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Abstract

Hardware-Assisted Flow Integrity eXtension (HAFIX) was proposed as a defense against
code-reuse attacks that exploit backward edges (returns). HAFIX provides fine-grained
protection by implementing Active-Set Backward-Edge CFI: confining return addresses to
only target call sites in functions active on the call stack. We study whether the active-set
backward-edge CFI policy is sufficient to prevent code-reuse exploits on real-world programs.
In this thesis, we present five novel attacks that exploit weaknesses in active-set backward-
edge CFI and demonstrate these attacks are effective in case studies examining Nginx web
server, Exim mail server, and PHP. We then propose improvements to active-set backward-
edge CFI that we believe will improve its effectiveness against code-reuse attacks.
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Chapter 1

Introduction

Memory-safety vulnerabilities have been used to exploit systems for over two decades. Re-
searchers have studied many defenses against these attacks, yet the performance and other
limitations of these defenses have meant that memory-safety exploits remain ubiquitous [18].
Data Execution Prevention (DEP) [25], which marks pages of memory used for data as non-
executable, has caused a shift to code-reuse attacks which redirect program flow to code
already present in a program [27], instead of code that is injected by an attacker.

Mitigations to code-reuse attacks have included stack canaries [6], address randomization
(ASLR) [24], and control-flow integrity (CFI) [1]. Stack canaries detect buffer overflows by
confirming that a canary value on the stack frame in between the return address and local
variables is unmodified. Stack canaries are vulnerable to attackers guessing and overwriting
the random canary value. ASLR rearranges the memory address of the base of the stack,
heap, and program’s libraries to prevent an attacker from reliably jumping to code of their
choosing. ASLR is vulnerable to information disclosure attacks. Stack canaries and ASLR
have limitations, and exploits have been demonstrated on both mitigations [29]. Control-flow
integrity (CFI) [1] is a promising defense that prevents exploits by confining the execution of a
program to a specific control-flow graph (CFG). Any violation in following the CFG raises an
exception. However, CFI seems to suffer from a performance/security tradeoff: full-strength
CFI imposes a non-trivial performance overhead. Researchers have proposed coarse-grained
CFI defenses that reduce the performance overhead by relaxing the security policy [4, 22,
33], but unfortunately these schemes have been demonstrated to be ineffective [12].

Recent research has suggested using hardware to implement CFI. In 2014, Davi et al.
proposed an intriguing hardware-assisted approach with a novel policy for restricting return
instructions [10]. Their design keeps track of an “active set” of return sites. Each function
call adds the subsequent instruction to the set, and return instructions are only allowed to
return to an instruction in the active set. In 2015, Davi et al. refined their design, which
they dubbed Hardware-Assisted Flow Integrity eXtension (HAFIX) [11]. They also described
two hardware implementations of HAFIX, one for the x86 Siskiyou Peak and one for SPARC
LEON3, and showed that both implementations achieve excellent performance.

In this thesis, we analyze the security of HAFIX’s novel active-set policy for return
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instructions. This policy provides an interesting intermediate point between coarse-grained
CFI and full-strength CFI with a shadow stack. Other researchers have studied coarse-
grained CFI (where return instructions are allowed to target any location that follows a call
instruction) and fully-precise CFI with a shadow stack (where each return instruction can
only return back to the location after the matching call instruction), but the effectiveness
of the active-set policy at preventing exploits in real-world programs has not been carefully
studied before in the research literature. Our results help understand whether this policy
will be sufficient at preventing exploits or if a shadow stack is a requirement for preventing
exploits.

To shed light on this question, we examine real-world binaries that had vulnerabilities
and evaluate whether HAFIX’s active-set policy would have prevented exploitation of those
vulnerabilities. We show that this policy can be circumvented when an attacker has write
access to arbitrary memory. The active-set backward-edge policy includes many additional
execution paths that are not present in CFI with a shadow-stack. These additional paths
can lead directly to powerful library calls and as a result enable a number of novel attacks
on HAFIX. We present five novel attacks, based on the attacker’s ability to return to parent
code in a child process after a fork, to earlier call sites in functions on the stack, and to the
entry function of a program (typically main). Our results can be viewed as adding to the
evidence that a shadow stack is a minimum requirement for CFI, and that weaker policies
for return instructions are not sufficient.

To the best of our knowledge we are the first to evaluate the active-set CFI policy on
real-world programs. Previous research has speculated about potential weaknesses with
HAFIX [5], but the extent that these weaknesses are effective at preventing actual exploits
has not been studied.

The remainder of this thesis is structured as follows: in chapter 2 we provide background
on code-reuse attacks, CFI, and HAFIX. In chapter 3 we define the threat model. In chapter
4 we describe novel attacks on active-set backward-edge CFI that detail its weaknesses. In
chapter 5 we present case studies of real programs with vulnerabilities and demonstrate our
attacks on these programs. In chapter 6 we discuss improvements to active-set backward-
edge CFI that prevent the attacks in this thesis. Finally, in chapter 7 we conclude the
thesis.
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Chapter 2

Background and Related Work

2.1 Memory-Related Vulnerabilities and Code-Reuse

Attacks

Performance and legacy reasons keep unsafe programming languages such as C and C++
ubiquitous today. These unsafe languages lack overflow checks, automatic memory man-
agement, and strong typing and as a result frequently contain errors that lead to memory
corruption and exploitable unexpected behavior. Classic attacks work by injecting malicious
code through a stack overflow and overwriting the return address to point to the injected
code [21]. The widespread adoption of Data-Execution Prevention (DEP) [25] has effectively
eliminated code-injection attacks.

Code-reuse attacks have emerged as the replacement to code-injection attacks since the
adoption of DEP. Code-reuse attacks reuse fragments of existing program or library code
for malicious execution. Leveraging a memory corruption vulnerability to direct control-flow
to powerful code already present in the address space of a program has the same effective-
ness as injecting code. Code-reuse using libc has been shown to provide turing-complete
computation [32].

The most prominent variation of the code-reuse attack is Return-Oriented Programming
(ROP) [27]. In ROP small chunks of existing code referred to as gadgets are chained together
to achieve malicious activity. Gadgets typically end in a return instruction allowing them
to be easily chained together when an attacker has the ability to modify memory and are
chosen from the program and its linked library code.

2.2 Code-Reuse Defenses

Defenses for code-reuse attacks have largely fell into two categories: defenses that seek to
keep memory safe by combating unsafe programming practices and defenses that assume
unsafe programming practices and instead prevent exploitation given vulnerable memory.
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Many mitigations have been proposed in the first category [19, 17, 15], however all suffer
from performance overhead as large a 67% [20].

A number of defenses have been proposed to mitigate code-reuse attacks given a memory
vulnerability. One class of defenses is aimed at randomizing a program’s address space to
prevent an attacker from diverting control to the specific gadgets they select. Address Space
Layout Randomization (ASLR) [24], the leading technique in randomization, rearranges the
program’s address space by shuffling the addresses of the stack, heap, and libraries. Like
most defenses based on address randomization, ASLR is susceptible to information disclosure
attacks [28, 29]. Stack canaries [6] are another widely deployed defense that write a canary
value in the stack and verify that canary value is present later in the execution to ensure
a buffer has not overflowed the stack. Stack canaries prevent the continuous overwriting of
the stack but are ineffective at preventing a discrete overwrite [29].

2.3 Control-Flow Integrity (CFI)

Control-Flow Integrity (CFI) [1] is a code-reuse defense that confines a program’s execution
to be consistent with its static control-flow graph (CFG). The program is monitored at run-
time to ensure its control flow follows a valid path in the CFG. Any deviation from the CFG
produces an exception.

Ensuring program control-flow stays within a CFG requires validating all indirect control-
flow transfers which results in substantial performance impact.

Control transfers can be split into two categories, forward edges (function calls and
jumps, including indirect transfers) and backward edges (return instructions). Any CFI
implementation must limit both forward and backward edges. Research suggests that at
least some forward-edge policies can be enforced efficiently in software [31], but backward-
edge policies can be more expensive [9]. This has motivated researchers to examine several
different backward-edge policies and to consider hardware support for policy enforcement.

The strongest (most restrictive, most secure) backward-edge policy involves validating
return addresses with a shadow stack in protected memory. Each call instruction causes the
return address to be pushed to the ordinary stack and to the protected shadow stack; a return
instruction validates the return address against the value at the top of the shadow stack.
However, shadow stacks impose a significant performance overhead in software, motivating
researchers to study weaker, coarse-grained policies for backward edges [16]. One weaker
alternative is to omit the shadow stack and check that every return instruction targets the
location following some call instruction.
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Figure 2.1: The Abstract design of HAFIX CFI. Each function must issue a CFIBR in-
struction when called to load the label of the function into label state memory (or the
active-set). Label State Memory (the active-set) indicates functions that are active. CFI-
DEL instructions deactivate active functions by removing labels from label state memory.
Return instructions must be followed by a CFIRET instruction that only allows returns to
functions in label state memory.

2.4 HAFIX and Active-Set Backward Edge CFI

HAFIX is a hardware CFI implementation for backward edges with a performance overhead
of just 2% [11]. Their design [10],[11, § 3] introduces an active-set policy that maintains a
set of active functions (functions that are executing on the stack) and restricts returns to
only target call-preceded instructions in active functions. This active-set backward-edge CFI
policy is used in the HAFIX x86 implementation.

Under HAFIX, the compiler assigns unique labels to each function, then uses the labels
in the following three new instructions:

1. CFIBR: CFIBR is inserted as the first instruction to each function to insert the
function’s label into the active set.

2. CFIRET: CFIRET is inserted after each call instruction to check that the function’s
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label is in the active set.

3. CFIDEL: CFIDEL is inserted before each return instruction to remove the function’s
label from the active set.

A state machine ensures that every function call and return is followed immediately by a
CFIBR or CFIRET instruction. Figure 2.1 illustrates the abstract design of HAFIX. The
result of this transformation is illustrated in pseudo-code below:

//main − l a b e l=0
int main ( )
{

CFIBR 0 // i n s e r t l a b e l 0 in t o the a c t i v e s e t
. . .
f oo ( ) ;
CFIRET 0 // ensure l a b e l 0 i s in the a c t i v e s e t
. . . .
CFIDEL 0 // d e l e t e l a b e l 0 from the a c t i v e s e t
return ;

}

// foo − l a b e l=1
int f oo ( )
{

CFIBR 1 // i n s e r t l a b e l 1 in t o the a c t i v e s e t
. . .
CFIDEL 1 // d e l e t e l a b e l 1 from the a c t i v e s e t
return ;

}

In the example above, foo can return to main since main’s label, 0, is present in the active
set when foo’s return instruction is executed. However, main cannot return to foo, as foo’s
label, 1, is not present in the active set when main returns. Before returning all functions
remove their label from the active set to ensure future returns cannot target the function.

Figure 2.2 details the state machine model of HAFIX.
HAFIX also includes two additional instructions for handling recursive function calls.

CFIREC instructions replace CFIBR instructions at the beginning of recursive functions.
CFIREC instructions increment a recursion depth counter stored in a hidden register called
CFIREC CTR and additionally activate labels when CFIREC REC is set to 0. CFIDEL
instructions decrement CFIREC CTR if CFIFREC CTR > 1 and remove the function’s
label from the active set when CFIREC CTR equals 1. Figure 2.3 illustrates the abstract
design of recursion handling in HAFIX. HAFIX does not support nested recursion. Our
attacks (§ 5) do not use recursion.

We emphasize that our results apply only to Davi et al.’s x86 implementation of HAFIX,
but not to their SPARC implementation [11]. Their x86 implementation uses the active-set
policy for return instructions, while their SPARC implementation uses a full shadow stack
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Figure 2.2: The HAFIX CFI State Model

Forward-edge policy
Backward-edge policy Coarse-grained Fine-grained
Coarse-grained broken [2, 14, 12] broken [3]
Active set broken (this thesis)
Shadow stack broken [13, 3] partially broken [3]

Table 2.1: Attacks against variations of CFI

for return instructions. Other researchers have studied shadow stacks; this thesis focuses
solely on the active-set policy.
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Figure 2.3: The Abstract design of recursion in HAFIX CFI

2.5 Attacks on CFI Flavors

Coarse-grained CFI includes a control flow graph with many additional execution paths
beyond those intended by the programmer. Popular coarse-grained CFI implementations
include ROPecker [4] and kBouncer [22]. Coarse-grained CFI has been bypassed and broken
in previous research [2, 12].

Many researchers have studied fine-grained flavors of CFI [3, 13]. Carlini et al. found that
fine-grained forward-edge CFI with a weak backward-edge policy (no shadow stack; allow
returns to target any call-preceded instruction) can also be bypassed [3]. Even a shadow stack
(the strongest possible policy for backward edges) can be vulnerable to code-reuse attacks in
some cases [3]. Table 1 summarizes attacks on various CFI policies. Although HAFIX was
not studied by Carlini et al., their findings imply that coarse-grained forward-edge CFI with
an active set for backwards edges can be bypassed, as that policy is strictly weaker than
coarse-grained forward-edge CFI with a shadow stack. Previous research has not evaluated
the active-set policy for backwards edges with a fine-grained forward-edge policy. This thesis
evaluates this CFI combination.
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Chapter 3

Threat Model

3.1 Threat Model

Attacker Goals

Our adversary seeks to leverage a memory corruption vulnerability to execute arbitrary code.
Through arbitrary code execution the attacker can exercise all permissions of a program and
can execute system calls with attacker-supplied parameters.

Threat Model

Our main goal is to successfully execute a code-reuse attack on a system that implements
Active-Set Backward-Edge CFI. In our model an attacker (1.) has full writable control
of memory from a memory corruption vulnerability at least at one point during program
execution, (2.) has full knowledge of the program’s memory space including access to the
program’s code, and (3.) can bypass any code randomization by leveraging information
leakage. We justify an attacker having full writable control of memory by verifying this is
indeed true for the vulnerabilities in our case studies.

System Assumptions

We assume x86 HAFIX’s active-set policy is deployed with the following additional defenses:

1. All indirect calls must follow the most restrictive static CFG for forward edges that still
allows all feasible non-malicious execution [31]. (Thus, our attacks apply no matter
what policy is applied to forward edges.)

2. Returns are restricted by the active-set policy: they can only target call-preceded
instructions in active functions.

We also assume the following about our system:
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1. DEP or an equivalent form of code-injection is enabled such that data is non-executable
and code is non-writable. This is currently deployed on most systems by default.

2. ASLR or any code randomization is disabled or can be successfully bypassed by an
adversary. Code randomization is an orthogonal defense to CFI, therefore evaluating
ASLR would be irrelevant to our study of CFI.
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Chapter 4

Active-Set CFI Attacks

The active-set backward-edge CFI policy contains weaknesses that can allow a malicious user
to execute powerful attacks. The control flow graph of active-set backward-edge CFI contains
many additional execution paths not present in the CFG of CFI with a shadow stack. More
importantly, we found that many of the additional paths in active-set backward-edge CFI
lead directly to powerful functions including exec. The design of active-set backward-edge
CFI overlooked the frequency of powerful function calls occurring in functions likely to be
on the call stack at any point in the execution of a program. Attackers can leverage these
paths to exec to execute their attacks.

Five novel attacks on the active-set backward-edge CFI policy are presented in this
chapter. The novel attacks are based on the following properties of the active-set policy:

1. The ability to return to any active function on the stack (not just the last function put
on the call stack).

2. The ability to return to parent code in a child process after a fork.

3. The ability to return to earlier call sites in functions on the stack.

4. The ability to directly return to future call sites in functions on the stack.

5. The ability to return directly to the beginning of a program (typically the second call
site in main).

4.1 Return-to-Active-Function Attack

The active-set policy allows return instructions to target any active function on the call
stack. This property can be used by an attacker to directly return to any function in the call
stack, bypassing any code residing in intermediate functions on the stack. These intermediate
functions may contain code that is critical for secure execution. We show an example below.
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int main ( int argc , char ∗argv [ ] ) {
char ∗path ;
. . .
f oo ( path , argv ) ;
e x e c l ( path , argv ) ; // (∗)
. . .

}
int f oo (char∗ path , char ∗argv [ ] ) {

. . .
vu lne rab l e ( ) ;
i f ( v a l i d a t e ( path ) != 0) { e x i t ( 1 ) ; }
. . .

}
int vu lne rab l e (char ∗ argv [ ] ) {

char buf [ 1 0 2 4 ] ;
. . .
memcpy( buf , argv [ 1 ] , s t r l e n ( argv [ 1 ] ) ) ;
. . .

}

An attacker can leverage the vulnerability in vulnerable() to overwrite the return address
to point to the statement marked (*) in main and overwrite the path variable to refer to a
program of their choosing. By returning directly to main, the attacker bypasses the path
variable validation that would have caused the program to exit.

4.2 Return-to-Parent-After-Fork Attack

Event loops and forked processes are common in server software. Servers often have a main
process that waits for requests and forks a child process on each new request. In benign
execution it is usually not possible to execute code that was designed for the parent process
in the child process. The active-set policy allows an attacker who has compromised a child
process to return to a function higher in the call stack (in the parent’s region of the call
stack) and execute code designed for the parent within the child process. This may enable
a powerful attack, as often many unsafe library calls occur in code designed to be executed
by the parent.

Figure 4.1 depicts a simple return-to-parent-after-fork attack. In the depicted attack,
an exit call in the child process after the fork confines the child process to code reachable
from the handle request function. All code in main (with the exception of handle request
and exit) is only intended for the parent. The active-set policy enables a malicious user with
control over memory in the child process to reach the execv call by overwriting the return
address in vulnerable to directly return to the execv call in main.

Davi et al.’s x86 HAFIX implementation is intended for bare metal code and does not
support multiple processes or fork. This attack is not applicable to that implementation, but
it is applicable to any system that uses the active-set policy and supports multiple processes.
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Figure 4.1: Simple Return-to-Parent-After-Fork Attack
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4.3 Back-Call-Site Attack

A consequence of assigning unique labels to functions as opposed to individual call sites
is that attackers who control a return address can return to call sites that appear earlier
than the original call site if they are in the same function. This enables attackers to reach
points in active functions that have already completed execution and are not intended to be
re-executed. We show an example below.

int main ( ) {
char path [ 1 0 2 4 ] ;
. . .
s t r cpy ( path , ”/ usr /bin /whoami” ) ;
e x e c l ( path , arg ) ;
. . .
vu lne rab l e ( ) ;

}
int vu lne rab l e ( ) {

char buf [ 1 0 2 4 ] ;
. . .
memcpy( buf , input , s t r l e n ( input ) ) ;

}

The vulnerability in the vulnerable function can enable an attacker to execute execl in
main with malicious arguments by overwriting the path variable and return address to target
the execl in main.

4.4 Forward-Call-Site Attack

Similar to the Back-Call-Site Attack, an attacker can also return directly to call sites that
occur later in an active function than the original call site, bypassing code occurring in
between the original call site and the attacker’s chosen call site. An example is shown below.

int main ( ) {
char path [ 1 0 2 4 ] ;
. . .
vu lne rab l e ( ) ;
. . .
//Some code the a t t a c k e r must avoid
. . .
e x e c l ( path , arg ) ;

}
int vu lne rab l e ( ) {

char buf [ 1 0 2 4 ] ;
. . .
memcpy( buf , input , s t r l e n ( input ) ) ;

}

The vulnerability in the vulnerable function can enable an attacker to execute execl
in main with malicious arguments without needing to execute any code in between the
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vulnerable() call and the execl call. This attack is implemented by overwriting the path
variable and return address to target the execl in main.

4.5 Return-to-Main Attack

The back-call-site attack can be combined with a return-to-active-function attack targeting
the main function. Programs typically start and complete execution in the main function.
As a result, main is marked active throughout the duration of the program, and all code
(other than dead code) is reachable via some path starting in main. Suppose an attacker
wants to reach code in function g, g is reachable via some path from function f, and main
calls f. Then an attacker controlling any return address can always return to any call site in
main that precedes the call to f and from there reach g.
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Chapter 5

Case Study Evaluation

5.1 Motivation and Methodology

To understand the applicability of our attacks to real programs we select three programs
with reported memory vulnerabilities and attempt to develop attacks on these programs
under HAFIX. We select our programs by searching CVE databases for CVEs of open-source
programs. We reproduce the vulnerabilities inside gdb to obtain an accurate backtrace and
identify which functions are active at the point of the vulnerability. We also use gdb to write
to memory and emulate an attacker’s control over memory, and to verify that an attacker
has full-writable control of memory for all programs.

5.2 Exim Mail Server

We examine a buffer overflow in the Exim mail server [26]. The vulnerability results from
a heap based buffer overflow in the gethostbyname functions in glibc 2.2–2.18. We examine
the vulnerability on a 64-bit Debian system.

Figure 5.1: The active set for the Exim mail server during execution of the vulnerability
with the execv call in main.
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Figure 5.2: The active set for Nginx is shown on the left. The ngx spawn process function
contains a call to ngx execute proc which calls execve. ngx execute proc is called using the
proc variable which can reference ngx execute proc when ngx spawn process is called from
ngx execute.



CHAPTER 5. CASE STUDY EVALUATION 18

Control over Memory.

A security advisory [26] explains how an attacker can turn the gethostbyname buffer overflow
into a write-anything-anywhere primitive. This satisfies our requirement that an attacker
has full control of memory.

To summarize the advisory, they leverage the heap-overflow and partially overwrite the
size field of the next contiguous free chunk of memory with a larger size, hence overlapping
the free chunk with Exim’s current block mangaed by Exim’s internal allocator. Exim’s
current block is overwritten with partially arbitrary data, and control of both the pointer
to the next block of memory in Exim’s allocator and the data allocated work as our write-
anything-anywhere primitive.

Exploitation.

We found that an attacker can bypass active-set CFI and perform an exec with an arbitrary
command. We successfully spawned a shell while monitoring the program in gdb to ensure
the active-set policy is respected. Our attack works by invoking an execv call in the main
function. Because main is active when the gethostbyname vulnerability occurs, an attacker
can use their control over memory to (1.) overwrite the return address to target the execv
and (2.) overwrite the argument that is supplied to execv. Figure 5.1 shows the active
functions at the point when the attacker controls memory and the call-preceded execv call
in main.

0 gethostbyname2
1 host find byname
2 host name lookup
3 smtp start session
4 handle smtp call
5 daemon go
6 main

Table 5.1: The full call stack of Exim Mail Server at the point when an attacker controls
memory. The vulnerability occurs in the gethostbyname2 function.

Table 5.1 shows the full call stack at the point when an attacker controls memory.
Our exploit is an example of both the Back-Call-Site attack and the Return-to-Main

attack described in the previous chapter.

5.3 Nginx Web Server

We study a integer overflow vulnerability in Nginx web server reported in CVE-2013-2028 [8].
We examine the Nginx 1.4.0 binary on a Debian 64-bit system.
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Application Attack techniques
used

Exploitable with
active set

Exploitable with shadow stack

Nginx Server Return-to-parent,
back-call-site

Yes No

Exim mail server Return-to-main, back-
call-site

Yes No

PHP - Yes Undetermined (No write-what-
where gadget found)

Table 5.2: A summary of our attacks. The second column indicates the attack methods we
use in our exploits.

Control over Memory.

An integer signedness vulnerability in the decoding stage of Nginx allows an attacker to
overflow an integer and trigger a stack-based buffer overflow. The overflow can be used
to control arguments of a memcpy call, allowing an attacker to write arbitrary values to
arbitrary locations [3]. Memory can be arranged after executing memcpy to return the
process to accepting further requests without a crash. Carlini et. al study this vulnerability
and report it is possible to write arbitrary values to arbitrary locations even when the
program is protected with Shadow Stack CFI [3].

Exploitation.

We find an attacker can execute arbitrary code in the presence of active-set CFI. One of
the functions in the active set when the memory vulnerability occurs, ngx spawn process,
invokes a function pointer, proc, which can be overwritten by any value of the attacker’s
choice. An attacker with control over memory can (1.) overwrite the return address to
target the proc function call in ngx spawn process, (2.) overwrite the proc function pointer
to reference the ngx execute proc function, and (3.) overwrite the structure in memory used
to hold the arguments for the execve call in ngx execute proc. Figure 5.2 summarizes our
exploit and shows the active functions during the exploit. Overwriting the proc function
pointer to reference the ngx execute proc function does not result in a forward-edge CFI
exception as there exists another function, ngx execute, that sets proc to ngx execute proc
in non-malicious execution.

5.4 PHP

We investigate a stack buffer overflow in the sockets extension of PHP 5.3.6 that was reported
in CVE-2011-1938 [7].
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Control over Memory.

An attacker has full writable control of memory in the presence of active-set CFI. A memcpy
call in the sockets function of php allows an attacker to trigger a stack overflow. The overflow
can (1.) overwrite the arguments to a memcpy call in main and (2.) overwrite the return
address to target the memcpy in main. The memcpy call in main is followed by an error
condition check that returns when errors are detected. Memory can be overwritten to force
a return through this error path to create a write-what-where gadget.

Exploitation.

We found that an attacker can execute arbitrary code despite active-set CFI. An attacker
can leverage their control over memory to inject a php script of their choosing. The stack
overflow occurs during execution of a php script, so the active set contains the required
functions for execution of a php script. To execute an arbitrary php script, an attacker (1.)
overwrites the existing php script in memory and (2.) overwrites the return address to target
the php execute script function that executes php scripts.

5.5 Results

Table 5.2 summarizes our results. We believe the attacks we demonstrate are general and
can be applied to other software.
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Chapter 6

Enhancing Active-Set CFI

Our results demonstrate that Active-Set Backward-Edge CFI is broken and insecure. We
propose two simple improvements to Active-Set CFI that eliminate the Return-to-Parent,
Back-Call-Site, and Forward-Call-Site attacks. However even with these improvements, it is
still unclear if the Return-to-Active-Function and Return-to-Main attacks alone are enough
to break a CFI implementation. The only apparent mitigation to the Return-to-Active
function and Return-to-Main attacks is using CFI with a shadow stack. Our results also add
evidence to the claim that shadow-stack CFI is a necessary requirement for any secure CFI
implementation. Table 6.1 summarizes our proposed improvements and the attacks they
eliminate.

6.1 Adoption of Call-Site Labels

To prevent the back-call-site and forward-call-site attack, we propose assigning unique labels
to individual call sites instead of functions. A compiler would then insert CFIBR instructions
immediately before call sites instead of inserting CFIBR instructions at the beginning of
functions. This modification restricts returns to target only the original call site in an active
function. The attacks we demonstrate on Nginx and Exim servers are not possible under
this modification.

6.2 Deactivation of Parent Function upon Fork

To prevent the return-to-parent-after-fork attack, we propose augmenting fork to clear the
child process’s active set before executing the child’s code. The programs we evaluate do not
contain programmer-intended paths in a child process that lead to functions made active in
the parent process. We believe this holds true for most programs, however for compatibility
we propose implementing this feature as an opt-out compiler option with a default of de-
activating active parent functions. Our proposed compiler option can be modeled after the
-fno-stack-protector option used in gcc to disable canaries.
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Attack Call-Site Labels Parent Function
Deactivation

Shadow Stack

Return-to-Active-Function No No Yes
Return-to-Parent-After-Fork No Yes Yes
Back-Call-Site Yes No Yes
Forward-Call-Site Yes No Yes
Return-to-Main No No Yes

Table 6.1: A summary of proposed enhancements. The columns represent each proposed
enhancement. Yes signifies that the enhancement prevents the attack.

6.3 Replacement of Active Functions with a Shadow

Stack

We believe the only mitigation to the return-to-main and return-to-active-function attacks
is the use of CFI with a shadow-stack. We were unable to find exploits that work in the
presence of a shadow stack for the three programs in our case studies. Therefore, we be-
lieve the adoption of a LIFO shadow stack will be significantly stronger than an active
set. Fortunately, Intel plans to add hardware support for shadow stacks in their upcom-
ing Control-flow Enforcement Technology (CET) [23]. Recent research projects, including a
successor to HAFIX, also present hardware support for shadow stacks [5, 30].
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Chapter 7

Conclusion

Control-flow integrity implementations in the research literature have been proposed in both
coarse-grained and fine-grained flavors. While coarse-grained CFI has been largely bypassed,
bypassing fine-grained CFI implementations has remained questionable. Our work shows
that the active set policy for backward edges can be defeated, no matter what forward-edge
policy is used. These results suggest that the active set policy is too permissive and CFI
needs to use a full shadow stack.

We hope our evaluation and attacks against HAFIX establishes a basis for stronger
security policies in future CFI implementations. We also hope that the security benefits of
implementing a full shadow-stack are further emphasized for researchers developing future
proposals for CFI implementations.
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