
numpywren: serverless linear algebra

Vaishaal Shankar
Karl Krauth
Qifan Pu
Eric Jonas
Shivaram Venkataraman
Ion Stoica
Benjamin Recht
Jonathan Ragan-Kelley

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-137
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-137.html

October 22, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research is supported in part by ONR awards N00014-17-1-2191,
N00014-17-1-2401, and N00014-18-1-2833, the DARPA Assured
Autonomy (FA8750-18-C-0101) and Lagrange (W911NF-16-1-0552)
programs, Amazon AWS AI Research Award, NSF CISE Expeditions Award
CCF-1730628 and gifts from
Alibaba, Amazon Web Services, Ant Financial, Arm, CapitalOne, Ericsson,
Facebook, Google, Huawei, Intel,
Microsoft, Scotiabank, Splunk and VMware as well as by NSF grant DGE-
1106400.

We would like to thank Horia Mania, Alyssa Morrow and Esther Rolf for
helpful comments while writing this paper.

numpywren: Serverless Linear Algebra

Vaishaal Shankar1, Karl Krauth1, Qifan Pu1,
Eric Jonas1, Shivaram Venkataraman2, Ion Stoica1, Benjamin Recht1, and Jonathan Ragan-Kelley1

1UC Berkeley
2UW Madison

Abstract
Linear algebra operations are widely used in scientific

computing and machine learning applications. However,
it is challenging for scientists and data analysts to run lin-
ear algebra at scales beyond a single machine. Traditional
approaches either require access to supercomputing clus-
ters, or impose configuration and cluster management
challenges. In this paper we show how the disaggregation
of storage and compute resources in so-called “serverless”
environments, combined with compute-intensive work-
load characteristics, can be exploited to achieve elastic
scalability and ease of management.

We present numpywren, a system for linear algebra
built on a serverless architecture. We also introduce
LAmbdaPACK, a domain-specific language designed
to implement highly parallel linear algebra algorithms
in a serverless setting. We show that, for certain lin-
ear algebra algorithms such as matrix multiply, singu-
lar value decomposition, and Cholesky decomposition,
numpywren’s performance (completion time) is within
33% of ScaLAPACK, and its compute efficiency (total
CPU-hours) is up to 240% better due to elasticity, while
providing an easier to use interface and better fault tol-
erance. At the same time, we show that the inability of
serverless runtimes to exploit locality across the cores in
a machine fundamentally limits their network efficiency,
which limits performance on other algorithms such as
QR factorization. This highlights how cloud providers
could better support these types of computations through
small changes in their infrastructure.

1 Introduction
As cloud providers push for resource consolidation and
disaggregation [16], we see a shift in distributed com-
puting towards greater elasticity. One such example is
the advent of serverless computing (e.g., AWS Lambda,

Start End
Time

0

25k

50k

75k

100k

M
ax

im
um

 T
hr

ea
ds

Working Set Size
Maximum Threads

0

2

4

6

8

W
or

ki
ng

 S
et

 S
iz

e
(T

B
)

Figure 1: Theoretical profile of available parallelism
and required working set size over time in a distributed
Cholesky decomposition. Traditional HPC programming
models like MPI couple machine parallelism and mem-
ory capacity, and require a static allocation for the life-
time of a process. This is inefficient both due to the
changing ratio of parallelism to working set, and the
sharp decrease in utilization over time.

Google Cloud Functions, Azure Functions) which pro-
vides users with instant access to large compute capabil-
ity without the overhead of managing a complex cluster
deployment. While serverless platforms were originally
intended for event-driven, stateless functions, and come
with corresponding constraints (e.g., small memory and
short run-time limits per invocation), recent work has
exploited them for other applications like parallel data
analysis [25] and distributed video encoding [15]. These
workloads are a natural fit for serverless computing as
they are either embarrassingly parallel or use simple
communication patterns across functions. Exactly how
complex the communication patterns and workloads can
be and still efficiently fit in a stateless framework remains
an active research question.
Linear algebra operations are at the core of many data-
intensive applications. Their wide applicability covers
both traditional scientific computing problems such as

weather simulation, genome assembly, and fluid dynam-
ics, as well as emerging computing workloads, including
distributed optimization [32], robust control [40] and
computational imaging [22]. As the data sizes for these
problems continue to grow, we see increasing demand
for running linear algebra computations at large scale.

Unfortunately, running large-scale distributed linear
algebra remains challenging for many scientists and data
analysts due to accessibility, provisioning, and cluster
management constraints. Traditionally, such linear al-
gebra workloads are run on managed high performance
computing (HPC) clusters, access to which is often be-
hind walls of paperwork and long job wait queues. To
lower the bar for access, providers such as Amazon Web
Services (AWS), Google, and Microsoft Azure now pro-
vide HPC clusters in the cloud [5, 19, 6]. While the
HPC-in-the-cloud model looks promising, it adds ex-
tra configuration complexity, since users have to choose
from a complex array of configuration options including
cluster size, machine types, and storage types [41].

This extends to many existing systems that run large-
scale linear algebra on data parallel systems [34, 21, 12]
and that are deployed on a cluster of virtual machines
(VMs). This complexity is further exacerbated by the fact
that many linear algebra workloads have large dynamic
range in memory and computation requirements over
the course of their execution. For example, performing
Cholesky decomposition [7]—one of the most popular
methods for solving systems of linear equations—on a
large matrix generates computation phases with oscil-
lating parallelism and decreasing working set size (Fig-
ure 1). Provisioning a cluster of any static size will either
slow down the job or leave the cluster under-utilized.

Our key insight is that, for many linear algebra opera-
tions, regardless of their complex structure, computation
time often dominates communication for large problem
sizes, e.g., O(n3) compute and O(n2) communication
for Cholesky decomposition. Thus, with appropriate
blocking and pipelining, we find that it is possible to use
high-bandwidth but high-latency distributed storage as a
substitute for large-scale distributed memory.

Based on this idea, we design numpywren, a system
for linear algebra on serverless architectures. numpywren
runs computations as stateless functions while storing
intermediate state in a distributed object store. numpy-
wren executes programs written using LAmbdaPACK, a
high level DSL we designed that makes it easy to express
state-of-the-art communication avoiding linear algebra
algorithms [2] with fine-grained parallelism. Importantly,
operating on large matrices at fine granularity can lead to
very large task graphs (16M nodes for a matrix with 1M

rows and columns, even with a relatively coarse block
size of 4K), and the lack of a dedicated driver in the
serverles setting would mean each worker would need a
copy of the task graph to reason about the dependencies
in the program. We address this by using ideas from the
literature of loop optimization and show that the LAmb-
daPACK runtime can scale to large matrix sizes while
generating programs of constant size.

Our evaluation shows that for a number of important
linear algebra operations (e.g., Cholesky decomposition,
matrix multiply, SVD) numpywren can rival the per-
formance of highly optimized distributed linear algebra
libraries running on a dedicated cluster.

We also show that in these favorable cases numpywren
is more flexible and can consume 32% fewer CPU-hours,
while being fault-tolerant. Compared to fault-tolerant
data parallel systems like Dask, we find that numpywren
is up to 320% faster and can scale to larger problem sizes.
We also show that with LAmbdaPACK we can implicitly
represent structured task graphs with millions of nodes
in as little as 2 KB.

However, for all algorithms stateless function execu-
tion imposes large communication overhead. Most dis-
tributed linear algebra algorithms heavily exploit locality
where an instance with n cores can share a single copy
of the data. In serverless systems, every a function has
a single core and as these functions could be execute on
any machine, we need to send n copies of the data to
reach n cores. These limitations affect our performance
for certain algorithms, such as QR decomposition. We
discuss these limitations and potential solutions in Sec 5.

In summary we make the following contributions:

1. We provide the first concrete evidence that certain
large scale linear algebra algorithms can be effi-
ciently executed using purely stateless functions
and disaggregated storage.

2. We design LAmbdaPACK, a domain specific lan-
guage for linear algebra algorithms that captures
fine grained dependencies and can express state of
the art communication avoiding linear algebra algo-
rithms in a succinct and readable manner.

3. We show that numpywren can scale to run Cholesky
decomposition on a 1Mx1M matrix, and is within
36% of the completion time of ScaLAPACK run-
ning on dedicated instances, and can be tuned to use
33% fewer CPU-hours.

2

2 Background
2.1 Serverless Landscape
In the serverless computing model, cloud providers offer
the ability to execute functions on demand, hiding clus-
ter configuration and management overheads from end
users. In addition to the usability benefits, this model
also improves efficiency: the cloud provider can mul-
tiplex resources at a much finer granularity than what
is possible with traditional cluster computing, and the
user is not charged for idle resources. However, in order
to efficiently manage resources, cloud providers place
limits on the use of each resource. We next discuss how
these constraints affect the design of our system.
Computation. Computation resources offered in server-
less platforms are typically restricted to a single CPU
core and a short window of computation. For example
AWS Lambda provides 300 seconds of compute on a
single AVX/AVX2 core with access to up to 3 GB of
memory and 512 MB of disk storage. Users can execute
a number of parallel functions, and, as one would expect,
the aggregate compute performance of these executions
scales almost linearly.

The linear scalability in function execution is only use-
ful for embarrassingly parallel computations when there
is no communication between the individual workers.
Unfortunately, as individual workers are transient and
as their start-up times could be staggered, a traditional
MPI-like model of peer-to-peer communication will not
work in this environment. This encourages us to leverage
storage, which can be used as an indirect communication
channel between workers.
Storage. Cloud providers offer a number of storage
options ranging from key-value stores to relational
databases. Some services are not purely elastic in the
sense that they require resources to be provisioned before-
hand. However distributed object storage systems like
Amazon S3 or Google Cloud Storage offer unbounded
storage where users are only charged for the amount of
data stored. From the study done in [25] we see that
AWS Lambda function invocations can read and write
to Amazon S3 at 250 GB/s. Having access to such high
bandwidth means that we can potentially store intermedi-
ate state during computation in a distributed object store.
However such object stores typically have high latency
(∼10ms) to access any key meaning we need to design
our system to perform coarse-grained access. Finally, the
cost of data storage in an object storage system is often
orders of magnitude lower when compared to instance
memory. For example on Amazon S3 the price of data
storage is $0.03 per TB-hour; in contrast the cheapest
large memory instances are priced at $6 per TB-hour.

This means that using a storage system could be cheaper
if the access pattern does not require instance memory.
PubSub. In addition to storage services, cloud providers
also offer publish-subscribe services like Amazon SQS
or Google Task Queue. These services typically do not
support high data bandwidths but can be used for “con-
trol plane” state like a task queue that is shared between
all serverless function invocations. Providers often of-
fer consistency guarantees for these services, and most
services guarantee at least once delivery.

2.2 Linear Algebra Algorithms
Given the motivating applications, in this work, we
broadly focus on the case of large-scale dense linear
algebra. Algorithms in this regime have a rich litera-
ture of parallel communication-avoiding algorithms and
existing high performance implementations [2, 7, 8, 17].

To motivate the design decisions in the subsequent
sections we briefly review the communication and com-
putation patterns of a core subroutine in solving a linear
system, Cholesky factorization.
Case study: Cholesky factorization is one of the most
popular algorithms for solving linear equations, and it
is widely used in applications such as matrix inversion,
partial differential equations, and Monte Carlo simula-
tions. To illustrate the use of Cholesky decomposition,
consider the problem of solving a linear equation Ax = b,
where A is a symmetric positive definite matrix. One can
first perform a Cholesky decomposition of A into two
triangular matrices A = LLT (O(n3)), then solve two rel-
atively simpler equations of Ly = b (O(n2) via forward
substitution) and LT x = y (O(n2) via back substitution)
to obtain the solution x. From this process, we can see
that the decomposition is the most expensive step.

Communication-Avoiding Cholesky [7] is a well-
studied routine to compute a Cholesky decomposition.
The algorithm divides the matrix into blocks and derives
a computation order that minimizes total data transfer.
We pick this routine not only because it is one of the most
performant, but also because it showcases the structure
of computation found in many linear algebra algorithms.

The pseudo-code for communication-avoiding
Cholesky decomposition is shown in Algorithm 1.
At each step of the outer loop (j), the algorithm first
computes Cholesky decomposition of a single block
A j j (Fig. 2(a)). This result is used to update the “panel”
consisting of the column blocks below Ai j (Fig. 2(b)).
Finally all blocks to the right of column j are updated by
indexing the panel according to their respective positions
(Fig. 2(c)). This process is repeated by moving down the
diagonal (Fig. 2(d)).

We make two key observations from analyzing the

3

Iter = 1Iter = 0Iter = 0Iter = 0

Local Cholesky

Low Rank Update

Task Dependence

Column Update…

Figure 2: First 4 time steps of parallel Cholesky decomposition: 0) Diagonal block Cholesky decomposition 1) Parallel
column update 2) Parallel submatrix update 3) (subsequent) Diagonal block Cholesky decomposition

Algorithm 1 Communication-Avoiding Cholesky [7]
Input:
A - Positive Semidefinite Symmetric Matrix
B - block size
N - number of rows in A
Blocking:
Ai j - the i j-th block of A
Output:
L - Cholesky Decomposition of A

1: for j ∈
{

0...dN
B e

}
do

2: L j j⇐ cholesky(A j j)
3: for all i ∈

{
j+1...dN

B e
}

do in parallel
4: Li j⇐ L−1

j j Ai j
5: end for
6: for all k ∈

{
j+1...dN

B e
}

do in parallel
7: for all l ∈

{
k...dN

B e
}

do in parallel
8: Akl ⇐ Akl−LT

k jLl j
9: end for

10: end for
11: end for

computational structure of Algorithm 1. First, we see
that the algorithm exhibits dynamic parallelism during
execution. The outer loop consists of three distinct steps
with different amounts of parallelism, from O(1), O(K)
to O(K2), where K is the enclosing sub-matrix size at
each step. In addition, as K decreases at each iteration,
overall parallelism available for each iteration decreases
from O(K2) to O(1) as shown in Figure 1. Our sec-
ond observation is that the algorithm has fine-grained
dependencies between the three steps, both within an
iteration and across iterations. For example, Akl in step
3 can be computed as long as Lk j and Ll j are available
(line 8). Similarly, the next iteration can start as soon
as A(j+1)(j+1) is updated. Such fine-grained dependen-
cies are hard to exploit in single program multiple data
(SPMD) or bulk synchronous parallel (BSP) systems
such as MapReduce or Apache Spark, where global syn-
chronous barriers are enforced between steps.

2.3 numpywren Overview

We design numpywren to target linear algebra workloads
that have execution patterns similar to Cholesky decom-
position described above. Our goal is to adapt to the
amount of parallelism when available and we approach
this by decomposing programs into fine-grained execu-
tion units that can be run in parallel. To achieve this at
scale in a stateless setting, we propose performing depen-
dency analysis in a decentralized fashion. We distribute
a global dependency graph describing the control flow of
the program to every worker. Each worker then locally
reasons about its down stream dependencies based on its
current position in the global task graph. In the next two
sections we will describe LAmbdaPACK the DSL that
allows for compact representations of these global depen-
dency graphs, and the numpywren execution engine that
runs the distributed program.

3 Programming Model
In this section we present an overview of LAmbdaPACK,
our domain specific language for specifying parallel lin-
ear algebra algorithms. Classical algorithms for high
performance linear algebra are difficult to map directly
to a serverless environment as they rely heavily on peer-
to-peer communication and exploit locality of data and
computation – luxuries absent in a serverless computing
cluster. Furthermore, most existing implementations of
linear algebra algorithms like ScalaPACK are explicitly
designed for stateful HPC clusters.

We thus design LAmbdaPACK to adapt ideas from re-
cent advances in the numerical linear algebra community
on expressing algorithms as directed acyclic graph (DAG)
based computation [1, 13]. Particularly LAmbdaPACK
borrows techniques from Dague [14] a DAG execution
framework aimed at HPC environments, though we dif-
fer in our analysis methods and target computational
platform. We design LAmbdaPACK to allow users to
succinctly express tiled linear algebra algorithms. These
routines express their computations as operations on ma-
trix tiles, small submatrices that can fit in local memory.
The main distinction between tiled algorithms and the
classical algorithms found in libraries like ScaLAPACK

4

is that the algorithm itself is agnostic to machine lay-
out, connectivity, etc., and only defines a computational
graph on the block indices of the matrices. This uniform,
machine independent abstraction for defining complex al-
gorithms allows us to adapt most standard linear algebra
routines to a stateless execution engine.

3.1 Language Design
LAmbdaPACK programs are simple imperative routines
which produce and consume tiled matrices. These pro-
grams can perform basic arithmetic and logical opera-
tions on scalar values. They cannot directly read or write
matrix values; instead, all substantive computation is per-
formed by calling native kernels on matrix tiles. Matrix
tiles are referenced by index, and the primary role of the
LAmbdaPACK program is to sequence kernel calls, and
to compute the tile indices for each.
LAmbdaPACK programs include simple for loops and if
statements, but there is no recursion, only a single level
of function calls, from the LAmbdaPACK routine to ker-
nels. Each matrix tile index can be written to only once, a
common design principle in many functional languages 1.
Capturing index expressions as symbolic objects in this
program is key to the dependence analysis we perform.
These simple primitives are powerful enough to concisely
implement algorithms such as Tall Skinny QR (TSQR),
LU, Cholesky, and Singular Value decompositions. A
description of LAmbdaPACK is shown in Figure 3, and
examples of concrete LAmbdaPACK implementations
of Cholesky and TSQR are shown in Figures 4 and 5.

3.2 Program Analysis
There are no parallel primitives present in LAmbda-
PACK, but rather the LAmbdaPACK runtime deduces
the underlying dependency graph by statically analyzing
the program. In order to execute a program in parallel,
we construct a DAG of kernel calls from the dependency
structure induced by the program. Naively converting
the program into an executable graph will lead to a DAG
explosion as the size of the data structure required to
represent the program will scale with the size of the input
data, which can lead to intractable compilation times.
Most linear algebra algorithms of interest are O(N3),
and even fast symbolic enumeration of O(N3) opera-
tions at runtime as used by systems like MadLINQ [34]
can lead to intractable compute times and overheads for
large problems.

1Arbitrary programs can be easily translated into this static single
assignment form, but we have found it natural to program directly in
this style

Uop = Neg| Not| Log| Ceiling| Floor| Log2
Bop = Add| Sub| Mul| Div| Mod| And| Or
Cop = EQ | NE | LT | GT | LE | GE

IdxExpr = IndexExpr(Str matrix_name,
Expr[] indices)

Expr = BinOp(Bop op, Expr left, Expr right)
| CmpOp(Cop op, Expr left, Expr right)
| UnOp(Uop op, Expr e)
| Ref(Str name)
| FloatConst(float val)
| IntConst(int val)

Stmt = KernelCall(Str fn_name,
IdxExpr[] outputs,
IdxExpr[] matrix_inputs,
Expr[] scalar_inputs)

| Assign(Ref ref, Expr val)
| Block(Stmt* body)
| If(Expr cond, Stmt body, Stmt? else)
| For(Str var, Expr min,

Expr max, Expr step, Stmt body)

Figure 3: A description of the LAmbdaPACK language.

In contrast, we borrow and extend techniques from
the loop optimization community to convert a LAmbda-
PACK program into an implicit directed acyclic graph.
We represent each node N in the program’s DAG as a
tuple of (line_number, loop_indices). With
this information any statement in the program’s iteration
space can be executed. The challenge now lies in de-
ducing the downstream dependencies given a particular
node in the DAG. Our approach is to handle dependency
analysis at at runtime: whenever a storage location is
being written to, we determine expressions in N (all
lines, all loop indices) that read from the same storage
location.

We solve the problem of determining downstream de-
pendencies for a particular node by modeling the con-
straints as a system of equations. We assume that the
number of lines in a single linear algebra algorithm will
be necessarily small. However, the iteration space of the
program can often be far too large to enumerate directly
(as mentioned above, this is often as large as O(n3)).
Fortunately the pattern of data accesses in linear alge-
bra algorithms is highly structured. Particularly when
arrays are indexed solely by affine functions of loop vari-
ables—that is functions of the form ai+b, where i is a
loop variable and a and b are constants known at compile
time—standard techniques from loop optimization can
be employed to efficiently find the dependencies of a
particular node. These techniques often involve solving
a small system of integer-valued linear equations, where
the number of variables in the system depends on the
number of nested loop variables in the program.

5

Example of linear analysis. Consider the Cholesky pro-
gram in Figure 4. If at runtime a worker is executing line
7 of the program with i = 0, j = 1 and k = 1, to find the
downstream dependencies, the analyzer will scan each
of the 7 lines of the program and calculate whether there
exists a valid set of loop indices such that S[1,1,1] can be
read from at that point in the program. If so then the tu-
ple of (line_number, loop_indices) defines the
downstream dependency of such task, and becomes a
child of the current task. All index expressions in this
program contain only affine indices, thus each system
can be solved exactly. In this case the only child is the
node (2, {i : 1, j : 1,k : 1}). Note that this procedure only
depends on the size of the program and not the size of
the data being processed.
Nonlinearites and Reductions. Certain common algo-
rithmic patterns—particularly reductions—involve non-
linear loop bounds and array indices. Unlike traditional
compilers, since all our analysis occurs at runtime, all
loop boundaries have been determined. Thus we can
solve the system of linear and nonlinear equations by
first solving the linear equations and using that solution
to solve the remaining nonlinear equations.
Example of nonlinear analysis. Consider the TSQR
program in Figure 5. Suppose at runtime a worker
is executing line 6 with level = 0 and i = 6, then we
want to solve for the loop variable assignments for
R[i+ 2level , level] = R[6,1] (line 7). In this case one of
the expressions contains a nonlinear term involving i and
level and thus we cannot solve for both variables directly.
However we can solve for level easily and obtain the
value 1. We then plug in the resulting value into the
nonlinear expression to get a linear equation only involv-
ing i. Then we can solve for i and arrive at the solution
(6, {i : 4, level : 1}). We note that the for loop structures
defined by Figure 5 define a tree reduction with branch-
ing factor of 2. Using this approach we can capture the
nonlinear array indices induced by tree reductions in
algorithms such as Tall-Skinny QR (TSQR), Communi-
cation Avoiding QR (CAQR), Tournament Pivoting LU
(TSLU), and Bidiagonal Factorization (BDFAC). The
full pseudo code for our analysis algorithm can be found
in Algorithm 2.
Implementation. To allow for accessibility and ease of
development we embed our language in Python. Since
most LAmbdaPACK call into optimized BLAS and LA-
PACK kernels, the performance penalty of using a high
level interpreted language is small.

4 System Design
We next present the system architecture of numpywren.
We begin by introducing the high level components in

1 def cholesky(O:BigMatrix,S:BigMatrix,N:int):
2 for i in range(0,N)
3 O[i,i] = chol(S[i,i,i])
4 for j in range(i+1,N):
5 O[j,i] = trsm(O[i,i], S[i,j,i])
6 for k in range(i+1,j+1):
7 S[i+1,j,k] = syrk(
8 S[i,j,k], O[j,i], O[k,i])

Figure 4: Sample LAmbdaPACK of Cholesky Decom-
position

1 def tsqr(A:BigMatrix, R:BigMatrix, N:Int):
2 for i in range(0,N):
3 R[i, 0] = qr_factor(A[i])
4 for level in range(0,log2(N))
5 for i in range(0,N,2**(level+1)):
6 R[i, level+1] = qr_factor(
7 R[i, level], R[i+2**level, level])

Figure 5: Sample LAmbdaPACK of Tall-Skinny QR
Decomposition

Algorithm 2 LAmbdaPACK Analysis
Input:
P - The source of a LAmbdaPACK program
A - a concrete array that is written to
idx - the concrete array index of A writen to
Output:
O = {N0, ...,Nk} - A concrete set of program nodes
that read from A[idx]

1: O = {}
2: for line ∈P do
3: for M ∈ line.read matrices do
4: if M = A then
5: S = SOLV E(M.symbolic idx− idx = 0)
6: O = O∪S
7: end if
8: end for
9: end for

numpywren and trace the execution flow for a computa-
tion. Following that we describe techniques to achieve
fault tolerance and mitigate stragglers. Finally we dis-
cuss the dynamic optimizations that are enabled by our
design.

To fully leverage the elasticity and ease-of-
management of the cloud, we build numpywren entirely
upon existing cloud services while ensuring that we can
achieve the performance and fault-tolerance goals for
high performance computing workloads. Our system
design consists of five major components that are inde-
pendently scalable: a runtime state store, a task queue,
a lightweight global task scheduler, a serverless com-
pute runtime, and a distributed object store. Figure 6

6

Task Queue
low rank
 update

 column
 update

λ λ
Executors

λ

Provisioner λ

Runtime State
...

...

Object Store
4 X

3 4

bucket/output/

5 4

4 2

bucket/input/
16 12

12 25

20 31

16 20

16 16

12 13

30 28

25 21

46 27

27 20

30 25

28 21

50 37

37 30

20 16

31 20

16 12

16 13

 Get/Write
 State

 Get/Add
 Tasks

 Get Num
 Tasks

 Spawn Lambdas

 Get/Put
 Blocks

Figure 6: The architecture of the execution framework of numpywren showing the runtime state during a 6×6 cholesky
decomposition. The first block cholesky instruction has been executed as well as a single column update.

illustrates the components of our system.
The execution proceeds in the following steps:

1. Task Enqueue: The client process enqueues the first
task that needs to be executed into the task queue. The
task queue is a publish-subscribe style queue that con-
tains all the nodes in the DAG whose input dependencies
have been met and are ready to execute.
2. Executor Provisioning: The length of the task queue
is monitored by a provisioner that manages compute
resources to match the dynamic parallelism during exe-
cution. After the first task is enqueued, the provisioner
launches an executor. The exact number of stateless
workers that are provisioned depends on the auto-scaling
policy and we discuss the policy used in Section 4.2. As
the provisioner’s role is only lightweight it can also be
executed periodically as a “serverless” cloud function.
3. Task Execution: Executors manage executing and
scheduling numpywren tasks. Once an executor is ready,
it polls the task queue to fetch the highest priority task
available and executes the instructions encoded in the
task. Most tasks involve reading input from and writing
output to the object store, and executing BLAS/LAPACK
functions. The object store is assumed to be a distributed,
persistent storage system that supports read-after-write
consistency for individual keys. Using a persistent object
store with a single static assignment language is helpful
in designing our fault tolerance protocol. Executors self
terminate when they near the runtime limit imposed by
many serverless systems (300s for AWS Lambda). The
provisioner is then left in charge of launching new work-
ers if necessary. As long as we choose the coarsness of
tasks such that many tasks can be successfully completed
in the allocated time interval, we do not see too large
of a performance penalty for timely worker termination.
Our fault tolerance protocol keeps running programs in a
valid state even if workers exceed the runtime limit and
are killed mid-execution by the cloud provider.
4. Runtime State Update: Once the task execution is
complete and the output has been persisted, the executor

updates the task status in the runtime state store. The
runtime state store tracks the control state of the entire ex-
ecution and needs to support fast, atomic updates for each
task. If a completed task has children that are “ready” to
be executed the executor adds the child tasks to the task
queue. The atomicity of the state store guarantees every
child will be scheduled. We would like to emphasize that
we only need transactional semantics within the runtime
state store, we do not need the runtime state store and the
child task enqueuing to occur atomically. We discuss this
further in Section 4.1. This process of using executors
to perform scheduling results in efficient, decentralized,
fine grained scheduling of tasks.

4.1 Fault Tolerance
Fault tolerance in numpywren is much simpler to achieve
due to the disaggregation of compute and storage. Be-
cause all writes to the object store are made durable, no
recomputation is needed after a task is finished. Thus
fault tolerance in numpywren is reduced to the prob-
lem of recovering failed tasks, in contrast to many sys-
tems where all un-checkpointed tasks have to be re-
executed [34]. There are many ways to detect and re-run
failed tasks. In numpywren we do this via a simple lease
mechanism [20], which allows the system to track task
status without a scheduler periodically communicating
with executors.
Task Lease: In numpywren, all the pending and exe-
cutable tasks are stored in a task queue. We maintain a
invariant that a task can only be deleted from the queue
once it is completed (i.e., the runtime state store has
been updated and the output persisted to the object store).
When a task is fetched by a worker, the worker obtains a
lease on the task. For the duration of the lease, the task is
marked invisible to prevent other workers from fetching
the same task. As the lease length is often set to a value
that is smaller than task execution time, e.g., 10 seconds,
a worker also is responsible for renewing the lease and
keeping a task invisible when executing the task.

7

Failure Detection and Recovery: During normal oper-
ation, the worker will renew lease of the task using a
background thread until the task is completed. If the task
completes, the worker deletes the task from the queue. If
the worker fails, it can no longer renew the lease and the
task will become visible to any available workers. Thus,
failure detection happens through lease expiration and
recovery latency is determined by lease length.
Straggler Mitigation: The lease mechanism also en-
ables straggler mitigation by default. If a worker stalls
or is slow, it can fail to renew a lease before it expires.
In this case, a task can be executed by multiple workers.
The runtime limit imposed by serverless system act as a
global limit for the amount of times a worker can renew
their lease, after which the worker will terminate and the
task will be handed to a different worker. Because all
tasks are idempotent, this has no effect on the correct-
ness, and can speed up execution. numpywren does not
require a task queue to have strong guarantees such as
exactly-once, in-order delivery, as long as the queue can
deliver each task at least once. Such weak “at-least once
delivery” guarantee is provided by most queue services.

4.2 Optimizations

We next describe optimizations that improve perfor-
mance by fully utilizing resources of a worker.
Pipelining: Every LAmbdaPACK instruction block has
three execution phases: read, compute and write. To
improve CPU utilization and I/O efficiency, we allow a
worker to fetch multiple tasks and run them in parallel.
The number of parallel tasks is called pipeline width. Ide-
ally, with a single-core worker, we can have at most three
tasks running in parallel, each doing read, compute and
write respectively. With an appropriately chosen block
size, we get best utilization when these three phases take
approximately same time. We find pipelining to greatly
improve overall utilization, and reduce end-to-end com-
pletion time when resources are constrained.
Auto Scaling: In contrast to the traditional serverless
computing model where each new task is assigned a
new container, task scheduling and worker management
is decoupled in numpywren. This decoupling allows
auto-scaling of computing resources for a better cost-
performance trade-off. Historically many auto-scaling
policies have been explored [37]. In numpywren, we
adopt a simple auto-scaling heuristic and find it achieves
good utilization while keeping job completion time low.
For scaling up, numpywren’s auto-scaling framework
tracks the number of pending tasks and periodically in-
creases the number of running workers to match the

Algorithm
ScaLAPACK

(sec)
numpywren

(sec)
Slow
down

SVD 57,919 77,828 1.33x
QR 3,486 25,108 7.19x
GEMM 2,010 2,670 1.33x
Cholesky 2,417 3,100 1.28x

Table 1: A comparison of ScaLAPACK vs numpywren
execution time across algorithms when run on a square
matrix with N=256K

pending tasks with a scaling factor s f . For instance, let
s f = 0.5, when there are 100 pending tasks, 40 running
workers, we launch another 100∗0.5−40 = 10 workers.
If pipeline width is not 1, numpywren also factors in
pipeline width. For scaling down, numpywren uses an
expiration policy where each worker shuts down itself if
no task has been found for the last Ttimeout seconds. At
equilibrium, the number of running workers is s f times
the number of pending tasks. All of the auto-scaling
logic is handled by the “provisioner” in Figure 6.

5 Evaluation

We evaluate numpywren on 4 linear algebra algorithms
Matrix Multiply (GEMM), QR Decomposition (QR) ,
Singular Value Decomposition (SVD) 2 and Cholesky
Decomposition (Cholesky). All of the algorithms have
computational complexity of O(N3) but differ in their
data access patterns. For all four algorithms we com-
pare to ScalaPACK, an industrial strength Fortran library
designed for high performance, distributed dense linear
algebra. We then break down the underlying communi-
cation overheads imposed by the serverless computing
model. We also do a detailed analysis of the scalability
and fault tolerance of our system using the Cholesky de-
composition. We compare our performance to Dask [36],
a python-based fault-tolerant library that supports dis-
tributed linear algebra. Finally, we evaluate optimiza-
tions in numpywren and how they affect performance
and adaptability.

5.1 Setup
Implementation. Our implementation of numpywren is
around 6000 lines of Python code and we build on the

2Only the reduction to banded form is done in parallel for the SVD

8

0.0 0.5 1.0
Job Progress

0

500

1000

1500

2000
G

ig
aB

yt
es

 R
ea

d

6.5x

ScaLAPACK
numpywren

(a) GEMM

0.0 0.5 1.0
Job Progress

0

2000

4000

6000

G
ig

aB
yt

es
 R

ea
d

15xScaLAPACK
numpywren

(b) QR

Figure 7: Comparing network bytes for GEMM and QR

Algorithm
numpywren
(core-secs)

ScaLAPACK
(core-secs)

Resource
saving

SVD 8.6e6 2.1e7 2.4x
QR 3.8e6 1.3e6 0.31x

GEMM 1.9e6 1.4e6 0.74x
Cholesky 3.4e5 4.3e5 1.26x

Table 2: A comparison of ScaLAPACK vs numpywren
total CPU time (in core-secs) across algorithms run on a
256K size square matrix. Resource saving is defined as
ScaLAPACK core-secs
numpywren core-secs .

Amazon Web Service (AWS) platform. For our runtime
state store we use Redis, a key-value store offered by
ElasticCache. Though ElasticCache is a provisioned (not
“serverless”) service we find that using a single instance
suffices for all our workloads. We used Amazon’s sim-
ple queue service (SQS) for the task queue, Lambda for
function execution, and S3 for object storage. We run
ScaLAPACK and Dask on c4.8xlarge3 instances. To
obtain a fair comparison with ScaLAPACK and Dask,
when comparing to other frameworks we run numpywren
on a “emulated” Lambda environment on the same EC2
instances used for other systems 4. We chose the number
of instances for each problem size by finding the mini-
mum number of instances such that ScaLAPACK could
complete the algorithm successfully.

5.2 System Comparisons

We first present end-to-end comparison of numpywren
to ScaLAPACK on four widely used dense linear alge-
bra methods in Table 1. We compare ScaLAPACK to
numpywren when operating on square matrices of size
256K.

360 GB of memory, 18 Physical Cores, 10 GBit network link
4After imposing all the constraints enforced by AWS Lambda in

this emulated environment (memory, disk, runtime limits), we found
no performance difference between real Lambda and our emulation.

In table 1 we see that the constraints imposed by the
serverless environment lead to a performance penalty
between 1.3x to 7x in terms of wall clock time. The
difference in the runtime of QR is particularly large, we
note that this is primarily due to the high communication
penalty our system incurs due to the constraints imposed
by the serverless environment.

In Figure 7 we compare the number of bytes read
over the network by a single machine for two algo-
rithms: GEMM and QR decomposition. We see that the
amount of bytes read by numpywren is always greater
than ScaLAPACK. This is a direct consequence of each
task being stateless, thus all its arguments must be read
from a remote object store. Moreover we see that for QR
decomposition and GEMM, ScaLAPACK reads 15x and
6x less data respectively than numpywren. We discuss
future work to address this in Section 7.

In Table 2 we compute the total amount of core-
seconds used by numpywren and ScaLAPACK. For
ScaLAPACK the core-seconds is the total amount of
cores multiplied by the wall clock runtime. For numpy-
wren we calculate how many cores were actively working
on tasks at any given point in time during computation
to calculate the total core-seconds. For algorithms such
as SVD and Cholesky that have variable parallelism,
while our wall clock time is comparable (within a fac-
tor of 2), we find that numpywren uses 1.26x to 2.5x
less resources. However for algorithms that have a fixed
amount of parallelism such as GEMM, the excess com-
munication performed by numpywren leads to a higher
resource consumption.

5.3 Scalability

We next look at scalability of numpywren and use the
Cholesky decomposition study performance and utiliza-
tion as we scale. For ScaLAPACK and Dask, we start
with 2 instances for the smallest problem size. We scale
the number of instances by 4x for a 2x increase in ma-
trix dimension to ensure that the problem fits in cluster
memory. Figure 8a shows the completion time when
running Cholesky decomposition on each framework, as
we increase the problem size. Similar to numpywren,
ScaLAPACK has a configurable block size that affects
the coarseness of local computation. We report comple-
tion time for two different block sizes (4K and 512) for
ScaLAPACK in Figure 8a. We use a block size of 4K
for numpywren. To get an idea of the communication
overheads, we also plot a lower bound on completion
time based on the clock-rate of the CPUs used.

From the figure we see that numpywren is 10 to

9

128k 256k 512k 1m
Problem Size

0

2000

4000

6000

8000

10000

12000

14000
C

om
pl

et
io

n
Ti

m
e

(s
ec

s)

XX

Lower Bound
ScaLAPACK512
ScaLAPACK4k
numpywren
Dask

(a)

256k 512k 1m
Problem Size

0

10

20

30

40

50

60

C
P

U
 T

im
e

(m
ill

io
n

se
co

nd
s)

ScaLAPACK512
ScaLAPACK4k
numpywren

(b)

0 200k 400k 600k
Problem Size

0

2000

4000

6000

C
om

pl
et

io
n

Ti
m

e Ideal
Observed

(c)

Figure 8: a) Completion time on various problem sizes when numpywren is run on same setup as ScaLAPACK and
Dask. b) Total execution core-seconds for Cholesky when the numpywren, ScaLAPACK, and Dask are optimized for
utilization. c) Weak scaling behavior of numpywren. Error bars show minimum and maximum time.

15% slower than ScaLAPACK-4K and 36% slower than
ScaLAPACK-512. Compared to ScaLAPACK-4K, we
perform more communication due to the stateless nature
of our execution. ScaLAPACK-512 on the other hand
has 64x more parallelism but correspondingly the blocks
are only 2MB in size and the small block size does not af-
fect the MPI transfers. While numpywren is 50% slower
than Dask at smaller problem sizes, this is because ask
execution happens on one machine for small problems
avoiding communication. However on large problem
sizes, Dask spends a majority of its time serializing and
deserializing data and fails to complete execution for the
512k and 1M matrix sizes.
Weak Scaling. In Figure 8c we focus on the weak-
scaling behavior of numpywren. Cholesky decompo-
sition has an algorithmic complexity of O(N3) and a
maximum parallelism of O(N2), so we increase our core
count quadratically from 57 to 1800 as we scale the prob-
lem from 65k to 512k. We expect our ideal curve (shown
by the green line in Figure 8c) to be a diagonal line.
We see that our performance tracks the ideal behavior
quite well despite the extra communication overheads
incurred.
Utilization. We next look at how resource utilization
varies with scale. We compare aggregate core-hours in
Figure 8b for different problem sizes. In this experi-
ment we configured all three frameworks, ScaLAPACK,
Dask and numpywren to minimize total resources con-
sumed. We note that for ScaLAPACK and Dask this is
often the minimum number of machines needed to fit
the problem in memory. Compared to ScaLAPACK-512
we find that numpywren uses 20% to 33% lower core
hours. Disaggregated storage allows numpywren to have

N
Full
DAG

Time (s)

LambdaPack
time (s)

DAG
Size

(# nodes)

Expanded
DAG
(MB)

Compiled
Program

(MB)

65k 3.56 0.019 4k 0.6 0.027
128k 4.02 0.027 32k 4.6 0.027
256k 12.57 0.065 256k 36.3 0.027
512k 49.0 0.15 2M 286 0.027
1M 450 0.44 16M 2270 0.027

Table 3: Benefits of LAmbdaPACK analysis in terms of
program size and time to enumerate DAG dependencies.

the flexibility to run with 4x less cores but increases
completion time by 3x. In contrast to numpywren, clus-
ter computation frameworks need a minimum resource
allocation to fit the problem in memory, thus such a per-
formance/resource consumption trade-off is not possible
on Dask or ScaLAPACK.

5.4 Optimizations and Adaptability

We next evaluate optimizations in numpywren (Section 4)
and how those affect performance and adapatbility.
Pipelining Benefits. We measured the benefits of
pipelining using Cholesky decomposition of a matrix of
size 256K. We see that pipelining drastically improves
the resource utilization profile as shown in Figure 9a.
The average flop rate on a 180 core cluster is 40% higher
with pipelining enabled.
Fault Recovery. We next measure performance of
numpywren under intermittent failures of the cloud func-
tions. Failures can be common in this setting as cloud

10

0 100 200 300 400 500
Time (secs)

0

2000

4000

6000

ag
gr

eg
at

e
G

FL
O

P
/s Serial Execution

Pipelined Execution

(a)

100 200 300
Time (Seconds)

0

3000

ag
gr

eg
at

e
G

FL
O

P
/s

60

180

W
or

ke
r C

ou
nt

(b)

Figure 9: a) Runtime profile with and without pipelining. b) Graceful degredation and recovery of system performance
with failure of 80% of workers.

2048 3072 4096 5120
Block Size

5000

10000

C
om

pl
et

io
n

Ti
m

e
(s

ec
s)

1800 Cores
180 Cores

(a)

0 100 200 300 400 500
time (sec)

0

250

500

750

1000

co
un

t

running workers
tasks in queue

(b)

200 300 400 500 600 700 800
job completion time (sec)

0.2
0.3
0.4
0.5
0.6
0.7
0.8

co
st

 ($
)

2
3/2
1 1/2 1/3

1/4 1/5 1/6

Better

(c)

Figure 10: a) Effect of block size on completion time b) Our auto-scaling policy in action. The number of workers
increases as the task queue builds up, decreases as the queue is being cleared c) Cost performance trade-off when
varying auto-scaling factor (as labeled next to the data points)

functions can get preempted or slow down due to con-
tention. In the experiment in Figure 9b we start with
180 workers and after 150 seconds, we inject failures in
80% of the workers. The disaggregation of resources
and the fine grained computation performed by our ex-
ecution engine leads to a performance penalty linear in
the amount of workers that fail. Using the autoscaling
technique discussed in 4.2, Figure 9b also shows that
we can replenish the worker pool to the original size in
20 seconds. We find there is an extra 20 second delay
before the computation picks back up due the the startup
communication cost of reading program arguments from
the object store.

Auto-scaling. Figure 10b shows our auto-scaling policy
in action. We ran the first 5000 instructions of a 256k
Cholesky solve on AWS Lambda with s f = 1.0 (as men-
tioned in subsection 4.2) and pipeline width = 1. We see
that numpywren adapts to the dynamic parallelism of the
workload. Another important question is how to set the
parameters, i.e., scaling factor s f and Ttimeout . We use
simple heuristics and empirical experiments to decide
these two parameters and leave more rigorous investiga-
tion for future work. We set Ttimeout = 10s, which is the
average start-up latency of a worker. For s f , we want
to make sure that when a new worker (started during
scaling up) becomes ready, the task queue should not be
completely empty, so the worker can be utilized. Fig-
ure 10c shows the trade-off between cost-vs-completion
time as we vary s f . From the figure we see that as s f

decreases we waste fewer resources but the completion
time becomes worse. At higher values of s f the job fin-
ishes faster but costs more. Finally we see that there are
a range of values of s f (1/4, 1/3, 1/2, 1) that balance
the cost and execution time. Outside of the range, either
there are always tasks in the queue, or overly-aggressive
scaling spawns workers that do not execute any tasks.
As described in Section 4.2, the balanced range is deter-
mined by worker start-up latency, task graph, execution
time and pipeline width.
DAG Compression. In Table 3 we measure the LAmb-
daPACK’s ability to express large program graphs with
constant space, and moreover that we can compile such
programs quickly. This is crucial for efficient execution
since memory is scarce in the serverless environment,
and distributing a large program DAG to each worker
can dramatically affect performance. We see that as ma-
trix sizes grow to 1Mx1M the DAG takes over 2 GB of
memory LAmbdaPACK lowers this to 2 KB making it
feasible to execute on large matrices.
Blocksize A parameter that is of interest in performance
tuning of distributed linear algebra algorithms is the block
size which defines the coarseness of computation. We
evaluate the effect of block size on completion time in
Figure 10a. We run the same workload (a 256K Cholesky
decomposition) at two levels of parallelism, 180 cores
and 1800 cores. We see that in the 180 core case, larger
block size leads to significantly faster completion time
as each task performs more computation and can hide

11

communication overheads. With higher parallelism, we
see that the largest block size is slowest as it has the least
opportunity to exploit the parallelism available. However,
we also see that the smallest block size (2048) is affected
by latency overheads in both regimes.

6 Related Work

Distributed Linear Algebra Libraries Building dis-
tributed systems for linear algebra has long been an ac-
tive area of research. Initially, this was studied in the
context of High Performance Computing (HPC), where
frameworks like ScaLAPACK [10], DPLASMA [13] and
Elemental [33] run on a multi-core, shared-memory ar-
chitecture with high performance network interconnect.
However, on-demand access to a HPC cluster can be
difficult. While one can run ScaLAPACK or DPLASMA
in the cloud, it is undesirable due to their lack of fault
tolerance. On the other hand, with the wide adoption
of MapReduce or BSP-style data analytics in the cloud,
a number of systems have implemented linear algebra
libraries [12, 28, 26, 21, 38]. However, the BSP-style
programming API is ill-suited for expressing the fine-
grained dependencies in linear algebra algorithms, and
imposing global synchronous barriers often greatly slows
down a job. Thus not surprisingly, none of these sys-
tems [12, 28, 26, 21] have an efficient implementation
of distributed Cholesky decomposition that can compare
with numpywren or ScaLAPACK. The only dataflow-
based system that supports fine grained dependencies
is MadLINQ [34]. numpywren differs from MadLINQ
in that it is designed for a serverless architecture and
achieves recomputation-free failure (since the previously
computed blocks will remain in the object store) recov-
ery by leveraging resource disaggregation, compared to
MadLINQ where lost blocks need to be recomputed dur-
ing recovery. SystemML [12] takes a similar approach
to LAmbdaPACK in providing a high level framework
for numerical computation, however they target a BSP
backend and focus on machine learning algorithms as
opposed to linear algebra primitives.
Serverless Frameworks: The paradigm shift to server-
less computing has brought new innovations to many
traditional applications. One predominant example is
SQL processing, which is now offered in a serverless
mode by many cloud providers [9, 3, 18, 35]. Serverless
general computing platforms (OpenLambda [23], AWS
Lambda, Google Cloud Functions, Azure Functions, etc.)
have led to new computing frameworks [4, 15, 25]. Even
a complex analytics system such as Apache Spark has
been ported to run on AWS Lambda [39]. However, none

of the previous frameworks deal with complex commu-
nication patterns across stateless workers. numpywren
is, to our knowledge, the first large-scale linear algebra
library that runs on a serverless architecture.
Auto-scaling and Fault Tolerance Efforts that add fault
tolerance to ScaLAPACK has so far demonstrated to in-
cur significant performance overhead [11]. For almost
all BSP and dataflow systems[30, 24, 29], recomputa-
tion is required to restore stateful workers or datasets
that have not been checkpointed. MadLINQ [34] also
uses dependency tracking to minimize recomputation for
its pipelined execution. In contrast, numpywren uses a
serverless computing model where fault tolerance only
requires re-executing failed tasks and no recomputation
is required. numpywren’s failure detection is also differ-
ent and we use a lease-based mechanism. The problem
of auto-scaling cluster size to fit dynamic workload de-
mand has been both studied [27] and deployed by many
cloud vendors. However, due to the relatively high start-
up latency of virtual machines, its cost-saving capacity
has been limited. numpywren exploits the elasticity of
serverless computing to achieve better cost-performance
trade-off.

7 Discussion and Future Work

Collective Communication and Colocation. One of
the main drawbacks of the serverless model is the high
communication needed due to the lack of locality and
efficient broadcast primitives. One way to alleviate this
would be to have coarser serverless executions (e.g., 8
cores instead of 1) that process larger portions of the input
data. Colocation of lambdas could also achieve similar
effects if the colocated lambdas could efficiently share
data with each other. Finally, developing services that
provide efficient collective communication primitives
like broadcast will also help address this problem.
Higher-level libraries. The high level interface in
numpywren paves way for easy algorithm design and
we believe modern convex optimization solvers such as
CVXOPT can use numpywren to scale to much larger
problems. Akin to Numba [31] we are also working
on automatically translating numpy code directly into
LAmbdaPACK instructions than can be executed in par-
allel.

In conclusion, we have presented numpywren, a dis-
tributed system for executing large-scale dense linear
algebra programs via stateless function executions. We
show that the serverless computing model can be used
for computationally intensive programs with complex
communication routines while providing ease-of-use and

12

seamless fault tolerance, through analysis of the interme-
diate LAmbdaPACK language. Furthermore, the elastic-
ity provided by serverless computing allows our system
to dynamically adapt to the inherent parallelism of com-
mon linear algebra algorithms. As datacenters continue
their push towards disaggregation, platforms like numpy-
wren open up a fruitful area of research for applications
that have long been dominated by traditional HPC.

8 Acknowledgements

This research is supported in part by ONR awards
N00014-17-1-2191, N00014-17-1-2401, and N00014-
18-1-2833, the DARPA Assured Autonomy (FA8750-
18-C-0101) and Lagrange (W911NF-16-1-0552)
programs, Amazon AWS AI Research Award, NSF
CISE Expeditions Award CCF-1730628 and gifts from
Alibaba, Amazon Web Services, Ant Financial, Arm,
CapitalOne, Ericsson, Facebook, Google, Huawei, Intel,
Microsoft, Scotiabank, Splunk and VMware as well as
by NSF grant DGE-1106400.

We would like to thank Horia Mania, Alyssa Morrow
and Esther Rolf for helpful comments while writing this
paper.

References
[1] AGULLO, E., DEMMEL, J., DONGARRA, J., HADRI, B.,

KURZAK, J., LANGOU, J., LTAIEF, H., LUSZCZEK, P., AND
TOMOV, S. Numerical linear algebra on emerging architectures:
The plasma and magma projects. In Journal of Physics: Confer-
ence Series (2009), vol. 180, IOP Publishing, p. 012037.

[2] ANDERSON, M., BALLARD, G., DEMMEL, J., AND KEUTZER,
K. Communication-avoiding qr decomposition for gpus. In
Parallel & Distributed Processing Symposium (IPDPS), 2011
IEEE International (2011), IEEE, pp. 48–58.

[3] Amazon Athena. http://aws.amazon.com/athena/.

[4] Serverless Reference Architecture: MapRe-
duce. https://github.com/awslabs/
lambda-refarch-mapreduce.

[5] Amazon AWS High Performance Clusters. https://aws.
amazon.com/hpc.

[6] Microsoft Azure High Performance Computing. https:
//azure.microsoft.com/en-us/solutions/
high-performance-computing.

[7] BALLARD, G., DEMMEL, J., HOLTZ, O., AND SCHWARTZ,
O. Communication-optimal parallel and sequential cholesky
decomposition. SIAM Journal on Scientific Computing 32, 6
(2010), 3495–3523.

[8] BALLARD, G., DEMMEL, J., HOLTZ, O., AND SCHWARTZ, O.
Minimizing communication in numerical linear algebra. SIAM
Journal on Matrix Analysis and Applications 32, 3 (2011), 866–
901.

[9] Google BigQuery. https://cloud.google.com/
bigquery/.

[10] BLACKFORD, L. S., CHOI, J., CLEARY, A., PETITET, A.,
WHALEY, R. C., DEMMEL, J., DHILLON, I., STANLEY, K.,
DONGARRA, J., HAMMARLING, S., HENRY, G., AND WALKER,
D. Scalapack: A portable linear algebra library for distributed
memory computers - design issues and performance. In Proceed-
ings of ACM/IEEE Conference on Supercomputing (1996).

[11] BLAND, W., DU, P., BOUTEILLER, A., HERAULT, T.,
BOSILCA, G., AND DONGARRA, J. A checkpoint-on-failure pro-
tocol for algorithm-based recovery in standard mpi. In European
Conference on Parallel Processing (2012), Springer, pp. 477–488.

[12] BOEHM, M., DUSENBERRY, M. W., ERIKSSON, D., EV-
FIMIEVSKI, A. V., MANSHADI, F. M., PANSARE, N., REIN-
WALD, B., REISS, F. R., SEN, P., SURVE, A. C., ET AL. Sys-
temml: Declarative machine learning on spark. Proceedings of
the VLDB Endowment 9, 13 (2016), 1425–1436.

[13] BOSILCA, G., BOUTEILLER, A., DANALIS, A., FAVERGE,
M., HAIDAR, A., HERAULT, T., KURZAK, J., LANGOU, J.,
LEMARINIER, P., LTAIEF, H., ET AL. Flexible development
of dense linear algebra algorithms on massively parallel archi-
tectures with dplasma. In Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), 2011 IEEE International
Symposium on (2011), IEEE, pp. 1432–1441.

[14] BOSILCA, G., BOUTEILLER, A., DANALIS, A., HERAULT,
T., LEMARINIER, P., AND DONGARRA, J. Dague: A generic
distributed dag engine for high performance computing. Parallel
Computing 38, 1-2 (2012), 37–51.

[15] FOULADI, S., WAHBY, R. S., SHACKLETT, B., BALASUBRA-
MANIAM, K., ZENG, W., BHALERAO, R., SIVARAMAN, A.,
PORTER, G., AND WINSTEIN, K. Encoding, fast and slow:
Low-latency video processing using thousands of tiny threads. In
NSDI (2017), pp. 363–376.

[16] GAO, P. X., NARAYAN, A., KARANDIKAR, S., CARREIRA,
J., HAN, S., AGARWAL, R., RATNASAMY, S., AND SHENKER,
S. Network requirements for resource disaggregation. In OSDI
(2016), vol. 16, pp. 249–264.

[17] GEORGANAS, E., GONZALEZ-DOMINGUEZ, J., SOLOMONIK,
E., ZHENG, Y., TOURINO, J., AND YELICK, K. Communi-
cation avoiding and overlapping for numerical linear algebra.
In Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (2012),
IEEE Computer Society Press, p. 100.

[18] Amazon Glue. https://aws.amazon.com/glue/.

[19] Google Cloud High Performance Computing. https:
//cloud.google.com/solutions/architecture/
highperformancecomputing.

[20] GRAY, C., AND CHERITON, D. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency. In
Proceedings of the Twelfth ACM Symposium on Operating Sys-
tems Principles (1989), SOSP ’89, pp. 202–210.

[21] GU, R., TANG, Y., TIAN, C., ZHOU, H., LI, G., ZHENG, X.,
AND HUANG, Y. Improving execution concurrency of large-scale
matrix multiplication on distributed data-parallel platforms. In
IEEE Transactions on Parallel & Distributed Systems (2017).

[22] HEIDE, F., DIAMOND, S., NIESSNER, M., RAGAN-KELLEY, J.,
HEIDRICH, W., AND WETZSTEIN, G. Proximal: Efficient image
optimization using proximal algorithms. ACM Transactions on
Graphics (TOG) 35, 4 (2016), 84.

13

http://aws.amazon.com/athena/
https://github.com/awslabs/lambda-refarch-mapreduce
https://github.com/awslabs/lambda-refarch-mapreduce
https://aws.amazon.com/hpc
https://aws.amazon.com/hpc
https://azure.microsoft.com/en-us/solutions/high-performance-computing
https://azure.microsoft.com/en-us/solutions/high-performance-computing
https://azure.microsoft.com/en-us/solutions/high-performance-computing
https://cloud.google.com/bigquery/
https://cloud.google.com/bigquery/
https://aws.amazon.com/glue/
https://cloud.google.com/solutions/architecture/highperformancecomputing
https://cloud.google.com/solutions/architecture/highperformancecomputing
https://cloud.google.com/solutions/architecture/highperformancecomputing

[23] HENDRICKSON, S., STURDEVANT, S., HARTER, T.,
VENKATARAMANI, V., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Serverless computation with open-
lambda. In Proceedings of the 8th USENIX Conference on Hot
Topics in Cloud Computing (2016), HotCloud’16.

[24] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FETTERLY,
D. Dryad: distributed data-parallel programs from sequential
building blocks. ACM SIGOPS operating systems review 41, 3
(2007), 59–72.

[25] JONAS, E., PU, Q., VENKATARAMAN, S., STOICA, I., AND
RECHT, B. Occupy the cloud: distributed computing for the 99%.
In Proceedings of the 2017 Symposium on Cloud Computing
(2017), ACM, pp. 445–451.

[26] Apache Mahout. https://mahout.apache.org.

[27] MAO, M., AND HUMPHREY, M. Auto-scaling to minimize cost
and meet application deadlines in cloud workflows. In Proceed-
ings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (2011).

[28] MENG, X., BRADLEY, J., YAVUZ, B., SPARKS, E.,
VENKATARAMAN, S., LIU, D., FREEMAN, J., TSAI, D., AMDE,
M., OWEN, S., XIN, D., XIN, R., FRANKLIN, M. J., ZADEH,
R., ZAHARIA, M., AND TALWALKAR, A. Mllib: Machine learn-
ing in apache spark. Journal of Machine Learning Research 17,
34 (2016), 1–7.

[29] MORITZ, P., NISHIHARA, R., WANG, S., TUMANOV, A., LIAW,
R., LIANG, E., PAUL, W., JORDAN, M. I., AND STOICA, I.
Ray: A distributed framework for emerging ai applications. arXiv
preprint arXiv:1712.05889 (2017).

[30] MURRAY, D. G., SCHWARZKOPF, M., SMOWTON, C., SMITH,
S., MADHAVAPEDDY, A., AND HAND, S. Ciel: a universal
execution engine for distributed data-flow computing. In Proc.
8th ACM/USENIX Symposium on Networked Systems Design and
Implementation (2011), pp. 113–126.

[31] Numba. https://numba.pydata.org/.

[32] PARIKH, N., BOYD, S., ET AL. Proximal algorithms. Founda-
tions and Trends in Optimization 1, 3 (2014), 127–239.

[33] POULSON, J., MARKER, B., VAN DE GEIJN, R. A., HAM-
MOND, J. R., AND ROMERO, N. A. Elemental: A new frame-
work for distributed memory dense matrix computations. ACM
Transactions on Mathematical Software (TOMS) 39, 2 (2013),
13.

[34] QIAN, Z., CHEN, X., KANG, N., CHEN, M., YU, Y., MOSCI-
BRODA, T., AND ZHANG, Z. Madlinq: large-scale distributed
matrix computation for the cloud. In Proceedings of the 7th
ACM European Conference on Computer Systems (2012), ACM,
pp. 197–210.

[35] Amazon Redshift Spectrum. https://aws.amazon.com/
redshift/spectrum/.

[36] ROCKLIN, M. Dask: Parallel computation with blocked algo-
rithms and task scheduling. In Proceedings of the 14th Python in
Science Conference (2015).

[37] ROY, N., DUBEY, A., AND GOKHALE, A. Efficient autoscaling
in the cloud using predictive models for workload forecasting. In
Cloud Computing (CLOUD), 2011 IEEE International Confer-
ence on (2011), IEEE, pp. 500–507.

[38] SEO, S., YOON, E. J., KIM, J., JIN, S., KIM, J.-S., AND
MAENG, S. Hama: An efficient matrix computation with the
mapreduce framework. In CLOUDCOM (2010).

[39] Apache Spark on AWS Lambda. https://www.qubole.
com/blog/spark-on-aws-lambda/.

[40] TU, S., BOCZAR, R., PACKARD, A., AND RECHT, B. Non-
asymptotic analysis of robust control from coarse-grained identi-
fication. arXiv preprint arXiv:1707.04791 (2017).

[41] VENKATARAMAN, S., YANG, Z., FRANKLIN, M., RECHT, B.,
AND STOICA, I. Ernest: Efficient performance prediction for
large-scale advanced analytics. In NSDI (2016).

14

https://mahout.apache.org
https://numba.pydata.org/
https://aws.amazon.com/redshift/spectrum/
https://aws.amazon.com/redshift/spectrum/
https://www.qubole.com/blog/spark-on-aws-lambda/
https://www.qubole.com/blog/spark-on-aws-lambda/

	Introduction
	Background
	Serverless Landscape
	Linear Algebra Algorithms
	numpywren Overview

	Programming Model
	Language Design
	Program Analysis

	System Design
	Fault Tolerance
	Optimizations

	Evaluation
	Setup
	System Comparisons
	Scalability
	Optimizations and Adaptability

	Related Work
	Discussion and Future Work
	Acknowledgements

