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Abstract

MR Shuffling: Accelerated Single-Scan Multi-Contrast Magnetic Resonance Imaging

by

Jonathan I. Tamir

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Associate Professor Michael Lustig, Chair

Magnetic resonance imaging (MRI) is an attractive medical imaging modality as it is
non-invasive and does not involve ionizing radiation. Routine clinical MRI exams ob-
tain MR images corresponding to different soft tissue contrast by performing multiple
scans. When two-dimensional (2D) imaging is used, these scans are often repeated in
other scanning planes. As a result, the number of scans comprising an MRI exam leads
to prohibitively long exam times as compared to other medical imaging modalities such
as computed tomography. Many approaches have been designed to accelerate the MRI
acquisition while maintaining diagnostic quality.

One approach is to collect multiple measurements while the MRI signal is evolving
due to relaxation. This enables a reduction in scan time, as fewer acquisition windows
are needed to collect the same number of measurements. However, when the temporal
aspect of the acquisition is left unmodeled, artifacts are likely to appear in the reconstruc-
tion. Most often, these artifacts manifest as image blurring. The effect depends on the
acquisition parameters as well as the tissue relaxation itself, resulting in spatially varying
blurring. The severity of the artifacts is directly related to the level of acceleration, and
thus presents a tradeoff with scan time. The effect is amplified when imaging in three
dimensions, severely limiting scan efficiency. Volumetric variants would be used if not
for the blurring, as they are able to reconstruct images at isotropic resolution and support
mutli-planar reformatting.

Another established acceleration technique, called parallel imaging, takes advantage
of spatially sensitive receive coil arrays to collect multiple MRI measurements in parallel.
Thus, the acquisition is shortened, and the reconstruction uses the spatial sensitivity infor-
mation to recover the image. More recently, methods have been developed that leverage
image structure such as sparsity and low rank to reduce the required number of samples
for a well-posed reconstruction. Compressed sensing and its low rank extensions use
these concepts to acquire incoherent measurements below the Nyquist rate. These tech-
niques are especially suited to MRI, as incoherent measurements can be easily achieved
through pseudo-random under-sampling. As the mechanisms behind parallel imaging
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and compressed sensing are fundamentally different, they can be combined to achieve
even higher acceleration.

This dissertation proposes accelerated MRI acquisition and reconstruction techniques
that account for the temporal dynamics of the MR signal. The methods build off of paral-
lel imaging and compressed sensing to reduce scan time and flexibly model the temporal
relaxation behavior. By randomly shuffling the sampling in the acquisition stage and im-
posing low rank constraints in the reconstruction stage, intrinsic physical parameters are
modeled and their dynamics are recovered as multiple images of varying tissue contrast.
Additionally, blurring artifacts are significantly reduced, as the temporal dynamics are
accounted for in the reconstruction.

This dissertation first introduces T2 Shuffling, a volumetric technique that reduces
blurring and reconstructs multiple T2-weighted image contrasts from a single acquisition.
The method is integrated into a clinical hospital environment and evaluated on patients.
Next, this dissertation develops a fast and distributed reconstruction for T2 Shuffling that
achieves clinically relevant processing time latency. Clinical validation results are shown
comparing T2 Shuffling as a single-sequence alternative to conventional pediatric knee
MRI. Based off the compelling results, a fast targeted knee MRI using T2 Shuffling is
implemented, enabling same-day access to MRI at one-third the cost compared to the
conventional exam. To date, over 2,400 T2 Shuffling patient scans have been performed.

Continuing the theme of accelerated multi-contrast imaging, this dissertation extends
the temporal signal model with T1-T2 Shuffling. Building off of T2 Shuffling, the new
method additionally samples multiple points along the saturation recovery curve by vary-
ing the repetition time durations during the scan. Since the signal dynamics are governed
by both T1 recovery and T2 relaxation, the reconstruction captures information about both
intrinsic tissue parameters. As a result, multiple target synthetic contrast images are re-
constructed, all from a single scan. Approaches for selecting the sequence parameters are
provided, and the method is evaluated on in vivo brain imaging of a volunteer.

Altogether, these methods comprise the theme of MR Shuffling, and may open new
pathways toward fast clinical MRI.



i

To JP Costa



ii

Contents

Contents ii

List of Figures v

List of Tables vii

List of Algorithms viii

1 Introduction 1

2 MR Imaging and Reconstruction 5
2.1 MR Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 MR Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Frequency Domain Formulation . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Generalized Image Reconstruction . . . . . . . . . . . . . . . . . . . . 12

2.3 Image Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 T2 Shuffling 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Temporal Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Echo Train Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Subspace Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Retrospective Under-sampling and Simulation Results . . . . . . . . 35
3.4.2 In Vivo Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Clinical Deployment 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



iii

4.2 T2 Shuffling Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Improving Multi-Core Parallelism . . . . . . . . . . . . . . . . . . . . 47
4.3.2 Fusing Forward and Adjoint Linear Operators . . . . . . . . . . . . . 47
4.3.3 Removing Unnecessary and/or Redundant Computations . . . . . . 49
4.3.4 Image Quality Improvements . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.5 Distributed Implementation . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.1 Scan Sequence and Reconstruction Parameters . . . . . . . . . . . . . 51
4.4.2 Experimental Compute Cluster . . . . . . . . . . . . . . . . . . . . . . 52
4.4.3 Hospital Compute Cluster . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.1 Single-Machine Optimization . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.2 Multi-Machine Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.3 Hospital Cluster Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.4 Multi-Scanner Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Clinical Validation 60
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Comparison to 2D Multi-Planar Knee MRI . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Targeted Rapid Knee MRI Exam . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 T1-T2 Shuffling 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 Signal Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.2 Low Rank Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.3 Synthetic Contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2.4 Optimized Selection of Repetition Time Durations . . . . . . . . . . . 91

6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.1 Signal Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.2 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.3 Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.4 In Vivo Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



iv

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Conclusions and Future Work 105
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.2.1 Improved Low-Dimensional Modeling . . . . . . . . . . . . . . . . . 107
7.2.2 Multi-Parameter Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2.3 Parameter Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.4 Optimal Spatio-Temporal Sampling . . . . . . . . . . . . . . . . . . . 108
7.2.5 Learned Reconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A Low Rank Regularization 109

B Subspace Noise Propagation 112

C T2 Shuffling Transform Point Spread Function 114

D Sampling Pattern and Echo Train Formation 115

Bibliography 117



v

List of Figures

2.1 Magnetization precession and excitation. . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Longitudinal recovery and transverse relaxation. . . . . . . . . . . . . . . . . . . 6
2.3 Fourier-based forward model relationship. . . . . . . . . . . . . . . . . . . . . . 7
2.4 Multi-coil forward model operator. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Forward model extended to fast spin-echo dynamics. . . . . . . . . . . . . . . . 9
2.6 Comparison of regular vs. pseudo-random under-sampling. . . . . . . . . . . . 10
2.7 Blurring due to fast spin-echo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Fast spin-echo simulations using the Extended Phase Graph algorithm. . . . . . 14
2.9 Contrast generation using fast spin-echo. . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Illustration of image and signal behavior for PD, T2, and T1 imaging. . . . . . . 16

3.1 Extended forward model for a fast spin-echo experiment. . . . . . . . . . . . . . 21
3.2 Simulation of a fast spin-echo experiment with variable refocusing flip angles. . 23
3.3 T2 Shuffling forward model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Comparison of center-out and randomly shuffled view ordering schemes. . . . 26
3.5 Transform point-spread function for center-out and randomly shuffled view

ordering schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Process for generating an anatomy-specific subspace. . . . . . . . . . . . . . . . 29
3.7 Subspace model error due to B1-inhomogeneity. . . . . . . . . . . . . . . . . . . 30
3.8 Subspace model error vs. noise amplification. . . . . . . . . . . . . . . . . . . . . 31
3.9 T2 Shuffling sampling patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.10 Retrospective simulation results for T2 Shuffling with variable flip angle mod-

ulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.11 Retrospective simulation results for T2 Shuffling with acquired constant flip

angle data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.12 Time series T2 Shuffling reconstructions on retrospectively simulated data. . . . 38
3.13 T2 Shuffling reconstruction comparison on pediatric patient scans. . . . . . . . 39
3.14 Example T2 Shuffling reconstructions with marginal improvement. . . . . . . . 40
3.15 Degrees of freedom from LLR reconstruction. . . . . . . . . . . . . . . . . . . . . 41

4.1 Fused forward and adjoint T2 Shuffling operators. . . . . . . . . . . . . . . . . . 48
4.2 Distributed T2 Shuffling flow chart. . . . . . . . . . . . . . . . . . . . . . . . . . . 51



vi

4.3 Hospital compute cluster configuration. . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Run-time of PICS portion across multiple slices and cores. . . . . . . . . . . . . 55
4.5 Processing run-times scaled from 1 to 12 machines. . . . . . . . . . . . . . . . . . 56
4.6 MRI scanner schedule for one day. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.7 Latency and processing time simulation for hospital network. . . . . . . . . . . 58

5.1 T2 Shuffling vs. 2D FSE for 15-year-old boy with medial retinaculum avulsion. 67
5.2 T2 Shuffling vs. 2D FSE for 19-year-old with intra-articular bodies of the knee. . 68
5.3 T2 Shuffling vs. 2D FSE for 14-year-old girl with intra-articular bodies of the

knee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 T2 Shuffling vs. 2D FSE for 16-year-old girl with lateral meniscus tear. . . . . . 69
5.5 Tear of the posterior horn of the lateral meniscus requiring multi-planar refor-

mat for visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6 T2 Shuffling vs. 2D FSE structure delineation. . . . . . . . . . . . . . . . . . . . . 71
5.7 Radial tear of the lateral meniscus well-visualized with T2 Shuffling. . . . . . . 72
5.8 Clinical indications for targeted knee MRI exams. . . . . . . . . . . . . . . . . . 77
5.9 Patient with bone bruise based on targeted knee MRI exam. . . . . . . . . . . . 78
5.10 Patient with bone bruise based on targeted knee MRI exam. . . . . . . . . . . . 78
5.11 Number of days between targeted knee MRI order and completion. . . . . . . . 79
5.12 Exam time for targeted knee MRIs. . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.13 T2 Shuffling reconstruction time in seconds before deployment of distributed

reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.14 T2 Shuffling reconstruction time in seconds after deployment of distributed

reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Fast spin-echo simulation of longitudinal and transverse magnetization with
fast recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 T1-T2 Shuffling tensor construction and unfolding. . . . . . . . . . . . . . . . . . 89
6.3 Generating a temporal subspace for T1-T2 Shuffling. . . . . . . . . . . . . . . . . 90
6.4 Image contrast synthesis through linear combination of subspace coefficients. . 91
6.5 Creating joint (T1, T2) distribution from conventional quantitative mapping. . . 97
6.6 Relative loss of TR schedules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.7 T1-T2 Shuffling sampling patterns for each TE and TR. . . . . . . . . . . . . . . 99
6.8 T1-T2 Shuffling linear combination constrast synthesis fits. . . . . . . . . . . . . 100
6.9 Synthetic contrast images at several contrasts and orientations using T1-T2

Shuffling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.10 Comparison of conventional 3D FSE imaging to T1-T2 Shuffling. . . . . . . . . . 103

7.1 T2 Shuffling scans of different anatomy. . . . . . . . . . . . . . . . . . . . . . . . 106

A.1 Block-wise locally low rank operator. . . . . . . . . . . . . . . . . . . . . . . . . . 111

B.1 Noise variance due to subspace back-projection. . . . . . . . . . . . . . . . . . . 113



vii

List of Tables

3.1 Common scan parameters used for T2 Shuffling experiments. . . . . . . . . . . 33
3.2 Scan parameters for each T2 Shuffling experiment. . . . . . . . . . . . . . . . . . 34

4.1 T2 Shuffling sequence and reconstruction parameters. . . . . . . . . . . . . . . . 51
4.2 T2 Shuffling end-to-end processing times. . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Reconstruction run-time statistics for 35 pediatric knee scans over a one-month

period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 T2 Shuffling reconstruction parameters for clinical evaluation. . . . . . . . . . . 62
5.2 MRI scan parameters used for clinical evaluation. . . . . . . . . . . . . . . . . . 63
5.3 Anatomic structures evaluted for clinical study. . . . . . . . . . . . . . . . . . . . 64
5.4 Structure delineation ratings criteria for clinical study. . . . . . . . . . . . . . . . 65
5.5 Discrepancies and consensus outcome in clinical study . . . . . . . . . . . . . . 66
5.6 Targeted knee MRI scan parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 Targted knee MRI reconstruction parameters. . . . . . . . . . . . . . . . . . . . . 76

6.1 Optimal choice of TR durations through exhaustive search. . . . . . . . . . . . . 93
6.2 T1-T2 Shuffling scan parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Optimized TR schedules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



viii

List of Algorithms

4.1 FISTA update steps for T2 Shuffling inverse problem. . . . . . . . . . . . . . 46
A.1 Locally low rank singular value thresholding. . . . . . . . . . . . . . . . . . . 110
D.1 Randomly shuffled sampling pattern and echo train formation. . . . . . . . 116



ix

Acknowledgments

Whenever I found myself reading over a dissertation, I would skip to the acknowledg-
ments and dream about one day writing that section. It is with great fortune that I have
now landed in such a position.

First and foremost, I have the great opportunity to thank Miki Lustig, my advisor.
Miki embodies all the traits needed for great mentorship and teaching. He regularly took
his role beyond the call of duty, giving me the means to succeed in my research as well as
my life at Berkeley in general. Miki introduced me to MRI over the phone six years ago.
Since then, not only has he unconditionally supported my research needs, he has also
actively participated. At the same time, Miki afforded me a great degree of independence
to build collaborations and take ownership of my work. Miki never hesitates to help
make things happen. There’s a reason people gravitate toward Miki in so many settings,
and his dry sense of humor is matched only by the British. When I tell people he is the
best advisor in our department, I say it with the utmost confidence. Thanks Miki for a
great 6+ years.

I have also been unreasonably fortunate to work so closely with Shreyas Vasanawala.
Shreyas introduced me to the world of clinical MRI and gave me a wheel to steer. In
many ways, he is a second advisor to me. Shreyas taught me how to collaborate with the
most important component of this research: the users. He has taken my work into clinical
practice, and for that I am forever grateful.

I want to thank my other committee members, Chunlei Liu and Moriel Vandsburger,
for their mentorship. Chunlei taught me the importance of preparation the first day I met
him, and Moriel helped me grow as a teacher. I thank Brian Hargreaves, the Nicest Person
on the Planet. Brian helped elevate my knowledge of MRI and I value his support and
advocacy for my work. Brian also happily served on my qualifying exam committee even
though it involved multiple train and bus rides! Thanks to Peder Larson for hosting me
at UCSF and to Steve Conolly for great career advice. Thanks to Kannan Ramchandran
for teaching me to love teaching and to Laura Waller for teaching me how to teach. I also
want to thank Shirley Salanio, the most helpful person in the department. Shirley cares
so much about the well-being of the students; it’s no surprise that she knew all our names
after one week of grad school.

I want to thank the people involved in the many scanning sites that enabled my re-
search: Stanford University and Lucile Packard Children’s Hospital, the Berkeley Brain
Imaging Center, GE Healthcare ASL West, UCSF QB3, Oakland Children’s Hospital, and
Philips Healthcare. I have had the opportunity to scan at so many places!

I was very lucky to land in a lab with such a welcoming and collaborative environ-
ment. For three years Martin Uecker answered every little question I had and helped
guide my research. I thank him for teaching me about computational MRI and for let-
ting me work so closely with him on BART. Anita Flynn taught me me how to manage a
project and how to build a coil. Anita’s desire to change the world is positively addicting.



x

Thanks to Pat Virtue who helped me assimilate to Berkeley life on and off the field.
Pat was the first person to introduce me to machine learning. Beyond that, Pat showed
me how to be an effective communicator. Joe Corea is a man who needs no introduction
in the department. I thank him for answering my hardware questions and for sharing
with me his outrageous ideas. I also thank his sweet tooth for finding us great gelato and
snow cones during our travels.

Wenwen Jiang is notorious for knowing all the best food spots, no matter the city or
country. I thank her for helping me with early pulse sequence questions and bouncing
recon ideas off of each other. I want to thank Frank Ong, who despite being one year my
junior has passed all the milestones with me side-by-side. Frank possesses a tremendous
intuition for signal processing and MRI, and he is always willing to share it. He is also a
great historian of the fields.

I want to thank Karthik Gopalan, a true Renaissance Man, for making the last years
of grad school so enjoyable. Karthik exposed me to the world of digital fabrication and
inspired me to buy a 3D printer. When we weren’t in the lab making phantoms, Karthik
was teaching me how to do an oil change, how to use a table saw, and how to dunk (okay,
not quite). Thanks to Michael Kellman for lively discussions about system design, image
recon, and just about any other topic. Michael never hesitates to offer an ear for feedback
while also brainstorming new ideas. He’s also the fastest swimmer on Alcatraz.

Thanks to Zhiyong Zhang, the newest, oldest member in MikGroup. In the short
time he has been here, Zhiyong has helped me appreciably improve my understanding
of pulse sequence theory. Zhiyong will make everyone in the room laugh, and often has
a secret trick to share. Thanks to Mariya Doneva for helping me better understand image
reconstruction and providing me with feedback on my work.

I thank the former undergrads in the lab who helped me explore new research ideas
with them. I thank Sid Iyer, who is proudly continuing the MR Shuffling legacy at MIT.
I also thank Debbie Ma and Eilam Levitov for eagerly collaborating on projects with me.
I thank Dara Bahri for discussing all matters technical with me; I always look forward
to his unannounced pop-ins at Berkeley. Finally, I want to thank the other members of
MikGroup who have helped me on this journey: Balthazar Lechene, Xucheng Zhu, Alan
Dong, Michael Driscoll, Alina Pechacek, Teresa Ou, Michal Zarrouk, and Sana Vaziri.

I am very thankful for my second research home at Stanford. I thank Joseph Cheng
and Tao Zhang for helping me acclimate into pediatric imaging. Thanks to Marc Alley for
hooking me up with the tools to do real, actual recons on patients. Thanks to Shanshan
Bao and Albert Roh for showing me the radiologist perspective and to Kendall O’Brien
for showing me the technologist perspective. I also thank other Stanford collaborators,
including Feiyu Chen, Chris Sandino, Enhao Gong, and Adam Bush.

I was very fortunate to collaborate with industry experts in MRI and beyond. I thank
Peng Lai, Weitian Chen, and Valentina Taviani for their endless technical support and
help with bringing these sequences to life. Thanks to Mike Anderson and Javier Tuko,
who helped me dip my toes into super computing. Many thanks to Yuval Zur; spending
a winter under his wing stands among my most memorable experiences in grad school.



xi

I owe much of my accomplishments to my roots at UT Austin. Thanks to Ted Rappa-
port, Brian Evans, and Sriram Vishwanath – three absolutely amazing teachers. Thanks
to Miki Szmuk for being my Israeli comrade and for jump-starting my career in imaging.
I have fond memories of our late nights in the lab trying to make an airplane fly.

I will always have a fondness for my time in Berkeley because of the great friends I
made. Rachel Traylor, thanks for teaching me how to garden, for bringing Hampton in to
my life, and for giving me a shoulder to lean on. Austin Buchan, thanks for showing me
the ropes when I moved here, for the entertaining ski and backpacking trips, and for the
endless philosophizing over vegetarian sushi. Emily Marron and Dan Drew, thanks for
expressing my inner goofiness and letting me third-wheel on your dates. Thanks Varun
Mishra for including me on so many fun outdoor adventures. Thanks Thomas Rembert
and the rest of JASONS for all those great years playing IM soccer. Thanks to Andrew
Harris and Lee Kittams for being great housemates. A very special thanks to Kyu Seob
Kim, who isn’t actually from Berkeley but would follow and get me to go on a number of
adventures. Kyu, you rock! Also, many thanks to Joey Greenspun and the PCB crew.

I am grateful for my close friends from Austin who routinely provided me an escape
from California. I would like to thank Matt Swarthout for patiently waiting for me to
come around. Matt is one of the most talented comedians I know. I thank Casey Lee and
Kevan Tavasoli, two of my best friends since high school. We did a lot of growing up
together. Thanks Stephane Mead for supporting me since the beginning.

I want to thank my extended family and friends in Israel for the many years of sup-
port from abroad. They never hesitate to provide me with housing and friendship, even
when I am just passing through for a quick trip. I also want to thank my newest fam-
ily members, the Abrams clan. Steve, Michael, Ruth, and Hannah show no bounds for
compassion and acceptance in making me feel welcome.

I want to thank Marcelle Friedman, my girlfriend and partner. Marcelle has an endless
ability to make those around her feel cared for and important, and her support during the
good times and the bad have kept me going. Thanks for following me on my trips, for
offering so many means of escape, for supporting my chicken strips habit, for accommo-
dating me no-questions-asked, and for always being there for me. When the world goes
sour, you will be the first I write to: Eyzeh Bullschlachten.

To my family I owe everything. I thank my mom Smadar, who cultivated my interests
and shovavnik tendencies. And I thank my dad Dan, who provided me with the inspira-
tion to pursue a PhD. I am so happy we are able to “speak the same language”. Thanks
to the Kiddos: Hagar, Daphne, and Michelle. You are the best seesters I could have ever
hoped to get. I value my friendship with you above all else and I am excited for the next
chapters in our lives. And thanks to Cooper, the fastest dog in the South.

I would like to end this note with thanks to my best friend JP Costa, to whom I ded-
icate this dissertation. JP, you were stripped from this world early, but you will not be
forgotten. You continue to inspire my enthusiasm for life.

Jon Tamir
August 10, 2018



1

Chapter 1

Introduction

Magnetic resonance imaging (MRI) takes advantage of spin angular momentum present
in atoms with an odd number of protons and/or neutrons [1]. These MR-relevant nuclei,
called spins, can be manipulated in the presence of different magnetic fields to produce a
detectable signal. Quite serendipitously, hydrogen spins in water are abundantly found in
biological tissue, making MRI especially suitable for non-invasive medical imaging. MRI
is used to visualize soft tissue contrast, capture motion, track functional and behavioral
dynamics, spectrally decompose metabolites, assess blood flow, measure tissue stiffness,
and more. These different types of image contrasts play an important role in diagnostic
imaging, and each is realized by carefully manipulating a large number of user controls
during the scan. Thus, a conventional clinical MRI exam consists of multiple scans that
aim to capture different snapshots of the body by varying the scan parameters. Unlike
computed tomography (CT), MRI does not use ionizing radiation, which makes it an
especially attractive choice for pediatric imaging.

Despite the benefits, long scans times remain a major limitation of MRI. A typical MRI
scan might take 5 minutes; in comparison, a full-body CT scan takes a few seconds. To
lower scan time, concessions are often made in the acquisition process. These tradeoffs
can manifest as reduced imaging resolution, image blurring, and lower signal to noise ra-
tio (SNR). In spite of these tradeoffs, several acceleration methods have been key enablers
of MRI in a clinical environment.

By far the most established method for acceleration is the RARE technique, also re-
ferred to as fast spin-echo (FSE) [2]. FSE has served as the workhorse of clinical MRI since
its introduction in the late 1980s. The FSE acceleration is a result of acquiring multiple
MRI measurements (called echoes) while the signal is in a transient decay, and the accel-
eration factor is proportional to the echo train length (ETL). However, the temporal effects
due to signal relaxation manifest as blurring in the image [3]. Thus, short ETLs are of-
ten necessary to limit the image blur, costing scan efficiency. To increase scan efficiency,
clinical FSE is typically used in two-dimensional (2D) imaging with thick slices and large
gaps. Due to voxel anisotropy, each desired image contrast may be acquired in more than
one of the principal directions – axial, sagittal, and coronal. Volumetric (3D) variants of
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FSE are desirable for clinical imaging because they provide isotropic resolution [4]. This
would eliminate the need to scan at multiple imaging planes, as the single volume could
be retrospectively reformatted into arbitrary oblique planes.

Other advances to MR imaging and reconstruction have led to markedly faster scan-
ning. Parallel imaging [5–7] takes advantage of the spatial sensitivities of receive arrays to
acquire measurements in parallel and thus reduce the required scan time. Parallel imag-
ing has become ubiquitous in clinic practice, with state of the art array sizes approaching
128 channels. A more recent trend for faster scanning is to leverage image priors in order
to reduce the required number of samples for reconstruction [8]. One such avenue that is
especially suited to MRI is compressed sensing [9, 10]. In compressed sensing MRI, data
are acquired below the Nyquist rate using an incoherent measurement scheme such as
pseudo-random sampling. The reconstruction then leverages structure such as sparsity
[11] and low rank [12] to recover the image as if it were sampled at the Nyquist rate. Al-
though parallel imaging and compressed sensing have enabled near order-of-magnitude
acceleration, MRI scan times are still significantly longer compared to CT.

This dissertation describes new accelerated MRI methods that aim to improve image
quality. The methods extend the MR signal model to account for temporal dynamics that
occur during the image acquisition. Traditionally, these dynamics are left unmodeled and
are one cause of image artifacts such as blurring. The methods presented in this disserta-
tion build off of parallel imaging and compressed sensing to constrain the temporal signal
behaviors to low-dimensional subspaces [13]. As a result, blurring effects commonly seen
with FSE are significantly reduced, making 3D FSE a viable diagnostic tool. In addition to
reducing image blur, the temporal signal evolution behavior is captured in the subspace.
The information in the subspace is used to generate multiple images of varying contrasts,
all from a single scan. Since the sequence is volumetric, each image contrast can be ret-
rospectively reformatted into arbitrary planes while maintaining isotropic sub-millimeter
resolution. The approaches are tested in real clinical environments and compared to tra-
ditional schemes.

Altogether, the methods comprise the theme of MR Shuffling.

Outline
The remainder of this dissertation is organized as follows:

Chapter 2: MR Imaging and Reconstruction
This chapter provides an overview of MRI from a frequency domain perspective and
introduces image reconstruction as a generalized inverse problem. Different effects of
sampling are reviewed in the context of parallel imaging and compressed sensing. Image
contrast formation due to signal relaxation is also reviewed.
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Chapter 3: T2 Shuffling
This chapter introduces a technique based off of 3D FSE called T2 Shuffling. In T2 Shuf-
fling, relaxation effects are included in the forward model and accounted for in the recon-
struction. Blurring artifacts are mitigated by constraining the temporal signal relaxation
to a low dimensional subspace in the reconstruction. Additionally, multiple images are
acquired from a single scan, corresponding to different levels of T2 contrast. The chap-
ter reviews the fundamentals of FSE and signal relaxation, presents the acquisition and
reconstruction technique, and shows in vivo results on volunteers and patients.

Chapter 4: Clinical Deployment
Since T2 Shuffling effectively performs a 4D compressed sensing-based reconstruction, it
requires a large amount of computation for the reconstruction. In order to use T2 Shuf-
fling clinically, the reconstructed images should ideally be available to the scanner oper-
ator before the patient leaves the table. This chapter discusses the steps taken to success-
fully deploy T2 Shuffling in a clinical environment. This includes optimizing subroutines
of the reconstruction algorithm as well as implementing a distributed processing that is
capable of running on multiple high-performance computer nodes. End-to-end process-
ing times are reduced to under two minutes and multi-scanner scalability is discussed.

Chapter 5: Clinical Validation
In this chapter, T2 Shuffling is evaluated as a single-sequence alternative to pediatric knee
MRI. The conventional 2D clinical protocol is compared to T2 Shuffling on patients at
the Lucile Packard Children’s Hospital at Stanford, California. Statistical comparisons
are made to assess the hypothesis that T2 Shuffling does not reduce diagnostic accuracy
or image quality when compared to the conventional 2D protocol. Additionally, a fast,
targeted knee MRI exam based on T2 Shuffling is deployed and assessed. By providing a
shorter overall exam time, patients sub-selected for insurance pre-authorization are able
to register for their exam on the same day as their orthopedic visit. As a result of the
shorter exam times, the cost is three times lower than that of the conventional exam. To
date, over 2,400 T2 Shuffling patient scans have been performed.

Chapter 6: T1-T2 Shuffling
This chapter extends the concepts in T2 Shuffling to additionally acquire T1 recovery
information. A single 3D sequence is presented that is able to reconstruct multiple syn-
thetic contrast images corresponding to proton-density, T1 weighted, and T2 weighted
contrasts. The acquisition collects incoherent measurements at multiple echo times and
repetition times, and the reconstruction constrains the temporal dynamics to a low dimen-
sional subspace. The optimal choice for TR durations is formulated based on ideas from
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decision theory. The sequence is evaluated on a volunteer and compared to conventional
3D approaches.

Chapter 7: Conclusions and Future Work
This chapter summarizes the methods presented in this dissertation and outlines direc-
tions for future work.
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Chapter 2

MR Imaging and Reconstruction

The technology behind MRI builds off of numerous science and engineering disciplines.
Although nuclear magnetic resonance is governed by quantum mechanics, the principles
of MRI are readily understood through the lens of classical physics. Using the concepts
in [1] as a foundation, this chapter builds the necessary machinery for understanding the
MR acquisition and reconstruction methods developed in this dissertation. In particular,
this chapter presents the frequency domain formulation for MR imaging and a general-
ized reconstruction framework. Additionally, methods for creating image contrast from
relaxation are reviewed.

2.1 MR Physics
Spins placed in a large external magnetic field (called B

0

) precess and produce a net mag-
netic moment parallel to B

0

, called the longitudinal or z-direction (Figure 2.1a). The pre-
cession frequency is !

0

= �B
0

, where the gyromagnetic ratio � is a constant that varies by
atomic species. The spin dynamics of the magnetization vector are manipulated through
the use of radio frequency (RF) and gradient magnetic fields. RF pulses played at fre-
quency !

0

in the transverse (x $ y) direction act to rotate or excite the magnetization
vector, effectively mixing the longitudinal and transverse components. The strength and
duration of the RF pulse determines the degree of rotation experienced. For example, a
90� flip angle fully rotates the magnetization into the transverse plane (Figure 2.1b). Af-
ter excitation, the precession causes a changing magnetic field in the transverse direction
which is picked up by a receive coil through Faraday’s Law.

Linearly varying magnetic field gradients are used to create a spatial dependence on
precession frequency. As a result, magnetization is spatially resolved by linearly map-
ping frequency to position in the received signal. This leads to a Fourier relationship:
MRI measures the spatial Fourier transform of the object being imaged. By convention,
the spatial frequency domain is called k-space. After the frequency space is sufficiently
covered, the image is reconstructed through an inverse Fourier transform.
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Figure 2.1: Magnetization (blue arrow) is initially pointed in the longitudinal direction with pre-
cession frequency !

0

. After 90� RF excitation, the magnetization rotates into the transverse plane.

Following an RF pulse, the magnetization returns to thermal equilibrium due to relax-
ation. The transverse component of the magnetization exponentially decays to zero and
the longitudinal magnetization exponentially recovers to thermal equilibrium, as shown
in Figure 2.2. After a 90� RF excitation pulse, the relaxation is given by

M
z

(t) = M
0

⇣
1� e

� t
T1

⌘
, (2.1)

M
xy

(t) = M
0

e
� t

T2 , (2.2)

where M
z

(t) and M
xy

(t) are the longitudinal and transverse magnetization components,
respectively, and M

0

is the magnetization at thermal equilibrium. The longitudinal and
transverse time constants, referred to as T1 and T2, respectively, are intrinsic physical
parameters and differ across tissue types.

Figure 2.2: After 90� excitation, (a) the longitudinal magnetization will recover to thermal equilib-
rium with exponential time constant T1, and (b) the transverse magnetization will decay to zero
with exponential time constant T2.
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2.2 MR Imaging

2.2.1 Frequency Domain Formulation
The linear relationship between k-space and image space is formally described by the
integral

s(t) =

Z

r

M
xy

(r, t)e�j2⇡k(t)

>
rdr+ w(t), (2.3)

where s(t) 2 C is the acquired signal at time t, M
xy

(r, t) is the transverse component of
the magnetization at position r and time t, k(t) is the spatial encoding (k-space), and w(t)
is complex-valued white Gaussian noise. The symbol (·)> is used to denote the transpose
operation. After change of variables and discretization, the MR signal equation is written
as the linear operator

y = Ex+w, (2.4)

where x is the image, y are the acquired data in k-space, E represents the spatial encoding,
and w is noise. When temporal magnetization effects are ignored, the forward model is

E = PF, (2.5)

where F is the Fourier transform operator and P is the operator that selects the acquired
k-space samples. Figure 2.3 illustrates the forward model relationship. In the case of 3D
Cartesian imaging, the acquired samples are represented as points on a 2D grid.

Figure 2.3: The discretized MRI forward model given by y = PFx. The MR image is Fourier
transformed and measurements are acquired in k-space. In the case of 3D Cartesian imaging, the
acquired samples are represented as points on a 2D grid.
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Multiple Coils

The linear forward operator can be used to represent parallel imaging-based spatial en-
coding [5–7]. In the case of multiple receive coils, y consists of multiple measurement
vectors

y

j

= PFS

j

x+w

j

, j = 1, . . . , C (2.6)

where S

j

and w

j

are the spatial sensitivity profile and noise at the jth coil, respectively,
and C is the number of coil elements in the array. The full forward model is illustrated in
Figure 2.4 and described by

y =

2

64
y

1

...
y

C

3

75 =

2

64
PFS

1

...
PFS

C

3

75x+

2

64
w

1

...
w

C

3

75 = Ex+w. (2.7)

Figure 2.4: Multi-coil forward model operator, PFSx. The image is point-wise multiplied by the
sensitivity profiles (S) of the receive coil arrays (C = 4 channels). After Fourier transform (F), the
sampling operator P is applied to each channel.
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It is important to note that, because the received signals are acquired in parallel, the
sampling operator P is shared among all channels. It is common to represent (2.7) as
Ex = PFSx, where it is understood that the operators P and F operate on each channel
independently. It is also convenient to assume that the noise w is white and uncorre-
lated across channels. This is often accomplished through a noise pre-whitening step that
precedes the reconstruction chain [14].

Multiple Time Points

Through a lifting procedure [15], the linear forward model can also be used to repre-
sent other imaging and encoding dimensions. For example, T2 relaxation dynamics in a
fast spin-echo (FSE) experiment [2] can be represented as different echo time (TE) image
states, x =

⇥
x

1

· · · x

T

⇤
, where x

j

is the image at the jth TE and T is the echo train length
(ETL). The forward model, illustrated in Figure 2.5, includes different encoding operators
for time point i and coil j:

E

ij

= P

i

FS

j

. (2.8)

The same concept can be used to include additional dimensions such as motion states due
to cardiac or respiratory motion [11, 16], spectral states for MR spectroscopy, dynamic
contrast enhancement states [17, 18], and many others.

Figure 2.5: The forward model extended to T2 relaxation dynamics from FSE. Each image repre-
sents an echo time during the FSE echo train, T = 4 echoes in this example. The forward model
includes the sensitivity map operator (C = 2 channels), the Fourier transform, and sampling. Each
time point can be sampled differently, for instance using a center-out ordering of k-space.



CHAPTER 2. MR IMAGING AND RECONSTRUCTION 10

Sampling

One way to analyze the effects of a specific sampling pattern operator is by passing an
image through the forward and adjoint linear model, E⇤

Ex, where (·)⇤ is the adjoint (con-
jugate transpose) operation. This is equivalent to the point spread function (PSF) when
the input is a point source at the center of the image. In single-channel Cartesian MRI, the
PSF is the Fourier transform of the sampling pattern.

Many acceleration techniques rely on under-sampling k-space. Based on the sampling
pattern, the effect on the image will differ. Figure 2.6 shows the result of sampling k-
space below the Nyquist rate in two different ways. The left-most column shows the
result of fully sampling k-space. In the middle column, the Nyquist rate is violated in
the k

z

direction. As a result, aliasing replicas occur indicating multiple coupled peaks
in the PSF. In the right-most column, k-space is under-sampled using variable-density
pseudo-random sampling. Because the sampling is under the Nyquist rate, aliasing still
occurs. However, in this case the aliasing leads to artifacts that “look like noise,” and are
incoherent with respect to the image.

Figure 2.6: Effects of sampling in k-space. (a). The result of sampling at the Nyquist rate. (b) Skip-
ping every other k

z

line leads to coherent aliasing. (c) Variable-density pseudo-random under-
sampling leads to noise-like incoherent aliasing artifacts.

When neglecting relaxation, each sample is assumed to have the same signal level. In
practice, however, the signal evolves while sampling. The effect can be mitigated by wait-
ing a long time for longitudinal magnetization to fully recover between RF excitations.
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This wait time, called the repetition time (TR), dictates the scan duration. However, this
approach is not feasible for 3D imaging, as the scan time is equal to the number of phase
encode points multiplied by the TR (e.g. 55 hours for 256

2 points when the TR is 3000
ms).

In this situation, the FSE sequence can be used to accelerate the acquisition by acquir-
ing samples at multiple TEs during a single TR duration [2]. At each TE, a new line of
k-space is acquired, affording an acceleration factor equal to the number of TEs (ETL).
Since the TE of each line will differ based on the phase encode ordering, the signal level
will vary in each k-space line due to T2 decay. When the temporal component of the
acquisition is left unmodeled, the forward model amounts to modulating k-space phase
encode lines with a T2-dependent relaxation. As Figure 2.7 shows, a center-out ordering
of k-space lines is equivalent to multiplying k-space with a T2-dependent low-pass filter,
effectively causing image blurring. Since relaxation depends on position, each voxel will
undergo a different degree of blurring.

Figure 2.7: Effects of collecting samples at multiple TEs with FSE. (a) A 90� excitation pulse (red
rectangle) followed by 180� refocusing pulses (gray rectangles) will lead to exponential decay due
to T2 relaxation. (b) When a single sample is acquired in each TR duration (red circles), a sharp
image can be reconstructed. To accelerate the acquisition, measurements can be acquired between
each refocusing pulse, shown as digital-to-analog (DAC) blocks in (a). However, k-space will be
modulated by T2 relaxation based on its acquisition time (multi-colored circles), leading to image
blurring (c). Since T2 depends on position, each voxel will exhibit different amounts of blurring.



CHAPTER 2. MR IMAGING AND RECONSTRUCTION 12

2.2.2 Generalized Image Reconstruction
Parallel imaging [5–7], compressed sensing [9, 10], and many other MRI reconstruction
methods can be unified under a general inverse problem framework [19, 20]:

argmin

x

µ

2

ky � Exk2
2

+

MX

i=1

g
i

(G

i

x)

(2.9)

where the g
i

are functionals applied to x and the G

i

are linear transforms. The functionals
can be used to represent constraints sets such as limited image support, real-valued and
positivity, and other subspace constraints. Regularization can also be used to reduce noise
amplification, promote image sparsity [11], or apply other priors on the images.

Even when all the g
i

are convex, (2.9) is difficult to solve with general-purpose convex
optimization methods because of the problem size. The ambient dimensions of the opti-
mization variables are often in the tens of millions, necessitating matrix-free and Hessian-
free approaches. Consequently, a number of efficient first-order iterative optimization al-
gorithms that solve (2.9) have been developed [21–23]. These approaches are attractive
because they support matrix-free methods and decompose each iteration into a linear
data consistency update and point-wise proximal updates.

Compressed Sensing MRI

Compressed sensing MRI has seen great success in research settings, spawning thousands
of technological developments and clinical applications. Recently, MRI vendors have re-
leased clinical packages that incorporate compressed sensing into their products [24–26].
The incoherence that results from sampling k-space in a pseudo-random fashion makes
compressed sensing especially suited to MRI [11, 27]. Through a suitable transform (e.g.
wavelets for images), a sparse or low-dimensional representation of the image can be
used to dramatically reduce the required number of measurements for reconstruction.
The transform PSF (TPSF) extends the PSF concept to the transform domain and is useful
for analyzing the sampling behavior on the sparse coefficients themselves [11].

Using the generalized image reconstruction framework, parallel imaging and com-
pressed sensing can be formulated as the Lasso [28],

argmin

x

1

2

ky � Exk2
2

+ � k xk
1

, (2.10)

where  is a sparsifying transform and � is a regularization term. In this dissertation,
the combination of generalized parallel imaging and compressed sensing is referred to as
PICS.

Low Rank Regularization

One generalization of compressed sensing is the recovery of low-rank matrices through
nuclear norm minimization [8, 12]. Low rank structure is a useful model in dynamic
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MRI because the images often exhibit global and local spatio-temporal correlation. This
dissertation heavily uses low rank concepts to efficiently model relaxation effects dur-
ing imaging. One way to apply low rank regularization is by including a nuclear norm
functional

g
i

(Z) = � kZk⇤ , (2.11)

where the nuclear norm is defined as the sum of the singular values of the matrix Z. Low
rank regularization methods are elaborated on in Appendix A.

2.3 Image Contrast
Many types of image contrasts can be created with MRI. This dissertation focuses on
contrast due to T1 recovery and T2 relaxation. After 90� excitation, the magnetization
evolves over time as described by

M
xy

(r, t) = ⇢(r)f
t

(r), (2.12)

where ⇢(r) is the intrinsic amount of magnetization at position r (called proton-density,
or PD), and f

t

(r) is a spatio-temporal signal evolution. When measurements are made at
multiple TEs separated by an echo spacing T

s

, it is sufficient to consider the magnetization
at t = kT

s

, where k 2 {1, . . . , T} indexes the TEs and T is the ETL. The extended phase
graph (EPG) formalism [29, 30] is one approach to analyzing the effects of a series of RF
excitation blocks, relaxation blocks, and gradient dephasing blocks on the magnetization
signal evolution.

The EPG algorithm simulates these processes as instantaneous events given by linear
operators. RF excitation mixes transverse and longitudinal magnetization; relaxation ap-
plies T1 recovery and T2 decay; gradients increase the cycles of phase across spins in a
voxel. Figure 2.8 shows two examples of signal evolutions simulated with the EPG al-
gorithm corresponding to the FSE pulse sequence [2]. The first uses a train of 180� RF
refocusing flip angles, and the magnetization evolution at position r and the kth TE is
given by

M
xy

(r, kT
s

) = ⇢(r)e
� kTs

T2(r)

⇣
1� e

�TR�T ·Ts
T1(r)

⌘
, (2.13)

where TR is the repetition time duration. The second uses a train of variable refocusing
flip angles and leads to a more complex spin evolution due to the continual mixing of the
longitudinal and transverse magnetization components.
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Figure 2.8: Fast spin-echo simulations using the Extended Phase Graph algorithm. Different com-
binations of T1 and T2 are plotted in different colors. (a) A series of refocusing RF pulses with
180� flip angles (bottom) leads to pure exponential decay (top). (b) When variable RF refocusing
flip angles are used, the signal relaxation curves are a result of a mixture of T1 recovery and T2
decay.

A common magnetization preparation technique in FSE is to precede the 90� exci-
tation with a 180� inversion pulse. This inverts the longitudinal magnetization to the
�z direction, effectively doubling the dynamic range as the magnetization recovers back
to thermal equilibrium [1]. After a suitable inversion time (TI) duration, the sequence
continues as before with a 90� excitation. Based on the TI duration, the magnetization
of different tissues will be nulled depending on their T1-dependent zero-crossing times.
This is the basis for fluid-attenuated inverse recovery (FLAIR) contrast, in which the TI is
chosen so that signal from fluid is nulled [31]. When 180� refocusing angles are used, the
transverse magnetization at the kth TE is given by

M
xy

(r, kT
s

) = ⇢(r)
⇣
1� 2e

� TI
T1(r) e

�TR�T ·Ts
T1(r)

⌘
e
� kTs

T2(r) , (2.14)

where TI is the inversion time. It is possible to fit the signal dynamics in (2.13) and (2.14)
to estimate T1 and T2 given images scanned at multiple time points (TEs, TRs, and TIs)
[32–34]. In practice, different tissues comprise a single voxel, leading to a distribution of
T1 and T2.

The FSE sequence flexibly supports different image contrasts based on PD, T1, and T2
by varying the three main pulse timing parameters: TE, TR, and TI. This concept is illus-
trated in Figure 2.9 for different types of image contrasts used in routine brain imaging
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[35] at 3 Tesla. The sequence starts with an optional inversion recovery preparation mod-
ule with duration TI, followed by 90� excitation and a train of refocusing pulses. When
the refocusing pulses are each 180�, the magnetization is given by either (2.13) or (2.14).

Figure 2.9: Different image contrasts scanned at 3 Tesla (top) based on PD, T1, and T2 can be
created using the FSE sequence (bottom). Inversion pulses are shown in orange, excitation pulses
in red, and variable refocusing pulses in gray. TE imaging blocks are marked with blue DACs.
PD, T1 weighted, and T2 weighted images are created by varying the TE and TR, given by (2.13).
An inversion recovery preparation is included to produce images with nulled tissue such as T2
FLAIR, given by (2.14).

A PD weighted image is created using a short TE to limit T2 relaxation and a long TR
to ensure full T1 recovery. The remaining contrast is then proportional to the intrinsic spin
density of each voxel. A T2 weighted image also uses a long TR so that each repetition
starts with full longitudinal magnetization, but uses a long TE to add contrast from T2
relaxation. A T1 weighted image is created using a short TE and a short TR. The short TE
limits T2 relaxation, and the short TR limits the degree of longitudinal recover before the
next excitation. As a result, the initial magnetization is weighted by the partial T1 recov-
ery. An alternative approach to T1 weighted imaging is to include the inversion recovery
preparation pulse, called T1 FLAIR. T1 FLAIR provides additional tissue contrast due to
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the extended dynamic range [36]. By combining the fluid-nulling inversion preparation
with a long TE and a long TR, a T2 FLAIR image is created.

Figure 2.10 illustrates the magnetization evolution for PD, T2, and T1 imaging. The
scan parameters lead to signal differences between tissue types, indicating different types
of image contrast. PD imaging aims to minimize signal level differences, while T2 weighted
images aims to maximize signal differences due to T2 relaxation. For T1 weighted imag-
ing, it is useful to track the longitudinal magnetization immediately before it is excited
into the transverse plane.

Figure 2.10: Proton-density, T2 weighted, and T1 weighted contrast generation by choosing dif-
ferent combinations of TE and TR. The RF excitation pulses are shown as red arrows and the TEs
are marked with yellow stars.
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Chapter 3

T2 Shuffling

3.1 Introduction
Fast spin-echo sequences are commonly used for MR imaging because of the ability to
prescribe various image contrasts at target scan times in a flexible manner [3]. Most clin-
ical musculoskeletal protocols separately acquire 2D FSE images at multiple orthogonal
planes, and repeat the set of scans for different image contrasts. Altogether, the full exam
time is lengthy and the 2D images suffer from relatively thick slices with large gaps, which
can obscure pathology [37–39]. Volumetric (3D) FSE is an attractive alternative to 2D FSE
because it provides isotropic resolution and the images can be reformatted in arbitrary
orientations to evaluate pathology [3]. However, long echo trains are required to main-
tain scan efficiency, leading to blurring due to T2 decay [4, 38, 40]. Parallel imaging [5–
7] in tandem with variable flip angle modulation e.g. using the CUBE (GE Healthcare,
Waukesha, WI), SPACE (Siemens Healthineers, Erlangen, Germany), and VISTA (Philips
Healthcare, Best Netherlands) pulse sequences, can reduce this effect by shortening echo
trains and reducing the signal decay during the echo train, but blurring often persists,
limiting diagnostic utility. Recent applications of compressed sensing to 3D FSE [39, 41,
42] have also shown promise in alleviating the tradeoff between scan time and blurring.

Cartesian 3D FSE scans acquire multiple k-space samples, i.e. an echo train, in each RF
excitation. The speed of the acquisition depends primarily on the pulse TR, the ETL, and
the parallel imaging acceleration factor. Conventional reconstruction neglects the echo
train time progression between acquired phase encodes and produces a single image.
Since the signal decays during the echo train, blurring artifacts corrupt the final image,
leading to loss in apparent resolution.

A number of approaches to deblurring for 3D FSE exist. Several (i) first estimate T2
and (ii) next deconvolve the echo train signal evolution based on this estimate [43–45].
These methods are sensitive to errors in the T2 estimate, and can amplify noise in the de-
convolution (high pass filtering) step. Other approaches exploit the Hermitian symmetry
property of k-space to reduce the effect of T2 decay [46, 47], but are sensitive to phase er-
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rors that invalidate the Hermitian symmetry. The above methods do not fundamentally
change the signal decay behavior, and instead aim to correct it with post-processing.

Many approaches aim to directly recover tissue parameters from under-sampled data
through a model-based, non-linear optimization [48–51]. These approaches often use
non-Cartesian sampling to leverage incoherence in the acquired signal and improve the
conditioning of the reconstruction. Nonetheless, the reconstructions must cope with
added complexity in the non-linear forward model and are sensitive to model mismatch,
e.g. due to partial voluming. Other works first impose subspace constraints through prin-
cipal component analysis (PCA) [52–56] and dictionary learning [57, 58] to linearize the
parametric forward model and enforce spatial sparsity on the basis images. The lineariza-
tion is attractive because it lends itself to a convex formulation and PCA can be applied
to training signals that account for stimulated echoes and imperfect slice profiles. Data-
driven variants [59, 60] can also be used to build robustness to motion [61] and other
non-ideal imaging considerations. The linear subspace constraint is robust to partial vo-
luming and implicitly accounts for multi-compartmental models, as linear combinations
of signal evolutions remain in the subspace. However, the approximation error from
PCA and other basis expansions may lead to biased parameter estimates and the para-
metric fitting step must still explicitly account for imaging non-idealities such as partial
voluming and RF-field inhomogeneity. Parametric estimation is further complicated by
the subtle dependence of tissue relaxation on pulse sequence design [62]. More recently,
pattern matching methods [63, 64] have shown promise at deriving tissue and system
parameters. These methods employ pixel-wise matching of unknown signal evolutions
to a database of simulated signals. However, they often neglect data fidelity in the recon-
struction formulation. The addition of a data fidelity term has been shown to improve
the reconstruction [65–68].

This chapter presents a subspace-constrained method, called T2 Shuffling, that simul-
taneously recovers many images at multiple contrasts with increased sharpness from a
single acquisition that is about as long as a conventional 3D scan. T2 Shuffling reduces
the blurring due to long echo trains and eliminates the need to perform separate scans
at different target echo times (TEs) for each image contrast. The acquisition accounts for
the echo train time progression, and the reconstruction combines recent advances in par-
allel imaging and compressed sensing in a software framework designed for a clinical
workflow. Specifically, T2 Shuffling builds off of previous subspace [52–55] and low rank
[18, 69–71] modeling methods to reduce the degrees of freedom in the reconstruction.
In contrast to the subspace-based parametric methods, no parameter maps are explicitly
estimated, and instead the linear subspace constraint is used as a flexible approach to de-
blurring and recovering tissue dynamics. The method thus maintains the implicit robust-
ness to imaging non-idealities present in other subspace-constrained approaches. Also,
rather than regularizing in the parametric dimension, low-rank constraints are imposed
directly on the subspace.

By accounting for signal decay, scan efficiency can be improved by acquiring more
data in each TR without suffering from increased blurring. The wait time between the
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end of the echo train and the start of the next TR has been previously used to jointly
produce a proton-density and a T2-weighted image from a single 3D FSE scan [72]; here
this observation is taken one step further – an image is recovered at each TE in the echo
train. The authors in [73] and [74] have demonstrated a similar principle through the use
of a radial acquisition with a view-sharing reconstruction for T1-weighted imaging. In
contrast, here view sharing is replaced with an explicit subspace model that constrains
the signal relaxation.

3.2 Theory
A model-based description for FSE acquisition is that the observed signal is a linear mix-
ture of a proton-density image and a temporal signal evolution function:

y(t) =

Z

r

⇢(r)f
t

(r)e�j2⇡k(t)

>
rdr. (3.1)

Here, y(t) is the acquired signal at time t, ⇢(r) is the complex proton-density image at
voxel r, and k(t) is the vector-valued k-space trajectory. This model is easily extended to
multiple receive coils in a straightforward manner. The temporal signal evolution func-
tion f

t

(·) depends on several factors, including tissue relaxation and the refocusing flip
angle schedule. For a constant 180 degree flip angle train, a simple and common model
used for FSE imaging is the mono-exponential decay. In this model, each voxel position r

decays with T
2

(r) during the echo train and recovers with T
1

(r) after the echo train over
a repetition time TR according to
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(r) = e
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T2(r)
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�TR�T ·Ts
T1(r)

⌘
, (3.2)

where T is the ETL and T
s

is the echo spacing. In practice, each voxel will contain a distri-
bution of relaxation values. In conventional FSE image reconstruction, the time progres-
sion is ignored, and an inverse Fourier transform is applied to (3.1), implicitly assuming
that f

t

(·) does not change over time. For example, it is often assumed that f
t

(r) ⇡ f
TE

(r)

for all t, where TE is the (fixed) echo time when the center of k-space is acquired [3]. To
appreciate the impact of this approximation, consider f

t

(·) in terms of k-space position
using the relationship k(t) = �

2⇡

G(t�TE), where G is the gradient amplitude vector. For
the special case of mono-exponential decay and neglecting the positional dependence of
relaxation,

f
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= e
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2⇡ T2 e
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⇣
1� e

�TR�T ·Ts
T1

⌘
, (3.3)

where 1/G is the point-wise inverse of the gradient vector. As the k-space weighting
in (3.3) is convolved in image space with the proton-density image, the approximation
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impacts the apparent tissue contrast and leads to blurring due to T2 decay during the ac-
quisition [4, 40]. Since relaxation depends on position, each voxel will undergo a different
degree of blurring [45].

In this work, the temporal nature of the acquisition is modeled, and the Fourier re-
lationship is maintained through a lifting procedure [15]. This does not assume a mono-
exponential decay, and instead allows arbitrary signal evolutions formed by a distribution
of T2 values. Consider an FSE experiment in which T echoes are acquired each TR with
echo spacing T

s

. Let

x
i

(r) = ⇢(r)f
iTs(r) (3.4)

be the magnetization at the ith echo time and the r

th voxel, and define the signal evolution
at voxel r as

x(r) =

⇥
x
1

(r) x
2

(r) · · · x
T

(r)

⇤T 2 CT . (3.5)

In this notation, x
i

is the virtual echo time image at the ith virtual echo time and x is the
collection of all echo time images. Thus, the forward model is extended to a time series
of images:

y

i

= P

i

FSx

i

, i = 1, . . . , T, (3.6)
y = PFSx

:

= Ex. (3.7)

The encoding matrix E operates on each virtual echo time image independently. Each
image x

i

is point-wise multiplied by the coil sensitivity maps (S) and Fourier transformed
(F). The data are then multiplied with the sampling mask of each virtual TE (P), where
the entries of the sampling pattern correspond to the acquired phase encodes at each
virtual TE, and represented in k-t space by y. Figure 3.1 depicts the forward model for
the time-series of images. Figure 3.1b shows the sampling operator corresponding to a
center-out phase encode ordering, which is commonly used for proton-density FSE [40].
In conventional 3D FSE, the acquired data are collapsed into a single k-space matrix,
which in the lifted formulation is equivalent to summing along the time dimension. By
representing the data in the lifted space, the model supports arbitrary sampling and is not
restricted to a center-out view ordering. Figure 3.1c shows a randomly shuffled sampling
procedure that leads to a better posed inverse problem [75], as discussed in the sequel.
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Figure 3.1: The forward model is extended to a time series of images at T virtual echo times.
(a) Each virtual echo time image is point-wise multiplied by the sensitivity maps, Fourier trans-
formed, and sampled. (b) A center-out view ordering used in conventional proton-density 3D FSE
imaging. (c) A randomly shuffled view ordering suitable for T2 Shuffling.
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Since the ambient dimension of the unknown images is LT , where L is the number
of voxels, a naive well-posed reconstruction in the lifted space requires T times the num-
ber of observations compared to a standard 3D FSE reconstruction. To overcome this
limitation, structure in the data is exploited to reduce dimensionality. This is achieved
in two ways: first, the temporal signal evolution is modeled and represented by a low-
dimensional subspace; second, the sampling problem is formulated based on ideas from
compressed sensing [11]. These two approaches significantly reduce the dimensionality
to a regime where the equivalent of a single 3D FSE acquisition can be used to reconstruct
the full time series of images.

3.2.1 Temporal Subspace
The signal evolutions observed in an FSE experiment are functions of both the tissue (e.g.
T1, T2) and system parameters (e.g. flip angles in the echo train). Other factors such as
B

1

inhomogeneity will also influence the signal evolution [64]. Using these parameters,
signal evolutions can be generated with Bloch simulation and the Extended Phase Graph
(EPG) algorithm [4, 29, 64]. In the case of a constant flip angle schedule, there also exist an-
alytical solutions [50, 76]. Figure 3.2 shows example signal evolutions using the variable
flip angle modulation scheme described in [40]. The signal evolutions corresponding to
different tissues follow similar trends despite differing in relaxation parameters. It is this
correlation that makes parameter mapping a difficult problem. However, the correlation
implies that the signal evolutions of different tissues form a low-dimensional subspace
[13].

Consider an ensemble of N spins sampled at T echo times, X 2 CT⇥N . Each column
in X represents the signal evolution of a spin with a particular (T

1

, T
2

) pair. Let� 2 CT⇥T

be an orthonormal temporal basis, i.e.

X = ��

⇤
X. (3.8)
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· · · '
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⇤
and a K�dimensional subspace, �

K

=

span{'
1

, . . . ,'
K

}, such that

kX��
K

�

⇤
K

Xk < ✏, (3.9)

where ✏ is a modeling error tolerance. The choice of norm in (3.9) will affect the chosen
subspace. If the Frobenius norm is used, then this metric captures the sum-of-squares
error in the fit. If a max-column norm is used, then the tolerance can be interpreted as
the worst-case error on any signal evolution. By choosing the ensemble X to match the
distribution of (T1, T2) values in the tissue of interest, a suitable subspace that minimizes
the Frobenius norm can be generated using PCA [53, 54, 77].

In conventional 3D FSE, variable refocusing flip angles are used to reduce the rate of
decay for a particular range of T2 values [3, 4, 40]. This leads to less intrinsic blurring in
the final image. The choice of refocusing flip angles for the echo trains has a significant
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Figure 3.2: (a) Simulated signal evolutions during an echo train using variable refocusing flip
angles shown in (b) (T

1

= 1000 ms). For T
2

= 500 ms, the signal is nearly constant after the initial
20 ms and will lead to minimal blurring in the image. For T

2

= 100 ms and below, the signal
decays throughout the echo train. Despite the different temporal profiles, the signal curves are
highly correlated.

impact on the signal evolution, and thus the temporal subspace design. Since the model
in (3.7) accounts for the temporal signal, it is no longer necessary to design the flip angle
train to reduce signal decay. Instead, other metrics such as signal to noise ratio (SNR) and
contrast to noise ratio (CNR) could be used as flip angle design criteria. For this work,
the flip angle modulation scheme was not changed from that described in [40].

Using the subspace �
K

,

y = Ex (3.10)
= E��

⇤
x (3.11)

⇡ E�

K

�

⇤
K

x (3.12)
:

= E�

K

↵, (3.13)
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where ↵ :

= �

⇤
K

x are the K temporal basis coefficients that describe the time series of
images. Neglecting model error,

x = �

K

↵. (3.14)

The reconstruction problem can now be posed in terms of ↵:
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r

kR
r

(↵)k⇤ . (3.15)

After solving for ↵, the unique time series is computed by projecting through the basis
using (3.14). The subspace constraint significantly reduces the dimensionality of the un-
known variable in the optimization problem. Rather than resolving each image voxel at
T ⇡ 80 time points, it is sufficient to represent each voxel with K ⇡ 4 coefficients [53,
55]. The full T2 Shuffling forward model is shown in Figure 3.3. The subspace coefficient
images are explicitly used to generate the time series of images through back-projection.

Figure 3.3: T2 Shuffling forward model with explicit subspace constraint. The time series of im-
ages are generated by back-projecting through the low-dimensional subspace with K subspace
coefficients (K = 3 in this example).

A locally low rank (LLR) regularization functional �
P

r

kR
r

(↵)k⇤ is used to further
reduce sample complexity [18, 69, 70, 78, 79]. LLR regularization is implemented in a
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manner similar to the approach described in [69]. The operator R
r

extracts a block from
each temporal coefficient image centered around voxel r and reshapes each block into
a column of a matrix. The nuclear norm is applied to each matrix with regularization
parameter � and the result is summed. LLR regularization exploits spatial correlations in
the temporal image coefficients, providing substantial dimensionality reduction beyond
the capabilities of joint wavelet regularization or finite differences [55, 77, 80, 81]. In effect,
LLR constrains local image patches into a smaller space within the subspace �

K

, which
compresses the representation to fewer than K coefficients per voxel. To avoid blocking
artifacts [82], the temporal image coefficients are randomly shifted at each iteration prior
to LLR regularization [83]. Low rank regularization is described further in Appendix A.

As discussed in Appendix B, a consequence of the subspace constraint (3.14) for a fully
sampled, linear reconstruction is that the noise in the system does not depend on the ETL,
even if the signal evolutions fully decay. This is because noise outside the subspace is
removed through the projection operation, i.e. the final noise standard deviation is �

p
K,

where � is the noise standard deviation of a conventional 3D FSE acquisition that neglects
the time progression [84]. Thus a linear reconstruction leads to a fixed

p
K reduction

in SNR, as indicated by (B.11). Although an under-sampled imaging experiment is not
analyzed in this work, the one-dimensional result is used as a heuristic motivation for
increasing the ETL to collect more data without incurring any additional blurring in the
resulting reconstruction. In addition, the use of LLR regularization in the reconstruction
formulation (3.15) provides additional denoising.

3.2.2 Echo Train Ordering
In conventional proton-density 3D FSE acquisition, phase encodes along an echo train are
ordered according to radial distance so that the k-space center is sampled first and the pe-
riphery is sampled last during each echo train. By using a center-out ordering, the k-space
center is acquired early during the signal evolution, providing high SNR and producing
apparent proton-density contrast. Figure 3.4a depicts the echo train ordering for center-
out sampling. Because the signal decays during the echo train, k-space is apodized. The
effect is equivalent to space-variant low-pass filtering in image space and leads to a blur-
ring point spread function (PSF). Refocusing flip angle modulation reduces this blurring
for tissues with a particular range of T2 values, but it does not fully compensate for this
effect. Furthermore, tissues with short T2 remain affected and are blurred out.
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Figure 3.4: Comparison of center-out and randomly shuffled view ordering schemes for an ex-
ponential decay. (a) The echo trains in a center-out ordering start at central k-space and move
outward in a radial fashion. The resulting normalized PSF for species with high T2 is sharp. For
low T2 the normalized PSF has non-negligible width, indicating intrinsic image blur. (b) The echo
trains for a randomly shuffled ordering traverse k-space in a random fashion, and phase encodes
may be repeatedly re-sampled. The PSF has a distinct sharp peak, indicating reduced blur, and
incoherent artifacts. The peak remains sharp for low T2 values at the cost of larger incoherent
artifacts.

Since the inverse problem defined in (3.15) uses ideas from compressed sensing to re-
duce sample complexity through the use of LLR regularization, the data space should be
sampled incoherently with respect to the unknown [11]. The forward model (3.7) repre-
sents the data in k-t space. In this view, a center-out ordering acquires low-frequency k-
space samples at early echo times and high-frequency k-space samples at later echo times,
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which is not incoherent with respect to the temporal coefficients. One realizable incoher-
ent sampling approach that fits the signal distribution uses randomized sampling both in
k-space and in time [75, 85]. Figure 3.4b depicts an alternative view ordering scheme, in
which echo trains are formed by randomly selecting phase encodes throughout k-space.
This randomly shuffled ordering induces a PSF with a sharp peak, indicating reduced
blur, and spreads artifacts incoherently. However, the peak-to-sidelobe ratio decreases as
T2 decreases, highlighting the difficulty of recovering images with short T2.

Figure 3.5: The system input and TPSF due to the first temporal coefficient (other coefficients show
similar behavior). Center-out ordering (middle) blurs and spreads interference coherently, while
randomized ordering (bottom) spreads interference incoherently.

The effect of randomly shuffled echo trains can also be observed in the subspace do-
main. Figure 3.5 shows a system input containing a uniform patch in the first temporal co-
efficient and the resulting transform PSF (TPSF). A uniform patch is used as it represents
a single coefficient (point) in the LLR domain. The center-out ordering (top) leads to blur-
ring and coherent interference. The coherent interference couples the coefficients, which
demonstrates the deconvolution is ill-posed under the center-out sampling scheme. The
randomized ordering (bottom) spreads interference incoherently through space and time,
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and does not couple the coefficients. The LLR soft threshold operation on the random-
ized TPSF will reduce the incoherent artifacts. The TPSF calculation is described in Ap-
pendix C.

3.3 Methods

3.3.1 Subspace Selection
The subspace selection affects both the compression power and the modeling error. In
this work the subspace was pre-computed by simulating an ensemble of signal evolu-
tions that match the distribution of T2 values in the anatomy of interest. In a clinical
environment, this subspace could be computed offline once and stored for future exams
from each imaging protocol (e.g. knee, foot). Figure 3.6a shows a T2 map of a human foot
and the corresponding histogram of T2 values. A total of 256 T2 values were sampled
from this distribution and EPG-simulated with a variable refocusing flip angle train to
produce the ensemble of signal evolutions shown in Figure 3.6b. Because of the weak
dependence of T1 on the signal evolution [4, 40], EPG simulations were repeated with
T1 values of 500, 700, 1000, and 1800 ms, for a total of N = 1024 signal evolutions. The
temporal subspace was generated by taking the first K = 4 principal components of the
ensemble of signal evolutions through PCA. Four principal components are sufficient to
represent each signal evolution with greater than 99% accuracy. Figure 3.6c shows the
subspace curves for K = 4 and an ETL of 78, and their use in forming signal evolutions
corresponding to different tissue relaxation through (3.14). Since the subspace flexibly
represents arbitrary signal evolutions, it need not precisely represent all relaxation val-
ues. In particular, if a voxel contains multiple tissue species, and each respective tissue’s
signal evolution lives in the subspace �

K

, then the sum of the signal evolutions will also
live in the subspace [53]. For the FSE signal model, the subspace property also allows
for mismatches between the simulated and actual refocusing flip angle trains, e.g. due to
B

1

inhomogeneity. Figure 3.7 shows a simulation of the impact of B
1

inhomogeneity on
the subspace model error. To simulate B

1

homogeneity, EPG simulations were repeated
by scaling the RF excitation and refocusing flip angles by up to 40% and the normalized
model error was computed according to

k˜x��
K

�

⇤
K

˜

xk
2

k˜xk
2

, (3.16)

where ˜

x is the signal evolution generated with B
1

inhomogeneity and �
K

was generated
from the purely homogeneous B

1

field. As expected, the model error is lowest at 100%
scaling, with a maximal error of 0.5%. The worst-case model error increases to 3% at high
B

1

inhomogeneity and remains at a tolerable level for most signal evolutions.
The subspace size presents a tradeoff between bias and noise. As K increases, the

model error decreases and the noise variance increases. Figure 3.8 shows the tradeoff for
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Figure 3.6: (a) T2 map and histogram of the foot derived from a 2D multi-echo scan. (b) Ensemble
of EPG-simulated signal evolutions using values from the T2 histogram and the first four princi-
pal components that comprise the temporal subspace. (c) Temporal subspace curves are linearly
combined to form signal evolutions.

short-T
2

and long-T
2

signal evolutions with T
1

= 1000 ms. The top plot shows normalized
model error given by (3.16), and is less than 0.5% across all simulated signal evolutions
for K = 4. The bottom plot shows the overall root mean-squared error (RMSE) derived
from (B.10). The RMSE was calculated with � = 0.7, which corresponds to an SNR of
about 15 dB for T

2

= 14 ms.
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Figure 3.7: Normalized subspace model error (K = 4 coefficients) in the presence of B
1

inho-
mogeneity for a range of EPG-simulated signal evolutions. B

1

inhomogeneity was simulated by
scaling the RF excitation and refocusing flip angles during the echo train by a fixed percentage.
The subspace was generated from a 100% homogeneous B

1

field.

3.3.2 Data Acquisition
The CUBE 3D FSE pulse sequence (GE Healthcare, Waukesha, WI, USA) was previously
modified to support Poisson disc sampling [39]. In this work, the sequence was extended
to re-sample and store phase encodes at multiple echo times, enabling the prescription of
arbitrary sampling patterns and echo trains. In a conventional 3D FSE scan, the operator
first prescribes imaging parameters such as resolution, TR, and TE to meet a target image
contrast, and next chooses a suitable spatial acceleration factor and ETL to meet a target
scan time. Because T2 Shuffling resolves the full tissue dynamics at any virtual echo time
during the echo train, it is no longer necessary to set a target TE. Instead, the operator
chooses a target resolution, TR, and scan time. The TR and scan time provide an upper
limit on N

trains

, the number of echo trains, independent of ETL:

N
trains

=

�
Scan Time

TR

⌫
, (3.17)

where b·c is the floor function. The ETL is now a free parameter, and can be experimen-
tally chosen for each protocol to account for SNR, T1 weighting, and specific absorption
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Figure 3.8: Normalized subspace model error (top, (3.16)) and overall RMSE (bottom,
p
(B.10))

vs. subspace size for short-T
2

and long-T
2

signal evolutions with T
1

= 1000 ms. The dashed black
line shows the RMSE due to noise for � = 0.07. With K = 4 coefficients, a low model error is
uniformly achieved with a reasonable noise penalty.

rate (SAR) limits.
Under this view, and because phase encodes can be re-sampled, conventional parallel

imaging acceleration factor is no longer a scan parameter. Instead, the relative acceleration
is defined as the number of phase encode measurements acquired with respect to a fully
sampled circular k-space coverage. Although this definition does not account for the
ETL, it serves as a metric for the effective amount of data collected. In addition, since K
temporal coefficient images are reconstructed with T2 Shuffling, the apparent acceleration
is defined as K times the relative acceleration. The apparent acceleration represents the
amount of data collected with respect to the number of degrees of freedom in the forward
model.

One approach to incoherent sampling is to generate a unique variable-density Poisson
disc mask with N

trains

samples for each echo time. An echo train is then formed by choos-
ing one sample from each mask. However, naively chaining together samples from each
mask could result in large gradient switching during the echo train and lead to eddy cur-
rent artifacts. To overcome this limitation, an alternative sampling approach is described
in Appendix D that reduces the distance between points in each echo train. Figure 3.9 de-
picts the different sampling patterns across the echo times. Due to the variable refocusing
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flip angle scheme, the signal evolutions start in a transient decay before reaching pseudo
steady state [40, 45]. As a result, traditional center-out 3D FSE discard up to 15 initial
echoes in each echo train. Since T2 Shuffling models the signal decay, data are acquired
during the transient state, increasing scan efficiency. The first two echoes in the echo train
are used to fully cover the center of k-space. This provides a time-consistent calibration
region for estimating ESPIRiT coil sensitivity maps. All remaining echoes are used for
reconstruction.

Figure 3.9: Sampling patterns across each echo time for T2 Shuffling. The first echoes are acquired
during the transient decay in a center-out fashion and used for coil sensitivity estimation. The
remaining echoes follow a variable-density Poisson disc sampling pattern and are reconstructed
into a time series of images.

2D Retrospective Under-Sampling and Anatomical Simulation

To test the forward model in (3.7) and the proposed sampling procedure, a fully sam-
pled 2D multi-echo sequence was used to scan a sagittal slice of a volunteer’s foot at
equally spaced echo times at 3T (TR/TE = 3060/10 ms, 32 echoes, 32 coils, 180 degree
refocusing flip angles) under an approved IRB study. To reduce computation time, the
data were coil-compressed to 8 virtual channels [86] and used to estimate ESPIRiT coil
sensitivity maps. A T2 map was estimated by discarding the first echo time and perform-
ing a mono-exponential fit (Figure 3.6a). From the T2 map, synthetic multi-echo data sets
were generated through EPG simulation with variable refocusing flip angles and a fixed
value of T

1

= 1000 ms. The synthetic data were then multiplied by the ESPIRiT maps
and Fourier transformed to produce k-t space. Figure 3.10 shows the first TE of the fully
sampled, simulated data with an ETL of T = 80.
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To simulate the effects of a 3D FSE acquisition on a single slice in the readout direc-
tion, the coil-compressed, multi-echo data were retrospectively under-sampled using a
center-out view ordering. The data were also retrospectively under-sampled using the
randomly shuffled view ordering scheme. The two under-sampled data sets were each
reconstructed with T2 Shuffling to produce a time series of images. The data were also
summed along the time dimension to simulate conventional 3D FSE with a spatial ac-
celeration factor of 2 (40 in k-t space). These were then reconstructed using L1-ESPIRiT,
a parallel imaging and compressed sensing method that does not compensate for signal
decay [87]. The retrospective experiments were also repeated on the original multi-echo
data (no flip angle modulation, 32 time points) to investigate the performance of T2 Shuf-
fling for constant flip angle schemes (approximately exponential decay).

In Vivo Data

Adult volunteers and pediatric patients were scanned under an approved IRB study with
informed consent/assent using the modified CUBE pulse sequence for knee imaging with
an 8-channel knee coil array at 3T. Table 3.1 lists the common scan and imaging parame-
ters used for the experiments, and Table 3.2 shows the scan parameters for each individ-
ual scan type. The first scan (Scan 1a) matched the current pediatric knee protocol used
at the Lucille Packard Children’s Hospital (Stanford, California) with a center-out view
ordering and variable-density Poisson disc sampling. The second scan (Scan 2a) used a
randomly shuffled view ordering and sampling as discussed in Appendix D. The first
scan was reconstructed into a single proton-density image using L1-ESPIRiT. The second
scan was reconstructed into 78 virtual echo time images using T2 Shuffling. Both scans
were 6 minutes and 30 seconds in duration. A second set of scans with scan times of 7
minutes and 30 seconds was also used to reduce the ETL for the center-out ordering (Scan
1b) and to reduce the acceleration for the randomly shuffled ordering (Scan 2b). T2 Shuf-
fling was compared to L1-ESPIRiT because compressed sensing has shown great promise
toward improving 3D FSE [39, 41, 42].

Table 3.1: Common scan and imaging parameters used for in vivo experiments.

All Scans
TR (ms) 1400

Echo Spacing (ms) 5.5
Receive Bandwidth (kHz) ±62.5
Fat Saturation Efficiency 0.85
Acquisition Matrix 288⇥ 260⇥ 240

Reconstruction Matrix 512⇥ 512⇥ 472

Acquisition Voxel (mm3) 0.6⇥ 0.6⇥ 0.7
Reconstruction Voxel (mm3) 0.3⇥ 0.3⇥ 0.4
Reformat Slice Thickness (mm) Axial: 0.3, Sagittal: 1.5, Coronal: 2.0



CHAPTER 3. T2 SHUFFLING 34

Table 3.2: Scan and imaging parameters used for each scan type.

Scan 1a Scan 2a Scan 1b Scan 2b
View Ordering Center-out Randomly Shuffled Center-out Randomly Shuffled
ETL 33 80 28 82
N

trains

278 278 321 321
Initial Discarded Echoes 5 2 5 2
TE

e↵

(ms) 23 - 23 -
Relative Accelerationa 6.3 2.3 6.6 1.9
Apparent Accelerationb - 9.2 - 7.6

Image Contrast Proton Proton, T2
(78 images) Proton Proton, T2

(80 images)
Scan Time 6 min. 30 sec. 6 min. 30 sec. 7 min. 30 sec. 7 min. 30 sec.
aThe acceleration with respect to a fully sampled circular k-space coverage.
bThe relative acceleration multiplied by the number of temporal coefficient images.

Reconstruction Implementation

The T2 Shuffling reconstruction was implemented in C and CUDA using the Berkeley Ad-
vanced Reconstruction Toolbox (BART) [19, 88]. MATLAB demonstration code is avail-
able for download at http://eecs.berkeley.edu/~mlustig/Software.html.

The reconstruction problem (3.15) is convex and can be solved using iterative algo-
rithms such as FISTA [21] and ADMM [22]. In both cases, the algorithms require repeated
application of the forward and adjoint operators described by the normal equations,
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In this naive formulation, the run-time and memory requirements scale with the ETL. For
an ETL of T = 80, K = 4 temporal coefficients, and 8 coils, the forward operator amounts
to an 80⇥4 matrix multiplication per voxel, followed by 80 sensitivity map multiplications
and 640 FFTs. The result is multiplied by the sampling mask and similar operations are
applied in reverse order for the adjoint. Although some operations can be parallelized,
they pose a large memory and computation bottleneck on the reconstruction.

To reduce computation, a similar approach to Step 1 in [89] is used. Since the tempo-
ral basis �

K

operates across time and the sensitivity map multiplication S and Fourier
transform F operate across space, the operators commute:
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Thus, the normal equations can be rewritten more compactly:
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Here,  
K

:

= �
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P�

K

is a K ⇥ K sampling kernel per voxel and can be pre-computed
prior to reconstruction. For K = 4, the forward operation now only requires the ap-
plication of 4 sensitivity map multiplications and 32 FFTs, followed by a 4 ⇥ 4 matrix

http://eecs.berkeley.edu/~mlustig/Software.html
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multiplication per voxel. The adjoint operation sees a similar reduction in computation.
The data y and time series of images x are no longer explicitly stored, making the recon-
struction’s memory and run-time requirements independent of the ETL. The complexity
is roughly K = 4 times greater than that of an L1-ESPIRiT reconstruction.

As the 4D reconstruction involves a large amount of data and computation, processing
times remain a bottleneck for clinical adoption. To overcome this bottleneck, a fast, dis-
tributed reconstruction was designed and implemented, and is described in Chapter 4.

3.4 Results

3.4.1 Retrospective Under-sampling and Simulation Results
The first experiment, carried out on the anatomical simulation with variable refocus-
ing flip angles, is shown in Figure 3.10. The left image shows the first TE of the simu-
lated, fully sampled data and serves as the gold-standard proton-density contrast. The
middle-left shows the L1-ESPIRiT reconstruction with center-out ordering and represents
a conventional compressed sensing approach. The blurring due to T2 decay is evident,
reaffirming the limitation of current FSE. After randomly shuffling the echo train order-
ing (middle image), the L1-ESPIRiT reconstruction shows incoherent artifacts, which are
explained by the PSF in Figure 3.4b. There is also mixed contrast due to the k-space
modulation induced by the random sampling. Despite the image artifacts, detailed struc-
ture remains, indicating the potential to “denoise” with T2 Shuffling. The first virtual
echo time from the T2 Shuffling reconstruction applied to center-out ordering is shown in
the middle-right image. The reconstruction does not successfully recover the time series
of images because the sampling is coherent in k-t space (ill-posed deconvolution). The
T2 Shuffling reconstruction in tandem with randomized view ordering (right image) is
sharp, and the first virtual echo time image shows similar quality and contrast to that of
the fully sampled image. There is a clear delineation of fine structure that is not afforded
by the conventional 3D FSE pipeline.
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Figure 3.10: Proton-density reconstructions on retrospectively under-sampled data from variable
flip angle modulation simulation. From left to right: first TE of the fully sampled slice; L1-ESPIRiT
reconstruction using a center-out echo train ordering; L1-ESPIRiT reconstruction using a ran-
domly shuffled echo train ordering; first virtual TE of T2 Shuffling reconstruction with center-out
echo train ordering; first virtual TE of T2 Shuffling reconstruction with randomly shuffled echo
train ordering.

Figure 3.11 shows a similar trend on the simulations that were based on the acquisition
data. Since the multi-echo sequence used a constant flip angle schedule, the blurring from
center-out ordering is even more pronounced. The T2 Shuffling reconstruction with ran-
domized view ordering is comparable to the fully sampled slice despite the approximate
exponential signal decay.
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Figure 3.11: Proton-density reconstructions on simulation derived from retrospectively under-
sampled acquisition data with constant flip angles. From left to right: first TE of the fully sampled
slice; L1-ESPIRiT reconstruction using a center-out echo train ordering; L1-ESPIRiT reconstruc-
tion using a randomly shuffled echo train ordering; first virtual TE of T2 Shuffling reconstruction
with center-out echo train ordering; first virtual TE of T2 Shuffling reconstruction with randomly
shuffled echo train ordering.

The T2 Shuffling reconstruction recovers the full time series of virtual echo time im-
ages and provides various degrees of T2 contrast, all from the same data. Figure 3.12a
shows a later virtual echo time image (approximately 100 ms) for both the fully sampled
simulation and acquisition slices, and well as the T2 Shuffling reconstructions (with the
randomly shuffled ordering). As suggested by [4], the effective contrast-equivalent TE
(TE

e↵

) is shown for the variable flip angle modulation. The reconstructions closely match
the fully sampled slices. Figure 3.12b shows representative temporal signal evolutions
for the cases considered in Figure 3.12a. The signal curves for the variable flip angles
show close agreement, indicating low model error and successful reconstruction. Note
the deviation from the true signal evolution in the case of the constant flip angle; this is
a result of the non-exponential behavior that was not modeled in the basis and indicates
the importance of matching the temporal subspace to the pulse sequence design.
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Figure 3.12: (a) Comparison of the 100 ms TE
e↵

image for the fully sampled slices and the T2
Shuffling reconstructions (with randomly shuffled ordering) for both the simulation and the ac-
quisition data. (b) Representative signal evolution curves from the fully sampled slices and the
reconstructions in (a).

3.4.2 In Vivo Results
Figure 3.13a depicts axial reformatted images of modified Poisson disc CUBE with L1-
ESPIRiT vs. T2 Shuffling reconstructions on a pediatric patient with bone marrow edema
(Table 3.2, Scans 1a and 2a, respectively). The proton-density T2 Shuffling image shows
increased delineation of the patellar tendon and other fine structures as compared to the
L1-ESPIRiT reconstruction. The later virtual echo time images clearly show the edema
due to the higher T2 value of the fluid relative to the surrounding tissue. Figure 3.13b
shows sagittal and coronal reformatted T2 Shuffling images from a knee scan of a pe-
diatric patient with a discoid meniscus (Table 3.2, Scan 2b). The early virtual echo time
image points to intrasubstance degeneration, but the later virtual echo time clearly shows
the tear and fluid.
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Figure 3.13: (a) Axial reformatted reconstructions of L1-ESPIRiT using Poisson disc CUBE and
T2 Shuffling at three virtual echo times. The solid yellow arrows depict increasingly improved
contrast of the bone marrow edema. The dashed white arrows (zoomed-in region) show enhanced
delineation of the patellar tendon in the T2 Shuffling images. Acquisition parameters are listed
in Table 3.2, Scan 1a and Scan 2a. (b) T2 Shuffling reconstruction of a pediatric patient scan with
a discoid meniscus. The coronal reformat at 50 ms TE

e↵

shows the discoid meniscus (dashed
white arrow). The sagittal reformat at 20 ms TE

e↵

shows potential intrasubstance degeneration.
The same slice at 90 ms TE

e↵

clearly depicts the meniscal tear and fluid (solid yellow arrow).
Acquisition parameters are listed in Table 3.2, Scan 2b.

In some cases, T2 Shuffling only afforded marginal qualitative improvement. Fig-
ure 3.14 presents such a case for a pediatric patient, comparing sagittal reformats of Pois-
son disc CUBE with L1-ESPIRiT and T2 Shuffling at two virtual echo times (Table 3.2,
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Scan 1a and 2a, respectively). Although there are some differences between the proton
density images, it is not immediately clear if they are due to deblurring or due to resid-
ual aliasing artifacts. The solid yellow arrow shows increased apparent resolution in the
muscle, while the dashed white arrow shows ringing artifacts in the bone only present in
the T2 Shuffling images.

Figure 3.14: Sagittal reformatted reconstructions of (a) L1-ESPIRiT using Poisson disc CUBE and
(b-c) T2 Shuffling at two virtual echo times. The solid yellow arrow shows increased apparent
resolution in the muscle, while the dashed white arrow shows ringing artifacts in the bone signal
of the T2 Shuffling images. Acquisition parameters are listed in Table 3.2, Scan 1a and Scan 2a.

Figure 3.15a shows an axial reformatted slice of the first virtual echo time image us-
ing T2 Shuffling for a volunteer. The image depicts the trabecular bone structure in the
distal femur. This area is challenging in particular for parameter mapping methods be-
cause of the multi-compartmental nature of the bone structure. Since T2 Shuffling does
not explicitly estimate the T2 value and instead flexibly represents the voxels by a linear
subspace, the modeling error is low and the structure is preserved. The dimensionality
reduction offered by LLR is depicted in Figure 3.15b; each voxel neighborhood is con-
strained to a smaller subspace within the global subspace. The local rank is determined
by taking non-overlapping patches of the reconstructed temporal coefficient images, re-
shaping each patch into a matrix, and computing the number of non-zero singular values.
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Regions in the image containing a single tissue species are captured by a single coefficient.
The regions at tissue boundaries require more coefficients to represent due to the diversity
in T2. The correlation between tissues is naturally exploited by the subspace constraint;
Figure 3.15c shows the result of applying k-means to the coefficient images. With little
effort, the image is segmented into broad tissue classes based on the temporal coefficients
of each voxel.

Figure 3.15: (a) Axial reformatted slice of the T2 Shuffling reconstruction at the first virtual echo
time. (b) Number of degrees of freedom in each voxel after LLR reconstruction. (c) K-means
clustering applied to the coefficient images after reconstruction. Each color represents a broad
tissue class.

3.5 Discussion
Conventional FSE imaging methods must balance the tradeoffs between scan time, image
sharpness, and image contrast. T2 Shuffling is able to break this dependency and resolve a
time series of sharp images from a single acquisition. Instead, T2 Shuffling inherits similar
benefits and challenges present with compressed sensing: the limited acquisition time
manifests as incoherent artifacts in the images. Short T2 species impart larger artifacts,
and these artifacts spread through the entire image volume. Thus, successful recovery
is tied to the sampling rate and distribution in k-t space. From this viewpoint, a center-
out echo train ordering does not adequately sample the temporal signal evolution curve
and leads to an ill-conditioned inverse problem. However, it is possible to sample k-t
space incoherently by randomly shuffling the echo train ordering. The modification is
straightforward and can be added to existing 3D FSE pulse sequences with little change.
The signal modulation from randomized echo train orderings is no longer smooth, as
phase encodes are randomly shuffled. Nonetheless, eddy current effects can be mitigated
by assigning nearby phase encodes in the same echo train, as discussed in Appendix D.

The ability to reconstruct the time series of images from the limited data is due to the
high degree of sparsity. T2 Shuffling builds upon similar work [13, 52–55, 80, 90–92] to
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produce a faithful low-dimensional representation of the temporal signal evolutions. This
temporal basis can be computed offline once and stored for future exams. The temporal
subspace constraint alone does not provide a sufficiently compact representation, as K ⇡
4 observations are required at each voxel. However, the use of LLR regularization further
reduces the sample complexity by about a factor of 2. In addition, the added denoising
offered by LLR enables the use of a larger subspace (to reduce model error) without a
large increase in sample complexity. By constraining patches to be locally low rank, the
spatio-temporal images are represented as a union of subspaces. Thus, it may be possible
to improve upon this representation through subspace clustering methods [93]. Unlike
LLR, subspace clustering can group voxels that are not spatially localized.

A second consequence of the subspace constraint is that the intrinsic dimension of the
image set does not grow with increasing ETLs. For feasible TRs, there remains observable
signal throughout the TR due to tissue with high T

2

. This residual signal informs the
entire reconstruction to help reduce incoherent artifacts throughout the image volume.
Nonetheless, the ETL cannot occupy the entire TR in order to retain sufficient time for
longitudinal recovery. For a particular imaging metric, it may be possible to choose an
optimal flip angle schedule and ETL given SAR constraints. In [94] and [95], the optimal
TEs are chosen to maximize SNR and parameter estimation admissibility given a multi-
exponential decay model. A similar approach could be used for the flip angle and ETL
selection.

To use T2 Shuffling in a clinical workflow, it is necessary to maintain a fast reconstruc-
tion. The use of BART as a CPU- and GPU-accelerated iterative reconstruction platform
has afforded a distributed reconstruction with 90 second end-to-end processing times.
Others have noted it is not feasible to save and display all images along the signal re-
laxation curve [73, 96]. Further clinical validation is needed to motivate the selection and
visualization of the data. At Lucile Packard Children’s Hospital at Stanford, CA, three vir-
tual echo time images are ultimately transmitted to the PACS, corresponding to proton-
density, intermediate T2-weighted, and T2-weighted images. However, since the signal
evolutions are fully derived from the temporal coefficients through (3.14), it is feasible
to save the temporal coefficients only and compute arbitrary virtual echo time images in
real-time. This could be used with advanced image viewers to intuitively navigate the 4D
data set in space and in time in a manner similar to the capabilities of the SyMRI software
(SyntheticMR AB, Linkoping, Sweden).

Despite the demonstrated benefits of T2 Shuffling, the linear relaxation through PCA
comes at the cost of lower apparent SNR. In addition, if the temporal subspace does not
suitably model the signal formation, e.g. due to motion, the model mismatch will lead to
poor data fidelity and degrade the reconstruction. The bias vs. noise tradeoff presented in
Appendix B only considered fully sampled signal evolutions. Even though the analysis
does not directly extend to under-sampled acquisitions, it was used as a rule-of-thumb
for the T2 Shuffling acquisition and reconstruction. Because the acquisition is highly ac-
celerated, the reconstruction relies on a strong sparsity prior. In the absence of sparsity,
longer scan times are necessary to fully suppress the incoherent aliasing artifacts. These



CHAPTER 3. T2 SHUFFLING 43

drawbacks must be fully understood and addressed before wider clinical adoption.
Although this work focused on volumetric imaging, similar tradeoffs exist for 2D FSE.

The signal decay that leads to blurring is partially mitigated by reducing ETLs and inter-
leaving slices in multi-shot 2D FSE [3]. Variable refocusing flip angles have also been used
to reduce blurring in single-shot 2D FSE [97]. The ideas behind T2 Shuffling could also
be used in 2D FSE to further reduce blurring due to long ETLs as well as resolve multiple
image contrasts.

3.6 Conclusion
In conclusion, this chapter presented T2 Shuffling, a novel acquisition and reconstruction
method for volumetric FSE imaging. Conventional 3D FSE trades off scan time and image
quality, e.g. shorter scans incur more blurring. Additionally, current clinical methods sep-
arately acquire proton-density and T2-weighted image contrasts. T2 Shuffling addresses
both issues by simultaneously reconstructing multi-contrast images with increased sharp-
ness from a single 3D FSE acquisition. Each image in the time series exhibits T2 contrast
corresponding to a particular virtual echo time. Based on the experiments, the use of mul-
tiple image contrasts at isotropic resolution has a demonstrated diagnostic benefit, as the
signal evolution of tissue microstructure provides additional information on pathology.
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Chapter 4

Clinical Deployment

4.1 Introduction
Many exciting advances to MRI acquisition and reconstruction methods are enabling
markedly faster scanning. However, to realize the benefits clinically, the methods must
integrate into the existing hospital system. This includes ease of use for technologists and
low reconstruction latency. A number of clinical applications have made great leaps to-
ward this goal, showing promise in the wild [17, 18, 24, 25, 98–100]. T2 Shuffling and other
parallel imaging and compressed sensing (PICS) approaches require iterative solvers for
reconstruction [11]. Therefore, the reduction in scan time is offset by the increased compu-
tational complexity in the reconstruction. As the acquisition and reconstruction methods
grow in complexity, the computational requirements continue to grow, leading to recon-
structions that can take tens of minutes to several hours [98, 101, 102]. In order for these
approaches to gain clinical traction, the image reconstruction pipeline should maintain a
low latency so that the images are available at the scanner before the patient leaves the
table. Based on initial experience, clinical integration requires latencies of at most a few
minutes [103].

Motivated by the need for fast PICS reconstructions, a number of general-purpose
software packages have been built as a mechanism to translate the work to the clinic
[104–110]. As a result, several applications of PICS have seen success in a clinical research
setting [24–26]. Initial efforts focused on accelerating 3D reconstructions using CPUs and
GPUs, achieving reconstruction times on the order of one minute [103, 111–113]. Exten-
sions to cloud-based processing [114] have enabled reconstructions that take advantage
of scalable compute. More recently, the focus has shifted to 2D and 3D dynamic imaging
[99, 100, 115, 116]. The latter often involves significantly higher memory/computation
requirements.

This chapter describes the steps taken to integrate the T2 Shuffling sequence into a
clinical protocol. The reconstruction pipeline and its algorithmic implementation are de-
scribed. Previously, the end-to-end reconstruction time for T2 Shuffling was 20 minutes
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to one hour on a single non-optimized shared-memory system [117, 118]. To reduce com-
putation, a distributed reconstruction that uses multiple high-performance computers is
proposed and subsequently deployed into a clinical setting. The main optimizations to
the computational components are outlined and the scalability of the distributed comput-
ing is investigated. After applying machine-level optimization, the reconstruction time is
reduced to eight minutes on a single shared-memory system, and to under 90 seconds on
a four-node distributed system. The fast processing frees up time for additional signal
processing steps that improve image quality robustness [14, 119, 120] while maintaining
a suitable latency.

4.2 T2 Shuffling Reconstruction
T2 Shuffling reconstructs subspace coefficient images that can be back-projected to a time
series of virtual echo time images. However, in a clinical environment, it is not feasible
or necessary to view all the time points. For pediatric knee imaging, it is sufficient to
visualize the result at three virtual echo times, corresponding to proton-density weight-
ing, intermediate weighting, and T2 weighting [118]. The reconstructed DICOMS for
these three time points are transmitted to the scanner, where a technologist is able to ap-
ply multi-planar reformatting and slice averaging. The reformats are then transferred to
the Picture Archiving and Communication System (PACS), where radiologists view the
result. As the reconstruction requires highly computational, specialized algorithms, the
data processing is done on dedicated machines separate from the scanner suite. This re-
quires a mechanism for streaming the scan data from the scanner to the machines, in a
process called offline reconstruction. In order to provide quick feedback to the scanner
operator, a fast linear reconstruction is initially performed and sent to the scanner.

The T2 Shuffling reconstruction involves solving the inverse problem given by (3.15).
As the Cartesian acquisition is fully sampled in the readout direction, it is possible to
decouple the slices in the readout direction through an inverse Fourier transform [103].
Then, (3.15) can be independently solved for each slice and rejoined into a volume after.
After applying the operator commutativity (3.19), the inverse problem is
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The inverse problem is a special case of the more general convex inverse problem given
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algorithms can be used. Two suitable first-order iterative methods are FISTA [21] and
ADMM [22]. Both approaches have benefits and tradeoffs but perform roughly the same
in terms of convergence speed and computational complexity. Taking advantage of the
compressed normal operator (3.21), the FISTA update steps for (4.1) are shown in Algo-
rithm 4.1.
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Algorithm 4.1 FISTA update steps for T2 Shuffling inverse problem (4.1).
Inputs: y–data, µ–step size, N–maximum iterations

Outputs: ↵(N)–subspace coefficient images after N iterations
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After solving (4.1), a 3D spatial wavelet soft-threshold is applied to each basis coeffi-
cient image for additional spatial denoising. The time-series of images x are then recov-
ered through (3.14). T2 Shuffling can also incorporate partial Fourier sampling [47, 121],
in which approximate conjugate symmetry is used to reduce the number of acquired mea-
surements. In this case, the reconstruction is processed by a Homodyne filter [122] that
accounts for low-frequency phase x.

Although the primary computational component of the T2 Shuffling reconstruction is
the PICS-based inverse problem, a number of other steps comprise the full reconstruc-
tion pipeline, shown in Table 4.2. This includes processing the vendor-formatted raw
data, computing the basis based on the scan parameters, estimating coil sensitivity maps,
applying gradient non-linearity corrections, converting the result to DICOM images, and
transferring the images to the PACS. The full pipeline must maintain a low latency so that
the images are available at the scanner console before the patient leaves the table. The
pre-processing and post-processing overhead is a non-negligible portion of the overall
latency; these aspects are often not accounted for when comparing algorithm run-times.

4.3 Optimizations
In this section, strategies for speeding up the baseline implementation of T2 shuffling are
described, as well as improvements to image quality which are enabled by the speedups.
Several serial bottlenecks are identified and parallelized in the BART toolbox [88] (e.g.
FFT phase modulation, normalization, and basis generation). Additionally, inter-operator
fusion is exploited to improve cache behavior and eliminate costly transpose opera-
tions. Some computations are also completely removed from the pipeline using pre-
computation and/or code refactoring. Finally, the computation is distributed across mul-
tiple machines by exploiting parallelism across image slices in the PICS portion, and ex-
ploiting parallelism across time points during post-processing. This improved perfor-
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mance enables time for additional signal processing steps to the pipeline, which improve
image quality robustness in a patient setting.

4.3.1 Improving Multi-Core Parallelism
Multi-dimensional operations There are several opportunities to take advantage of ef-
ficient parallelism in BART. From the baseline implementation, the parallel md_nary op-
eration, which applies an arbitrary function to many elements in a multi-dimensional
array, was modified to be a flat parallel loop instead of a nested for loop. By adding a
configuration capability for the loop chunk size, it was also possible to separately tune
the parallelism for different operations such as coil compression and data re-sorting. An
additional parallelism bottleneck involves FFT phase modulation which enables the use
of un-centered FFT packages (e.g. FFTW) As each data element is multiplied by a phase
term that is relative to its position in the multi-dimensional array, the operation requires
several modulo divisions to compute the correct index. However, when the dimensions
of the array are even, for consecutive elements the phase alternates between +1 and �1,
or +j and �j. Thus, the phase modulation can be parallelized over blocks of consecutive
elements. For each block, the position and phase is computed for the initial element only,
and the phase is alternated for the remaining elements.

Basis generation As the basis is computed by simulating an ensemble of signal time
courses, it is embarrassingly parallel across the different signal simulations. Thus, each
signal evolution can be simulated on a single CPU core, and the full simulation can be
parallelized across all the cores of the machine. In each simulation, the signal value is
propagated through the time points by repeatedly applying matrix operations that rep-
resent the acquisition dynamics [30]. To further reduce the simulation time, matrix terms
that do not change during the simulation are pre-computed.

Echo time processing The echo time processing is reduced by operating directly on
the coil-compressed data, reducing coil-by-coil processing (e.g. Homodyne filter, FFT).
Additionally, all three time points are processed in parallel, allocating one third of the
machine’s resources to each TE.

4.3.2 Fusing Forward and Adjoint Linear Operators
Although the basis in T2 Shuffling in general could be complex-valued, an FSE exper-
iment with CPMG conditions will lead to a constant phase across the signal evolution
[34]. In other words, the basis need not represent phase. As a result, the space-time ker-
nel is real-valued and symmetric. Thus, the storage and computation were modified to
include only the real part and load half of the matrix, reducing memory access by a total
factor of four.
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Each call to the normal operator involves the application of the forward 2D Fourier
transform followed by inverse 2D Fourier transform, i.e. F⇤

 F. This operation is shown
visually in Figure 4.1. The 2D Fourier transforms are applied typically by doing a set of
1D FFTs on the rows, followed by a matrix transposition, then a set of 1D FFTs again on
the rows, followed by a matrix transposition to return the data to its original format. The
lines in the figure correspond to the matrix ordering after each operation, i.e row or col-
umn. Since the application of  is an independent computation across spatial positions,
it is agnostic to the ordering. Therefore, the argument can be left in transposed form in
between the forward and inverse Fourier transform computations, thus avoiding two of
four transpose operations. This optimization is shown as the shortcut path in the figure.
Additional cache reuse in traffic reduction to and from memory is accomplished by fus-

Figure 4.1: Graphical depiction of the fused forward and adjoint T2 Shuffling operators. Two
transpose operations are avoided by leveraging the fact that the  operator is agnostic to the
image data ordering.

ing and re-ordering loops in the forward and adjoint operators. The sensitivity maps and
FFT computations are fused and applied to each image row to improve cache reuse. The
application of the sensitivity maps is moved to the outer loop; that is, all subspace coef-
ficient images are multiplied by a single sensitivity map before moving to the next coil,
reducing intermediate storage by a factor of the number of coils.

Finally, the new optimized normal operator is parallelized across image panels, which
are groups of roughly 10 � 20 consecutive image rows assigned to a single CPU thread.
This creates two levels of coarse-grained parallelism: (i) the volume split across slices, and
(ii) across panels within a slice. The second level of parallelism wasn’t initially necessary
due to the amount of parallelism available across slices, however it became useful for two
reasons. First, by increasing the number of cores applied to each problem, intermediate



CHAPTER 4. CLINICAL DEPLOYMENT 49

results more easily fit in on-chip memory. The benefit of this effect is shown in more detail
in Section 4.5. Secondly, this enables scaling to more cores than the number of slices.

4.3.3 Removing Unnecessary and/or Redundant Computations
Fast linear reconstruction The original pipeline included a fast linear reconstruction to
provide quick feedback to the technologist. As the overall latency of the full reconstruc-
tion became nearer to that of the linear reconstruction due to the optimizations, the linear
reconstruction was removed altogether.

Basis and space-time kernel caching The basis operator � is determined by the target
scan anatomy (e.g. knee), the refocusing RF pulse flip angle schedule, and the associated
echo spacing between the pulses during the data acquisition. As it does not depend on
the particular patient scan, it can be stored and re-used for future scans that have the
same acquisition parameters. To accomplish this, a SHA-1 hash of the list of flip angles,
echo spacing, and target anatomy is calculated. Before computing the basis, the hash is
searched for in a look-up table to determine if the basis has been previously computed. If
it is not found, the basis matrix is computed and stored in the look-up table. In a similar
fashion, the space-time kernel is pre-computed and stored a separate look-up table. The
SHA-1 hash of consists of the SHA-1 of the basis and of the sampling pattern. Since the
basis and the space-time kernel are 7.1 KB and 7.7 MB, respectively, the load times were
negligible.

Single-pass locally lower rank regularizer The LLR operates on non-overlapping
patches of size b ⇥ b from the coefficient images. In each iteration of the solver, the co-
efficient images are first circular-shifted randomly in both dimensions by a small amount
less than the patch size [83]. Then the patches are extracted from the K coefficient images
and rearranged into a 2D matrix per patch with one column per coefficient image and b2

rows. Common factors are extracted across coefficient images using the singular value
decomposition (SVD), and any singular values below a certain threshold are set to zero
before regenerating the coefficient images back from the factors.

The LLR computation is embarrassingly parallel across patches, and this can easily
be exploited using OpenMP. However, it is also possible to reduce the number of passes
through the data, and hence reduce the amount of data read and written to memory. In
the baseline BART implementation, (i) a temporary image is allocated which is padded
to allow for random circular shifting, (ii) the shifted coefficient images are copied into the
padded buffer, and (iii) the buffer is reshaped into a batch of b2 ⇥K contiguous matrices
to be processed by a parallel batch SVD. When the batch SVD is complete, these steps are
repeated in reverse order to bring the data back to its original location in the coefficient
images. Operations (ii), (iii), and their reverse versions each require a full pass through
the coefficient images which increases memory traffic at the expense of performance. This



CHAPTER 4. CLINICAL DEPLOYMENT 50

procedure was modified to work in a single pass through the coefficient images in order
to reduce memory traffic and unnecessary copies. Each thread allocates a temporary
buffer of size b2 ⇥ K ahead of time. In a single pass over the image, data are extracted
according to the parameters of the circular shift, without explicitly performing the shift.
The SVD threshold operation is performed in the thread-local buffer, and finally the data
are scattered back to the original coefficient image when all the work for that patch is
complete.

4.3.4 Image Quality Improvements
The reduction in processing time enabled additional signal processing steps to be added
with the aim of improving robustness across a diverse set of pediatric patients. Specifi-
cally, Auto-ESPIRiT [120], a parameter-free ESPIRiT implementation in which the inter-
nal parameters are chosen based on Stein’s Unbiased Risk Estimate (SURE), was incor-
porated. Auto-ESPIRiT produces more consistent sensitivity maps in cases with a high
degree of data inconsistency, e.g. due to motion or noise. To use Auto-ESPIRiT, an accu-
rate noise estimate was needed. To this end, channel noise pre-whitening [14, 119] was
incorporated as a step in pre-processing. As the SURE-based parameter estimate can be
computed for each slice independently, it was performed immediately before the PICS
reconstruction.

4.3.5 Distributed Implementation
Figure 4.2 depicts the distributed reconstruction pipeline implementation for a T2 Shuf-
fling scan with 288 slices. The PICS and post-processing portions are distributed over
multiple machines in the cluster using the Message Passing Interface (MPI), while the
pre-processing happens on a single machine.

The PICS portion is divided across slices with approximately equal numbers of slices
sent to all machines. In order to do this, the pre-processed sensitivity maps, k-space data,
sampling pattern, basis matrix, and other files are sent to each machine using Python
and mpi4py. Once the data are distributed, the PICS computation proceeds in a hybrid
fashion with MPI parallelism across slices and OpenMP parallelism within each slice. The
post-processing portion is distributed over only thee machines using mpi4py, as there are
currently three time points being post-processed. The results from the distributed PICS
portion are transmitted across the machines using the Allgather primitive.

Pre-processing is left to run on a single machine so as to not over-complicate the
implementation. This makes the distributed framework useful for other reconstruction
methods with a similar parallelism profile but different implementation details. Such a
framework would be complicated by excessive use of distributed primitives within areas
such as pre-processing that should stay easily customizable by other MRI reconstruction
experts.
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Figure 4.2: Distributed Implementation including Broadcast and Allreduce MPI primitives.

4.4 Experimental Setup
With institutional review board approval and informed consent/assent, pediatric patients
presenting with indications of knee pain were scanned using the T2 Shuffling sequence
on a 3 Tesla MRI scanner (GE Healthcare, Waukesha WI) at Lucile Packard Children’s
Hospital from April to May, 2018. A representative case from the scans was used to carry
out the design and analysis.

4.4.1 Scan Sequence and Reconstruction Parameters
The acquisition and reconstruction dimensions and sizes are shown in Table 4.1.

Table 4.1: Sequence and reconstruction parameters.

Description Size
Spatial matrix size 288⇥260⇥240
Receive channels 16
Coil compressed channels 7
Echo train length 80
Soft-SENSE maps 2
Basis coefficient images 4
LLR patch size 12⇥12
LLR regularization parameter 0.0125
FISTA iterations 250
ESPIRiT calibration size 288⇥24⇥24
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Acquisition T2 Shuffling scans were performed sagittally at 0.6 mm isotropic resolution
with a 16-channel GEM-Flex receive coil array. The pulse repetition time and echo spac-
ing were 1200 ms and 6 ms, respectively, and the echo train length was 83. The data from
the first three echoes covered the central portion of k-space and were used to perform
ESPIRiT calibration [118]. The remaining 80 echoes were used in the iterative reconstruc-
tion. Each TE was under-sampled with a variable-density Poisson disc sampling pattern,
for an acceleration factor of 139 per time point. Collectively, this represented a relative ac-
celeration of 1.7 and apparent acceleration of 6.9, as defined in Table 3.2. A partial Fourier
acceleration of 0.65 was used in the slice direction [121]. The acquisition 3D array was
288⇥ 260⇥ 240, and the total scan time was 7 minutes and 2 seconds.

Reconstruction The distributed reconstruction was controlled through a Python script
using mpi4py for distributed communication. Each underlying component of the recon-
struction was implemented using BART. In the reconstruction, two soft-SENSE maps [87]
were used and 4 subspace coefficient images were reconstructed. The data were coil com-
pressed from 16 channels to 7 virtual channels [78]. The fully sampled readout direction
was inverse Fourier transformed, and each slice was independently solved with 250 itera-
tions of FISTA. The data were normalized based on the maximum signal value of the raw
data and the LLR regularization parameter was held fixed at 0.0125 across all scans. Ho-
modyne filtering was applied to each reconstructed virtual coil image and coil-combined
with root sum-of-squares. Gradient non-linearity correction and DICOM generation was
performed using the Orchestra reconstruction library (GE Healthcare) and the Ox-BART
post-processing code, available at http://github.com/mrirecon/ox-bart. The
ESPIRiT calibration was performed in two steps using a parameter-free approach [120]
to improve robustness to patient scan variability. The first step used the 3D calibration
data to estimate the signal subspace [87]. The second step separately estimated the sensi-
tivity maps for each slice immediately before calling the iterative solver.

4.4.2 Experimental Compute Cluster
Each compute node had two (dual-socket) Intel R� Xeon R� Platinum 8180 processors @ 2.5
GHz. with 28 cores and 38.5 MB total L3 cache per socket. Each node also contained 192
GB DDR4 RAM, arranged as 12 DIMMs ⇥ 16 GB per DIMM in order to fully utilize the
system’s 12 available memory channels.

Experiments used a RAM-mapped temporary storage space for data between mul-
tiple invocations of the BART library. For the timing experiments, the input data were
pre-loaded into the temporary storage and the transfer time was not counted in the run-
time results. Similarly, the output DICOM files were written to the temporary storage in
order to remove the consideration of network transfer time from the experiments. The
reasoning for this is that transfer times varied widely depending on other jobs running in
the cluster, which was a shared resource.

http://github.com/mrirecon/ox-bart
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4.4.3 Hospital Compute Cluster
A four-node system was deployed locally at the hospital, with each node matching the
specifications and compilations used in the experimental compute cluster. The compute
cluster was placed in a room adjacent to the scanner and connected to the hospital net-
work and MRI scanners with a 1 Gigabit network link. The cluster itself used a 10 Giga-
bit switch for communication between compute nodes during reconstruction. Figure 4.3
shows the details of the system as it is deployed in the hospital.

1 Gigabit 
network

MRI Scanner

10 Gigabit 
switch

Compute 
cluster

Hospital
PACS

Figure 4.3: Configuration deployed in the hospital for fast image reconstruction.

4.5 Results

4.5.1 Single-Machine Optimization
Table 4.2 quantifies the benefits of applying the optimizations described in Section 4.3,
averaged over five instances of the same reconstruction. The main improvements to the
pre-processing step are a result of the changes to FFT phase modulation and to paral-
lelizing and caching the basis. Accounting for data slicing and joining, the full PICS
reconstruction is sped up from 275 seconds to 109 seconds on one machine. The post-
processing is reduced from 70 to 18 seconds, benefiting from parallel processing. Overall,
the optimizations led to a 3x speedup. Due to the processing gain, reconstruction quality
improvements were added at a cost of 30 seconds on a single machine.

Figure 4.4 shows the effect of increasing the number of cores per problem while run-
ning many independent PICS slice reconstructions in parallel. All cores on the machine
are fully occupied for each point on the graph. In the case of one core per problem, there
are 56 independent problems being solved simultaneously. For two cores per problem
there are 28 independent simultaneous problems, and so on. As the number of cores
per problem increases, it becomes more likely that the working set derived from pro-
cessing the slices fits in L2 cache, which is 1 MB/core in the configuration. The for-
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Table 4.2: Run-time breakdown comparison for T2 Shuffling baseline implementation, with opti-
mizations, with optimizations and improved quality, and with optimizations and improved qual-
ity on the 4-node cluster. Time shown in seconds.

Baseline Optimizations Optimizations Optimizations
Only and Improved and Improved

Quality Quality 4-node
Pre-processing

Conversion to BART Format 2 1 1 1
Noise Whitening - - 2 1
Re-sort and Average 8 4 4 4
Coil Compression 7 4 4 4
Scale Factor 4 0 - -
ESPIRiT Maps 6 6 6 6
Create Basis 38 - - -
Re-sort and Project Data 4 1 1 1
Broadcast - - - 1

PICS Reconstruction

Linear Recon. 20 - - -
Linear Recon. Process DICOM 23 - - -
Slice and Detailed Recon. 271 - - -
Slice and ESPIRiT Maps - 13 24 9
No Slice and Detailed Recon. - 94 106 28
Join Reconstructed Slices - 2 6 1

Post-processing

Allgather - - - 3
Process All TEs 70 19 18 9

Other 6 6 7 15
Total 458 150 180 85

ward/adjoint operation per-iteration run-time, LLR per-iteration run-time, and the full
solver per-iteration run-time are shown separately. The forward/adjoint run-time and
full solver run-times improve in performance with increasing cores up to four due to
beneficial caching effects from decreasing the number of simultaneous problems running
on the system. Beyond four cores, the overall throughput decreases due to increasing
overheads of parallelism as well as the impact of serial portions elsewhere in the solver.
As a result, four cores per problem was ultimately chosen.
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Figure 4.4: PICS run-time for a batch of 288 total slices, varying number of cores assigned per slice.
All cores are utilized at each point. Improved performance from 1 core per problem to 4 is due to
reduced working set size. Run-time is normalized by number of slices, machines, and iterations.

4.5.2 Multi-Machine Scaling
Figure 4.5 shows the run-time of T2 Shuffling when executed on one up to to 12 machines.
The PICS portion is the only part that is distributed, so therefore this portion scales with
the number of machines added. However, the computation is currently limited to one
machine for pre-processing and three machines for post-processing, so these components
quickly become the bottleneck as the number of machines increases. The pre and post-
processing steps were not distributed further so as to hide the distributed computing
details from future users of the software who are more productive in the shared-memory
BART environment. The four-node configuration, which was deployed in the hospital,
provides a total compute time of roughly 85 seconds.

Since the collectives are implemented in Python using mpi4py, most of the data trans-
fer run-time is being spent loading data into Python from disk and preparing it for the col-
lective operation, not in the communication itself. This is consistent with the experimen-
tal results, in which the total time spent in the distributed collective operations Broadcast
and Allgather stays roughly constant as the number of machines is increased from two to
12. There is a decrease in the post-processing run-time from one to three nodes, as it is
distributed across three machines. There is also a sharp improvement in PICS run-time
between 10 and 11 nodes. This is the result of load balancing. At this scale, each machine
processes 14 slices in parallel. At 10 nodes, this requires three steps to fully pass through
288 slices. At 11 nodes, there are no slices left over after two steps, so the performance
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improves sharply due to the improved overall load balance.

Figure 4.5: Run-time of a T2 Shuffling reconstruction on configurations from 1 to 12 machines. A
60-second total run-time is achieved with 11 machines.

4.5.3 Hospital Cluster Statistics
Over the one-month deployment period, 35 pediatric knee T2 Shuffling scans were per-
formed. The mean, standard deviation, and maximum times for the main steps of the
processing pipeline across these scans are shown in Table 4.3. The increase in run-time
relative to that reported in Table 4.2 is attributed to latency associated with reading the
raw data and writing the DICOM images across the 1 Gigabit network. There was an ad-
ditional overhead of 10-20 seconds while writing to PACS, which is common to all offline
reconstruction implementations.

4.5.4 Multi-Scanner Simulation
In the initial deployment of the hospital compute cluster, only four scanners were con-
nected, and the cluster was only used for T2 Shuffling knee exams. This section investi-
gates the possible tradeoffs involved with serving many exams from many scanners using
compute clusters, if the current distributed system and reconstruction method were used
for all exams from these scanners. This serves as an upper bound on the amount of com-
putation over the course of the day.
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Table 4.3: Reconstruction run-time statistics in seconds for 35 pediatric knee scans over a one-
month period.

Mean (s) Std. Deviation (s) Max (s)

Pre-processing 27.97 2.70 34.40
Broadcast 2.26 0.16 2.73
Reconstruction 37.24 4.14 52.60
Allgather 4.47 0.31 5.16
Post-processing 18.27 1.59 23.19
Cleanup 1.13 0.07 1.34

Total 91.85 7.02 108.68

Figure 4.6 shows the MRI scanner schedule from one day out of the one-month study
at Lucile Packard Children’s Hospital. Each row represents an MRI scanner, and each
entry shows the duration of a scan. The dotted box shows a zoomed-in portion from
the schedule to better visualize the individual scans. With the exception of one scanner
used in the Emergency Department and reserved for emergencies, there is high utilization
across the scanners.

Figure 4.6: MRI scanner schedule from one day out of the one-month study. Each row represents
an MRI scanner, and each entry shows the duration of a scan. The dotted box shows a zoomed-in
portion from the schedule to better visualize the individual scans.

Using this data, a simulation is performed for the case where one or more compute
clusters are reconstructing images from the scanners. To do so, the image sizes are used
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to estimate the processing times if they were all to employ PICS-based acquisitions and
reconstructions. The cost of the distributed primitives in the cluster were estimated by
scaling the measured values from the experiments by the total size of the volume com-
pared to the experimental data. For simplicity, it was assumed that the pre-processing and
post-processing times scaled as O (N
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)); that is, the processing is dominated by the FFT factors and lin-
early scales with the number of concurrent slices. Constants for each stage were fit to
match the processing time for the T2 Shuffling knee dataset (Table 4.2).

The simpy discrete event simulation library was used to model contention on the clus-
ter. The model has one process representing the hospital, which creates a new reconstruc-
tion process for each scan reconstruction task as they arrive. Each scan reconstruction
task tries to access a priority resource representing the clusters. Earlier scans are given
higher priority. Once a cluster resource is acquired, the reconstruction process holds the
resource for a number of time units equal to our run-time estimates for that particular
scan. The time spent waiting and reconstructing are logged for each task throughout the
simulated day.

Figure 4.7: Simulated average total reconstruction time and average wait time running recon-
struction tasks for all scanners in a large hospital over the course of one day, for different cluster
configurations

Figure 4.7 shows the result of the simulation. The average wait time is the average
time that each reconstruction task spends waiting for the cluster resource. Average total
time is the average compute time plus the wait time. The average wait time is reduced
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significantly when using two clusters rather than one, but there are diminishing returns to
adding more clusters after this. The plot also informs how to best configure the clusters
for a fixed number of machines. Given 8 machines, it makes the most sense, in terms
of average and max total reconstruction time, to configure these as two clusters with
four nodes per cluster. For this configuration, clinically feasible run-times (< 2min) are
achieved with average wait time near zero, and slightly higher max time performance of
roughly 200 seconds due to some scans which have very large matrix sizes.

4.6 Conclusion
Developments to PICS-based acquisitions have shown great promise at reducing MRI
scan times, but the reconstruction times have remained a barrier to clinical adoption. This
chapter explored a distributed reconstruction architecture for T2 Shuffling that achieved
clinically feasible latency times. The system was deployed at Lucile Packard Children’s
Hospital and used for pediatric knee imaging. The distributed reconstruction approach
is well-suited for other PICS acquisitions in which the slices can be independently recon-
structed, and it presents an avenue for other reconstruction formulations to benefit from
the distributed optimizations.

The optimization of the pipeline led to an overall improvement in performance by
5.3⇥ after speedups and adding additional operations to improve image quality. A
3⇥ speedup came from single-node improvements and a 2.1⇥ speedup came from dis-
tributed parallelization on a 4-node cluster. By enabling clinically feasible reconstruction
times, a larger number of clinical protocols could potentially leverage PICS acquisitions,
leading to shorter overall exam times. Thus, scanner utilization should improve as more
patients can be accommodated into the same schedule. Dedicated compute clusters could
support this increased utilization without the need for transferring data outside the hos-
pital network.
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Chapter 5

Clinical Validation

5.1 Introduction
MRI is the predominant imaging method for evaluating musculoskeletal (MSK) pathol-
ogy based on its ability to provide superior soft tissue contrast and lack of ionizing ra-
diation. In children and adolescents, the knee is the most common joint assessed with
MRI [123]. In very young pediatric patients, knee MRI is often used to evaluate devel-
opmental conditions and non-traumatic pain [124]. However, the often lengthy exam
times continue to be challenging for the pediatric population, compounded by other fac-
tors such as patient anxiety and discomfort. Efforts to optimize pediatric MRI protocols
aim to maximize information acquired and minimize scan time, often working against
an unpredictable deadline when cooperation of the pediatric patient is exceeded [125,
126]. Sedation of the pediatric patient increases the likelihood of a high quality scan, but
carries associated risks, including increasing concern for anesthesia associated neurocog-
nitive impairment [127]. Moreover, the need for an MRI exam under sedation requires a
complex multidisciplinary approach [128] and can decrease the overall efficiency of a ra-
diology department [129]. A secondary effect of the long exams is high cost, limiting the
value of the MRI exam in the context of clinical care. Nevertheless, the basic conventional
2D knee MRI protocol still requires multiple acquisitions in axial, coronal, and sagittal
planes due to voxel anisotropy, and also includes sequences with different contrasts to
optimize assessment of various structures and pathology [125, 130]. A single-sequence
MRI protocol can potentially alleviate some of the difficulties encountered in pediatric
MRI.

Volumetric variants of FSE [3, 40] have been described to simplify and accelerate joint
MRI based on potential reformattability into multiple planes [131–133]. However in clini-
cal practice, standard 2D imaging still predominates largely due to blurring of the vol-
umetric images. This is likely due to long echo trains required for scan efficiency of
volumetric imaging, which leads to image blurring due to T2 decay [4, 40]. This work
evaluates T2 Shuffling [117] as an alternative volumetric FSE acquisition due to the re-
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duction in blurring that results from modeling the sampled echo time progression. This
roughly seven-minute acquisition effectively supports a four-dimensional reconstruction,
producing images corresponding to each echo time within the echo train, and thus with
image contrast varying from proton density (PD) to heavy T2 weighting. Therefore, a
single acquisition yields multiple sets of sagittal images with isotropic resolution, which
can be reformatted to axial, coronal, and arbitrary oblique planes. This technique has the
potential to significantly streamline joint MRI, which may be especially advantageous in
pediatric imaging.

This chapter first presents a clinical study to test the hypothesis that T2 Shuffling can
suffice as a single-sequence rapid pediatric knee protocol. In Section 5.2, T2 Shuffling
is compared to the routine knee MRI protocol for image quality and diagnostic perfor-
mance. Building on the evidence that missing clinically relevant pathology is unlikely,
Section 5.3 evaluates a targeted knee MRI exam based on T2 Shuffling with significantly
shorter exam times. As the table time is significantly reduced compared to the conven-
tional protocol, patients are scheduled for the targeted exam between existing slots. The
targeted knee MRI is billed with a reduced charge modifier code, lowering the cost by a
factor of three compared to the standard lower extremity joint MRI. As additional patients
can now be accommodated into the MRI schedule, the cost of the MRI is simply profes-
sional costs of the radiologist and minimal costs associated with reporting infrastructure.
The magnet, technologists, and receptionists are already present. A significant additional
benefit is same-day scheduling, which reduces lost productivity of parents and children
at their work and school.

5.2 Comparison to 2D Multi-Planar Knee MRI
T2 Shuffling modifies the 3D FSE sequence to randomize the echo train view ordering and
re-sample positions in k-space at multiple echo times. The revised acquisition requires a
modified compressed sensing iterative reconstruction and results in sharp images at each
echo time. The overall methodology is described in Chapter 3.

5.2.1 Materials and Methods
Data Acquisition

The echo train phase encode ordering was chosen such that at each echo time, the
sampling follows an under-sampled variable-density Poisson disc distribution, which is
known to be suitable for compressed sensing and parallel imaging [11, 134]. An exception
to the rule was the first two echoes, which are typically discarded in product sequences.
The data in these echoes covered the central portion of k-space (18-by-18) and were used
for parallel imaging auto-calibration of the ESPIRiT maps [87]. Figure 3.9 depicts the
sampling and sensitivity map calibration.
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Reconstruction

Prior to the study, a T2 map of an adult volunteer’s knee was acquired and used to sim-
ulate a distribution of signal evolutions with variable refocusing flip angles using the
Extended Phase Graph Algorithm [4, 29]. A basis representing the relaxation curves sub-
space was formed through principal component analysis [53]. The iterative reconstruc-
tion differed from (3.15) in that both LLR regularization and `
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-wavelet regularization
were employed, as follows:
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Spatial wavelet regularization was added as an additional sparsity constraint as it ap-
peared to qualitatively improve the SNR in the smaller subspace coefficient images, which
tended to have significantly lower signal amplitudes (i.e. SNR) compared to the first sub-
space coefficient image. A non-distributed reconstruction based on BART [88] was used.
The ADMM algorithm [20, 22] was used to solve (5.1) in order to handle the multiple reg-
ularization terms. The regularization parameters �

1

and �
2

were experimentally tuned
and kept constant for all reconstructions. To reduce reconstruction time, a software coil
compression [86] was applied to compress the 8 channels of data to 6 virtual channels.
As the full reconstruction is computationally intensive due to the multiple regularization
terms, for the purpose of clinical workflow, an initial linear reconstruction with no regu-
larization was solved and transmitted to the scanner console within 10 minutes to verify
that the scan was successful. In order to manage diagnosis, only three of the 80 recon-
structed images at effective echo times of 27 ms, 63 ms, and 98 ms were transmitted to the
PACS. The reconstruction parameters for this study are shown in Table 5.1.

Table 5.1: T2 Shuffling Reconstruction Parameters.

Full Reconstruction Fast Linear Reconstruction
Iterations 800 100
LLR Regularization Parameter 0.00065 —
L1-wavelet Regularization Parameter 0.00021 —
Subspace Size 4 1
Approx. Reconstruction Time (min) 60 10

The reconstructions were performed on a dedicated machine with dual Intel Xeon E5-
2600 CPUs and 128 GB RAM.

Patient Recruitment and MRI protocol

This prospective study was approved by the institutional review board and complied
with the Health Insurance Portability and Accountability Act. Written informed con-
sent/assent was obtained from all subjects. Twenty-eight consecutive pediatric patients
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(mean age 14 years, 11 male, 17 female) satisfying the inclusion criterion of referral to the
Lucile Packard Stanford Children’s Hospital for clinical knee MRI exams were recruited.
Two patients had requests for bilateral knee MRIs, resulting in 30 scans from May to Au-
gust, 2015. The exclusion criterion was any clinical issue that required gadolinium-based
contrast enhanced imaging. Subjects underwent the institution’s standard clinical knee
MRI protocol followed by the T2 Shuffling sequence. All scans were performed on a clini-
cal 3T MRI scanner (MR750, GE Healthcare, Waukesha, WI, USA) with an 8-channel knee
coil. T2 Shuffling scan parameters include TR of 1400 ms, ETL of 82, bandwidth of 62.5
kHz, 16 cm field of view (FOV), 288x288 matrix, 0.6 mm isotropic resolution, 85% fat sup-
pression efficiency, 240 sagittal source slices reconstructed to 472 slices, with total scan
time of approximately 7 minutes. The standard clinical 2D FSE knee protocol consisted
of coronal T1-weighted, sagittal PD, fat-suppressed axial PD, and fat-suppressed sagittal
and coronal T2-weighted images. The scan parameters include 14 cm FOV, 2.5 mm slice
thickness, and 0.5 mm slice gap. Other parameters vary by sequence and are summarized
in Table 5.2. Scan time for 2D sequences totaled approximately 20 minutes.

Table 5.2: Conventional knee MRI and T2 Shuffling scan parameters.

Axial Coronal Coronal Sagittal Sagittal Sagittal
PD FS T2 FS T1 PD T2 FS T2 Shuffling FS

TR (ms) 3000 3700 600 3000 3000 1400
TE (ms) 30 56 18 9 60 —
Echo spacing (ms) 9.6 11.5 9.6 9.7 10.5 —
Echo train length 6 8 3 8 6 82
Bandwidth (kHz) 50 41.6 50 41.6 31.25 62.5
Field of view (cm) 14 14 14 14 14 16
Matrix size 416⇥ 256 416⇥ 256 416⇥ 256 416⇥ 256 384⇥ 320 288⇥ 260

Slices 38 32 28 32 29 240
Slice thickness (mm) 2.5 2.5 2.5 2.5 2.5 0.6
Slice gap (mm) 0.5 0.5 0.5 0.5 0.5 —

Scan time (min) 2:30 4:00 2:30 2:00 2:30 7:00

Image Analysis

The T2 Shuffling images were reconstructed at three effective echo times corresponding
to PD, intermediate, and T2-weighted contrasts and reviewed on a multi-planar reformat
capable workstation (Osirix). Though the source images were acquired at 0.6 mm slice
thickness in the sagittal plane, they were reviewed at a slice thickness format of 2.5 mm
in sagittal, axial, and coronal planes in a similar fashion as the conventional 2D images.
To evaluate the diagnostic performance of T2 Shuffling, two radiologists (S. Bao and S.S
Vasanawala, 5 and 15 years experience respectively), blinded to clinical history, indepen-
dently interpreted each case, forming a structured diagnostic report based solely on the
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T2 Shuffling images. To avoid recall bias, this was performed prior to image quality eval-
uation.

Then, each reader independently evaluated T2 Shuffling image quality. The quality of
delineation of 9 anatomic structures were rated on a five-point scale from non-diagnostic
to outstanding quality, detailed in Table 5.3. Then, T2 Shuffling was compared to conven-
tional 2D and the delineation of the 9 anatomic structures, as well as the appearance of
bone marrow and joint fluid at different contrasts, were rated on a relative scale (Ta-
ble 5.4). To validate the apparent image contrast of the T2 Shuffling images, for five
cases signal intensities of muscle, cartilage, meniscus, bone marrow, and joint fluid were
measured on T2 Shuffling reconstructions at 10 effective echo times. Regions of interests
were placed over the semimembranosus muscle, posterior articular cartilage of the me-
dial femoral condyle, posterior horn of the medial meniscus, marrow space of the medial
femoral condyle, and anterior joint fluid.

Table 5.3: Anatomic structures evaluated.

Structures evaluated
Anterior cruciate ligament (ACL)
Posterior cruciate ligament (PCL)
Medial meniscus
Lateral meniscus
Extensor mechanism
Medial collateral ligament (MCL)
Lateral collateral ligament (LCL)
Retinaculum
Cartilage
Fluid
Marrow

Statistical Analysis

Using the clinical diagnostic report based on conventional 2D sequences as the standard
of reference, the sensitivity, specificity, and accuracy of the T2 Shuffling structured re-
ports were calculated based on the number of significant concordant findings. Significant
findings included meniscal pathology, ligament and tendon injury, cartilage defect, focal
bony and soft tissue lesions, bone marrow edema/contusion, and intra-articular bodies.
Findings present on both T2 Shuffling structured reports and diagnostic reports were
classified as concordant. Findings present on diagnostic reports and not present on T2
Shuffling structured reports were classified as false negatives. Findings detected on T2
Shuffling but not identified in diagnostic reports were classified as false positives. The
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Table 5.4: Structures delineation ratings criteria.

T2 shuffling structure delineation rating scale
1 — Non-diagnostic - cannot see structure
2 — Limited - can see structure but not evaluate for pathology
3 — Diagnostic - can evaluate structure with some confidence
4 — Good - can evaluate structure with high confidence
5 — Outstanding - best quality of delineation

T2 shuffling and 2D comparison scale
�2 — Conventional 2D more delineation
�1 — Conventional 2D preferred
0 — Same
1 — T2 shuffling preferred
2 — T2 shuffling more delineation

proportion of concordant findings between the T2 Shuffling structured interpretations
and diagnostic reports was calculated with 95% confidence interval (CI).

After this initial analysis, a consensus review of both conventional 2D and T2 Shuffling
images was conducted as well as chart review. The rationale for consensus review was
that diagnostic reports were imperfect as the sole reference standard, and as arthroscopy
is less prevalent in the pediatric population than in adults [135], a consensus review
would better establish a gold standard, as well as to determine the detection of pathologic
findings on T2 Shuffling images. The consensus data were used to re-calculate sensitivity,
specificity, accuracy, and 95% CI for concordance. A 95% CI for proportion of diagnostic
or better rating was calculated for T2 Shuffling structure delineation. A Wilcoxon rank-
sum test assessed the null hypothesis that the relative quality of T2 Shuffling structure
delineation compared to conventional 2D is unchanged. Intraclass correlation coefficients
were calculated to evaluate inter-observer agreement.

5.2.2 Results
Of the 30 cases reviewed, there were 10 cases without clinically significant findings. There
were 9 findings of meniscal pathology, including one case of discoid lateral meniscus and
one of post-surgical change of meniscal saucerization. There were 10 instances of liga-
mentous or tendon abnormalities, 3 cartilage defects, 5 focal bony or soft tissue lesions,
including osteochondroma and osteonecrosis, 3 joint bodies, and 13 cases with findings
of bone marrow edema, contusion, or fracture. There were 9 cases with more than one
clinically significant finding.

For reader 1, there was 81% (95% CI of 70-92%) concordance between T2 Shuffling
structured reports and diagnostic reports, with a sensitivity of 77%, specificity of 100%,
and accuracy of 81%. For reader 2, there was 87% (95% CI of 78-96%) concordance, with



CHAPTER 5. CLINICAL VALIDATION 66

a sensitivity of 84%, specificity of 91%, and accuracy of 85%. There were 10 discrepancies
between T2 Shuffling structured reports and diagnostic reports by either reader and 4 dis-
crepancies by both readers. On consensus review of the discrepancies, three discrepant
findings, a lateral meniscus posterior horn tear, a focal patellar cartilage defect, and dis-
coid lateral meniscus, were less well visualized on T2 Shuffling compared to conventional
2D, even in retrospect. Of the remaining discrepancies, all missed findings were equally
visualized on T2 Shuffling and 2D sequences on consensus review. The discrepant find-
ings and consensus results are detailed in Table 5.5. Four findings were missed by both
readers: one case of medial retinaculum avulsion; one lateral meniscus posterior horn
tear, and two cases of joint bodies. Of those missed findings, only the case of the lateral
meniscus tear was considered to be less delineated on T2 Shuffling on review while the
other three were equally delineated.

Table 5.5: Discrepancies and consensus outcome.

Discrepancy Reader 1 Reader 2 Consensus Outcome
Tibial plateau fracture + Similar delineation on T2 Shuffling and 2D
MCL sprain (false positive) + Similar delineation on T2 Shuffling and 2D
Medial retinaculum avulsion + + Similar delineation on T2 Shuffling and 2D

(Figure 5.1)
Patellar cartilage defect + Less well seen on T2 Shuffling due to complex

signal in hemorrhagic joint fluid
Medial retinaculum sprain + Similar delineation on T2 Shuffling and 2D
Lateral meniscus posterior horn tear + + Similar delineation on oblique sagittal reformats

(Figure 5.5)
Lateral meniscus central tear + Similar delineation on T2 Shuffling and 2D

(Figure 5.4)
Post saucerization of lateral meniscus + Similar delineation on T2 Shuffling and 2D
Infrapatellar ligament sprain + Similar delineation on T2 Shuffling and 2D
Discoid lateral meniscus + Similar delineation but may be less obvious

on T2 Shuffling
Sliding-Larsen Johansson syndrome + Similar delineation on T2 Shuffling and 2D
Joint bodies (3) +++ ++ Similar delineation on T2 Shuffling and 2D

(Figure 5.2 and Figure 5.3)
+ indicates discrepancy by the reader.

Figure 5.1 shows T2 Shuffling and conventional 2D images of a medial retinaculum
avulsion which was not initially described in the T2 Shuffling structured report but seen
with similar delineation on T2 Shuffling and conventional 2D sequences. Figure 5.2 and
Figure 5.3 show two cases of joint bodies not prospectively identified on T2 Shuffling, but
easily visualized upon consensus review. A subtle tear of the lateral meniscus is shown
in Figure 5.4. While this was not prospectively identified on the T2 Shuffling structured
report, it is apparent that this can be visualized to a similar degree on T2 Shuffling and
2D images.
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Figure 5.1: A 15-year-old boy with medial retinaculum avulsion. (a) T2 Shuffling proton density
(PD) axial reformatted and (b) T2 Shuffling T2-weighted (T2W) coronal reformatted MR images
of the knee show a medial retinaculum avulsion and adjacent bone marrow edema (arrows) with
similar delineation compared to (c) conventional 2D fast spin-echo (FSE) fat-suppressed (FS) PD
axial and (d) FS T2W coronal images.



CHAPTER 5. CLINICAL VALIDATION 68

Figure 5.2: A 19-year-old boy with a small joint body (arrows) in the inferolateral joint space with
deep infrapatellar bursitis, shown on T2 Shuffling (top row) in PD axial reformatted, inter-mediate
coronal reformatted, and T2W sagittal source images (left to right), with similar delineation com-
pared to conventional 2D FSE (bottom row) FS PD axial, FS T2W coronal, and FS T2W sagittal
images (left to right). Metal artifact from ACL graft is noted in the distal femur.

Figure 5.3: A 14-year-old girl with a joint body (arrowheads) in the superolateral joint space with
complex signal joint effusion. There is similar delineation between T2 Shuffling (top row) PD axial
reformatted, intermediate sagittal source, and T2W coronal reformatted images (left to right), and
conventional 2D FSE (bottom row) FS PD axial, FS T2W sagittal, and FS T2W coronal images (left
to right).
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Figure 5.4: A 16-year-old girl with lateral meniscus tear. Subtle tear of the lateral meniscus (ar-
rows) is seen equally on (a-c) T2 Shuffling PD, intermediate, and T2W coronal reformatted images
and (d) conventional 2D FSE FS T2W coronal knee MRI.

Figure 5.5 shows a tear of the posterior horn of the lateral meniscus that was not as
well seen on the T2 Shuffling sagittal source images compared to conventional 2D, due
to difference in the prescribed axis of imaging – oriented to the magnet for T2 Shuffling
(thus oblique to the knee) and oriented to the knee on 2D FSE. In this case, the patient’s leg
was externally rotated. When the T2 Shuffling sagittal images were reformatted relative
to the orientation of the knee, the tear could be easily seen (Figure 5c). A case of MCL
injury was initially categorized as a false positive as it was identified on T2 Shuffling
but not described on the clinical diagnostic report. However, on consensus review, it
was apparent that abnormal signal along the deep fibers of the MCL was present both
on the T2 Shuffling and 2D images, and thus likely a false negative of the diagnostic
report. Using the consensus data, there was 94% concordance between T2 Shuffling and
conventional 2D (95% CI of 88-100%), with a sensitivity of 93%, specificity of 100%, and
accuracy of 94%.

Figure 5.6a shows the distribution of T2 Shuffling structure delineation ratings for
both readers. Quality of delineation of the 9 anatomic structures was at least diagnostic
in all cases for both readers (95% CI of a diagnostic or better rating is between 95-100%),
except in one case where delineation of the medial collateral ligament, lateral collateral
ligament, and retinaculum was limited (however, 95% CI is 90-100% for a diagnostic qual-
ity delineation for these three structures). The most frequent rating given for all anatomic
structures was outstanding, 17-27 cases out of 30 for reader 1 and 22-28 out of 30 cases for
reader 2. Inter-observer agreement was moderate or strong (ICC 0.53-0.79) for all struc-
tures except for the posterior collateral ligament, medial meniscus, and cartilage, where
there was fair agreement (ICC 0.33-0.43).
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Figure 5.5: Tear of the posterior horn of the lateral meniscus in a 15-year-old girl. Lateral meniscus
tear (arrow) is well seen on (a) the 2D FSE FS T2W sagittal image but not well visualized on
(b) the T2 Shuffling T2W sagittal source image at the same level, likely due to the orientation of
the prescribed axis of image acquisition shown on the inset generated from the axial reformatted
image of the same dataset. (c) Reformatted T2 Shuffling T2W sagittal image reoriented relative to
the knee (see c inset) shows the lateral meniscus tear (arrow).

There was no significant difference in relative quality of structure delineation between
T2 Shuffling and conventional 2D except for the retinaculum (Wilcoxon rank-sum test, p
< 0.05), where 2D was preferred for both readers. Figure 5.6b shows the spectrum of
ratings for both readers, with the predominant score being that of no difference between
T2 Shuffling and conventional 2D. Additionally, while there is no statistically significant
difference, the menisci may be delineated to better advantage on T2 Shuffling, as shown
in Figure 5.7, where a radial tear of the lateral meniscus is more conspicuous in the axial
plane with T2 Shuffling compared to conventional 2D.



CHAPTER 5. CLINICAL VALIDATION 71

Figure 5.6: Frequency of scores for each anatomic structure for (a) T2 Shuffling structure delin-
eation and (b) relative structure delineation between T2 Shuffling and conventional 2D. Note the
higher frequency of higher ratings in both instances. For (a), there were no cases with a rating of
1 (non-diagnostic); therefore, this category was not included.
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Figure 5.7: A 16-year-old girl with a radial tear of the lateral meniscus. (a-c) T2Sh T2W sagittal,
intermediate coronal reformatted, and PD axial reformatted images with similar delineation of
anatomic structures compared to (d-f) 2D FSE FS T2W sagittal, FS T2W coronal, and FS PD axial
images. The radial tear of the lateral meniscus (arrows) is well visualized on the T2Sh PD axial
reformatted image (c).

5.2.3 Discussion
There have been many studies on the clinical implementation of volumetric FSE methods
for knee imaging [132, 136–138], including incorporating sparsity based methods [139–
141]. This work seeks to further improve image quality, with the additional capability to
provide reconstructions at multiple effective echo times with one acquisition, suggesting
the feasibility of a single-sequence pediatric knee MRI protocol based on T2 shuffling.
This technique accounts for T2 decay during the long echo trains of volumetric fast spin-
echo and thereby mitigates T2 decay-related blurring that has historically limited adop-
tion of the volumetric approach in joint imaging.

The consensus data show high diagnostic accuracy for T2 Shuffling. That most of the
discrepancies on retrospective review were equally well seen on T2 Shuffling and con-
ventional 2D, as evidenced in the above figures, suggests that these are likely attributable
to readers’ experience levels with this approach to imaging and also highlight the value
of clinical history and comparison studies. For example, one case of joint body had prior
MRIs and radiographs showing this finding, which were not available to the blinded
readers. Additionally, most of the discrepant findings were isolated to individual readers,
with only four findings missed by both readers. This may also suggest that factors other
than those related to the T2 Shuffling technique and image quality have contributed to the
assessment of diagnostic performance. Moreover, the pathologies that posed diagnostic
challenges for T2 Shuffling in the study, namely lateral meniscus tears and intra-articular
bodies, have been shown to be challenging even with conventional 2D knee MRI [142,
143].
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Nonetheless, there were a few discrepancies that were thought to be related to the T2
Shuffling technique, although not necessarily due to deficiencies in image quality. A case
of lateral meniscus tear was seen in retrospect on T2 Shuffling but not as easily perceived
compared to the conventional 2D images. This was felt to be due to external rotation
of the patient’s leg; as the T2 Shuffling sequence is prescribed in a true sagittal plane,
evaluation of the meniscus was limited compared to proper oblique prescription for the
2D images. This was confirmed by viewing T2 Shuffling images in a sagittal plane relative
to the knee, which clearly delineated the tear.

One case of patellar cartilage defect was less obviously seen on T2 Shuffling com-
pared to conventional 2D, in part due to the presence of a hemarthrosis, where the signal
of cartilage matched the complex signal of the hemorrhagic joint fluid on T2 Shuffling,
decreasing the conspicuity of the cartilaginous defect. Lastly, a finding of discoid lateral
meniscus was not prospectively noted on T2 Shuffling by one reader. The MRI diagnosis
of discoid meniscus is typically based on counting the number of standard sagittal 2D
slices on which the body of the meniscus is visualized. However, when interpreting a
volumetric sequence, this feature becomes less apparent due to the much-increased num-
ber of slices. These examples illustrate some of the inherent differences of this volumetric
sequence compared to conventional 2D and suggest a learning curve in interpreting these
images.

The results show that the image quality of T2 Shuffling is not inferior to conventional
2D sequences, with high quality delineation of anatomic structures, even those which are
primarily viewed on reformatted planes. The isolated case where delineation of the MCL,
LCL, and retinaculum was limited on T2 Shuffling was thought to be due to patient body
habitus, for which T2 Shuffling was not optimized, but compensated in conventional 2D
FSE. However, other artifacts such as the commonly encountered popliteal artery pulsa-
tion artifact which manifests as ghosting on 2D FSE was reduced to mild localized blur-
ring on T2 Shuffling. While T2 Shuffling yields an image quality that is comparable to 2D
FSE, it does have a qualitatively different appearance due to its volumetric nature, and a
period of acclimation can be expected. Although there is a dramatic increase in through-
plane resolution, the in-plane resolution of T2 Shuffling is slightly decreased compared to
2D FSE. The isotropic nature of T2 shuffling has a potential to be more advantageous in
the evaluation of complex pathology where it can be reformatted in arbitrary planes and
with high spatial resolution.

A limitation of the study is that readers could not be blinded to the sequence given
its manifest volumetric nature. A second limitation is the small sample size in this pilot
study. Additionally, the gold standard was necessarily imperfect due to the paucity of
arthroscopic data.

In conclusion, this study has shown that T2 shuffling in the clinical setting produces
sharp, multi-contrast images in a single acquisition, with similar diagnostic performance
as conventional 2D FSE and non-inferior image quality, and shows potential for realiza-
tion of a single-sequence pediatric knee MRI.
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5.3 Targeted Rapid Knee MRI Exam
Between 2011 and 2014, approximately 5.6 million sports and recreation related injuries
occurred in child and adolescent populations, accounting for 28% of emergency visits
[144]. Among these visits, 42% were due to lower extremity injuries [145]. Many types of
knee pathology are visualized with MRI. In pediatric populations, common injuries are
meniscal pathology, cruciate ligament tears, and cartilage abnormalities [123].

In a typical setting, patients start in the care of an orthopedist. Based on the clinical
indications, the orthopedist will order an MRI. After authorization is granted by the pa-
tient’s insurance plan, the patient is scheduled for an MRI in the following weeks. The
scheduling process is long and usually disruptive to work and school for parents and
children. Following insurance authorization and exam registration, the patient returns
on the scheduled date for the MRI. Based on the order, a time slot of 45 minutes to one
hour is allocated. The MRI protocol for routine knee imaging consists of a series of two-
dimensional 2D FSE scans, each at a different orientation and a target image contrast
weighting. The exam typically takes between 30 minutes and one hour.

This study describes initial experience implementing into clinical practice a targeted
rapid MRI exam for pediatric knee imaging. The targeted knee exam is a 10-minute pro-
tocol consisting of a localizer and two FSE scans. The first FSE scan is a fat-suppressed
sagittal T2 Shuffling, as it provides multiple PD and T2 weighted images and multi-planar
reformattability. This was chosen based on the prior study presented in Section 5.2, which
indicated that missing clinically relevant pathology is unlikely [118]. After the T2 Shuf-
fling scan, a T1 coronal 2D FSE scan is run. The T1 weighted contrast scan provides com-
plementary structural information to visualize bone and knee anatomy. The distributed
reconstruction described in Chapter 4 was used to achieve processing times of about 90
seconds. Thus, the T2 Shuffling images are reconstructed and available on the scanner
console before the 2D scan finishes. This enables the technologist to check image quality
before the patient leaves the table. As the table time is significantly reduced compared to
the conventional protocol, patients are scheduled for the targeted exam between existing
slots. The targeted knee MRI is billed with a reduced charge modifier code, lowering the
cost by a factor of three compared to the standard lower extremity joint MRI.

5.3.1 Materials and Methods
Patient Recruitment

With institutional review board approval and informed patient consent and/or assent, a
targeted knee MRI exam for evaluating pediatric knee pain was implemented at Lucile
Packard Children’s Hospital on two 3T MRI scanners (MR750, GE Healthcare, Waukesha,
WI USA) with 16 channel flex coil array. Insurance plans were reviewed to sub-select
those plans with high likelihood of waived authorization, rapid authorization, or retroac-
tive insurance authorization. Patients with indications of anterior knee pain, suspicion of
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osteochondral lesions, anterior cruciate ligament tears, and meniscal pathology covered
by sub-selected insurance plans were eligible for the rapid protocol knee MRI exam. A
mechanism of communication between the orthopedic clinic and an adjacent MRI scanner
was established. When a targeted knee MRI was ordered, a Current Protocol Terminol-
ogy (CPT) modifier code of 52 was included to indicate a reduced charge relative to the
routine lower extremity joint without contrast (CPT 73721). From October 2016 to May
2018, 47 subjects (mean age 14, 19 male, 28 female) satisfying the inclusion criteria were
recruited. Two patients had requests for bilateral knee MRIs, resulting in 49 targeted knee
MRI orders.

Data Acquisition

A 10-minute targeted knee MRI protocol was designed, consisting of a localizer (1
minute), fat-suppressed sagittal T2 Shuffling (7 minute), and a 2D coronal FSE T1 (3
minute). Based on technologist evaluation, scans were repeated or added if necessary,
e.g. due to motion artifacts or incorrectly prescribed field of view. The typical prescribed
scan parameters, shown in Table 5.6, were modified from those used in Section 5.2. The
TR for the T2 Shuffling scan was lowered from 1400 ms to 1200 ms to increase scan ef-
ficiency, as the increased T1 weighting was found to be tolerable. In addition, a partial
Fourier fraction of 65% was used as it was found to reduce residual incoherent artifacts
[121].

Table 5.6: Targeted knee MRI median scan parameters across.

3D Sagittal T2 Shuffling FS 2D Coronal T1
TR (ms) 1200 700
TE (ms) — 18
Echo spacing (ms) 6 8
Echo train length 82 3
Bandwidth (kHz) 62.5 50
Fat Saturation Efficiency 0.85 -
Field of view (cm2) 16⇥ 14.4 14⇥ 12.6
Matrix size 288⇥ 288 416⇥ 288

Resolution (mm2) 0.6⇥ 0.6 0.3⇥ 0.4
Slices 240 28
Slice thickness (mm) 0.6 2.5
Slice gap (mm) — 0.5
Partial Fourier fraction 0.65 —
Scan time (min) 7:04 2:50
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Image Reconstruction

The T2 Shuffling reconstruction was initially implemented as described in Section 4.2,
and the main reconstruction parameters are shown in Table 5.7. End-to-end processing
was integrated into the hospital environment so that the DICOM images could be auto-
transferred to the scanner console and to the PACS. Using the Orchestra software devel-
opment kit (GE Healthcare, Waukesha, WI), the raw data are converted to a data format
compatible with BART [88]. The reconstruction, including coil compression [78], coil sen-
sitivity calibration [87], iterative compressed sensing [11], and Homodyne filtering [122],
were carried out with BART. Following the reconstruction, gradient non-linearity correc-
tion was applied, and the result was written to DICOM images using Orchestra.

Table 5.7: T2 Shuffling reconstruction parameters.

Description Value
Coil compression channels [78] 7
Soft-SENSE maps [87] 2
Basis coefficient images [117] 4
Locally low rank patch size [117] 12⇥12
Locally low rank regularization [117] 0.0125
Iterations [117] 250

Ongoing work during the study leveraged the benefits of the efficient, distributed
reconstruction implementation described in Section 4.3. A four-node high-performance
computing cluster was deployed at the hospital in January 2018, and connected to a local
network shared by the scanner and the hospital PACS through a one-gigabit-per-second
(Gbps) connection. The compute cluster had an internal 10 Gbps network. Each compute
node had a dual-socket Intel Xeon Platinum 8180 processor with 28 cores and 192 GB of
RAM (Intel, Santa Clara, CA, USA). Reconstructed sagittal source images corresponding
to contrast-equivalent TEs [40] of 20 ms (PD), 50 ms (intermediate weighted), and 100
ms (T2 weighted) were sent to the scanner and to PACS. Following the reconstruction,
images were reformatted by the technologist on the scanner console into axial, sagittal,
and coronal planes with 2.5 mm slice thickness and 50% overlap between slices.

Evaluation

Date and time information was recorded for MRI referral and registration. Start and
end times were logged for each scan in the exam period and used to assess total exam
times. Descriptive statistics related to the patient cohort and the scans were analyzed,
including instances where scans were repeated. Clinical indications leading to the MRI
order were also noted. End-to-end reconstruction times were evaluated before and after
the deployment of the distributed cluster.
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5.3.2 Results
As a result of the CPT modifier code, the cost of the targeted knee MRI was one third
lower than the cost of the routine knee MRI. Figure 5.8 shows a bar chart of the primary
clinical indication for each exam order. The most common reason for exam referral was
to evaluate meniscal tear, followed by knee pain. Figure 5.9 shows coronal T1 and T2
Shuffling reformatted coronally with T2 contrast of a patient who presented with knee
pain. Clinical indication pointed to suspicion of meniscal tear, but the MRI finding was
a bone bruise. The edema in the bone is well-visualized in the coronal T2 weighted re-
format of the T2 Shuffling images. Figure 5.10 shows the MRI findings for a patient who
presented with indications of meniscal tear. The T2 Shuffling images were reformatted
into PD sagittal, T2 coronal, and intermediate weighting axial images. The reformats
acutely visualized the complex tissue structure in the knee and confirmed the diagnosis
of meniscal tear.

Figure 5.8: Bar chart of the primary clinical indication for each exam order.
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Figure 5.9: Patient presented with knee pain and clinical indication of meniscal tear. (a) Coronal
T1, and (b) T2 Shuffling reformatted to coronal T2 MRIs are shown. The MRI finding was bone
bruise, as indicated by the yellow arrows.

Figure 5.10: A 13-year-old female patient evaluated for internal derangement of the left knee.
T2 Shuffling images reformatted into (a) sagittal PD, (b) coronal T2, and (c) axial intermediate
weighting. Clinical indication was meniscal tear, and was confirmed with MRI (yellow arrows).
Additional findings were discoid meniscus (red arrow) and bone marrow edema (white arrow).

Figure 5.11a shows a histogram of the number of days between exam order to exam
registration. Of the 49 targeted knee MRI orders, 20 exams (41%) were completed on the
same day as requested. The median time from order to completion was 6 days (minimum
of 0 days, maximum of 54 days). The cumulative distribution in Figure 5.11b shows that
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the majority of cases were completed in less than one week, and only a small number of
cases took more than two weeks to complete.

(a)

(b)

Figure 5.11: (a) Histogram and (b) cumulative distribution of number of days between exam order
and exam completion. Mean and median days are marked with solid red and dashed black lines,
respectively.

The histogram and cumulative distribution of exam times are shown in Figure 5.12.
Median time from registration to exam completion was 18:44 minutes (minimum of 10:28
minutes, maximum of 37:14 minutes). Mean and median exam times are similar, indi-
cating few outliers. There were a large number of exams that took under 15 minutes to
complete. This corresponds to 20 cases (41%) that did not require additional or repeated
image sequences. Nonetheless, a number of cases had repeated scans, most often due to
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motion artifacts. In 13 cases the coronal T1 scan was repeated, and in 5 cases the T2 Shuf-
fling scan was repeated. Additionally, 7 cases included a 2D sagittal T2 fat suppressed
scan, likely to increase confidence in the MRI findings in the case of non-diagnostic T2
Shuffling images.

(a)

(b)

Figure 5.12: (a) Histogram and (b) cumulative distribution of time between exam registration and
completion (minutes). Mean and median exam times are marked with solid red and dashed black
lines, respectively.

Figure 5.13 shows the histogram and cumulative distribution of the T2 Shuffling pro-
cessing times before the introduction of the fast distributed reconstruction. The median
processing time was 18:48 minutes (minimum of 15:06 minutes, maximum of 83:35 min-
utes). The processing time was longer compared to the baseline implementation in de-
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scribed Chapter 4 because it ran on older generation hardware and was not optimized
for the specific architecture. There were two cases where the processing times exceeded
26 minutes. These were a result of using an older backup machine for the reconstruction
during machine maintenance. After deploying the new reconstruction, the median pro-
cessing time was reduced to 1:35 minutes (minimum of 1:09 minutes, maximum of 3:00
minutes), seen in Figure 5.14. The dramatic speedup in processing times was primarily
due to (i) the use of multiple machines for each reconstruction, and (ii) optimizing core
components of the iterative reconstruction algorithm.

(a)

(b)

Figure 5.13: (a) Histogram and (b) cumulative distribution of T2 Shuffling reconstruction time (sec-
onds) before deployment of the distributed processing. Mean and median reconstruction times are
marked with solid red and dashed black lines, respectively.
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(a)

(b)

Figure 5.14: (a) Histogram and (b) cumulative distribution of T2 Shuffling reconstruction time
(seconds) after deployment of the distributed processing. Mean and median reconstruction times
are marked with solid red and dashed black lines, respectively.

5.3.3 Discussion
Many works aim to bring accelerated scanning methods to the clinic in an effort to reduce
exam times and increase patient throughput. An important component to the MR value
equation is the cost to the patient. This study evaluated a targeted knee MRI exam that
was designed for specific clinical indications in a pediatric population with the goal of re-
ducing time, cost, and burden to the patient and family. The exam was based on T2 Shuf-
fling as a mechanism for obtaining fat-suppressed images in multiple orientations and
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contrasts. The T2 Shuffling scan was paired with a 2D T1 coronal scan in order to obtain
complementary information about bone and anatomy. As the imaging time was signifi-
cantly reduced compared to the conventional knee MRI, a reduced charge CPT modifier
code was used for insurance billing, lowering the cost by a factor of three compared to
the routine knee MRI.

The targeted knee MRI was designed to fit in between already scheduled patients
during the day. The purpose for this decision was so that patients could be seen the same
day as their initial visit to the orthopedist. In this study, 20 of the 47 patients were scanned
on the same day. Thus, a number of situations arise in which (i) the schedule could not
accommodate the MRI, or (ii) the patients and parents elected to return on a different day
as a matter of convenience. Although there was no obvious pattern based on age or time
of year, the time of the scan was a positive predictor for likelihood of same-day scan: 15
of the 18 cases with exam registration between 2 pm and 6 pm were same-day orders.
Conversely, only 5 out of 31 cases were same-day orders outside this window. This may
indicate that patients who are seen by an orthopedist in the morning are more likely to be
subsequently scheduled for their MRI later that day.

Since the deployment of the distributed reconstruction, the reconstruction times for
T2 Shuffling no longer impacted the technologists’ workflow, as the images were avail-
able on the scanner console before the coronal T1 scan finished. In contrast to the study
presented in Section 5.2, the technologist could immediately review the images for diag-
nostic quality and initiate the multi-planar reformats. The distributed cluster used four
high-performance compute nodes, each with a cost of about $10,000. Although the high
cost of the servers may pose a barrier to the use of the MRI exam, their amortized cost
is expected to be low, as similar targeted MRI exams can be developed to leverage T2
Shuffling and other computational MRI methods. Such a scenario was simulated in Sec-
tion 4.5.

A major challenge with pediatric imaging is patient cooperation during the exam.
Although the targeted knee MRI reduces the exam time, a large number of cases still re-
quired additional scanning. Surprisingly, the 2D coronal scan was repeated more often
than the T2 Shuffling scan. This may be a result of the low risk in re-acquiring a three-
minute scan versus the longer seven-minute T2 shuffling scan. A number of cases used
additional 2D imaging sequences following the targeted protocol, likely to increase confi-
dence in the MRI diagnosis. As a result, the total scan time was greater than 20 minutes in
about half the cases. The need to repeat scans poses a risk in the “on-demand” scheduling
model, but it is not unique to the targeted knee MRI experience.

A limitation of this study is that arthroscopic data was not available to corroborate the
MRI findings. A second limitation is that there is little control over the interplay between
the orthopedists, radiologists, technologists, and the patients. Thus, although the study
presents a glimpse into the true hospital workflow, it reduces the ability to accurately
attribute cause and effect for scan times and patient throughput. A third limitation was
the relatively small number of participants. The targeted knee exam was intentionally
limited to a small subset of clinical indications and insurance pre-authorizations during
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its initial evaluation.
In conclusion, this study has shown that a targeted knee MRI exam based on T2 Shuf-

fling has the potential to reduce exam times and costs to the patients in a pediatric popu-
lation.

5.4 Conclusion
The path to clinical adoption requires extensive engineering and validation effort to vet
new technological approaches. This chapter presented a systematic approach to clinically
evaluate T2 Shuffling in the pediatric knee through comparisons to existing established
methods and developments of newly designed protocols. The results demonstrate the po-
tential for the application of T2 Shuffling as a single-sequence comprehensive knee MRI
protocol, with multi-planar reformattable images in PD, intermediate, and T2-weighted
reconstructions. The prospect of a fast, single-sequence MRI protocol is especially well-
suited for pediatric imaging, improving the likelihood for high quality scans and decreas-
ing the need for sedation. Although the volumetric sequence is lengthier than any single
2D sequence, and hence may be susceptible to motion during the scan, motion artifacts
did not appear to limit the images any more than in the 2D scans.

Although T2 Shuffling scored favorably as a single-sequence alternative to the con-
ventional knee MRI protocol, there may be a strong preference among some practitioners
to obtain at least one nonfat-suppressed sequence. As a result, the targeted knee MRI
exam was developed, consisting of fat-suppressed T2 Shuffling and a 2D coronal T1 scan
without fat suppression. Based on initial results, the targeted knee exam provides a faster
and cheaper alternative for pediatric patients with specific clinical indications. The fast
distributed reconstruction obviates the need to change the workflow, as images are avail-
able directly on the scanner console and in PACS in a timely fashion.
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Chapter 6

T1-T2 Shuffling

6.1 Introduction
The focus of this dissertation has been on T2 Shuffling, an accelerated volumetric FSE
acquisition that provides multiple image contrasts from a single scan. T2 Shuffling aims
to reduce blurring commonly seen in 3D FSE by accounting for relaxation during the
echo trains. Images are reconstructed at each TE in the echo train, resulting in a time
series of images with contrast starting at PD and increasing to heavy T2 weighting. Since
the acquisition is volumetric with isotropic resolution, the images can be retrospectively
reformatted into arbitrary planes.

In addition to PD and T2 imaging, T1 weighted imaging plays an important role in di-
agnosis. Routine brain imaging protocols at 3T consist of T1, T2, and T2-FLAIR sequences
[35]. T1 and T2 are also used for the detection of ischemia in fetal imaging [146]. Mus-
culoskeletal imaging uses T1 sequences to visualize bone anatomy, infection, and tumors
[123, 130]. A major challenge with FLAIR-based imaging is the timing of the inversion
recovery time (TI). In brain imaging, the TI should be chosen to null the cerebrospinal
fluid (CSF) and provide a high contrast-to-noise ratio between gray and white matter
[35]. Exact timing can be difficult as it depends both on the scanning environment (e.g.
field strength, sequence) and patient variability.

A number of MRI methods have been developed with the aim of simultaneously quan-
tifying PD, T1, and T2 from a single scan. Simultaneous T1 and T2 mapping has been
applied to 2D myocardial imaging based on T2 preparation and multiple inversion re-
coveries [147], as well as with MR fingerprinting [148]. Recently, the authors in [149]
have introduced an approach to free-breathing, cardiac and respiratory resolved quanti-
tative imaging that incorporates advances in reconstruction and high-dimensional signal
modeling. Quantitative approaches based on FSE have been successfully applied to 2D
brain imaging [96] and have been used to retrospectively generate synthetic contrast im-
ages [150]. However, due to the conventionally low scan efficiency of FSE, quantitative
3D approaches have typically relied on gradient echo-based sequences [151–153], but the
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effective resolutions still remain low – on the order of 1.5-2 mm in-plane and 3-6 mm slice
thickness. The approaches above can all be used to generate synthetic contrast images by
passing the quantitative maps through the MRI signal equation. However, artifacts due to
partial volume, flow, and other un-modeled effects raise questions about their diagnostic
utility [154]. Non-parametric modeling based on deep learning has been used to bypass
the quantitative step and directly map the under-sampled MRI to synthetic contrast im-
ages [155, 156]. These directions show promise at integrating advances in MR sequences
with conventional MR image quality. Other methods aim to acquire multiple contrasts in
a single scan without modeling [157, 158] by interleaving different types of magnetization
preparation blocks throughout the sequence.

This chapter explores an extension to T2 Shuffling that incorporate T1 sensitivity into
the acquisition. The volumetric reconstruction can be retrospectively synthesized into
PD, T1 weighted, and T2 weighted image contrasts representing different combinations of
scan parameters. The method, termed T1-T2 Shuffling [159], is also compatible with other
FSE modules, including fast recovery through driven equilibrium [160, 161], multi-point
Dixon-based water-fat separation [162], fat suppression through chemical saturation, and
T1-prepared inversion recovery.

T1-T2 Shuffling adds the capability to change the TR for each echo train, effectively
sampling the saturation recovery curve at multiple time points. The inclusion of mul-
tiple TRs adds a new temporal dimension to the data. Ideas from compressed sensing
are used to reduce the sample complexity within this multi-dimensional dataset. The
T2 relaxation and T1 recovery are explicitly coupled with a low-dimensional relaxation
subspace constraint. Similarly to the T2 Shuffling reconstruction, the signal evolutions are
further constrained through locally low rank regularization. The low-rank constraints are
derived from EPG-based simulations. These simulations are also used to find linear com-
bination weights of the relaxation coefficients to create target synthetic contrast images.
The end result is a series of volumetric synthetic contrast images representing different
combinations of retrospectively chosen scan parameters.

6.2 Theory

6.2.1 Signal Equation
In Chapter 2, the FSE signal equation was developed for the case of multiple TEs along
an echo train and a single TR duration. In practice, the TR duration is not long enough
to reach thermal equilibrium. For T2 imaging, the signal weighting due to the finite TR
duration will affect each TE equally during the echo train. However, if the TR duration is
changed during the acquisition, the signal at each voxel will be weighted by the amount
of longitudinal recovery. As a result, the signal evolution of the transverse component at
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the ith TE and for a specific TR duration is given by
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ing, and T is the ETL. It is assumed that the echo times are integer multiples of the echo
spacing. The reason that a denominator appears in the longitudinal recovery term is
because of a �90� fast recovery pulse that tips the remaining transverse magnetization
(given by f
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pends on the variable refocusing flip angle scheme. Figure 6.1a shows the transverse
and longitudinal magnetization for different combinations of T1 and T2 and the variable
flip angles shown in Figure 6.1b. The figure shows the main components comprising
the signal. The transverse magnetization is dominated by T2 relaxation; however, due to
the variable flip angles, T1 recovery during the echo train will also influence the signal.
Following the refocusing flip angles is a fast recovery tip-up pulse that acts to exchange
the transverse and longitudinal magnetization components. Finally, the TR duration will
limit the longitudinal recovery and dictate the equilibrium magnetization level for the
next excitation.

In the simplest case where a single TR duration is repeated for multiple echo trains,
the equilibrium magnetization will reach a steady state that can be calculated analytically
[161],
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In practice the equilibrium steady state is reached after a small number of repetitions
[161]. Assuming the same TR duration is used for multiple consecutive echo trains, it is
convenient to assume that (6.2) holds. Then, (6.1) can be separately analyzed for different
TR segments, defined as blocks of consecutive echo trains with the same TR duration.

6.2.2 Low Rank Modeling
The signal evolution behavior given by (6.1) can be modeled for a particular (T1, T2)
distribution through the EPG formalism. Given a selection of the TE, flip angles, ETL,
and TR segments, an ensemble of signal evolutions will result in the third-order tensor
X 2 CN⇥T⇥R, where N is the number of simulated signals, T is the ETL, and R is the
number of TR segments. Figure 6.2 shows the construction of the tensor and its unfolding
along the first mode [163]. In this formulation, the flip angles and ETL are identical across
TR segments. The (T1, T2) distribution can be produced through conventional T1 and T2
mapping procedures or from values reported in the literature.
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Figure 6.1: (a) Simulated transverse (solid) and longitudinal (dashed) magnetization signal evolu-
tion curves for FSE with fast recovery across a TR of 1500 ms using variable refocusing flip angles
shown in (b). The T1 and T2 values (in ms) are shown to the right of the their corresponding signal
levels at the end of the TR.

Like in the matrix case, the tensor X will exhibit low rank structure due to the corre-
lation in the signal evolutions across the TEs and TRs. However, there is not necessarily
a single “best-fit” low-rank tensor decomposition, and it may not be computationally
tractable [163]. The authors in [164] define the nuclear norm of an nth order tensor as a
convex combination of the nuclear norms of the unfolded tensor along each mode,
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where �
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is the unfolded tensor along the ith mode. This defi-
nition is attractive because it reduces to the matrix nuclear norm in the two-dimensional
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Figure 6.2: Tensor construction for T1-T2 Shuffling. (a) The tensor X 2 CN⇥T⇥R consists of signals
representing a distribution of T1 and T2 values that follow the signal equation given by (6.1). In
this example, N = 32, T = 130, and R = 3. (b) The unfolded tensor along the first mode, X

(1)

, is
a matrix with the relaxation and recovery dimensions concatenated.

case [163, 164]. Under this framework, low rank structure can be implicitly enforced by
regularizing the unfolded tensors.

It is also possible to explicitly enforce low rank structure by constraining the unfolded
tensors to a low-dimensional subspace [149]. Although in general there exist different
subspaces for each mode, this work only considers the unfold along the first mode, as it
captures the spatio-temporal relationship in the data. In other words, �

1

= 1 and �
2

=

�
3

= 0. The unfolded tensor along the first mode is constructed by concatenating the
signal relaxation curves of all the TR segments into a single temporal curve. Denote this
ensemble of signal evolutions as
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where x
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2 RRT is the nth concatenated, simulated signal evolution. A relaxation sub-
space �

K

2 CRT⇥K can be computed through SVD by taking the first K left principal
vectors. Neglecting model error, the signal evolutions belong to the subspace, i.e.
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The relaxation coefficients of a signal evolution x are given by

↵ = �

⇤
K

x. (6.6)

Figure 6.3 shows the concatenated signal evolutions from the unfolded tensor and the
relaxation basis curves generated through SVD.
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Figure 6.3: The data tensor is unfolded along the first mode by concatenating the signal evolutions
from each TR segment. A subspace is then computed through SVD. In this example, the ETL is
T = 130, the subspace size is K = 4, and there are R = 3 TR segments.

6.2.3 Synthetic Contrast
The T1-T2 Shuffling sequence encodes T1 and T2 sensitivity by sampling k-space at mul-
tiple TEs and TRs. Due to the subspace relationship, the relaxation coefficients can be
used to synthesize images along the relaxation and recovery curves. One approach is to
directly solve for the intrinsic relaxation parameters at each voxel given the non-linear
signal model [55, 67, 96, 151]. From there, the signal equation is used to retrospectively
synthesize images representing different choices of scan parameters. This work consid-
ers an alternative approach in which the relaxation coefficients are (linearly) combined
to form an approximate target image contrast. The use of linear combinations eliminates
the need to solve for the physical parameters, which would involve either non-linear
least-squares optimization or grid-based search. In addition, SNR tradeoffs are better
understood for linear filtering [94].

Using different linear combinations, weights are pre-calibrated by fitting the relax-
ation coefficients of the ensemble of simulated signal evolutions to a simulated target
image contrast,
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where c
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2 CK are the weights for the lth target image contrast, ↵(n) 2 CK are the re-
laxation coefficients of the nth simulated signal evolution, and g
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is the lth target contrast
function. For example, a spin-echo contrast with prescribed TE and TR durations is sim-
ulated through
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Similarly, an inversion-recovery spin-echo contrast is given by
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where TI is the inversion time. To obtain the lth synthetic MR image, the coefficients are
linearly combined with the weighting vector at each voxel,

x
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↵(r), (6.10)

where x
l

(r) and ↵(r) are the target contrast and relaxation coefficient images at voxel r,
respectively.

For each desired target contrast, a different linear combination must be computed.
However, the weights can be pre-computed offline based on the ensemble of signal evo-
lutions. The goodness of fit will depend on the subspace size, sequence parameters, and
SNR. The fit will exhibit the same model error vs. noise error tradeoff discussed in Ap-
pendix B. In principle, the target contrast need not be physically realizable. For example,
a linear combination could be created that aims to null a specific band in T1-T2 space such
as white matter [94]. The fit in (6.7) is an `

2

norm. Other objective functions could also be
used, for example to penalize outliers or weight specific signal bands [165].

Figure 6.4: Using the subspace and the known T1 and T2 values of the simulated signal evolu-
tions, a linear combination is computed and applied to the basis coefficient images to synthesize
arbitrary image contrasts.

6.2.4 Optimized Selection of Repetition Time Durations
The inclusion of multiple TR segments is intended to encode sensitivity to T1 during
the acquisition. In effect, this amounts to sampling the saturation recovery (SR) curve at
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multiple time points. In the most general case, each echo train could be assigned a unique
TR duration. The scan time is then equal to the sum of all the TRs. For example, the echo
trains could be chosen to have linearly or logarithmically spaced TR durations starting at
TR

min

and ending at TR
max

. However, other schemes could also be used with potential
benefits. For example, scan efficiency could be increased by spending more scan time on
short TR durations.

To motivate the TR selection, consider quantitative T1 mapping based on the signal
equation (6.1). For N

trains

echo trains, the goal is to select the TR duration for each echo
train that results in the best T1 estimate. Because variable refocusing flip angles are used,
longitudinal magnetization will recover throughout the echo train. In addition, the use of
fast recovery pulses makes the longitudinal recovery dependent on T2. In this analysis,
these effects are ignored as their influence on T1 estimation is small. Neglecting the influ-
ence of T1 recovery during the echo train and considering the signal value at a particular
TE, the signal equation can be re-cast as a three-parameter model:
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is additive complex-valued white
Gaussian noise. The Cramer Rao lower bound, defined as the inverse of the Fisher In-
formation, provides a lower bound on the variance of any unbiased estimator [166, 167].
Thus, a reasonable strategy is to choose the number of echo trains and the corresponding
TR durations such that the bound is minimized with respect to T

1

.
There are a number of challenges to the optimization. Under the steady-state equilib-

rium assumption (6.2), the ordering of the TRs will not influence the Fisher Information.
In other words, any permutation of the echo trains will result in the same approximation
bound. Denoting the Fisher Information with respect to T1 as I(T
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), this means that

I (T
1

, (TR
1

, . . . ,TR
Ntrains)) = I

⇣
T
1

,
⇣
TR

⇡1 , . . . ,TR⇡Ntrains

⌘⌘
, (6.12)

where (⇡
1

, . . . , ⇡
Ntrains) is a permutation. Therefore, each local and global minimum will

appear N
trains

! times. Secondly, the number of echo trains in a given scan is typically in the
hundreds, which is challenging to optimize over due the many local and global minima.

For a small number of echo trains, the optimal TR sequence could be found through
exhaustive search. For example, Table 6.1 shows the top three solutions (excluding per-
mutations) when selecting TR durations for five echo trains from 29 candidate TR values
between 900 ms and 2800 ms. Also shown is the solution corresponding to linearly spaced
TR values. In the optimal solution, three out of the 29 TR durations were selected, and the
short and medium TRs were each repeated two times. The other top solutions had more
than three unique TR durations, but this is likely due to discretization error. Note that this
already required searching through 29

5 ⇡ 20 million solutions, and the evaluation took
2.5 minutes on a 20-core machine. A similar optimization over 50 possible durations took
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Table 6.1: Optimal choices for TR durations found through exhaustive search. The TR durations
for five echo trains were selected from 29 candidate values linearly spaced between 900 ms and
2800 ms. Other parameters: T

1

= 1000 ms, T
2

= 100 ms, T = 132, T
s

= 5 ms, a = 1, b =

exp(�T · T
s

/T
2

) = 0.0014, �2

= .001.

TR Values (ms) Loss (dB)
1 900, 900, 1850, 1850, 2800 64.4429
2 900, 900, 1782, 1850, 2800 64.4714
3 900, 900, 1850, 1918, 2800 64.4739
...

...
...

616,111⇤ 900, 1375, 1850, 2325, 2800 66.3682

⇤Corresponds to linearly spaced TR values.

37 minutes, highlighting the computational difficulty in the exhaustive search. Based on
this observation, consider the following conjecture:

Conjecture 6.1 Suppose the measurement model is
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, n = 1, . . . , N,

where ✓ 2 RR is vector of unknown parameters, u 2 RN is a vector of control inputs, f is the
model, and w
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is additive white Gaussian noise. Then the optimal controls that minimize the
inverse of the Fisher Information, 1/I (✓), are given by
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= N . That is, the Cramer Rao lower bound is
minimized by repeating R unique control inputs.

Although not proved here, others have reported similar findings [168].
Based on Conjecture 6.1, the TR selection is reduced to choosing R = 3 unique TR

segments and the number of echo trains in each segment. To this end, the optimization is
cast as a mixed integer program:
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The sum in the objective function is across L target T1 values (e.g. drawn from a distri-
bution of likely values in the brain), and the TR durations are upper and lower bounded.
The number of echo trains in the ith TR segment is given by N

i

. Different TR schedules
can be compared by evaluating (6.13) across the full set of signal relaxation curves as a
relative loss, i.e.
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where N is the number of T1 values considered and T
(n)

1

is the nth T1 value.

6.3 Methods

6.3.1 Signal Modeling
A joint distribution of (T1, T2) was produced through conventional T1 and T2 mapping
procedures, as described in Subsection 6.3.4. An ensemble of N = 10240 samples were
chosen from the distribution and simulated using EPG [4, 29]. A relaxation basis of size
K = 4 was constructed from the ensemble of signal evolutions using SVD. The subspace
size was chosen as it resulted in less than 1% approximation error across the ensemble.
The linear combinations for each desired synthetic image contrast were computed from
the ensemble according to (6.7) for different values of TE and TR in (6.8) and TI in (6.9).

6.3.2 Acquisition
The CUBE 3D FSE pulse sequence (GE Healthcare, Waukesha, WI, USA) was previously
modified for T2 Shuffling to support randomly shuffled and re-sampled phase encodes
during the echo train [117]. The RF pulse sequence timing follows the diagram shown in
Figure 2.9, and the sampling patterns at each TE are shown in Figure 3.9. The sequence
used refocusing pulses with varying flip angles [3, 40]. This work added the capability
to specify the TR duration independently for each echo train. The main scan prescrip-
tion matched that of conventional 3D FSE, e.g. resolution, matrix size, and field of view.
To support multiple TR durations, the maximum scan time was a controllable parame-
ter, and the acceleration factor was automatically determined based on the optimized TR
schedule. For a specific anatomy, protocol, and scan time, the TR segments and their cor-
responding fraction of scan time (based on number of echo trains) were found by solving
(6.13) using a genetic algorithm (MATLAB, MathWorks, Santa Clara, California, USA).
The optimization was solved with 100 T1 values drawn from a T1 distribution corre-
sponding to a healthy subject’s brain imaged at 3T, as well as for T

1

= 876 ms, which
corresponded to the dominant mode of the distribution. The maximum and minimum al-
lowable TR durations were set to 900 ms and 2800 ms, respectively, and the scan time was
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set to 7 minutes. The Fisher Information of the optimized TR schedule was also compared
to linearly and logarithmically spaced TR schedules over the same range of TR durations
and the same total scan time.

Variable-density Poisson disc sampling patterns were prescribed for each TE and for
each TR segment. This enabled good coverage of k-space for each TR segment in a man-
ner that is compatible with both parallel imaging and compressed sensing [11]. After
prescribing the sampling patterns, echo train views were ordered for each TR segment.
Although there is tremendous flexibility in deciding the echo train ordering, in this work
the TRs were played out sequentially in order of largest to smallest TR duration. This
scheme was chosen so that the pre-scan could assign the receiver dynamic range based
on maximal signal amplitude, and so that the longitudinal magnetization would quickly
reach a steady-state equilibrium. The end result was a set of under-sampled k-space data
at each TE and TR segment.

6.3.3 Reconstruction
The reconstruction is similar to that of T2 Shuffling and builds off the L1-ESPIRiT algo-
rithm, which combines parallel imaging and compressed sensing in a single reconstruc-
tion framework [87]. The data were represented at each acquired TE and TR with the
forward model

y = PFSx, (6.15)

where x are the complex-valued and concatenated signal evolutions at each image voxel,
S are sensitivity maps estimated using ESPIRiT, F consists of the Fourier transform oper-
ators applied to each TE and TR image, P are the sampling operators that select the ac-
quired k-space samples at each TE and TR, and y are the acquired complex-valued data.
As in T2 Shuffling, the forward model is relaxed with a relaxation subspace constraint
(6.5). The reconstruction is then formulated as
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where ↵ are the relaxation coefficient images. Locally low rank regularization [69, 117] is
applied to the relaxation coefficient images to reduce the number of degrees of freedom.
After reconstruction, the relaxation coefficients are linearly combined according to (6.10)
to form the target synthetic image contrasts.

The iterative reconstruction is solved with the FISTA algorithm [21] and implemented
in BART [19, 88]. The operator commutativity described by (3.19) was used to reduce
computation when solving the normal equations. The synthetic contrast linear combina-
tion fitting was implemented in Python.
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6.3.4 In Vivo Experiments
All experiments were performed under institutional review board approval and informed
consent, and scan parameters are shown in Table 6.2. A volunteer’s brain was scanned
at 3T (Siemens Healthineers, Erlangen, Germany) using conventional 2D multi spin-echo
and inversion recovery FSE, and the data were used to obtain reference T1 and T2 maps
and a joint (T1, T2) distribution through fitting. Another volunteer’s brain was scanned
at 3T (GE Healthcare, Waukesha, WI, USA) with a 32-channel head coil using CUBE T1
and CUBE T2 to obtain reference T2 weighted and T1 weighted images, respectively, fol-
lowed by T1-T2 Shuffling. Three TR segments and their respective fractions of scan time
were chosen based on the Cramer-Rao lower bound (6.13) for a fixed scan time of 7 min-
utes. The data were reconstructed according to (6.16) and linearly combined to generate
synthetic contrast images according to (6.7).

Table 6.2: Scan and imaging parameters used for the in vivo experiments.

Multi Spin-Echo Inversion Recovery FSE CUBE-T2 CUBE-T1 T1-T2 Shuffling
Acquisition Type 2D interleaved 2D interleaved 3D non-selective 3D non-selective 3D non-selective

Readout Direction Axial Axial Sagittal Sagittal Sagittal
TR (ms) 3000 3000 3000 600 900, 1830, 2800

TR Scan Time Fraction — — — — 0.34, 0.4, 0.26
TE (ms) 13.2 - 422.4 9 97 13 —
TI (ms) — 200, 400, 800, 1200 — — —

Echo Spacing (ms) 13.2 8.9 4.7 4.4 4.7
Echo Train Length 32 3 130 28 132

Receive Bandwidth (kHz) 33.3 64.5 62.5 62.5 62.5
Field of View 22⇥ 17.5 cm2

22⇥ 17.5 cm2

26⇥ 23.4⇥ 17.8 cm3

26⇥ 23.4⇥ 17.8 cm3

26⇥ 23.4⇥ 17.8 cm3

Acquisition Voxel 0.86⇥ 0.86 mm2

0.86⇥ 0.86 mm2

0.8⇥ 0.8⇥ 1.2 mm3

0.8⇥ 0.8⇥ 1.2 mm3

0.8⇥ 0.8⇥ 1.2 mm3

Acquisition Matrix 256⇥ 204 256⇥ 204 320⇥ 288⇥ 148 320⇥ 288⇥ 148 320⇥ 288⇥ 148

Slice Thickness (mm) 5 5 1.2 1.2 1.2
Scan Time (min) 10 14 4 3 7

6.4 Results
Figure 6.5 shows T1 and T2 maps derived from the multi-SE and IR-FSE scans of the first
volunteer’s brain and the corresponding joint (T1, T2) distribution. The distribution is
far from uniform in both directions, emphasizing the importance of tailoring the signal
modeling to the 2D distribution of the specific scan anatomy. The Fisher Information op-
timization (6.13) was solved using 100 values drawn from the T1 marginal probability
distribution. Additionally, the optimization was also solved with a single T1 of 876 ms,
which was the dominant mode in the T1 marginal distribution. Table 6.3 lists the opti-
mized, linear, and logarithmic TR schedules, the number of echo trains in each schedule,
the fraction of scan time for each TR, and the relative loss. The loss was computed over
128 T1 values linearly spaced between 469 ms and 2732 ms. These values were chosen
because they captured 90% of the T1 values in the distribution (5% tails). The optimized
schedules allocated more echo trains to the short TR segments. This allocation matches
intuition: short TR durations afford a higher scan efficiency since more echo trains can
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Figure 6.5: Process for creating anatomy-specific joint (T1, T2) distribution from conventional
quantitative imaging. Fully sampled brain scans of 2D multi spin-echo and inversion recovery
fast spin-echo at six slice locations were used to estimate T1 and T2 maps of the brain at 3T. These
maps were used to derive a joint (T1, T2) distribution specific to brain imaging.

Table 6.3: Optimized, linearly spaced, and logarithmically spaced TR schedules and their respec-
tive relative losses for a scan time of 7 minutes.

Schedule Type TR Values (ms) Echo Trains Scan Time Fraction Loss (dB)
Optimized over 100 T1 values 2800, 1830, 900 292 0.26, 0.40, 0.34 88.94
Optimized for T

1

= 876 ms 2800, 1791, 962 278 0.27, 0.41, 0.33 89.18
Linearly spaced 900 to 2800 228 — 92.60
Logarithmically spaced 900 to 2800 251 — 92.26

Maximum scan time was set to 7 minutes.
Relative loss was computed over 128 T1 values between 469 ms and 2732 ms.

be acquired in a fixed scan time, but also exhibit lower SNR due to partial longitudinal
magnetization recovery. Figure 6.6 shows the relative loss of the optimized TR schedules
over the T1 range. Both optimized schedules outperformed the linear and logarithmic
schedules, reaching a maximum of 4 dB gain across the range of T1 values. The two op-
timized schedules had very similar losses, indicating that the main T1 mode dominates
the optimization.

The sampling patterns used in the acquisition are shown in Figure 6.7. The ETL was
set to 132 to match the default 3D FSE T2 brain protocol (ETL = 130) with the addition
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Figure 6.6: Relative loss of the TR schedules over T1 values ranging from 469 ms to 2732 ms
(lower is better). The optimized schedules (solid blue line and dashed red line with circles) have
uniformly lower loss compared to the linearly and logarithmically spaced TR schedules (dotted
yellow line and dashed purple line with plus signs, respectively).

of two initial skipped echoes for ESPIRiT calibration (note the conventional acquisition
skips the first four to eight initial echoes depending on the target contrast). The number
of samples in each TR segment was set to match the optimized TR schedule from the first
row of Table 6.3.

Figure 6.8 shows SE, SR-SE, and IR-SE simulations of 16 out of the 10240 samples
drawn from the (T1, T2) distribution, as well as their synthetic contrast fits based on
the pre-determined linear combinations. The first two simulations followed (6.8) and
the third followed (6.9). Below the simulations are the normalized root mean-squared
errors (NRMSE) across all 10240 simulations for each time point. The SE synthetic contrast
showed close agreement, with error initially decreasing until TE= 28 ms and increasing
thereafter, reaching a maximal error of 0.035 at TE = 100 ms. The SR-SE synthetic contrast
showed the reverse trend: the highest error was at the lowest TR value of 400 ms; the
error decreased until reaching a minimum at TR = 1221 and increased thereafter. The
IR-SE synthetic contrast had significantly higher error, reaching a maximal error of 0.176
at TI = 631 ms. Despite the high error, the fits were qualitatively similar to the inversion
recovery behavior at short echo times.

Figure 6.9 shows T1-T2 Shuffling images from the second volunteer after reconstruct-
ing and linearly combining the relaxation coefficient images. The left column shows sagit-
tal reformats at a synthetic TR of 7000 ms and a synthetic TE increasing from 5 ms to 200
ms. The middle column shows coronal reformats of saturation recovery at a synthetic TE
of 10 ms and synthetic TR increasing from 200 ms to 700 ms. The right column shows
axial reformats of inversion recovery with a synthetic TE of 10 ms, synthetic TR of 7000
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Figure 6.7: Variable-density Poisson disc sampling patterns are generated for each unique TE and
TR, resulting in a grid of under-sampled k-space. The number of samples in the ith TR segment is
equal to N

i

calculated from (6.13). In general, shorter TRs are allocated more samples to increase
scan efficiency and SNR. The first two TEs (not shown) follow a center-out ordering for ESPIRiT
calibration.

ms, and synthetic TI increasing from 50 ms to 7000 ms. Qualitatively, the images follow
the expected relaxation behavior.

Figure 6.10 compares conventional T1 weighted and T2 weighted 3D FSE images ob-
tained from two separate CUBE acquisitions and the equivalent synthetic contrasts im-
ages obtained with T1-T2 Shuffling. Both the T1-T2 Shuffling scan time and the combined
CUBE-T1 and CUBE-T2 scans were 7 minutes. However, the T1-T2 Shuffling reconstruc-
tion can produce multiple synthetic image contrasts to mimic different combinations of
scan parameters. There is also a clear increase in image sharpness as a result of mod-
eling the long echo train. Nonetheless, there is less contrast between gray and white
matter in the T1-T2 Shuffling reconstruction, likely due to the limited dynamic range in a
saturation-recovery based technique.
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Figure 6.8: Simulations (top) of SE (left), SR-SE (middle), and IR-SE (right) for 16 combinations of
T1 and T2 (solid lines) plotted against the linear combination contrast synthesis (dashed circled
lines). Normalized root mean squared error plots across the 10240 simulated signal evolutions for
each time point are shown in the second row.

6.5 Discussion
Standard clinical practice demands images at target contrasts and orientations. A single-
sequence, rapid scan that satisfies this clinical need could potentially accelerate a number
of MRI protocols. Multi-parametric mapping [149, 162, 169–171] combined with Synthetic
MR [96, 150, 172, 173] provides one avenue toward this goal. This indirect approach –
first solving for the intrinsic physical parameters, and then creating a synthetic image
contrast – has been demonstrated in a number of settings and already seen clinical use
[150]. However, parametric mapping methods are prone to error due to partial voluming
or other unaccounted factors. This is often the case with synthetic FLAIR contrast, in
which the CSF is surrounded by a hyperintense signal artifact [154, 155] Additionally, the
indirect methods are typically implemented in 2D slice-interleaved imaging to reach a
high scan efficiency, which necessitates a separate scan for each desired imaging plane.
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Figure 6.9: T1-T2 Shuffling synthetic contrast images at several contrasts and orientations. Left,
top to bottom: sagittal reformats at a synthetic TR of 7000 ms and synthetic TE increasing from 5
ms to 200 ms show the T2 relaxation curve. Middle, top to bottom: coronal reformats at a synthetic
TE of 10 ms and synthetic TR increasing from 200 ms to 7000 ms show the T1 saturation recovery
curve. Right, top to bottom: axial reformats at a synthetic TE of 10 ms, synthetic TR of 7000 ms,
and synthetic TI increasing from 50 ms to 7000 ms show the T1 inversion recovery curve.
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In contrast to explicit parametric methods, T1-T2 Shuffling computes the synthetic
contrast images directly from the reconstructed data. This is accomplished by linearly
combining the relaxation coefficient images. Implicit in this processing is the assump-
tion that the synthetic contrast images live in the same subspace as the data. In effect,
the synthetic contrast images represent interpolated points within the linear subspace.
In practice, this is only an approximation for a number of reasons. Firstly, the nonlinear
dynamics that govern the signal equation are difficult to fully express with linear filter-
ing only. Secondly, the linear combination is often operating in an extrapolation regime,
e.g. when generating synthetic PD and T2-FLAIR contrasts from measurements that did
not include inversions or short echo times. Third, the linear combination is sensitive to
un-modeled system imperfections such as noise, eddy current effects, and B1 inhomo-
geneity. In principle, some of these effects could be accounted for when pre-computing
the linear combination weights. A nonlinear combination that directly maps the recon-
structed images to the desired target synthetic contrast may provide the fitting accuracy
needed to adequately address these shortcomings. This could be accomplished through
kernel regression [169], classification [174], or deep learning [155] methods.

T1-T2 Shuffling inherits many of the benefits seen with T2 Shuffling [117]. This in-
cludes reduced image blurring, as the echo train time progression is accounted for in the
reconstruction. Although 3D FSE blurring is not a significant issue in brain imaging, it
has been a major limitation for musculoskeletal imaging [40]. However, many of these
protocols require the inclusion of both fat-suppressed and nonfat-suppressed imaging
[118]. To accommodate this setting, it may be necessary to explore Dixon-based water-fat
separation methods within the T1-T2 Shuffling acquisition and reconstruction [162].

There is a large degree of flexibility in choosing the T1-T2 Shuffling scan parame-
ters. This work used saturation recovery T1 mapping to motivate the TR selection and
played each TR sequentially, from largest to smallest. More complex variations could be
explored, e.g. interleaved TRs, as they may impact the signal evolution and exhibit differ-
ent properties with respect to motion. Additionally, every echo train used the same ETL
and refocusing flip angles, including the fast recovery tip-up pulse. To increase T1 sensi-
tivity, it may be beneficial to use shorter ETLs for the shorter TRs with tip-down pulses.
In effect, this would provide an inversion-like prep pulse that is T2-dependent. Scan ef-
ficiency could also be increased by moving to non-Cartesian trajectories such as radial
stack-of-stars, which have been shown to be effective in multi-contrast imaging settings
[175].

The T1-T2 Shuffling reconstruction collapsed the relaxation and recovery dimensions
through tensor unfolding. This provided a convenient reuse of the T2 Shuffling recon-
struction, which also uses a single explicit subspace constraint with locally lower rank
regularization. However, since the two relaxation dimensions are governed by different
intrinsic physical parameters, it should be possible to further constrain the relaxation sig-
nals, e.g. with full tensor decompositions [164]. This has been shown to reduce the sample
complexity in the context of free-breathing multi-parametric cardiac imaging [149].
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Figure 6.10: Comparison of conventional T1 weighted and T2 weighted images obtained from
two separate CUBE acquisitions with the synthetic contrast image using T1-T2 Shuffling (single
acquisition).

6.6 Conclusion
In conclusion, this chapter presented and developed a novel extension to T2 Shuffling
that includes variable TRs during the acquisition. The method, called T1-T2 Shuffling,
can flexibly reconstruct multiple PD, T1 weighted, and T2 weighted synthetic contrast
images. Each reconstructed image is a 3D volume that can be reformatted into different
orientation. As the method is based on 3D FSE, it can be extended to include various mag-
netization preparation sequences and modules, including inversion recoveries, water-fat
separation, reduced field-of-view imaging, fat suppression, and partial Fourier acquisi-
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tion. This work explored the qualitative properties of T1-T2 Shuffling as it compared to
3D FSE. More rigorous analysis including diagnostic comparison through clinical valida-
tion is needed.
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Chapter 7

Conclusions and Future Work

7.1 Summary
This dissertation presented new accelerated MRI methods targeted toward real clinical
adoption. Specifically, T2 Shuffling was presented as an extension to volumetric fast spin-
echo (3D FSE) that models the temporal aspect of the MRI acquisition. The effects of
accounting for the dynamics were two-fold. First, blurring commonly seen in FSE due
to T2 decay was significantly reduced. Second, multiple 3D images were reconstructed
from a single scan, corresponding to different contrasts along the signal relaxation curve.
The approach leveraged advances in sparse and low rank modeling to reduce the scan
time necessary for a well-posed reconstruction. Using incoherent sampling schemes, a
low-dimensional subspace constraint, and locally low rank regularization, T2 Shuffling is
able to reconstruct a time series of virtual echo time images from a single scan that is only
slightly longer than a conventional 3D FSE scan.

To put the pieces together in a clinical environment, a fast and distributed reconstruc-
tion was designed and fully integrated into Lucile Packard Children’s Hospital (LPCH),
achieving end-to-end reconstruction times of about 90 seconds. The optimized recon-
struction took advantage of massive parallelism and multiple high-performance comput-
ers to achieve the target latency goal. The reconstruction tools and framework were im-
plemented in the Berkeley Advanced Reconstruction Toolbox (BART) [19, 88], and were
designed in such a way to enable re-use in other computationally expensive parallel imag-
ing and compressed sensing-based methods.

The T2 Shuffling sequence was evaluated clinically for knee imaging through rigor-
ous comparison to conventional protocols. The results of the comparisons indicated that
missing clinically relevant pathology using only T2 Shuffling was unlikely. Altogether,
the confidence in the method’s diagnostic benefits has led to its integration into routine
clinical practice at LPCH. T2 Shuffling has replaced several of the 2D fat-suppressed se-
quences in the lower extremity knee protocol, and continues to be evaluated daily in the
ankle, shoulder, wrist, elbow, and prostate [176]. Figure 7.1 highlights examples of these
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other anatomy scanned with T2 Shuffling. Based on the initial clinical experience using
T2 Shuffling, a targeted, rapid knee MRI exam was developed and offered to pediatric
patients at one third the cost of the conventional exam. Patients with indications of knee
pain can be referred to an MRI and scanned on the same day as their initial hospital visit,
eliminating the multi-week turnaround typically seen with MRI scheduling. At the time
of writing, over 2,400 T2 Shuffling patient scans have been performed.

Figure 7.1: T2 Shuffling scans of different anatomy on pediatric and adult patients. The top row
shows a proton-density reconstruction and the bottom row shows a T2-weighted reconstruction.
From left to right: brain, shoulder, wrist, ankle, and prostate scans.

The approach to modeling signal dynamics flexibly extends to other dimensions.
Building off of T2 Shuffling, a method called T1-T2 Shuffling was presented that addi-
tionally captures T1 dynamics by sampling the saturation recovery curve at multiple rep-
etition times (TRs). The relaxation subspace is extended to model a 2D distribution that
includes T1 recovery. The selection of the TR durations was approached through the lens
of decision theory applied to T1 mapping, and scan efficiency was increased by allocating
more scan time to the short TR durations. By incorporating T1 sensitivity into the ac-
quisition, the reconstruction affords synthetic contrast images corresponding to different
target T1 weighted and T2 weighted scans. The method was demonstrated in vivo for
brain imaging and shows promise toward creating a fast, single-sequence MRI exam.

7.2 Suggestions for Future Work
A number of innovations were presented in this dissertation; nevertheless, work remains.
The topics in this dissertation provide exciting avenues for future directions. This section
summarizes some of these ideas and speculates on their use.
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7.2.1 Improved Low-Dimensional Modeling
The techniques used in T2 Shuffling and its extensions heavily use low-rank represen-
tations of spatio-temporal data. The primary approach taken was to represent the data
as a low-dimensional subspace with the singular value decomposition (SVD). Although
the SVD provides a powerful low-dimensional representation, it is ultimately limited
in expressibility. Since the dynamics are generated from physical parameters through
a non-linear process, a linear subspace representation often necessitates a large number
of coefficients to achieve an adequate approximation. A promising alternative to the lin-
ear subspace model that may better represent the signal relaxation dynamics is a low-
dimensional manifold. Several works explore this notion and learn the manifold rep-
resentation from simulation or from the data itself [177–179], showing improved image
quality over SVD-based subspace methods. The inclusion of a low-dimensional manifold
in the reconstruction, e.g. through local linear embeddings [180], would maintain many
of the features of the T2 Shuffling reconstruction. Thus, it could still leverage the methods
presented for fast and distributed reconstructions.

When multiple parameter directions are imaged, the low-dimensional structure is
well-described by a tensor [149]. In T1-T2 Shuffling, the tensor data were unfolded along
the first mode by concatenating the signal relaxation curves and treated thereafter as a
low rank matrix. Although this provides a convenient parallel to T2 Shuffling, it masks
additional low-dimensional structure. The inclusion of a full tensor model in the recon-
struction, e.g. through the Tucker decomposition [163], could provide additional avenues
for acceleration and image quality.

7.2.2 Multi-Parameter Shuffling
In T2 Shuffling, the sequence is identical for each echo train. T1-T2 Shuffling added the
capability to vary the TR duration for each echo train by adding dead time after the last
echo. Nonetheless, the remaining sequence parameters were left unchanged. Motivated
by the success of MR fingerprinting [63], additional sensitivity to relaxation parameters
could be accomplished by varying the flip angles and echo train lengths during the scan.
In particular, one direction worth exploring is the use of different fast recovery flip an-
gles [160]. For example, a +90

� fast recovery pulse could be used to tip the remaining
transverse magnetization into the negative longitudinal direction, effectively adding T2-
dependent inversion pulses to the spin dynamics. This concept is already used in 3D T1
weighted imaging based on FSE. In theory, each echo train could contain a unique TR, flip
angle train, fast recovery flip angle, echo spacing, and magnetization preparation mod-
ule [181]. The reconstruction could then enforce the low-dimensional manifold structure
implicit in the data, as it comes from a small number of intrinsic physical parameters.

The inclusion of multiple parameters could extend beyond T1, and T2. Bipolar gradi-
ent readouts could be included to support water-fat separation [162]. Longer echo spac-
ings could be used to sensitize the sequence to T2* relaxation and diffusion. Phase cycling
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techniques could be incorporated to correct for phase errors [182, 183].

7.2.3 Parameter Mapping
This dissertation focused on generating clinical contrast in short exam times. This was
accomplished by designing sequences that capture information about the relaxation dy-
namics. One direction worth exploring is extending the processing methods to quanti-
tative parameter mapping. This could be accomplished through fitting each voxel in the
reconstructed images to a physical model, either through non-linear least squares [51,
54] dictionary-based methods [63, 64], or machine learning [169]. The fits could even
be performed directly in the subspace domain. Currently, quantitative imaging is not as
common in a clinical setting, though the landscape is rapidly changing.

7.2.4 Optimal Spatio-Temporal Sampling
The sampling schemes used in T2 Shuffling and its extensions relied on ideas from par-
allel imaging and compressed sensing. In the end, each time point was sampled with a
variable-density Poisson disc sampling pattern. Although this is an established approach
for incoherent sampling, it may not be the best choice given the large degree of redun-
dancy in the spatio-temporal data. Alternative sampling schemes that incorporate com-
plementary information in each temporal frame [184] and the subspace basis functions
themselves [185] could provide better incoherence properties. It may also be possible
to learn an optimal sampling trajectory, either through decision theory [186] or through
deep learning [187]. Additionally, non-Cartesian [175] and other encoding approaches
may provide better incoherence properties [188].

7.2.5 Learned Reconstructions
Recently, reconstruction methods have become increasingly data-driven. Using a large
corpus of available training data, end-to-end reconstructions are learned with and with-
out physical modeling [189, 190]. The approaches learn transforms and non-linear ac-
tivation functions that are tailored to the input data. As a result, new low-dimensional
representations are automatically learned and used in the reconstruction. Data-driven ap-
proaches to MR Shuffling have been explored, with promising initial results [174]. An un-
rolled optimization method could be used to further learn the reconstruction steps. One
difficulty to applying these methods is the availability of ground-truth data. Although
there are thousands of clinical T2 Shuffling data sets, none are fully sampled. Future
directions should investigate reference-less and semi-supervised approaches to directly
learn from the under-sampled data [191].
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Appendix A

Low Rank Regularization

Compressed sensing enables sparse recovery of vector-valued objects under incoherent
linear measurements through `

1

-norm minimization. An analogue in the matrix case is
recovery of low-rank matrices through nuclear norm minimization [12]. Matrix-based
objects appear in applications such as collaborative filtering and system identification [8].
In MRI, it is natural to represent dynamic imaging as a spatio-temporal matrix, where the
rows represent voxels and the columns represent temporal dynamics [90]. The tempo-
ral dynamics can be a result of signal relaxation [57], contrast enhancement [18], cardiac
motion [91], respiratory motion [16], or a combination [149].

Global Low Rank

Suppose low rank regularization is imposed on the measurement matrix Y = X + W,
where X is a low-rank matrix and W is a measurement noise matrix. Then a low-rank
matrix Z that best approximates X can be found solving the unconstrained convex opti-
mization problem

argmin
Z

1

2

kY � Zk2
F

+ � kZk⇤ , (A.1)

where kZk⇤ is the nuclear norm, defined as the sum of the singular values of Z. The
solution to (A.1) is given by the singular value soft threshold (SVT) function [192, 193].
In words, the SVT function applies soft thresholding to the singular values of Y. The soft
threshold function is defined as

SoftThresh(y,�) := (|y|� �)
+

y

|y| , (A.2)

where (z)

+

sets the negative elements of z to zero and leaves the positive elements un-
changed.

Denote the singular value decomposition (SVD) of Y as

Y = U⌃V

⇤, (A.3)
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where ⌃ = diag(�
1

, �
2

, . . . , �
K

) are the ordered singular values. Define ˆ

⌃ as the diagonal
matrix of the singular values after soft-thresholding, i.e.

ˆ

⌃ = diag
⇣

SoftThresh
⇣⇥

�
1

· · · �
K

⇤>
,�

⌘⌘
. (A.4)

Then the solution to (A.1) is given by

Z = SVT (Y,�) = U

ˆ

⌃V

⇤. (A.5)

Local Low Rank

Instead of global low rank, it is possible to impose local low rank (LLR) constraints on a
matrix. This implies that sub-matrices of Y are separately low rank. This is suitable in
dynamic MRI because local regions of an image often exhibit similar dynamics [69, 71].
The LLR optimization problem is given by

argmin
Z

1

2

kY � Zk2
F

+ �
X

r

kR
r

(Z)k⇤ . (A.6)

The operation R
r

(Z) extracts a sub-matrix of Z at position r. When the sub-matrices are
non-overlapping, the solution to this problem is given by Algorithm A.1, called Local SVT
(LSVT). Because the operation is not translation invariant, blocking artifacts will occur at
the boundaries of sub-matrices. One way to remove these artifacts is to use overlapping
blocks of sub-matrices, equivalent to applying LSVT to shifts of the matrix [82]. In this
case Step (3) will include an average over all shifts of position r. LLR regularization can be

Algorithm A.1 Procedure for applying LSVT.
Inputs: Y 2 CN⇥T–data, �–regularization parameter, b–block size

Outputs: Z 2 CN⇥T–LLR output

1: Decimate the rows of Y to form sub-matrices of size b⇥T centered at each row r. Call
each sub-matrix Y

r

= R
r

(Y) 2 Cb⇥T . By construction, Y =

P
r

Y

r

.

2: Apply SVT to each sub-matrix: Z
r

= SVT (Y

r

,�).

3: Sum the result: Z =

P
r

Z

r

.

flexibly applied to 2D and 3D imaging applications by extracting b⇥ b spatial blocks from
each temporal frame and concatenating them as a single column. as illustrated in Fig-
ure A.1. As previously mentioned, LSVT applied to non-overlapping blocks will lead to
blocking artifacts. When using LLR in an iterative inverse problem, it can be prohibitively
expensive to apply LSVT to all image translations. An alternative to applying translation-
invariant shifting is to apply a random shift to the image in each iteration [83]. This has
the effect of averaging out the blocking artifacts over the iterations while only applying
LSVT once per iteration.
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Figure A.1: Visualization of the block-wise matrix operator for LLR with T = 5 temporal frames.
Blocks from each temporal frame are reshaped into columns to form small matrices. The transform
components are the singular vectors of the matrices.
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Appendix B

Subspace Noise Propagation

In this appendix it is shown that the noise variance of a fully sampled, subspace-
constrained linear reconstruction is equal to �2K, where K is the dimension of the sub-
space [84]. Consider a noisy time series signal evolution at voxel r, as described by (3.4)
and (3.5):

x
i

(r) = ⇢(r)f
iTs(r), (B.1)

y
i

(r) = x
i

(r) + w
i

(r), i = 1, . . . , T, (B.2)

where

w(r) =

⇥
w

1

(r) · · · w
T

(r)

⇤> ⇠ N
c

�
0, �2

I

�
2 CT . (B.3)

Each noise observation w
i

(r) is an independent, zero-mean complex Gaussian random
variable with variance �2. Thus,

y(r) ⇠ N
c

�
x(r), �2

I

�
. (B.4)

The measurements y(r) can be approximated by projecting them onto the temporal
subspace spanned by the semi-unitary matrix �

K

2 CT⇥K . Let ↵(r) = �

⇤
K

y(r). The
random vector ↵(r) has covariance matrix given by

⌃↵ = �

⇤
K

⌃

y

�

K

(B.5)
= �2

�

⇤
K

�

K

(B.6)
= �2

I 2 CK⇥K , (B.7)

i.e. the temporal coefficients remain independent and Gaussian, and the total variance
is reduced to k⌃↵k2

F

= �2K. After projecting back to the time series, the estimate is
ˆ

y(r) = �

K

↵(r). Since the matrix �
K

has orthonormal columns, the total variance in ˆ

y(r)

is unchanged; however, the noise at each time point is no longer independent nor identi-
cally distributed. The covariance matrix of ˆ

y(r) is �2

�

K

�

⇤
K

. Figure B.1 shows the noise
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variance at each echo time after back-projecting, i.e. diag (�

K

�

⇤
K

). In general, earlier time
points will have higher noise variance after the projection since the vectors given by �

K

represent signal decay. The expected error due to noise is lowest at the central echo times
corresponding to T2 weighted images.

Figure B.1: Noise variance in the time series after back-projecting through the basis. The noise is
Gaussian but no longer white. The initial time points have a higher noise variance consistent with
the behavior of the signal decay.

Bias vs. Noise:
The distribution of the error z(r) := ˆ

y(r)� x(r) is given by

z(r) ⇠ N
c

�
(�

K

�

⇤
K

� I)x(r), �2

�

K

�

⇤
K

�
, (B.8)

From this, the mean-squared error is

E kz(r)k2
2

= x(r)

⇤
(I��

K

�

⇤
K

)x(r) + �2K (B.9)

= kx(r)k2
2

� k�⇤
K

x(r)k2
2

+ �2K. (B.10)

The first two terms represent the error due to subspace modeling and the third term rep-
resents error due to noise. There is an inherent tradeoff between model error and noise
with subspace size. As K increases, the model error decreases and the noise variance
increases. The SNR of the measured signal is T

2

-dependent, and is given by

SNR(r) = 10 log

10

kx(r)k2
2

�2K
[dB]. (B.11)

The root mean-squared error (RMSE) is plotted in Figure 3.8 for � = 0.07, which corre-
sponds to an SNR of about 15 dB for T

2

= 14 ms.
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Appendix C

T2 Shuffling Transform Point Spread
Function

The transform point spread function (TPSF) can be used to empirically assess the inter-
ference caused by a single transform coefficient [11]. For T2 Shuffling, locally low rank
(LLR) matrices are used as a low-dimensional transform [69]. The LLR transform oper-
ates on temporal coefficient image blocks, as described in Appendix A and illustrated
in Figure A.1. Since there are K temporal coefficient images, the maximum number of
coefficients (rank) for each matrix is equal to K.

One can analyze the effect of a single coefficient in the LLR domain by constructing
a system input with a uniform patch in the center of a single temporal coefficient image,
and zero elsewhere. The TPSF is then computed by passing the system input through the
forward operator and its adjoint:

↵
TPSF

= �

⇤
K

S

⇤
F

⇤
PFS�

K

↵
input

. (C.1)

The procedure is repeated K times; each repetition places the uniform patch in the subse-
quent temporal coefficient image. The final TPSF is a K-by-K grid of temporal coefficient
images. The TPSF depends on the spatio-temporal sampling scheme used. In Figure 3.5,
both the center-out and the randomly shuffled sampling patterns were constructed such
that every phase encode was sampled exactly once (i.e. no parallel imaging acceleration
or repeated phase encode re-sampling). The center-out TPSF shows coherent interference
and blurring, and the coefficients are coupled. This demonstrates the difficulty of de-
convolution. The randomly shuffled TPSF shows incoherent interference and maintains
a sharp central patch. The coefficients are decoupled, and the interference manifests as
benign noise-like artifacts.
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Appendix D

Sampling Pattern and Echo Train
Formation

In T2 Shuffling, phase encodes are randomly shuffled and re-acquired throughout the
echo trains. To leverage compressed sensing-based approaches, each echo time is sam-
pled with a variable-density Poisson disc sampling pattern, as shown in Figure 3.9. The
first two echoes follow a conventional center-out phase encode ordering so that they can
be used for coil sensitivity estimation. The number of samples in each sampling pattern
is equal to the number of echo trains, N

trains

, and is

R =

r
⇡

4

N
y

⇥N
z

N
trains

⇥ ⌧
, (D.1)

where (N
y

, N
z

) are the k-space phase encode dimensions and ⌧ ⇡ 1.1 is a “fudge factor”
so that the number of actual points is greater than or equal to N

trains

. The ⇡/4 factor is
included because the corners of k-space are not acquired [40]. After generating the masks
each with acceleration factor R, points are randomly pruned until each mask contains ex-
actly N

trains

samples. The total number of acquired samples is equal to T ·N
trains

, where T
is the echo train length (ETL). Each mask can incorporate additional sampling strategies,
such as partial Fourier acquisition [121], fully sampled center, etc.

Echo trains are formed by choosing one sample from each sampling pattern. Though
it is possible to assign phase encodes to echo trains arbitrarily, this could result in eddy
current effects due to the large, random jumps in k-space. To reduce these effects, phase
encodes are grouped locally to form an echo train. The general problem of assigning
phase encodes based on local distances takes the form of the linear bottleneck assign-
ment problem and can be solved with the Hungarian Algorithm [194]. Instead, a simpler
greedy approach based on k-nearest neighbors is used, shown in Algorithm D.1. Start-
ing with one point from the mask of the first TE that is fully sampled at the center, the
closest neighboring point is chosen from the mask of the next TE. This process is repeated
for each sampling pattern and these T points comprise the first echo train. The process
repeats until all echo trains are formed.
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Algorithm D.1 Randomly shuffled sampling pattern and echo train formation.
Inputs: N

y

, N
z

, N
trains

, T , ⌧
Outputs: trains [N

trains

, T] – array of phase encodes to acquire
1: trains zeros(N

trains

, T)
2: masks zeros(N

y

, N
z

, T)
3: R Eq. (D.1)
4: for i = 1 : T do
5: mask genVDPoissonMask(N

y

, N
z

, R, ⌧)
6: masks[:,:,i] mask.randprune(N

trains

)
7: end for
8: for n = 1 : N

trains

do
9: trains[n, 1] RandomPoint(masks[:,:,1])

10: RemovePointFromMask(trains[n, 1], masks[:,:,1])
11: for j = 2 : T do
12: trains[n, j] FindClosestPoint(trains[n,j � 1], masks[:,:,j])
13: RemovePointFromMask(trains[n, j], masks[:,:,j])
14: end for
15: end for
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