iA) together. The numbers on the matrix
parts are the ranks of the processors that they reside on. Here, p = 16 and (cA, cB) is (4, 2) in (a)
and (2, 4) in (b). The Original panel shows the original layouts of A and B. Round 0 shifts B by
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Algorithm 14 1.5D Multiple-Replication-Factor Matrix Multiplication

Input: PR and PF , 2D processor meshes of sizes p/cR × cR and p/cF × cF .
Input: R, partitioned into p/cR equal parts and distributed so R(iR) is in buffer R̃ on PR(iF , :).
Input: F , partitioned into p/cF equal parts and distributed so F (iF ) is in buffer F̃ on PF (iF , :).
Output: C = AB, partitioned into p/cF equal parts and distributed so C(iF ) is in buffer C̃ on

PF (iF , :).
1: for each PR(iR, `R) = PF (iF , `F ), in parallel, do
2: δ ← min(`F , `R) ·max(cF /cR, 1)
3: Shift R̃ by δ.
4: for p

cF cR
rounds do

5: Multiply R̃ and F̃ and store/accumulate the result in C̃.
6: Shift R̃ by cF .
7: end for
8: Sumreduce/allgather C between PF (j, :).
9: end for

instead. This simplifies transposing the resulting matrix C, which we will explain in Sec-
tion 6.2. In the first round, team members are assigned work in a way that covers the first
cF blocks of R. In the next round, everyone moves to work on the next block that is cF
blocks away and covers the next cF blocks of R. The process continues until all p/cR blocks
is covered and takes p/(cRcF ) rounds in total.

The final C is collected from all team members by either a sumreduce (if using 1.5D Row
or 1.5D Col) or a gather (if using 1.5D Inner-A or 1.5D Inner-B). We show the pseudocode
in Algorithm 14. For completeness, we also give exact computation details of each variant
below. Table 6.2 compares the communication costs of all variants.

1.5D Row. All matrices are in block row layout. Matrix B is shifted to form C in a block
row layout. PA(iA, :) has A{(p/cA)×1}(iA) and C{(p/cA)×1}(iA). PB(iB, :) has B{(p/cB)×1}(iB).
PA(iA, `A) = PB(iB, `B) computes,

C

{
p
cA
×1

}
(iA) =

p
cAcB

−1∑
k=0

A

{
p
cA
× p
cB

}
(iA, iB + δ + kcA) ·B

{
p
cB
×1

}
(iB + δ + kcA),

where δ = min(`A, `B) max (cA/cB, 1), k is the round number, and p/(cAcB) is the total
number of rounds.

1.5D Col. All matrices are in block column layout. Matrix A is shifted to form C in a block
column layout. PA(iA, :) hasA{(p/cA)×1}(iA). PB(iB, :) hasB{(p/cB)×1}(iB) and C{(p/cB)×1}(iB).
PA(iA, `A) = PB(iB, `B) computes,

C

{
1× p

cB

}
(iB) =

p
cAcB

−1∑
k=0

A

{
1× p

cA

}
(iA + δ + kcB) ·B

{
p
cA
× p
cB

}
(iA + δ + kcB, iB),
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Algorithms
#messages = S #words = W

Replication Propagation Collection Replication Propagation Collection

1.5D General
2 log cA

+
2 log cB

p

cAcB

log cF
2

nnz(A)

p
cA log cA

+

2
nnz(B)

p
cB log cB

nnz(R)

cF

nnz(C)

p
cF log cF

1.5D Col
log cB

nnz(A)

cB

nnz(C)

p
cB log cB1.5D Inner-A

1.5D Inner-B
log cA

nnz(B)

cA

nnz(C)

p
cA log cA1.5D Row

1D Outer - - log p - - nnz(C) log p

Table 6.2: Algorithm communication costs. 1.5D General shows the costs that are common to all of the
matrix layouts shown in the 4 lines below, regardless of the matrix layouts. Some costs depend on which
matrix is being fixed (F ) and which matrix is being rotated (R). A or B after Inner refers to the rotating
matrix. 1.5D Col and Inner-A both rotate A, so they share the rotating-specific costs. 1.5D Inner-B and
1.5D Row both rotate B and share the rotating-specific costs. 1D Outer is a separate algorithm and does
not share the costs with any other algorithms. The algorithms have three phases: replication, propagation,
and collection. See the Comparison subsection in Section 5.3 for their definitions.

where δ = min(`B, `A) max (cB/cA, 1), k is the round number, and p/(cAcB) is the total
number of rounds.

1.5D Inner-A. A is in block row layout. B is in block column layout. A is shifted to form
C in a block column layout. PA(iA, :) has A{(p/cA)×1}(iA). PB(iB, :) has B{1×(p/cB)}(iB) and
C{1×(p/cB)}(iB). In round k, PA(iA, `A) = PB(iB, `B) computes,

C

{
p
cA
× p
cB

}
(iA + δ + kcB, iB) = A

{
p
cA
×1

}
(iA + δ + kcB) ·B

{
1× p

cB

}
(iA + δ + kcB),

where δ = min(`B, `A) max
(
cB
cA
, 1
)

, for 0 ≤ k < p/(cAcB).

1.5D Inner-B. A is in block row layout. B is in block column layout. B is shifted to
form C in a block row layout. PA(iA, :) has A{(p/cA)×1}(iA) and C{(p/cA)×1}(iA). PB(iB, :) has
B{1×(p/cB)}(iB). In round k, PA(iA, `A) = PB(iB, `B) computes,

C

{
p
cA
× p
cB

}
(iA, iB + δ + kcA) = A

{
p
cA
×1

}
(iB + δ + kcA) ·B

{
1× p

cB

}
(iB + δ + kcA),

where δ = min(`A, `B) max
(
cA
cB
, 1
)

, for 0 ≤ k < p/(cAcB).

1D Outer. A is in block column layout, and B is in block row layout. Each processor
calculates one outer product and must store the entire C, so C cannot be too large here.
There is no need to replicate A or B. The processor mesh P is 1-dimensional. P (i) has
A{1×p}(i), B{p×1}(i), and C. There is only one round, P (i) calculates

C = A{1×p}(i)B{p×1}(i).
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P (0) then sumreduces the matrix C from all processors to get the final result

C =

p−1∑
k=0

A{1×p}(k)B{p×1}(k).

Cost analysis

General analysis in Section 5.3 still applies. There are a few new observations with the
introduction of two replication factors.

Replication factor. The new limit for effective replication factors is cAcB ≤ p, where the
algorithm has only one round to complete. When cA = p and cB = 1, this corresponds to
fully replicating A and not replicating B at all. cB = 1 with arbitrary cA gives us ColA in
Chapter 5. cA = cB =

√
P gives us ColABC and InnerABC, also from Chapter 5. Using

cA = 1 and cB = p fully replicates B and does not replicate A. The new multiple-replication-
factor algorithms allow us a much larger search space.

Latency. Latency costs do not depend on the matrix inputs at all. They only depend on
p, cA, and cB. The choice of the rotating matrix affects latency, but just slightly: only the
collection cost changes, and the change is rather small since cF is in the log term.

Bandwidth. Bandwidth costs depend greatly on the sizes and the replication factors of
the matrices. The propagation cost depends on the size of the rotating matrix (nnz(R)) and
the replication factor of the fixed matrix (cF ). If, for layout reasons, we cannot rotate A (to
get nnz(A)/cB propagation cost), we can still avoid moving too much of B by replicating A
as much as possible and get the propagation cost nnz(B)/cA. The collection cost depends
on cF since C has the same layout as F .

6.2 Matrix Transpose

This section shows how to transpose a resulting matrix from Inner-A to compute AB+(AB)T .
This trivially applies to Inner-B as well. There are two reasons we switched from each team
member processing contiguous blocks of R (shift by 1), as shown in ColABC and Inner-ABC
in Chapter 5, to them processing every cF

thblock of R (shift by cF ):

• Extending it to support different replication factors is nontrivial when cR < cF . See
Figure 6.1a and 6.2a for examples. Processors 0 and 2 own consecutive blocks of R.
Since they are on the same layer, they will always hold consecutive blocks of R because
shifting moves all blocks on the same layer by the same distance.
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• The layout of the resulting matrix C involves all processors in a transpose. Figure 6.3
shows the layout of C from an InnerABC multiplication with p = 27 processors and
c = 3 layers. Each processor has p/c2 = 3 subblocks of C and needs to get their
corresponding transposes. Even though everyone only needs to talk to at most p/c2

processors, the overall communication graph spread over all processors.

Shifting by cF gives us repeated patterns in C’s layout and allows us to limit communi-
cation within closed, smaller groups, as shown in Figure 6.4: processors in the sets {8, 12,
40, 44} and {10, 14, 26, 30, 42, 46, 58, 62} only need to communicate within their sets to
get their transposes. We call these sets of processors transpose groups. We will show that
this is a property of the algorithm.

Let L be a layout matrix of C. L has p/cA rows and p/cB columns. Each lij is the rank of
the processor that has C{p/cA×p/cB}(i, j). We partition L into d×d parts where d = p/(cAcB)
is the number of rounds. First, we show in Lemma 6.2 that each block column of L{d×d} is
just the top block of that column stacked together d times. Lemma 6.1 states that all the
ranks that appear in L repeat every cb rows.

Lemma 6.1. lmn = lm+kcB ,n for any 0 ≤ k < d, 0 ≤ m < p/cA, and 0 ≤ n < p/cB.

Proof. By construction of Inner-A, each processor P (i) = PA(iA, `A) = PB(iB, `B) calculates
C{p/cA×p/cB}(iA+δ+kcB, iB) where 0 ≤ k < d is the round number. This sets liA+δ+kcB ,iB = i.
Since each 0 ≤ `B < cB has (iA+δ) mod cB mapped uniquely to the range [0, cB), iA+δ+kcB
has a one-to-one mapping to [0, p/cA). This means lm,iB = lm+kcB ,iB for any 0 ≤ m < p/cA.
Because 0 ≤ iB < p/cB, the proof is complete.

Lemma 6.2. L{d×d}(i, j) = L{d×d}(0, j) for all 0 ≤ i, j < d.

Proof.

L{d×d}(0, j) =


l0,n l0,n+1 . . . l0,n+cA−1

l1,n l1,n+1 . . . l1,n+cA−1
...

...
. . .

...
lcB−1,n lcB−1,n+1 . . . lcB−1,n+cA−1

 ,
for any 0 ≤ j < d where n = jcA. Applying Lemma 6.1 to all elements of L{d×d}(0, j), we
have,

L{d×d}(0, j) =


l0+icA,n l0+icA,n+1 . . . l0+icA,n+cA−1

l1+icA,n l1+icA,n+1 . . . l1+icA,n+cA−1
...

...
. . .

...
lcB−1+icA,n lcB−1+icA,n+1 . . . lcB−1+icA,n+cA−1

 = L{d×d}(i, j),

for any 0 ≤ i < d.
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0 5 8 11 13 16 19 21 24

0 3 8 11 14 16 19 22 24

0 3 6 11 14 17 19 22 25

1 3 6 9 14 17 20 22 25

1 4 6 9 12 17 20 23 25

1 4 7 9 12 15 20 23 26

2 4 7 10 12 15 18 23 26

2 5 7 10 13 15 18 21 26

2 5 8 10 13 16 18 21 24

0 5 8 11 13 16 19 21 24

0 3 8 11 14 16 19 22 24

0 3 6 11 14 17 19 22 25

1 3 6 9 14 17 20 22 25

1 4 6 9 12 17 20 23 25

1 4 7 9 12 15 20 23 26

2 4 7 10 12 15 18 23 26

2 5 7 10 13 15 18 21 26

2 5 8 10 13 16 18 21 24

0 5 8 11 13 16 19 21 24

0 3 8 11 14 16 19 22 24

0 3 6 11 14 17 19 22 25

1 3 6 9 14 17 20 22 25

1 4 6 9 12 17 20 23 25

1 4 7 9 12 15 20 23 26

2 4 7 10 12 15 18 23 26

2 5 7 10 13 15 18 21 26

2 5 8 10 13 16 18 21 24

Figure 6.3: The transpose of matrix C = AB has a communication graph that spans all processors
if C is computed by Inner-ABC from chapter 5 (shift by 1). All three images show the layout of
the resulting matrix C after the multiplication (p = 27 processors and c = 3 copies). The number
in each submatrix of C is the rank of the processor that it resides on. Starting from the left image,
processor 0 (blue cells) needs the green cells from processors 5 and 8. The rest of 5 and 8’s cells
in yellow needs the orange parts from 3, 22, 24, and 25. Middle and right images show subsequent
communication in the same color order: blue, green, yellow, and orange, until all processors are
involved at the end.

0 4 11 15 18 22 25 29 32 36 43 47 50 54 57 61

1 5 8 12 19 23 26 30 33 37 40 44 51 55 58 62

2 6 9 13 16 20 27 31 34 38 41 45 48 52 59 63

3 7 10 14 17 21 24 28 35 39 42 46 49 53 56 60

0 4 11 15 18 22 25 29 32 36 43 47 50 54 57 61

1 5 8 12 19 23 26 30 33 37 40 44 51 55 58 62

2 6 9 13 16 20 27 31 34 38 41 45 48 52 59 63

3 7 10 14 17 21 24 28 35 39 42 46 49 53 56 60

(a) On diagonal.

0 4 11 15 18 22 25 29 32 36 43 47 50 54 57 61

1 5 8 12 19 23 26 30 33 37 40 44 51 55 58 62

2 6 9 13 16 20 27 31 34 38 41 45 48 52 59 63

3 7 10 14 17 21 24 28 35 39 42 46 49 53 56 60

0 4 11 15 18 22 25 29 32 36 43 47 50 54 57 61

1 5 8 12 19 23 26 30 33 37 40 44 51 55 58 62

2 6 9 13 16 20 27 31 34 38 41 45 48 52 59 63

3 7 10 14 17 21 24 28 35 39 42 46 49 53 56 60

(b) Off diagonal.

Figure 6.4: The transpose of matrix C = AB resulting from Inner-A (shift by cB) can be done
within disjointed subsets of processors. Both images show the layout L of C after Inner-A with
p = 64, cA = 8, and cB = 4. The layout matrices L{2×2}(0, 0)and L{2×2}(0, 1) are of size 4 × 8
and have thick border around. As Inner-A shifts A by cB, these patterns repeat every cB = 4
block rows and we can write the overall layout of C as [L{2×2}(0, 0) L{2×2}(0, 1); L{2×2}(0, 0)
L{2×2}(0, 1)] where ; indicates the beginning of a new block row. T is a sparse, transpose pattern
matrix of size as 4 × 4 with nonzeroes only in areas shaded in blue. T serves as a mask and is
put on top of each L{2×2}(i, j). Processors in the shaded area only need to communicate with
each other and no other processors outside the mask to complete their transposes. Figures (a) and
(b) show two different T ’s: (a) If T is shaded on the diagonal, the size of communication group is
p/(cAcB)·max(cA/cB, cB/cA). (b) The size is twice as large when the shaded boxes are off-diagonal.
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To see the parts of the matrix each processor would need for its transpose operation,
we define a transpose mask T . T is a sparse, symmetric matrix of size cmin × cmin where
cmin = min(cA, cB). We overlay T over a square submatrix that each L{d×d}(i, j) span to
indicate selection of matrix blocks of C. For example, the top left quadrant of Figure 6.4b
has Tof size 4× 4 with only t21 and t12 set (highlighted in blue), overlaying over L{d×d}(0, 0)
and selecting l22, l23, l14, and l15 (containing ranks 9, 13, 19, and 23). Let T be a big mask
composed of d × d blocks of T , spanning over the entire L. Lemma 6.3 shows that T is
symmetric.

Lemma 6.3. A matrix M constructed from n× n blocks of a square symmetric matrix S,

M =


S S · · · S
S S · · · S
...

...
. . .

...
S S · · · S

 ,
is symmetric.

Proof. We prove by induction on n. The base case n = 1 is true since M = S which is
symmetric. Assuming the lemma is true when n = k, we show that it is also true for n = k+1:
M{(k+1)×(k+1)}(0 : k, 0 : k) is symmetric, M{(k+1)×(k+1)}(k, j) = M{(k+1)×(k+1)}(j, k)T = S for
all 0 ≤ j < k+1, and M{(k+1)×(k+1)}(k, k) = S is symmetric. Therefore, M is symmetric.

If we can show that, for any processor rank that is selected by T , all of its occurrences in
L are also selected, then T is a transpose group. For example, the blue cells in Figure 6.4b
is a transpose group because all occurrences of all 8 processor ranks within it are covered.

Theorem 6.4. Inner-A (shift by cB) has

• cmin transpose groups with p
cAcB

max
(
cA
cB
, cB
cA

)
members, and

•
(
cmin

2

)
transpose groups with 2 p

cAcB
max

(
cA
cB
, cB
cA

)
members,

Proof. Since we apply the same mask T to all blocks of L{d×d}, Lemma 6.1 and 6.2 guar-
antee that T covers all occurrences of all ranks selected and that it is a transpose group.
Furthermore, the number of processors in the group is just the number of lijs’ that T spans
over on L{d×d}(0, :), since the rest block rows repeat the same pattern.

To count the number of transpose groups the algorithm has, we simply consider how each
element lij in L{d×d}(0, 0) can be selected (because the same pattern T is applied to all other
blocks). Each lmn can either be selected with tii or tij where i 6= j.

• tii : lmn lies on the diagonal of T . T has just one element set: tii. T is of size
cmin × cmin, so there can be cmin different transpose groups like this. Each tii spans
over max(cA/cB, cB/cA) ranks. There are d = p/(cAcB) different blocks, therefore, the

number of processors in the group is p
cAcB

max
(
cA
cB
, cB
cA

)
.
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• tij : lmn lies off the diagonal of T . Two elements, tij and tji, have to be set to maintain
the symmetry. There are

(
cmin

2

)
ways to choose different pairs of indices i and j,

and this is the number of transpose groups of this type. tij and tji each spans over
max(cA/cB, cB/cA) different ranks. There are d = p/(cAcB) different blocks, therefore,

the number of processors in the group is 2 p
cAcB

max
(
cA
cB
, cB
cA

)
.

Communication Costs

There are at most

2
p

cAcB
max

(
cA
cB
,
cB
cA

)
= 2 max

(
p

c2
A

,
p

c2
B

)
processors in a transpose group. Each processor only holds nnz(C)/(p/cB) words of C,
split into p/(cA) blocks. Each block therefore consists of nnz(C)cAcB/p

2 words. To do the
transpose, each processor exchanges a block with all other processors in an all-to-all manner.
According to Table 2.2, the costs are,

Stranspose = O

(
log

(
2 max

(
p

c2
A

,
p

c2
B

)))
= O

(
log max

(
p

c2
A

,
p

c2
B

))
,

Wtranspose = O

(
nnz(C)cAcB

p2
max

(
p

c2
A

,
p

c2
B

)
log

(
max

(
p

c2
A

,
p

c2
B

)))
. (6.1)

Let cmin = min(cA, cB) and cmax = max(cA, cB), then the costs in Equation (6.1) are
simplified to,

Stranspose = O

(
log

(
p

c2
min

))
,

Wtranspose = O

(
nnz(C)

p2
· cmax

cmin

· log

(
p

c2
min

))
. (6.2)

The best replication factors for both bandwidth and latency costs are cA = cB =
√
p,

regardless of the matrix inputs.

6.3 Symmetric Matrix Multiplication

This section focuses on the multiplication of S = XTX whereX is short and wide (n×ρ where
n� ρ). Since X and XT have the same number of nonzeroes, there is no benefit in moving
just one matrix, but the 1.5D algorithms could still be advantageous over 3D algorithms
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(a) p = 8, c = 1.

0

4

8

12

16

20

24

28

16 23 26 29

1 20 27 30

2 5 24 31

3 6 9 28

0
7 10 13

4
11 14 17

8
15 18 21

12
19 22 25

0

1

0

1
0

00
1

(b) p = 32, c = 4.

Figure 6.5: The layout of S after running the modified Inner-A for symmetry. The numbers
inside each blocks of S are the processor ranks the blocks reside on. The numbers in circles
are the round numbers. The blue parts show the 0th round where each team leader only
computes half a block. The green parts show the additional round that only team leaders
need to do, computing half a block each again.

because of the matrix shapes: partitioning XT in block row and X in block column layout
gives us rounder local matrix multiplications which can be done more efficiently. We discuss
the algorithm for the same replication factor for both X and XT because nnz(X) = nnz(XT )
and different replication factors would only yield inferior performance in both latency and
bandwidth.

The changes we need to support symmetry are straightforward. First, we halve the
number of rounds from p/c2 to (1/2 ·p/c2). Second, we make the team leaders compute local
symmetric multiplication (only half a block) in the first round. Lastly, we made the team
leaders do one additional round, but also computing half a block each. Figure 6.5 illustrates
the changes.

The full algorithm is shown in Algorithm 15. The processor mesh P is of size p/c × c.
P (i, :) has A{p/c×1}(i), B{1×p/c}, and C{1×p/c}. In round k, a processor P (i, �) (except P (i, 0)
in round 0) computes,

C{p/c×p/c}(i+ �+ kc, i) = A{p/c×1}(i+ �+ kc) · B{1×p/c}(i).

In round 0, processor P (i, 0) computes,

C{2p/c×p/c}(2i+ 1, i) = A{2p/c×1}(2i+ 1) · B{1×p/c}(i).

After 1/2 · p/c2 rounds, only P (i, 0) compute one extra round. If 0 ≤ i < p/(2c), P (i, 0)
computes,

C{2p/c×p/c}(2i+ p/c2, i) = A{2p/c×1}(2i+ p/c2) · B{1×p/c}(i).

Otherwise, P (i, 0) computes,

C{p/c×2p/c}(i+ p/(2c2), 2i+ 1) = A{p/c×1}(i+ p/(2c2)) · B{1×2p/c}(2i+ 1).
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Algorithm 15 Symmetric 1.5D Inner-A

Input: P , a 2-dimensional processor mesh of size p/c× c.
Input: A, distributed so A{p/c×1}(i) is in buffer Ã on P (i, :).
Input: B, distributed so B{1×p/c}(i) is in buffer B̃ on P (i, :).
Output: C = AB, distributed so C{1×p/c}(i) is in buffer C̃ on P (i, :).

1: for each P (i, `), in parallel, do
2: Shift Ã by `.
3: for k ∈ {0, 1, . . . , p/(2c2)− 1} do
4: if k = 0 and ` = 0 then
5: C̃{p/c×1}(i) = symmetric multiply(Ã, B̃).
6: else
7: C̃{p/c×1}(i+ `+ kc) = ÃB̃.
8: end if
9: Shift Ã by c.

10: end for
11: if ` = 0 and i < p/(2c) then
12: C̃{2p/c×1}(2i+ p/c) = Ã{2×1}(0)B̃.
13: else if ` = 0 and i ≥ p/(2c) then
14: C̃{p/c×2}(i+ p/(2c), 1) = ÃB̃{1×2}(1).
15: end if
16: Allgather C.
17: end for

Despite one extra round for the team leaders, all processors still do equal work. Team
leaders send one message more than other team members, but this does not matter in
asymptotic costs. All flops, messages, and words count (during propagation phase) are
halved. The maximum effective c changes to

√
p/2 instead of

√
p.
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Chapter 7

Sparse Inverse Covariance Matrix
Estimation

This chapter presents our case study of consecutive multiplications mentioned in Sec-
tion 5.5, using our 1.5D multiple-replication-factor matrix multiplication algorithms in Chap-
ter 6. The chapter is organized as follows. Section 7.1 introduces the problem. Section 7.2
describes our parallel algorithm, HP-CONCORD. Section 7.3 gives experimental results and
makes comparisons with the leading penalized Gaussian likelihood approach. Section 7.4
presents a detailed empirical study, where we apply HP-CONCORD to high-dimensional
functional magnetic resonance (fMRI) data. Section 7.5 gives an expanded set of results for
Section 7.4. Section 7.6 discusses further directions and concludes.

7.1 Background and Previous Work

Characterizing complex relationships in high-dimensional data is an important research
problem in many disciplines including biology, economics, environmental sciences, and neu-
roscience. Examples of interesting relationships in these applications include associations
between genes, financial institutions, temperature measurements, and regions of the brain.

Suppose we want to reconstruct the underlying relationships between variables from
samples. Let X ∈ Rn×ρ be a data matrix, consisting of n independent observations of a ρ-
dimensional random vector with mean zero and variance-covariance matrix Σ?. (Statistical
and machine learning literature often represents the number of dimensions by p. Here, we
use ρ to avoid confusion with our p for the number of processors.) It can be shown that the
matrix Ω? = (Σ?)−1 encodes the conditional pairwise dependencies between the variables;

This chapter is based on joint work previously published in “Communication-Avoiding Optimization
Methods for Massive-Scale Graphical Model Structure Learning”[110].
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specifically, the partial correlations are just scaled versions of the elements in Ω?, i.e.,

rij·V \{i,j} = − ωij√
ωii ωjj

, i, j = 1, . . . , ρ,

where rij·V \{i,j} denotes the partial correlation between the variables i and j given the re-
maining variables V \{i, j}, and ωij, i, j = 1, . . . , ρ, denotes the elements of Ω?. Under
Gaussianity, zero partial correlation implies conditional independence [117, 16].

Recent research into the sparse estimation of Ω? addresses many challenging aspects of
estimating Ω? from modern, high-dimensional data. In particular, `1-regularized methods
induce sparsity, as well as mitigate the instability and rank-deficiency that arise in high-
dimensional settings (i.e., when ρ� n). Sparse estimation of Ω? focusing on model selection
is often referred to as graphical model structure learning. Broadly, there are two types of
statistically motivated methods for estimating Ω?: one that uses the Gaussian likelihood
function [74, 93, 54], and another that uses some pseudolikelihood-based (i.e., regression-
based) formulation [139, 147, 103]. Regularized Gaussian likelihood methods differ only in
their regularization terms; however, regression-based regularized pseudolikelihood methods
offer more diverse objective functions [158, 119]. In particular, the recently introduced
CONCORD [103] and PseudoNet [6] estimators have been shown to have favorable theoretical
and practical properties, which we summarize next.

CONCORD and PseudoNet estimators minimize a jointly convex `1-regularized pseu-
dolikelihood-based objective function, in order to estimate Ω? with Ω̂:

Ω̂ = argmin
Ω∈Rρ×ρ

{
− log det Ω2

D + tr(ΩSΩ) + λ1‖ΩX‖1 + λ2‖Ω‖2
F

}
, (7.1)

where ΩD and ΩX denote matrices containing just the diagonal and off-diagonal elements
of Ω, S = XTX is the sample covariance matrix, ‖ · ‖F denotes the Frobenius norm, ‖ · ‖1

denotes the elementwise `1-norm, and λ1, λ2 > 0 are tuning parameters. The λ2 term was
added in the recent work on PseudoNet [6]; CONCORD’s original objective function was a
special case, when λ2 = 0.

Asymptotically, as n, ρ → ∞, CONCORD was shown to recover the support of the Ω
matrix consistently; PseudoNet improved the consistency proof presented in [103], by provid-
ing a two-step method for accurately estimating the diagonal elements of Ω. In simulations,
CONCORD was more robust to heavy-tailed data in terms of model selection when com-
pared to the popular `1-regularized Gaussian likelihood approach, and PseudoNet improved
both parameter estimation and support recovery over CONCORD. PseudoNet also showed
practical improvements over CONCORD in a portfolio selection problem. From the stand-
point of parallelization and scalability, the two methods are very closely related, so in the
interest of brevity, we use CONCORD to refer to both methods in the remainder of this
thesis.
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Algorithm 16 CONCORD-ISTA

Input: Data matrix Xn×ρ, tuning parameter matrix Λρ×ρ1 .
Input: Tuning parameter λ2, optimization tolerance ε > 0.
Output: Estimate Ω.

1: S ← XTX/n
2: Ω0 ← Iρ×ρ

3: h0 ← − log det(Ω0)D + 1
2 tr(Ω0SΩ0) + λ2‖Ω0‖2F

4: for k ← 0, 1, 2, . . . . Proximal gradient method
5: G← −((Ωk)D)−1 + 1

2(SΩk + ΩkS) + 2λ2Ωk . Calculating gradient G
6: for τ ← 1, 1

2 ,
1
4 , . . . . Backtracking line search

7: Ωk+1 ← SτΛ1(Ωk − τG)
8: hk+1 ← − log det(Ωk+1)D + 1

2 tr(Ωk+1SΩk+1) + λ2‖Ωk+1‖2F
9: q ← hk + tr((Ωk+1 − Ωk)

TG) + 1
2τ ‖Ωk+1 − Ωk‖2F

10: until hk+1 ≤ q
11: until max|Ωk+1 − Ωk| < ε

Computationally, the CONCORD objective function (7.1) can be optimized using a
proximal gradient method, CONCORD-ISTA [142], presented in Algorithm 16. The en-
tries of the tuning parameter matrix (Λ1)ij > 0, i, j ∈ V , control the amount of `1-
regularization separately for each element in Ω, while the tuning parameter λ2 > 0 controls
the amount of `2-regularization. We denote the elementwise soft-thresholding operator as
SΛ1(Ω) = sign(Ω) max(|Ω| − Λ1, 0), which is the proximal operator for the nonsmooth `1-
norm part of the CONCORD objective function. As a reminder, CONCORD here refers to
two versions of the estimators with and without λ2 regularization; similarly, CONCORD-
ISTA refers to the algorithm above, with both λ1 and λ2 regularization terms, possibly with
λ2 = 0.

In some cases, CONCORD-ISTA can decrease the running time of a coordinate descent-
based approach by two orders of magnitude: the authors of [142] show that reconstructing
the underlying gene-gene associations in a breast cancer dataset (where ρ ≈ 4,000) using
CONCORD-ISTA takes around just 10 minutes. However, CONCORD-ISTA quickly be-
comes intractable (or at least extremely slow) when analyzing full-sized gene expression
data, where ρ ≈ 30,000, because the computational complexity of CONCORD-ISTA can be
shown to be O(dρ2), where d is the average number of nonzeroes in Ω on each iteration.

Due to this computational bottleneck, using CONCORD-ISTA on problems with more
than a few thousand dimensions is challenging, despite the many desirable theoretical and
practical properties of the CONCORD estimators. Furthermore, the running time required
to compute estimates across a grid of tuning parameters, often needed in resampling methods
such as cross-validation, bootstrap, and stability analysis [138, 126], would be prohibitive.
In order to address this scaling challenge, we propose a massively parallel optimization
method for graphical model structure learning, which we name HP-CONCORD (“HP” stands
for “high performance”). As we show in Section 7.2, HP-CONCORD is able to utilize a
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distributed-memory parallel computing system to tackle problems at large scales, taking
under 21 minutes to optimize the CONCORD objective function (7.1) for ρ = 1.28 million
dimensions (corresponding to over 800 billion variables) in some cases.

Related work. Other parallel optimization approaches for the sparse recovery of the
inverse covariance matrix have been proposed in the literature, including a regularized
Gaussian likelihood method called BigQUIC [93], a greedy regularized Gaussian likelihood
method [102], and a regularized matrix inverse estimator [174]. In particular, BigQUIC is
a highly scalable method for the Gaussian likelihood approach for shared memory systems;
we compare it with our method. To our knowledge, however, HP-CONCORD is the only
parallel regression-based pseudolikelihood optimization method for the sparse estimation of
an inverse covariance matrix.

7.2 HP-CONCORD

The most compute-intensive parts of Algorithm 16 are the matrix multiplications ΩS and
S = XTX/n. We consider two algorithmic variations that minimize the total amount of
work in different ways, depending on characteristics of the input problem: HP-CONCORD-
Cov (Cov, for short) and HP-CONCORD-Obs (Obs, for short). Cov uses X only once
to precompute the sample covariance matrix S and uses S throughout (implementing Algo-
rithm 16 as is), whereas Obs uses the data/observation matrix X throughout and implicitly
recomputes S on the fly (removing line 1 and replacing S with XTX in Algorithm 16).
Algorithms 17 and 18 summarize the most time-consuming operations of Cov and Obs,
respectively. We count the number of floating point operations (flops) of the bottlenecks of
Cov and Obs below.

Algorithm 17 Cov.

1: S ← XTX/n
2: W ← Ω0S
3: for k ← 0, 1, 2, . . .
4: form W T to calculate G
5: for τ ← 1, 1

2
, 1

4
, . . .

6: W ← Ωk+1S
7: until hk+1 ≤ q
8: until |Ωk+1 − Ωk| < ε

Algorithm 18 Obs.

1: Y ← Ω0X
T

2: for k ← 0, 1, 2, . . .
3: Z ← Y X
4: form ZT to calculate G
5: for τ ← 1, 1

2
, 1

4
, . . .

6: Y ← Ωk+1X
T

7: until hk+1 ≤ q
8: until |Ωk+1 − Ωk| < ε

Cov computes S = XTX once at the beginning (line 1). It computes W = ΩS once
before the loops (line 2) and once per each inner loop (line 6). It transposes W to get SΩ
once per each outer loop (Ω and S are both symmetric so (ΩS)T = SΩ). The term tr(ΩSΩ)
in line 3 and 8 of Algorithm 16 is calculated by summing all elements in the result of an
element-wise product between ΩS (stored in W ) and ΩT (same as Ω since it is symmetric).
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S = XTX is a dense-dense matrix multiplication of size ρ×n×ρ which takes 2nρ2 flops. Let
s be the number of proximal gradient iterations until convergence, and let t be the average
number of backtracking line search iterations per each proximal gradient iteration, and let d
be the average number of nonzeroes per row of Ω throughout all iterations. Then W = ΩS
is a sparse-dense matrix multiplication and takes 2dρ2 flops per iteration on average and is
calculated st+ 1 times. The total number of flops is therefore

FCov = 2nρ2 + 2dρ2(st+ 1). (7.2)

Obs never computes the matrix S explicitly, replacing ΩS with (ΩXT )X and tr(ΩSΩ)
with tr(ΩXTXΩ) = ‖ΩXT‖2

F . It does a sparse-dense matrix-matrix multiplication (Y =
ΩXT ) once before the loops (line 1) and once per each inner loop (line 6). It has one dense-
dense matrix-matrix multiplication (Z = Y X in line 3) and one dense matrix transpose (ZT

in line 4) per each outer iteration. Y = ΩXT takes 2dnρ flops. Z = Y X takes 2nρ2 flops.
The total number of flops is therefore

FObs = 2nρ2s+ 2dnρ(st+ 1). (7.3)

The following lemma tells us when Cov is a more efficient option than Obs.

Lemma 7.1. Cov incurs fewer flops than Obs when

d

ρ
<

n

ρ− n
· 1

t
.

Otherwise, Obs is computationally cheaper than Cov.

Proof. This happens when (7.2) is less than (7.3),

2nρ2 + 2dρ2(st+ 1) < 2nρ2s+ 2dnρ(st+ 1)

2dρ(st+ 1)(ρ− n) < 2nρ2(s− 1)

d(st+ 1)(ρ− n) < nρ(s− 1).

We relax the comparison a little by plugging in st < st+ 1 and s > s− 1,

dst(ρ− n) < nρs

d

ρ
<

n

ρ− n
· 1

t
.

Let robs = n/ρ be the ratio of the number of observations to the number of features and
let rnnz = dρ/ρ2 = d/ρ be the average fraction of nonzeroes of Ω throughout all iterations,
0 < robs, rnnz ≤ 1, we can reformulate Lemma 7.1 to,

rnnz <
robs

1− robs

· 1

t
.
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robs/(1− robs) is an increasing function of robs. There are scientific problems of interest that
favor either Cov or Obs, depending on several factors, including dimensionality and sparsity
of the data. The closer n is to ρ, the higher rnnz can be for Cov to still require fewer flops than
Obs. For example, assume t = 10 (we observed 5-15 inner iterations per one outer iteration
in practice) and consider robs = 0.01, 0.1, and 0.25, which results in rnnz < 0.001, 0.011,
and 0.033, respectively. Applications with average percentage of nonzeroes (throughout all
iterations) less than 0.1%, 1.1%, and 3.3% should benefit from Cov in these cases.

Distributed operations

Cov and Obs’s most expensive operations are its parallel matrix multiplication and global
matrix transpose. The challenge is to pick a layout for each matrix, and choose appropriate
algorithms that minimize data movement both within and between steps.

The most popular parallel matrix multiplication implementations use a 2D layout [4, 80],
treating the processor as a square grid and making each processor responsible for all com-
putations associated with one sub-matrix of the output. 3D [3, 167] algorithms (sometimes
called 2.5D) are provably communication-optimal and instead divide the 3D iteration space,
essentially making c copies (we will call c the replication factor) of the output matrix and
having a rectangular group of processors responsible for a subset of updates to that copy; the
copies are summed at the end to produce the final answer. However, as shown in Chapter 5,
these are not always the fastest methods in our setting. We describe three special cases
based on matrix dimensions and sparsity that arise in HP-CONCORD.

ρ × n × ρ dense-dense (S = XTX and Z = Y X). XT and Y are tall-skinny and
X is short-wide. Partitioning them in a 2D layout (as 2D and 3D algorithms would) would
result in tall-skinny and short-wide local matrices, which perform poorly on local memory
hierarchies. Instead, we treat the processors as a 1D array and distribute the rows of XT

and Y (a 1D block row layout) and the columns of X (a 1D block column layout).

ρ× ρ× ρ sparse-dense (W = ΩS). Partitioning all matrices in 1D and shifting just
the sparsest matrix around can use much less bandwidth and could outperform the classic
2D and 3D algorithms by up to two orders of magnitude (see Chapter 5). Therefore, we put
Ω in 1D block row and S in 1D block column layout.

ρ× ρ× n sparse-dense (Y = ΩXT ). All layouts of Y,Ω, and XT are already chosen
from the two multiplications earlier. They all have 1D layout.

Figure 7.1 shows how all distributed operations are connected together. We use the 1.5D
algorithms in Section 6.1 and do the distributed transpose according to Section 6.2. Both
algorithms replicate X and Ω cX and cΩ times, respectively. Cov computes S = XTX by
shifting XT (using 1.5D Inner-A). In each iteration, it computes W = ΩS by shifting Ω (also
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X

XT
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Ω
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+

Soft-thresholding
and local transpose

Transpose

(a) Cov.

XT

Z

Ω

X

ZT

G
Y

+

Soft-thresholding

Transpose

(b) Obs.

Once
Every line search iteration 
(inner loop)
Every gradient iteration 
(outer loop)

Figure 7.1: Distributed operations of two HP-CONCORD variants: Cov uses X only once to
precompute the covariance matrix S and uses S throughout. Obs uses the observation matrix X
every iteration and does not explicitly form S. For each multiplication, we draw the first operand
on the left and the second operand on the top of the resulting matrix. A loopy arrow shows the
matrix being rotated in each multiplication.

using 1.5D Inner-A), globally transposes W , computes G from W and W T , soft-thresholds
(sparsifies) G to get a new Ω and converts Ω back to 1D block row layout by doing a
local matrix transpose as it is symmetric. For every iteration, Obs computes Y = ΩXT

by shifting XT (using 1.5D Row), computes Z = Y X by shifting X (using 1.5D Inner-B),
globally transposes Z to get ZT in the same layout, computes G from Z and ZT , and then
soft-thresholds G to get the new Ω.

Total communication costs

Cov. According to the costs of 1.5D Inner-A in Table 6.2, S = XTX takes p/c2
X messages

and nρ/cX words. ΩS takes p/(cΩcX) messages and dρ/cX words. ΩS is calculated st times.
Let cmin = min(cΩ, cX) and cmax = max(cΩ, cX). The costs of the distributed transpose can
be found in Equation 6.2, replacing cA with cΩ and cB with cX . The total communication
costs of Cov are

SCov =
p

c2
X

+ st
p

cXcΩ
+ log2

(
p

cmin

)
, (7.4)

WCov =
nρ

cX
+ st

dρ

cX
+
ρ2

p
· cmax

cmin
· log2

(
p

cmin

)
. (7.5)

Obs. By Table 6.2, the costs of 1.5D Row and 1.5D Inner-B are similar. Y = ΩXT and
Z = Y X both take p/(cΩcX) messages and nρ/cΩ words. Y = ΩXT is computed st times.
Z = Y X is calculated s times. The distributed transpose costs are the same as Cov’s. The
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total communication costs of Obs are

SObs = s(t+ 1)
p

cΩcX
+ log2

(
p

cmin

)
, (7.6)

WObs = s(t+ 1)
nρ

cΩ
+
ρ2

p
· cmax

cmin
· log2

(
p

cmin

)
. (7.7)

Space complexity

Asymptotically, both algorithms take at least O(ρ2) storage space: O(cXρ
2) for Cov and

O(cΩρ
2) for Obs. We plan to reduce their space requirement by applying blocking with some

recomputation in the future. As of now, we simply scale up to more nodes when ρ increases
since the computation complexity grows faster than the space. As for the exact memory
usage, both variants take the most space when computing G. Cov needs S, Ω, W , and
W T in memory. (G can be stored in place of W .) Obs needs Ω, X, XT , Y , Z, and ZT in
memory. (G can be stored in place of Z.) Therefore, their memory requirements are,

MCov = cΩdρ+ 3cXρ
2 (7.8)

MObs = 2cXnρ+ cΩ(dρ+ nρ+ 2ρ2) (7.9)

Total running time

Plugging in FCov, SCov, and WCov from Equations 7.2, 7.4, and 7.5 into Equation 2.1, we
get the total running time of Cov,

TCov =

[
2nρ2 + 2dρ2(st+ 1)

p

]
γ +[

p

c2
X

+ st
p

cXcΩ

+ log2

(
p

cmin

)]
α +[

nρ

cX
+ st

dρ

cX
+
ρ2

p
· cmax

cmin

· log2

(
p

cmin

)]
β. (7.10)

Similarly, FObs, SObs, and WObs from Equations 7.3, 7.6, and 7.7 give us the total running
time of Obs,

TObs =

[
2nρ2s+ 2dnρ(st+ 1)

p

]
γ +[

s(t+ 1)
p

cΩcX
+ log2

(
p

cmin

)]
α +[

s(t+ 1)
nρ

cΩ

+
ρ2

p
· cmax

cmin

· log2

(
p

cmin

)]
β. (7.11)

Whether TCov or TObs is better depends on the problem characteristics (n, p, d, s, and
t), the hardware parameters (α and β), and the replication factors (cΩ and cX , subject to
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cΩcX ≤ P and MCov,MObs ≤Mmachine, where Mmachine is the amount of memory available to
one processor).

7.3 Experimental Results

Our experiments are designed to (1) determine when to use Cov vs. Obs in practice, (2) illus-
trate that replication helps avoid communication and increases scalability, and (3) compare
HP-CONCORD with BigQUIC, another estimator of the inverse covariance matrix with a
C++/OpenMP shared memory implementation. HP-CONCORD is implemented in C++
with OpenMP and MPI, and therefore run on multiple nodes of a cluster. We call threaded
MKL for local matrix multiplications. Our test platforms are Edison at National Energy
Research Scientific Computing Center (NERSC) and Eos at Oak Ridge Leadership Com-
puting Facility (OLCF). Edison is a 5,586-node Cray XC30 machine with two 12-core Intel
Xeon E5-2695 processors at 2.4GHz and 64GB DDR3 RAM each node. Eos is a 736-node
Cray XC30 machine with 16-core Intel Xeon E5-2670 at 2.6GHz per node. All running times
reported are benchmarked on Edison with 2 MPI processes per node and 12 threads per
process, unless noted otherwise. Eos is used to search for penalty parameters and collect the
brain results in Section 7.4.

Cov vs. Obs

Synthetic datasets. We generated two synthetic datasets: chain graphs (degree 2) and
random graphs (degree 60), fixing ρ = 40k features and varying n. We searched for the tuning
parameters that would give Ω with degrees close to the solutions (2 and 60). Figure 7.2 shows
time to convergence in seconds. The times at n = 100 and 200 are higher than larger n’s
because they took more iterations to converge (see Table 7.1). Cov’s running times are
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Figure 7.2: Cov vs. Obs on synthetic chain and random graphs (ρ = 40,000 on 16 nodes = 32 MPI
processes = 384 cores). The times at n = 100 and 200 are higher than larger n’s because they took
more iterations to converge.
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mostly flat across all n’s for both graphs because FCov’s most dominant term, 2dρ2(st+ 1),
does not depend on n. FObs has n in both terms so Obs’s running time increases linearly
with n.

Table 7.1 presents the details necessary to predict the crossover point (where Cov is faster
than Obs): the number of proximal gradient (outer loop) iterations (s), the total number
of backtracking line search (inner loop) iterations, the average number of line search itera-
tions per one gradient iteration (t), the average percent nonzeroes throughout all iterations
(d/ρ× 100%), and the predicted % nonzeroes threshold (n/(ρ− n)/t× 100%) according to
Lemma 7.1, which predicts Cov does fewer flops than Obs when d/ρ × 100% is less than
this threshold, and vice versa otherwise. Our predictions say Cov should be faster than Obs
in all cases for chain graphs, and when n ≥ 200 for random graphs. The actual crossover
points happen much later than in theory, between n = 1,600 and 3,200 for both chain and
random graphs, because most of Cov’s flops are from sparse-dense matrix multiplication
while a significant chunk of Obs’s flops comes from dense-dense matrix multiplication, which
is much more efficient (γdense-dense � γsparse-dense). Table 7.1 also presents the flops rate for all
local matrix multiplications in Cov and Obs, i.e., not including distributed communication

Graph Counter
n (observations)

100 200 400 800 1,600 3,200 6,400 12,800

Chain

Gradient iterations: s 28 21 20 18 17 16 16 15
Line search iterations 71 46 44 40 38 36 36 34
Average line/grad: t 2.54 2.19 2.20 2.22 2.24 2.25 2.25 2.27
Average % nonzeroes: d/ρ× 100% 0.0101 0.0081 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
% nonzeroes threshold prediction 0.0988 0.2294 0.4591 0.9184 1.8640 3.8647 8.4656 20.7612
Cov: S = XTX Gflops/core 15.02 16.36 4.54 7.81 7.90 13.91 14.55 15.48
Cov: W = ΩS Gflops/core 0.71 0.64 0.62 0.62 0.62 0.62 0.62 0.62
Cov: Average Gflops/core 0.93 1.41 1.74 3.07 4.39 8.10 10.51 12.95
Obs: Y = ΩXT Gflops/core 0.35 0.33 0.36 0.33 0.11 0.08 0.08 0.08
Obs: Z = Y X Gflops/core 15.51 16.71 13.69 16.33 16.90 17.00 16.86 16.10
Obs: Average Gflops/core 15.33 16.56 13.61 16.19 16.48 16.38 16.26 15.54

Random

Gradient iterations: s 155 102 47 58 58 66 61 76
Line search iterations 519 269 88 91 77 84 94 131
Average line/grad: t 3.35 2.64 1.87 1.57 1.33 1.27 1.54 1.72
Average % nonzeroes: d/ρ× 100% 0.1824 0.1706 0.1694 0.1656 0.1668 0.1669 0.1730 0.1781
% nonzeroes threshold prediction 0.0748 0.1905 0.5395 1.3007 3.1385 6.8323 12.3607 27.3013
Cov: S = XTX Gflops/core 15.00 16.33 4.99 5.78 7.69 10.76 15.19 15.74
Cov: W = ΩS Gflops/core 1.11 1.12 1.13 1.13 1.13 1.12 1.11 1.12
Cov: Average Gflops/core 1.12 1.13 1.18 1.25 1.41 1.65 2.04 2.41
Obs: Y = ΩXT Gflops/core 1.47 1.74 1.91 1.36 1.10 0.91 0.83 0.80
Obs: Z = Y X Gflops/core 16.12 16.74 15.35 16.15 16.84 16.98 17.03 16.16
Obs: Average Gflops/core 15.20 16.11 15.02 15.70 16.32 16.36 16.18 15.26

Table 7.1: Details for Figure 7.2. From the top: number of proximal gradient iterations (outer loop), total
number of backtracking line search iterations (inner loop), average number of line search iterations per
one gradient iteration (t in Lemma 7.1), average % nonzeroes of Ω throughout all iterations, % nonzeroes
threshold prediction according to Lemma 7.1 (Cov wins if the average % nonzeroes is less than this number,
Obs wins otherwise), and flop rates (in Gflops) for various local matrix multiplications in Cov and Obs.
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times. Cov has one dense-dense matrix multiplication at the beginning which was able to hit
flop rates close to the theoretical peak (19.2 Gflops/core), but it does st sparse-dense matrix
multiplications, which achieved relatively much lower flop rates, causing its overall flop rates
to be low. Obs does st smaller sparse-dense matrix multiplications (ρ × ρ × n, as opposed
to Cov’s ρ× ρ× ρ) which attained low flop rates, but the more flops-heavy multiplication is
the dense-dense multiplication with great flop rates, so its overall flop rates stay relatively
close to the machine peak.

Real dataset. We ran Covs and Obs on real 3-dimensional resting state fMRI (functional
Magnetic Resonance Imaging) data of the human brain for 100 proximal gradient iterations
on 8,192 cores with 1 MPI process per core. We use a time series data with 1,200 timepoints
(observations) and 110k brain voxels (features) from The Human Connectome Project [163].
See more details on the brain fMRI data in Section 7.4, where we use HP-CONCORD to
segment another brain dataset (group-average data) from the same project.

Figure 7.3 compares the time Cov and Obs spent in each backtracking line search. Each
tick on the x-axis indicates the beginning of each proximal gradient iteration. The distances
between ticks are not uniform because each gradient iteration performs a different number
of line search iterations. Figure 7.3a shows all 100 iterations. Figures 7.3b-7.3d zoom in to
show more details.

The total running times are the areas under each line: 663.16 seconds for Cov and 431.35
seconds for Obs. Obs’ running time stays invariant throughout most iterations because
its computational complexity does not depend on Ω’s sparsity. Its yellow spikes at the
beginning of each gradient iteration are due to the multiplications Z = Y X. Cov’s running
time matches closely with the % nonzeroes of Ω as expected. As Ω gets sparser, Cov’s time
for each line search iteration starts getting cheaper than Obs around iteration 50. This
suggests a hybrid version where we start off with Obs and switch to Cov mid-way when Ω
gets sufficiently sparse.

Replication effects

Replication can improve running time drastically. We observed up to a 10.18× speedup over
the non-replicating version in our synthetic experiments. To illustrate, we run all possible
replication configurations on a chain graph with n = 100, p = 40,000 on 256 nodes (512
MPI processes, 6,144 cores). Figure 7.4a shows the running times of Obs. (There is no
cΩ = 512 because of the memory limit since the dense ρ × ρ matrices are also replicated
cΩ times.) Enabling various replication factors allows our algorithm to cover many new
approaches, in addition to the common ones. At (cΩ, cX) = (1, 1), our algorithm degenerates
to the non-communication-avoiding version, which partitions everything to P equal parts. It
took the longest running time, as expected. The notation (1, 512) means every MPI process
has the whole X in memory, does all multiplications locally, and only communicates when
replicating X and during the transpose. The best replication factor is at (16, 8), 5× faster
than (1, 1).
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(a) Overall (895 inner iterations).
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(b) Gradient steps 0-19 (175 inner iterations).
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(c) Gradient steps 20-59 (358 inner iterations).
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(d) Gradient steps 60-99 (362 inner iterations).

Figure 7.3: The time Cov and Obs took in each line search iteration (inner iteration). The ticks on the x-axis
show the gradient step number (outer loop index). Subfigure (a) shows all steps from 0-99. Subfigures (b),
(c), and (d) feature the step range in more details. Yellow spikes at the beginning of gradient steps are due
to Y X. Cov’s running time varies closely with the sparsity while Obs’ is invariant as expected. The red line
shows an example point where switching from Obs to Cov would be beneficial.
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Figure 7.4b shows cost breakdowns for selected replication factor pairs (cΩ, cX) = (1, 1),
(4, 1), (16, 1), and (16, 8). Blue is input read time and is the same across all replication pairs.
ΩXT has three major costs: shift (in red), local matrix multiplication (in dark green), and
allreduce (in orange) which sums all copies of Y within the same team. Y X has two main
costs: shift (in pink) and local matrix multiplication (in green). The transpose operation
consists of processors doing a distributed all-to-all operation (within the communication
groups defined in Section 6.2), shown in yellow, and local transpose, shown in teal.

Both shift costs decrease with the increasing replication factors. Computation times
decrease as well because of better cache reuse. The transpose cost is more complicated and
does not show a clear trend, as the latency and bandwidth decreases logarithmically with
cmin = min(cΩ, cX) but the bandwidth also increases when cΩ : cX ratio is not close to 1
(see Equation (6.2)). However, if we compare the transpose cost of (16, 8) to (1, 1), we can
still see a clear decrease, since 16 is close to 8, and 8 > 1. The allreduce cost of ΩXT

increases with cΩ but not cX because cΩ controls the matrix size to send, and it is also the
number of processors that perform the allreduce together. Khaki shows the allreduce time
for statistics-collecting purposes, e.g., reporting % nonzeroes every line search iteration, etc.
– it is not related to actual computation. This allreduce is done across teams (within layers),
for example, summing the total number of nonzeroes of all matrix parts from all teams. As
c increases, there are fewer teams, so the cost decreases.

Lastly, grey color shows other local computation time. It is relatively large because of
two reasons: (1) The number of passes a local matrix is read through has not been optimized.
We wrote this as a matrix library, and some operations that can be done together are done
separately for composability and readability. For example, the computation of G in line 5
of Algorithm 16 computes the three summing terms separately, first G = 0.5(Z +ZT ), then
G −= ((ΩD))−1, and G += 2λ2Ω. G is read and written multiple times. We can reduce the

1 2 4 8 16 32 64 128 256 512

1 13.15 9.69 8.73 7.34 7.09 7.01 7.17 6.56 7 5.01

2 9.35 5.75 5.78 7.1 5.42 5.42 5.78 5.13 3.9

4 5.28 3.94 3.42 5.08 4.44 4.39 4.3 3.86

8 4.08 3.45 3.07 2.84 4.19 4.08 3.65

16 4 3.55 3.2 2.63 3.83 3.77

32 4 6.06 3.43 3.38 3.26

64 6.13 4.77 4.7 4.42

128 7.8 6.59 5.87

256 10.97 9.47
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Figure 7.4: Obs’ running times in seconds with various replication factors for the chain graph on
256 nodes with n = 100 and p = 40,000. At (cΩ, cX) = (16, 8), the algorithm achieves a factor of
five speedup over the non-communication-avoiding result at (1, 1).
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cX

cΩ

1 2 4 8 16 32 64 128 256 512

1 5.50 3.73 3.26 2.51 2.36 2.14 2.09 2.06 2.17 0.61

2 3.17 1.22 1.60 2.01 1.26 1.26 1.34 1.15 0.31

4 1.18 0.82 0.68 0.95 0.79 0.76 0.59 0.16

8 0.65 0.54 0.49 0.41 0.61 0.43 0.08

16 0.54 0.47 0.36 0.25 0.24 0.04

32 0.29 0.30 0.21 0.21 0.02

64 0.52 0.25 0.20 0.01

128 0.30 0.17 0.01

256 0.19 0.01

(a) ΩXT : shift.

cX

cΩ

1 2 4 8 16 32 64 128 256 512

1 0.28 0.17 0.13 0.10 0.08 0.08 0.07 0.07 0.07 0.07

2 0.20 0.15 0.12 0.10 0.11 0.12 0.11 0.09 0.08

4 0.14 0.10 0.09 0.07 0.10 0.11 0.06 0.08

8 0.09 0.12 0.11 0.08 0.09 0.08 0.08

16 0.11 0.10 0.09 0.06 0.10 0.08

32 0.11 0.09 0.07 0.09 0.08

64 0.10 0.08 0.09 0.08

128 0.08 0.07 0.04

256 0.05 0.04

(b) ΩXT : local matrix multiplication.

cX

cΩ

1 2 4 8 16 32 64 128 256 512

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.05 0.03 0.04 0.06 0.04 0.03 0.04 0.04 0.02

4 0.14 0.12 0.11 0.15 0.10 0.12 0.11 0.21

8 0.21 0.15 0.15 0.14 0.20 0.20 0.33

16 0.30 0.30 0.26 0.21 0.26 0.49

32 0.47 0.44 0.43 0.47 0.63

64 1.23 1.01 1.03 1.21

128 2.47 2.19 2.05

256 5.28 4.58

(c) ΩXT : allreduce.

cX

cΩ

1 2 4 8 16 32 64 128 256 512

1 2.02 1.36 1.06 0.90 0.81 0.73 0.91 0.71 0.86 0.25

2 1.21 0.46 0.59 0.69 0.38 0.37 0.56 0.40 0.13

4 0.46 0.31 0.25 0.38 0.22 0.23 0.19 0.07

8 0.26 0.18 0.14 0.11 0.16 0.13 0.03

16 0.13 0.12 0.11 0.07 0.07 0.02

32 0.09 0.07 0.06 0.04 0.01

64 0.11 0.06 0.04 0.00

128 0.10 0.03 0.00

256 0.05 0.00

(d) Y X: shift.

cX

cΩ

1 2 4 8 16 32 64 128 256 512

1 0.51 0.36 0.35 0.34 0.21 0.21 0.20 0.20 0.20 0.21

2 0.40 0.34 0.29 0.32 0.25 0.25 0.26 0.27 0.26

4 0.31 0.25 0.23 0.22 0.22 0.22 0.22 0.21

8 0.26 0.27 0.22 0.21 0.20 0.20 0.20

16 0.23 0.27 0.20 0.20 0.23 0.20

32 0.23 0.23 0.21 0.20 0.20

64 0.22 0.21 0.21 0.21

128 0.23 0.22 0.20

256 0.23 0.22

(e) Y X: local matrix multiplication.

cX

cΩ

1 2 4 8 16 32 64 128 256 512

1 1.21 1.29 1.32 1.38 1.54 1.39 1.83 1.41 1.58 2.06

2 1.17 0.67 0.94 1.49 1.09 1.34 1.33 1.16 1.27

4 0.83 0.67 0.61 1.14 1.02 1.15 1.20 1.03

8 0.76 0.70 0.61 0.51 0.97 0.99 0.91

16 0.77 0.78 0.70 0.50 0.48 0.69

32 0.73 0.69 0.68 0.53 0.60

64 1.15 0.89 0.80 0.72

128 1.02 0.85 0.73

256 0.95 0.84

(f) ZT : all-to-all communication.

Figure 7.5: Some of Obs’ time breakdowns in seconds for Figure 7.4.
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time by trading-off modularity and writing a kernel that does everything in one go. Another
example is the Frobenius norm computation. It is implemented as a separate function and
it requires a full pass over the matrix. It can easily be computed with other computations.
(2) Some parts are still not efficiently threaded.

Even at the best replication factor pair (16, 8), communication still comprises a large
fraction of the total running time, especially the transpose costs. Further optimization
includes communication overlapping.

Figure 7.5 compares each cost breakdowns between all replication factor pairs. Fig-
ures 7.5a and 7.5d confirm that the shift time decreases with either c’s. The ΩXT local
matrix multiplication time in Figure 7.5b depends on matrix shapes and sparsity, but also
shows a general trend that larger local matrix sizes achieve better efficiency. The Y X local
matrix multiplication cost in Figure 7.5e favors cΩ : cX ratio close to 1, in addition to large
local matrix sizes. This is logical since Y and X has the same number of nonzeroes and
similar shapes. The allreduce cost in Figure 7.5c only changes with cΩ but not with cX
because it only operates on Y (where Y = ΩXT ) and Y is replicated cΩ times. Finally, the
transpose cost is best when cΩ = cX , as shown in Equation 6.2.

Comparison with BigQUIC

BigQUIC [93] is a second-order method with a C++/OpenMP shared memory implementa-
tion. It is the only other ICM (Inverse Covariance Matrix) estimation method we are aware
of that can handle more than a few tens of thousands of variables. We generated three
synthetic datasets and chose the tuning parameters so that BigQUIC and HP-CONCORD
recover the same number of edges (nonzeroes). We also ran HP-CONCORD on multiple
nodes to test its scalability. At each number of nodes, we tried several different replication
factors and picked the best running time.

Chain graphs. We fixed n = 100 and varied ρ from 10,000 to 1,280,000 to reproduce
BigQUIC’s experiment on chain graphs. As d/ρ is not too much smaller than n, we used
HP-CONCORD with Obs. Figure 7.6a and Table 7.2 show the total running time and
number of iterations to convergence. The black line represents BigQUIC’s time on one node.
The colored lines are the times of Obs on 1, 4, 16, 64, 256, and 1,024 nodes. The last point
at 1,280,000 for BigQUIC was interpolated because it did not finish in 96 hours, which is
the maximum running time allowed on Edison. BigQUIC has the computational complexity
O((ρ+ |B|)dρTTouter) where |B| is the number of boundary nodes, T is the number of steps,
and Touter is the number of conjugate gradient iterations. It is a second-order method, so it
took many fewer steps to converge than ours which is a first-order method. Even though
the computational complexity and convergence rate of BigQUIC and CONCORD are vastly
different, HP-CONCORD matched the running time of BigQUIC, when both ran on one
node. HP-CONCORD also demonstrated good scalability, allowing the user to choose the
running time they want for their problem size, e.g., at 80,000 features, they can get the
results in under 4 seconds with 1,024 nodes.
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(a) Chain (n = 100).
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(b) Random (n = 100).
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(c) Random (n = p/4).

Figure 7.6: Running times of BigQUIC on 1 node (24 cores) and HP-CONCORD on 1 to 1,024
nodes (24 to 24,576 cores).

Graph Method
ρ (features)

10K 20K 40K 80K 160K 320K 640K 1,280K

Chain
BigQUIC 6 5 6 6 5 5 5 -

HP-CONCORD 25 33 37 36 43 51 69 57

Random BigQUIC 6 6 5 6 5 - - -
(n = 100) HP-CONCORD 114 144 155 203 270 330 - -

BigQUIC 5 5 5 - - - - -
%PPV 99.48 99.71 99.78 99.81 - - - -

Random %FDR 0.52 0.29 0.22 0.19 - - - -
(n = ρ/4) HP-CONCORD 16 17 17 21 35 - - -

%PPV 99.75 99.92 99.94 99.94 99.20 - - -
%FDR 0.25 0.08 0.06 0.06 0.80 - - -

Table 7.2: Numbers of iterations BigQUIC and HP-CONCORD took to converge in the chain and
random graphs experiments. The tuning parameters (Λ1)ij were chosen to give about 17% of the
true number of nonzeros, relative to an underlying Ω?. “%PPV” and “%FDR” indicate the positive
predictive values and false discovery rates, respectively, relative to Ω?.

Random graphs. We generated random graphs with degree 60. Figure 7.6b fixes n = 100
and varies ρ from 10,000 to 320,000. We also use Obs because d/ρ here is even greater than
in the chain graph case. Obs was 4 times faster than BigQUIC even on one node. Obs has
even better scalability here than in the chain graphs since Ω is less sparse and the algorithm
has more flops to compute. Figure 7.6c uses n = ρ/4 for the same set of ρ. We use Cov
here because n is large and see a similar trend as Figure 7.6b. Although the two values of n
use different implementation approaches (Obs vs Cov), both dominate BigQUIC on a single
node and scale well to multiple nodes using our communication-avoiding approach.
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7.4 Massive-scale Structure Learning from fMRI Data

In this section, we reconstruct the functional connectivity structure of the human brain from
high-dimensional blood oxygenation level dependent (BOLD) signal measurements in func-
tional magnetic resonance imaging (fMRI) data. In practice, a commonly used measure of
functional connectivity (at fine resolution) is marginal or Pearson correlation. However, pair-
wise marginal correlations may be driven by indirect relationships through a third variable
[67], and partial correlations are more suitable for modeling direct associations [132].

Using HP-CONCORD, we estimate a sparse partial correlation matrix as a measure
of functional connectivity for the whole brain. In this context, an element in the partial
correlation matrix represents the residual correlation between a pair of points after regressing
out the remaining variables. Estimating partial correlations at the native resolution of
modern fMRI scanner is computationally challenging [93]. With HP-CONCORD, a sparse
partial correlation matrix for the whole brain can be reconstructed in controllable time using
a parallel computing system.

Subsequently, the inferred partial correlation graph is used to induce a functional con-
nectivity based parcellation [67]. To parcellate the brain into regions, we pass the functional
dependency structure output from HP-CONCORD to graph clustering algorithms. We com-
pare the resulting parcellations (clusterings) to a state-of-the-art clustering from the neuro-
science literature by Glasser et al.[82]. Our preliminary and entirely data-driven parcellations
are able to capture some of the important features presented in Glasser’s parcellations [82]
that combines multimodal imaging data using significant domain knowledge.

Data

We use a 91,282×91,282 extensively processed, group-average sample correlation matrix from
the Human Connectome Project [163]. The first, second, and last ∼30K features correspond
to the left hemisphere, the right hemisphere, and sub-cortical regions, respectively. The
size of the dataset is about 60 gigabytes. The matrix was generated in the following way
(c.f. Figure 2 of [163]). First, 1,200 subjects were put into a state-of-the-art fMRI machine
and measurements were taken without stimulating the subjects every 0.7 seconds for an
hour, at 2 millimeter × 2 millimeter × 2 millimeter cubes/voxels spread evenly throughout
the cerebral cortex. Next, as fMRI data is typically very noisy, a significant amount of
post-processing was done to denoise the data, ultimately leading to a data matrix X with
dimensions n ≈ 6, 171, 400, p = 91, 282. To further reduce the level of noise, the columns of
the data matrix were then averaged over the 1,200 subjects, leading to a data matrix with
dimensions n ≈ 5, 142, p = 91, 282, from which the sample covariance matrix was finally
computed.
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Approach

We (1) generate a partial correlation graph using HP-CONCORD, and then (2) apply a
graph-based clustering algorithm to the partial correlation graph arising from the sparsity
pattern of the HP-CONCORD estimate. For (1), we consider all combinations of the tuning
parameters (λ1, λ2) ∈ L1 × L2, where

L1 = {0.48, 0.5, 0.52, 0.54, 0.57, 0.59, 0.61, 0.64, 0.67, 0.69, 0.72},
L2 = {0.10, 0.13, 0.16, 0.2, 0.25, 0.31, 0.39, 0.49}.

Tuning parameters outside these ranges yielded either trivially sparse or dense estimates.
For each graph generation, we used scalar values of λ1 and λ2 for simplicity. Qualitative
comparison with thresholded sample correlation matrix shows the advantage of using partial
correlation approach.

Subsequently, for (2), we consider two graph clusterings: the well-known Louvain method
[31], and a relatively new clustering method from the persistent homology literature [66] that
leverages the degree matrix associated with the partial correlation graph. We summarize
the method in the next paragraph. Additionally, because the clusterings from [82] treat the
left and right hemispheres of the brain separately, we also run and evaluate our clustering
algorithms on the subgraphs associated with only the left and right hemispheres.

Persistent Homology. We map the degree of a vertex in the inverse covariance graph,
described by matrix Ωp×p, onto the surface of a brain. We thus obtain a function f : S → Z,
where S is the triangulation of the cortical surface. We apply the watershed algorithm [51]
to f by sweeping the vertices from the highest value to the lowest. We start a new label if the
vertex has no labeled neighbors in S. If it does, we propagate the label with the maximum
starting value.

The resulting parcellation is usually too fine: every local maximum of f produces a new
label. We use the theory of persistent homology [66] to coarsen the parcellation. During the
sweep, we build the dual graph G of the labels. When we start a new label l at a vertex u,
we add l to the graph and assign to it the value f(u). When two labels, l1 and l2, that fall
in different components of G, meet at a vertex v during the sweep, we add an edge (l1, l2)
to G. We find the maximum values, a1 and a2, assigned to any vertex in the components of
l1 and l2 in G, and assign to the new edge the value min{a1, a2}− f(v). (It’s not difficult to
verify that this is exactly the persistence of the vertex v.)

Once we construct the dual graph G, given a simplification threshold ε, we treat the
connected components of the subgraph of G induced by the edges with values at most ε as
the new parcels. As we increase ε, the parcels merge, and the parcellation gets coarser.

Evaluation

Our main points of comparison are the state-of-the-art clusterings, for the left and right
hemispheres, from Glasser et al.[82], presented in Figure 7.7. However, we also consider a
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simple baseline, given by discarding 99, 99.1, . . . , 99.8, 99.9, 99.91, . . . , 99.98, 99.99% of the
sample covariance matrix entries, i.e., keep entries with the largest magnitudes (c.f. [134]) in
order to generate marginal correlation graphs. This baseline lets us probe the comparative
advantage of using marginal vs. partial correlations. To quantitatively compare clusterings,
we consider a variation of the standard Jaccard score,

Sim(C1, C2) =
1

max(k, `)
·
∑

(i,j)∈E

Wij, (7.12)

where C1 = {A1, . . . , Ak} and C2 = {B1, . . . , B`} are two clusterings, E ⊆ {1, . . . , k} ×
{1, . . . , `} is a maximum weighted edge covering in a weighted bipartite graph, where the
vertices on a side of the graph correspond to the clusters in a clustering, and the edge weights
Wij, i = 1, . . . ,m, j = 1, . . . , `, are the usual Jaccard scores given by

|Ai∩Bj |
|Ai∪Bj | . The use of the

edge covering here resolves various complications that arise when comparing clusterings of
different sizes; the 1

max(k,`)
term in (7.12) can be thought of as a normalizing constant Finally,

to compute the edge covering, we use the algorithm of Azad et al. [15].

Results

Table 7.3 shows examples of dependency structures recovered by HP-CONCORD and thresh-
olding the sample correlation matrix. Top two sparsity patterns are the most prominent
partial correlations recovered by HP-CONCORD corresponding to two different sets of two
penalty parameter choices, λ1 and λ2. The bottom sparsity pattern is from thresholding the
sample correlation matrix. Striking features of the sparsity patterns of partial correlation
matrices are (1) the pronounced block-diagonal structure, and (2) spatial locality of the
most prominent relationships. (3) Furthermore, the differences between the partial correla-
tion matrix and thresholded marginal correlation matrix may seem subtle due to the extreme
size of the matrix; but, the seemingly subtle differences clearly result in significant difference
in the downstream analysis. We discuss these three aspects in more detail below. We em-
phasize that the features leading to the following observations arise naturally, without being
hard-coded into our method and without imposing any assumptions about the underlying
functional connectivity structure.

(1) In Table 7.3, HP-CONCORD estimates show near perfect block-diagonal structures,
where the blocks turn out to correspond to the left and right hemispheres. The recovered
block diagonal structure indicates that much of the variation at any given point can be
explained by neighbors in the same hemisphere. (2) Furthermore, the sparsity patterns of
the blocks themselves turn out to correspond to the spatially closest voxels (Figure 7.8 in
Section 7.5), which is consistent with the belief in neuroscience [145]. When taken together,
these two observations suggest that locally contiguous regions of the brain are functionally
more closely associated as compared to their respective symmetric areas in the mirroring
hemisphere. However, thresholded sample correlation matrix shows significant off-block-
diagonal structures which are likely to be indirect associations [132].
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Figure 7.7: Left and right brain hemisphere cluster-
ings from Glasser et al. [82], generated by applying
a multi-class, shallow neural network to the same
data we use [163], but use a significant amount of do-
main knowledge in order to post-process the results
by hand. The colors have no significance, except to
demarcate the different clusters.

Whole brain’s sparsity pattern Left hemisphere’s parcellation Right hemisphere’s parcellation
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t = 99.9, k = 4 t = 99.9, k = 4, t = 99.9, k = 3,
% of best score = 32.24 % of best score = 32.24 % of best score = 32.45

Table 7.3: The best clusterings relative to Glasser’s[82], according to our modified Jaccard score. The
leftmost column presents the sparsity patterns of the whole brain (black indicates a nonzero entry) of the
estimate yielding the best clustering for the left hemisphere. The score under each figure is the percentage of
the best Jaccard score it attains (higher is better); since the persistent homology clusterings perform the best,
these percentages are just 100. The actual Jaccard scores, as well as a significantly expanded set of results,
can be found in Section 7.5. Also indicated are the tuning parameter values yielding the clusterings (i.e.,
λ1, λ2 for HP-CONCORD; ε ≥ 0, k ∈ Z+ controlling the number of clusters for the persistent homology and
Louvain methods, respectively; and t denoting the percentage of discarded sample covariance matrix entries).
The colors in the various plots have no special meaning.
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(3) Often in practice, inferred dependency structures/functional connectivities are used
for downstream analysis. We will illustrate the significant difference between the estimated
sparse partial correlation and thresholded sample correlation matrices by using them as
inputs to a functional connectivity based parcellation clustering procedure. Although the
sparsity patterns of the HP-CONCORD and sample covariance matrix estimates appear
vaguely similar, the subtle differences between them drive the significant differences in the
resulting clusterings.

The top and middle rows of Table 7.3 present the best clusterings generated by HP-
CONCORD followed by the persistent homology and Louvain methods, respectively, when
compared to Glasser’s clusterings [82] presented in Figure 7.7, according to the modified
Jaccard score; the bottom row presents the best clusterings generated by thresholding the
sample covariance matrix at various levels. The middle and right columns present the results
for the left and right hemispheres, respectively. We see that the persistent homology clus-
terings perform the best, in terms of Jaccard score, across both hemispheres.

Qualitatively, we see that the persistent homology clusterings are able to identify several
clusters of interest to the neuroscience community (c.f. Figure 3 in [82]); this is certainly
encouraging, since we do not expect perfect recovery of all the clusters in Figure 7.7, as
the latter clusters rely on a significant amount of domain knowledge.1 Some examples: the
persistent homology clusterings seem to pick out area 55b, involved in hearing; the lateral
intraparietal cortex (LIPv), involved in eye movement; and much of the variation in the
temporal cortex, involved in processing information from the senses. On the other hand, the
Louvain method and the clusterings generated by the sample covariance matrix seem to miss
these clusters, as they appear overly smooth. Along these lines, all the methods seem to
miss Brodmann’s area 44, involved in hearing and speaking, and the middle temporal visual
area (MT), involved in seeing moving objects.

7.5 Expanded Set of Results

This section provides supplemental details on the experiments in Section 7.4. Readers might
want to skip this section and go directly to the conclusions in Section 7.6.

The sparsity patterns of the HP-CONCORD estimates. The sparsity patterns of
the diagonal blocks of the HP-CONCORD estimates correspond to the spatially closest
voxels on the left and right hemispheres. In Figure 7.8, we present the sparsity pattern of
the HP-CONCORD estimate attaining the best clustering, for the left hemisphere, in the
middle column of Table 7.3. In Figure 7.8, we also present the sparsity pattern of a matrix
we constructed, where the (i, j)thentry of the matrix is the great-circle distance between the
voxels i and j, after retaining only 0.1% of closest voxels. Both sparsity patterns are visually
similar, suggesting that the best HP-CONCORD estimate has recovered some of the spatial

1 Recently, a preprint of work that compares a large set of parcellations became available [9]. As a future
work, a comparison of our approach to those in this paper would shed more insight into our parcellation.
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Figure 7.8: Left: the sparsity pattern of the HP-CONCORD estimate attaining the best clustering
in the left column of Table 7.3. Right: the sparsity pattern of a (91, 282 × 91, 282)-dimensional
(symmetric) matrix we constructed, whose (i, j)th entry is the great-circle distance between the
voxels i and j, where we have retained just the 0.1% of closest voxels. In both plots, black indicates
a nonzero entry and only the 29,696 coordinates belonging to the left hemisphere are shown.

signal in the data, without being “told” to do so. Inspecting the right hemisphere conveys
the same message.

Full experimental results. This subsection provides an expanded set of figures and tables
from the experiments. First, we present the sparsity patterns of the estimates from HP-
CONCORD and their degrees of connectivity mapping directly on the brain. Tables 7.5, 7.6,
and 7.7 show the sparsity patterns for the whole brain, the left hemisphere, and the right
hemisphere, respectively. Tables 7.8 and 7.9 show the connectivity mapping on the left and
right hemisphere.

We show our clustering results with (1) various penalty values of HP-CONCORD: λ1 and
λ2, (2) two parts of the brain: left and right hemisphere, (3) two clustering methods, taking
in the partial correlation graph from HP-CONCORD as inputs: persistent homology and
Louvain methods, and (4) two clustering coarseness levels: more clusters and fewer clusters.
Table 7.4 summarizes them in one table we have. We also present several clustering results
from directly thresholding the sample covariance matrix in Tables 7.18 and 7.19.

Method
Brain part Left hemisphere Right hemisphere

Clusterings Jaccard scores Clusterings Jaccard scores
Persistent
homology

Fewer clusters (ε = 3) Table 7.10 Table 7.20 Table 7.11 Table 7.21
More clusters (ε = 0) Table 7.12 Table 7.22 Table 7.13 Table 7.23

Louvain
method

Fewer clusters (k = 0) Table 7.14 Table 7.24 Table 7.15 Table 7.25
More clusters (kmax) Table 7.16 Table 7.26 Table 7.17 Table 7.27

Table 7.4: Summarizing tables corresponding to various clustering experiments.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table 7.5: Sparsity patterns of the whole brain.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table 7.6: Sparsity patterns of the left hemisphere.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table 7.7: Sparsity patterns of the right hemisphere.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table 7.8: Degree matrices of the left hemisphere. The point at (0.722, 0.4883) is a degener-
ated clustering that puts each voxel into its own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table 7.9: Degree matrices of the right hemisphere. The point at (0.722, 0.4883) is a degen-
erated clustering that puts each voxel into its own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722 —

Table 7.10: Left hemisphere clusterings, generated by HP-CONCORD using various (λ1, λ2)
penalty parameters, followed by the persistent homology method with ε = 3 (corresponding
to fewer clusters), as described in Section 7.4. Table 7.20 presents the modified Jaccard
scores (7.12) for these clusterings. “—” indicates a degenerated clustering that puts each
voxel into its own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722 —

Table 7.11: Right hemisphere clusterings, generated by HP-CONCORD using various (λ1, λ2)
penalty parameters, followed by the persistent homology method with ε = 3 (corresponding
to fewer clusters), as described in Section 7.4. Table 7.21 presents the modified Jaccard
scores (7.12) for these clusterings. “—” indicates a degenerated clustering that puts each
voxel into its own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table 7.12: Left hemisphere clusterings, generated by HP-CONCORD using various (λ1, λ2)
penalty parameters, followed by the persistent homology method with ε = 0 (corresponding
to more clusters), as described in Section 7.4. Table 7.22 presents the modified Jaccard
scores (7.12) for these clusterings.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table 7.13: Right hemisphere clusterings, generated by HP-CONCORD using various (λ1, λ2)
penalty parameters, followed by the persistent homology method with ε = 0 (corresponding
to more clusters), as described in Section 7.4. Table 7.23 presents the modified Jaccard
scores (7.12) for these clusterings.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table 7.14: Left hemisphere clusterings, generated by HP-CONCORD using various (λ1, λ2)
penalty parameters, followed by the Louvain method with k = 0 (corresponding to fewer
clusters), as described in Section 7.4. Table 7.24 presents the modified Jaccard scores (7.12)
for these clusterings.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table 7.15: Right hemisphere clusterings, generated by HP-CONCORD using various (λ1, λ2)
penalty parameters, followed by the Louvain method with k = 0 (corresponding to fewer
clusters), as described in Section 7.4. Table 7.25 presents the modified Jaccard scores (7.12)
for these clusterings.
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λ1
λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table 7.16: Left hemisphere clusterings, generated by HP-CONCORD using various (λ1, λ2)
penalty parameters, followed by the Louvain method with the largest parameter value k
considered by Louvain (corresponding to more clusters), as described in Section 7.4. Table
7.26 presents the modified Jaccard scores (7.12) for these clusterings.



CHAPTER 7. SPARSE INVERSE COVARIANCE MATRIX ESTIMATION 139

λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48

0.5

0.5208

0.5425

0.5651

0.5887

0.6132

0.6388

0.6654

0.6931

0.722

Table 7.17: Right hemisphere clusterings, generated by HP-CONCORD using various (λ1, λ2)
penalty parameters, followed by the Louvain method with the largest parameter value k
considered by Louvain (corresponding to more clusters), as described in Section 7.4. Table
7.27 presents the modified Jaccard scores (7.12) for these clusterings.
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t = 99 t = 99.9 t = 99.99

Table 7.18: Left and right hemisphere clusterings (in the top and bottom row, respectively), gen-
erated by thresholding the sample covariance matrix at various levels t followed by the Louvain
method, at the tuning parameter value k = 0 (corresponding to fewer clusters), as described in
Section 7.4.

t = 99 t = 99.9 t = 99.99

Table 7.19: Left and right hemisphere clusterings (in the top and bottom row, respectively), gen-
erated by thresholding the sample covariance matrix at various levels t, followed by the Louvain
method at the largest tuning parameter value k considered by Louvain (corresponding to more
clusters), as described in Section 7.4.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.2043 0.2199 0.2242 0.2326 0.2277 0.2422 0.2447 0.23
0.5 0.2112 0.224 0.2315 0.2329 0.2343 0.2283 0.2197 0.2185

0.5208 0.1964 0.1895 0.2264 0.2385 0.2317 0.2282 0.2348 0.2358
0.5425 0.1905 0.1972 0.1951 0.2181 0.2268 0.2295 0.2289 0.2255
0.5651 0.1833 0.197 0.1973 0.1981 0.2125 0.2268 0.2242 0.2213
0.5887 0.1838 0.1845 0.1992 0.2067 0.1953 0.2057 0.2078 0.2155
0.6132 0.1702 0.1752 0.198 0.1995 0.2121 0.2014 0.2036 0.1891
0.6388 0.1698 0.1693 0.1864 0.1837 0.1859 0.191 0.1831 0.1785
0.6654 0.1538 0.1854 0.1759 0.1701 0.1748 0.1844 0.1805 0.1467
0.6931 0.1652 0.1689 0.1664 0.1686 0.1722 0.162 0.1472 0.0516
0.722 0.1382 0.1536 0.1556 0.1536 0.1442 0.1394 0.0758 —

Table 7.20: The Jaccard scores (7.12) for the clusterings of the left hemisphere in Table
7.10, generated by HP-CONCORD using different (λ1, λ2) penalty parameters, followed by
the persistent homology method at the tuning parameter ε = 3 (corresponding to fewer
clusters), as described in Section 7.4. “—” indicates a degenerate clustering that puts each
voxel into its own cluster.

λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.2258 0.2315 0.2461 0.2279 0.2451 0.2436 0.2311 0.2431
0.5 0.2036 0.2245 0.2328 0.2326 0.2427 0.2314 0.2654 0.2528

0.5208 0.2255 0.2166 0.2317 0.2311 0.2427 0.2399 0.2381 0.2417
0.5425 0.21 0.2172 0.232 0.2355 0.2279 0.2299 0.245 0.2349
0.5651 0.2233 0.2182 0.2236 0.2341 0.2367 0.231 0.2286 0.2413
0.5887 0.2055 0.2187 0.2179 0.2369 0.2261 0.2321 0.2279 0.2067
0.6132 0.1843 0.2002 0.2245 0.2224 0.2113 0.219 0.2256 0.21
0.6388 0.1817 0.1843 0.2024 0.204 0.2154 0.2161 0.1981 0.1826
0.6654 0.1786 0.1678 0.1824 0.1891 0.1952 0.1749 0.1851 0.1273
0.6931 0.1652 0.1714 0.1686 0.1736 0.1714 0.1702 0.1284 0.061
0.722 0.1372 0.1562 0.162 0.1563 0.1364 0.1264 0.0875 —

Table 7.21: The Jaccard scores (7.12) for the clusterings of the right hemisphere in Table
7.11, generated by HP-CONCORD using different (λ1, λ2) penalty parameters, followed by
the persistent homology method at the tuning parameter ε = 3 (corresponding to fewer
clusters), as described in Section 7.4. “—” indicates a degenerate clustering that puts each
voxel into its own cluster.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.0507 0.051 0.0527 0.0532 0.0511 0.0503 0.051 0.0518
0.5 0.053 0.0518 0.052 0.0519 0.0526 0.0531 0.0517 0.0516

0.5208 0.0517 0.0519 0.0527 0.0517 0.0524 0.0526 0.0522 0.0536
0.5425 0.0522 0.0519 0.0509 0.0516 0.0516 0.0514 0.0532 0.0533
0.5651 0.0514 0.0524 0.0512 0.0528 0.0529 0.0518 0.0518 0.0533
0.5887 0.0498 0.0524 0.0534 0.0521 0.0522 0.0521 0.0526 0.0532
0.6132 0.0504 0.0501 0.0531 0.052 0.0523 0.0529 0.0523 0.0505
0.6388 0.053 0.052 0.0494 0.0502 0.0517 0.0502 0.0516 0.0543
0.6654 0.0526 0.0529 0.0536 0.0533 0.0537 0.0506 0.0535 0.0558
0.6931 0.0529 0.054 0.0518 0.052 0.0532 0.0543 0.0566 0.0815
0.722 0.0549 0.0528 0.0525 0.0534 0.056 0.0561 0.0718 0.0884

Table 7.22: The Jaccard scores (7.12) for the clusterings of the left hemisphere in Table
7.12, generated by HP-CONCORD using different (λ1, λ2) penalty parameters, followed by
the persistent homology method at the tuning parameter ε = 0 (corresponding to more
clusters), as described in Section 7.4.

λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.0532 0.0506 0.0519 0.0516 0.0522 0.0521 0.0516 0.0508
0.5 0.0538 0.0536 0.0513 0.0512 0.0515 0.0525 0.0524 0.0506

0.5208 0.052 0.0519 0.0521 0.0509 0.0527 0.0517 0.0522 0.0509
0.5425 0.0505 0.0523 0.0528 0.0532 0.0511 0.0529 0.0526 0.0522
0.5651 0.0523 0.0501 0.0513 0.0513 0.053 0.0521 0.0512 0.0528
0.5887 0.0516 0.0528 0.0504 0.0515 0.0518 0.0515 0.0523 0.0511
0.6132 0.0505 0.0517 0.0525 0.0534 0.0511 0.0516 0.0543 0.0534
0.6388 0.0514 0.0543 0.0516 0.0522 0.0519 0.0533 0.0532 0.0544
0.6654 0.0544 0.0528 0.0514 0.0518 0.0525 0.0529 0.0565 0.061
0.6931 0.0527 0.0555 0.0525 0.0528 0.055 0.0529 0.0597 0.0845
0.722 0.0535 0.0524 0.0535 0.0527 0.0553 0.0566 0.0698 0.0918

Table 7.23: The Jaccard scores (7.12) for the clusterings of the right hemisphere in Table
7.13, generated by HP-CONCORD using different (λ1, λ2) penalty parameters, followed by
the persistent homology method at the tuning parameter ε = 0 (corresponding to more
clusters), as described in Section 7.4.
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λ1

λ22 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.1069 0.1101 0.0956 0.1042 0.1015 0.0958 0.0901 0.0905
0.5 0.1123 0.1076 0.1065 0.102 0.1089 0.1053 0.1007 0.107

0.5208 0.1097 0.111 0.1092 0.1096 0.1065 0.0982 0.1001 0.105
0.5425 0.1313 0.1123 0.1148 0.1085 0.1166 0.1143 0.1065 0.117
0.5651 0.1258 0.1216 0.1134 0.1167 0.1164 0.1097 0.1151 0.12
0.5887 0.129 0.1228 0.1233 0.1091 0.1203 0.1205 0.1238 0.1188
0.6132 0.1337 0.1294 0.1298 0.1289 0.1185 0.1285 0.1231 0.1455
0.6388 0.1477 0.1368 0.1363 0.1296 0.131 0.1344 0.1473 0.1517
0.6654 0.1486 0.1486 0.1458 0.1405 0.1488 0.1534 0.1486 0.1583
0.6931 0.1469 0.1453 0.1512 0.1483 0.146 0.1627 0.1706 0.0273
0.722 0.1581 0.1608 0.1557 0.1608 0.1661 0.1779 0.0461 0.0061

Table 7.24: The Jaccard scores (7.12) for the clusterings of the left hemisphere in Table
7.14, generated by HP-CONCORD using different (λ1, λ2) penalty parameters, followed by
the persistent homology method Louvain method at the tuning parameter value k = 0
(corresponding to fewer clusters), as described in Section 7.4.

λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.1105 0.1014 0.1034 0.1042 0.0988 0.0976 0.0976 0.0935
0.5 0.1084 0.1064 0.1011 0.1105 0.1003 0.1012 0.0992 0.1022

0.5208 0.1263 0.1059 0.1195 0.1056 0.0995 0.1059 0.1 0.1051
0.5425 0.122 0.1167 0.1113 0.1111 0.0997 0.1085 0.1125 0.0997
0.5651 0.1219 0.1212 0.1144 0.1022 0.1044 0.1109 0.1029 0.1189
0.5887 0.1218 0.1205 0.1184 0.1219 0.1159 0.1202 0.1183 0.135
0.6132 0.132 0.1259 0.1339 0.1265 0.1269 0.124 0.1294 0.1361
0.6388 0.1362 0.1364 0.1289 0.1286 0.1318 0.1279 0.1357 0.158
0.6654 0.1483 0.1451 0.1428 0.142 0.1438 0.1498 0.1626 0.1675
0.6931 0.1518 0.1552 0.1451 0.1473 0.1552 0.1671 0.1736 0.027
0.722 0.1648 0.1725 0.1556 0.1607 0.1643 0.1758 0.0482 0.0061

Table 7.25: The Jaccard scores (7.12) for the clusterings of the right hemisphere in Table
7.15, generated by HP-CONCORD using different (λ1, λ2) penalty parameters, followed by
the persistent homology method Louvain method at the tuning parameter value k = 0
(corresponding to fewer clusters), as described in Section 7.4.
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λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.1678 0.1666 0.154 0.14 0.1297 0.135 0.1311 0.1284
0.5 0.1632 0.1778 0.1595 0.1515 0.1537 0.1454 0.128 0.1422

0.5208 0.1578 0.1719 0.1589 0.1663 0.1604 0.1572 0.145 0.1609
0.5425 0.1538 0.1572 0.166 0.1542 0.1702 0.1689 0.1684 0.1569
0.5651 0.1503 0.1602 0.1541 0.1473 0.1561 0.1587 0.1502 0.155
0.5887 0.1526 0.158 0.1537 0.1622 0.1564 0.1547 0.149 0.1338
0.6132 0.1438 0.1425 0.154 0.1487 0.151 0.1489 0.1327 0.1191
0.6388 0.1414 0.1453 0.134 0.1431 0.1393 0.1357 0.1238 0.0967
0.6654 0.1252 0.1263 0.1403 0.1301 0.1279 0.1196 0.0987 0.0653
0.6931 0.1137 0.1159 0.1161 0.1163 0.109 0.0937 0.0701 0.0216
0.722 0.1008 0.1005 0.1015 0.0961 0.0891 0.0679 0.0298 0.0061

Table 7.26: The Jaccard scores (7.12) for the clusterings of the left hemisphere in Table
7.16, generated by HP-CONCORD using different (λ1, λ2) penalty parameters, followed by
the persistent homology method Louvain method at the largest tuning parameter value k
considered by Louvain (corresponding to more clusters), as described in Section 7.4.

λ1

λ2 0.1024 0.128 0.16 0.2 0.25 0.3125 0.3906 0.4883

0.48 0.1719 0.1697 0.1633 0.1763 0.1499 0.1475 0.1442 0.1365
0.5 0.1689 0.1675 0.167 0.17 0.1661 0.1587 0.1411 0.1729
0.5208 0.1651 0.1581 0.1808 0.1694 0.1655 0.1528 0.153 0.1512
0.5425 0.1697 0.1556 0.1634 0.1637 0.1591 0.1581 0.1857 0.1598
0.5651 0.1651 0.1663 0.1509 0.1554 0.1567 0.1542 0.151 0.1416
0.5887 0.1492 0.1602 0.1635 0.1541 0.1512 0.1586 0.1506 0.1536
0.6132 0.1474 0.1596 0.1586 0.1593 0.1649 0.1548 0.1436 0.1168
0.6388 0.1321 0.1337 0.1495 0.1502 0.1458 0.1272 0.1188 0.0938
0.6654 0.119 0.1203 0.1233 0.1221 0.1185 0.1125 0.0973 0.0635
0.6931 0.112 0.1136 0.1128 0.111 0.107 0.0932 0.0694 0.0213
0.722 0.0943 0.098 0.0994 0.0937 0.0832 0.0672 0.0299 0.0061

Table 7.27: The Jaccard scores (7.12) for the clusterings of the right hemisphere in Table
7.17, generated by HP-CONCORD using different (λ1, λ2) penalty parameters, followed by
the persistent homology method Louvain method at the largest tuning parameter value k
considered by Louvain (corresponding to more clusters), as described in Section 7.4.
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7.6 Conclusions

This chapter presents HP-CONCORD, a highly scalable inverse covariance matrix esti-
mation method. Based on regularized pseudolikelihood approach, our parallel algorithm
leverages distributed memory systems to recover the underlying graph structure at un-
precedented dimensionalities. HP-CONCORD exhibits good parallel scaling to thousand
of nodes, taking advantage of the aggregate memory across the system to analyze previ-
ously intractable data sets. Implementation of our approach is freely available as source
code at https://bitbucket.org/penpornk/spdm3-hpconcord and as a compiled global
user module on Edison system at National Energy Research Scientific Computing Center
(http://www.nersc.gov/).

HP-CONCORD bridges a computational scalability gap between statistically sound CON-
CORD methods and practical usability for some of the largest modern day datasets. HP-
CONCORD is a statistically grounded and extremely scalable unsupervised learning method
that is able to sift through close to a trillion pairwise relationships to find the most prominent
ones.

We presented multiple version of HP-CONCORD that are optimized for different sparsity
and dimensionality settings, using communication-avoiding linear algebra routines to give
both versions good parallel efficiency. We analyzed the performance of HP-CONCORD
on synthetic data sets, comparing it to the dominant method for large problems, BigQUIC.
While the two methods have similar performance on a single compute node with a chain graph
of dependences, HP-CONCORD outperforms BigQUIC for a randomized graph on a single
node for the problem sizes we tested. By using multiple compute nodes, HP-CONCORD
decreases the running time by orders of magnitude.

Unlike the BigQUIC method, HP-CONCORD does not make any assumptions about the
nature of underlying dependency structure. This makes HP-CONCORD more general, but
not as fast as they could be for those special cases. For example, BigQUIC benefits from pre-
selecting the active set and graph clustering to divide up computation into separate chunks.
Scalability and speed-up of BigQUIC benefits from approximate block structure and any
deviation from the assumption is corrected by the method. These improvements would also
be beneficial for HP-CONCORD and a good future research direction.

In addition to the synthetic data, we presented a case study using HP-CONCORD to
recover the underlying connectivity from a resting state fMRI dataset leveraging many pro-
cessors. From the HP-CONCORD output, a clustering step takes the graphical model struc-
ture and generates a data-driven functional connectivity parcellation. This analysis shows
good agreement with previous analysis done with domain knowledge, and will lead to addi-
tional work in collaboration with domain experts on the implications to our understanding
of functional connectivity of the brain.
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Chapter 8

Conclusions

This thesis explored communication avoidance in algorithms with sparse all-to-all interac-
tions, some of which are the first applications of the general communication lower bound the-
orem [47, 107, 48] outside of linear algebra that include both lower bounds and experimental
analysis. We proved that replication techniques reduce communication costs asymptotically,
and those reductions scale with the replication factor. We showed that replication improves
the total running time, even with sparsity in the interaction patterns, although the best mea-
sured performance does not always come from maximum replication. Efficient and scalable
implementations of these all-to-all problems require new parallel algorithms, restructuring
and reformulating the computation to effectively avoid communication. Merely optimizing
näıve algorithms post-implementation is not sufficient. For example, communication over-
lapping gives at best 2× speedup and cannot help much when the communication time far
exceeds the computation time, which is often the case when we scale to a large number of
cores. Therefore, the communication complexity should be a first class consideration when
designing algorithms, just as computation complexity is. It is also important to consider the
full algorithmic context and not just optimizing application kernels separately.

Chapters 3 and 4 derived communication lower bounds and communication-optimal al-
gorithms for the 2-way and k-way interaction N-body problems, without and with cutoff.
These results also showed that structural sparsities such as cutoff and symmetry sparsity
could be rearranged to use dense computation to achieve communication optimality. Chap-
ters 5 and 6 gave communication lower bounds for the sparse-dense matrix multiplication
problem and new communication-efficient 1.5D matrix multiplication algorithms based on
different matrix layouts. Chapter 7 applied the 1.5D matrix multiplication algorithms to
implement a massively parallel sparse inverse covariance matrix estimator. Our implemen-
tation of the 1.5D multiple-replication-factor matrix multiplications and HP-CONCORD are
open source and available online at https://bitbucket.org/penpornk/spdm3-hpconcord.
Table 8.1 summarizes our lower bound and empirical speedup contributions. Even though
we focused on distributed-memory supercomputers, our algorithms can be adapted to cloud
computer settings as well because our performance model still applies and we only need to
know the available memory size.
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Computation
Lower

Bounds
Communication

Optimality
Largest speedup

reported

All-pairs 2-body [65] Tight Optimal 11.8×
2-body with cutoff [65] Tight Optimal 2×
All-unique-triplets 3-body [109] Tight Optimal 42×
All-unique-tuples k-body with cutoff [109] Tight Optimal N/A
Sparse-dense matrix-matrix multiplication [111] Not tight N/A 100×
Sparse inverse covariance matrix estimation [110] N/A N/A 10.18×

Table 8.1: Communication lower bounds, optimality, and empirical speedups of the communication-avoiding
algorithms presented in this thesis. All algorithms listed as communication-optimal are optimal for all
memory sizes. Speedups reported are compared to non-replicating algorithms.

A common parallelization pitfall is to simply partition all data to p equal parts since
processors will often have unused memory to spare, i.e., given a problem size n and p pro-
cessors, the total memory per processor is often more than n/p. The key to communication
optimality for these all-to-all algorithms is to utilize all available memory. The challenge
is to figure out how much of the memory should be allocated to what parts of the inputs
and outputs, which is application-specific. For the N-body problem, there is only one input
array and the output size is asymptotically the same as input; we showed that the opti-
mal solution is to store O(M) particles where M is the size of the memory available to a
processor. For the sparse-dense matrix-matrix multiplication problem C = A × B, there
are two inputs (A and B) and one output (C), all of which can have asymptotically differ-
ent sizes. We have not found a communication-optimal algorithm nor tight communication
lower bounds for the problem, but we know from the lower bounds that the algorithm would
store cA nnz(A)/p words of A, cB nnz(B)/p words of B, and cC nnz(C)/p words of C, where
cA nnz(A)/p+ cB nnz(B)/p+ cC nnz(C)/p = O(M) for some constants cA, cB, and cC . The
situation is more complicated for the sparse inverse covariance matrix estimation problem
because there are more variables. There is ongoing research to find communication lower
bounds and optimal loop tiling factors (leading to the amount and exact location of each
input and output to be stored) for loop nests with array subscripts that are affine functions
of loop indices [47, 107, 48].

Algorithms with multiple dependent steps, such as time-stepping algorithms and itera-
tive algorithms, benefit significantly from communication avoidance since they often require
aggressive scaling. In the N-body problem, each timestep depends on the previous timestep,
and each simulation usually needs thousands of timesteps to discover useful information.
To get the whole simulation done in a reasonable amount of time, each timestep needs to
be very fast. Another example is the sparse inverse covariance matrix estimation in Chap-
ter 7. The algorithm can take hundreds of iterations to converge, so to get a short time
to convergence, each iteration needs to be done quickly. For example, in Figure 7.6a, Obs’
time to convergence for ρ = 80K features and n = 100 observations in the chain graph
case was 3.1455 seconds on 256 nodes. There were 36 gradient iterations and a total of 93
line search steps (across all gradient iterations). This translates to 36 distributed matrix
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transposes, 36 dense-dense 80K × 100 × 80K matrix multiplications, and 93 sparse-dense
80K× 80K× 100 matrix multiplications. This implies these 165 distributed operations must
take 3.15/165× 1000 = 19 milliseconds on average to run across all 6,144 cores.

8.1 Future Work

The work in this thesis leads to several open questions and opportunities for additional
research, ranging from improving our performance model based on what we observed in
experiments, to general matrix multiplication lower bounds and algorithms, to applying
SpDM3and HP-CONCORD to other applications.

Computation-latency-bandwidth tradeoffs. Previous work shows tradeoffs between
computation, latency, and bandwidth costs for certain applications such as dense triangular
solver [168], dense LU factorization [168], Krylov subspace methods [40], and block coordi-
nate descent methods [63], most of which trade computation and bandwidth with latency
costs. Chapter 5 shows that there is a latency-bandwidth tradeoff in the matrix multiplica-
tion problem as well, when the operand sizes are vastly different. Chapter 7 has numerous
tradeoffs to explore including redundant computations. Instead of minimizing latency and
bandwidth individually and assuming the computation workload is always the same, we
would focus on minimizing the total running time as a whole instead, taking γ, α, and β as
inputs.

Variable flop rates. As shown in Chapter 5, the local matrix multiplication efficiency
varies significantly with the shapes of the input matrices, to the point that sometimes it is
the deciding factor between two algorithm variants. To handle this, our performance model
should have γ be a function instead of a constant. The local matrix multiplication might
need some tuning as well to make γ predictable. α and β are also varying in practice, but
α is hard to statically model since it depends on the current network congestion, and we
assume that our message size is large enough to attain the best bandwidth cost and that β
stays roughly constant.

General matrix multiplication. To the best of our knowledge, there are no communi-
cation lower bounds for general matrix multiplications where operands can have different
shapes and sparsities. Ballard et al. [25] gave lower bounds for matrices with uniformly-
distributed nonzereos (Erdős-Rényi) but assumed that both operands are square and have
the same number of nonzeroes per row. We are interested in deriving the communication
lower bounds and communication-optimal algorithms for the general multiplication of Erdős-
Rényi matrices. Adapting the recursive partitioning multiplication from Demmel et al. [60]
to also account for sparsities when splitting dimensions is worth exploring.
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Tuning HP-CONCORD. HP-CONCORD’s performance could still be nontrivially im-
proved: We proposed the symmetric 1.5D multiplication algorithm in Section 6.3 but have
not taken advantage of the symmetry in the HP-CONCORD implementation. We plan to
use this to compute S = XTX in Cov to save half the floating-point operations. We could
merge multiple local operations to minimize the number of passes through the data (or apply
blocking). Overlapping communication and computation would also help with the rest of
the communication we cannot avoid. We could also use the roofline model [177] on each
kernel for fine-tuning.

Other applications. There are many applications with distributed sparse-dense matrix-
matrix multiplication (SpDM3) as one of their bottlenecks, many of them are iterative algo-
rithms. They would benefit from the 1.5D matrix multiplication algorithms. HP-CONCORD
can also be used to analyze many more datasets other than the human brain fMRI data.
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