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Abstract

Goal-Driven Dynamics Learning via Bayesian Optimization

by

Ted Xiao

Master of Science in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Claire Tomlin, Chair

Robotic systems are becoming increasingly complex and commonly act in poorly under-
stood environments where it is extremely challenging to model or learn their true dynamics.
Therefore, it might be desirable to take a task-specific approach, wherein the focus is on
explicitly learning the dynamics model which achieves the best control performance for the
task at hand, rather than learning the true system dynamics. In this work, we use Bayesian
optimization in an active learning framework where a locally linear dynamics model is learned
with the intent of maximizing the control performance, and then used in conjunction with
optimal control schemes to efficiently design a controller for a given task. This model is
updated directly in an iterative manner based on the performance observed in experiments
on the physical system until a desired performance is achieved. We demonstrate the efficacy
of the proposed approach through simulations and real experiments on a quadrotor testbed.
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Chapter 1

Introduction

Complex robotics systems have been the subject of much research and study. Beyond theo-
retical insight into control and learning models, there seems to be much promise in bringing
practical wide-scale robotics to society in the foreseeable future. However, there are still
many areas that require more study before applications are deployed in a robust and safe
manner. As learning and control approaches are gradually being brought from controlled
lab conditions to uncontrolled real-world scenarios, there is a need for methods that work
well in complex environments that may have unknown dynamics. For instance, real-world
conditions involve environments without accurate a priori models, such as situations with
human interaction.

Advances in machine learning, reinforcement learning, and optimal control have all con-
tributed towards learning and controlling unknown systems. In general, there are two main
regimes for approaching this problem: model-based and model-free learning approaches. In
model-based methods, the system dynamics are modelled and then used in conjunction with
optimal control methods to produce policies or controllers. The dynamics can be modelled
through a variety of methods, such as deep learning [3] or traditional systems identifica-
tion [4]. In model-free methods, the policy is directly learned. Both methods have their
benefits, but but we believe that there is significant promise in the intersection between
model-free and model-based methods, where existing theory in optimal control can be lever-
aged while still using the benefits of robust deep learning methods. In fact, or scenarios that
instead have abundance of data, deep learning may be applied [5]. In this work, however,
we focus on a model-based methods that utilizes machine learning in the context of a very
data-efficient regime. The goal of this work is not only to propose a framework for dynamics
and control in low-data contexts, but to also provide a review into related methods and
approaches in this subsection of model-based learning models.

Given the system dynamics, optimal control schemes such as LQR, MPC, and feed-
back linearization can efficiently design a controller that maximizes a performance criterion.
However, depending on the system complexity, it can be quite challenging to model its true
dynamics. However, for a given task, a globally accurate dynamics model is not always nec-
essary to design a controller. Often, partial knowledge of the dynamics is sufficient, e.g., for
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trajectory tracking purposes a local linearization of a non-linear system is often sufficient. In
this paper we argue that, for complex systems, it might be preferable to adapt the controller
design process for the specific task, using a learned system dynamics model sufficient to
achieve the desired performance.

We propose Dynamics Optimization via Bayesian Optimization (aDOBO), a Bayesian
Optimization (BO) based active learning framework to learn the dynamics model that
achieves the best performance for a given task based on the performance observed in exper-
iments on the physical system. This active learning framework takes into account all past
experiments and suggests the next experiment in order to learn most about the relationship
between the performance criterion and the model parameters. Particularly important for
robotic systems is the use of data-efficient approaches, where only few physical experiments
are needed to obtain improved performance.

To make sure our approach is data-efficient, we learn a locally linear system model which
we use to design the controller, as opposed to learning a global model or learning a control
policy directly. The underlying hypothesis of this approach is that a good local model, in
conjunction with well - optimal control schemes, can be used to design a controller more
efficiently, and can capture a richer controller space. Specifically, we use BO to optimize
the dynamics model with respect to the desired task, where the dynamics model is updated
after every experiment so as to maximize the performance on the physical system. BO may
intuitively be a good fit for this task, because BO is an approach that optimizes a performance
criterion while keeping the number of evaluations of the physical system small [6]. A flow
diagram of our framework is shown in Figure 1.1. The current locally linear dynamics
model, together with the cost function (also referred to as performance criterion), are used
to design a controller with an appropriate optimal control scheme. The cost (or performance)
of the controller is evaluated in closed-loop operation with the actual (unknown) physical
plant. BO uses this performance information to iteratively update the dynamics model to
improve the performance. This procedure corresponds to optimizing the (locally linear)
system dynamics with the purpose of maximizing the performance of the final controller.
Hence, unlike traditional system identification approaches, our approach does not necessarily
correspond to finding the most accurate dynamics model, but rather the model yielding
the best controller performance when provided to the optimal control method used. An
interesting question to study in the context of this method is the degree to which the resulting
model actually corresponds to the true dynamics of the system. We study this in Section 4.1.

Traditional system identification approaches are divided into two stages: 1) creating a
dynamics model by minimizing some prediction error (e.g., using least squares) 2) using this
dynamics model to generate an appropriate controller. In this approach, modeling the dy-
namics can be considered an offline process as there is no information flow between the two
design stages. In online methods, the dynamics model is instead iteratively updated using
new data collected by evaluating the controller [7]. Our approach is an online method. Both
for the online and the offline cases, creating a dynamics model-based only on minimizing the
prediction error can introduce sufficient inaccuracies to lead to suboptimal control perfor-
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Figure 1.1: aDOBO: A Bayesian optimization-based active learning framework for optimizing
the dynamics model for a given cost function.

mance [8]. Using machine learning techniques, such as Gaussian processes, does not alleviate
this issue [9]. Instead, the authors in [8] proposed to optimize the dynamics model directly
with respect to the controller performance, but since the dynamics model is optimized offline,
the resultant model is not necessarily optimal for the actual system. We instead explicitly
find the dynamics model that produces the best control performance for the actual system.

Previous studies addressed the problem of optimizing a controller using BO. In [1, 10,
11] authors tuned the penalty matrices in an LQR problem for performance optimization.
Parameters of a linear feedback controller are learned in [2] using BO. Although interesting
results emerge from these studies, it is not clear how these methods perform for non-quadratic
cost functions. Moreover, when an accurate system model is not available, tuning penalty
matrices may not achieve the desired performance. Our approach overcomes these challenges
as it does not rely on an accurate system dynamics model or impose any linear structure on
the controller. In fact, aDOBO can easily design non-linear controllers as well (see Sec. 3.1).

For example, for non-quadratic convex cost functions, we can use MPC as the optimal
control scheme to design non-linear controllers and can automatically design a controller even
when the system dynamics are unknown and/or the performance criterion is not quadratic.

The problem of updating a system model to improve control performance is also re-
lated to adaptive control, where the model parameters are identified from sensor data, and
subsequently the updated model is used to design a controller (see [12–16]). However, in
adaptive control, the model parameters are generally updated to get a good prediction model
and not necessarily to maximize the controller performance. In contrast, we explicitly take
into account the observed performance and search for the model that achieves the highest
performance.

To the best of our knowledge, this is the first method that optimize a dynamics model
to maximize the control performance on the actual system. Our approach does not require
the prior knowledge of an accurate dynamics model, nor of its parameterized form. Instead,
the dynamics model is optimized, in an active learning setting, directly with respect to the
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desired cost function using data-efficient BO. The contribution of this paper is to present an
automatic approach to controller design. This approach does not require the prior knowledge
of an accurate dynamics model, nor of its parameterized form. Instead, the dynamics model
is optimized, in an active learning setting, directly with respect to the desired cost function
using data-efficient Bayesian optimization. The idea of using a model that is not the most
likely model, but rather the one that achieves the best expected reward has been previously
proposed in [8]. Although similar in spirit, their approach relies on a gradient-descent opti-
mizer which requires numerically approximating the gradient by central differences, resulting
in an increase in the number of experiments required. Our approach instead, makes use of
a global zero-order optimizer (i.e., it does not need gradients) and can therefore be more
sample efficient. We further compare some of these approaches with the proposed approach
in Section 5. To summarize, our main contributions in this work are:

• to efficiently and automatically design a controller for general performance criterion,
even when the system dynamics are unknown;

• to compare different automatic controller design approaches and highlight their relative
advantages and limitations.

This report is structured into seven main sections. In this Introduction chapter, we
introduce the domain and viewpoint from which we propose our method. In the Preliminaries
chapter, we define the learning problem and give a background on Gaussian Processes and
Bayesian Optimization, which are key components of our method. In the Solution chapter,
we introduce our framework aDOBO. Then, in the Simulations chapter, we explore numerical
simulations demonstrating the effectiveness of our method. In the Comparison with Other
Methods chapter, we weigh the benefits and costs of our method in comparison with other
state of the art approaches. Next, in the Quadrotor Position Tracking Experiments chapter,
we demonstrate a real-world experiment of our method showing significant results. Finally,
we finish with the Conclusion and Future Work chapter, wrapping up our contributions with
this work.

This work is performed jointly with Somil Bansal, Roberto Calandra, Sergey Levine, and
Claire Tomlin and was submitted in March 2017 to the IEEE Conference on Decision and
Control. A preprint appears in [17].
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Chapter 2

Preliminaries

2.1 Problem Formulation

Consider an unknown, stable, discrete-time, potentially non-linear, dynamical system

zk+1 = f(zk, uk), k ∈ {0, 1, . . . , N − 1} , (2.1)

where zk ∈ Rnx and uk ∈ Rnu denote the system state and the control input at time k
respectively. Given an initial state z0, the objective is to design a controller that minimizes
the cost function J subject to the dynamics in (2.1)

J∗0 = min
uN−1
0

J0(z
N
0 ,u

N−1
0 ) = min

uN−1
0

N−1∑
i=0

l(zi, ui) + g(zN , uN) ,

subject to zk+1 =f(zk, uk) ,

(2.2)

where zNi := (zi, zi+1, . . . , zN). uN−1i is similarly defined. One of the key challenges in
designing such a controller is the modeling of the unknown system dynamics in (2.1). In this
work, we model (2.1) as a linear time-invariant (LTI) system with system matrices (Aθ , Bθ).
The system matrices are parametrized by θ ∈ M ⊆ Rd, which is to be varied during the
learning procedure. For a given θ and the current system state zk, let πk(zk, θ) denote the
optimal control sequence for the linear system (Aθ , Bθ) for the horizon {k, k + 1, . . . , N}

πk(zk, θ) := ūN−1k = arg min
uN−1
k

Jk(z
N
k ,u

N−1
k ) ,

subject to zj+1 =Aθzj +Bθuj.
(2.3)

The key difference between (2.2) and (2.3) is that the controller is designed for the param-
eterized linear system as opposed to the true system. As θ is varied, different matrix pairs
(Aθ , Bθ) are obtained, which result in different controllers π(·, θ). Our aim is to find, among
all linear models, the linear model (Aθ∗ , Bθ∗) whose controller π(·, θ∗) minimizes J0 (ideally
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achieves J∗0 ) for the actual system, i.e.,

θ∗ = arg min
θ∈M

J0(z
N
0 ,u

N−1
0 ) ,

subject to zk+1 = f(zk, uk) , uk = π1
k(zk, θ),

(2.4)

where π1
k(zk, θ) denote the 1st control in the sequence πk(zk, θ). To make the dependence

on θ explicit, we refer to J0 in (2.4) as J(θ) here on. Note that (Aθ∗ , Bθ∗) in (2.4) may
not correspond to an actual linearization of the system, but simply to the linear model that
gives the best performance on the actual system when its optimal controller is applied in a
closed-loop fashion on the actual physical plant.

We choose LTI modeling to reduce the number of parameters used to represent the
system, and make the dynamics learning process data efficient. Linear modeling also allows
to efficiently design the controller in (2.3) for general cost functions (e.g., using MPC for
any convex cost J). In general, the effectiveness of linear modeling depends on both the
system and the control objective. If f is linear, a linear model is trivially sufficient for any
control objective. If f is non-linear, a linear model may not be sufficient for all control tasks;
however, for regulation and trajectory tracking tasks, a linear model is often adequate (see
Sec. 4.1). A linear parameterization is also used in adaptive control for similar reasons [16].
Nevertheless, the proposed framework can handle more general model classes as long as the
optimal control problem in (2.3) can be solved for that class.

Since f is unknown, the shape of the cost function, J(θ), in (2.4) is unknown. The
cost is thus evaluated empirically in each experiment, which is often expensive as it involves
conducting an experiment. Thus, the goal is to solve the optimization problem in (2.4) with
as few evaluations as possible. In this paper, we do so via BO.

2.2 Background

In order to optimize (Aθ , Bθ), we use BO. In this section, we briefly introduce Gaussian
processes and BO.

Gaussian Process (GP)

Since the function J(θ) in (2.4) is unknown a priori, we use nonparametric GP models to
approximate it over its domainM. GPs are a popular choice for probabilistic non-parametric
regression, where the goal is to find a nonlinear map, J(θ) :M→ R, from an input vector
θ ∈ M to the function value J(θ). Hence, we assume that function values J(θ), associated
with different values of θ, are random variables and that any finite number of these random
variables have a joint Gaussian distribution dependent on the values of θ [18]. For GPs, we
define a prior mean function and a covariance function, k(θi, θj), which defines the covariance
(or kernel) of any two function values, J(θi) and J(θj). In this work, the mean is assumed
to be zero without loss of generality. The choice of kernel is problem-dependent and encodes
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general assumptions such as smoothness of the unknown function. In the experimental
section, we employ the 5/2 Matèrn kernel where the hyperparameters are optimized by
maximizing the marginal likelihood [18]. This kernel function implies that the underlying
function J is differentiable and takes values within the 2σf confidence interval with high
probability.

The GP framework can be used to predict the distribution of the performance func-
tion J(θ∗) at an arbitrary input θ∗ based on the past observations, D = {θi, J(θi)}ni=1.
Conditioned on D, the mean and variance of the prediction are

µ(θ∗) = kK−1J ; σ2(θ∗) = k(θ∗, θ∗)− kK−1kT , (2.5)

where K is the kernel matrix with Kij = k(θi, θj), k = [k(θ1, θ
∗), . . . , k(θn, θ

∗)] and J =
[J(θ1), . . . , J(θn)]. Thus, the GP provides both the expected value of the performance func-
tion at any arbitrary point θ∗ as well as a notion of the uncertainty of this estimate.

Bayesian Optimization (BO)

Bayesian optimization aims to find the global minimum of an unknown function [6,19,20]. BO
is particularly suitable for the scenarios where evaluating the unknown function is expensive,
which fits our problem in Sec. 2.1. At each iteration, BO uses the past observations D to
model the objective function, and uses this model to determine informative sample locations.
A common model used in BO for the underlying objective, and the one that we consider, are
Gaussian processes (see Sec. 2.2). Using the mean and variance predictions of the GP from
(2.5), BO computes the next sample location by optimizing the so-called acquisition function,
α (·). Different acquisition functions are used in literature to trade off between exploration
and exploitation during the optimization process [6]. For example, the next evaluation for
expected improvement (EI) acquisition function [21] is given by θ∗ = arg minθ α (θ) where

α (θ) = σ(θ)[uΦ(u) + φ(u)]; u = (µ(θ)− T )/σ(θ). (2.6)

Φ(·) and φ(·) in (2.6), respectively, are the standard normal cumulative distribution and
probability density functions. The target value T is the minimum of all explored data.
Intuitively, EI selects the next parameter point where the expected improvement over T
is maximal. Repeatedly evaluating the system at points given by (2.6) thus improves the
observed performance. Note that optimizing α (θ) in (2.6) does not require physical inter-
actions with the system, but only evaluation of the GP model. When a new set of optimal
parameters θ∗ is determined, they are finally evaluated on the real objective function J (i.e.,
the system).
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Chapter 3

Solution

3.1 Dynamics Optimization via BO (aDOBO)

This section presents the technical details of aDOBO, a novel framework for optimizing
dynamics model for maximizing the resultant controller performance. In this work, θ ∈
Rnx(nx+nu), i.e., each dimension in θ corresponds to an entry of the Aθ or Bθ matrices. This
parameterization is chosen for simplicity, but other parameterizations can easily be used.

Given an initial state of the system z0 and the current system dynamics model (Aθ′ , Bθ′ ),
we design an optimal control sequence π0(z0, θ

′
) that minimizes the cost function J0(z

N
0 ,u

N−1
0 ),

i.e., we solve the optimal control problem in (2.3). The first control of this control sequence
is applied on the actual system and the next state z1 is measured. We then similarly compute
π1(z1, θ

′
) starting at z1, apply the first control in the obtained control sequence, measure z2,

and so on until we get zN . Once zN0 and uN−10 are obtained, we compute the true performance
of uN−10 on the actual system by analytically computing J0(z

N
0 ,u

N−1
0 ) using (2.2). We denote

this cost by J(θ
′
) for simplicity. We next update the GP based on the collected data sample

{θ′ , J(θ
′
)}. Finally, we compute θ∗ that minimizes the corresponding acquisition function

α (θ) and repeat the process for (Aθ∗ , Bθ∗). Our approach is illustrated in Figure 1.1 and
summarized in Algorithm 1. Intuitively, aDOBO directly learns the shape of the cost func-
tion J(θ) as a function of linearizations (Aθ , Bθ). Instead of learning the global shape of this
function through random queries, it analyzes the performance of all the past evaluations and
by optimizing the acquisition function, generates the next query that provides the maximum
information about the minima of the cost function. This direct minima-seeking behavior
based on the actual observed performance ensures that our approach is data-efficient. Thus,
in the space of all linearizations, we efficiently and directly search for the linearization whose
corresponding controller minimizes J0 on the actual system.

Since the problem in (2.3) is an optimal control problem for the linear system (Aθ′ , Bθ′ ),
depending on the form of the cost function J , different optimal control schemes can be
used. For example, if J is quadratic, the optimal controller is a linear feedback controller
given by the solution of a Riccati equation. If J is a general convex function, the optimal
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Algorithm 1: aDOBO algorithm

1 D ←− if available: {θ, J (θ)}
2 Prior ←− if available: Prior of the GP hyperparameters
3 Initialize GP with D
4 while optimize do
5 Find θ∗ = arg minθ α (θ); θ

′ ←− θ∗

6 for i = 0 : N − 1 do
7 Given zi and (Aθ′ , Bθ′ ), compute πi(zi, θ

′
)

8 Apply π1
i (zi, θ

′
) on the real system and measure zi+1

9 zN0 ←− (zN0 , zi+1)

10 uN−10 ←− (uN−10 , π1
i (zi, θ

′
))

11 Evaluate J(θ
′
) := J0(z

N
0 ,u

N−1
0 ) using (2.2)

12 Update GP and D with {θ′ , J(θ
′
)}

control problem is solved through a general convex MPC solver, and the resultant controller
could be non-linear. Thus, depending on the form of J , the controller designed by aDOBO
can be linear or non-linear. This property causes aDOBO to perform well in the scenarios
where a linear controller is not sufficient, as shown in Sec. 5.1. More generally, the proposed
framework is modular and other control schemes can be used that are more suitable for the
given cost function, which allows us to capture a richer controller space.

Note that the GP in our algorithm can be initialized with dynamics models whose con-
trollers are known to perform well on the actual system. This generally leads to a faster
convergence. For example, when a good linearization of the system is known, it can be used
to initialize D. When no information is known about the system a priori, the initial models
are queried randomly.



10

Chapter 4

Simulations

4.1 Numerical Simulations

In this section, we present some simulation results on the performance of the proposed
method for controller design.

Dubins Car System

For the first simulation, we consider a three dimensional non-linear Dubins car whose dy-
namics are given as

ẋ = v cosφ, ẏ = v sinφ, φ̇ = ω , (4.1)

where z := (x, y, φ) is the state of system, p = (x, y) is the position, φ is the heading, v
is the speed, and ω is the turn rate. The input (control) to the system is u := (v, ω). For
simulation purposes, we discretize the dynamics at a frequency of 10Hz. Our goal is to design
a controller that steers the system to the equilibrium point z∗ = 0, u∗ = 0 starting from the
state z0 := (1.5, 1, π/2). In particular, we want to minimize the cost function

J0(z
N
0 ,u

N−1
0 ) =

N−1∑
k=0

(
zTkQzk + uTkRuk

)
+ zTNQfzN . (4.2)

We choose N = 30. Q, Qf and R are all chosen as identity matrices of appropriate sizes. We
also assume that the dynamics are not known; hence, we cannot directly design a controller to
steer the system to the desired equilibrium. Instead, we use aDOBO to find a linearization of
dynamics in (4.1) that minimizes the cost function in (4.2), directly from the experimental
data. In particular, we represent the system in (4.1) by a parameterized linear system
zk+1 = Aθzk + Bθuk, design a controller for this system and apply it on the actual system.
Based on the observed performance, BO suggests a new linearization and the process is
repeated. Since the cost function is quadratic in this case, the optimal control problem for a
particular θ is an LQR problem, and can be solved efficiently. For BO, we use the MATLAB
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Figure 4.1: Dubins car: mean and standard deviation of η during the learning process. Using
the log warping the learned controller reaches within 6% of the optimal cost in 200 iterations,
outperforming the unwarped case.

0 10 20 30
-2

-1

0

v

Control inputs

0 10 20
Horizon (N)

-2

-1!

Learned Optimal

0 10 20 30

0.5
1

1.5

x

States

0 10 20 30
Horizon (N)

0.5

1

y

Figure 4.2: Dubins car: state and control trajectories for the learned and the true system.
The two trajectories are very similar, indicating that the learned matrices represent system
behavior accurately around the equilibrium point.

library BayesOpt [22]. Since there are 3 states and 2 inputs, we learn 15 parameters in total,
one corresponding to each entry of the Aθ and Bθ matrices. The bounds on the parameters
are chosen randomly as M = [−2, 2]15. As acquisition function, we use EI (see eq. (2.6)).
Since no information is assumed to be known about the system, the GP was initialized with
a random θ. We also warp the cost function J using the log function before passing it to
BO. Warping makes the cost function smoother while maintaining its monotonic properties,
which makes the sampling process in BO more efficient and leads to a faster convergence.

For comparison, we solve the true optimal controller that minimizes (4.2) subject to the
dynamics in (4.1) using the non-linear solver fmincon in MATLAB to get the minimum
achievable cost J∗0 across all controllers. We use the percentage error between the true
optimal cost J∗0 and the cost achieved by aDOBO as our comparison metric in this work

ηn = 100× (J∗0 − J(θn))/J∗0 , (4.3)

where J(θn) is the best cost achieved by aDOBO by iteration n. In Fig. 4.1, we plot ηn for
Dubins car. As learning progresses, aDOBO gathers more and more information about the
minimum of J0 and reaches within 6% of J∗0 in 200 iterations, demonstrating its effectiveness
in designing a controller for an unknown system just from the experimental data. Fig. 4.1
also highlights the effect of warping in BO. A well warped function converges faster to the
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optimal performance. We also compared the control and state trajectories obtained from the
learned controller with the optimal control and state trajectories. As shown in Fig. 4.2, the
learned system matrices not only achieve the optimal cost, but also follow the optimal state
and control trajectories very closely. Even though the trajectories are very close to each
other for the true system and its learned linearization, this linearization may not correspond
to any actual linearization of the system. The next simulation illustrates this property more
clearly.

A Simple 1D Linear System

For this simulation, we consider a simple 1D linear system

zk+1 = zk + uk , (4.4)

where zk and uk are the state and the input of the system at time k. Although the dynamics
model is very simple, it illustrates some key insights about the proposed method. Our goal
is to design a controller that minimizes (4.2) starting from the state z0 = 1. We choose
N = 30 and R = Q = Qf = 1. Since the dynamics are unknown, we use aDOBO to learn
the dynamics. Here θ := (θ1, θ2) ∈ R2 are the parameters to be learned.

1 1.2 1.4 1.6
31

1

1.5

2

2.5

3
2

Cost function J0(31, 32)

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Figure 4.3: Cost of the actual system in (4.4)
as a function of the linearization parameters
(θ1, θ2). The parameters obtained by aDOBO
(the pink X) yield to performance very close
to the true system parameters (the green ∗).
Note that aDOBO does not necessarily con-
verge to the true parameters.

The learning process converges in 45 it-
erations to the true optimal performance
(J∗0 = 1.61), which is computed using LQR
on the real system. The converged param-
eters are θ1 = 1.69 and θ2 = 2.45, which
are vastly different from the true parame-
ters θ1 = 1 and θ2 = 1, even though the
actual system is a linear system. To un-
derstand this, we plot the cost obtained on
the true system J0 as a function of lineariza-
tion parameters (θ1, θ2) in Fig. 4.3. Since the
performances of the two sets of parameters
are very close to each other, a direct perfor-
mance based learning process (e.g., aDOBO)
cannot distinguish between them and both
sets are equally optimal for it. More gen-
erally, a wide range of parameters lead to
similar performance on the actual system.
Hence, we expect the proposed approach to
recover the optimal controller and the ac-
tual state trajectories, but not necessarily
the true dynamics or its true linearization.
This simulation also suggests that the true
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dynamics of the system may not even be required as far as the control performance is con-
cerned.

Cart-pole System

We next apply aDOBO to a cart-pole system

(M +m)ẍ−mlψ̈ cosψ +mlψ̇2 sinψ = F ,

lψ̈ − g sinψ = ẍ cosψ ,
(4.5)

where x denotes the position of the cart with mass M , ψ denotes the pendulum angle, and
F is a force that serves as the control input. The massless pendulum is of length l with a
mass m attached at its end. Define the system state as z := (x, ẋ, ψ, ψ̇) and the input as
u := F . Starting from the state (0, 0, π

6
, 0), the goal is to keep the pendulum straight up,

while keeping the state within given lower and upper bounds. In particular, we want to
minimize the cost

J0(z
N
0 ,u

N−1
0 ) =

N−1∑
k=0

(
zTkQzk + uTkRuk

)
+ zTNQfzN

+ λ
N∑
i=0

max(0, z − zi, zi − z),

(4.6)

where λ penalizes the deviation of state zi below z and above z. We assume that the dynamics
are unknown and use aDOBO to optimize the dynamics. For simulation, we discretize the
dynamics at a frequency of 10Hz. We chooseN = 30, M = 1.5Kg, m = 0.175Kg, λ = 100 and
l = 0.28m. The Q = Qf = diag([0.1, 1, 100, 1]) and R = 0.1 matrices are chosen to penalize
the angular deviation significantly. We use z = [−2,−∞,−0.1,−∞] and z = [2,∞,∞,∞],
i.e., we are interested in controlling the pendulum while keeping the cart position within
[−2, 2], and limiting the pendulum overshoot to 0.1. The optimal control problem for a
particular linearization is a convex MPC problem and solved using YALMIP [23]. The true
J∗0 is computed using fmincon.

As shown in Fig. 4.4, aDOBO reaches within 20% of the optimal performance in 250
iterations and continue to make progress towards finding the optimal controller. This simu-
lation demonstrates that the proposed method (a) is applicable to highly non-linear systems,
(b) can handle general convex cost functions that are not necessarily quadratic, and (c) dif-
ferent optimal control schemes can be used within the proposed framework. Since an MPC
controller can in general be non-linear, this implies that the proposed method can also design
non-linear controllers.
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Figure 4.4: Cart-pole system: mean and standard deviation of η during the learning process.
The learned controller reaches within 20% of the optimal cost in 250 iterations, demonstrating
the applicability of aDOBO to highly non-linear systems.
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Chapter 5

Comparison with Other Methods

In this section, we compare our approach with some other online learning schemes for con-
troller design.

5.1 Tuning (Q,R) vs aDOBO

In this section, we consider the case in which the cost function J0 is quadratic (see Eq.
(4.2)). Suppose that the actual linearization of the system around z∗ = 0 and u∗ = 0 is
known and given by (A∗, B∗). To design a controller for the actual system in such a case,
it is a common practice to use an LQR controller for the linearized dynamics. However, the
resultant controller may be sub-optimal for the actual non-linear system. To overcome this
problem, authors in [1, 10] propose to optimize the controller by tuning penalty matrices Q
and R in (4.2). In particular, we solve

θ∗ = arg min
θ∈M

J0(z
N
0 ,u

N−1
0 ) ,

sub. to zk+1 = f(zk, uk), uk = K(θ)zk ,

K(θ) = LQR(A∗, B∗,WQ(θ),WR(θ), Qf ) ,

(5.1)

where K(θ) denotes the LQR feedback matrix obtained for the system matrices (A∗, B∗) with
WQ and WR as state and input penalty matrices, and can be computed analytically. For
further details of LQR method, we refer interested readers to [24]. The difference between
optimization problems (2.4) and (5.1) is that now we parameterize penalty matrices WQ and
WR instead of system dynamics. The optimization problem in (5.1) is solved using BO in
a similar fashion as we solve (2.4) [1]. The parameter θ, in this case, can be initialized by
the actual penalty matrices Q and R, instead of a random query, which generally leads to
a much faster convergence. An alternative approach is to use aDOBO, except that now we
can use (A∗, B∗) as initializations for the system matrices A and B.

When (A∗, B∗) are known to a good accuracy, (Q,R) tuning method is expected to con-
verge quickly to the optimal performance compared to aDOBO as it needs to learn fewer



CHAPTER 5. COMPARISON WITH OTHER METHODS 16

0 100 200 300 400 500
Iteration

0

10

20

30

40
Pe

rc
en

ta
ge

 e
rro

r i
n 

J 0

,= 0
,= 0.1
,= 0.2

Figure 5.1: Dubins car: Comparison between (Q,R) tuning [1] (dashed curves), and aDOBO
(solid curves) for different noise levels in (A∗, B∗). When the true linearized dynamics are
known perfectly, the (Q,R) tuning method outperforms aDOBO because fewer parameters
are to be learned. Its performance, however, drops significantly as noise increases, rendering
the method impractical for the scenarios where system dynamics are not known to a good
accuracy.

parameters, i.e., (nx+nu) (assuming diagonal penalty matrices) compared to nx(nx+nu) pa-
rameters for aDOBO. However, when there is error in (A∗, B∗) (or more generally if dynamics
are unknown), the performance of the (Q,R) tuning method can degrade significantly as it
relies on an accurate linearization of the system dynamics, rendering the method impractical
for control design purposes. To compare the two methods we use the Dubins car model in
Eq. (4.1). The rest of the simulation parameters are same as Section 4.1. We compute the
linearization of Dubins car around z∗ = 0 and u∗ = 0 using (4.1) and add random matrices
(Ar, Br) to them to generate A′ = (1 − α)A∗ + αAr and B′ = (1 − α)B∗ + αBr. We then
initialize both methods with (A′, B′) for different αs. As shown in Fig. 5.1, the (Q,R) tuning
method outperforms aDOBO, when there is no noise in (A∗, B∗). But as α increases, its
performance deteriorates significantly. In contrast, aDOBO is fairly indifferent to the noise
level, as it does not assume any prior knowledge of system dynamics. The only information
assumed to be known is penalty matrices (Q,R), which are generally designed by the user
and hence are known a priori. The another limitation of tuning (Q,R) is that, by design,
it can only be used for a quadratic cost function J0, whereas aDOBO can be used for more
general cost functions as shown in Sec. 4.1.
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Learning K vs aDOBO

When the cost function is quadratic, another potential approach is to directly parameterize
and optimize the feedback matrix K ∈ Rnxnu in (5.1) [2] as

θ∗ = arg min
θ∈M

J0(z
N
0 ,u

N−1
0 ) ,

sub. to zk+1 = f(zk, uk), uk = Kθzk .
(5.2)

The advantage of this approach is that only nxnu parameters are learned compared to nx(nx+
nu) parameters in aDOBO, which is also evident from Fig. 5.2a, wherein the learning process
for K converges much faster than that for aDOBO. However, a linear controller might not
be sufficient for general cost functions, and non-linear controllers are required to achieve
a desired performance. As shown in Sec. 4.1, aDOBO is not limited to linear controllers;
hence, it outperforms the K learning method in such scenarios. Consider, for example, the
linear system

xk+1 = xk + yk, yk+1 = yk + uk , (5.3)

and the cost function in Eq. (4.6) with state zk = (xk, yk), N = 30, z = [0.5,−0.4] and
z = [∞,∞]. Q, Qf and R are all identity matrices of appropriate sizes, and λ = 100.

As evident from Fig. 5.2b, directly learning a feedback matrix performs poorly with an
error as high as 80% from the optimal cost. Since the cost is not quadratic, the optimal
controller is not necessarily linear; however, since the controller in (5.2) is restricted to a
linear space, it performs rather poorly in this case. In contrast, aDOBO continues to improve
performance and reaches within 20% of the optimal cost within few iterations, because we
implicitly parameterize a much richer controller space via learning A and B. In this example,
we capture non-linear controllers by using a linear dynamics model with a convex MPC solver.
Since the underlying system is linear, the true optimal controller is also in our search space.
Our algorithm makes sure that we make a steady progress towards finding that controller.
However, we are not restricted to learning a linear controller K. One can also directly learn
the actual control sequence to be applied to the system (which also captures the optimal
controller). This approach may not be data-efficient compared to aDOBO as the control
sequence space can be very large depending on the problem horizon, and will require a large
number of experiments. As shown in Table 5.1, the performance error is more than 250%
even after 600 iterations, rendering the method impractical for real systems.

5.2 Adaptive Control vs aDOBO

In this work, we aim to directly find the best linearization based on the observed performance.
Another approach is to learn a true linearization of the system based on the observed state
and input trajectory during the experiments. The underlying hypothesis is that as more and
more data is collected, a better linearization is obtained, eventually leading to an improved
control performance. This approach is in-line with the traditional model identification and
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(a) Dubins car

(b) System of Eq. (5.3)

Figure 5.2: Mean and standard deviation of η obtained via directly learning K [2] and
aDOBO for different cost functions. (a) Comparison for the quadratic cost function of
Eq. (4.2). Directly learning K converges to the optimal performance faster because fewer pa-
rameters are to be learned. (b) Comparison for the non-quadratic cost function of Eq. (4.6).
Since the optimal controller for the actual system is not necessarily linear in this case, directly
learning K leads to a poor performance

the adaptive control frameworks. Let (jz
N
0 , ju

N−1
0 ) denotes the state and input trajectories

for experiment j. We also let Di = ∪ij=1(jz
N
0 , ju

N−1
0 ). After experiment i, we fit an LTI

model of the form zk+1 = Aizk + Biuk using least squares on data in Di and then use this
model to obtain a new controller for experiment i+ 1. We apply the approach on the linear
system in (5.3) and the non-linear system in (4.1) with the cost function in (4.2). For the
linear system, the approach converges to the true system dynamics in 5 iterations. However,
this approach performs rather poorly on the non-linear system, as shown in Table 5.2. When
the underlying system is non-linear, all state and input trajectories may not contribute to
the performance improvement. A good linearization should be obtained from the state and
input trajectories in the region of interest, which depends on the task. For example, if we



CHAPTER 5. COMPARISON WITH OTHER METHODS 19

Iteration aDOBO Learning Control Sequence
200 53 ± 50% 605 ± 420%
400 27 ± 12% 357 ± 159%
600 17 ± 7% 263 ± 150%

Table 5.1: System in (5.3): mean and standard deviation of η for aDOBO, and for directly
learning the control sequence. Since the space of control sequence is huge, the error is
substantial even after 600 iterations.

Iteration aDOBO Learning via LS
200 6 ± 3.7% 166.7 ± 411%
400 2.2 ± 1.1% 75.9 ± 189%
600 1.8 ± 0.7% 70.7 ± 166%

Table 5.2: Dubins car: mean and standard deviation of η obtained via learning (A,B)
through least squares (LS), and through aDOBO.

want to regulate the system to the equilibrium (0, 0), a linearization of the system around
(0, 0) should be obtained. Thus, it is desirable to use the system trajectories that are close
to this equilibrium point. However, a naive prediction error based approach has no means
to select these “good” trajectories from the pool of trajectories and hence can lead to a poor
performance. In contrast, aDOBO does not suffer from these limitations, as it explicitly
utilizes a performance based optimization. A summary of the advantages and limitations of
the four methods is provided in Table 5.3.
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Method Advantages Limitations
(Q,R) learning [1] Only (nx + nu) parameters

are to be learned so learning
will be faster.

Performance can degrade
significantly if the dynam-
ics are not known to a good
accuracy; only applicable
when the cost function is
quadratic.

F learning [2] Only nxnu parameters are
to be learned so learning
will be faster.

Approach may not perform
well for non-quadratic cost
functions.

(A,B) learning via least
squares

Can lead to a faster conver-
gence when the underlying
system is linear

Approach is not suitable for
non-linear system.

aDOBO Does not require any prior
knowledge of system dy-
namics. Applicable to gen-
eral cost functions.

Number of parameters to
be learned is higher, i.e.,
(n2

x + nxnu).

Table 5.3: Relative advantages and limitations of different methods for automatic controller
design.
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Chapter 6

Quadrotor Position Tracking
Experiments

We now present the results of our experiments on Crazyflie 2.0, which is an open source nano
quadrotor platform developed by Bitcraze. Its small size, low cost, and robustness make it
an ideal platform for testing new control paradigms. Recently, it has been extensively used
to demonstrate aggressive flights [25,26]. For small yaw, the quadrotor system is modeled as
a rigid body with a ten dimensional state vector s :=

[
p, v, ζ, ω

]
, which includes the position

p = (x, y, z) in an inertial frame I, linear velocities v = (vx, vy, vz) in I, attitude (orientation)
represented by Euler angles ζ, and angular velocities ω. The system is controlled via three
inputs u :=

[
u1, u2, u3

]
, where u1 is the thrust along the z-axis, and u2 and u3 are rolling,

pitching moments respectively. The full non-linear dynamics of a quadrotor are derived
in [27], and its physical parameters are computed in [25].

ṡ =



ẋ
ẏ
ż
v̇x
v̇y
v̇z
φ̇

ψ̇
ω̇x
ω̇y


=



vx
vy
vz

− cosφ sinψ u1
m

sinφu1
m

g − cosφ cosψ u1
m

ωx + sinφ tanψωy
cosφωy
L
Ix
u2

L
Iy
u3


(6.1)

where L,m, Ix, Iy are physical parameters of the quadrotor and are obtained from [25]. Our
goal in this experiment is to track a desired position p∗ starting from the initial position p0 =
[0, 0, 1]. Formally, we minimize

J0(̄s
N
0 ,u

N−1
0 ) =

N−1∑
k=0

(
s̄TkQs̄+ uTkRuk

)
+ s̄TNQf s̄ , (6.2)
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Figure 6.1: The Crazyflie 2.0

where s̄ :=
[
p− p∗, v, ζ, ω

]
. Given the dynamics in [27], the desired optimal control problem

can be solved using LQR; however, the resultant controller may still not be optimal for the
actual system because (a) true underlying system is non-linear and (b) the actual system
may not follow the dynamics in [27] exactly due to several unmodeled effects, as illustrated
in our results. Hence, we assume that the dynamics of vx and vy are unknown, and model
them as [

fvx
fvy

]
= Aθ

[
φ
ψ

]
+Bθu1 , (6.3)

where A and B are parameterized through θ. Our goal is to learn the parameter θ∗ that
minimizes the cost in (6.2) for the actual Crazyflie using aDOBO. We use N = 400; the
penalty matrix Q is chosen to penalize the position deviation. In our experiments, Crazyflie
was flown in presence of a VICON motion capture system, which along with on-board sensors
provides the full state information at 100Hz. The optimal control problem for a particular
linearization in (6.3) is solved using LQR. For comparison, we compute the nominal op-
timal controller using the full dynamics in [27]. Figure 6.2 shows the performance of the
controller from aDOBO compared with the nominal controller during the learning process.
The nominal controller outperforms the learned controller initially, but within a few itera-
tions, aDOBO performs better than the controller derived from the known dynamics model
of Crazyflie. This is because aDOBO optimizes controller based on the performance of the
actual system and hence can account for unmodeled effects. In 45 iterations, the learned con-
troller outperforms the nominal controller by 12%, demonstrating the performance potential
of aDOBO on real systems.
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Figure 6.2: Crazyflie: Percentage error between the learned and nominal controllers. As
learning progresses, aDOBO outperforms the nominal controller by 12% on the actual system.
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Chapter 7

Conclusion and Future Work

In this work, we introduce aDOBO, an active learning framework to optimize the system
dynamics with the intent of maximizing the controller performance. Through simulations and
real-world experiments, we demonstrate that aDOBO achieves optimal control performance
even when no prior information is known about the system dynamics. In addition, we
compare aDOBO with similar Bayesian Optimization based methods in the space of learning
systems dynamics with data efficiency constraints, and show improvements against existing
benchmarks. For future work, it will be interesting to generalize aDOBO to optimize the
dynamics for a class of cost functions. Leveraging the state and input trajectory data, along
with the observed performance, to further increase the data-efficiency of the learning process
is another promising direction. In addition, an accurate prediction model can be used to
design a controller for a variety of cost functions, whereas aDOBO learns a model that is
specific to a single cost function. It will be interesting to generalize aDOBO to optimize the
dynamics for a class of cost functions. Finally, it will be interesting to see how aDOBO can
scale to more complex non-linear dynamics models.
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