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Shaping Model-Free Reinforcement Learning with Model-Based Pseudorewards
Paul M. Krueger

Abstract

Model-free and model-based reinforcement learning have
provided a successful framework for understanding both hu-
man behavior and neural data. These two systems are usu-
ally thought to compete for control of behavior. However,
it has also been proposed that they can be integrated in a
cooperative manner. For example, the Dyna algorithm uses
model-based replay of past experience to train the model-free
system, and has inspired research examining whether human
learners do something similar. Here we introduce an approach
that links model-free and model-based learning in a new way:
via the reward function. Given a model of the learning en-
vironment, dynamic programming is used to iteratively es-
timate state values that monotonically converge to the state
values under the optimal decision policy. Pseudorewards are
calculated from these values and used to shape the reward
function of a model-free learner in a way that is guaranteed
not to change the optimal policy. In two experiments we show
that this method offers computational advantages over Dyna.
It also offers a new way to think about integrating model-free
and model-based reinforcement learning: that our knowledge
of the world doesn’t just provide a source of simulated expe-
rience for training our instincts, but that it shapes the rewards
that those instincts latch onto.

Introduction

The problem of learning from environmental rewards has
been studied extensively in both psychology and artificial
intelligence research. Both fields have explored two differ-
ent approaches to solving this problem, known as model-free
and model-based reinforcement learning. Model-free learn-
ing relies on direct trial-and-error interaction with the en-
vironment [Sutton et al., 1992], while model-based learn-
ing leverages knowledge about the causal structure of the
environment [Barto et al., 1995]. Historically, animal psy-
chologists viewed these two systems as distinct and compet-
ing hypotheses, with behaviorists arguing in favor of reflex-
ive, model-free learning based on stimulus-response associ-
ations [Thorndike, 1933], and Tolman and others positing
an internal representation of the environment, known as the
“cognitive map” [Tolman, 1948].

Nowadays, while behavioral and neural data indicate
that human learning relies on both systems [Daw et al.,
2005, Gläscher et al., 2010, Dayan and Berridge, 2014], it
is typically assumed that they compete for control of behav-
ior. However, it is also possible for them to cooperate. The
Dyna architecture achieves such cooperation by integrat-
ing model-free learning with model-based planning [Sutton,
1991a]. In Dyna, as model-free learning occurs, transitions
between states of the environment and the resulting rewards
are stored in a model. That model is used to replay these past

experiences, using them to further train model-free state-
action values. Recent behavioral data from people perform-
ing a retrospective revaluation task is consistent with a co-
operative architecture like Dyna [Gershman et al., 2014].

Here we introduce a new method for cooperative inter-
action between model-free and model-based learning. The
model-based system generates pseudorewards that shape the
reward function used in model-free learning. According to
the shaping theorem, conditions exist under which the op-
timal decision policy will remain invariant to such modifi-
cations of the reward function, opening the possibility that
pseudorewards can be used to guide agents toward optimal
behavior [Ng et al., 1999]. That is, if the optimal policy can
be guaranteed to remain unchanged, then pseudorewards can
potentially be used to guide the agent to the optimal pol-
icy. Using these principles, we show that pseudorewards can
provide a link between model-free and model-based learn-
ing through modification of the reward function.

This method of cooperation between learning systems of-
fers an appealing alternative to Dyna, both conceptually and
practically. With Dyna, the model-based replay of past expe-
rience suggests that planning (by internal simulation) is one
way that different learning systems might be linked in hu-
man cognition. The method that we introduce offers an al-
ternative approach, based on changing the reward function.
One way that this link may manifest in human cognition
is through model-based production of emotions that func-
tion as pseudorewards for model-free learning. In addition
to providing a new way to think about interaction between
reinforcement learning systems, our method also offers prac-
tical advantages over Dyna by learning in fewer steps and
requiring less computation time.

We begin by reviewing the Dyna architecture for inte-
grated model-free and model-based learning. We then intro-
duce our method and the theoretical background on which it
is based. We present two experiments which show the effec-
tiveness of our method and how it compares with Dyna. The
first experiment involves learning in a maze environment,
and the second experiment uses the classic mountain car
problem. We end by discussing additional variants of Dyna
and our method, and consider how this integrated approach
might provide a useful model for understanding human cog-
nition and emotion.

Cooperative Reinforcement Learning

Markov Decision Processes

We describe sequential decision problems that can be mod-
eled as a Markov Decision Process (MDP). The MDP is
defined as the 5-tuple: M = {S,A,P,R, �}, where S
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is the set of states, A is the set of actions, and for each
(s, a) 2 S⇥A, P(s, a, s0) is the probability of transitioning
to state s0 when action a is selected in state s, R(s, a, s0) is
the reward received for transitioning from state s to s0, and
�t is the discount factor for rewards t time steps in the fu-
ture, where 0  �  1 [Sutton and Barto, 1998]. A policy,
⇡, is a mapping of states, S , onto actions, A: ⇡ : S 7! A. A
value function, V ⇡

(s), is the expected amount of discounted
reward generated by following policy ⇡ beginning at state s:

V ⇡
(s) =

X

s0

P⇡(s)(s, a, s
0
)(R⇡(s)(s, a, s

0
) + �V ⇡

(s0)). (1)

An optimal policy, ⇡⇤, is a policy that maximizes the value
function: ⇡⇤

(s) = argmaxa V ⇡
(s).

Model-free Reinforcement Learning

Reinforcement learning (RL) is concerned with learning an
effective policy from rewards alone. Model-free methods re-
quire no knowledge about the environment, and the agent
learns which state-action pairs lead to reward through trial-
and-error. One of the most common model-free methods,
which is employed throughout the experiments in this pa-
per, is Q-learning [Sutton and Barto, 1998]. When the agent
takes action a from state s, leading to state s0 and reward
R(s, a, s0), a value Q(s, a) is learned via the update

Q(s, a) Q(s, a)+↵(R(s, a, s0)+�max

a0
Q(s0, a0

)�Q(s, a)),

(2)

where ↵ is the learning rate that determines how quickly the
agent learns from new experience. The terms [R(s, a, s0) +
�maxa0 Q(s0, a0) � Q(s, a)] are called the temporal differ-
ence error. Initially all Q(s, a) are zero, and Q-learning can
eventually learn an optimal policy ⇡⇤ over time. The agent
uses a decision policy, such as the ✏-greedy policy which is
used in our experiments. At each state s, with probability
1 � ✏, the agent chooses the action a 2 A with the highest
value Q(s, a). With probability ✏ it chooses an action uni-
formly at random (✏ is a hyperparameter that calibrates the
explore-exploit tradeoff).

Model-based Reinforcement Learning

Unlike model-free RL, model-based RL has (at least some)
knowledge of the environment in terms of the transition
probabilities between states, P , and the reward contingen-
cies for state-action pairs, R. One of the most common
model-based methods for finding an optimal policy ⇡⇤ is
dynamic programming which calculates the value of state
s under policy ⇡ according to the Bellman equation:

V ⇡
(s) = R⇡(s)(s,⇡(s), s

0
) + �

X

s0

P⇡(s)(s, a, s
0
)V ⇡

(s0)), (3)

and finds the value of each state V ⇤
(s) under the optimal

policy ⇡⇤ by recursively updating these values using the

Bellman optimality equation:

V ⇤
(s) = max

a
R⇡(s)(s, a, s

0
) + �

X

s0

P⇡(s)(s, a, s
0
)V ⇤

(s0)).

(4)

Dyna

Dyna uses model-free learning combined with a model-
based system that replays past experiences, which are used
to train the model-free system (Figure 1). After each real
action taken in the environment, the model stores the state-
action pair and reward received. It then randomly selects n
past state-action pairs and replays them. These planned ac-
tions are used to update the model-free system as if they
were real actions. In Dyna-Q, the model-free system uses
one-step tabular Q-learning (which is what we use in our ex-
periments).The number of simulated planning steps, n, is a
parameter that can be set to any positive integer value. Dyna
typically begins with no knowledge about the causal struc-
ture of the environment (that is, transitions between states
and reward contingencies), but builds this knowledge based
on experience. However, Dyna can also inherit a model of
the environment, and we discuss this possibility later.

Figure 1: Schematic of the Dyna archetecture.

In addition to being a useful algorithm for integrating di-
rect learning with indirect replay, Dyna has been proposed as
a model of human cognition. Gershman et al. (2014) found
behavioral evidence in humans consistent with a Dyna ar-
chitecture. Participants performed a sequential decision task
with separate learning phases that tested behavioral reval-
uatation. When given either more time between phases or
a smaller cognitive load, the magnitude of revaluation was
larger, consistent with model-based replay of past experi-
ence. There are also neurophysiological data that suggest
Dyna-like cooperation between the two systems. Lansink et
al. (2009) identified neurons in the hippocampus of rats en-
coding spatial location and neurons in the striatum encoding
reward. During sleep, the activation of those hippocampal
cells correlated with and proceeded activation of the same
striatal cells that encoded the value of those locations.

Model-based pseudoreward approximation

Dyna integrates model-free and model-based RL by simu-
lating past experience. We now consider a different way to
merge the two. Our method uses dynamic programming to
approximate state values. These values are used to calculate



pseudorewards according to the shaping theorem. By shap-
ing the reward function, pseudorewards provide a link be-
tween model-based planning and model-free learning.

Pseudorewards and the shaping theorem

Pseudorewards offer a way of conferring extra information
to an agent about the reward landscape. Essentially, a small
reward is given to the model-free agent (a Q-learner in our
experiments) whenever it takes an action that helps the agent
move towards the goal. Instead of the agent receiving actual
reward R(s, a, s0) when moving from state s ! s0, the agent
receives an augmented reward R0

(s, a, s0) where

R0
(s, a, s0) = R(s, a, s0) + F (s, a, s0). (5)

Pseudorewards are defined using shaping functions, F .
In [Ng et al., 1999], conditions for which the optimal pol-
icy ⇡⇤ remains invariant under a shaping function are devel-
oped. In particular, F necessarily must be a potential-based
shaping function to possess this invariance property:

F (s, a, s0) = ��(s0)� �(s), (6)
where � is a real-valued function, � : S ! R. If the shaping
function is not potential-based, it is possible that Q-learning
will converge to a suboptimal solution. The simplest exam-
ple of invariant pseudorewards uses the difference in optimal
values between the agent’s current state and next state:

F (s, a, s0) = �V ⇤
(s0)� V ⇤

(s). (7)
This method is called the optimal policy pseudoreward–it

encourages the agent to always move down the optimal path
from its current state. With an ✏-greedy decision policy, if
✏ = 0, the agent would move directly to the goal along the
shortest path.

With optimal policy pseudorewards the agent can maxi-
mize long-term reward simply by taking the most rewarding
action at each step. However, in real-world scenarios, it is
often unrealistic for a human to have such a complete in-
formation set. Computing the optimal policy may require a
large number of iterations of the Bellman equation, or solv-
ing a linear program.

Approximating the value function

The optimal policy pseudorewads require knowing the value
function under the optimal policy, but that may be costly to
compute. Alternatively, the optimal value function can be
approximated, requiring less computation. Bounded Real-
Time Dynamic Programming is a planning algorithm that at-
tains certain performance guarantees if its lower- and upper-
bounded estimates of state values converge monotonically
toward state values under the optimal policy [McMahan
et al., 2005]. Importantly, this monotonic convergence to-
ward optimal values is guaranteed to occur if the lower and
upper bounds are initialized properly. Here, we take ad-
vantage of this monotone property to calculate approximate
state values using dynamic programming. Specifically, any
number, n, of iterations of the Bellman equation can be used
to approximate state values, and as n increases, the state val-
ues converge toward optimal values. These values after n

iterations are then used to approximate pseudorewards ac-
cording to the shaping theorem. Thus, there is a tradeoff,
determined by n, between the proximity of pseudorewards
to their optimal values and the amount of computation. A
real agent would presumably learn a value for n.

Linking model-free and model-based RL with the

reward function

Figure 2 provides a schematic illustration of how dynamic
programming is used to approximate pseudorewards, which
in turn shape the reward function and policy of the model-
free agent. A model containing state-action pairs and reward
contingencies is used to estimate state values using n iter-
ations of the Bellman equation. These values are used to
calculate pseudorewards with a simple potential-based shap-
ing function, and then added onto real rewards whenever the
agent chooses an action. In this way, the model-free agent
is guided by pseudorewards that are generated using model-
based RL. In the remainder of the paper we present two ex-
periments focused on evaluating this method and comparing
it to Dyna.

Figure 2: The approximate pseudoreward shaping method.

Experiment 1: Maze learning

Methods

Our first experiment involved an agent learning in a
maze environment [Sutton, 1991a, Sutton, 1991b, Peng and
Williams, 1993,Sutton and Barto, 1998,Wiering and Van Ot-
terlo, 2012]. The agent (a simple Q-learner), began each
episode in the upper-left corner of a maze, and was rewarded
one point for reaching the lower-right corner (Figure 3). The
state space consisted of 121 locations, 50 of which were
walls, in the grid shown in Figure 3, and actions consisted of
each of the four cardinal directions. The agent was trained
for fifty episodes, with each episode ending when the goal
was reached, or 2,000 steps were taken (whichever came
first). An ✏-greedy decision policy was used with ✏ = 0.25.
The colors in Figure 3 correspond to state values under the
optimal policy. Rewards were discounted with � = 0.95,
and therefor the value of each state is 0.95min d, where d is
the number of steps to the goal. In all experiments, simula-
tions were run one-hundred times and averaged.
Approximate pseudorewards Dynamic programing was
used to approximate state values by iterating over the Bell-
man equation. In [McMahan et al., 2005] conditions are



Figure 3: Maze environment. Colors correspond to state val-
ues under the optimal policy, S is start state, and G is goal
state.

defined under which initial state values will provably con-
verge monotonically toward optimal values, but they note
that in practice most reasonable initial values will achieve
this monotonic convergence. Here, all states were initial-
ized with a lower bound of zero and an upper bound of one,
which in our environment is known to bound state values.
Figure 4 shows that the approximate state values for each
state do indeed converge monotonically. The point at which
each state reaches its optimal value is exactly equal to the
minimum number of steps that state is from the goal, min d.
At each state, the pseudoreward for each action was calcu-
lated according to the shaping theorem as the difference be-
tween the value of the current state and the value of the next
state given that action (which was deterministic in this en-
vironment). Either the lower-bound or the upper-bound of
state values after n iterations of Bellman updates was used
to approximate pseudorewards.
Trading off model-free and model-based computation

The closer pseudorewards are to their optimal values, the
easier the learning for the model-free agent (at least to
some precision). However, whereas Q-learning is simple and
quick, the model-based method of approximating state val-
ues is relatively slow and computationally costly. Therefore,
we sought to understand the most efficient tradeoff between
model-based pseudoreward approximation and model-free
learning. This was done by computing the CPU time re-
quired for each algorithm.

Results

Figure 5 shows the number of steps per episode needed to
reach the goal, averaged across 50 episodes, as a function
of the the number of Bellman updates used to approximate
pseudorewards. As expected, learning is quicker when pseu-
dorewards are closer to their optimal values. We also show
performance of the Dyna agent, as a function of the num-
ber of planning steps taken after each real step. While ap-

Figure 4: Monotonic convergence of estimated state values.
Each subplot corresponds to a state in the maze. Red lines
are upper-bound estimates, blue lines are lower-bound esti-
mate, and dashed lines are optimal state values.

proximate pseudorewards are calculated just once using n
iterations, the n planning steps used by Dyna are taken after
every single step of every episode.

Because Dyna must learn a model of the environment
through experience and use replay to estimate Q-values, the
number of real steps alone do not converge as low as for
the pseudoreward agent. With sufficiently precise pseudore-
wards, the pseudoreward agent, on the other hand, can learn
the shortest path on the very first episode. Specifically, 24
Bellman updates are required for this, because the start state
is 24 steps away from the goal state; after 24 iterations of
the Bellman equation, optimal state values have propagated
back from the goal state to the start state.

Also shown are the number of steps taken by a simple
Q-learning agent when state values are initialized to 0 (blue
asterisk) or 1 (red asterisk).

Next, we calculated the actual time required to learn the
shortest path. While the pseudoreward method may take
fewer steps to reach the goal than Dyna, it does not neces-
sarily mean that it is faster; planning steps (which use scalar
operations to update Q-values) are about two orders of mag-
nitude quicker than Bellman updates (which require matrix
multiplication). However, Figure 6 shows that pseudoreward
approximation is still faster than Dyna. The fastest learning
occurs when 24 iterations of the Bellman equation are used;
any more than this is unnecessary and the CPU time gradu-
ally increases linearly.

Experiment 2: Mountain car problem

Methods

Experiment 2 explored learning in a classic mountain car
environment [Moore, 1990, Sutton, 1996, Sutton and Barto,
1998, Smart and Kaelbling, 2000, Rasmussen et al., 2003,
Whiteson and Stone, 2006,Heidrich-Meisner and Igel, 2008,
Sutton et al., 2012]. The agent begins in a valley between
two mountains with the goal of reaching the top of the



Figure 5: Pseudoreward approximation requires fewer steps
to reach the goal than Dyna during maze learning.

mountain on the right. The agent must learn to apply force
such that it oscillates between the slopes of each mountain,
building enough momentum until it reaches the top. States
consisted of discretized locations along the mountainsides
and discretized velocities. Actions consisted of discretized
forces applied tangentially to the direction of movement.
The agent used Q-learning during 200 learning episodes,
where each episode ended when the car reached the goal
state (or if 1,000 steps were taken). When the agent reached
the goal it was conferred a reward of one. An ✏-greedy deci-
sion policy was used where ✏ = 0.01 ⇥ 0.99i�1, where i is
the episode number.
Comparison of learning methods As before, pseudore-
wards were approximated using Bounded Real-Time Dy-
namic Programming and the shaping theorem. Performance
using this algorithm was compared with Dyna.

Figure 7: Performance during the mountain car problem.

Figure 6: Pseudoreward approximation learns the shortest
path more quickly than Dyna with maze learning.

Results

Figure 7 shows the number of steps per episode required to
reach the goal, averaged across 200 episodes. The upper-
bound and lower-bound estimates of state values converged
to optimal values within 48 iterations of the Bellman equa-
tion because 48 is the furthest possible number of steps away
from the goal. The total number of steps (real steps plus
planning steps) far exceeds the number of steps using our
method, and the number of real steps alone does not con-
verge as low as the number of steps taken using our method.

Figure 8 shows the amount of time required to learn the
shortest path. Although Dyna requires many more steps to
learn, because its computations are scalar-based Q-updates,
it is relatively quick, whereas Bellman approximation re-
quires more costly matrix multiplication. Still, the pseudore-
ward approximation method learns more quickly.

Figure 8: CPU time required to learn the shortest path.



Discussion

We have introduced a new method for cooperatively inte-
grating model-free and model-based RL. This method re-
lies on Bounded Real-Time Dynamic Programming to iter-
atively estimate state values that converge monotonically to
values under the optimal policy. These approximate values
are used to calculate pseudorewards according to the shap-
ing theorem, such that the reward function is altered but the
optimal policy is invariant. This modified reward function is
used for model-free learning. Our experiments demonstrate
that this method performs comparably to and even better
than the Dyna algorithm, a popular cooperative RL method.

Equalizing knowledge

One notable difference between our method and Dyna is
that Dyna learns the model of the environment, whereas our
model is omniscient in the sense that it is given the full
state-action transition matrix and reward-action pairs. This
may at first make comparison in performance between the
two methods seem unfair. In actuality, however, if Dyna is
equally omniscient, learning and computation performance
improve only modestly in the maze environment, and be-
come worse in the mountain car task (these results are in-
cluded in the Supplementary Material). An omniscient Dyna
agent will learn more quickly during the first episode only,
before it has discovered the location of reward. Once it
knows how to reach the goal, a full model is unnecessary,
and can even slow learning through planning, because it
will waist time replaying unvisited states that do not help
the agent reach the goal. One modification that would save
computation time for Dyna would be to modulate the num-
ber of planning steps in proportion to the change in variance
of estimated Q-values. When the temporal difference errors
are larger on average, more planning steps are needed, but as
they converge, the number of planning steps would go down.

Learning the model

Another way to make our method more comparable to Dyna
is to have it learn its model. While our method is omniscient
with respect to state-action transitions and rewards, this need
not be the case. It can also be initialized with a naive model
that has a uniform prior for all transition probabilities and
reward outcomes (that is, any action is assumed to transition
to any other state with equal probability and the expected
reward for any action is R/|S|, where R is the expected re-
ward for performing the task and |S| is the number of states
in the environment). This model can be used for state value
approximation with Bounded RTDP, just as before, and as
experience is acquired, the model can be updated (with ei-
ther probabilistic transition estimates or deterministic ones if
the environment is assumed to be such). When our method
is run this way, it still outperforms Dyna in terms of steps re-
quired to learn, although it requires more CPU time since all
planning steps use Bellman updates that require slow matrix
multiplication (see the Supplementary Material for results).

Prioritized sweeping

Another improvement to Dyna is known as prioritized
sweeping [Moore and Atkeson, 1993]. Here, replay of state-

action pairs is selected from the top of a queue that is sorted
in descending order by the magnitude of the temporal differ-
ence error of each state-action. This allows the state with
the most uncertain value to be replayed first, and the ef-
fect of this is that learning of state values propagates back-
wards from rewarding states. If a prioritized sweeping algo-
rithm were omniscient in the sense described above, then the
number of planning steps needed to compute Q-values that
would allow the agent to follow an optimal policy would
simply be the distance from the start state to the goal state.
While the number of real steps for prioritized sweeping is
less than that for Dyna, the number of either real or plan-
ning steps is still greater than for the pseudoreward agent.
Moreover, sorting the queue after every simulated step is ex-
tremely costly in terms of CPU time, making this method
much slower than Dyna (see the Supplementary Material).

Pseudorewards and emotion

By providing a new way to link model-free and model-based
RL, our method offers a new way to think about human cog-
nition, and to potentially test through experiments. While
cooperative RL in humans is just starting to be investigated
behaviorally, there is substantial interest in understanding
the interactions between them [Daw and Dayan, 2014]. As
discussed earlier, Dyna is readily likened to planning in hu-
man cognition as a means to train a model-free system. What
might be an analog of pseudoreward approximation in hu-
man cognition? For any given task or goal-directed behavior,
emotions quite often have the effect of altering the reward
landscape, and it is reasonable to think of them as pseudore-
wards. If certain emotions represent the values of states that
are stored in a model, and these emotions are used to train
model-free learning by adding bonuses (positive emotions)
or punishments (negative emotions) to certain actions, this
would be quite akin to our method. The accuracy with which
the emotion represents the value of a state would depend on
the accuracy of the model, and could be implemented using
Bellman approximation or something similar.

The method we have introduced links the two systems co-
operatively by shaping the reward function. One way that
this link may manifest in cognition is in the domain of moral
decision making, where model-based production of emo-
tions function as pseudorewards for model-free learning and
decision making. It has been suggested that the dual-system
approach to moral psychology is well described by the dis-
tinction between model-free and model-based RL, with the
former describing the emotional, instinctive, action-oriented
system and the later mapping onto the cognitive, ratio-
nal, and outcome-oriented system [Cushman, 2013, Crock-
ett, 2013]. Our method may provide a direct link between
these two systems, with the model-based cognitive system
producing particular emotions that function as pseudore-
wards, shaping the model-free emotional system. For exam-
ple, when one’s moral behavior deviates from one’s under-
standing of ethics, leading to an untoward outcome, remorse
could be generated to correct the action-oriented propen-
sity that produced the misguided behavior. It is worth pur-
suing these questions experimentally to test the utility of our
method for understanding human cognition and emotion.
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Supplementary Material: Shaping Model-Free Reinforcement Learning with
Model-Based Pseudorewards

Paul M. Krueger

Experiment 3: Omniscient Dyna maze
learning

Methods

Whereas our method is given a full model of the environ-
ment (i.e. all state-action transition probabilities and reward
contingencies), in the results presented in the main text,
Dyna is not. Instead, Dyna builds a model of state-action
transitions and rewards through experience. In this experi-
ment, Dyna was given a full model of the environment. All
other experimental conditions in this and all subsequent ex-
periments were identical to those used in the experiments in
the main text (e.g. the number of episodes of training, the
number of simulations run, the learning rate, the discount on
reward, the ✏-greedy decision policy, etc.).

Results

The omniscient Dyna agent learns considerably quicker than
the non-omniscient agent (Figure 1; cf. Figure 5 in the main
text), but still requires more steps (both real steps and plan-
ning steps) than the pseudoreward agent. Similarly, the CPU
time required to learn the shortest path is less for the om-
niscient Dyna agent, although still slightly slower than the
pseudoreward agent (Figure 2; cf. Figure 6 in the main text).

Figure 1: Performance of the omniscient Dyna agent in the
maze environement.

(a)

(b) Close-up of (a)

Figure 2: CPU time of the omniscient Dyna agent in the
maze environement.
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Experiment 4: Omniscient Dyna mountain car
problem

Methods

We also ran an experiment with an omniscient Dyna agent
in a mountain car environment to compare its performance
with the pseudoreward agent. All of the same parameters
were used as in the experiments in the main text, the only
difference being that the Dyna agent was given a full model
of the environment.

Results

The performance for the omniscient Dyna agent actually
got worse in this task (Figure 3; cf. Figure 7 in the main
text). This is because having a full model of the environment
forced the Dyna agent to replay many state-actions that it
never actually visited and that were not helpful for reaching
the goal. While having the full model is helpful during the
first episode, before it reaches the goal, it only slows learn-
ing thereafter. The CPU time required to learn the shortest
path was also greater for the omniscient Dyna agent than
the non-omniscient Dyna agent (Figure 4; cf. Figure 8 in the
main text).

Figure 3: Performance of the omniscient Dyna agent in the
mountain car problem.

Figure 4: CPU time of the omniscient Dyna agent in the
mountain car problem.

Experiment 5: Pseudoreward method with
model learning in maze environment

Methods
Another way to make the pseudoreward agent more compa-
rable to a standard Dyna agent is to have it learn a model of
the environment. Just like the Dyna agent, it learns the model
by storing state-action transitions and reward outcomes. Ini-
tially, it has a uniform prior over all state-action transitions
and rewards, such that the probability of transitioning from
any state, s, to any other state (or staying in the same state),
s0, is 1/|S| where |S| is the number of states in the envi-
ronment, and the expected reward for any such transition
is R/|S|, where R is the expected reward for performing
the task (1 for both the maze environment and the moun-
tain car environment). Whenever the agent takes an action
it replaces transition probabilities and rewards based on its
experience (which is deterministic in our evironments, but
this could easily be generalized to nondeterministic envi-
ronments). That is, the transition probability from state s
to state s0 for action a becomes one, and zero for all other
states. This prior corresponds to a bimodal stick function,
with sticks at zero and one. After each real step in the en-
vironment, the pseudoreward agent performs n Bellman up-
dates using its current model of the environment (or, it may
perform less than n iterations, based on an epsilon-optimal
policy with use of span for the stopping criterion, but in prac-
tice the bound is usually n after the first couple episodes of
learning). These estimated state values are used to update
pseudorewards after each real step.

Results
The number of steps required for learning is much higher
in the psedoreward agent that learns a model of the envi-
ronment, due to taking n planning steps after each real step
(Figure 5; cf Figure 5 in the main text). However, learning
still requires significantly fewer steps than than a standard



(non-omniscient) Dyna agent. In terms of CPU time, on the
other hand, the model-learning pseudoreward agent takes
much longer to learn than the standard Dyna agent (Figure 6;
cf. Figure 6 in the main text). This is because performing
Bellman updates (requiring matrix multiplication) is about
two orders of magnitude slower than performing Q-learning
updates (requiring scalar multiplication only). Since n iter-
ations of the Bellman equation take place after every real
step, this computation becomes quite costly.

Figure 5: Performance of the model-learning pseudoreward
agent in the maze environment.

Figure 6: CPU time of the model-learning pseudoreward
agent in the maze environment.

Experiment 6: Pseudoreward method with
model learning in mountain car environment

Methods
The same model-learning pseudoreward agent was used in
the mountain car environment and compared to a standard
Dyna agent.

Results
As in the maze learning environment, the model-learning
pseudoreward agent took many more steps to learn than the
omniscient pseudoreward agent presented in the main text,
but still fewer than the Dyna agent (Figure 7; cf. Figure 7 in
the main text), and the CPU time increased drastically (Fig-
ure 8; cf. Figure 8 in the main text).

Figure 7: Performance of the model-learning pseudoreward
agent in the mountain car environment.

Figure 8: CPU time of the model-learning pseudoreward
agent in the mountain car environment.



Experiment 7: Prioritized sweeping maze
learning

Methods
Prioritized sweeping is a modification to the Dyna method.
Like Dyna, n planning steps are taken after each real step,
but instead of choosing past state-action transitions at uni-
form random, it maintains a queue of the highest priority
state-actions to replay (in practice, state-actions are only
added to the queue if their temporal difference error is above
some small user-defined threshold, so the number of plan-
ning steps may be less than n, particularly at the early
stages of learning if rewards are not experienced, and in
late learning when Q-values have converged). The ordering
of the queue is determined by the temporal difference error
from Q-learning updates. State-actions with a high tempo-
ral difference error have more uncertainty about their true
state value and should therefore be replayed before states
with less uncertainty. Prioritized sweeping usually includes
model-learning, just like the standard Dyna agent. However,
it could also be omniscient with respect to all state-action
transition probabilities and reward contingencies. An omni-
scient prioritized sweeping agent would require min d steps
of Q-learning to learn Q-values that would guide the agent to
the goal from state s, where d is the distance from state s to
the goal. However, as soon as a non-omniscient prioritized
sweeping agent reaches the goal, it too can achieve this with
d steps of Q-learning; while it wouldn’t have a full model of
the environment it would have enough information to guide
the agent along the shortest path to the goal from any state
that it has already visited.

Results
While prioritized sweeping learns more quickly than a Dyna
agent, it still requires many more steps than the pseudore-
ward agent, due to planning (Figure 9; cf. Figure 5 in the
main text). Its CPU time is also very high (Figure 10; cf.
Figure 6 in the main text). Prioritized sweeping especially
suffers from the computation time required to sort the queue
after every planning step.

Experiment 8: Prioritized sweeping mountain
car problem

Methods
The same prioritized sweeping algorithm was used in the
mountain car environment and compared to the pseudore-
ward agent.

Results
Once again, the prioritized sweeping agent is an improve-
ment from a Dyna agent, but requires many more steps (Fig-
ure 11; cf. Figure 7 in the main text) and CPU time (Fig-
ure 12; cf. Figure 8 in the main text) than the pseudoreward
agent.

Figure 9: Performance of the prioritized sweeping agent in
the maze environment.

Figure 10: CPU time of the prioritized sweeping agent in the
maze environment.



Figure 11: Performance of the prioritized sweeping agent in
the mountain car environment.

Figure 12: CPU time of the prioritized sweeping agent in the
mountain car environment.


