
Sparse optimization models with robust sketching and
applications

Vu Pham

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-145
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-145.html

December 1, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Sparse optimization models with robust sketching and applications

by

Vu Pham

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:
Professor Laurent El Ghaoui, Chair

Professor Marti Hearst
Professor Ming Gu

Fall 2016

Sparse optimization models with robust sketching and applications

Copyright 2016
by

Vu Pham

1

Abstract

Sparse optimization models with robust sketching and applications

by

Vu Pham
Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Laurent El Ghaoui, Chair

Sparse machine learning has recently emerged as powerful tool to obtain models of
high-dimensional data with high degree of interpretability, at low computational cost.
The approach has been successfully used in many areas, such as signal and image process-
ing. In sparse learning classification, for example, the prediction accuracy or some other
classical measure of performance is not the sole concern: we also wish to be able to better
understand which few features are relevant as markers for classification. Furthermore,
many of sparse learning tasks in practice, including cross-validation, parameter search,
or leave-one-out analysis, involve multiple instances of similar problems, each instance
sharing a large part of learning data with the others. In this thesis, we introduce a ro-
bust framework for solving these multiple sparse regressions in the form of square-root
LASSO problems, based on a sketch of the learning data that uses low-rank approxi-
mations. Our approach allows a dramatic reduction in computational effort, while not
sacrificing—sometimes even improving—the statistical performance.

We present our technique by first studying sparse optimization with applications in
different domain of interests, from text analytics to system design, and then developing
theories for robust solutions for sparse regression in multi-instance setting. We also pro-
vide comparisons with other heuristics to obtain sparse models in various applications.
In more detail, our central contributions from this thesis include:

• Identifying key tasks in domains of interests under real-world setting,

• Suggesting models that are suitable for these tasks along the axes of computational
complexity and model understandability,

• Exploiting problem structures when working with multiple instances to robustly
improve computation while maintaining high learning performance, and

• Proposing applications of our robust solutions in high-dimensional setting.

i

To my family

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Goals and contributions . 1
1.2 Organization of the thesis . 2
1.3 Notation . 3

2 Sparse optimization in text analytics 5
2.1 Sparse learning overview . 5
2.2 Sparse learning models . 6

2.2.1 Sparse classification and regression 6
2.2.1.1 LASSO regression. 6
2.2.1.2 Other loss functions. 7

2.2.2 Sparse principal component analysis 8
2.2.3 Sparse graphical models . 10
2.2.4 Thresholded models . 10
2.2.5 Text analytics tasks . 12

2.2.5.1 Topic summarization . 12
2.2.5.2 Discrimination between several corpora 13
2.2.5.3 Visualization and clustering 13

3 Case study in text analytics 14
3.1 Sparse PCA and LDA: comparative study 14

3.1.1 Amazon Data Set . 15
3.1.2 Reuters Data Set . 17
3.1.3 NSF Data Set . 17
3.1.4 Running time . 20

3.2 Case study on ASRS data . 20
3.3 Related work on ASRS data . 22
3.4 Understanding Categories . 23

iii

3.4.1 Recovering categories . 23
3.4.2 Sparse PCA for understanding categories 23
3.4.3 Thresholded Latent Dirichlet Allocation 30

3.5 Analysis of runway incursion incidents . 31
3.5.1 Co-occurrence analysis . 31
3.5.2 Näıve Bayes classification . 31
3.5.3 LASSO . 33
3.5.4 Tree images via two-stage LASSO 33

3.6 Summary . 38

4 Sparse optimization in energy systems 39
4.1 Sparse surrogate model . 40

4.1.1 Posynomial model . 40
4.1.2 Signomial model . 40

4.2 Parameter optimization . 41
4.2.1 Posynomial model . 41
4.2.2 Signomial model . 42
4.2.3 Iterative sampling and optimization 42

4.3 Real-life examples . 43
4.3.1 NACA 4412 Airfoil . 43
4.3.2 EDF 22 buildings . 44

4.3.2.1 Data simulation . 44
4.3.2.2 Model fitting . 44
4.3.2.3 Parameter optimization 45

4.3.3 Refined fitting . 47
4.4 Summary . 47

5 Robust sketching for sparse models 49
5.1 Robust sketching overview . 49
5.2 Robust sketching with square-root LASSO 51

5.2.1 Robust square-root LASSO . 51
5.2.2 Computational time complexity . 55
5.2.3 Safe feature elimination . 57
5.2.4 Non-robust square-root LASSO . 60

5.3 Robust sketching with regression and posynomial model 62
5.4 Experimental results . 64

5.4.1 Complexity on synthetic data . 64
5.4.2 Cross validation and leave-one-out 65
5.4.3 Binary classification . 65

5.5 Applications . 68
5.5.1 Sparse posynomial model . 68
5.5.2 Sparse inverse covariance estimation 70

iv

5.6 Summary . 70

6 Conclusion 73

Bibliography 75

A Algorithms for Lasso 84

B Algorithms for Square-root Lasso 87

C Algorithms for SPCA 90

v

List of Figures

3.1 A sparse PCA plot of the category ASRS data. Here, each data point is a
category, with size of the circles consistent with the number of reports in
each category. We have focussed the axes and visually removed category
B which appears to be a catch-all category. Each direction of the axes is
associated with only a few terms, allowing an easy understanding of what
each means. Each direction matches with one of the missions assigned to
pilots in FAA documents (in light blue). 25

3.2 A sparse PCA plot of the Runway data. Here, each data point is an air-
port, with size of the circles consistent with the number of reports for each
airport. We note that two out of four directions are more airport-specific
(shown in blue). 27

3.3 A sparse PCA plot of the runway ASRS data, with runway features removed. 28
3.4 Explained variance by SPCA and thresholded PCA. 29
3.5 A tree LASSO analysis of the DFW airport, showing the LASSO image

(inner circle) and for each term in that image, a further image. 35
3.6 A tree LASSO analysis of the CYYZ airport, showing the LASSO image

(inner circle) and for each term in that image, a further image. 36
3.7 Diagram of DFW. 37

4.1 Iterative sampling and optimization. 43
4.2 Signomial model sparsity versus relative error in power and temperature

modeling. 46
4.3 Solution path p∗ (γ) as the regularization parameter γ increases. 46
4.4 Histogram of power consumption and the predicted and actual value at

p∗ (γ0). 47

5.1 Graphs of the top 100 singular values from real-life text and digit recogni-
tion data sets. 50

5.2 Improved safe feature elimination with lower bound and upper bound. . . . 60
5.3 Non-robust versus Robust square-root LASSO under rank-1 approximated

data. The y-axis shows the values of non-zero components of the optimal
solution as λ varies. 61

vi

5.4 The ratio between the running time of our robust model and the original
model. 65

5.5 5-fold cross validation on Gisette data with robust approximation model. . 66
5.6 Classification performance and running time on RCV1 data set. 67
5.7 Classification performance and running time on Gisette data set. 67
5.8 Graphs of the top singular values from the NACA 4412 airfoil data. 68
5.9 Performance with different rank k. 69
5.10 Estimation with original and low-rank model 70

vii

List of Tables

3.1 Table of default parameters used in the LDA code of [95]. 15
3.2 Comparison between LDA (top) and Sparse PCA (bottom) on the Amazon

data set. 16
3.3 Comparison between LDA (top) and Sparse PCA (bottom) on the Reuters

data set. 18
3.4 Comparison between LDA (top) and Sparse PCA (bottom) on the NSF

data set. 19
3.5 Manually interpreted topics in the NSF data set experiment. 19
3.6 Computational times for LDA and sparse PCA. 20
3.7 LASSO images of the categories: each list of terms correspond to the most

predictive list of features in the classification of one category against all
the others. The numbers in parentheses denote the number of reports in
each category. The meaning of abbreviations is listed in Table 3.8. 24

3.8 Some abbreviations used in the ASRS data. 24
3.9 4 topics extracted from ASRS dataset. 30
3.10 6 topics extracted from ASRS dataset. 30
3.11 10 topics extracted from ASRS dataset. 31
3.12 Images of airports via the co-occurrence method on the binary term by

document matrix, without stop word removal. 32
3.13 Images of airports via the co-occurrence method, using TF-IDF scores. . . 33
3.14 Images of airports via Naïve Bayes classification, using the binary term by

document data. 34
3.15 Images of airports via LASSO regression, using TF-IDF data. 34

4.1 Drag force model fitting on NACA 4412 airfoil data set. 44
4.2 5 parameters of interest at EDF. 44
4.3 Model fitting results with relative error on power consumption. 45
4.4 Model fitting results with relative error on temperature deviation. 45
4.5 Relative error on validation set of refined fitting and original fitting 48

5.1 Datasets used in numerical experiments . 64
5.2 Comparisons of 5-fold cross-validation on real data sets (in CPU time). . . 66

viii

5.3 Parameter intervals used in sparse posynomial model 68
5.4 Computational time comparison on the NACA 4412 airfoil data (seconds). 70
5.5 Topic imaging for 5 query words on NIPS papers. 71
5.6 Topic imaging for 5 query words on New York Times articles. 71

ix

Acknowledgments

I owe credit to so many people for this thesis and I would like to apologize if I forget
to mention some of you in my acknowledgement. If I do, please forgive me and I would
be very happy to invite you out for dinner.

First of all, I’m greatly indebted to my doctoral advisor at Berkeley, Prof. Laurent
El Ghaoui, for supporting me throughout graduate study. More importantly, Prof. El
Ghaoui has put me into contact with many areas, given me the opportunity to work
with many world-leading scholars, and constantly been my role model as an example of
excellence and professionalism in academia and mentorship. Without my doctoral advisor,
I would not be able to explore diverse directions in my work, and pursue the topic I’m
most interested in. I always remember how my advisor has always made his invaluable
time to meet with me every week throughout many years of my PhD. Together with Prof.
El Ghaoui, there are a number of other faculty who have greatly supported me in my PhD
study. I would like to express my most sincere gratitude to Prof. Ming Gu, Prof. Marti
Hearst, and Prof. Michael Mahoney, who have given me extremely valuable feedback to
my results and suggested possible future directions for me to pursue.

Berkeley has been an amazing environment for me since the first day of my PhD. I
would like to thank Prof. Peter Bickel, Prof. Bin Yu, Prof. Ashok Srivastava, Prof.
Vu Duong, and Prof. Abigail De Kosnik for your great guidance, even before I joined
Berkeley for graduate school. Without their support, it would not be possible for me to
have the courage to follow this journey. I would like to express my deepest appreciation
to them and other amazing friends from the focus research group, including Sharmodeep
Bhattacharyya, Fu Shi, Siqi Wu, and many more. Additionally, I’ve been very fortunate to
be surrounded by wonderful peers and colleagues during my PhD in EECS and Statistics
department: Mert Pilanci, Andrew Godbehere, Jerome Thai, Walid Krichene, Arturo
Fernandez, Guan-Cheng Li. Moreover, during time at Cal, I’ve also had the best chance
to collaborate with many great graduate and undergraduate students, some of whom have
moved on to pursue graduate study and doctoral research in other institutions, and some
have started as young Professors in top-tier research universities.

No words can describe how much I fall in love with the culture at Cal, and most
importantly, the people of Berkeley. I’m fortunate to take part in amazing groups at
Cal; I cannot forget the time with the incredible Culture show team, playing board games
with housemates, and practicing sports with teammates at the RSF. It is thanks to diverse
groups at Berkeley where I learn to appreciate the beauty of other disciplines, such as
economics, physics, and management. You all are the amazing people whom I’ve loved
being with and whom I’ve always wanted to spend great time altogether.

Last but not least, I cannot stress enough how important my parents have been to
me during graduate school. Thank you Mom for encouraging me to pursue the best
education I can possibly get, and always reminding me to focus on the fundamentals.
Thank you Dad who always asks me to be myself and pursue what I’m truly passionate
about. Without your support, I would not have the courage to do what I love, and I could

x

not be the person who I am today. I always remember every moment since my childhood
with you, and I would like to dedicate this thesis to you. Wish you both good health and
great happiness from my loving heart.

1

Chapter 1

Introduction

Modern techniques in machine learning are essential to obtain models in the context of
big data and have been successfully used in many areas, such as artificial intelligence sys-
tems, signal and image processing [40, 73]. Sparse machine learning has recently emerged
as a powerful tool to identify models of high-dimensional setting with a high degree of
interpretability, at low computational cost. Specifically, sparse learning seeks a trade-off
between a model’s accuracy measure and sparsity of its result, which in turn provides
better insight into important building blocks of the model. An example is in binary
classification of data with genes as features; a researcher may wish to not only obtain a
high-precision classifier but also one that involves only a few genes, allowing biologists to
pivot future research efforts on these specific factors. There is an extensive body of liter-
ature on the topic of sparse learning, with terms such as compressed sensing or l1-norm
penalty [5, 18, 31]. In this thesis, we will study sparse learning under multi-instance set-
ting with perspectives from optimization theory. Broadly, we identify sparse optimization
models that, in addition to traditional probabilistic graphical models, provide insights to
experts on domains of interest at very low computational cost. In particular, we con-
sider engineering designs and text analytics tasks along the axes of model computation
and interpretability. One may ask why one needs to develop multi-instance approaches
with sparsity as an emphasis, and whether we can just simply employ traditional machine
learning methods and enforce sparsity as one last step? We will develop our response to
this alternative approach with practical examples throughout this thesis.

1.1 Goals and contributions
The focus of this thesis is to propose, via examples in engineering, machine learning,

and data analytics, approaches for sparse optimization with modest computation and high
sparsity for model understanding. By identifying key tasks from real-life case studies, we
exemplify our approach with real data sets such as energy profiles and safety reports to
evaluate the potential of the models in practice. Most importantly, via real-life examples,

2

we observe the multi-instance setting when working with large datasets, and propose our
method to exploit this structure. Based on these observation, we derive robust solutions
with fast algorithms without sacrificing statistical learning performance, while keeping
the problem structure simple. In particular, the goals of this thesis are to:

1. Motivate sparse optimization study with applications in different domain of inter-
ests, from system design to text analytics, and

2. Develop theories for robust solutions for sparse regression in multi-instance setting,
where data are often shared between many instances.

More specifically, the important contributions of the thesis are the following:

• We identify key tasks in these domains of interest under real-world setting,

• We employ models that are suitable for these tasks along the axes of computational
complexity and model understandability,

• We exploit problem structure when working with many instances to improve com-
putation while maintaining high learning performance,

• We discuss applications of our robust solutions in high-dimensional settings.

A common theme in our presentation is our emphasis on sparsity. We posit that by
pivoting our model on sparsity, we do not make the optimization algorithm harder, but
in fact, more tractable in the development of the model and more useful to experts
with the end-result. We also provide comparisons with other heuristic methods which
enforce sparsity as the final step of the computation process. Additionally we discuss safe
feature elimination techniques or screening rules for sparse optimization under very high
dimensional settings. In short, this thesis motivates sparsity in practical applications and
exploitation of problem structures in multi-instance and large-scale learning to improve
computational performance that can benefit human experts without requiring excessive
resources.

1.2 Organization of the thesis
The results of this thesis are based on joint work of me and collaborators. I’ll outline

the rest of this thesis while briefly describe our collaborations and previous results in each
portion. Chapter 2 of this thesis provides an overview on sparse models, with an example
from text analytics tasks. The presentation in this chapter serves as an introduction to
the theme of our thesis. We present our case study in Chapter 3, of which our results
are obtained from collaborations with Laurent El Ghaoui, Ashok Srivastava, Kanishka
Bhaduri, Guan-Cheng Li, and Viet-An Duong [38]. Comparative studies in this chapter
were inspired from previous work by Ashok Srivastava and Mehran Sahami [94].

3

Chapter 4 moves beyond text analytics to enter the area of energy system design.
Despite being a complex application in practice, engineering problems often benefit from
insights into dynamical systems, aiming to improve the performance, such as to mini-
mize temperature deviation from an ideal range. Our work on sparse models is based
on collaboration with a Fortune 500 company, Électricité de France (EDF), whose R&D
departments are active in the area of model predictive approaches in “energy manage-
ment”. The results from this chapter are also from our joint work with Chris Meissen,
Andy Packard, Laurent El Ghaoui, Giuseppe Calafiore, and Carlo Novara [19].

Examples from Chapter 3 and Chapter 4 serve as motivation for a main theme of this
thesis: sparse learning often occurs in multiple instances. In Chapter 5, we consider a
robust approach to sparse modeling under multi-instance setting. With an observation
that many instances in fact share most of the data, we take advantage of a pre-processing
step for data approximation (“sketching”), and exploit this structure in all instances.
Examples in this chapter tie back to the case studies discussed in previous chapters,
which summarize applications of our theoretical approach in practice. The development
of this chapter receives many inputs from Laurent El Ghaoui, Mert Pilanci, Vincent
Leclère [85]. Our work was inspired from the seminal paper 20 years ago on robust least
squares by Laurent El Ghaoui and Hervé Lebret [37]. Lastly, we conclude this thesis with
our discussion on notable results in Chapter 6.

1.3 Notation
In this section, we provide our basic notation before proceeding to the rest of the

thesis. Our notation is more or less standard; we will clarify our notation in the remaining
chapters when needed to avoid confusion.

Space. We use R to denote the set of real numbers, R+ to denote the set of nonnegative
real numbers, and R++ to denote the set of strictly positive real numbers. The set of
real vectors of dimension n is denoted Rn, and the set of real matrices of dimension
m × n matrices is denoted Rm×n, where m is the number of rows and n is the number
columns. Note that recently in high-dimensional settings, some authors may choose to
denote Rn×d where n is the number of rows (or observations), and d is the number of
features (or dimensions).

Vector. We delimit vectors and matrices with square brackets; all vector notations in
this thesis are column vectors, i.e.

x :=

 a
b
c

 =
[
a b c

]T
∈ R3

4

where a, b, c ∈ R. The special symbol 1 denotes a vector of all ones (whose dimensions
are determined from context). The comparison x ≥ 0 is a component-wise comparison,
i.e. x ∈ Rn

+. We refer to the ith component of a vector x by xi, even though occasionally
we will use the same notation as the ith block of vector x.

For block notation, we will use both column stacking, and row stacking, i.e., for x ∈ Rm

and y ∈ Rn, we have: [
x
y

]
∈ Rm+n

and [
xT yT

]
∈ R1×(m+n).

Norm. We denote norms of vectors and matrices using a standard notation. The l1-
norm, l2-norm (Euclidean norm), and l∞-norm of a vector are defined as

‖x‖1 ,
∑n
i=1 |xi|

‖x‖2 ,
√∑n

i=1 x
2
i

‖x‖∞ , maxni=1 |xi|

The cardinality of a vector x is the number of non-zero components, denoted ‖x‖0.
The Frobenius norm of a matrix A ∈ Rm×n is similar to the l2-norm of vectors:

‖A‖F =
√√√√ m∑
i=1

n∑
j=1

A2
ij

The maximum singular value of that matrix is denoted ‖A‖2.

Optimization. We denote our optimization problem with notation:

min
x∈C

f(x)

where C is the domain for the optimization variable x. We will omit the set C when x is
a real vector with dimension implicitly determined from context.

Note that a subset C of some vector space is convex, if the line segment between any
two points a, b ∈ C is contained entirely in C:

[a, b] := {λa+ (1− λ) b | 0 ≤ λ ≤ 1} ⊆ C.

A real-valued function f : C → R is convex if the line segment connecting the function
values at any two points a, b ∈ C lie above the graph of f in that range:

f (λa+ (1− λ) b) ≤ λf(a) + (1− λ) f(b), ∀0 ≤ λ ≤ 1.

5

Chapter 2

Sparse optimization in text analytics

Sparse learning has been successfully used in many areas of modeling, including dy-
namical systems, optimal control, signal and image processing. In this chapter, we present
an application of these methods that can also be useful in analyzing large collections of
text documents, without requiring user expertise in machine learning. Our proposed
approach relies on three main ingredients: (i) multi-document text summarization; (ii)
comparative summarization of two corpora, both using sparse regression or classification;
(iii) sparse principal components and sparse graphical models for unsupervised analysis
and visualization of large text corpora. We first give an overview of sparse learning meth-
ods, cover fundamental sparse models, and elaborate how to apply the concept of sparse
optimization into this area. This chapter serves as an introduction before we delve into
the journey of a case study in text analytics with sparse optimization approaches.

2.1 Sparse learning overview
Sparse machine learning refers to a set of learning algorithms that seek a trade-off

between some goodness-of-fit measure and sparsity of the result, the latter property al-
lowing better interpretability. In a sparse learning classification task, for example, the
prediction accuracy or some other classical measure of performance is not the sole concern:
we also wish to be able to better identify which few features are relevant as markers for
classification. Thus, if a binary classification task involves, for instance, data with genes
as features, one wishes to provide not only a high-performance classifier but also one
that only involves a few genes, allowing biologists to focus their further research efforts
on those specific genes. Binary classification algorithms often provide a weight for each
feature, hence if the weight vector is sparse (it contains many zero components), then the
features with nonzero weights are the ones that are the most relevant in understanding
the difference between the two classes. Similar benefits are derived from sparsity in the
context of unsupervised learning, as discussed in more detail later.

There is an extensive literature on the topic of sparse machine learning, with terms such

6

as compressed sensing, l1-norm penalties and convex optimization [5, 18, 20, 31, 98, 110],
often associated with the topic. Successful applications of sparse methods have been
reported, mostly in image and signal processing, for example in [40, 73, 77]. Owing to
the intensity of research in this area, many very efficient algorithms have been developed
for sparse machine learning in the recent past. Despite an initial agreement that sparse
learning problems are more computationally difficult than their non- sparse counterparts,
a new consensus might soon emerge that sparsity constraints or penalties actually help
reduce the computational burden involved in learning.

In this chapter we propose that sparse learning methods can be very useful to under-
stand large text databases. Of course, machine learning methods in general have already
been successfully applied to text classification and clustering, as evidenced by a large
body of literature, for example, by Thorsten Joachims [58]. We show that sparsity is
an important added property that is a crucial component in any tool aiming at pro-
viding interpretable statistical analysis, allowing in particular efficient multi-document
summarization, comparison, and visualization of huge-scale text corpora. More classical
algorithms, such as naive Bayes for supervised learning and latent Dirichlet allocation
(LDA) [14] for unsupervised learning can also be applied for such tasks. However, these
algorithms do not incorporate sparsity directly into the model, and applying them for
the text processing tasks considered here requires a final ‘thresholding’ step to make the
result interpretable, as discussed in detail later. The experiments in the following chapter
indicate that the sparse learning approach provides an efficient alternative to these popu-
lar models, and in the case of LDA, at a fraction of the computational cost, much better
readability of the code.

2.2 Sparse learning models
In this section, we review some of the main algorithms of sparse machine learning, and

then explain how these models can be used for some generic tasks arising in text analysis.

2.2.1 Sparse classification and regression
2.2.1.1 LASSO regression.

Perhaps the most well known example of sparse learning is the variant of least-squares
known as the LASSO [96], which takes the form:

min
β
‖XTβ − y‖2

2 + λ‖β‖1 (2.1)

where X is a n×m data matrix (with each row a specific feature, each column a specific
data point), y is a m-dimensional response vector, and λ > 0 is a parameter. The l1-norm
penalty encourages the regression coefficient vector β to be sparse, bringing interpretabil-
ity to the result. Indeed, if each row is a feature, then a zero element in β at the optimum

7

of (2.1) implies that that particular feature is absent from the optimal model. If λ is
large, then the optimal β is very sparse, and the LASSO model then allows to select the
few features that are the best predictors of the response vector.

The LASSO problem looks more complicated than its classical least-squares counter-
part. However, there is mounting evidence that, contrary to intuition, the LASSO is
substantially easier to solve than least-squares, at least for high values of the penalty
parameter λ. As shown later, in typical applications to text classification, a high value of
λ is desired, which is precisely the regime where the LASSO is computationally very easy
to solve. The so-called safe feature elimination procedure, introduced in [39], allows the
algorithm to cheaply detect that some of the components of β will be zero at optimum.
This in turn enables treating data sets having millions of terms and documents, at least
for high values of λ.

Many algorithms have been proposed for LASSO; one example is the Alternating
Direction Method of Multipliers [16]. We present the pseudocode of this algorithm below
and show a Matlab implementation in the Appendix.

α0 := 0
β0 := 0
γ0 := 0
for t := 0, 1, 2, . . . ,T do

αt+1 := argmin
α

λ‖α‖1 + ρ
2‖α− β

t + γt‖2
2

= argmin
α

λ
ρ
‖α‖1 + 1

2‖α− β
t + γt‖2

2

βt+1 := argmin
β

‖XTβ − y‖2
2 + ρ

2‖α
t+1 − β + γt‖2

2

γt+1 := γt + αt+1 − βt+1

end
Algorithm 1: ADMM algorithm for the LASSO.

There also exist alternative algorithms in solving the LASSO. With sparse input matrix
X, a simple method based on minimizing the objective function of (2.1) one coordinate
of β at a time is also very competitive as shown by Friedman and Nesterov[44, 79].

2.2.1.2 Other loss functions.

Similar models arise in the context of support vector machines (SVM) for binary
classification, where the sparse version takes the form (e.g. see[13]):

min
β,b

1
m

∑m
i=1 h(yi(xTi β + b)) + λ‖β‖1 (2.2)

where y is now the vector of ±1’s indicating class membership, and h is the so-called
hinge loss function, with values h(t) = max(0, 1 − t). At optimum of problem (2.2), the
above model parameters (β, b) yield a classification rule, i.e. predict a label ŷ for a new
data point x, as follows: ŷ = sign(xTβ + b). A smooth version of the above is sparse
logistic regression, which obtains upon replacing the hinge loss with a smooth version

8

hlogistic(t) = log(1 + e−t). Both of these models are useful but somewhat less popular than
the LASSO, as state-of-the-art algorithms have not yet completely caught up. For text
applications, Gawalt and Miratrix [48, 57] have found that LASSO regression, although
less adapted to the binary nature of the problem, is still very efficient.

2.2.2 Sparse principal component analysis
The classical Principal Component Analysis (PCA) method allows reduction of the

dimension of data sets by performing a low-rank approximation to the data matrix, and
projecting data points on the corresponding subspace. Sparse principal component anal-
ysis (sparse PCA, see [108, 111] and references therein) is a variant of PCA that can find
sparse directions of high variance. The sparse PCA problem can be formulated in many
different ways, one of which (see [71, 91]) involves a low-rank approximation problem
where the sparsity of the low-rank approximation is penalized:

min
p,q
‖M − pqT‖2

F

s.t ‖p‖0 ≤ k, ‖q‖0 ≤ h
(2.3)

whereM is the m×n data matrix, ‖·‖F is the Frobenius norm. In the above, the notation
‖ · ‖0 stands for the cardinality, that is, the number of non-zeros in its vector argument,
and k ≤ m, h ≤ n are parameters that constrain the cardinality of the solution (p, q).
The classical original PCA is obtained with k = m, h = n.

The model above results in a rank-one approximation to M (the matrix pqT at opti-
mum), and vectors p, q are constrained to be sparse. If M is a term-by-document matrix,
the above model provides sparsity in the feature space (via p) and the document space
(via a “topic model” q), allowing to pinpoint a few features and a few documents that
jointly “explain” data variance.

Several algorithms have been proposed for the above problem, or related variants,
see for example [27, 60, 91]. The approach in [109] is based on solving a relaxation to
the problem, one column of the matrix variable at a time. Other algorithms (e.g. [91])
attempt to solve the problem directly, without any relaxation; these kinds of methods are
not guaranteed to even converge to a local minimum. However, they appear to be quite
efficient in practice, and extremely scalable. One such algorithm consists in solving the
above problem alternatively over p, q many times [91]. This leads to a modified power
iteration method:

p→ P (Tk(Mq)), q → P (Th(MTp)),

where P is the projection on the unit circle (assigning to a non-zero vector v its scaled
version v/‖v‖2), and for t ≥ 0, Tt is the “hard thresholding” operator (for a given vector
v, Tt(v) is obtained by zeroing out all but the t largest components of v). We provide a

9

pseudocode for SPCA below and a MATLAB implementation in the Appendix:
for k := 1, . . . , ntopic do

p(k), q(k) := PowerIteration(M,nw, nd)
I :=

{
i : p

(k)
i 6= 0

}
J :=

{
j : q

(k)
j 6= 0

}
for i ∈ I, j ∈ J do

Aij := 0
end
p(k) and q(k) are the k-th sparse principal components.

end
function PowerIteration(M,nw, nd) :
p := 1
q := 1
while a stopping criterion has not been met do

p := HardThresholding (Aq, nw)
p := p/‖p‖2

q := HardThresholding
(
ATp, nd

)
q := q/‖q‖2

end
return p, q

Algorithm 2: Modified power iteration for SPCA with hard thresholding.
In some applications, involving for example visualization of large text databases, it is

useful to distinguish positive and negative components of vectors p, q, and retain a fixed
number of the largest positive and largest negative components separately. We will later
elaborate on this point in our visual analysis on real datasets in the experiments to follow.

With k = m, h = n, the original power iteration method for the computation of the
largest singular value of M is recovered, with optimal p, q the right- and left- singular
vectors of M . The presence of cardinality constraints modifies these singular vectors to
make them sparser, while maintaining the closeness of M to its rank-one approximation.
The hard-thresholding version of power iteration scales extremely well with problem size,
with greatest speed increases over standard power iteration for PCA when a high degree
of sparsity is asked for. This is because the vectors p, q are maintained to be extremely
sparse during the iterations.

An alternative simple algorithm for solving the optimization problem above is based on
solving a classical PCA problem, then thresholding the resulting singular vectors so that
they have the desired level of sparsity. (we discuss “thresholded models” in more details
in Section 2.2.4.) For large-scale data, PCA is typically solved with power iteration, so
the “thresholded PCA” algorithm is very similar to the above thresholded power iteration
for sparse PCA. The only difference is in how many times thresholding takes place. Note
that in practice, the thresholded power iteration for sparse PCA is much faster than its

10

plain counterpart, since we are dealing with much sparser vectors as we perform the power
iterations.

2.2.3 Sparse graphical models
Sparse graphical modeling seeks to uncover a graphical probabilistic model for multi-

variate data that exhibits some sparsity characteristics. One of the main examples of this
approach is the so-called sparse covariance selection problem, with a Gaussian assumption
on the data (see [81], and related works such as [45, 63, 70, 75, 93, 105]). Here we start
with a n× n sample covariance matrix S, and assuming the data is Gaussian, formulate
a variant to the corresponding maximum likelihood problem:

max
X

log detX −Trace(SX)− λ‖X‖1 (2.4)

where λ > 0 is a parameter, and ‖X‖1 denotes the sum of the absolute values of all the
entries in the n × n matrix variable X. Here, Trace(SX) is the scalar product between
the two symmetric matrices S and X, that is, the sum of the diagonal entries in the matrix
product SX. When λ = 0, and assuming S is positive-definite, the solution is X = S−1.
When λ > 0, the solution X is always invertible (even if S is not), and tends to have
many zero elements in it as λ grows. A zero element in the (i, j) entry of X corresponds
to the conditional independence property between nodes i and j; hence sparsity of X is
directly related to that of the conditional independence graph, where the absence of an
edge denotes conditional independence.

The covariance selection problem is much more challenging than its classical counter-
part (where λ = 0), which simply entails inverting the sample covariance matrix. At this
point it appears that one of the most competitive algorithms involves solving the above
problem one column (and row) of X at a time. Each sub-problem can be interpreted as
a LASSO regression problem between one particular random variable and all the others
[45, 81]. In Chapter 5, we will show how to solve multiple LASSO problems efficiently.
Successful applications of sparse covariance selection include Senate voting [81] and gene
data analysis [30, 81].

Just as in the PCA case, there is a conceptually simple algorithm, which relies on
thresholding. If the covariance matrix is invertible, we simply invert it and threshold the
elements of the inverse. Some limited evidence points to the statistical superiority of the
sparse approach (based on solving problem (2.4)) over its thresholded counterpart.

2.2.4 Thresholded models
The algorithms in sparse learning are built around the philosophy that sparsity should

be part of the model’s formulation, and not produced as an afterthought. Sparse modeling
is based on some kind of direct formulation of the original optimization problem, involving,
typically, an l1-norm penalty. As a result of the added penalty, sparse models have been

11

originally thought to be substantially more computationally challenging than their non-
penalized counterparts.

In practice, sparse results can be obtained after the use of almost any learning algo-
rithm, even one that is not necessarily sparsity-inducing. Sparsity is then simply obtained
via thresholding the result. This is the case for example with naïve Bayes classification:
since a naïve Bayes classifier assigns weights to each feature, we can simply zero out the
smaller weights to obtain a sparse classification rule. The same is true for unsupervised
algorithms such as Latent Dirichlet Allocation (LDA, see [15]). In the case of LDA, the
result is a probability distribution on all the terms in the dictionary. Only the terms with
the highest weights are retained, which amounts in effect to threshold the probability dis-
tribution. The notion of thresholded models refers to the approach of applying a learning
algorithm and obtaining sparsity with a final step of thresholding.

The question about which approach, “direct” sparse modeling or sparse modeling via
thresholding, works better in practice, is a natural one. Since direct sparse modeling
appears to be more computationally challenging, why bother? Extensive research in the
least-squares case shows that thresholding is actually often sub-optimal [48]. Similar
evidence has been reported on the PCA case [108]. Our own experiments in Chapter 3
support this viewpoint.

There is an added benefit to direct sparse modeling—a computational one. Originally
thresholding was considered as a computational shortcut, a quick way to find sparse
models. As we argued above for least-squares, SVM, logistic regression, and PCA, sparse
models can be actually surprisingly easier to solve than classical models; at least in those
cases, there is no fundamental reason for insisting on thresholded models, although they
can produce good results. For the case of covariance selection, the situation is still unclear,
since direct sparse modeling via problem (2.4) is still computationally challenging.

The above motivates many researchers to “sparsify” existing statistical modeling method-
ologies, such as LDA. Note that LDA also encodes a notion of sparsity, not in the feature
space, but on the document (data) space: it assumes that each document is a mixture of a
small number of topics, where the topic distribution is assumed to have a Dirichlet prior.
Thus, depending on the concentration parameter of this prior, a document comprised of
a given set of words may be effectively restricted to having a small number of topics.

This notion of sparsity (document-space sparsity) does not constrain the number of
features active in the model, and does not limit overall model complexity. As a result, in
LDA, the inclusion of terms that have little discrimination power between topics (such as
“and” or “the”). may fall into multiple topics unless they are eliminated by hand. Once
a set of topics is identified the most descriptive words are depicted as a list in order of
highest posterior probability given the topic. As with any learning method, thresholding
can be applied to this list to reveal the top most descriptive words given a topic. It may
be possible to eliminate this thresholding step using a modified objective function with
an appropriate sparsity constraint. This is an area of very active research, as evidenced
by Eisenstein, Ahmed, and Xing [36].

12

2.2.5 Text analytics tasks
In this section, we review some of the text analytics-specific tasks that can be addressed

using sparse learning methods.

2.2.5.1 Topic summarization

Topic summarization is an extensive area of research in natural language processing
and text understanding. For a recent survey on the topic, see [26]. There are many
instances of this problem, depending on the precise task that is addressed. For example
the focus could be to summarize a single unit of text, or summarize multiple documents,
or summarize two classes of documents in order to produce the summaries that offer the
best contrast. Some further references to summarization include [49, 54, 78].

The approach introduced by Jia et al. in 2014 [57] relies on LASSO regression to
produce a summary of a particular topic as treated in multiple documents. This is part
of the extraction task within a summarization process, where relevant terms are produced
and given verbatim [26]. Using predictive models for topic summarization has a long
history, see for example [89]; the innovation is the systematic reliance on sparse regression
models.

The basic idea is to divide the corpus in two classes, one that corresponds to the topic,
and the other to the rest of the text corpus. One example is from [57]: to provide the
summary of the topic “China” in a corpus of news articles from The New York Times over
a specific period, we may separate all the paragraphs that mention the term “china” (or
related terms such as “chinese”, “china’s”, etc) from the rest of the paragraphs. We then
form a numerical, matrix representation X (via, say, TF-IDF scores) of the data, and
form a “response” vector (with 1’s if the document mentions China and −1 otherwise).
Solving the LASSO problem (2.1) leads to a vector β of regressor coefficients, one for each
term of the dictionary. Since LASSO encourages sparsity, many elements of β are zero.
The non-zero elements point to terms in the dictionary that are highly predictive of the
appearance of “china” in any paragraph in the corpus.

The approach can be used to contrast two sets of documents. For example, we can
use it to highlight the terms that allow to best distinguish between two authors, or two
news sources on the same topic.

Topic summarization is closely related to topic modeling via Latent Dirichlet Allo-
cation (LDA) [15], which finds on a latent probabilistic model to produce a probability
distribution of all the words. Once the probability distribution is obtained, the few terms
that have the highest probability are retained, to produce some kind of summary in an
unsupervised fashion. As discussed in section 2.2.4, the overall approach can be seen as
a form of indirect, thresholding method for sparse modeling.

13

2.2.5.2 Discrimination between several corpora

Here the basic task is to find out what terms best describe the differences between
two or more corpora. We simply classify one of the corpora against all the others: the
(say) positive class will contain all the documents from one corpus, and the negative
class includes the documents from all the remaining corpus. We can use any sparse
binary classification algorithm for the task, included the thresholded models referred to
in section 2.2.4. The classification algorithm will identify the features that are most
relevant in distinguishing a document from one class (the corpora under study) to one
from the other class.

The resulting classifier weight vector, which is sparse, then points to a short list of
terms that are most representative of the salient differences between the corpora and all
the others. Of course, related methods such as multi-class sparse logistic regression can
be used.

2.2.5.3 Visualization and clustering

Sparse PCA and sparse graphical models can provide insights to large text databases.
PCA itself is a widely used tool for data visualization, but as noted by many researchers,
the lack of interpretability of the principal components is a challenge. A famous example of
this difficulty involves the analysis of Senate voting patterns. It is well-known in political
science that, in that type of data, the first two principal components explain the total
variance very accurately [81]. The first component simply represents party affiliation,
and accounts for a high proportion of the total variance (typically, 80%). The second
component is much less interpretable.

Using sparse PCA, we can provide axes that are sparse. Concretely this means that
they involve only a few features in the data. Sparse PCA thus brings an interpretation,
which is given in terms of which few features explain most of the variance. As mentioned
before, it is possible to assign a fixed number of terms to each axis direction, one for the
positive and one for the negative directions. (We illustrate this in our experiments on the
ASRS data set.) Likewise, sparse graphical modeling can be very revealing for text data.
Because it produces sparse graphs, it can bring an understanding as to which variables
(say, terms, or sources, or authors) are related to each other and how.

14

Chapter 3

Case study in text analytics

We apply the methods in the previous chapter with a comparative study of the sparse
PCA; also via a real-life example with a corpus of Aviation Safety Reporting System
(ASRS) reports we demonstrate that they can reveal causal and contributing factors in
runway incursions. In this example, we show that these methods, namely SPCA and
LASSO, automatically discover main tasks that pilots perform during flight, which can
aid in further understanding the causal and contributing factors to runway incursions
and other drivers for aviation safety incidents. The comparative study on the other hand
involves other commonly used datasets, and we report on the competitiveness of sparse
optimization compared to state-of-the-art methods such as latent Dirichlet allocation
(LDA).

Our interpretation of the results in the ASRS case study is from our submission to
the ASRS text mining competition, with a focus on visual presentations of safety reports
and issue recovery [38]. Note that, although text understanding and text classification are
related research problems in language processing, it can be observed from the literature
that the correlation between good model fit and good representative quality may be
absent, or even negative in some experiments [23, 57]. In this chapter, although we
mostly motivate the applications of sparse methods and our interpretation, we also refer
to an ongoing line of work on evaluating sparse approaches such as the LASSO with human
surveys and questionnaire, comparing the method to existing state-of-the-art alternatives,
such as co-occurence, χ2 log likelihood, and Delta TF-IDF (see [48, 57] and references
therein). The big picture in this chapter is to motivate the multi-instance nature in
sparse learning and hence lead to subsequent chapters on robust sketching.

3.1 Sparse PCA and LDA: comparative study
In this section, we perform a comparative study of the sparse PCA and LDA ap-

proaches, using databases that are commonly used in the text processing community.
We use three data sets, of increasing size: the Amazon data set, which contains con-

15

NUMTOPICS=10
BETA=0.01;
ALPHA=50/NUMTOPICS;
ITERATIONS = 500; (LDA iterations)
WORDSPERTOPIC = 10;
SEED = 1000; (used for Gibbs sampler initialization)

Table 3.1: Table of default parameters used in the LDA code of [95].

sumer reviews for a variety of products; the Reuters news text categorization collection,
which involves news articles; and the NSF data set, which contains abstracts from sci-
entific articles dated 1999 through 2003. The three data sets can be obtained from the
UCI archive [43]. These data sets range widely in size, from one to a thousand hundred
documents. For each data set, we apply a basic stop-word removal before running the
algorithms.

In this present study, we choose 10 principal components from the method and compare
with the 10 topics revealed by LDA. The first component from sparse PCA is obtained
by solving the sparse problem (2.3), then we update the data matrix M by removing the
features found in the first component and solve for the second component and so on. We
refer readers to the pseudo-code (Algorithm 2) and our implementation in the Appendix.
There also exists alternative algorithms, such as Block Coordinate Ascent algorithm [109],
which can be very efficient in large-scale text data. The LDA code we have used has been
developed by Steyvers and Griffiths [95]; throughout, we have used the default values for
various parameters, as detailed in Table 3.1.

3.1.1 Amazon Data Set
The Amazon data set is the smallest of the three data sets examined in this section,

with 1500 documents, and 2960 unigrams1. It consists of user reviews, mainly on consumer
products. The reviews originate from 50 of the most active users, each of whom has 30
reviews collected. The original data contains bigrams and trigrams, and also includes
authors’ usage of digits and punctuation. We have removed all of these, and retained
only unigrams after stop-word removal to run the LDA and the SPCA.

The results are shown in Table 3.2. For both methods, the topics show very clear
word associations. In these topics, when we rank words in non-increasing order of their
weights, the topic words show up as top words. For SPCA, almost all topics are very easy
to interpret: topic 1 corresponds to books, topic 2 to movies, topic 4 to games, topic 6
to cells and batteries, topic 7 to hair products, topic 8 to music. Topic 9 is less clear,
but likely about electronic reading devices. For LDA, we see that topic 10 corresponds
to books, topic 9 to stories, topic 3 to movie and topic 1 to music. LDA shows a similar

1https://archive.ics.uci.edu/ml/datasets/Amazon+Commerce+reviews+set

https://archive.ics.uci.edu/ml/datasets/Amazon+Commerce+reviews+set

16

TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5
love 0.02461 case 0.01669 film 0.03878 time 0.05518 product 0.02773
music 0.02357 light 0.01298 movie 0.02676 long 0.02607 easy 0.021
year 0.01749 included 0.01247 man 0.01594 recommend 0.02211 quality 0.0209
sound 0.01655 problem 0.01226 stars 0.01273 day 0.02171 make 0.01692

beautiful 0.01383 works 0.01216 american 0.01223 makes 0.0209 bit 0.01641
cd 0.01278 video 0.01082 bad 0.01042 fun 0.01765 hand 0.01539

great 0.01267 cells 0.01061 wife 0.01032 feel 0.01664 top 0.01346
fine 0.01267 system 0.01051 past 0.00982 good 0.01643 color 0.01305
art 0.01267 cable 0.01051 school 0.00972 game 0.01633 amazon 0.01295

christmas 0.01246 time 0.01041 films 0.00912 thing 0.01552 high 0.01193
TOPIC 6 TOPIC 7 TOPIC 8 TOPIC 9 TOPIC 10

good 0.026 good 0.02344 find 0.03938 story 0.04881 book 0.14368
dvd 0.01856 nice 0.01863 people 0.03684 stories 0.02108 read 0.03378
made 0.01834 set 0.01824 work 0.03633 life 0.01953 author 0.02054
series 0.01618 back 0.01755 found 0.02646 family 0.01797 books 0.01952
show 0.01586 small 0.01569 make 0.02595 young 0.01578 reading 0.01926
short 0.01554 great 0.01559 things 0.01618 children 0.01551 life 0.01765
version 0.01543 easily 0.01432 part 0.01598 years 0.01533 history 0.01426
style 0.01456 put 0.01402 thought 0.01343 characters 0.01478 written 0.01392
back 0.01359 buy 0.01324 information 0.0113 world 0.01277 reader 0.01256
set 0.01349 pretty 0.01285 making 0.01099 TRUE 0.01058 interesting 0.01188

TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5
book 0.9127 film 0.6622 nice 0.3493 game 0.7527 skin 0.5492
read 0.1527 movie 0.3617 side 0.3464 games 0.3034 children 0.3864
good 0.1437 product 0.2666 lot 0.3042 fun 0.294 young 0.3028
story 0.1331 set 0.2268 price 0.2896 play 0.2388 man 0.2378
time 0.1228 made 0.2051 light 0.287 family 0.1969 written 0.2334
life 0.1207 years 0.2014 day 0.275 world 0.1619 dry 0.2098

author 0.1058 makes 0.1889 place 0.2703 characters 0.1572 beautiful 0.208
find 0.1016 long 0.1633 series 0.2688 level 0.1477 case 0.2071

people 0.1008 dvd 0.1573 works 0.2354 character 0.1275 feel 0.2044
reading 0.0867 back 0.1566 small 0.2329 played 0.1062 times 0.1997

TOPIC 6 TOPIC 7 TOPIC 8 TOPIC 9 TOPIC 10
cells 0.7011 hair 0.8361 songs 0.4754 cover 0.8295 writing 0.5158

capacity 0.3149 recommended 0.2397 album 0.4717 wife 0.2398 products 0.4092
mah 0.2537 style 0.2042 christmas 0.3894 similar 0.1887 handle 0.3363
nimh 0.2503 brush 0.2002 cd 0.3492 told 0.1881 perfect 0.274
aa 0.2351 highly 0.18 voice 0.2577 purchased 0.187 material 0.2682
aaa 0.2276 plastic 0.1695 song 0.2347 avoid 0.162 desk 0.2139

charger 0.1924 expensive 0.149 track 0.2011 practical 0.162 short 0.2031
package 0.1769 put 0.1252 fan 0.147 paid 0.1532 color 0.2007
cell 0.1751 hold 0.1148 fine 0.1313 kindle 0.1431 lines 0.2005

rechargeable 0.1511 ingredients 0.1054 hear 0.1247 history 0.1061 review 0.1638
Table 3.2: Comparison between LDA (top) and Sparse PCA (bottom) on the Amazon
data set.

17

good performance, although we see some non-informative words such as “good” appear
in the lists.

3.1.2 Reuters Data Set
The Reuters 21578 data set contains 19043 documents and 38361 unique words. It is

one of the most frequently used for text processing on news since 1999. The dataset is
divided into several categories2. However for the purpose of this study we have discarded
the labels and any categorical information, treating all the documents on equal basis. Our
goal here is to ascertain if sparse learning methods can handle data that is complex by
the variety of topics, as well as the presence of acronyms and abbreviations. The results
of LDA and SPCA are shown in Table 3.3.

For both methods, topics in the Reuters dataset are sometimes difficult to recognize,
which is perhaps due to the complexity of this data set. There are topics that both the
LDA and the SPCA agree upon. For example, LDA’s topic 2 and SPCA’s topic 1 have
similar words: “mln” (million), “dlrs” (dollars), “net”, “loss”, “profit”, “year” and “sales”.
LDA’s topic 9 and SPCA’s topic 5 are both on agriculture exports and oil/gas prices
(with terms such as “wheat”, “export”, “tonnes”, “price”). LDA’s topic 7 and SPCA’s
topic 9 both discuss US government issues, with terms such as “President Reagan” and
“John Roberts”, respectively. Of the remaining topics, the two methods either share
some commonalities (for example the LDA and SPCA topic 8 can both be guessed to be
related to the European zone) or involve different topics (for example LDA’s topic 1 is on
economic issues, while SPCA topic 3 is on market exchange).

3.1.3 NSF Data Set
The NSF datasets contain a collection of abstracts of scientific papers, written between

1990 to 20033. This is the largest data set in our study, with over 120, 000 documents and
over 30, 000 words. The results of LDA and SPCA are shown in Table 3.4.

In Table 3.5 we have summarized our interpretation of each topic, mostly based on
the first (most heavily weighted) term for each method. (We deviated from the rule when
the other terms were consistently pointing to a more specific topic, such as topic 8 for
LDA or 5 for sparse PCA.)

The two methods share many topics in common. LDA’s topic 9 and SPCA’s topic
1 are both on university education, with terms such as “students” and “undergraduate”.
LDA’s topic 5 and SPCA’s topic 3 are both related to material science and physics. LDA’s
topic 7 and SPCA’s topic 6 focus on molecular and cell biology, protein function and gene
expression. Overall the LDA method appears to behave slightly better on this data set;
sparse PCA provides a few topics (8, 9) without clear and consistent meaning. LDA does

2https://archive.ics.uci.edu/ml/machine-learning-databases/reuters21578-mld/
3https://archive.ics.uci.edu/ml/machine-learning-databases/nsfabs-mld/nsfawards.

data.html

https://archive.ics.uci.edu/ml/machine-learning-databases/reuters21578-mld/
https://archive.ics.uci.edu/ml/machine-learning-databases/nsfabs-mld/nsfawards.data.html
https://archive.ics.uci.edu/ml/machine-learning-databases/nsfabs-mld/nsfawards.data.html

18

TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5
trade 0.02585 mln 0.20871 pct 0.08466 company 0.02703 pct 0.04074
japan 0.01705 dlrs 0.13099 billion 0.07068 corp 0.02259 dlrs 0.02596
foreign 0.01362 cts 0.07385 year 0.06001 products 0.01013 april 0.02169

government 0.01222 net 0.05054 february 0.0172 companies 0.00882 bank 0.02077
economic 0.01209 loss 0.0418 january 0.01554 contract 0.00876 debt 0.01781
world 0.01123 shr 0.03412 rose 0.01427 business 0.00783 issue 0.016
told 0.01116 profit 0.02648 march 0.01305 systems 0.00773 due 0.01507

japanese 0.01046 year 0.02635 rise 0.01153 unit 0.00749 credit 0.01428
countries 0.0104 sales 0.02135 increase 0.01147 plant 0.00728 dlr 0.01412
officials 0.01015 revs 0.01973 earlier 0.01134 services 0.00714 capital 0.01367

TOPIC 6 TOPIC 7 TOPIC 8 TOPIC 9 TOPIC 10
company 0.04847 president 0.01869 ec 0.01111 oil 0.03011 market 0.03634
shares 0.03773 chairman 0.0124 spokesman 0.01084 prices 0.02181 bank 0.03111
stock 0.03475 federal 0.01118 government 0.01006 tonnes 0.02121 exchange 0.01704
share 0.02248 house 0.00967 european 0.0098 production 0.01648 dollar 0.01644
group 0.02059 reagan 0.00898 canada 0.00966 price 0.0122 rates 0.01369

common 0.01711 told 0.00844 union 0.00943 gas 0.00885 trading 0.01356
offer 0.0169 chief 0.0075 canadian 0.00861 wheat 0.00827 banks 0.01322
corp 0.01593 executive 0.00724 meeting 0.00853 export 0.0078 rate 0.01322
dlrs 0.01371 committee 0.00673 today 0.00818 agriculture 0.00739 stg 0.01019
board 0.00988 american 0.00664 tax 0.0081 week 0.00724 money 0.0091

TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5
mln 0.5898 common 0.0623 government 0.1019 current 0.069 sources 0.0935
cts 0.5794 payable 0.0652 oil 0.1073 ended 0.0768 compared 0.0971
net 0.3028 bank 0.0685 agreement 0.1093 extraordinary 0.0812 price 0.1035
shr 0.2863 july 0.0695 president 0.1127 sale 0.0855 fell 0.1069
dlrs 0.1987 share 0.0716 due 0.1369 credit 0.095 production 0.1088
loss 0.1853 june 0.0839 trade 0.1415 discontinued 0.1079 prices 0.1097
revs 0.1738 corp 0.0992 debt 0.1558 operations 0.1395 exports 0.1142
profit 0.0922 shares 0.1055 today 0.1651 includes 0.1695 department 0.1187
year 0.0722 stock 0.115 york 0.191 excludes 0.2029 export 0.1214
sales 0.0719 company 0.1355 offering 0.2031 gain 0.2119 total 0.1395

TOPIC 6 TOPIC 7 TOPIC 8 TOPIC 9 TOPIC 10
years 0.0903 rates 0.076 eurobond 0.1496 john 0.0549 directors 0.0743

spokesman 0.1008 provided 0.0837 luxembourg 0.1549 robert 0.0596 paid 0.0871
air 0.1132 week 0.0843 listed 0.1586 subsidiary 0.0605 outstanding 0.0879
work 0.118 interest 0.0845 denominations 0.1735 american 0.0609 increase 0.0927

division 0.1195 central 0.0851 underwriting 0.188 elected 0.0623 offer 0.0952
awarded 0.1244 estimate 0.0951 selling 0.2023 director 0.0739 initial 0.0979
federal 0.1495 forecast 0.0969 issuing 0.2074 effective 0.0811 cash 0.1159
general 0.154 revised 0.1189 payment 0.214 resigned 0.0864 approved 0.1313
expected 0.1588 assistance 0.1208 date 0.2334 financial 0.1265 annual 0.144

international 0.2345 shortage 0.124 management 0.2385 operating 0.1584 meeting 0.1544
Table 3.3: Comparison between LDA (top) and Sparse PCA (bottom) on the Reuters
data set.

19

TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5
project 0.01809 species 0.01644 research 0.09839 theory 0.02179 materials 0.01826
data 0.01516 study 0.01247 university 0.04056 problems 0.0205 high 0.01393

research 0.01218 important 0.00828 program 0.02237 methods 0.01438 properties 0.0127
information 0.00947 natural 0.00822 award 0.01927 study 0.01279 phase 0.01165

social 0.00909 provide 0.00742 chemistry 0.01804 work 0.01037 chemical 0.00837
study 0.00855 evolution 0.00721 support 0.01735 systems 0.01011 surface 0.00796
model 0.00832 understanding 0.00692 state 0.0148 problem 0.00912 energy 0.00787
models 0.00684 patterns 0.00679 dr 0.01355 mathematical 0.00892 optical 0.00747
economic 0.00597 environmental 0.00638 equipment 0.01101 models 0.00891 magnetic 0.00736

understanding 0.00573 studies 0.00604 project 0.01023 analysis 0.00799 electron 0.0068
TOPIC 6 TOPIC 7 TOPIC 8 TOPIC 9 TOPIC 10

research 0.04002 molecular 0.01428 data 0.01493 students 0.04399 system 0.01947
scientists 0.01163 cell 0.01152 water 0.01087 science 0.03092 design 0.01944
national 0.01114 protein 0.01101 processes 0.00908 project 0.02327 systems 0.01931

researchers 0.01018 specific 0.01058 study 0.00893 program 0.01754 control 0.01329
workshop 0.00976 function 0.00979 model 0.00772 engineering 0.01521 based 0.01257
scientific 0.00958 cells 0.00942 flow 0.00761 education 0.01385 performance 0.01067
field 0.00911 studies 0.00894 ocean 0.00748 undergraduate 0.0127 data 0.01043

support 0.009 proteins 0.0089 climate 0.0067 laboratory 0.01098 develop 0.00939
areas 0.00894 mechanisms 0.00883 ice 0.00629 faculty 0.01078 network 0.00839

international 0.00886 dna 0.00804 field 0.00622 learning 0.0107 software 0.00814

TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5
research 0.7831 theory 0.3742 materials 0.465 species 0.392 mathematics 0.4311
project 0.2861 analysis 0.2975 engineering 0.3472 molecular 0.3605 education 0.3067
students 0.228 model 0.2848 chemistry 0.3194 dr 0.3161 teachers 0.2793
university 0.2101 models 0.2846 design 0.309 chemical 0.3081 physics 0.2777
program 0.1897 problems 0.2702 laboratory 0.2879 surface 0.2715 year 0.2727
science 0.1515 understanding 0.2536 computer 0.2436 experiments 0.2677 school 0.2646
data 0.1466 studies 0.2491 state 0.2061 phase 0.2373 faculty 0.2498
study 0.1448 methods 0.2455 technology 0.2044 process 0.2359 undergraduate 0.2371
support 0.1356 important 0.2374 techniques 0.2022 determine 0.2258 college 0.2279
systems 0.1292 information 0.2273 properties 0.1972 effects 0.2014 student 0.2183

TOPIC 6 TOPIC 7 TOPIC 8 TOPIC 9 TOPIC 10
cell 0.4392 abstract 0.7037 group 0.4609 order 0.4939 equipment 0.5951

protein 0.3731 fellowship 0.51 groups 0.4016 experimental 0.2891 nsf 0.362
cells 0.3254 postdoctoral 0.3304 areas 0.3214 theoretical 0.2804 projects 0.3613

proteins 0.2873 required 0.2857 number 0.2699 dynamics 0.2796 grant 0.2695
plant 0.2709 error 0.113 area 0.2677 scientific 0.2789 network 0.2596
gene 0.2686 mathematical 0.1006 water 0.231 task 0.2612 funds 0.1912
genes 0.2525 sciences 0.0961 focus 0.2276 test 0.243 performance 0.1826
dna 0.2093 worry 0.0846 behavior 0.2159 scientists 0.2212 community 0.1692

function 0.2075 matter 0.0462 environmental 0.2149 level 0.2193 instrumentation 0.1597
biology 0.1953 length 0.044 related 0.2063 national 0.215 magnetic 0.15

Table 3.4: Comparison between LDA (top) and Sparse PCA (bottom) on the NSF data
set.

TOPIC 1 TOPIC 2 TOPIC 3 TOPIC 4 TOPIC 5 TOPIC 6 TOPIC 7 TOPIC 8 TOPIC 9 TOPIC 10
LDA Project Species Research Theory Materials Research Molecular Data/Climate Students Systems
SPCA Research Theory Materials Species Mathematics/Education Cell Abstract Research Group Order Equipment

Table 3.5: Manually interpreted topics in the NSF data set experiment.

20

Data set Amazon Reuters NSF
LDA 1 minute 13 minutes 1 hour
SPCA 19 seconds 3 minutes 14 minutes

Table 3.6: Computational times for LDA and sparse PCA.

provide topics with overlap, and/or without much specificity (topics 1 and 3 for example),
while non-overlap is automatically enforced with sparse PCA. As discussed next, sparse
PCA runs much faster than LDA.

3.1.4 Running time
To summarize our findings, we note that overall both LDA and sparse PCA behave

well and comparably on the data sets we have used. In the larger data set (NSF), LDA
delivers better results. A clear advantage, besides performance, of sparse methods lies
with their ease of use and readability; our code for sparse power iteration is a few lines
long, and is quite amenable to a distributed computing architecture. Another clear ad-
vantage lies with the computational effort that is required. To our knowledge, there is no
precise computational complexity analysis for both methods. In our experiments we have
observed that LDA takes much longer to run than sparse PCA. Table 3.6 illustrates the
dramatic difference in run times.

3.2 Case study on ASRS data
In this section, we perform an analysis of a specific data set coming from the Avia-

tion Safety Reporting System database 4. This database contains reports generated by
pilots, air traffic controllers, and others on a voluntary basis, and is a crucial component
of the continuing effort to maintain and improve aviation safety. The ASRS data con-
tains several of the crucial and generic challenges involved under the general banner of
“large-scale text data understanding”. First, its scale is growing rapidly, making the need
for automated analyses of the processed reports more crucial than ever. Another issue is
that the reports themselves are far from being syntactically correct, with lots of abbre-
viations, orthographic, and grammatical errors. Thus, we are not facing a corpus with
well-structured language having clearly-defined rules as we would if we were to consider
a corpus of laws or bills or any other well-redacted data set. Finally, in many cases we
do not know in advance what to look for, because the goal is to discover precursors to
aviation safety incidents and accidents. In other words, the task is not about search, and
finding a needle in a haystack: in many cases, we cannot simply monitor the emergence
or disappearance of a few keywords that would be known in advance. Instead, the task

4See http://asrs.arc.nasa.gov/search/database.html for more information on the ASRS system.
The text reports are available on that website.

http://asrs.arc.nasa.gov/search/database.html

21

resembles more one of trying to visualize the haystack itself, compare various parts of it,
or summarize some areas.

Our focus is on reports from the Aviation Safety Reporting System (ASRS). The
ASRS is a voluntary program in which pilots, co-pilots, other members of the flight crew,
flight controllers, and others file a text report to describe any incident that they may
have observed that has a bearing on aviation safety. Because the program is completely
voluntary and the data are de-identified, meaning that the author, his or her position, the
carrier, and other identifying information is not available in the report. After reports are
submitted, analysts from ASRS may contact the author to obtain clarifications. However,
the information provided by the reporter is not investigated further. This motivates the
use of (semi-) automated methods for the real-time analysis of the ASRS data. In our
experiments, we have used the data provided by NASA as part of the SIAM 2007 Text
Mining Competition5. It consists of more than 20,000 flight reports submitted by pilots
after their flights. Each report is a small paragraph describing any incident that was
recorded during flight, and is assigned a category (totaling 22), or type of incident.

Our goals here are as follows. We first report on previous work on this particular data
set (Section 3.3). Then in Section 3.4, our aim is to experiment our methods based on
categorical information. Using our comparative summarization methods, we investigate
if we can recover summaries for each category that can clearly distinguish between them,
and are consistent with their meaning.

In Section 3.4.2, we illustrate how sparse PCA can be used to visualize the data,
specifically visualize the different categories. We also make a comparison with thresholded
LDA. In Section 3.5, we focus on the analysis of runway incursions, which are events in
which one aircraft moves into the path of another aircraft during landing or takeoff. A key
question that arises in the study of runway incursions is to understand whether there are
significant distinguishing features of runway incursions for different airports. Although
runway incursions are common, the causes may differ with each airport. These are the
causal factors that enable the design of the intervention appropriate for that airport,
whether it may be runway design, runway lighting, procedures, etc. To do this kind of
analysis, we prepare a special second dataset, obtained from ASRS data as detailed below
(we shall call it Runway dataset onward; and we will experiment on both ASRS and this
special data).

Runway dataset. We present our special data preparation step-by-step as follows:

1. We reverted all characters to lower case and scrubbed all punctuation and special
characters. We remove redundant white spaces and remove stop words.

2. We glued each runway or taxiway and their labels as a single word. This is achieved
by the following regular expression: /\b(runway|taxiway)\ [a-z0-9]{1,3}\b/ .

5https://c3.nasa.gov/dashlink/resources/138/

https://c3.nasa.gov/dashlink/resources/138/

22

This, for example, converts taxiway xy to taxiway_xy, and runway 9x to runway_9x.

The purpose of this step is to enable us to just focus on the issues raised by the
runways, by the taxiways. Additionally, this allows for immediate perception of
machine learning results by the reviewer. For example, we would rather expect a
list of words associated to an airport as taxiway_9l, runway_00, runway_y than
simply 9l, 00, y etc.

3. We tokenized each ASRS report by separating the words of the ASRS report using
a single space.

4. We vectorized the text by extracting all uni-grams from the sample. In doing so, we
first scan through all ASRS documents and build a dictionary of all uni-grams ever
used across a total of 21, 519 ASRS reports. We thus find 27, 081 distinct uni-grams.
Hence, we obtain a data matrix of dimension 21, 519× 27, 081.

3.3 Related work on ASRS data
In this section we list some previous work in applying data mining/machine learning

methods for analyzing ASRS data, along with pointers for further research.
Text Cube [68] and Topic Cube [107] are multi-dimensional data cube structures which

provide a solid foundation for effective and flexible analysis of the multidimensional ASRS
text database. The text cube structure is constructed based on the TF/IDF (i.e., vector
space) model while the topic cube is based on a probabilistic topic model. Techniques
have also been developed for mining repetitive gapped subsequences [28], multi-concept
document classification [102, 103], and weakly supervised cause analysis [1]. The work by
Cindy et al. [68] has been further extended by Ding et al. in 2010 [29] where the authors
have proposed a keyword search technique. Given a keyword query, the algorithm ranks
the aggregations of reports, instead of individual reports. For example, given a query
“forced landing” an analyst may be interested in finding the external conditions (e.g.
weather) that causes this kind of query and also find other anomalies that might co-occur
with this one. This kind of analysis can be supported through keyword search, providing
an analyst a ranked list of such aggregations for efficient browsing of relevant reports. In
order to enrich the semantic information in a multidimensional text database for anomaly
detection and causal analysis, Persing and Ng have developed new techniques for text
mining and causal analysis from ASRS reports using semi-supervised learning [84] and
subspace clustering [4].

Some work has also been done on categorizing ASRS reports into anomalous categories.
It poses some specific challenges such as high and sparse dimensionality as well as multiple
labels per document. Oza et al. [82] presents an algorithm called Mariana which learns a
one-vs-all SVM classifier per anomaly category on the bag-of-words matrix. This provides
good accuracy on most of the ASRS anomaly categories.

23

Topic detection from ASRS datasets have also received some recent attention. Shan
et al. have developed the Discriminant Latent Dirichlet Allocation (DLDA) model [90],
which is a supervised version of LDA. It incorporates label information into the generative
model using logistic regression. Compared to Mariana, it not only has a better accuracy,
but it also provides the topics along with the classification.

Gaussian Process Topic Models (GPTMs) by Agovic and Banerjee [3] is a novel family
of topic models which define a Gaussian Process Mapping from the document space into
the topic space. The advantage of GPTMs is that it can incorporate semi-supervised
information in terms of a Kernel over the documents. It also captures correlations among
topics, which leads to a more accurate topic model compared to LDA. Experiments on
ASRS dataset show better topic detection compared to LDA. The experiments also illus-
trate that the topic space can be manipulated by changing the Kernel over documents.

3.4 Understanding Categories

3.4.1 Recovering categories
In our first experiment, we sought to understand if sparse learning methods could

perform well in a blind test. The categorical data did not contain category names, only
referring to them with letter capitals. We sought to understand what these categories were
about. To this end, we have solved one LASSO problem for each category, corresponding
to classifying that category against all the others [57]. As shown in Table 3.7, we did
recover a differentiated image of the categories. For example, the categories M, T, U cor-
respond to the ASRS categories Weather/Turbulence, Smoke/Fire/Fumes/Odor, and Ill-
ness. These categories names are part of the ASRS Events Categories as defined in http:
//asrs.arc.nasa.gov/docs/dbol/ASRS_Database_Fields.pdf. This blind test indi-
cates that the method reveals the underlying categories using the words in the corpus
alone. Some abbreviations in Table 3.7 are explained in Table 3.8; a full list of abbrevi-
ations can be found on ASRS website https://asrs.arc.nasa.gov/docs/dbol/ASRS_
Abbreviations.pdf .

The analysis reveals that there is a singular category, labelled B. This category makes
up about 50% of the total number of reports. Its LASSO images points to two terms,
which happen to be two categories, A (mechanical issues) and N (airspace issues). The
other terms in the list are common to either A or N. Our interpretation and analysis
point to the fact that category is a “catch-all” one, and that many reports in it could be
re-classified as A or N.

3.4.2 Sparse PCA for understanding categories
In this section, we plot the data set on a pair of axes that contain a lot of the variance,

at the same time maintaining some level of interpretability to each of the four directions.

http://asrs.arc.nasa.gov/docs/dbol/ASRS_Database_Fields.pdf
http://asrs.arc.nasa.gov/docs/dbol/ASRS_Database_Fields.pdf
https://asrs.arc.nasa.gov/docs/dbol/ASRS_Abbreviations.pdf
https://asrs.arc.nasa.gov/docs/dbol/ASRS_Abbreviations.pdf

24

Category Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7
A (1441) MEL install maintain mechanic defer logbook part
B (12876) CATA CATN airspace install MEL AN
C (393) abort reject ATO takeoff advance TOW pilot
D (428) grass CATJ brake mud veer damage touchdown
E (3062) runway taxi taxiway hold tower CATR ground control
F (6065) CATH clearance cross hold feet runway taxiway
G (1684) altitude descend feet CATF flightlevel autopilot cross
H (2213) turn head course CATF radial direct airway
I (405) knotindicator speed knot slow airspeed overspeed speedlimit

J (1107) CATO CATD wind brake encounter touchdown pitch
K (353) terrain GPWS GP MD glideslope lowaltitude approach
L (3357) traffic TACAS RA AN climb turn separate
M (2162) weather turbulent cloud thunderstorm ice encounter wind
N (1261) airspace TFR area adiz classb classdairspace contact
O (325) CATJ glideslope approach high goaraound fast stabilize
P (935) goaround around execute final approach tower miss
Q (394) gearup land towerfrequency tower contacttower gear GWS
R (1139) struck damage bird wingtip truck vehicle CATE
S (6767) maintain engine emergency CATA MEL gear install
T (647) smoke smell odor fire fume flame evacuate
U (304) doctor paramedic nurse ME breath medic physician
V (574) police passenger behave drink alcohol seat firstclass

Table 3.7: LASSO images of the categories: each list of terms correspond to the most
predictive list of features in the classification of one category against all the others. The
numbers in parentheses denote the number of reports in each category. The meaning of
abbreviations is listed in Table 3.8.

Meaning Abbreviation
aborted take-off ATO
aircraftnumber AN
airtrafficcontrol ATC

gearwarningsystem GWS
groundproximity GP

groundproximitywarningsystem GPWS
groundproximitywarningsystemterrain GPWS-T

knotsindicatedairspeed KIAS
medicalemergency ME
minimumdescent MD

minimumequipmentlist MEL
noticestoairspace NTA
resolutionadvisory RA

trafficalertandcollisionavoidancesystem TACAS
takeoffclear TOC

takeoffwarning TOW
temporaryflightrestriction TFR

Table 3.8: Some abbreviations used in the ASRS data.

25

A

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

minimumequipmentlist
install
maintain
defer
item
inspect
logbook
mechanic
part

Most distinguishing words for "A"

seat
inspect
equipment
open
mechanic
item
install
door
flightattendant
remove

N
a
v
ig
a
te

approach
south

control
time
flight
land

runway
clear

airport
aircraft

A
v
ia
te

malepassenger
abusive
medicalkit
paramedic
nurse
alcohol
woman
intoxicate
police
doctorM

a
n
a
g
e

inform
correct
pilot
arrive
posit
direct
advise
change
receive
depart

C
o
m
m
u
n
ica
te

 A C D E F G H I J K L M N O P Q R S T U V

file:///Users/elghaoui/Dropbox/ASRS/Visualization/Categories P...

1 of 1 6/13/11 4:06 PM

Figure 3.1: A sparse PCA plot of the category ASRS data. Here, each data point is a
category, with size of the circles consistent with the number of reports in each category.
We have focussed the axes and visually removed category B which appears to be a catch-
all category. Each direction of the axes is associated with only a few terms, allowing an
easy understanding of what each means. Each direction matches with one of the missions
assigned to pilots in FAA documents (in light blue).

Here the purpose is simply to perform an exploratory data analysis step, and evaluate
if the results are consistent with domain knowledge. Our choice for setting the number
of (sparse) principal components to two is not related to the data set itself. Rather, our
choice simply allows us to plot the data on a two-dimensional figure, each component
leading to one positive or negative direction.

We have proceeded with this analysis on the category data set. To this end we have
applied sparse PCA using modified power iteration with hard thresholding (Algorithm 2)
to the category data matrixM (with each column an ASRS report), and obtained Fig. 3.1.
We have not thresholded the direction q, only the direction p, which is the vector along
which we project the points, so that it has at most 10 positive and 10 negative components.
Hence, on our plot the underlying space is that corresponding to vector p.

Sparse PCA plot shows that the data involves four different themes, each corresponding

26

to the positive and negative directions of the first two sparse principal components.
Without any supervision, the sparse PCA algorithm found themes along with the four

missions of pilots, widely cited in aviation documents [59]: Aviate, Navigate, Communi-
cate, and Manage Systems. These four actions form the basis of flight training for pilots in
priority order. The first and foremost activity for a pilot is to aviate, i.e., ensure that the
airplane stays aloft and in control. The second priority is to ensure that the airplane is
moving in the desired direction with appropriate speed, altitude, and heading. The third
priority is to communicate with other members of the flight crew and air traffic control
as appropriate. The final priority is to manage the systems (and humans involved) on
the airplane to ensure safe flight. These high-level tasks are critical for pilots to follow
because of their direct connection with overall flight safety.

The sparse algorithm discovers these four high-level tasks as the key factors in the cat-
egory data set. The words associated with each direction in Fig. 3.1 (for example, “seat”.
“inspect”, etc, along the East direction) were automatically assigned by the algorithm.
On the plot, we manually assigned a higher-level label (such as “Navigate”) to the list of
words associated with each direction. As claimed, the list of words are very consistent
with the high-level labels.

We validated our discovery by applying the Latent Dirichlet Allocation algorithm
to the ASRS data and set the desired number of topics equal to 4. Because there is
currently no method to discover the “correct” number of topics, we use this high-level
task breakdown as for an estimate of the number of topics described in the documents.
While the results did not reveal the same words as sparse PCA, it revealed a similar task
breakdown structure. More detailed results involving LDA are described in section 3.4.3.

Runway data. In a second illustration we have analyzed the Runway data set described
in the introduction of Chapter 3. Fig 3.2 shows that two directions remain associated with
the themes found in the category data set, namely “aviate” (negative horizontal direction)
and “communicate”. The airports near those directions, in the bottom left quadrant of
the plot (CLE, DFW, ORD, LAX, MIA, BOS) are high-traffic ones with relatively bigger
number of reports, as is indicated by the size of the circles. This is to be expected from
airports where large amounts of communication is necessary (due to high traffic volume
and complicated layouts). Another cluster (on the NE quadrant) corresponds to the two
remaining directions, which we labelled “specifics” as they related to specific runways and
taxiways in airports. This other cluster of airports seem to be affected by issues related
to specific runway configuration that are local to each airport.

Feature removal on Runway data. In the third plot (Fig. 3.3) we redid the analysis
after removal of all the features related to runways and taxiways, in order to discover what
is “beyond” runway and taxiway issues. We recover the four themes of Aviate, Navigate,
Communicate and Manage. As before, high-traffic airports remain affected mostly by
aviate and communicate issues. Note that the disappearance of passenger-related issues

27

CLE

DFW

ORD
MIA

BOS
LAX

STL
PHL
MDW

DCA SFO
ZZZEWRATL

LGA

LAS

PIT

HOU BWI
CYYZ

SEA
JFK

cleveland
Proximity
tail
lines
confusing
nonstandard
rptr
orange
line
snow
CoordinatedUniversalTimeGMT
Route
error
depicted
operating
brasilia

Most distinguishing words for "CLE"

rwy19l
rwy31l
txwyd
rwy34l
rwy16l
rwy34r
txwye
rwy28c
rwy28r
rwy28l

S
p
e
ci
fi
cs

takeoff
rwyus
taxi

clearance
hold

aircraft
clear
short
tower

runway

A
v
ia
te

apologized
rwy33l
rwy16r
vehicle
txwyh
rwy15r
txwyf
rwy1r
rwy1l
rwy12rS

p
e
ci
fi
cs

stopped
landing

controller
cross

intermediatefix
firstofficer

time
position
rwy23l
line

C
o
m
m
u
n
ica
te

 CLE DFW ORD MIA BOS LAX STL PHL MDW DCA SFO ZZZ EWR ATL LGA LAS
PIT HOU BWI CYYZ SEA JFK

file:///Users/elghaoui/Dropbox/ASRS/Visualization/Runway%20Plot%20-%20v1/view.html

1 of 1 6/14/11 10:53 AM

Figure 3.2: A sparse PCA plot of the Runway data. Here, each data point is an airport,
with size of the circles consistent with the number of reports for each airport. We note
that two out of four directions are more airport-specific (shown in blue).

28

CLE
DFW

ORD

MIA

BOS
LAX

STL
PHL
MDW

DCA
SFO

ZZZ

EWR

ATL

LGA

LAS
PIT

HOU
BWICYYZ

SEA JFK cleveland
Proximity
tail
lines
confusing
nonstandard
rptr
orange
line
snow
CoordinatedUniversalTimeGMT
Route
error
depicted
operating
brasilia

Most distinguishing words for "CLE"

frequently
motion
permission
open
workload
port
middle
apologized
direct
vehicleM

a
n
a
g
e

line
takeoff
taxi

clearance
hold

aircraft
clear
short
tower

runway

A
v
ia
te

sound
flows
rejoined
doublechking
marking
island
careful
maintained
angle
visionN

a
v
ig
a
te

captain
crossing

secondofficer
position

intermediatefix
time

cross
firstofficer
controller
landing

C
o
m
m
u
n
ica
te

 CLE DFW ORD MIA BOS LAX STL PHL MDW DCA SFO ZZZ EWR ATL LGA LAS
PIT HOU BWI CYYZ SEA JFK

file:///Users/elghaoui/Dropbox/ASRS/Visualization/Runway%20Plot%20-%20v1%20without%20Rwy-Txwy/view...

1 of 1 6/14/11 10:52 AM

Figure 3.3: A sparse PCA plot of the runway ASRS data, with runway features removed.

29

N Words on Axis 5 8 10 20 50
Threshold PCA 1.8 3.77 5 10.5 21.15
SPCA 8.99 10.75 10.82 17.2 24.18

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

!" %!" '!" (!")!" $!!" $%!"

!"
#$
%&
'(

)*
+%

,&
%'

-(
*./

0*

1234(,*56*75,)8*

*+,-.+/01"234" 5234"
Figure 3.4: Explained variance by SPCA and thresholded PCA.

within the Manage theme, which was defining the positive-vertical direction in Fig 3.1.
This is to be expected, since the data is now restricted to runway issues: what involved
passenger issues in the category data set, now becomes mainly related to the other humans
in the loop, pilots (“permission”), drivers (“vehicle”) and other actors, and their actions
or challenges (“workload, open, apologized”).

One look at the sparse PCA plots (Figs. 3.1 and 3.3) reveals a commonality: the
themes of Aviate and Communicate seem to go together in the data, and are opposed to
the other sub-group of Navigate and Manage Systems.

Thresholded PCA. Fig. 3.4 shows the total explained variance by sparse and thresh-
olded PCA discussed in Section 2.2.4 as a function of the number of words allowed for the
axes, for the category data set. With the empirical covariance matrix Σ from the data,
the total explained variance var (u) given a unit-norm principal component u is defined
as:

var (u) := uTΣu.

We observe that thresholded PCA does not explain as much variance (in fact, only
half as much) as sparse PCA, with the same budget of words allowed for each axis. This
ranking is reversed only after 80 words are allowed in the budget. The two methods do
reach the maximal variance explained by PCA as we relax our word-budget constraint.
Similar observations can be made for the runway data set.

30

term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8 term 9 term 10
Topic 1 runway taxi ground taxiway turn control captain airport gate txwyno
Topic 2 tower clear takeoff aircraft rwyus clearance position firstofficer captain flight
Topic 3 runway hold short line cross told rwyus nar aircraft taxi
Topic 4 runway aircraft landing ctlapproachcontrol feet report lights pilot due crew

Table 3.9: 4 topics extracted from ASRS dataset.

term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8 term 9 term 10
Topic 1 captain firstofficer time flight departure secondofficer airtrafficcontrol chklist txwyme crew
Topic 2 runway hold short line aircraft stopped taxi stop nar clear
Topic 3 runway taxi ground control cross rwyus instructions crossing told gate
Topic 4 tower clear takeoff clearance position rwyus aircraft aircarrier controller call
Topic 5 runway aircraft landing ctlapproachcontrol feet traffic tower clear landed approximately
Topic 6 runway taxiway taxi turn airport report txwyno lights end area

Table 3.10: 6 topics extracted from ASRS dataset.

3.4.3 Thresholded Latent Dirichlet Allocation
For the sake of comparison, we have similarly applied the Latent Dirichlet Allocation

(LDA) algorithm to the ASRS data. LDA is an unsupervised technique for topic modeling
and as such it requires the number of topics to extract from the data. For our ASRS
data, we have generated 4, 6, and 10 topics. We have used the code in [95], with default
parameter values, as previously detailed in Table 3.1.

In our first attempt, we have not removed any stop words and found the corresponding
lists to be quite uninformative, as stop words did show up. We have then removed the
stop words using a standard list of stop words from the English dictionary.

Table 3.9 shows the four topics with the top 10 words (according to posterior distri-
bution) thresholded from the entire distribution of words. Unlike the Spase PCA method
(Fig. 3.1), the 4 topics of LDA model do not correspond to the four missions of the pilot:
Aviate, Navigate, Communicate, and Manage Systems. In fact, there are certain words
such as ‘aircraft’, ‘runway’ etc. which seem to occur in most of the topics and are therefore
not very informative for discrimination purposes. From a high level, the topics roughly
seem to correspond to the following: (1) Topic 1 – gate events or ground events, (2) Topic
2 – ATC communication or clearance related, (3) Topic 3 – not clear , and (4) Topic 4 –
approach/landing.

Tables 3.10 and 3.11 depicts 6 and 10 topics extracted from the ASRS data. Both of
these tables show that there the topics are not very unique since the words in the topics
appear to be substantially overlapping and therefore, (1) there is not much discriminative
power of the components (words) and, (2) the topics do not discover unique structures in
the data. Finally, we report the running time of LDA algorithm for these three experi-
ments: 12 secs for 4 topics, 16 secs for 6 topics and 25 secs for 10 topics. For all these
experiments, we have run the Gibbs sampler for 500 iterations.

31

term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8 term 9 term 10
Topic 1 runway clearance controller cross clear crossing back instructions airtrafficcontrol aircraft
Topic 2 runway taxiway taxi end txwyno lights airport turn turned side
Topic 3 aircraft runway tower clear takeoff landing rwyus nar stop speed
Topic 4 taxi time airport ramp crew flight departure problem due factors
Topic 5 runway ground taxi rwyus control told instructions gate instructed crossed
Topic 6 tower takeoff position clear rwyus aircarrier call frequency heard clearance
Topic 7 hold short line runway report stopped past nar taxi holding
Topic 8 runway intermediatefix txwyme txwyno secondofficer intersection asked txwydo txwygo approach
Topic 9 ctlapproachcontrol feet landing aircraft traffic final approximately land report pilot
Topic 10 captain taxi firstofficer runway turn chklist time looked rwy4l txwyb

Table 3.11: 10 topics extracted from ASRS dataset.

3.5 Analysis of runway incursion incidents
In this section, our objective is to understand specific runway-related issues affecting

each airport using the Runway data.
We will use three different methods to obtain the image (as given by a short list of

terms) for each airport. A first approach is basic and relies on co-occurrence between the
airport’s name and the other terms appearing in documents mentioning that name. The
two other approaches, thresholded naïve Bayes and LASSO, rely on classification. For
this, we separate the data into two sets: one set corresponds to the ASRS reports that
contain the name of the airport under analysis; the other contains all the remaining ASRS
documents in our corpus. We have selected for illustration purposes the top 22 airports,
as ordered by the number of reports that mention their names.

3.5.1 Co-occurrence analysis
With no stop words removed or word-stemming, the simplest method is the co-

occurrence on term frequency, which expectedly gives commonly-used words with little
meaning as term association for the airports. Results are shown in Table 3.12. Among
these top words across the airports are simply “the”, “runway”, “and”.

To avoid stop words, we also experiment with the TF-IDF scores for the co-occurrence
method, which adds a weight of inverse document frequency to each term. When consid-
ering an airport, TF-IDF generally favors terms that occur more exclusively in documents
containing the name of that airport. Results are shown in Table 3.13. Among the top 8
terms chosen for each airport in the experimentation are: the airport name (ATL, LGA,
LAS, BWI, JFK) and specific runways with taxiways that have reported aviation issues.
Some focus on actions are shown in a few airports: MIA (takeoff), PHL (cross), DCA and
BWI (turn).

3.5.2 Näıve Bayes classification
To emphasize the differences between two sets of documents, one method is to make use

of the Naïve Bayes classifier on the binary term-appearance matrix. This method relies on
a strong assumption of term’s independence across the whole corpus. To obtain the term

32

Airport term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8
CLE the runway and i was hold short a
DFW the runway and i was tower a aircraft
ORD the runway and i was a that were
MIA the runway and was i a hold taxi
BOS the runway and i was a hold were
LAX the runway and i was a hold short
STL the runway and i was short a that
PHL the runway and was i aircraft taxi a
MDW the runway and i was a taxi hold
DCA the runway and i was a were that
SFO the runway and i was a that aircraft
ZZZ the and runway i was a aircraft were
EWR the runway and i was a tower that
ATL the runway and was i a aircraft tower
LGA the runway and was i aircraft hold a
LAS the runway and i was a for were
PIT the runway and was i a taxi that
HOU the runway and i was for a rwy12r
BWI the runway and was i taxi a that
CYYZ the runway and hold short was i line
SEA the runway and i was hold tower a
JFK the runway and was i a that clear

Table 3.12: Images of airports via the co-occurrence method on the binary term by
document matrix, without stop word removal.

33

Airport term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8
CLE rwy23l rwy24l rwy24c cle rwy23r rwy5r rwy6r rwy5l
DFW rwy18l dfw rwy17r rwy35l rwy35c rwy17c rwy18r rwy36r
ORD ord rwy22r rwy27r rwy32r rwy27l rwy9l rwy4l rwy22l
MIA rwy9l mia txwyq rwy9r line rwy8r txwym takeoff
BOS rwy4l bos rwy33l rwy22r rwy22l rwy4r captain frequency
LAX rwy25r lax rwy25l rwy24l rwy24r i captain firstofficer
STL rwy30l rwy12l rwy12r stl rwy30r cross aircarrier short
PHL rwy9l rwy27r phl rwy27l txwyk x e cross
MDW rwy31c rwy31r mdw rwy22l rwy4r txwyp midway rwy13c
DCA dca txwyj airplane turn ground traffic i pad
SFO rwy28l rwy28r sfo rwy1l rwy1r rwy10r rwy10l captain
ZZZ xxr zzz radio hangar tow i speed rwyxa
EWR rwy4l rwy22r ewr rwy22l txwyp txwyz rwy4r txwypb
ATL atl rwy26l rwy8r rwy9l rwy27r rwy26r dixie atlanta
LGA lga txwyb instrumentlandingsystem txwyb4 vehicle line lights txwyp
LAS las rwy25r rwy19l rwy7l rwy1r rwy19r rwy25l rwy1l
PIT rwy28c rwy10c pit rwy28l txwye txwyw txwyv txwyn1
HOU rwy12r hou rwy12l heading takeoff i rwy30r txwyme
BWI bwi rwy15r txwyp rwy33l turn intersection txwyp1 taxiway
CYYZ txwyq txwyh yyz line rwy6l rwy33r short length
SEA rwy34r rwy16l rwy34l sea rwy16r position firstofficer y
JFK jfk rwy31l vehicle rwy13r rwy4l rwy22r rwy13l rwy31r
Table 3.13: Images of airports via the co-occurrence method, using TF-IDF scores.

association for each airport, we compute the estimated log-odds ratio of term appearance
in “positive” documents to that in “negative” ones, normalized by the variance of this
estimation, in order to cope with noise in the data. Hard thresholding these log-odds
ratios allows to retain a fixed number of terms associated to each airport.

Results from the Naïve Bayes classification are shown in Table 3.14. It seems that
the method, applied to the runway ASRS dataset, is effective in pointing out generic
actions relevant to the aviation system. Term associations mostly reveal “cross”, “landed”,
“tower” as strong discriminating features. Nevertheless, this generic result provides little
help in understanding specific runway-related issues that affect each airport.

3.5.3 LASSO
We turn to a LASSO regression to analyze the image of each airport. Our results,

shown in Table 3.15, are based on the TF-IDF representation of the text data. They
indicate that the LASSO images for each airport reveal runways that are specific to that
airport, as well as some specific taxiways. We elaborate on this next.

3.5.4 Tree images via two-stage LASSO
To further illustrate the LASSO-based approach, we focus on a single airport (say

DFW). We propose a two-stage LASSO analysis allowing to discover a tree structure of

34

Airport term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8
CLE line short this are for following first didn
DFW cross crossing tower landed aircraft across short holding
ORD turn but when l speed get than txwyb
MIA rwy9l txwyp taxiway txwym signage chart line via
BOS frequency told s contact controller txwyk rwy4l rwy22r
LAX tower cross short call high landing speed firstofficer
STL cross line short call hold aircraft trying supervisor
PHL cross e rwy9l crossed x txwye spot txwyk
MDW clearance i taxi hold gate captain crossed short
DCA his turn just captain but airplane txwyj through
SFO control crossing short crossed some txwyb landing cross
ZZZ radio time proceeded while way any i approximately
EWR tower landing aircraft txwyp rwy22r between high rwy4l
ATL cross crossing roll speed high hold txwyd knot
LGA txwyb aircarrier instrumentlandingsystem off lights txwyp behind error
LAS after saw rwy25r procedure lights approximately never signs
PIT via txwye intersection firstofficer conversation night looking down
HOU txwyme hold rwy12r takeoff via around trying little
BWI turn intersection taxi mistake ground gate made crossed
CYYZ line short stopped hold past taxi full end
SEA feet firstofficer cross tower read after called back
JFK prior instructed departure report his being out txwya

Table 3.14: Images of airports via Naïve Bayes classification, using the binary term by
document data.

Airport term 1 term 2 term 3 term 4 term 5 term 6 term 7 term 8
CLE Rwy23L Rwy24L Rwy24C Rwy23R Rwy5R Line Rwy6R Rwy5L
DFW Rwy35C Rwy35L Rwy18L Rwy17R Rwy18R Rwy17C cross Tower
ORD Rwy22R Rwy27R Rwy32R Rwy27L Rwy32L Rwy22L Rwy9L Rwy4L
MIA Rwy9L TxwyQ Rwy8R Line Rwy9R PilotInCommand TxwyM Takeoff
BOS Rwy4L Rwy33L Rwy22R Rwy4R Rwy22L TxwyK Frequency Captain
LAX Rwy25R Rwy25L Rwy24L Rwy24R Speed cross Line Tower
STL Rwy12L Rwy12R Rwy30L Rwy30R Line cross short TxwyP
PHL Rwy27R Rwy9L Rwy27L TxwyE amass TxwyK AirCarrier TxwyY
MDW Rwy31C Rwy31R Rwy22L TxwyP Rwy4R midway Rwy22R TxwyY
DCA TxwyJ Airplane turn Captain Line Traffic Landing short
SFO Rwy28L Rwy28R Rwy1L Rwy1R Rwy10R Rwy10L b747 Captain
ZZZ hangar radio Rwy36R gate Aircraft Line Ground Tower
EWR Rwy22R Rwy4L Rwy22L TxwyP TxwyZ Rwy4R papa TxwyPB
ATL Rwy26L Rwy26R Rwy27R Rwy9L Rwy8R atlanta dixie cross
LGA TxwyB4 ILS Line notes TxwyP hold vehicle Taxiway
LAS Rwy25R Rwy7L Rwy19L Rwy1R Rwy1L Rwy25L TxwyA7 Rwy19R
PIT Rwy28C Rwy10C Rwy28L TxwyN1 TxwyE TxwyW Rwy28R TxwyV
HOU Rwy12R Rwy12L citation Takeoff Heading Rwy30L Line Tower
BWI TxwyP Rwy15R Rwy33L turn TxwyP1 Intersection TxwyE Taxiway
CYYZ TxwyQ TxwyH Rwy33R Line YYZ Rwy24R short toronto
SEA Rwy34R Rwy16L Rwy34L Rwy16R AirCarrier FirstOfficer TxwyJ SMA
JFK Rwy31L Rwy13R Rwy22R Rwy13L vehicle Rwy4L amass Rwy31R

Table 3.15: Images of airports via LASSO regression, using TF-IDF data.

35

DFW

Rwy35C
airline

reconfirmed

final

TxwyZ

a319

Rwy17C

RwyER
lahso

charge
Communication

Rwy35L

mu2 cbasimultaneously
lima

TxwyEL

Rwy18L

TxwyWM

xxxx

Rwy18R

TxwyA

xyz

Rwy13R

Rwy36L
switch

AirlineTransportRating

Rwy17R

RwyXX

spot

abed

Rwy36R

Week

cleared

TxwyWL
TxwyF

turn

md80

b757abcdRwy22Rcba
TxwyEL

committed

downfield

received

cba

b727

danger

Crossing

TxwyY

statnews.org http://statnews.org/tree_dfw

1 of 1 6/14/11 9:40 PM

Figure 3.5: A tree LASSO analysis of the DFW airport, showing the LASSO image (inner
circle) and for each term in that image, a further image.

terms. We first run a LASSO algorithm to discover a short list of terms that correspond
to the image of the term “DFW” in the data set. For each term in that image, we re-run
a LASSO analysis, comparing all the documents in the DFW-related corpus containing
the term, against all the other documents in the DFW-related corpus. Hence the second
step in this analysis only involves the ASRS reports that contain the term “DFW”. The
approach produces a tree-like structure that can be visualized as two concentric circles of
terms, as in Figs. 3.5 and 3.6.

The tree analysis, which is visualized in Figs. 3.5 and 3.6, highlights which issues are
pertaining to specific runways, and where attention could be focussed. In the airport
diagram in Figure 3.7, we have highlighted some locations discussed next.

As highlighted in red in the airport diagram 3.7, the major runway 35L crosses the
taxiway EL; likewise for runway 36R and its siblings taxiway WL and F. Runway/taxi-
way intersections are generally known to contain a risk of collision. At those particular

36

CYYZ

YYZ
displaced

may

Crossing

across

along

toronto

ClearAirTurbulence
looks

holdover
old bleed Report

TxwyQ

needed

TxwyH

separation
holdover

Rwy33R

Knot

TxwyE

TxwyR

radio

initial

Ground

Line

protected

never

area

proceeded

stop

landed

final

length

full
data

Minute
alongcloseout

previous

rightfollowing
while

conflict
sign

inadvertently

distance

Knot

bleed

placed

toward

statnews.org http://statnews.org/tree_cyyz

1 of 1 6/14/11 9:39 PM

Figure 3.6: A tree LASSO analysis of the CYYZ airport, showing the LASSO image
(inner circle) and for each term in that image, a further image.

37

Figure 3.7: Diagram of DFW.

38

intersections, the issues seem to be about obtaining “clearance” to “turn” from the tower,
which might be due to the absence of line of sight from the tower (here we are guessing
that the presence of the west cargo area could be a line-of-sight hindrance). The corre-
sponding tree image in Fig. 3.5 is consistent with the location of DFW in the sparse PCA
plot (Fig. 3.3), close to the themes of Aviate and Communicate.

3.6 Summary
Sparse learning problems are formulated as optimization problem with explicit encod-

ing of sparsity requirements, either in the form of constraint or via a penalty on the model
variables. This encoding leads to a higher degree of interpretability of the model without
penalizing, in fact improving, the computational complexity of the algorithm. As such, the
results offer an explicit trade-off between accuracy and sparsity, based on the value of the
sparsity-controlling parameter that is chosen. In comparison to thresholded PCA, LDA
or similar methods, which provide “after-the-fact” sparsity, sparse learning methods offer
a principled way to explicitly encode the trade-off in the optimization problem. Thus, the
enhanced interpretability of the results is a direct result of the optimization process. We
demonstrated the sparse learning techniques on a real-world data set from the Aviation
Safety Reporting System and showed that they can reveal contributing factors to avia-
tion safety incidents such as runway incursions. We also show that the sparse PCA and
LASSO algorithms can discover the underlying task hierarchy that pilots perform. We
have compared the LDA and sparse PCA approaches on other commonly used data sets.
Our experiments indicate that the sparse PCA and LASSO methods are very competi-
tive with respect to thresholded methods (involving say LDA and naïve Bayes), at very
moderate computational cost. One question is, can we use sparse optimization in other
practical areas beyond data mining or text analytics as well? To answer this question, in
the next chapter, we will explore the realm of dynamical systems and evaluate the use of
sparse methods in complex engineering applications.

39

Chapter 4

Sparse optimization in energy
systems

In the previous chapter, we discuss how text analytics can benefit from sparse machine
learning. This chapter moves beyond to explore another domain which, despite often being
very technical in nature, still can inherit sparse model ideas. We will study, analyze and
then uncover structures in engineering models with real energy applications.

Many engineering applications involve data simulation, system modeling, and param-
eter optimization. Optimal control for linear dynamical system, or sum-of-square opti-
mization models for complex nonlinear control systems are classical examples in the liter-
ature. Recent advances in energy modeling show an important role in energy management
applications, where reliable modeling and consumption forecasting are indispensable in
engineers’ toolbox. Examples include HVAC system optimization, energy prediction, and
building’s climate control.

A typical engineering optimization commences with an initial sampling of the design
space, using an expensive simulation. Then a surrogate model is constructed to model the
changes in an objective function in the magnitude of the design variables. Comprehensive
reviews for the state-of-the-art surrogate modeling can be found in [87, 101].

In recent years, there has been an extensive body of literature in data-driven approach
to engineering modeling. Recent advances are applications of machine learning and statis-
tical learning in this domain, including the use of support vector regression [56], Gaussian
process regression [64], Kriging [42], and artificial neural network [66].

Our objective in this chapter is to present sparse optimization-friendly models to
predict building energy consumption. When the models achieve high accuracy for the
modeling task, one can use these surrogate model to optimize the system parameters in
order to minimize quantities of energy interest. We study in particular the posynomial and
signomial models, which have in the literature many applications in various engineering
design problems, such as aerospace engineering [55], antennas design [8], and circuit design
[2, 17, 25].

40

4.1 Sparse surrogate model

4.1.1 Posynomial model
Posynomials, suggested by Richard Duffin, Elmor Peterson, and Clarence Zener [34] is

a combination of polynomial and positive, hence the term. One distinction is posynomials
may contain not only integer exponents but also real ones. Mathematically, posynomial
model is a function ψc,α (p) of parameter p ∈ Rnp

+ that has the form:

ψc,α (p) :=
nc∑
i=1

ci np∏
j=1

p
αij

j

where αij ∈ R and all coefficients ci’s are nonnegative.

Much of existing efforts focuses on identifying posynomial models for engineering ap-
plications [25, 41, 86]. Recently Calafiore et al. [19] suggest a sparse identification ap-
proach, given prior information on the exponents αij ∈ Qj, where Qj is a set of exponents
considered for the variable pj. The set of all possible exponent vectors is then defined as:

S := {αi}ni=1 = Q1 ×Q2 × · · · ×Qnp .

The authors propose the nonnegative square-root Lasso for identifying the sparse posyn-
omial model, given m data or simulation points {p (i) , y (i)}mi=1:

min
c≥0

∥∥∥∥∥
[

Φc− y
σc

]∥∥∥∥∥
2

+ λ ‖c‖1 (4.1)

with Φ is the matrix constructed from all simulation parameters and possible exponent
set:

Φ :=

p (1)α1 · · · p (1)αn

...
p (m)α1 · · · p (m)αn

 ∈ Rm×n.

We observe that problem (4.1) is a convex program, and can be solved using a convex
solver (e.g. CVX, SDPT3, or MOSEK). When the constructed matrix Φ is large, especially
when there are many possible exponent vectors {αi}ni=1, we can employ the safe feature
elimination (SAFE) procedure to reduce the size of the optimization problem [39].

4.1.2 Signomial model
Signomial model is an extension of posynomials, also proposed by Duffin and Peterson

[35]. We can represent in the form of difference of posynomials, i.e.:

ζ (p) := ψa,α (p)− ψb,β (p)
= ∑nc

i=1

(
ai
∏np

j=1 p
αij

j

)
−∑nd

i=1

(
bi
∏np

j=1 p
βij

j

)

41

where ai and bi are all non-negative. Similar to the posynomial identification method, we
note that, given prior information Qj’s, the sparse identification problem for ζ (p) can be
found by solving a standard square-root Lasso [12]:

min
c

∥∥∥∥∥
[

Φc− y
σc

]∥∥∥∥∥
2

+ λ ‖c‖1 (4.2)

This unconstrained second-order cone problem can be solved using the interior point
method [74], a convex solver, or using alternating direction method of multipliers algo-
rithm.

4.2 Parameter optimization
In many engineering design applications, sparse models are useful in understanding

system structure. Examples include discovering variables or groups of variables that
contribute to the interested quantities. In system design, however, it’s often desirable
to discover the optimal system parameters to minimize an objective function, such as
optimizing energy consumption. With surrogate optimization-friendly models, we can
employ various optimization schemes to find the optimal parameters. Furthermore, having
identified an interested local region, we can re-sample our data in a refined region to
build better surrogate local models. We discuss in this section techniques for parameter
optimization with sparse models presented in Section 4.1.

4.2.1 Posynomial model
The posynomial model has the form of a sum of monomials. Given a feasible set of

parameters P , the parameter optimization problem writes:

min
p

∑nc
i=1

(
ci
∏np

j=1 p
αij

j

)
s.t. p ∈ P

(4.3)

If the original parameters are in positive domain, problem (4.3) can be convexified by
taking a logarithm transformation on the original parameters:

min
z

∑nc
i=1 ci exp

(
αTi z

)
s.t. z ∈ P ′

(4.4)

where z := log (p) is the transformed variable and P ′ is the transformed set of P . Thus
problem (4.4) is convex if this transformed set is convex.

42

4.2.2 Signomial model
The parameter optimization problem for signomial models has a similar form to prob-

lem (4.3), except that signomial models have a concave term in the tranformed problem.
We write this optimization in logarithm scale as:

min
z

∑nc
i=1 ai exp

(
αTi z

)
−∑nd

i=1 bi exp
(
βTi z

)
s.t. z ∈ P ′

(4.5)

Problem (4.5) is non-convex even when the set P ′ is convex. Global optimization tech-
niques, approximation algorithms, non-linear optimization methods have been proposed
for non-convex problems [2, 80, 100]. In this chapter, we consider a simple heuristic to
find a local solution to the difference of convex functions program, known as the convex-
concave procedure [65, 69, 106].

The procedure involves linearizing the concave part ∑nd
i=1 bi exp

(
βTi z

)
around the cur-

rent solution z0, and perform the solution update with convex optimization techniques
assuming the feasible set P ′ is convex. The optimal parameter z∗ is selected after this
local procedure is repeated T times for different random initializations. We outline the
pseudo-code of this algorithm below:

for t := 1, 2, 3, . . . ,T do
Randomly initialize z0 ∈ P ′.
for k := 1, 2, 3, . . . ,K do

z∗ := argmin
z∈P ′

∑
i ai exp

(
αTi z

)
−∑j bj

(
exp

(
βTj z0

)
+ exp

(
βTj z0

)
βTj (z − z0)

)
z0 := z∗

end
Compare z∗ with the current best parameter.

end
Algorithm 3: The convex-concave procedure for signomial models.

Remark. The optimization problems (4.4) and (4.5) aim to find the optimal param-
eter with respect to the surrogate models. In practice, the engineering design task with a
set of parameters often incurs construction cost, for instance building wall thickness for
heat insulation. Therefore, one may be interested in optimizing a weighted combination
of the surrogate loss and chosen construction cost. We will revisit this idea with a real-life
example in Section 4.3.

4.2.3 Iterative sampling and optimization
Even with a broad class of surrogate models, modeling a complex energy system may

not always give sufficiently high accuracy for optimizing real-life design of complex struc-
ture. We consider in this chapter an iterative approach where data sampling, surrogate
modeling, and parameter optimization are carried out in iterations. The key idea is to
repeatedly narrow down the search space for the design variables, build a better-fit local

43

Sample
data from
region P

Build
surrogate
models
fP (·)

Find
optimal

parameters
p∗ ∈ P

from fP (·)

Update P
to the local

region
near p∗

Figure 4.1: Iterative sampling and optimization.

surrogate model, and find the optimal parameters in the local region. The diagram in
Figure 4.1 summarizes the key steps of this approach.

4.3 Real-life examples

4.3.1 NACA 4412 Airfoil
We first evaluate the sparse models using the NACA 4412 Airfoil dataset [19], of

which the main goal is to model the drag force from 4 parameters: air flow density,
the wing chord, the incident angle and the flow velocity. This data set is obtained via
costly simulations based on computational fluid dynamics by integrations of the Navier-
Stokes equations. In this model fitting example, we use the leave-one-out cross validation
procedure over 50 data points as described in [19], and we also use the same metric of
accumulated relative error AE :=

√∑
j ν

2
j , where:

νj := |y (j)− ŷ (j)|
‖yLOO‖

for every j in the validation set. As Table 4.1 shows, the posynomial model and standard
support vector regression ν-SVR [22] have similar error, while the signomial model has
better performance, reducing the error by a factor of 2. This is because the signomial
function class is much broader than the posynomial function class.

44

NACA 4412 Airfoil SVR Posynomial model Signomial model
Accumulated error 27.05% 24.72% 13.43%
Table 4.1: Drag force model fitting on NACA 4412 airfoil data set.

Meaning
p1 Insulation thickness
p2 Cement coating thickness
p3 Percent of thermal bridges taken into account
p4 Solar gain for walls
p5 Solar gain for glazing

Table 4.2: 5 parameters of interest at EDF.

4.3.2 EDF 22 buildings
In this example, we experiment on a real-life engineering example of modeling com-

plex energy system. The data is obtained from Dymola simulations of 22 buildings at
Électricité de France (EDF). Our goal is to understand the relationship between variables
and energy quantities like power consumption and temperature deviation from a nominal
set point. From the surrogate models, we also propose an optimal parameter to minimize
the power consumption of the electric system.

4.3.2.1 Data simulation

We first perform Dymola simulation on 22 buildings at EDF, each of which was simu-
lated in 672 time steps with ∆t = 3, 600 seconds. The final time for each simulation was
28 days. The initial set point temperature for all 22 buildings was set to Tsp := 293.15
(room temperature). We collected 3, 174 simulations over a Latin hypercube sampling of
5 normalized parameters in Table 4.2; all normalized parameters are between 0 and 1.
For each simulation, we recorded the power consumption Pi (t) and temperature Ti (t) of
each building i over 28 days.

4.3.2.2 Model fitting

The quantities of interest in EDF data are the average power consumption and the
average temperature deviation from the nominal set-point temperature of all buildings.
We split half of the simulation data into training and the other half into validation sets.
Our criterion to evaluate models is the relative error, defined as:

RE :=

∥∥∥E − Ê∥∥∥
2

‖E‖2

where Ê ∈ Rn is the model prediction and E ∈ Rn is the true response vector of an
energy quantity of interest.

45

Power SVR - linear kernel SVR - RBF kernel Posynomial model Signomial
Train RE 42.72% 43.63% 35.94% 4.53%

Validation RE 43.96% 44.89% 36.49% 5.01%
Table 4.3: Model fitting results with relative error on power consumption.

Temperature SVR - linear kernel SVR - RBF kernel Posynomial model Signomial
Train RE 16.40% 10.06% 20.81% 3.96%

Validation RE 16.96% 10.86% 21.25% 4.22%
Table 4.4: Model fitting results with relative error on temperature deviation.

We perform experiments on the signomial model, posynomial model, and support
vector regression. All model hyper-parameters are selected via cross-validation based
on the scree plot of training and validation data. For the posynomial and signomial
models, we set the prior information Qj for possible exponents of variable j to Qj :=
{−1,−0.9, . . . , 0.9, 1} .

Table 4.3 shows the performance of all models on modeling power consumption. and
Table 4.4 shows the results for temperature deviation modeling. We observe that the
signomial model has much higher accuracy compared to the posynomial model and the
regression model, both of which have similar order of relative error. The model is also
very sparse; low relative errors above can be achieved using less than 40 monomials.
Figure 4.2 shows the Pareto optimal curve between the model sparsity and relative error
of the signomial model for both power and temperature modeling.

4.3.2.3 Parameter optimization

With the signomial model, we aim to find the optimal parameters to minimize the
power consumption of 22 EDF buildings. The feasible set for all normalized parameters
is P := [0, 1]5, thus the transformed set P ′ := {z : z ≤ 0} is convex. We also use the
construction-cost/regularization term in the form of a log-barrier function with a regu-
larization constant γ ≥ 0 to obtain the optimal solution path z∗(γ). Here we assume the
upper bounds correspond to more costly construction:

z∗ (γ) := argmin
z≤0

nc∑
i=1

ci exp
(
αTi z

)
−

nd∑
i=1

di exp
(
βTi z

)
− γ

∑
k

log (−zk) (4.6)

Figure 4.3 shows the solution path of the original parameters p∗ (γ) computed from the
convex-concave procedure (4.6). We observe that when there’s no construction cost (γ =
0), most variables are near the upper bound. When the construction cost carries more
weight (γ > 0), the variables change at different rates, with variable p4 (solar gain for
walls) decreasing the fastest, while both variable p1 (insulation thickness) and p5 (solar
gain for glazing) have a much slower rate.

46

0 20 40 60 80 100 120
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Sparsity

R
el

at
iv

e
E

rr
or

Training error
Testing error

(a) Pareto optimal curve for power consumption

0 20 40 60 80
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Sparsity

R
el

at
iv

e
E

rr
or

Training error
Testing error

(b) Pareto optimal curve for temperature deviation
Figure 4.2: Signomial model sparsity versus relative error in power and temperature
modeling.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

γ

P
ar

am
et

er
 v

al
ue

p1
p2
p3
p4
p5

Figure 4.3: Solution path p∗ (γ) as the regularization parameter γ increases.

47

0 5000 10000 15000
0

20

40

60

80

Value

C
ou

nt

Predicted

(a) Power consumption on the original data

940 960 980 1000 1020
0

20

40

60

80

Value

C
ou

nt

Predicted

Actual

(b) Power consumption on the local region P̂

Figure 4.4: Histogram of power consumption and the predicted and actual value at p∗ (γ0).

4.3.3 Refined fitting
We further experiment on refined sampling in the vicinity of an optimal parameter

p∗ (γ0) using Dymola simulation. The power consumption predicted from our signomial
model at p∗ (γ0) is shown in Figure 4.4a. We perform Latin Hypercube sampling in the
local region P̂ around p∗ (γ0), defined as P̂ := [p∗ (γ0)− σ1, p∗ (γ0) + σ1] with σ = 1%.
Figure 4.4b shows the histogram of power consumption of refined sampling data in P̂ and
the actual power consumption simulated at p∗ (γ0); we observe that the actual value is
very close (less than 1% error) to the signomial model’s prediction.

We subsequently perform signomial model fitting on P̂ . As Table 4.5 shows for all 22
buildings at EDF, the relative error of the signomial model in the local region is an order
of magnitude lower than all other methods. All errors are less than 1%, which suggests
that this local model can be useful in analyzing the behavior of the complex energy system
in the region of interest.

4.4 Summary
This chapter studies an approach to model a complex energy system with sparse

optimization. Our approach involves model fitting with sparse models and parameter op-
timization with the convex-concave procedure, taking into account the construction cost.
We show that the sparse model achieves high accuracy in terms of modeling quantities of
energy interest, compared to other state-of-the-art models. The parameter optimization
procedure suggests an optimal parameter, of which model prediction and actual value
from the system are very close to each other. We experiment refined fitting in the vicin-
ity of the optimal parameter, and the high accuracy suggests the sparse model can help
understanding the complex energy system in local regions.

48

Power SVR SVR Posynomial Signomial
Building (linear) (RBF) Original fitting Original fitting Refined fitting

1 44.67% 45.67% 37.24% 5.16% 0.59%
2 42.09% 43.21% 35.83% 4.15% 0.29%
3 44.31% 44.76% 37.04% 4.28% 0.34%
4 45.96% 47.00% 38.35% 5.47% 0.76%
5 42.80% 44.11% 35.76% 5.12% 0.51%
6 40.67% 41.49% 32.52% 5.25% 0.54%
7 45.35% 46.33% 37.81% 5.32% 0.65%
8 45.32% 46.33% 37.78% 5.33% 0.63%
9 43.65% 44.59% 36.20% 5.03% 0.50%
10 41.28% 42.09% 33.05% 5.41% 0.61%
11 43.03% 43.56% 35.17% 4.74% 0.54%
12 44.59% 45.62% 37.15% 5.20% 0.55%
13 44.12% 45.10% 36.77% 5.03% 0.50%
14 44.76% 45.76% 37.15% 5.34% 0.61%
15 44.47% 45.49% 37.06% 5.16% 0.55%
16 44.65% 45.67% 37.21% 5.18% 0.58%
17 44.18% 45.17% 36.81% 5.07% 0.52%
18 44.28% 45.21% 36.70% 5.19% 0.57%
19 44.76% 45.78% 37.28% 5.23% 0.56%
20 46.12% 47.17% 38.49% 5.55% 0.77%
21 44.87% 45.90% 37.25% 5.37% 0.65%
22 46.53% 48.00% 40.87% 4.74% 0.15%

Table 4.5: Relative error on validation set of refined fitting and original fitting

49

Chapter 5

Robust sketching for sparse models

We have presented applications of sparse models in domains of text analytics and
energy modeling in previous chapters. This chapter on the other hand approaches a
standard sparse model from a theoretical standpoint. From previous examples, we observe
that in many applications, learning tasks arise not in isolation, but in multiple instances
that share most, if not all of the data. A simple classical example is in computing the full
regularization path or in parameter search [46, 53, 83]. In this problem, the main task is
to compute the full solutions under different tuning parameters while the “design matrix”
stays unchanged.

Consider another classical example: leave-one-out cross-validation. At each step a
single instance is being held-out and the learning problem is to be solved with the re-
maining “design matrix”. This procedure is repeated m times, where m is the number of
observations, which suggests that a computationally efficient method is essential to make
cross-validation feasible.

Many practical applications are also in the same setting: examples include sparse
covariance estimation with the LASSO [47], or in robust subspace clustering [92]. Both
require solving m instances of the LASSO; each instance differs by one example or one
feature being left out. Most of the data is shared among all instances. Hence it makes
sense to spend preprocessing time on the common part of the problems to compress it in
certain sense, and in the big picture speed up the overall computation.

5.1 Robust sketching overview
In this section we propose an approach to multi-instance square root LASSO based on

“robust sketching”, where the data matrix of the optimization problem is approximated
by a sketch — a simpler matrix that preserves some property of interest — and on which
computation can be performed much faster than the original. Our focus is the square-root
LASSO problem:

min
w∈Rn

‖XTw − y‖2 + λ‖w‖1

50

100 101 102

10−2

10−1.6

10−1.2

10−0.8

10−0.4

100

i

σ
i/
σ
1

Reuters RCV1
20 Newsgroups
NYTimes
MNIST
USPS

Figure 5.1: Graphs of the top 100 singular values from real-life text and digit recognition
data sets.

with X ∈ Rn×m and y ∈ Rm. The square-root LASSO problem has pivotal recovery
properties; also solving a square-root LASSO problem is as fast as solving an equivalent
LASSO problem with both first-order and second-order methods [11]. We chose the
square-root version to make the derivation simpler; these derivations can also be adapted
to the original LASSO, in which the loss function is squared.

In practice, real-life data sets often have very large number of observations m and
number of features n. Nevertheless, a key observation is that high-dimensional data often
have special structure we can exploit in many learning tasks. Figure 5.1 shows large-scale
data sets are often close to a low-rank sketch. The linear decay in log-log plot of singular
values suggests these data can be well-approximated by low-rank structures. Furthermore,
in many applications, including signal processing, speech encoding, or image processing,
low rank approximation is also known as a common tool for noise removal (see [24] and
references therein).

Objective. Our goal is to solve multiple instances of a learning model fast, each instance
being a small modification to the same design matrix. Our approach is to first spend
computational effort in finding a low-rank sketch of the full data. With this sketch, we
propose a robust model that takes into account the approximation error, and explain how
to solve that approximate problem faster, in effect reducingm, the number of observations,

51

to k, the number of singular values retained in our low-rank model. This approach leads
to a dramatic reduction in computational effort: with the low-rank model, we can perform
cross-validation, for example, an order of magnitude faster, with the low-rank sketching
included in our approach.

There has been an extensive body of literature on sketching, including power method,
random projection, random sampling, and Nyström method [32, 33, 52, 67, 72, 76].
Our framework works with any approximation algorithms, thus provides flexibility when
working with different sketching methods, deterministic or random, and remains highly-
scalable in learning tasks.

Computing the full regularization path is an example of multiple-instance setting that
has been widely studied in the literature [9, 46, 83]. The most popular approach is the
warm-start technique, which was first proposed in a specific optimization algorithm for
linear program [104], then applied in many statistical learning models [61, 62]. Recent
works [99] show strong interest in incremental and decremental training, employing the
same warm-start strategy. These techniques are very specific to the learning task at hand,
and often require special handling of the underlying algorithm for each case.

Our framework, on the other hand, does not go into specific algorithms. In our ap-
proach, we propose a generic, robust, algorithm-independent model for solving multiple
LASSO problems fast. Our model can be implemented with any generic convex solver,
providing guarantees for computational savings while not sacrificing the statistical learn-
ing performance.

5.2 Robust sketching with square-root LASSO
In this section, we study the square-root LASSO problem [11] given m observations,

each having n features:

min
w∈Rn

‖XTw − y‖2 + λ‖w‖1 (5.1)

where X ∈ Rn×m and y ∈ Rm. We first consider the square-root LASSO problem when
a sketch of the original data matrix is available, then solve our robust sketching problem
fast, and analyze a non-robust approach to sketching.

5.2.1 Robust square-root LASSO
Assume we are given X̂ as a sketch to the data matrix X, the robust square-root

LASSO is defined as follows:

min
w∈Rn

max
X:‖X−X̂‖2≤ε

‖XTw − y‖2 + λ‖w‖1 (5.2)

52

The authors of [37] have shown that

max
X:‖X−X̂‖2≤ε

‖XTw − y‖2 = max
‖∆‖2≤ε

‖
(
X̂ + ∆

)T
w − y‖2

≤ ‖X̂Tw − y‖2 + ε‖w‖2.

This bound is tight with the choice of ∆ as

∆ := εuvT

u :=

X̂Tw−y
‖X̂Tw−y‖2

if X̂Tw 6= y

any unit-norm vector otherwise

v :=

w
‖w‖2

if w 6= 0
any unit-norm vector otherwise

We also have rank(∆) = 1 and ‖∆‖F = ‖∆‖2 which implies ∆ is the worse-case pertuba-
tion for both the Frobenius norm and the operator norm. Problem (5.2) can be rewritten
as:

φλ,ε = min
w∈Rn

‖X̂Tw − y‖2 + ε‖w‖2 + λ‖w‖1 (5.3)

Note the presence of an “elastic net” term proposed by [112], directly imputable to the
error on the original design matrix X.

In our framework, we employ low-rank approximation from any sketching algorithm:
X ≈ X̂ = PQT , where P ∈ Rn×k, Q ∈ Rm×k, P and Q full rank with rank k �
min{m,n}. With an efficient method to solve the robust low-rank problem, for leave-one-
out analysis we can quickly compute the “design matrix” X\i ≈ PQT

\i and efficiently solve
a new instance for every observation i being held out. We now turn to a fast solution to
the low-rank elastic net problem (5.3).

Theorem 1. Given a sketching matrix X̂ = PQT , we first compute c := (QTQ)−1/2QTy ∈
Rk, s :=

√
yTy − cT c ∈ R, R := P (QTQ)1/2 ∈ Rn×k , the dual problem of (5.3) is:

φλ,ε = max
u ∈ Rk

v, r ∈ Rn

t ∈ R

uT c+ st

s.t.
∥∥∥∥∥
[
u
t

]∥∥∥∥∥
2
≤ 1, ‖v‖∞ ≤ λ, ‖r‖2 ≤ ε,

Ru = v + r

(5.4)

Proof. The robust low-rank square-root LASSO is:

φλ,ε = min
w∈Rn

‖X̂Tw − y‖2 + ε‖w‖2 + λ‖w‖1 . (5.5)

53

With X̂ = PQT , P ∈ Rn×k, Q ∈ Rm×k, the dual of the convex problem (5.5) is:

φλ,ε = min
w,z∈Rn

‖Qz − y‖2 + ε‖w‖2 + λ‖w‖1 : z = P Tw

= min
w,z∈Rn

max
u∈Rk

‖Qz − y‖2 + ε‖w‖2 + λ‖w‖1 + uT (z − P Tw)
= max

u∈Rk
min

w,z∈Rn
‖Qz − y‖2 + ε‖w‖2 + λ‖w‖1 + uT (z − P Tw)

= max
u∈Rk

f1(u) + f2(u)

where f1(u) := min
z∈Rn
‖Qz − y‖2 + uT z and f2(u) := min

w∈Rn
ε‖w‖2 + λ‖w‖1 − (Pu)Tw .

First subproblem. Consider the first term in f1(u):

‖Qz − y‖2
2 = zTQTQz − 2yTQz + yTy

= z̄T z̄ − 2cT z̄ + yTy
where z̄ := (QTQ)1/2z ∈ Rn and c := (QTQ)−1/2QTy ∈ Rn

= ‖z̄ − c‖2
2 + yTy − cT c.

Note that cT c = yTQ(QTQ)−1QTy ≤ yTy since Q(QTQ)−1QT � I is the projection matrix
onto range(Q). Letting s :=

√
yTy − cT c ≥ 0 gives

f1(u) = min
z
‖Qz − y‖2 + uT z

= min
z

√
‖z̄ − c‖2

2 + s2 + ūT z̄ : by letting ū := (QTQ)−1/2u

= ūT c+ min
x

√
‖x‖2

2 + s2 − ūTx : by letting x := c− z̄.

Now consider the second term min
x

√
‖x‖2

2 + s2 − ūTx. The optimal x∗ must be in the
direction of ū. Letting x := αū, α ∈ R, we have the expression

min
α

√
α2‖ū‖2

2 + s2 − α‖ū‖2
2.

When ‖ū‖2 ≥ 1, the problem is unbounded below. When ‖ū‖2 < 1, the optimal solution
is α∗ = s√

1−‖ū‖2
2
and the optimal value is thus s

√
1− ‖ū‖2

2. The closed-form expression
for f1(u) is therefore:

f1(u) = ūT c+ min
x

√
‖x‖2

2 + s2 − ūTx
= ūT c+ s

√
1− ‖ū‖2

2

= uT (QTQ)−1/2c+ s
√

1− uT (QTQ)−1u

= uTK−1/2c+ s
√

1− uTK−1u : by letting K := QTQ.

(5.6)

Second subproblem. Consider the function f2(u) := min
w∈Rn

ε‖w‖2 + λ‖w‖1 − (Pu)Tw.

54

We observe that the objective function is homogeneous. Strong duality gives:

f2(u) = min
x

max
v,r

rTw + vTw − (Pu)Tw
s.t. ‖r‖2 ≤ ε, ‖v‖∞ ≤ λ

= max
v,r

min
x

(r + v − Pu)Tw
s.t. ‖r‖2 ≤ ε, ‖v‖∞ ≤ λ

= max
v,r

0
s.t. ‖r‖2 ≤ ε, ‖v‖∞ ≤ λ, Pu = v + r

(5.7)

Hence f2(u) = 0 if there exists v, r ∈ Rn satisfying the constraints. Otherwise f2(u) is
unbounded below.

Dual problem. From (5.6) and (5.7), the dual problem to (5.5) can be derived as:

φλ,ε = max
u ∈ Rk

v, r ∈ Rn

uTK−1/2c+ s
√

1− uTK−1u

s.t. ‖v‖∞ ≤ λ, ‖r‖2 ≤ ε, Pu = v + r

Letting R := PK1/2 ∈ Rn×k and replacing u by K−1/2u, we have:

φλ,ε = max
u ∈ Rk

v, r ∈ Rn

uT c+ s
√

1− uTu

s.t. ‖v‖∞ ≤ λ, ‖r‖2 ≤ ε, Ru = v + r
= max

u ∈ Rk

v, r ∈ Rn

t ∈ R

uT c+ st

s.t.
∥∥∥∥∥
[
u
t

]∥∥∥∥∥
2
≤ 1, ‖v‖∞ ≤ λ, ‖r‖2 ≤ ε,

Ru = v + r

(5.8)

An important observation is that problem (5.4) is a standard conic problem with
linear objective, norm constraints of size n and k, but now the size of the data matrix R
is only n-by-k, instead of n-by-m as the original problem. We can thus solve it with any
conic solver much more efficiently than the original (5.1). Analyzing this problem gives a
relationship between w∗ in (5.3) and u∗, v∗, r∗, t∗ in (5.4), as the following theorem shows.

Theorem 2. The optimal variable w∗ can be recovered from the optimal dual variables
u∗, v∗, r∗, t∗ by equation:

w∗ = αr∗,

55

where α, β ∈ R solve
c = α

(
RT r∗

)
+ βu∗.

Also, with strong duality, the dual of the conic problem (5.4) is

φλ,ε = min
w∈Rn

∥∥∥∥∥
[
c−RTw

s

]∥∥∥∥∥
2

+ ε‖w‖2 + λ‖w‖1 . (5.9)

Proof. The dual of problem (5.4) can be derived as:

φλ,ε = max
u, v, r, t

min
w ∈ Rn

uT c+ st+ wT (v + r −Ru)

s.t.
∥∥∥∥∥
[
u
t

]∥∥∥∥∥
2
≤ 1, ‖v‖∞ ≤ λ, ‖r‖2 ≤ ε,

= min
w ∈ Rn

max
u, v, r, t

[
c−RTw

s

]T [
u
t

]
+ wTv + wT r

s.t.
∥∥∥∥∥
[
u
t

]∥∥∥∥∥
2
≤ 1, ‖v‖∞ ≤ λ, ‖r‖2 ≤ ε,

= min
w ∈ Rn

∥∥∥∥∥
[
c−RTw

s

]∥∥∥∥∥
2

+ ε‖w‖2 + λ‖w‖1

From the optimality condition, we have

w∗T r∗ = ε‖w∗‖2[
c−RTw∗

s

]T [
u∗

t∗

]
=

∥∥∥∥∥
[
c−RTw∗

s

]∥∥∥∥∥
2

.

Since ‖r‖2 ≤ ε and
∥∥∥∥∥
[
u
t

]∥∥∥∥∥
2
≤ 1, we conclude

w∗ = αr∗[
c−RTw∗

s

]
= β

[
u∗

t∗

]

for some α, β ∈ R, or equivalently, c = α
(
RT r∗

)
+ βu∗.

5.2.2 Computational time complexity
In this section, we give a worst-case time complexity analysis on solving robust sketch-

ing problem. Our proof technique adapts from that of Andersen, Roos, and Terlaky [7],
which analyzes a second-order method via log-barrier functions for conic problems.

56

Theorem 3. The worst-case complexity of solving problem (5.4) and (5.9) grows as
O(kn2 + k3). This is in contrast with the original problem (5.1) when no structure is
exploited, in which case the complexity grows as O(mn2 +m3).

Proof. We analyze the standard second-order method via log-barrier functions for the
robust square-root LASSO:

min
x∈Rn

‖Ax− b‖2 + ε‖x‖2 + λ‖x‖1 (5.10)

where A ∈ Rk×n and b ∈ Rk.
Square-root LASSO. In second-order methods, the main cost at each iteration is

from solving a linear system of equations involving the Hessian of the barrier function [7].
Consider the original square-root LASSO problem:

min
x∈Rn

‖Ax− b‖2 = min
x∈Rn,s∈R

s : ‖Ax− b‖2 ≤ s

The log-barrier function is ϕγ(x, s) = γs − log (s2 − ‖Ax− b‖2
2). The cost is from evalu-

ating the inverse Hessian of

f := − log
(
s2 − (Ax− b)T (Ax− b)

)
(5.11)

Let g := − log
(
s2 − wTw

)
, we have ∇g = 2

−g

[
−w
s

]
and ∇2g = 2

−g

[
−I 0
0 1

]
+∇g(∇g)T .

The Hessian ∇2g is therefore a diagonal plus a dyad.

For (5.11), rearranging the variables as x̃ =
[
x
s

]
gives

[
Ax− b
s

]
=
[
A 0
0 1

] [
x
s

]
−
[
b
0

]
=

Ãx̃− b̃ where Ã ∈ R(k+1)×n and:

∇2f = ÃT 2
−f

[
−(Ax− b)

s

]
∇2f

= ÃT (2
−f

[
−I 0
0 1

]
+ 4

f2

[
−Ax+ b

s

] [
−Ax+ b

s

]T
)Ã

= 2
−f Ã

T

[
−I 0
0 1

]
Ã+ 4

f2

(
ÃT

[
−(Ax− b)

s

])(
ÃT

[
−(Ax− b)

s

])T (5.12)

The Hessian ∇2f is therefore simply a (k + 2)-dyad.
Regularized square-root LASSO. For (5.10), decomposing x = p − q with p ≥

0, q ≥ 0 gives:

φ = min
x∈Rn

‖Ax− b‖2 + ε‖x‖2 + λ‖x‖1

= min
p, q ∈ Rn

s, t ∈ R

s+ εt+ λ
(
1Tp+ 1T q

)

s.t. ‖p− q‖2 ≤ t, ‖A(p− q)− b‖2 ≤ s,
p ≥ 0, q ≥ 0

57

The log-barrier function is thus:

ϕγ(p, q, s, t) = γ
(
s+ εt+ λ

(
1Tp+ 1T q

))
− log (t2 − ‖p− q‖2

2)
− log (s2 − ‖A(p− q)− b‖2

2)
−∑n

i=1 log(pi)−
∑n
i=1 log(qi)− log(s)− log(t).

First log term. Let l1 := − log (t2 − ‖p− q‖2
2). Rearranging our variables as x̃ =[

p1, q1, · · · pn, qn, t
]T
, we have:

∇l1 = 2
−l1

[
p1 − q1, q1 − p1, · · · pn − qn, qn − pn, t

]T

∇2l1 = 2
−l1

B

. . .
B

1

+∇l1(∇l1)T

where there are n blocks of B :=
[
−1 1
1 −1

]
in the Hessian ∇2l1.

Second log term. Let l2 := − log (s2 − ‖A(p− q)− b‖2
2). Keeping the same order of

variables x̃ =
[
p1, q1, · · · pn, qn, s

]T
, we have
[
A(p− q)− b

s

]
= Ãx̃

where Ã ∈ R(k+1)×(2n+1) . Following (5.12), we have the Hessian is a (k + 2)-dyad.
Third log term. Let l3 := −∑n

i=1 log(pi)−
∑n
i=1 log(qi)− log(s)− log(t). Every variable

is decoupled; therefore the Hessian is simply diagonal.
Summary. The Hessian of the log barrier function ϕγ(p, q, s, t) is a block diagonal

plus a (k + 2)-dyad. At each iteration of second-order method, inverting the Hessian
following the matrix inversion lemma costs O(kn2). For the original square-root LASSO
problem (5.1), using similar methods will cost O(mn2) at each iteration [7].

We note from Theorem (3) that if k is fixed as a constant, solving m instances of the
robust problem with structure has the same complexity of solving one single instance of
the original. This is the key observation for dramatic computational speed-up in multi-
instance applications in the sequel.

5.2.3 Safe feature elimination
In this section we present a screening rule to reduce the dimension of problem (5.9)

without changing the optimal value. We first propose a simple rule similar to those in

58

[39], then we will provide an improved safe feature elimination with provided bounds. Let

us define A :=
[
RT

0

]
∈ R(k+1)×n and b :=

[
c
s

]
∈ Rk+1 and problem (5.9) can be written

as:
min
w∈Rn

‖Aw − b‖2 + ε‖w‖2 + λ‖w‖1 (5.13)

Using the technique in [39], we have the first theorem on safe feature elimination for
problem (5.13):

Theorem 4. Let ai’s be the columns of data matrix A in problem (5.13). If ‖ai‖2 ≤ λ−ε,
then we can discard the i-th feature without affecting the optimal value.

Proof. Problem (5.13) is equal to:

min
w∈Rn

‖Aw − b‖2 + ε‖w‖2 + λ‖w‖1

= min
w∈Rn

max
‖α‖2≤1
‖β‖2≤ε
‖γ‖∞≤λ

αT (Aw − b) + βTw + γTw

= max
‖α‖2≤1
‖β‖2≤ε
‖γ‖∞≤λ

min
w∈Rn

αT (Aw − b) + βTw + γTw

= max
α,β,γ

− αT b
s.t ‖α‖2 ≤ 1, ‖β‖2 ≤ ε, ‖γ‖∞ ≤ λ,

ATα + β + γ = 0
= max

α,β
− αT b

s.t ‖α‖2 ≤ 1, ‖β‖2 ≤ ε,
|aTi α + βi| ≤ λ,∀i = 1 . . . n

(5.14)

where ai’s are columns of A. If ‖ai‖2 ≤ λ−ε, we always have |aTi α+βi| ≤ |aTi α|+ |βi| ≤ λ.
In other words, we can then safely discard the i-th feature without affecting our optimal
value.

We can further improve this screen rule if we have a lower bound l and an upper bound
u on the optimal value. Note that a lower bound l is always non-negative from properties
of norms, and an upper bound u = ‖b‖2 is from plugging in w = 0 in the primal (5.13).
In fact, an upper bound can be obtained by any primal variable in (5.13) and a lower
bound can be obtained by any feasible dual variable in (5.14).

With these bounds, if the optimization problem:

max
α

aTi α s.t. ‖α‖2 ≤ 1, l ≤ αT (−b) ≤ u (5.15)

has the optimal value at most λ− ε, we can safely discard the i-th feature. This intuition
gives a geometric approach in the following theorem.

59

Theorem 5. The i-th feature ai can be decomposed into two orthogonal components by
the fundamental theorem of linear algebra:

ai = qi (−b) + ri, ri ⊥ b.

where qi := − aT
i b

‖b‖2
2
and ri := ai + qib. Given the bounds 0 ≤ l ≤ u ≤ ‖b‖2, we can discard

this feature if

max {qil, qiu}+ ‖ri‖2

√√√√1− l2

‖b‖2
2
< λ− ε.

Proof. Problem (5.15) is equal to

max
α

(qi (−b) + ri)T α
s.t ‖α‖2 ≤ 1, l ≤ αT (−b) ≤ u

= max
α

qiα
T (−b) + αT ri

s.t ‖α‖2 ≤ 1, l ≤ αT (−b) ≤ u

≤ max {qil, qiu}+ ‖ri‖2

√
1− l2

‖b‖2
2

where the first term is from the bound l ≤ αT (−b) ≤ u and the second term is from the
subproblem:

max
α

rTi α

s.t ‖α‖2 ≤ 1, l ≤ αT (−b)

which is upper bounded by ‖ri‖2

√
1− l2

‖b‖2
2
from the geometry in Figure 5.2.

Alternatively, we can derive an algebraic proof of this bound without using the geo-
metric intuition. Since ri ⊥ b, we can decompose α = xri + y (−b) . The constraint

l ≤ αT (−b) = y‖b‖2
2

gives y ≥ l
‖b‖2

2
and the norm constraint ‖α‖2 ≤ 1 gives x2‖ri‖2

2 +y2‖b‖2
2 ≤ 1 or equivalently

x2‖ri‖2
2 ≤ 1− y2‖b‖2

2 ≤ 1− l2

‖b‖2
2
.

Since our objective function rTi α = x‖ri‖2
2, we obtain the bound ‖ri‖2

√
1− l2

‖b‖2
2
for the

subproblem.

60

Figure 5.2: Improved safe feature elimination with lower bound and upper bound.

5.2.4 Non-robust square-root LASSO
In the original LASSO problem (5.1), the design matrix is only present in its objec-

tive function. In practice, a simple idea is to replace the data matrix by its low rank
approximation in the model. We refer to this approach as the non-robust square-root
LASSO:

min
w∈Rn

‖QP Tw − y‖2 + λ‖w‖1 (5.16)

For many learning applications, this approach first appears as an attractive heuristic to
speed up the computation, as computing the sub-gradient involving the low-rank matrix
will be much faster. Nevertheless, in problems with sparsity as the main emphasis, care
must be taken in the presence of the regularization involving l1-norm.

Figure 5.3a shows an example of a non-robust square-root LASSO with data replaced
by its rank-1 approximation. The optimal solution then always has a cardinality at most
1, and the tuning parameter λ does not provide any sparsity control, unlike the robust low-
rank model in Figure 5.3b. In general, replacing our data with its low-rank approximation
will result in the lost of the sparsity control from regularization parameters. We provide
an insight for this absence of sparsity control in the following theorem.

Theorem 6. For the non-robust square-root LASSO problem (5.16), with P ∈ Rn×k

and Q ∈ Rm×k full rank where k � min{m,n}, there exists an optimal solution with
cardinality at most k.

61

10−4 10−3 10−2 10−1 100 101
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

λ

(a) Non-robust rank-1 square-root LASSO.

10−4 10−3 10−2 10−1 100 101
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

λ

(b) Robust rank-1 square-root LASSO.
Figure 5.3: Non-robust versus Robust square-root LASSO under rank-1 approximated
data. The y-axis shows the values of non-zero components of the optimal solution as λ
varies.

Proof. Uniquely decomposing b into b = Qz + u where u ⊥ Range(Q) gives

min
w∈Rn

‖Q(P Tw − z)− u‖2 + λ‖w‖1

= min
w∈Rn

√
‖Q(P Tw − z)‖2

2 + ‖u‖2
2 + λ‖w‖1

Let w0 be any optimal solution to this problem, it suffices to show that the problem

min
w∈Rn

‖w‖1 : P Tw = P Tw0

has an optimal solution with cardinality at most k. We prove this in the following lemma.

Lemma 1. The problem
min
x∈Rn

‖x‖1 : Ax = b (5.17)

with A ∈ Rk×n wide (k < n) and b ∈ Range(A) has an optimal solution with cardinality
at most k.

Proof. Our proof is adapted from [97] on the existence and uniqueness of the solution.
Let x ∈ Rn be an optimal solution to (5.17). Without loss of generality, we can assume
all components of xi are non-zeros (if some components are zeros one can discard the
corresponding columns of A).

If card(x) > k, we provide a procedure to reduce the cardinality of x, while keeping
the same l1-norm and constraint feasibility. Let s ∈ Rn be the (unique) sub-gradient of
‖x‖1, that is si = sign(xi), i = 1, . . . , n. The optimality condition of (5.17) shows that

62

∃µ ∈ Rk such that ATµ = s. Since all the columns Ai’s are linearly dependent, there
exist i and cj such that:

Therefore 1 = s2
i = ∑

j∈E\{i} cjsjsi. Letting dj := cjsjsi gives
∑
j∈E\{i} dj = 1 and

siAi = ∑
j∈E\{i} cjsiAj

= ∑
j∈E\{i} cjsjsisjAj : since s2

j = 1
= ∑

j∈E\{i} djsjAj

Let us define a direction vector θ ∈ Rn as follows: θi := −si and θj := djsj, j ∈ E\{i}.
Then Aθ =

(
−siAi +∑

j∈E\{i} djsjAj
)

= 0. Thus letting

x(ρ) := x+ ρθ with ρ > 0

we have x(ρ) feasible and its l1 norm stays unchanged:

‖x(ρ)‖1 = |x(ρ)
i |+

∑
j∈E\{i} |x

(ρ)
j |

= (|xi| − ρ) +∑
j∈E\{i}(xj + ρdj)

= ‖x‖1 + ρ
(∑

j∈E\{i} dj − 1
)

= ‖x‖1

Choosing ρ := min {t ≥ 0 : xj + tθj = 0 for some j} we have one fewer non-zeros com-
ponents in x(ρ). Note that ρ ≤ |xi|. Therefore, repeating this procedure gives an optimal
solution x of at most k non-zeros components.

Remark. An alternative proof is to formulate problem (5.17) as a linear program, and
observe that the optimal solution is at a vertex of the constraint set. Theorem 6 is also
consistent with the simple case when the design matrix has more features than observa-
tions, there exists an optimal solution of the LASSO problem with cardinality at most
the number of observations, as shown by many authors (such as [97]).

5.3 Robust sketching with regression and posynomial
model

In this section, we revisit Chapter 4 under regression setting. We show an example with
the sparse posynomial model proposed by Calafiore et al. [19] for regression problems.
We will show how one can exploit the model structure with our robust sketching model.

Consider a posynomial
ψ0(w) =

n∑
i=1

x0
iw

αi
i

where the true coefficients x0
i are unknown. We observe a noise-corrupted set of m data

points {(y(k), w(k))}mk=1 where w(k) ∈ Rn and y(k) = ψ0(w(k)) + ε(k) ∈ R and we

63

wish to estimate the true coefficients x0
i . The exponents αi will be pre-selected in set of

hyper-parameters αi ∈ Qi and α ∈ Q := Q1 × Q2 × . . . × Qn, nQ := |Q|. For notational
convenience, we also define:

wα ,
n∏
i=1

wαi
i .

Given m data points {(y(k), w(k))}mk=1 , our data matrix is defined as:

Φ =

w(1)α(1) . . . w(1)α(nQ)

...
w(m)α(1) . . . w(m)α(nQ)

and the optimization problem for sparse posynomial model regression is a non-negative
square-root LASSO:

min
x≥0

∥∥∥∥∥
[

Φx− y
σx

]∥∥∥∥∥
2

+ λ‖x‖1. (5.18)

Recall that the optimization problem 5.18 is the same as the problem 4.1 in Chapter 4.
We note that our data matrix Φ has a special Vandermonde structure: consider a very
simple example where we have only one parameter, i.e. n = 1, w(k) ∈ R and our hyper-
parameter set Q is {0, 1, 2, . . . , k}, our data matrix Φ becomes:

Φ =

1 w(1)1 . . . w(1)k
1 w(2)1 . . . w(2)k
...
1 w(m)1 . . . w(m)k

This Vandermonde matrix very often has rapidly-decaying singular values. As an illustra-
tion, Figure 5.8 in Section 5.5 shows the exponential decay of singular values in the NACA
4412 airfoil data set from [19]. With low-rank robust sketching, we have the following
theorem for the sparse posynomial model.

Theorem 7. With Φ ≈ Φ̂ = PQT , ‖Φ− Φ̂‖2 ≤ ε , to solve problem (5.18) fast, we first
compute c := (P TP)−1/2P Ty ∈ Rk, s :=

√
yTy − cT c ∈ R, R := Q(P TP)1/2 ∈ RnQ×k,

then solve the problem:

min
x≥0

∥∥∥∥∥∥∥
R

Tx− c
σx
s

∥∥∥∥∥∥∥

2

+ ε‖x‖2 + λ‖w‖1 .

The proof is similar to that of Theorem 2, and we omit it in this section. In Section 5.5
on applications, we analyze the robust sketching approach on the NACA 4412 airfoil data
set with a comparison to the original results presented in [19].

64

Data set #train #test #features Type
MNIST 6,000 1,000 784 sparse

20 Newsgroups 15,935 3,993 62,061 sparse
RCV1.binary 20,242 677,399 47,236 sparse
SIAM 2007 21,519 7,077 30,438 sparse
Real-sim 72,309 N/A 20,958 sparse

NIPS papers 1,500 N/A 12,419 sparse
NYTimes 300,000 N/A 102,660 sparse
USPS 7,291 2,007 256 dense

Extended Yale B 2,432 N/A 100 dense
Gisette 6,000 1,000 5,000 dense

Random 1 500 N/A 100 dense
Random 2 625 N/A 125 dense
Random 3 75- N/A 150 dense

.
Random 19 2750 N/A 550 dense
Random 20 2875 N/A 575 dense
Random 21 3000 N/A 600 dense
Table 5.1: Datasets used in numerical experiments

5.4 Experimental results
We perform experiments on both synthetic data and real-life data sets on different

learning tasks. The data sets are of varying sizes, ranging from small, medium and large
scales (Table 5.1). To compare our robust model and the full model, we run all experiments
on the same workstation at 2.3 GHz Intel core i7 and 8GB memory. Both models have an
implementation of the generic second-order algorithm from Mosek solver [6]. For low-rank
approximation, we use a randomized low rank sketching approach proposed by [52]. To
make the comparison impartial, we do not use the safe feature elimination technique in
our robust model.

5.4.1 Complexity on synthetic data
Our objective in this experiment is to compare the actual computational complexity

with the theoretical analysis in Theorem 3. We generated dense and i.i.d. random data
for n = 100 . . . 600. At each n, a data set of size 5n-by-n is constructed. We keep k fixed
across all problem sizes, run the two models and compute the ratio between the running
time of our model to that of the full model. The running time of our model is the total
computational time of the data sketching phase and the training phase. The experiment
is repeated 100 times at each problem size. As Figure 5.4 shows, the time ratio grows
asymptotically as O(1/n), a reduction of an order of magnitude in consistent with the

65

0.5

1

1.5

2

2.5

3

3.5

10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

42
5

45
0

47
5

50
0

52
5

55
0

57
5

60
0

n

R
at

io

O(1/n)

Figure 5.4: The ratio between the running time of our robust model and the original
model.

theoretical result in Theorem 3.

5.4.2 Cross validation and leave-one-out
In this experiment, we focus on the classical 5-fold cross validation on real-life data

sets. Figure 5.5 shows the running time (in CPU seconds) from k = 1 . . . 50 for 5-fold
cross validation on Gisette data from NIPS 2003 challenge [51]. It takes our framework
less than 40 seconds, while it takes 22,082 seconds (500 times longer) for the full model
to perform 5-fold cross validation. Furthermore, with leave-one-out analysis, the running
time for the full model would require much more computations, becoming impractical
while our model only needs a total of 7,684 seconds, even less than the time to carry out
5-fold cross validation on the original model.

5.4.3 Binary classification
We further evaluate our model on statistical learning performance with binary clas-

sification task on both Gisette and RCV1 data sets. RCV1 is a sparse text corpus from
Reuters while Gisette is a very dense pixel data. For evaluation metric, we use the F1-score
on the testing sets.

66

0 5 10 15 20 25 30 35 40 45 50
10

15

20

25

30

35

40

k

T
im

e
(s

ec
on

ds
)

Figure 5.5: 5-fold cross validation on Gisette data with robust approximation model.

Dataset Original model Our model Saving
(seconds) (seconds) factor

Gisette 22,082 39 566
20 Newsgroups 17,731 65 272
RCV1.binary 17,776 70.8 251
SIAM 2007 9,025 67 134
Real-sim 73,764 56.3 1310

Table 5.2: Comparisons of 5-fold cross-validation on real data sets (in CPU time).

67

At every rank k for low-rank sketching, we repeat our experiment 100 times and
record the median performance of robust sketching and non-robust models. Figure 5.6
and Figure 5.7 show the robust model gives equivalent performance to the full model as
k approaches 50, while the non-robust model does not perform as well. As far as time
is concerned, both robust and non-robust have very similar computational time, which
suggests that our robust model is not more expensive than the non-robust counterpart.
Furthermore, the full model requires 5,547.1 CPU seconds while our framework only needs
17 seconds for k = 50 on RCV1 data set. For Gisette data, the full model requires 991
seconds for training and our framework takes less than 16 seconds.

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

k

F
1−

sc
or

e

Robust model
Non−robust model
Full model

(a) Performance on binary classification.

0 10 20 30 40 50
6

8

10

12

14

16

18

k

T
im

e
(s

ec
on

ds
)

Robust model
Non−robust model

(b) Training time of our model. The time to train
the full model is 5547.1 seconds.

Figure 5.6: Classification performance and running time on RCV1 data set.

0 10 20 30 40 50

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k

F
1−

sc
or

e

Robust model
Non−robust model
Full model

(a) Performance on binary classification.

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

k

T
im

e
(s

ec
on

ds
)

Robust model
Non−robust model

(b) Training time of our model. The time to train
the full model is 991 seconds.

Figure 5.7: Classification performance and running time on Gisette data set.

68

10
0

10
1

10
2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

k

σ k /
σ m

ax

Figure 5.8: Graphs of the top singular values from the NACA 4412 airfoil data.

Parameter Minimum Maximum Dimension
ρ 0.039 1.2250 kg/m3

η 0.1 1 m
θ -5 10 deg
ν 0 40 m/s

Table 5.3: Parameter intervals used in sparse posynomial model

5.5 Applications
In this section, we apply robust sketching in a variety of practical learning applications:

sparse regression and sparse inverse covariance estimation. We analyze our approach on
sparse model identification while substantially improving the computational cost.

5.5.1 Sparse posynomial model
We experiment on a regression model based on posynomials, in which the goal is to

estimate the output value based on input parameters and identify the underlying sparse
model.

The data in [19] has 4 parameters w =
[
ρ η θ ν

]T
with intervals as in Table 5.3.

We use the same exponent sets Qj = {−2,−1, 0, 1, 2} for j = 1, . . . , 4.

69

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank k

R
el

at
iv

e
er

ro
r

Approximation model
Full model

Figure 5.9: Performance with different rank k.

The trade-off is between the relative error RE = ‖Φx− y‖2/‖y‖2 and the sparsity of
the model presented in [19], where the baseline model given is:

ψ0(ρ, η, θ, ν) = x340ην
2 + x440ρν

2 + x465ρην
2 + x565ρ

2ν2

x340 = 1.2746× 10−4

x440 = 3.5469× 10−3

x465 = 2.8703× 10−4

x565 = 5.0722× 10−4

(5.19)

which has relative error RE = 0.1217. With rank-20 approximation for Φ, perform pa-
rameter search for λ so that our robust model has the same sparsity level, and obtain:

ψrs(ρ, η, θ, ν) = x349ηθ
2ν + x440ρν

2 + x465ρην
2 + x590ρ

2ην2

x349 = 2.9166× 10−4

x440 = 2.4× 10−3

x465 = 8.5253× 10−4

x590 = 1.9× 10−3

(5.20)

which improves the relative error to RE = 0.1001. We note that our robust model gives
very similar monomials to the original model in [19]. Figure 5.9 shows the performance
of our robust model as the approximation rank k varies from 1 to 35, compared to the
baseline model. Figure 5.10 compares the fitting values between our rank-20 robust model
(5.20) and the original (5.19). For the small NACA 4412 data, the computational saving
is about 19% as Table 5.4 shows.

70

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

Examples

True value
Estimation

(a) Original model, relative error 0.1217.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

Examples

True value
Estimation

(b) Low-rank model, relative error 0.1001.
Figure 5.10: Estimation with original and low-rank model

Time (s) Original model Low-rank model
Low rank approximation 0 0.06

Parameter search 56.92 46.11
Total 56.92 46.17

Table 5.4: Computational time comparison on the NACA 4412 airfoil data (seconds).

5.5.2 Sparse inverse covariance estimation
Another application of solving multiple learning problems is sparse inverse covariance

estimation, which is analogous to leave-one-out analysis. Instead of leave-one-observation-
out, topic imaging removes a feature and runs a LASSO model on the remaining so as to
explore the “neighborhood” (topic) of the query feature [38]. Data sketching is computed
only once for each data set and can be shared to answer all queries in parallel.

We experiment our robust sketching model on two large text corpora: NIPS full papers
and New York Times articles [10]. Table 5.5 and Table 5.6 show the results to sample
queries on NIPS and NYTimes as well as the computational time our model takes to
answer these queries. In both data sets, our model gives the result in just a few seconds.
We can see the topic of Statistics, or Vision (Computer vision) with NIPS (Table 5.5) and
the theme of Political and Research with NYTimes data (Table 5.6).

5.6 Summary
We propose in this chapter a robust sketching framework to approximate the task

of solving multiple learning problems. We illustrate our approach with the square-root
LASSO model given a low-rank sketch of the original data set. The numerical experiments
suggest this framework is highly scalable, gaining one order of magnitude in computational
complexity over the full model, and having much better statistical performance than the

71

Query LEARNING STATISTIC OPTIMIZATION TEXT VISION
Time (s) 3.15 2.89 3.11 3.52 3.15

1 error data algorithm trained object
2 action distribution data error image
3 algorithm model distribution generalization visiting
4 targeting error likelihood wooter images
5 weighed algorithm variable classifier unit
6 trained parameter network student recognition
7 uniqueness trained mixture validating representation
8 reinforced likelihood parameter trainable motion
9 control gaussian bound hidden view
10 policies set bayesian hmm field

Table 5.5: Topic imaging for 5 query words on NIPS papers.

Query HEALTH TECHNOLOGY POLITICAL BUSINESS RESEARCH
Time (s) 11.81 11.84 10.95 11.93 10.65

1 drug weaving campaign companionship drug
2 patience companies election companias patient
3 doctor com presidency milling cell
4 cell computer vortices stmurray doctor
5 perceiving site republic marker percent
6 disease company tawny customary disease
7 tawny wwii voted weaving program
8 medica online democratic analyst tessie
9 cancer sites presidentes firing medical
10 care customer leader billion studly
Table 5.6: Topic imaging for 5 query words on New York Times articles.

72

non-robust approach.

73

Chapter 6

Conclusion

We conclude this thesis with a discussion on key contributions from our work and
suggestions on potential future directions. We first summarize main ideas presented in
previous chapters, and then lay out a roadmap of what to follow.

In the first part of the thesis, we surveyed key ideas in machine learning with strong
emphasis on sparsity. As we have seen in many examples, sparse models can be useful in
understanding data, recover structures, and, for the most important part, not more com-
putationally expensive than the counterparts. In Chapter 2, we presented fundamental
models including sparse regression with the LASSO, sparse principal component analysis,
and sparse covariance estimation. Chapter 3 follows to provide a rigorous study on how
to benefit from model interpretation in the context of safety reports. We showed that
sparse optimization can be a very efficient tool when working with large text corpora,
even in the area of imperfect documents. Note that in the safety monitoring of most
critical, large-scale complex systems, from flight safety to nuclear plants, experts have
been relying heavily on physical sensors and indicators (temperature, pressure, etc). In
the future we expect that human-generated text reporting, assisted by automated text
understanding tools, will play an ever increasing role in the management of critical busi-
ness, industry or government operations. Sparse modeling, by offering a great trade-off
between user interpretability and computational scalability, appears to be well equipped
to address some of the corresponding challenges.

Chapter 4 moves beyond text analytics to enter engineering domains, where we specif-
ically study complex energy systems. Even though surrogate models may not be perfect,
sparsity often helps identify important factors in system design, while maintaining rea-
sonably low errors. We furthered the regression idea to find optimal system parameters,
using the sparse models as our guidelines. Also it is very important that sparsity really
improves the efficiency in searching for optimal parameters with the convex-concave pro-
cedure. Moreover in this chapter, we exemplify the technique using a basic log-barrier
function for the parameter construction cost. We hope that our results provide a meaning-
ful first step in exploring more sophisticated cost functions that penalize each parameter
individually. Furthermore, one can explore multi-objective optimization, which combines

74

key criteria of interest in engineering design. Final polishing of system modeling may be
desirable within local areas of interest, where very high accuracy and system structure
are key in real-life applications.

The last part of the thesis is concerned with the multi-instance setting when working
with sparse models. We presented this part from a theoretical point of view, together with
a practical observation that all instances share most if not all of the data. Our approach
starts with a low-rank approximation on the data, then provides a robust solution to the
sparse optimization problem, taking into account the approximation error. Numerical
experiments show dramatic computational saving with the robust sketching model, while
preserving high quality in terms of statistical learning performance. The fundamental
aspect of robust sketching technique is to capture useful information while keeping the
structures simple in the framework. This provides high classification and regression per-
formances while reducing the time complexity by an order of magnitude, compared to
the traditional approach. Lastly, from this starting block, one interesting direction is to
extend this framework to different data approximation strategies, such as the recently
proposed sparse plus low-rank [21], and the factor model [88].

75

Bibliography

[1] Muhammad Arshad Ul Abedin, Vincent Ng, and Latifur Khan. Cause identifica-
tion from aviation safety incident reports via weakly supervised semantic lexicon
construction. J. Artif. Int. Res., 38:569–631, May 2010.

[2] Varun Aggarwal and Una-May O’Reilly. Simulation-based reusable posynomial
models for MOS transistor parameters. In Proceedings of the conference on De-
sign, automation and test in Europe, pages 69–74. EDA Consortium, 2007.

[3] Amrudin Agovic and Arindam Banerjee. Gaussian Process Topic Models. In Pro-
ceedings of the Twenty-Sixth Conference Annual Conference on Uncertainty in Ar-
tificial Intelligence (UAI-10), pages 10–19, Corvallis, Oregon, 2010.

[4] Mohammad Salim Ahmed and Latifur Khan. SISC: A Text Classification Approach
Using Semi Supervised Subspace Clustering. In Proceedings of the 2009 IEEE In-
ternational Conference on Data Mining Workshops, ICDMW ’09, pages 1–6, 2009.

[5] A.A. Amini and M. Wainwright. High-dimensional analysis of semidefinite relax-
ations for sparse principal components. The Annals of Statistics, 37(5B):2877–2921,
2009.

[6] Erling D Andersen and Knud D Andersen. The MOSEK interior point optimizer
for linear programming: an implementation of the homogeneous algorithm. pages
197–232, 2000.

[7] Erling D Andersen, Cornelis Roos, and Tamas Terlaky. On implementing a primal-
dual interior-point method for conic quadratic optimization. Mathematical Pro-
gramming, 95(2):249–277, 2003.

[8] Aydin Babakhani, Javad Lavaei, John C Doyle, and Ali Hajimiri. Finding globally
optimum solutions in antenna optimization problems. In Antennas and Propagation
Society International Symposium (APSURSI), 2010 IEEE, pages 1–4. IEEE, 2010.

[9] Francis R Bach, Romain Thibaux, and Michael I Jordan. Computing regulariza-
tion paths for learning multiple kernels. Advances in neural information processing
systems, 17:73–80, 2005.

76

[10] K. Bache and M. Lichman. UCI Machine Learning Repository, 2013.

[11] Alexandre Belloni, Victor Chernozhukov, and Lie Wang. Square-root lasso: pivotal
recovery of sparse signals via conic programming. Biometrika, 98(4):791–806, 2011.

[12] Alexandre Belloni, Victor Chernozhukov, Lie Wang, et al. Pivotal estimation via
square-root lasso in nonparametric regression. The Annals of Statistics, 42(2):757–
788, 2014.

[13] J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song. Dimensionality
reduction via sparse support vector machines. The Journal of Machine Learning
Research, 3:1229–1243, 2003.

[14] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing
Systems 14, Cambridge, MA, 2002. MIT Press.

[15] David Blei and Jon McAuliffe. Supervised Topic Models. In J.C. Platt, D. Koller,
Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Sys-
tems 20, pages 121–128. MIT Press, Cambridge, MA, 2008.

[16] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-
tributed optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends R© in Machine Learning, 3(1):1–122, 2011.

[17] Stephen P Boyd, Seung-Jean Kim, Dinesh D Patil, and Mark A Horowitz. Digital
circuit optimization via geometric programming. Operations Research, 53(6):899–
932, 2005.

[18] P. Bühlmann and B. Yu. Sparse boosting. The Journal of Machine Learning Re-
search, 7:1001–1024, 2006.

[19] Giuseppe Carlo Calafiore, Laurent El Ghaoui, and Carlo Novara. Sparse identifi-
cation of polynomial and posynomial models. In 19th IFAC World Congress, Cape
Town, South Africa, 2014.

[20] E.J. Candès and Y. Plan. Near-ideal model selection by `1 minimization. Annals of
Statistics, 37:2145–2177, 2009.

[21] Venkat Chandrasekaran, Sujay Sanghavi, Pablo A Parrilo, and Alan S Willsky.
Rank-sparsity incoherence for matrix decomposition. SIAM Journal on Optimiza-
tion, 21(2):572–596, 2011.

[22] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27,
2011.

77

[23] Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L Boyd-Graber, and David M
Blei. Reading tea leaves: How humans interpret topic models. In Advances in neural
information processing systems, pages 288–296, 2009.

[24] Moody T Chu, Robert E Funderlic, and Robert J Plemmons. Structured low rank
approximation. Linear algebra and its applications, 366:157–172, 2003.

[25] Walter Daems, Georges Gielen, and Willy Sansen. Simulation-based generation
of posynomial performance models for the sizing of analog integrated circuits.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
22(5):517–534, 2003.

[26] Dipanjan Das and AndrÃ c© F. T. Martins. A Survey on Automatic Text Summa-
rization, 2007.

[27] A. d’Aspremont, F. Bach, and L. El Ghaoui. Optimal Solutions for Sparse Principal
Component Analysis. Journal of Machine Learning Research, 9:1269–1294, 2008.

[28] Bolin Ding, David Lo, Jiawei Han, and Siau-Cheng Khoo. Efficient Mining of Closed
Repetitive Gapped Subsequences from a Sequence Database. In Proceedings of the
2009 IEEE International Conference on Data Engineering, pages 1024–1035, 2009.

[29] Bolin Ding, Bo Zhao, Cindy Xide Lin, Jiawei Han, and Chengxiang Zhai. Top-
Cells: Keyword-based search of top-k aggregated documents in text cube. Data
Engineering, International Conference on, pages 381–384, 2010.

[30] Adrian Dobra, Chris Hans, Beatrix Jones, et al. Sparse graphical models for explor-
ing gene expression data. Journal of Multivariate Analysis, 90(1):196 – 212, 2004.
Special Issue on Multivariate Methods in Genomic Data Analysis.

[31] David L Donoho. Compressed sensing. IEEE Transactions on information theory,
52(4):1289–1306, 2006.

[32] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast Monte Carlo algo-
rithms for matrices II: Computing a low-rank approximation to a matrix. SIAM
Journal on Computing, 36(1):158–183, 2006.

[33] Petros Drineas and Michael W Mahoney. On the Nyström method for approximat-
ing a Gram matrix for improved kernel-based learning. The Journal of Machine
Learning Research, 6:2153–2175, 2005.

[34] Richard-J Duffin, Elmor-L Peterson, and Clarence Zener. Geometric programming:
Theory and application. 1967.

[35] RJ Duffin and EL Peterson. Geometric programming with signomials. Journal of
Optimization Theory and Applications, 11(1):3–35, 1973.

78

[36] J. Eisenstein, A. Ahmed, and E. P. Xing. parse Additive Generative Models of Text.
In International Conference on Machine Learning (ICML), 2011.

[37] Laurent El Ghaoui and Hervé Lebret. Robust solutions to least-squares prob-
lems with uncertain data. SIAM Journal on Matrix Analysis and Applications,
18(4):1035–1064, 1997.

[38] Laurent El Ghaoui, Vu Pham, Guan-Cheng Li, et al. Understanding large text
corpora via sparse machine learning. Statistical Analysis and Data Mining, 6(3):221–
242, 2013.

[39] Laurent El Ghaoui, Vivian Viallon, and Tarek Rabbani. Safe feature elimination in
sparse supervised learning. Pacific Journal of Optimization, 8(4):667–698, 2012.

[40] M. Elad and M. Aharon. Image denoising via sparse and redundant representations
over learned dictionaries. IEEE Transactions on Image Processing, 15(12):3736–
3745, 2006.

[41] John P Fishburn and Alfred E Dunlop. TILOS: A posynomial programming ap-
proach to transistor sizing. In The Best of ICCAD, pages 295–302. Springer, 2003.

[42] Alexander IJ Forrester and Andy J Keane. Recent advances in surrogate-based
optimization. Progress in Aerospace Sciences, 45(1):50–79, 2009.

[43] A. Frank and A. Asuncion. UCI Machine Learning Repository, 2010.

[44] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate opti-
mization. Annals of Applied Statistics, 1(2):302–332, 2007.

[45] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432, 2008.

[46] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for
generalized linear models via coordinate descent. Journal of statistical software,
33(1):1, 2010.

[47] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance
estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[48] B. Gawalt, J. Jia, L. Miratrix, et al. Discovering Word Associations in News Me-
dia via Feature Selection and Sparse Classification. In Proc. 11th ACM SIGMM
International Conference on Multimedia Information Retrieval, 2010.

[49] Jade Goldstein, Vibhu Mittal, Jaime Carbonell, and Mark Kantrowitz. Multi-
document summarization by sentence extraction. In NAACL-ANLP 2000 Workshop
on Automatic summarization, pages 40–48, 2000.

79

[50] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex
programming.

[51] Isabelle Guyon, Steve R Gunn, Asa Ben-Hur, and Gideon Dror. Result Analysis
of the NIPS 2003 Feature Selection Challenge. In NIPS, volume 4, pages 545–552,
2004.

[52] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decom-
positions. SIAM review, 53(2):217–288, 2011.

[53] Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The entire regu-
larization path for the support vector machine. The Journal of Machine Learning
Research, 5:1391–1415, 2004.

[54] Leonhard Hennig. Topic-based Multi-Document Summarization with Probabilistic
Latent Semantic Analysis. In Recent Advances in Natural Language Processing
(RANLP), 2009.

[55] Warren Hoburg and Pieter Abbeel. Geometric programming for aircraft design
optimization. AIAA Journal, 52(11):2414–2426, 2014.

[56] Rishee K Jain, Kevin M Smith, Patricia J Culligan, and John E Taylor. Forecast-
ing energy consumption of multi-family residential buildings using support vector
regression: Investigating the impact of temporal and spatial monitoring granularity
on performance accuracy. Applied Energy, 123:168–178, 2014.

[57] Jinzhu Jia, Luke Miratrix, Bin Yu, et al. Concise comparative summaries (CCS)
of large text corpora with a human experiment. The Annals of Applied Statistics,
8(1):499–529, 2014.

[58] T. Joachims. Learning to Classify Text Using Support Vector Machines – Methods,
Theory, and Algorithms. Kluwer/Springer, 2002.

[59] Jon E. Jonsson and Wendell R. Ricks. Cognitive Models of Pilot Categorization
and Prioritization of Flight-Deck Information. Technical report, 1995.

[60] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre. Generalized power method
for sparse principal component analysis. arXiv:0811.4724, 2008.

[61] Seung-Jean Kim, Kwangmoo Koh, Michael Lustig, Stephen Boyd, and Dimitry
Gorinevsky. An interior-point method for large-scale l 1-regularized least squares.
Selected Topics in Signal Processing, IEEE Journal of, 1(4):606–617, 2007.

80

[62] Kwangmoo Koh, Seung-Jean Kim, and Stephen P Boyd. An interior-point method
for large-scale l1-regularized logistic regression. Journal of Machine learning re-
search, 8(8):1519–1555, 2007.

[63] M. Kolar, A.P. Parikh, and E.P. Xing. On Sparse Nonparametric Conditional Co-
variance Selection. International Conference on Machine Learning, 2010.

[64] J Zico Kolter and Joseph Ferreira Jr. A large-scale study on predicting and contex-
tualizing building energy usage. 2011.

[65] Gert R Lanckriet and Bharath K Sriperumbudur. On the convergence of the
concave-convex procedure. In Advances in neural information processing systems,
pages 1759–1767, 2009.

[66] Kangji Li, Hongye Su, and Jian Chu. Forecasting building energy consumption using
neural networks and hybrid neuro-fuzzy system: A comparative study. Energy and
Buildings, 43(10):2893–2899, 2011.

[67] Edo Liberty. Simple and deterministic matrix sketching. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 581–588. ACM, 2013.

[68] Cindy Xide Lin, Bolin Ding, Jiawei Han, Feida Zhu, and Bo Zhao. Text Cube:
Computing IR Measures for Multidimensional Text Database Analysis. IEEE In-
ternational Conference on Data Mining, pages 905–910, 2008.

[69] Thomas Lipp and Stephen Boyd. Variations and extension of the convex–concave
procedure. Optimization and Engineering, pages 1–25, 2014.

[70] Zhaosong Lu, Renato Monteiro, and Ming Yuan. Convex optimization methods
for dimension reduction and coefficient estimation in multivariate linear regression.
Mathematical Programming, 9(1):1–32, 2010.

[71] L. Mackey. Deflation methods for sparse PCA. Advances in Neural Information
Processing Systems, 21:1017–1024, 2009.

[72] Michael W Mahoney. Randomized algorithms for matrices and data. Foundations
and Trends R© in Machine Learning, 3(2):123–224, 2011.

[73] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse
coding. In Proceedings of the 26th Annual International Conference on Machine
Learning, pages 689–696. ACM, 2009.

[74] Sanjay Mehrotra. On the implementation of a primal-dual interior point method.
SIAM Journal on optimization, 2(4):575–601, 1992.

81

[75] N. Meinshausen and B. Yu. Lasso-type recovery of sparse representations for high-
dimensional data. Annals of Statistics, 37(1):246–270, 2008.

[76] L Miranian and M Gu. Strong rank revealing LU factorizations. Linear Algebra and
its Applications, 367(0):1 – 16, 2003.

[77] B. Moghaddam, A. Gruber, Y. Weiss, and S. Avidan. Sparse regression as a sparse
eigenvalue problem. In Information Theory and Applications Workshop, 2008, pages
121–127, 2008.

[78] Burt L. Monroe, Michael P. Colaresi, and Kevin M. Quinn. Fightin’ Words: Lexical
Feature Selection and Evaluation for Identifying the Content of Political Conflict.
Political Analysis, 16(4):372–403, 2008.

[79] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. CORE Discussion Papers, 2010.

[80] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science &
Business Media, 2006.

[81] O.Banerjee, L. El Ghaoui, and A. d’Aspremont. Model Selection Through Sparse
Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data. Journal
of Machine Learning Research, 9:485–516, March 2008.

[82] Nikunj C. Oza, J. Patrick Castle, and John Stutz. Classification of Aeronautics
System Health and Safety Documents. IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 39(6):670–680, 2009.

[83] Mee Young Park and Trevor Hastie. L1-regularization path algorithm for gener-
alized linear models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 69(4):659–677, 2007.

[84] Isaac Persing and Vincent Ng. Semi-supervised cause identification from aviation
safety reports. In Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing
of the AFNLP: Volume 2 - Volume 2, pages 843–851, 2009.

[85] Vu Pham and Laurent El Ghaoui. Robust sketching for multiple square-root LASSO
problems. In Proc. International Conference on Artificial Intelligence and Statistics
(AISTATS), May 2015.

[86] Tiziano Pulecchi and Luigi Piroddi. A cluster selection approach to polynomial
NARX identification. In American Control Conference, 2007. ACC’07, pages 852–
857. IEEE, 2007.

82

[87] Nestor V Queipo, Raphael T Haftka, Wei Shyy, et al. Surrogate-based analysis and
optimization. Progress in aerospace sciences, 41(1):1–28, 2005.

[88] James Saunderson, Venkat Chandrasekaran, Pablo A Parrilo, and Alan S Willsky.
Diagonal and low-rank matrix decompositions, correlation matrices, and ellipsoid
fitting. SIAM Journal on Matrix Analysis and Applications, 33(4):1395–1416, 2012.

[89] Frank Schilder and Ravikumar Kondadadi. FastSum: fast and accurate query-based
multi-document summarization. In Proceedings of the 46th Annual Meeting of the
Association for Computational Linguistics on Human Language Technologies: Short
Papers, HLT-Short ’08, pages 205–208, Stroudsburg, PA, USA, 2008. Association
for Computational Linguistics.

[90] Hanhuai Shan, Arindam Banerjee, and Nikunj C. Oza. Discriminative Mixed-
Membership Models. In Proceedings of the 2009 Ninth IEEE International Con-
ference on Data Mining, pages 466–475, Washington, DC, USA, 2009.

[91] Haipeng Shen and Jianhua Z. Huang. Sparse principal component analysis via
regularized low rank matrix approximation. J. Multivar. Anal., 99:1015–1034, July
2008.

[92] Mahdi Soltanolkotabi, Ehsan Elhamifar, Emmanuel J Candes, et al. Robust sub-
space clustering. The Annals of Statistics, 42(2):669–699, 2014.

[93] J. Songsiri and L. Vandenberghe. Topology selection in graphical models of autore-
gressive processes. Journal of Machine Learning Research, 2010.

[94] Ashok N Srivastava and Mehran Sahami. Text mining: Classification, clustering,
and applications. CRC Press, 2009.

[95] M. Steyvers and T.L. Griffiths. Matlab topic modeling toolbox version 1.4, 2011.

[96] R. Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the
Royal statistical society, series B, 58(1):267–288, 1996.

[97] Ryan J Tibshirani et al. The lasso problem and uniqueness. Electronic Journal of
Statistics, 7:1456–1490, 2013.

[98] J. A. Tropp. Just relax: Convex programming methods for identifying sparse signals.
IEEE Trans. Inform. Theory, 51(3):1030–1051, March 2006.

[99] Cheng-Hao Tsai, Chieh-Yen Lin, and Chih-Jen Lin. Incremental and Decremental
Training for Linear Classification. 2014.

[100] Jung-Fa Tsai. Global optimization for signomial discrete programming problems in
engineering design. Engineering Optimization, 42(9):833–843, 2010.

83

[101] G Gary Wang and Songqing Shan. Review of metamodeling techniques in support
of engineering design optimization. Journal of Mechanical design, 129(4):370–380,
2007.

[102] Clay Woolam and Latifur Khan. Multi-concept Document Classification Using a
Perceptron-Like Algorithm. In Proceedings of the 2008 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence and Intelligent Agent Technology - Volume
01, pages 570–574, 2008.

[103] Clay Woolam and Latifur Khan. Multi-label large margin hierarchical perceptron.
IJDMMM, 1(1):5–22, 2008.

[104] E Alper Yildirim and Stephen J Wright. Warm-start strategies in interior-point
methods for linear programming. SIAM Journal on Optimization, 12(3):782–810,
2002.

[105] M. Yuan and Y. Lin. Model selection and estimation in the Gaussian graphical
model. Biometrika, 94(1):19, 2007.

[106] Alan L Yuille and Anand Rangarajan. The concave-convex procedure. Neural
computation, 15(4):915–936, 2003.

[107] Duo Zhang, ChengXiang Zhai, Jiawei Han, Ashok Srivastava, and Nikunj Oza.
Topic modeling for OLAP on multidimensional text databases: topic cube and its
applications. Stat. Anal. Data Min., 2:378–395, December 2009.

[108] Y. Zhang, A. d’Aspremont, and L. El Ghaoui. Sparse PCA: Convex Relaxations,
Algorithms and Applications. In M. Anjos and J.B. Lasserre, editors, Handbook
on Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software
and Applications, International Series in Operational Research and Management
Science. Springer, 2012.

[109] Y. Zhang and L. El Ghaoui. Large-scale sparse principal component analysis and
application to text data. December 2011.

[110] P. Zhao and B. Yu. Stagewise Lasso (old title: Boosted Lasso). Journal of Machine
Learning Research, 8:2701–2726, 2007.

[111] H. Zou, T. Hastie, and R. Tibshirani. Sparse Principal Component Analysis. Journal
of Computational & Graphical Statistics, 15(2):265–286, 2006.

[112] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2):301–320, 2005.

84

Appendix A

Algorithms for Lasso

Disciplined convex program. We consider the Lasso optimization problem, proposed
by Tibshirani [96]:

min
x
‖Ax− b‖2

2 + λ ‖x‖1

This convex problem has a form of a l1 regularized least square, and can be solved
with a disciplined convex modeling tool like CVX [50]:

% Input: data matrix A, response vector b, regularization parameter lambda
cvx_begin quiet

variables x(size(A, 2), 1)
minimize sum_square(A∗x − b) + lambda ∗ norm(x, 1)

cvx_end
x_lasso = x;

Algorithm 4: Matlab code for solving the LASSO with CVX.

Alternating direction method of multipliers. With the objective function in the
form of a sum of separate functions and no constraints, we can derive an alternating
direction method of multipliers (ADMM) algorithm [16]. First, note that an equivalent
form of the LASSO with the introduction of auxiliary variable z is:

min
x
‖Ax− b‖2

2 + λ ‖x‖1

= min
x,z

‖Ax− b‖2
2 + λ ‖z‖1

s.t. z − x = 0

85

The ADMM algorithm for the LASSO problem consists of minimizing subproblems:
z0 := 0
x0 := 0
u0 := 0
for t := 0, 1, 2, . . . ,T do

zt+1 := argmin
z

λ‖z‖1 + ρ
2‖z − x

t + ut‖2
2

= argmin
z

λ
ρ
‖z‖1 + 1

2‖z − x
t + ut‖2

2

xt+1 := argmin
x

‖Ax− b‖2
2 + ρ

2‖z
t+1 − x+ ut‖2

2

ut+1 := ut + zt+1 − xt+1

end
Algorithm 5: ADMM algorithm for the LASSO in pseudocode.

We note that the two subproblems of minimization can be derived in closed forms.
The subproblem of x is simply a convex quadratic function, and can be solved by setting
the gradient to zero. We now consider the first subproblem:

α∗ (γ) := argmin
α

γ‖α‖1 + 1
2‖v − α‖

2
2 (A.1)

Theorem 8. The closed-form solution to problem A.1 is

α∗ (γ) := Sγ (v)
:= [sign (vi) max {|vi| − γ, 0}]di=1

where Sγ (v) is the soft-thresholding operator.

86

Therefore, an ADMM algorithm for the LASSO problem is as follows:

rho = 1;
maxiter = 10000;
x = zeros(size(A, 2), 1);
z = x;
u = 0;
cache = (A’∗A + rho ∗ eye(size(A, 2)));
cache_v = A’ ∗ b;
inv_cache = inv(cache);
for iter = 1 : maxiter

z = soft_thresholding(x − u, lambda / rho);
x = inv_cache ∗ (cache_v + rho ∗ (z + u));
u = u + z − x;

end
x_algo = x;

function [r] = soft_thresholding(v, gamma)
r = zeros(size(v));
for i = 1 : length(v)

if (v(i) > gamma)
r(i) = v(i) − gamma;

end
if (v(i) < −gamma)

r(i) = v(i) + gamma;
end

end
end

Algorithm 6: Matlab code for solving the LASSO with ADDM algorithm.

87

Appendix B

Algorithms for Square-root Lasso

Alternating direction method of multipliers. We consider an equivalent form of
the square-root Lasso optimization problem:

min
x
‖Ax− b‖2 + λ ‖x‖1

= min
x,y,z

‖y‖2 + λ ‖z‖1

s.t. y − (Ax− b) = 0
z − x = 0

The ADMM algorithm for the square-root LASSO problem is thus:
for t := 0, 1, 2, . . . ,T do

yt+1 := argmin
y

‖y‖2 + ρ
2‖y − (Axt − b) + ut‖2

2

= argmin
y

1
ρ
‖y‖2 + 1

2‖y − (Axt − b) + ut‖2
2

zt+1 := argmin
z

λ‖z‖1 + ρ
2‖z − x

t + vt‖2
2

= argmin
z

λ
ρ
‖z‖1 + 1

2‖z − x
t + vt‖2

2

xt+1 := argmin
x

ρ
2‖y

t+1 − (Axt − b) + ut‖2
2 + ρ

2‖z
t+1 − x+ vt‖2

2

= argmin
x

1
2‖y

t+1 − (Axt − b) + ut‖2
2 + 1

2‖z
t+1 − x+ vt‖2

2

ut+1 := ut + yt+1 − (Axt+1 − b)
vt+1 := vt + zt+1 − xt+1

end
Algorithm 7: ADMM algorithm for square-root LASSO.

We consider the following subproblem:

α∗ (γ) := argmin
α

γ‖α‖2 + 1
2‖v − α‖

2
2 (B.1)

Theorem 9. The closed-form solution to problem B.1 is

88

α∗ (γ) := Gγ (v)

:=

(
‖v‖2−γ
‖v‖2

)
v if ‖v‖2 ≥ γ

0 otherwise
where Gγ (v) is the group soft-thresholding operator.

The ADMM algorithm for the square-root LASSO thus becomes:
for t := 0, 1, 2, . . . ,T do

yt+1 := G1/ρ (Ax− b− u)
zt+1 := Sλ/ρ (x− v)
xt+1 :=

(
ATA+ I

)−1 (
AT (b+ y + u) + z + v

)
ut+1 := ut + yt+1 − (Axt+1 − b)
vt+1 := vt + zt+1 − xt+1

end
Algorithm 8: ADMM algorithm for square-root LASSO.

Square-root LASSO elastic net. We combine the results in Theorem 8 and Theo-
rem 9 for a variant of the elastic net problem:

min
x
‖Ax− b‖2 + λ ‖x‖1 + ε‖x‖2

= min
x
‖y‖2 + λ ‖z‖1 + ε‖w‖2

s.t. y − (Ax− b) = 0
z − x = 0
w − x = 0

The algorithm can therefore be derived similarly as follows:
for t := 0, 1, 2, . . . ,T do

yt+1 := G1/ρ (Ax− b− u)
zt+1 := Sλ/ρ (x− v)
wt+1 := Gε/ρ (x− r)
xt+1 :=

(
ATA+ 2I

)−1 (
AT (b+ y + u) + z + v + w + r

)
ut+1 := ut + yt+1 − (Axt+1 − b)
vt+1 := vt + zt+1 − xt+1

rt+1 := r + wt+1 − xt+1

end
Algorithm 9: ADMM algorithm for square-root elastic net.

We note that when the matrix A is wide, we can use the Woodbury matrix identity
to solve the system of linear equations:(

ATA+ κI
)−1

= 1
κ
I − 1

κ2A
T
(
I + 1

κ
AAT

)−1
A(

ATA+ κI
)−1

v = 1
κ
v − 1

κ2A
T
(
I + 1

κ
AAT

)−1
Av

89

where we can cache the (small) inverse matrix W :=
(
I + 1

κ
AAT

)−1
to compute the

decision variable xt+1.

90

Appendix C

Algorithms for SPCA

Matlab implementation. In this section, we present our implementation in Matlab of
the modified power iteration method for SPCA (Algorithm 2). This implementation uses
two main sub-procedures, one is for the power iteration step and another for the hard
thresholding function.

original_Matrix = M;
original_word_list = word_list;
fileID = fopen(’output.txt’,’w’);
for num_principal_components = 1 : 4

fprintf(fileID, ’∗∗∗∗∗ TOPIC %d ∗∗∗∗∗\n’, num_principal_components);

[p, ind_p, q, ind_q] = SPCA_power_iteration(M, threshold_column_vector, ...
threshold_row_vector, epsilon_objective_function);

for i = 1 : size(ind_q, 1)
k = ind_q(i);
fprintf(’%d−th %.4f: %s\n’, k, full(q(k, 1)), char(word_list(k)));
fprintf(fileID, ’%.4f\t%s\n’, full(q(k, 1)), char(word_list(k)));

end
fprintf(fileID, ’−−−−−\n’);

for i = 1 : size(ind_p, 1)
k = ind_p(i);
fprintf(’CATEGORY (%s), %d−th %.4f: %s\n’, ...

char(category_of_document_list(k)), k, full(p(k, 1)), ...
char(document_list(k)));

fprintf(fileID, ’%.4f\t%s\t%s\n’, full(p(k, 1)), ...
char(document_list(k)), char(category_of_document_list(k)));

end

M(:, ind_q) = [];
word_list(ind_q) = [];

91

M(ind_p, :) = [];
document_list(ind_p) = [];
category_of_document_list(ind_p) = [];

end
word_list = original_word_list;
M = original_Matrix;
fclose(fileID);

function [p, ind_p, q, ind_q] = SPCA_power_iteration(M, ...
threshold_column_vector, threshold_row_vector, epsilon)
p = ones(size(M, 1), 1); % Init to all ones
q = ones(size(M, 2), 1); % Init to all ones
objective_function = inf;
while (true)

p_new = M ∗ q;
[p, ind_p] = utility_threshold(p_new, threshold_column_vector);
p = p / norm(p);

q_new = M’ ∗ p;
[q, ind_q] = utility_threshold(q_new, threshold_row_vector);

new_objective_function = norm(M − p ∗ q’, ’fro’);
if (abs(new_objective_function − objective_function) ≤ epsilon)

break;
end
objective_function = new_objective_function;

end
end

function [x, ind_v] = utility_threshold(v, count)
[∼ ,ind_v]=sort(full(abs(v)),’descend’);
ind_v = ind_v(1: min(size(ind_v, 1), count));
x=sparse(size(v,1), size(v,2));
x(ind_v) = v(ind_v);

end

Python library. We also provide our Python library for Sparse principal component
analysis problem. This Python implementation was based on Python 2.7 with two scien-
tific computing packages scipy and numpy.

import scipy.sparse
import math
import numpy
import csv
import scipy.sparse

class Options:
def __init__(self, threshold_m, threshold_n,

92

max_iteration, tolerance, num_pc):
self.threshold_m = threshold_m
self.threshold_n = threshold_n
self.max_iteration = max_iteration
self.tolerance = tolerance
self.num_pc = num_pc

class Parser:
@staticmethod
def load_matrix(matrix_file, offset=0):

cr = csv.reader(open(matrix_file))
rows=[]
cols=[]
entries=[]
for triplet in cr:

rows.append(int(triplet[0])+offset)
cols.append(int(triplet[1])+offset)
entries.append(int(triplet[2]))

rows = numpy.array(rows)
cols = numpy.array(cols)
entries = numpy.array(entries)

return scipy.sparse.csc_matrix((entries,(rows,cols)))

@staticmethod
def load_dict(dict_file):

cr = csv.reader(open(dict_file))
words=[]
for word_count_pair in cr:

words.append(word_count_pair[0])
return words

@staticmethod
def load_title(title_file):

cr = csv.reader(open(title_file))
titles=[]
for title_count_pair in cr:

titles.append(title_count_pair[0])
return titles

@staticmethod
def load_category(category_file):

cr = csv.reader(open(category_file))
categories=[]
for category_count_pair in cr:

categories.append(category_count_pair[0])
return categories

class Iterator:
def __init__(self, options, M):

self.M = scipy.sparse.csc_matrix(M)
self.options = options

93

def thresh(self, s_vector, num_entries):
listOfValues = s_vector.T.todense().tolist()[0]
indices = self.sort(listOfValues)[1]
thresholded_vec = numpy.zeros(shape=s_vector.T.shape)
for i in range(num_entries):

index = indices[i]
thresholded_vec[0, index] = listOfValues[index]

return scipy.sparse.csr_matrix(thresholded_vec).T

def top_k_ind(self, s_vector, num_entries):
listOfValues = s_vector.T.todense().tolist()[0]
return self.sort(listOfValues)

def sort(self, vector):
indices = range(len(vector))
val_ind = map (lambda x : (abs(vector[x]),x), indices)
sorted_val_ind = sorted(val_ind)
sorted_val_ind.reverse()
sorted_indices = map (lambda x : x[1], sorted_val_ind)
sorted_values = map (lambda x : x[0], sorted_val_ind)
return (sorted_values, sorted_indices)

def single_iteration (self):

M = self.M
m = self.M.shape[0]
n = self.M.shape[1]
k_p = self.options.threshold_m
k_q = self.options.threshold_n
tolerance = self.options.tolerance
max_iteration = self.options.max_iteration

ini = self.ini_mat();
p = ini[0]
q = ini[1]
obj0 = float("inf")
converged = False
iter = 0
while not converged:

p_new = self.thresh((M∗q), k_p)
p = p_new
q_new = self.thresh((p.T ∗ M).T, k_q)
q = q_new/math.sqrt((q_new.T.dot(q_new)).data[0])
q_test = (p.T ∗ M)
updated_mat = M−p_new∗(q_new.T)
obj1 = updated_mat.data.dot(updated_mat.data)
if (abs(obj1−obj0) ≤ tolerance or iter ≥ max_iteration):

converged = 1
iter = iter + 1
obj0 = obj1

94

return (p,q)

def multiple_iterations (self):
term_inds = []
doc_inds = []
term_vals = []
doc_vals = []
for i in range(self.options.num_pc):

print ’handling pc# ’ + str(i)
(p,q) = self.single_iteration()
(p_val, p_ind) = self.top_k_ind(p, self.options.threshold_m)
(q_val, q_ind) = self.top_k_ind(q, self.options.threshold_n)
doc_inds.append(p_ind[0:self.options.threshold_m])
term_inds.append(q_ind[0:self.options.threshold_n])
doc_vals.append(p_val[0:self.options.threshold_m])
term_vals.append(q_val[0:self.options.threshold_n])
self.remove_cols(q_ind[0:self.options.threshold_n])
self.remove_rows(p_ind[0:self.options.threshold_m])

return ((doc_vals,doc_inds),(term_vals,term_inds))

@staticmethod
def run(matrix_path, dict_path, title_path, category_path):

print ’running’
matrix = Parser.Parser.load_matrix(matrix_path,−1)
dict = Parser.Parser.load_dict(dict_path)
titlelist = Parser.Parser.load_title(title_path)
categorylist = Parser.Parser.load_title(category_path)
opt = Options.Options(15, 15, 50, 0.0001, 10)
it = Iterator(opt, matrix)
word_pcs = []
title_pcs = []
((p_vals,p_inds),(q_vals,q_inds)) = it.multiple_iterations()
outputfile = open(’./output/output.txt’,’w’)
for pc, pcv in zip(q_inds, q_vals):

word_pc = []
for q_ind, q_val in zip(pc, pcv):

word_pc.append(’%.4f\t%s’ % (q_val, dict[q_ind]))
word_pcs.append(word_pc)
todel = sorted(pc);
todel.reverse();
for q_ind in todel:

del dict[q_ind]
for pc, pcv in zip(p_inds, p_vals):

title_pc = []
for p_ind,p_val in zip(pc,pcv):

title_pc.append(’%.4f\t%s\t%s’ %
(p_val,titlelist[p_ind],categorylist[p_ind]))

title_pcs.append(title_pc)
todel = sorted(pc);

95

todel.reverse();
for p_ind in todel:

del titlelist[p_ind]
del categorylist[p_ind]

topic_num = 0
for wpc,tpc in zip(word_pcs,title_pcs):

outputfile.write(’∗∗∗∗∗ TOPIC %d ∗∗∗∗∗\n’ % topic_num)
for row in wpc:

outputfile.write(row+’\n’)
outputfile.write(’−−−−−\n’)
for row in tpc:

outputfile.write(row+’\n’)
outputfile.write(’\n’)
topic_num = topic_num + 1

def remove_rows(self, inds_to_remove):
self.M = self.M.T
self.remove_cols(inds_to_remove)
self.M = self.M.T

def remove_cols(self, inds_to_remove):
inds_to_remove = sorted(inds_to_remove)
inds_to_remove.reverse()
for ind in inds_to_remove:

self.remove_col(ind)

def remove_col(self, ind):
if ind == 0:

self.M = self.M[:,ind+1:].tocsc()
elif ind == (self.M.shape[1]−1):

self.M = self.M[:,0:ind].tocsc()
else:

self.M = scipy.sparse.hstack(
[self.M[:,0:ind],self.M[:,ind+1:]]).tocsc()

def ini_mat(self):
p = scipy.sparse.csc_matrix(numpy.ones(shape=(self.M.shape[0],1)))
q = scipy.sparse.csc_matrix(numpy.ones(shape=(self.M.shape[1],1)))
p = p/math.sqrt(p.T.dot(p).data[0])
q = q/math.sqrt(q.T.dot(q).data[0])
return (p,q)

	List of Figures
	List of Tables
	Introduction
	Goals and contributions
	Organization of the thesis
	Notation

	Sparse optimization in text analytics
	Sparse learning overview
	Sparse learning models
	Sparse classification and regression
	LASSO regression.
	Other loss functions.

	Sparse principal component analysis
	Sparse graphical models
	Thresholded models
	Text analytics tasks
	Topic summarization
	Discrimination between several corpora
	Visualization and clustering

	Case study in text analytics
	Sparse PCA and LDA: comparative study
	Amazon Data Set
	Reuters Data Set
	NSF Data Set
	Running time

	Case study on ASRS data
	Related work on ASRS data
	Understanding Categories
	Recovering categories
	Sparse PCA for understanding categories
	Thresholded Latent Dirichlet Allocation

	Analysis of runway incursion incidents
	Co-occurrence analysis
	Näıve Bayes classification
	LASSO
	Tree images via two-stage LASSO

	Summary

	Sparse optimization in energy systems
	Sparse surrogate model
	Posynomial model
	Signomial model

	Parameter optimization
	Posynomial model
	Signomial model
	Iterative sampling and optimization

	Real-life examples
	NACA 4412 Airfoil
	EDF 22 buildings
	Data simulation
	Model fitting
	Parameter optimization

	Refined fitting

	Summary

	Robust sketching for sparse models
	Robust sketching overview
	Robust sketching with square-root LASSO
	Robust square-root LASSO
	Computational time complexity
	Safe feature elimination
	Non-robust square-root LASSO

	Robust sketching with regression and posynomial model
	Experimental results
	Complexity on synthetic data
	Cross validation and leave-one-out
	Binary classification

	Applications
	Sparse posynomial model
	Sparse inverse covariance estimation

	Summary

	Conclusion
	Bibliography
	Algorithms for Lasso
	Algorithms for Square-root Lasso
	Algorithms for SPCA

