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Abstract 

 

EchoBot: Facilitating Data Collection for Robot Learning with the Amazon Echo 

by 

Rishi Kapadia 

Master of Science in Electrical Engineering and Computer Science 

University of California, Berkeley 

Professor Ken Goldberg, Chair 

 

The Amazon Echo and Google Home exemplify a new class of home automation 
platforms that provide intuitive, low-cost, cloud-based speech interfaces. We present 
EchoBot, a system that interfaces the Amazon Echo to the ABB YuMi industrial robot to 
facilitate human-robot data collection for Learning from Demonstration (LfD). EchoBot 
uses the computation power of the Amazon cloud to robustly convert speech to text and 
provides continuous speech explanations to the user of the robot during operation. We 
study human performance with two tasks, grasping and “Tower of Hanoi” ring stacking, 
with four input and output interface combinations. Our experiments vary speech and 
keyboard as input interfaces, and speech and monitor as output interfaces. We evaluate the 
effectiveness of EchoBot when collecting infrequent data in the first task, and evaluate 
EchoBot’s effectiveness with frequent data input in the second task. Results suggest that 
speech has potential to provide significant improvements in demonstration times and 
reliability over keyboards and monitors, and we observed a 57% decrease in average time 
to complete a task that required two hands and frequent human input over 11 participants. 
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1 Introduction 
 
 

With the emergence of voice activation systems, a new class of home automation 
platforms has appeared in the commercial market. These systems utilize speech recognition 
and natural language processing to facilitate interactions with devices. Although voice-
enabled interfaces are still in their early stages, they have been used to interact with 
speakers, smartphones, television sets, and other electronics. Speech interfaces also have 
potential to enhance the efficiency of interactions with robots. A common interaction 
between humans and robots is to train the robot to perform a task according to a desired 
policy. One approach to training robots is Learning from Demonstration (LfD), where a 
human provides several demonstrations of a task to the robot, and the robot learns to 
perform that task. These demonstrations may consist of segments of arm trajectories or 
keyframes of robot poses at periodic time intervals, and are specified to the robot as input. 
The robot uses this collected data to learn a policy to perform the task. 
 

We explore how a voice activation system may improve data collection for LfD. 
Using the Amazon Echo [4], we implemented EchoBot1,2, a 2-way speech interface for 
communication between humans and robots during data collection for robot learning. 
 
 
 

1.1 Motivation 
 
 

Learning from Demonstration (LfD) is a promising approach to teaching robots via 
demonstrations of a desired behavior. There currently exist several methods for providing 
these demonstrations, including kinesthetic teaching, whereby the robot's passive joints are 
guided through the performance of the desired motion [5]. The studies in [2, 43] rely on 
dialogue systems that enable subjects to provide speech commands to effectively control 
the collection of kinesthetic demonstrations. We use a commercial home automation 
system as our voice interface to the robot to aid in collecting data for LfD. 

 
A motivation for involving speech systems into robotics is to facilitate interactions 

between human workers and robots in the workplace. A speech interface may help to create 
a persona for the robot, and establish common ground and likability. It may possibly be 

                                                
1 Code is available at https://github.com/rishikapadia/echoyumi 
2 Video available at https://www.youtube.com/watch?v=XgaGeCsERU8 
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more scalable in the future to have workers specify instructions to the robot using voice 
commands as opposed to typing directions, or safer than pointing to objects in the 
workplace. Another important motivation for introducing an audio interface is that humans 
have a limited working memory. However, humans are able to integrate multiple 
modalities, such as visual and auditory. EchoBot uses the auditory modality to assist the 
user in the visual and kinesthetic task of data collection. 
 
 
 

1.2 System Criteria 
 
 

We focus on a speech interface as a medium for input and output. We assume that 
there is only one person speaking during the command transmission and that the user 
knows what keywords issue each command. To be usable and convenient to the user, 
response times to user commands must have a latency similar to the delay between two 
conversing humans. 
 
 
 
 

1.3 System Overview 
 
 
 
We integrated the Amazon Echo and the YuMi industrial robot from ABB [1] into 

EchoBot. The Echo is a wireless speaker and voice command device. It is a low-cost, 
commercially-available product with a text-to-speech interface for natural language 
processing. We use the Echo for its speech recognition system, which is robust to voice 
from different locations and at different pitches and intonations. The YuMi is a dual-arm, 
human-safe industrial robot with flexible joints and grippers, and offers state-of-the-art 
robot control. EchoBot as a system allows users to utter commands to the Echo that are 
relayed as actions to the YuMi robot, and communicates vocal feedback from the robot 
back to the user while performing those actions. 

 
We evaluate EchoBot in 2 experiments as an input and output interface to perform 

data collection using robots, and find that it increases collection efficiency when the user 
needs to input data frequently, and both of the user's hands are occupied with the task. 
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This paper contributes: 
 

1) The first implemented system architecture interfacing the Amazon Echo home 
automation speech interface to the ABB YuMi industrial robot. 

2) Experiments with two robot tasks, grasping and "Tower of Hanoi" ring stacking, 
comparing four interface combinations varying input and output with keyboard, 
monitor, and speech. 

 
 
 
 
 
 
 
 

 
Figure 1: EchoBot integrates the Amazon Echo speech interface with the ABB YuMi 
industrial robot for data collection. 
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2 Related Work 
 

2.1 Data Collection for Learning from 
Demonstration 

 
 
LfD is a promising approach to teach policies to robots through demonstrations of 

a desired behavior. There currently exist several methods for providing demonstrations to 
robots, including teleoperation and kinesthetic teaching [5]. In teleoperation, the 
demonstrator controls the end-effector position or joint angles of the robot using a device 
such as a joystick or game controller [25]. In kinesthetic teaching, the human physically 
guides the robot's arms and grippers to complete the task. The robot uses several such 
demonstrations of the task as a sampling of the policy intended by the human, and attempts 
to find the underlying policy to perform the task. Both data collection methods often require 
the demonstrator to use both hands, which can complicate denoting the start and end of a 
demonstration using a game controller or button press. 

 
Several studies have utilized voice commands to facilitate data collection of 

kinesthetic demonstrations in LfD systems. In [43], subjects were tasked with using voice 
commands to start and end demonstrations, and afterward the robot reproduced the learned 
skill. The speech interface of Akgun et. al [2] had similar functionality. The kinesthetic 
trajectories were provided in keyframes, where voice commands were used to indicate 
where the demonstration was segmented by the subject. In addition to keyframe and 
segmentation functionality, EchoBot also provides the user with prompts and continuous 
audio output detailing the status of the robot. 

 
 
 

2.2 Home Automation Systems 
 
 
The Echo has been used as an interface for products by Uber, StubHub, Fitbit, 

Domino's Pizza, and many others. Samsung revealed in late 2016 that all of its WiFi-
enabled robotic vacuums can now be controlled using the Echo. Other voice interfaces 
include Apple's Siri in 2011 and Homekit in 2014, a collection of smart devices for users 
to control around the house. In November 2016, Google Home was introduced, which 
offers the capability of Google, Inc.'s search engine. Other smart assistants include ivee 
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Voice, Cubic, Mycroft, Sonos Play, Hal, Comcast Xfinity TV remote, and many others. To 
our knowledge, EchoBot is the first of these home automation systems that provides voice 
interaction to an industrial robot for data collection. 

 
Prior work has studied voice activation to control robots and other machines. An 

early instance of voice recognition used in surgical robotic assistants controlled the end 
effector location of a robotic arm during laparoscopic surgery [34], where the surgeon 
could command the arm to move in the 3 axial directions or to predefined locations at a 
constant speed. Furthermore, the constraints or failure modes of the robot were conveyed 
audibly to the surgeon, such as when a joint had exceeded its limits, to prevent damage to 
the robot and patient. Dean et al. [10] used a speech interface to control the da Vinci, a tele-
operation robotic surgical system, to perform simple tasks like measuring the distance 
between two locations and manipulating visual markers on the display. Henkel et al. [19] 
describes an open-source voice interaction toolkit to serve as a medium between dependent 
victims, such as trapped earthquake survivors, and the outside world. Gesture and voice 
interfaces were developed to help disabled people operate a remote controller for home 
automation [21], to facilitate rehabilitation for people with disabilities [26], and to help 
children with autism [33]. Other examples of using voice control for robots include [16, 
18, 29, 42]. 

 
 
 

2.3 Robots and Speech 
 
 
Ray et al. [32] found that humans prefer to interact with robots using speech. Cha 

et al. [8] have shown that human perception of robot capability in physical tasks can be 
affected by speech. Takayama et al. [37] found that perception of robots is influenced not 
only by robots showing forethought, but also by the success outcome of the task and 
showing goal-oriented reactions to task outcomes. The acceptance of robots is important 
in making robots a part of workplaces and homes [6, 9], and the perceived capability of 
robots largely influences robot acceptance [9]. Srinivasa et al. [36] used a speech synthesis 
module on their robotic butler to interact with humans while completing tasks such as 
collecting mugs. When humans engaged with robots using speech, their confidence that 
the robot was a reliable source of information was shown to increase [28]. It has also been 
shown that there are noticeable drops in trust as reliability of the robot decreases [11, 13, 
14], and only once reliability recovers does trust start to increase monotonically [12, 27]. 
These works may suggest that in the event of failures, conversational speech might be able 
to help restore trust in the robot's capability, and that the content of the speech has an impact 
on the effectiveness of a robot. 
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Kollar et al. [24] extracted a sequence of directional commands from linguistic 
input for a humanoid robot or drone to follow. Tellex et al. [38] trained an inference model 
with a crowdsourced corpus of commands to allow humans to manipulate an autonomous 
robotic forklift with natural speech commands. In cases where the robot was told to perform 
an action that it did not understand, Cantrell et al. [7] demonstrated an algorithm where a 
human could explain the meaning of that action to the robot, and the robot would then be 
able to carry out instructions involving that action. There are also examples of robots that 
modify their behavior based on the circumstance, such as [35, 40, 41], and studies of how 
humans expect to interact with a robot [15, 17, 22, 23, 30]. 
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3 System Design 
 

 
 
 
 

 
 

Figure 2: System diagram. When (1) a user asks the Echo a question, (2) a request is sent 
to Amazon’s servers over WiFi, which converts the speech to a robot command. (3) 
Amazon’s servers send an HTTPS request to our server running on our local computer. (4) 
Our local server communicates actions to either the classifier or interaction database, 
depending on the command. (5) The robot manipulation program polls that database for a 
new command, and (6-7) communicates the actions and responses via Ethernet to the YuMi 
robot. (8) The robot program logs messages to the audio stream database, (9) which is 
polled by the local server. (10a) That message is played to the user through the computer’s 
speakers in an audio stream. After the local server received the HTTPS request in step (2) 
and logs to the appropriate database (3), it returns an HTTPS response back to Amazon’s 
server (10b), which relays the "end of request" command to the Echo (11). 
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3.1 System Architecture 
 
To enable the Amazon Echo to communicate with the ABB YuMi robot, we 

implemented a web server on a local Linux desktop computer using the Django web 
framework, implemented in the Python programming language. 

 
Our local Django web server is based on the pycontribs/django-alexa 

repository, which is publicly available on GitHub.com. We modified the code in the public 
repository to support the current format of Amazon's JSON messages and to handle our 
own custom application on the Amazon Echo. 

Our web application exposes a REST API endpoint at the relative address 
/alexa/ask of our server to communicate with the Amazon Echo (see Figure 2). This 
endpoint handles all incoming HTTPS requests and dispatches them to the appropriate 
Python functions that we define for various commands to EchoBot. We specify the public 
web address of our local server on the Alexa Skills Kit [3] web portal. 
 
 

3.2 Communication with Amazon 
 
Since we created a custom application on the Echo, Amazon requires that we 

specify a comprehensive, textual list of commands on the Alexa Skills Kit web portal 
beforehand. One or more invocation phrases, or human speech commands, must be 
specified for each robot command, and providing more phrases increases the robustness of 
Amazon's speech-to-command correspondence algorithm. Given this set of predefined 
possible human phrases to robot commands, Amazon's servers then compute the closest 
match of the speech to the corresponding command. These commands can contain 
parameters, or arguments, which are words or phrases that are variable in a given 
command. However, the set of possible parameters must be defined beforehand as well, 
which means that the system is unable to handle wildcard phrases for custom commands. 

 
The Amazon voice service also places constraints on what a user must say to 

convey a human speech command. First, the Echo must be triggered by a "wake word", 
which can be either "Alexa", "Echo", or "Amazon", where we have chosen to use "Echo". 
Then, the user must specify their command in the form of <action> <connecting word> 
<application name> <command>, where we have named our application "YuMi", the 
connecting word is optional, and "command" refers to an invocation phrase. For example, 
to issue the command for the robot to grasp all parts, the user could say, "Echo, ask YuMi 
to pack all of the parts" or "Echo, tell YuMi to pack all of the parts". The command prefix 
must be included in the human speech command because we created a custom application 
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with the Echo, rather than a native Amazon feature such as time or weather reports. If users 
want to issue frequent voice commands to the Echo, they may only say <command> for all 
following robot commands, provided that each command is issued within 5 seconds of the 
previous command. 

 
When a user speaks a command to the Echo, an HTTPS request is sent over WiFi 

to Amazon's servers to convert the speech to text. The Amazon server then makes another 
HTTPS request in JSON format to our local server with the name of that command and 
potentially any parameters. The mechanics from the Amazon Echo to Amazon's servers 
are an abstraction, and the interface Amazon provides is speech as input and JSON data as 
output. Our local server parses the received JSON request and calls the function 
corresponding to that command name with any required or optional parameters. That 
function communicates the appropriate actions to a robot manipulation program via a 
database connected to our local server and accessible from anywhere on that same machine. 
The robot manipulation program communicates directly to the robot via Ethernet. Upon 
completion, the function on our local server sends an HTTPS response, also in JSON 
format, back to Amazon's servers to be sent back to the Echo. This response may contain 
a phrase to be spoken through the Echo's speakers to the user, a signal for the Echo to 
continue listening for more commands, or a signal indicating the end of the command (see 
Figure 2). 

 
The delay between the time the user finishes speaking to the Echo and the time our 

local server receives the HTTPS request is on average 2.1 seconds (see Figure 2, steps 1-
3). The delay between the time the user finishes speaking to the Echo and the time the Echo 
receives the HTTPS response is 2.2 seconds (see Figure 2, steps 1-3,10b-11). This includes 
0.5 seconds of delay after the user finishes speaking for the Echo to register that there is no 
more speech to send to Amazon's servers. 

 
 

 

3.3 EchoBot Audio Output 
 
The Amazon Echo API does not allow for the Echo to speak a series of phrases 

unless the user actively queries each one. Therefore, we routed the audio stream to the local 
server's computer speakers instead, to give the user explanation updates almost in real-time 
(see Figure 2). 

 
To launch the audio stream, a user states, "Echo, ask YuMi to explain what it is 

doing." (See Figure 2 steps 1-3,10a.) Then, messages are logged from the main robot script 
to the audio stream database used by the local server (see Figure 2 step 8). As a message 
arrives into the audio stream database queue, the server converts the message into an audio 
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signal using a text-to-speech library based on Google Translate's web API [39]. The server 
polls the database every 0.04 seconds, so the user is presented explanations with 
imperceptible latency as the messages arrive (see Figure 2 step 9). In the case where several 
messages are logged at the same time, only the last one is played, to reduce queuing delays. 
We have found that polling the database scales well as the total number of messages grows, 
since only the last message in the database needs to be checked at each poll. 

 
Google Translate provides speech audio that sounds very natural, but because the 

text-to-speech library makes an HTTP request to convert the audio, translations would 
incur an average latency of approximately 2.5 seconds. Therefore, our local server caches 
these text-to-audio translations for immediate access, and defaults to a different text-to-
speech library [31] that incurs latency on the order of 10 milliseconds. 

 
We also utilized speech, music, and sound effects in an attempt to humanize the 

robot using EchoBot. When there are no explanations in the queue to play to the user, 
relaxing but interesting background music is played to fill in the silent gaps between 
messages. If the background music is not desired, there is also a command to disable it, or 
play a different song using the built-in functionality of the Amazon Echo. 

 
 
 

3.4 Data Collection for Classifier Calibration 
 
Many LfD demonstrations require collecting poses or trajectories of the robot's arm 

positions as a human physically guides the arms and grippers. These trajectories may 
include several segments, where the endpoints of each segment are recorded. An example 
segment may be moving an arm's end effector from one location to another, or the actions 
of closing and opening the gripper. Robot arm trajectories can be recorded using buttons 
to specify the endpoints of each trajectory segment, where one button maps to a "start 
recording" command and another button maps to a "stop recording" command. This 
method has several shortcomings, including that demonstrators: 

 
1) Often need both hands to control the robot's movements and can't stop to press a button. 
2) Have to remember the mapping of buttons to commands. 
3) Have to check the monitor display for cues on when the button press has been registered 

and the robot is prepared to record a trajectory. 
 
EchoBot allows the user to speak commands such as "Start recording" and "Stop 

recording" to the Echo and achieve more intuitive control over data collection. Internally, 
when our server receives the user command, it sends the command to the main robot script 
via the classifier database (see Figure 2, step 4). Concurrent accesses are not a major issue 
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for this database. It is modified only when EchoBot receives a data collection command, 
which is limited by the rate of incoming speech, and when the robot script retrieves it, 
where the database is only cleared once a command has been written to it, and therefore 
also limited by the rate of incoming speech. The classifier database is polled at least every 
0.1 seconds by the robot program (see Figure 2, step 5). 
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4 Extended Applications 
 
In addition to being a tool to interface directly with data collection methods for LfD 

training, EchoBot can also help users to collect and use data in tasks tangential to the data 
collection tasks described above. In the following subsections, we describe applications of 
EchoBot that help parts of the robot development work flow that may benefit from a 
speech-driven interface. 

 
 
 

4.1 Camera Calibration 
 
Calibrating the camera is the first task to be done before starting any development 

on the robot. In case someone needs help with calibration, EchoBot can be of service. This 
is helpful in teaching inexperienced roboticists how to calibrate the camera used by the 
robot to more accurately register 2D points in the image to 3D points in the workspace. 
After the user asks EchoBot, "How do I calibrate the camera?", the Echo gives a step-by-
step walkthrough of how to do so, and runs the calibration scripts in the background 
between each step. 

 
For example, EchoBot first instructs the user to place a checkerboard in a specific 

location for camera registration, and waits for the user to respond with a "continue" 
command. Users may also respond with “OK, what’s next?”, or “Sounds good, what should 
I do now?”, or various other phrases to advance to the next step. After the user prompts 
EchoBot for the next step, the Unix command for the appropriate calibration script will 
run. Then, EchoBot will ask the user to place the checkerboard in a different but 
deterministic location, waits for the user to indicate he or she is ready to move on, and runs 
a different calibration script. After the user reaches the last step, the Echo provides a 
confirmation message to the user that the walkthrough has been completed. 

 
In totality, the input interface of EchoBot for this task consists of both human 

speech commands and the image of the workspace from the camera. EchoBot is able to 
parse the human’s command and respond according to the current step of calibration and 
what it sees in the workspace. As output, it then relays the next step to the user through a 
speech prompt, or indicates to the user that the scene does not appear as expected, such as 
if the checkerboard cannot be detected. 
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In addition to being a tool for tutorials, this shows that EchoBot can be used as a 
tool for storing help information or other data about robots, similar to a manual page for a 
Unix command. EchoBot may also be used to communicate other kinds of data from robots 
to the user, including robot states not visible to the user. 

 
 
 

4.2 Interaction 
 
Another form of data collection is to interact with the robot to run experiments. In 

an experiment to grasp specific object parts successfully with the YuMi robot arm and 
gripper, it may be useful to use voice commands to identify objects to grasp by color. 
EchoBot allows users to specify colors by speech for the robot to grasp those objects and 
package them into a box. For example, a user may say, "Echo, tell YuMi that I want the 
blue, white, and orange parts." We found that specifying more than three color parameters 
to the Echo resulted in inaccurate speech-to-command registration. Thus, for reliability and 
consistency, we limit the number of colors to a maximum of three, with an additional 
command to specify to the robot to grasp all objects in the workspace. 

 
The interface of EchoBot on this task from the user’s perspective is human speech 

commands as input, and robot status updates in the form of speech output. After the user 
prompts EchoBot to grasp specific colored objects, EchoBot begins speaking the messages 
logged from the robot grasping script. This continuous stream of messages can last from 
between 20 seconds to 2 minutes, depending on how many objects were specified and how 
difficult they are to grasp. Internally, checkpoints in the execution of the robot script mark 
when and which messages should be logged to the audio stream database for speech output 
to the user. 

 
After the message is passed to our local server, with parameters as the colors of the 

objects, our local server uses a table to convert the colors to part names, and relays the 
names to the robot program using the interaction database (see Figure 2, step 4). Just as for 
classifier calibration, concurrent accesses are not a major issue for this database either. The 
database is modified only when EchoBot receives a grasp-by-color command and when 
the robot script retrieves it. This message appears in the database within 2.2 seconds of 
when the command is finished being spoken to the Echo. The interaction database is polled 
by the robot script as soon as it is free to perform a new action (see Figure 2, step 5). This 
typically ranges anywhere from between 0.04 seconds, if the script is waiting for a new 
command, to about 2 minutes, if the script is currently grasping and packing the maximum 
3 objects by color. The robot grasping program then picks out the colored parts that were 
specified and places them into a box. The YuMi robot can poke at the pile with one gripper 
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to singulate the parts from each other, and looks at the parts from right to left to grasp with 
the other gripper. Any miscellaneous parts that are singulated and identified first are placed 
in a different box. This presents the user with the ability to delegate actions to the robot 
and run experiment trials by voice. 
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5 Human Performance Studies 
 

5.1 Study Procedures 
 
We evaluate the effectiveness of EchoBot with respect to data collection in two 

human performance studies, outlined in the following two sections. We study the problem 
of efficiently collecting human demonstration data through kinesthetic (where an expert 
moves the robot through contact) interfaces with the aid of visual and audio feedback. We 
perform a 2-by-2 human-robot interaction study to analyze how the using the Echo and the 
keyboard as the input interface and a speaker and a text-based GUI as the output interface 
affects the efficiency of data collection. 

 
Each subject watched and repeated demonstrations on the robot. First, the subject 

watched and occasionally interact with the robot during demonstrations. Examples of robot 
interaction include voicing commands to a speech interface; pressing a keyboard button; 
and physically guiding a robot arm. The robot’s arm moves very slowly and safely, with 
minimal risk to subjects. Examples of data that were collected are robot joint angles, end-
effector poses, motor torques, and anonymous questionnaire results about the 
demonstration. No personally-identifiable information was collected. The duration of the 
demonstration for each participant was about 10 to 30 minutes, and did not exceed 40 
minutes. Data collected outside of the demonstration, such as questionnaire data, was also 
anonymous and not contain any personally-identifiable information, and took about 2 to 5 
minutes to complete. We did not compensate participants for their time. Any data, such as 
timestamps during checkpoints in the experiments, was stored on password-secured lab 
computers. The collected data was analyzed in aggregate over subjects for each of our test 
groups, and we present the aggregated data in our research paper and this thesis, with no 
personally-identifiable information. 

 
We ran 2 different experiments, each with a different group of subjects. Participants 

were identified using an experimenter ID, which is an integer starting at 1 and increasing 
sequentially for each next subject. Participants were gathered voluntarily by asking 
members of our research lab (for the first experiment) or members of the computer science 
department (for the second experiment) whether they would like to participate in a robotics 
experiment to evaluate different input and output interfaces for interacting with a robot, 
and were assured that they had full autonomy to decline participation. Participants signed 
a consent form in the lab before their participation began. 
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In the first experiment, subjects used either a keyboard or the Amazon Echo as an 
input device, and either a monitor or the Amazon Echo as an output device. The subject 
used the input and output interfaces to tell the YuMi robot to capture a picture of an object 
in the robot’s workspace, then guided the robot’s arm to within grasp of the object, and 
told the robot to record the arm pose of the robot. The experimenter first explained the task 
to the subject, had the subject practice for 2 minutes prior to the actual experiment, and 
then had the subject perform the same data collection task for ten minutes. After the 
experiment finished, the subject completed a survey questionnaire. The purpose of this 
experiment is to evaluate the efficiency of data collection using each of the 4 combinations 
of input and output interfaces. 

 
In the second experiment, subjects were presented with 3 rings stacked in size order, 

largest ring on the bottom, next to a vertical rod. Their goal was to stack the 3 rings on a 
rod in order of size, with the largest ring on the bottom. They must use the robot’s 2 grippers 
to do so, which they can manipulate physically. In addition, they used either the Amazon 
Echo for input and output (EchoBot), or the keyboard and monitor for input and output. 
After the experiment was finished, the subject completed a survey questionnaire. The 
purpose of this experiment is to evaluate the efficiency of completing the sequence using 
each of the 2 combinations of input and output interfaces. 

 
We obtained approval for human research from the Office for Protection of Human 

Subjects (OPHS), under CPHS Protocol Number 2017-04-9796, with approval issued 
under University of California, Berkeley Federalwide Assurance #00006252. 

 
 

5.2 Subject Population 
 
All participants were 18 years or older and a registered undergraduate or graduate 

student at UC Berkeley. We did not perform any experiments with individuals of protected 
populations (children, elderly, prisoners, etc.). Our experiments included 21 participants in 
total. 
 
 
 

5.3 Risks and Discomforts 
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Kinesthetic teaching involves human subjects moving the arms of the ABB YuMi 
robot through direct contact. This procedure risks minimal harm to the user because under 
kinesthetic teaching mode, the robot moves passively. This means that the robot will only 
move if it is being moved by the user, as it is not executing its own trajectories. 
Furthermore, the ABB YuMi is a human-safe robot [3]: it is wrapped in soft paddings to 
absorb impacts, has no pinch points, and can shut down its motors within milliseconds if a 
collision is detected. 
 

Interacting with Echo may cause slight stress, because of unfamiliarity of 
conversing with a robotic speech interface. In the unlikely event that an unintended breach 
of confidentiality was to occur, magnitude of potential harm to study participants would be 
minimal. Knowledge of participation in our experiments has minimal potential harm to the 
subject. 
 

We conducted post-experiment surveys, and data was collected anonymously and 
contained no personally-identifiable information. We did not collect names, pictures, 
videos, or audio of subjects. Participants also had the option to opt out of the experiment. 
In the unlikely event where anonymity is not secured, participation does not imply anything 
about the subject that would place him/her at risk of civil or criminal liability, or cause 
damage to their financial standing, employability, or reputation. The only identifiable 
information about participants would be that they are part of our subject population, i.e. 
students at UC Berkeley of at least 18 years of age. 
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6 Grasp Task 
 

6.1 Study Setting 
 
We evaluated EchoBot in a 2x2 study as an input and output interface to better 

understand the system's effectiveness in facilitating data collection for training a robot to 
grasp objects. The two input interfaces we compared were a keyboard button and EchoBot, 
and the two output interfaces were a monitor screen and EchoBot. The grasp task 
exemplifies a method to collect data for LfD robot learning. Given images of an object 
placed in various locations in the workspace and the poses of the robot to grasp those 
locations, LfD methods can be used to train the robot to grasp the object in unseen locations 
(see Figure 1 and Figure 3). 

 
We used a factorial design to compare the four possible combinations of keyboard 

presses or EchoBot commands as input and a text-based monitor screen or EchoBot 
responses as output. Our subjects included 10 volunteers from our lab, who were randomly 
assigned to two of the four experimental conditions. Each condition had 5 subjects perform 
the experiment. For this task, we asked each subject to provide repeated grasp pose 
demonstrations on the YuMi robot. Each subject performed 10-minute experiments with 
two of the interfaces. 

 
We measure the average durations of individual grasp trials and the percentage of 

failed grasps per condition. 
 

 
 

6.2 Study Procedure 
 
The experimenter provided each subject with the necessary information to perform 

the task using the I/O interface, including how to respond to potential errors that may occur. 
Subjects performed repeated trials for 10 minutes for each of two of the interface 
conditions. The order of the two conditions was randomized to mitigate learning effects. 
Subjects were given two minutes prior to each condition to be familiarized with the task 
and interface, to alleviate the effects of initial learning time.  

 
 



 19 

 
 

 
 

 
 

Figure 3: In the grasp task, users first place the object in a random pose in the workspace 
using the box and ask EchoBot to capture an image using the robot’s overhead camera 
(top). Then, the user physically guides the robot’s arm to a position where it is able to grasp 
the object, and asks EchoBot to record the robot arm’s pose (bottom). 
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Subjects were asked to provide input as a means to record demonstrations of correct 
poses for robotic grasps of the same object. They either stated "Echo, tell YuMi to record" 
for the EchoBot interface, or pressed the "r" key for the keyboard interface. By using the 
"r" key instead of the "Enter" key, the two input methods were more similar in terms of 
cognitive memory load on the user. The subject provides this input periodically every 20-
30 seconds. The output messages of the monitor and EchoBot were exactly the same, with 
the function of giving the subject information about successes and failures while recording 
grasp poses. When the system detected a failure, such as if the gripper was outside the 
workspace, the subject had to re-demonstrate the grasp based on feedback from the output. 
After the subject completed both conditions, the subject was administered a short 
questionnaire, loosely based on [20], to understand user opinions of the interfaces. 
 
 
 

6.3 Results 
 
To ascertain that initial learning effects did not cause subjects to increase in speed 

over time, we analyzed the durations of individual sample collections for each subject. We 
did not find a significant difference in these durations over time for any of the 4 interfaces. 

 
We report the average durations of trials and number of failures per condition (see 

Figure 4), along with survey results. Each condition had between 74 and 110 total grasp 
trials across all participants. Using the keyboard-monitor as the input-output interface saw 
both more successes and failures, which means that this condition resulted in many more 
attempts at samples than the other conditions. However, survey results suggested that the 
Echo-speaker (EchoBot) and keyboard-speaker conditions were more intuitive and more 
enjoyable to use than the Echo-monitor and keyboard-monitor conditions, respectively. 
Although the most samples were collected with the keyboard-monitor interface, most users 
preferred to use an interface with either speech input or audio output. 

 
From our survey responses, we also found that 40% of users found the keyboard-

monitor interface harder to use than the keyboard-speaker interface, and 60% of users 
found the Echo-monitor interface harder to use than the Echo-speaker (EchoBot) interface. 
Moreover, users experienced both the most physical fatigue and mental fatigue in the 
keyboard-monitor condition, and the least of both kinds of fatigue in the Echo-speaker 
(EchoBot) condition. However, this finding is not statistically significant, and may be 
correlated with the fact that the former condition collected the highest number of data 
samples in the given 10-minute experimental period and the latter condition collected the 
smallest. 
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The difference in successful grasps may be explained by the length of speech input 
and output in comparison with pressing a button or reading a sentence on the monitor. We 
tried to optimize both our EchoBot and baseline implementations as much as possible for 
a fairer comparison. However, it takes a user longer to speak a 5-word command to the 
Echo than to press a key on average. Moreover, it was also observed that subjects would 
wait until EchoBot had finished its speech transmission before attempting the next trial, 
whereas they would immediately begin after the text on the monitor changed. The value of 
a speech interface may not have been apparent in this task, aside from user preferences, 
because the task did not require the user to engage both hands. 

 
We also saw that some users experienced frustration at the Amazon Echo as an 

input device when it would not detect their voice command as expected. For certain people, 
such as those with quieter voices or those with voices close to the ambient frequency, the 
Echo would either not detect any human voice command at all, detect a completely 
different command, or detect a mixture between the user’s voice and someone else’s voice 
in the room. As a result, we do not think that EchoBot is ready to be used in a home, 
commercial, or factory setting as of now. Possible directions to improve the robustness and 
reliability of EchoBot would be to integrate noise cancellation and voice separation, or 
integrate a microphone or headset that may be used in place of speaking directly to the 
Amazon Echo device. 
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Figure 4: Results for the grasp task, with 5 subjects per condition. The best condition is 
highlighted in green, and the worst in red. (a) Average durations of trials per condition. (b) 
Percent of failed grasps per condition in 10-minute tasks. 
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6.4 Reflections and Enhancements 
 
A common area of difficulty that we saw in the experiments was that after several 

of these repetitive iterations, the user would lose track of which step they were currently 
administering. We added several more features to EchoBot for this task to alleviate this 
problem: 

 
1. Correlate short audio sound effects with the prompt before each step, for the trial. 
2. Have longer, explanatory phrases in the first few trials, and shorten the phrases in 

the following iterations. 
3. Switch between phrases used by EchoBot to communicate the same message to the 

user, to maintain the user’s focus. 
4. Use more humanizing phrases for EchoBot to connect with users. 

 
 
As described above, each trial iteration consists of two steps: placing the object 

randomly in the workspace and capturing an image, and guiding the robot’s arm to grasp 
the object and recording the arm’s pose. For the first two iterations of these two steps, 
EchoBot will give formal instructions for each step, preceded by a sound effect. All sound 
effects have a duration of less than a second. 
 

1. (sound effect #1) + “Step 1: Please place the object in the workspace and capture 
an image.” 

2. (sound effect #2) + “Step 2: Please guide my arm to the object and record my arm’s 
pose.” 
 
For the next 2 iterations, the user may not need detailed instructions, so EchoBot 

would provide a shorter prompt. The motivation behind switching to shorter prompts is 
increase the efficiency of data collection and to not belabor the user with lengthy and 
repetitive instructions. This prompt would also be in the form of a rhyme, to help them get 
into the two-step rhythm and focus better. Trial iterations 3 and 4 have the following 
prompts: 
 

1. (sound effect #1) + “Step 2 is through, now run step 1.” 
2. (sound effect #2) + “Step 1 is done, now do step 2.” 

 
By the 5th iteration of the 2 steps, we make the assumption that the user knows 

which sound effect correlates with which step, so the prompt is shortened to just the sound 
effect before each step. In the steady state, where the user has completed many sample 
collection iterations, adding the sound effects is just a slight increase in trial times. 
Moreover, utilizing sound effects may be beneficial to the user, and may even save redoing 
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work if users forget which step they are on. This hypothesis has yet to be evaluated with 
experiments. 

 
We also improved EchoBot’s phrases for failure modes of the experiment (see 

Table 1). In the case of a user error, EchoBot would have details on what exactly the human 
needs to fix. Each phrase is preceded by an "error" sound effect so the user can immediately 
distinguish error phrases from prompts or successes. For a given error, EchoBot randomly 
rotates between a set of phrases so that the user does not tire of hearing the same message. 
It also includes assurances and encouragement to the user when they make several 
mistakes, to alleviate any anxiety or pressure the user may experience in dealing with a 
speech interface. 

 
 
 
 

Sample EchoBot Error Speech Output 
Looks like the gripper needs to be rotated 180 degrees. 
I think the gripper needs to be rotated 180 degrees. 
Oh no! The gripper is too high. Let's try that again. 
That's odd, I can't see the object anymore. Did you move it outside of the workspace? 
That's ok! Let's try that again. 
Don't worry, why don't we try that again? 

 
Table 1: Examples of phrases EchoBot communicates to the user in the case of human 
errors. Each phrase is preceded by an "error" sound effect so the user can immediately 
distinguish error phrases from prompts or successes. EchoBot provides details on what 
actions the user needs to take, and assurances or encouragements to alleviate stress on the 
user. 
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7 Ring-Stacking Task 
 

 
 
 

 
Figure 5: The ring-stacking task (left to right). Subjects guide the robot grippers to pick up 
the rings to stack onto the rod in size order. 

 
 
 

7.1 Study Setting 
 
Motivated by the findings of the grasping task, we designed a second task in which 

subjects provided full-trajectory, kinesthetic demonstrations of a ring stacking task with 
the YuMi robot. The task is similar to the Tower of Hanoi puzzle, where the objective is to 
move 3 rings from a pile to a rod in size order using both robot grippers (see Figure 5). 
During the demonstrations, the user was asked to record every instance of the grippers 
being open or closed. Our aim was to compare the EchoBot interface with the keyboard-
monitor interface for a task where the collection of human input was more frequent and 
occurred at inconsistent time intervals, and demonstrations required the concurrent 
involvement of both hands. While we did not use the data collected in this experiment, this 
task is representative of other data collection methods that require constant input from a 
human. Frequent human input may be used in data collection for LfD methods in a dynamic 
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workspace, and concurrent use of both hands allows for a larger range of tasks with the 
robot. 

 
We used a within-subjects design, assigning 11 UC Berkeley computer science 

student volunteers to both conditions, randomly perturbing the order of the conditions. We 
measured the time to complete each demonstration and the percentage of human errors in 
record commands for each condition. 
 
 
 

7.2 Study Procedure 
 
The experimenter provided each subject with the necessary information to perform 

the task using the I/O interface. The experimenter demonstrated a sequence to move the 3 
rings from one pile to the rod and guided the subject to repeat the sequence twice prior to 
the experimental trials. This was to help the subject memorize the exact sequence of moves, 
and to reduce the effects of not knowing how to perform the task. During the trials, subjects 
repeated the same sequence and also indicated using the keyboard or EchoBot whenever 
either gripper opens or closes. This was done by saying "left opened", "left closed", "right 
opened", or "right closed" to EchoBot, or by typing "lo", "lc", "ro", or "rc" on the keyboard. 
If the subject made a mistake, the monitor or speaker informed the subject to restart the 
sequence before the trial can be successful, yet will continue to accept inputs. Thus, 
ignoring the output would cause the subject to perform unnecessary work. After the subject 
completed both conditions, the subject was administered a short questionnaire, loosely 
based on [20], to understand user opinions of the interfaces. 
 
 
 

7.3 Results 
 
Subjects using EchoBot were able to complete the ring-stacking task in less time 

than with the keyboard-monitor interface (see Figure 6). We observed a 57% decrease in 
average time to complete the task. The average ratio for a given participant between using 
the keyboard-monitor interface and EchoBot interface across all participants was 1.76 ± 
0.4. All subjects were able to complete the ring-stacking demonstration with EchoBot in 
equal or less time than with the keyboard-monitor interface. In addition, subjects 
committed fewer errors with EchoBot than with the keyboard-monitor. 
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While the confidence intervals in Figure 6 show high variance, this is mainly a 
result of how the data has been presented. Because all of the subjects that we used in this 
experiment had limited experience with a robot, some users were inherently faster or 
slower than others. This means that while the difference in durations between the 2 
conditions for a given subject were apparent, averaging these durations across all 
participants discards the relative improvement of the EchoBot condition versus the 
keyboard-monitor condition. A more informative metric would be the average ratio of 
durations across participants, reported above as 1.76 ± 0.4. 

 
Survey results indicate that subjects found EchoBot to be more intuitive and 

enjoyable than the keyboard-monitor interface. They also felt more efficient with EchoBot 
than with the keyboard-monitor. Subjects reported that neither interface was harder to use 
than the other. 

 
Even though EchoBot outperformed the keyboard-monitor interface according to 

many metrics, there are still areas where it can be improved. Some subjects indicated that 
the 5-second listening timeout on the Amazon Echo was too short, and it was inconvenient 
to reactivate the Echo whenever they were unable to issue the next command within that 
time limit. EchoBot performed much better in this task than in the grasp task because this 
task required repeated input from the user every 5 seconds, and because it occupied both 
of the subject's hands. Frequent input, as opposed to every 20-30 seconds as in the previous 
experiment, allowed the user to reduce the size of the human speech command to the Echo 
by 4 words because the Echo can continue listening for input up to 5 seconds after a human 
speech command, a significant improvement for user interactivity. Moreover, we found 
that in the keyboard-monitor condition, subjects would often first speak the command (e.g. 
"left closed", "right opened"), think about which buttons to press, and then type the correct 
input, even if they had not yet experienced the EchoBot condition. 

 
For some of the subjects that indicated they had no prior experience with the 

Amazon Echo or any other voice interface system, they had difficulty knowing when to 
pause and when to speak to the Amazon Echo. Some participants appeared to feel 
personally responsible when the Echo did not understand their command, and had to be 
reassured that it was not their fault. For this reason, we tried to expand on the vocabulary 
of EchoBot in an attempt to humanize the robot and make users feel more comfortable, 
discussed in the following subsection. 
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Figure 6: Results from the ring-stacking experiment, with 11 trials per condition. The best 
condition is highlighted in green, and the worst in red. (a) Average durations of 
experiments across conditions. (b) Percentage of human errors across conditions. 
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7.4 Reflections and Enhancements 
 
We noticed in our experiments that some users had initial difficulty knowing when 

to pause and when to speak to the Amazon Echo, when they were relaying successive 
commands to EchoBot. This was especially apparent in users with no prior experience with 
the Amazon Echo. We had incorrectly assumed that the flashing LED lights intrinsic to the 
Amazon Echo would be enough to cue the user for the next command. We added several 
more features to EchoBot for this task to alleviate this problem: 

 
1. Use a sound effect as a confirmation that EchoBot had processed a human 

command and is ready for the next command. 
2. Use a sound effect in addition to the error message when the user makes a mistake 

inputting the sequence of commands. 
3. Switch between phrases used by EchoBot to communicate the same message to the 

user, to maintain the user’s focus. 
4. Use more humanizing phrases for EchoBot to connect with users. 

 
 
When the user starts or restarts the task, EchoBot will say a random phrase out of 

the following: 
 

• Hello, friend! Let's get started. 
• Howdy, partner! Ready when you are. 
• Nice to see you! 

 
Then, the user begins inputting the sequence as they perform the sequence using 

the robot’s grippers. Every time they input a step of the sequence into EchoBot correctly, 
such as “left closed” or “right opened”, a short sound effect will be played as a confirmation 
that the Echo received the message. The sound effects we used in EchoBot all have a 
duration of less than a second. We have seen from our experiments that there have been 
about 10 times as many successes as failures in the experiments. Thus, playing a sound 
effect for confirmation will be more efficient than a speech phrase and no less efficient 
than simply the flashing LED lights on the Amazon Echo, in terms of total time for the user 
to complete the sequence. 

 
If the user makes a mistake in inputting the sequence, EchoBot will play a sound 

effect corresponding to an error, and then prompt the user to restart the sequence: 
 

• Hmm, that's not quite right. Let's reset the sequence and try that again. 
• Hmm, that's not what I expected. Let's restart the demonstration. 
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In the case of human errors, we can afford to have a slightly longer phrase for 
descriptive and casual speech because errors are not very common. We also considered 
informing the user specifically what they did wrong and then prompt for a restart, although 
we found in the experiments that users often knew exactly what mistake was made in the 
sequence. 

 
After the entire ring-stacking task is completed, EchoBot plays a "success" sound 

effect, and says a phrase of encouragement chosen at random from a set of phrases. (See 
Table 2 for a subset of the phrases.) 

 
 

Sample EchoBot Success Speech Output 
You figured it out! 
All done! You're really good at this! 
Well done! You made it look easy! 
Congratulations! You've finished the experiment. 
Well aren't you a problem solver! Good work! 

 
Table 2: Examples of phrases EchoBot says after the user successfully completes the ring-
stacking sequence. EchoBot randomly chooses one of the phrases of encouragement to 
speak to the user. Each phrase is preceded by a "success" sound effect. 
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8 Conclusion 
 
We present EchoBot, a system to facilitate data collection for LfD with the Amazon 

Echo. EchoBot enables users to record robot demonstrations using a speech interface. 
EchoBot utilizes the speech processing of the Amazon Echo to communicate with the ABB 
YuMi industrial robot. We implemented a local server to dispatch human speech 
commands from the Echo to either a local speaker audio stream or the robot program. The 
audio stream notifies the user in real-time of explanations of the robot actions and feedback 
while the user is collecting data to train robots using Learning from Demonstration (LfD). 
We evaluated the use of EchoBot as both an input and output interface in grasping and 
ring-stacking tasks. Experiments suggest that EchoBot can be more efficient when inputs 
are frequent and both hands of the user are occupied. 

 
This paper presents an initial experimental study of the effects of using a voice 

interface to collect data on a robot. Limitations of our work include: 
 

• Predefining human phrase inputs to the Amazon Echo, which constrains user-robot 
interaction. 

• Robustness to multiple voices speaking at once. 
• Length of human phrases to relay infrequent commands to EchoBot. 
• Short timeout duration of Echo inputs for frequent commands. 

 
We speculate that decreasing the length of human phrase inputs will increase user 

efficiency for data collection. We also speculate that including more humanizing phrases 
spoken by EchoBot will enhance the likability of the robot, and we look forward to 
addressing these issues in future work. 
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9 Appendix 
 
 

9.1 EchoBot Setup 
 
 

To run the local server for EchoBot, clone our GitHub repository (see Footnote 1). 
Follow the instructions outlined in the file README.md to install the python package 
dependencies using the pip installer, and adding your Amazon Alexa App ID to your Unix 
environment. You will receive an App ID after creating a new Alexa application on 
Amazon’s developer website. 

 
To run the Django server locally and access the server externally, run the main 

script: 
 

$ ./main 
 
The external URL will be in the form of https://*.ngrok.io. If you want the 

external URL to be constant throughout restarts, upgrade to the paid ngrok plan, and 
replace the last command in main.sh with: 

 
$ ./ngrok-linux-64 http -subdomain=your_subdomain 8000 

 
Then, log into the Alexa Skills Kit online developer portal, and copy your server’s 

ngrok URL to the appropriate field in the configuration settings. You will also have to 
define custom utterances, or human speech phrases, to trigger a given command on the 
server. 

 
 
 

9.2 Using EchoBot 
 
 
 
Logging a message to the local server database from an external Python script is 

straightforward. First, copy the file robot_logger.py into your workspace. Then add 
the following lines of code into your external Python script: 
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>>> import robot_logger 
>>> robot_logger.log(“Message”) 

 
 
It is also possible to retrieve messages from EchoBot, such as when the user issues 

a command such as “take a picture” or “record the pose” to the Amazon Echo for data 
collection. After a user starts the data collection interface as described above, have your 
code call the following function. Then whenever you say a command, it will be accessible 
via that function. Currently supported return values are None, “start”, “record”, 
“stop”, “pause”, and “finish”. This will not block execution. 
 

Start by saying “Echo, tell YuMi to ...” and then your first command. Subsequent 
commands can be one word. Say “Quit” after you are done to stop data collection mode. 
 
>>> import robot_logger as r 

“Echo, tell YuMi to record.” 
>>> print r.getDataCommand() 
Record 
>>> print r.getDataCommand() 
None 

“Stop.” 
>>> print r.getDataCommand() 
Record 

“Record.” 
>>> print r.getDataCommand() 
None 

“Quit.” 
 
 
For the interaction task, where a user specifies to EchoBot which object to grasp by 

color, there are 2 possible methods to use, depending on if you want to retrieve objects one 
at a time or all at once. To grab the colors after a user has asked the Echo to grasp them, 
you can use either of the next two functions in robot_logger.py: 
getSingleGraspCommand() or getGraspCommands(). Here is sample usage of those 
functions: 
 
>>> import robot_logger as r 

“Echo, tell YuMi that I want the orange, yellow, red, and blue parts.” 
>>> print r.getSingleGraspCommand() 
bar_clamp 
>>> print r.getSingleGraspCommand() 
pawn 
>>> print r.getSingleGraspCommand() 
vase 
>>> print r.getSingleGraspCommand() 
nozzle 
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>>> print r.getSingleGraspCommand() 
None 
 

“Echo, tell YuMi that I want the orange, yellow, red, gold, and blue parts.” 
>>> print r.getGraspCommands() 
['bar_clamp', 'pawn', 'vase', 'part1', 'nozzle'] 
 

 
 
Here is a subset of the list of additional human phrases we used for EchoBot: 

 
 
Starting Audio Stream: 
 
"Echo, ask YuMi to explain what it is doing." 
"Echo, tell YuMi to speak." 
 

Ending Audio Stream: 
 
"Echo, tell YuMi to end the audio stream." 
"Echo, tell YuMi to end stream." 
 
 
Help with Camera Calibration: 
 
“Echo, ask YuMi how do I calibrate the camera?” 
“Echo, ask YuMi how to calibrate the camera.” 
 
To advance to the next step, say “continue”, “next”, or “what next?”. 
 
 
Grasping Mode: 
 
The {param*} below represent one of the following 8 colors: orange, red, white, yellow, 
gold, black, pink, blue. 
 
All: 
“Echo, tell YuMi that I want all parts.” 
“Echo, tell YuMi that I want all the parts.” 
“Echo, tell YuMi that I want all of the parts.” 
 
One: 
“Echo, tell YuMi that I want the {paramOne} part.” 
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“Echo, tell YuMi that I want the {paramOne} parts.” 
 
Two: 
“Echo, tell YuMi that I want the {paramOne} and {paramTwo} parts.” 
 
Three: 
“Echo, tell YuMi that I want the {paramOne}, {paramTwo}, and {paramThree} parts.” 
“Echo, launch YuMi.” (wait for the response “Welcome.”) “I want the {paramOne}, 
{paramTwo}, and {paramThree} parts.” 

 
 

 
 

9.3 Extending EchoBot 
 
 

The code for our local EchoBot server is available on GitHub (see Footnote 1). To 
add a new command to EchoBot, create a new function in RobotThoughtApp/ 
alexa.py, consistent with the other defined functions. Your new function should also 
have an @intent decorator to be recognized by the framework as an Alexa intent. If your 
command requires the use of parameters, you also should define Slots, which are how the 
Alexa framework defines their parameter names and types. See the other Slots in that file 
for example usage. 

 
You must also define the names of your new intents in a different file for the Alexa 

framework to recognize them. In django_alexa/internal/intents_schema.py, 
append your new intent to the end of the MY_INTENTS list, near the top of the file. 
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