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Abstract

Guided GUI Testing of Android Apps with Minimal Restart and Approximate Learning

by

Philip Wontae Choi

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Koushik Sen, Chair

In recent years, there has been a significant surge in the use and development of apps for
smartphones and tablets. The complexity of mobile apps mostly lies in their graphical user
interfaces (GUIs) since the computational part of these apps are either simple or is delegated
to a backend server. Therefore, testing efforts of these apps mostly focus on the behavior of
graphical user interfaces.

In this thesis, we address two problems in GUI testing, test suite generation and test
suite reduction, in the context of Android apps. In the first part of the thesis, we propose
the SwiftHand algorithm for automatically generating sequences of test inputs for GUI
apps. The algorithm uses machine learning to learn a model of the app during testing, uses
the learned model to generate user inputs that visit unexplored states of the app, and uses
the execution of the app on the generated inputs to refine the model. A key feature of
the algorithm is that it avoids restarting the app, which is a significantly more expensive
operation than executing the app on a sequence of inputs. We evaluate SwiftHand on
several Android apps, showing that it can outperform a simple fuzz-testing algorithm and a
traditional active-learning based testing algorithm.

In the second part of the thesis, we address the problem of reducing GUI test suites
generated by automated testing tools. Automated testing tools, including SwiftHand,
have been shown to be effective in achieving good test coverage and in finding bugs. Being
automated, these tools typically run for a long period, e.g. for several hours, until the
time budget for testing expires. However, these tools are not good at generating concise
regression test suites that could be used for testing in incremental development of the apps
and in regression testing. We propose DetReduce, a heuristic technique that helps to
create a small regression test suite for a GUI app given a large test suite generated by
running an automated GUI testing tool. The key insight is that if we can identify and
remove some common forms of redundancies introduced by existing automated GUI testing
tools, then we can drastically lower the time required to minimize a GUI test suite. We
evaluate DetReduce on several Android apps, showing that it can reduce the size and
running time of an automatically generated test suite by at least an order of magnitude.
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Koh, Ali Sinan Köksal, Donggyu Lee, Yunsup Lee, Caroline Lemieux, Phitchaya Mangpo
Phothilmathana, Cuong Nguyen, Rohan Padhye, Chang-Seo Park, Michael Pradel, Evan
Pu, Xeuhai Qian, Philip Reames, Alex Reinking, Neeraja Yadwadkar, Christina Teodoropol,
and Nishant Totla. I will miss research discussions, critical feedback on my papers, and all
the small talks we had at Soda hall. Special thanks to Roxana Infante and Audrey Sillers
for their organizational help.

I would like to take this opportunity to thank to those who helped and led me to PL/SE
research field, including Seungjae Lee, Jaeseung Ha, Kyunglyul Hyun, Soonho Kong, Daejun
Park, and Kwangkeun Yi. I owe specially thanks to Kwangkeun Yi, my adviser during my
Master’s program at Seoul National University, for all his valuable advice and continuous
support.

Finally and foremost, I would like to thank my wife Hyewon Kim for constant support,
understanding, and love. I thank my parents and brother. I am deeply grateful for all their
love and support.

Parts of this dissertation are from a previous paper [23] under copyright by ACM. This
reuse follows the ACM Copyright Policy §2.5 Rights Retained by Authors and Original
Copyright Holders. This work supported by NSF Grants CCF- 1017810, CCF-0747390,
CCF-1018729, CCF-1423645, CCF-1409872, and CCF-1018730, and a gift from Samsung.



1

Chapter 1

Introduction

Recent years have seen a significant surge in the use and development of smartphone apps.
A developer survey performed by StackOverflow [2] suggests that 23% of developers are now
involved in smartphone app development, and AppBrain [1] reports that more than 800,000
new apps appeared in the Google Play Store in 2016 alone. These numbers demonstrate
that apps are an integral part of the digital ecosystem.

The complexity of such mobile apps lies primarily in their graphical user interfaces (GUIs)
since the computational components of these apps are either relatively simple or are delegated
to a backend server. A similar situation exists for web and desktop apps based on software-
as-a-service architecture, for which the client-side components consist largely of user interface
code. As such, testing efforts on these apps focus on the behavior of graphical user interfaces.

1.1 GUI Testing in Practice

This thesis focuses on user interface testing for Android apps. We believe that our techniques
are also applicable to other mobile and browser platforms. In practice, Android developers
use test scripting tools [37,38,95] or Monkey [36], a random automatic user input generation
tool, to test their apps [62].

• Test scripting tools for Android apps, such as Espresso [38] or Robotium [95], require
developers to manually script sequences of user inputs in a programming language.
According to a recent survey by Kochhar et al. [62], most smartphone app developers
use test scripts to test their apps. In this approach, a developer writes small programs
(test scripts) that inject inputs to the target app and check assertions during the
execution of the app. Once implemented, a test script can be used as a push-button
solution generating results that are easy to understand. However, manual scripting
is labor-intensive and error-prone. Furthermore, the GUI of an app tends to change
along with the evolution of the app, and manually written test scripts must therefore be
updated whenever the GUI of the app has been modified. Record-and-replay tools [34,
38,53] avoid directly writing test scripts, but nonetheless free developers from neither
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test case creation nor maintenance—developers must still manually test apps once and
update test scripts whenever there is an update to the app.

• Developers often use Monkey to complement test scripts, focusing their efforts on writ-
ing test scripts to check important invariants of their apps and employing Monkey to
find shallow bugs that are mistakenly introduced. The strength of Monkey is its ro-
bustness (it runs for every app on every environment), which stems from its simplicity.
A typical use of the Monkey tool involves generating clicks at random positions on the
screen without any consideration for the actual control interface, for which elements
have already been clicked, or for the sequence of steps to arrive at the current config-
uration. However, it is not surprising that such testing has difficulty exploring enough
of the user interface, especially parts that can be reached only after a specific sequence
of inputs. Choudhary et al.’s survey [24] suggests that Monkey does achieve good
test coverage by injecting user actions quickly, despite this limitation. However, it is
also known that Monkey ’s strategy to rapidly inject many user actions simultaneously
makes it difficult to replay test cases [107]. More specifically, Monkey often fails to
inject a part of planned events, but still reports those events as successfully injected.
Therefore, even if Monkey finds a bug, it can be difficult to reproduce the bug or to
identify the specific sequence of actions that generated it depending on the information
provided by Monkey .

1.2 Our Goals

In this research, we address the following two problems in GUI testing.

• First, we address the problem of automatically generating test cases for a GUI app
without requiring a priori knowledge about the app. To this end, we have developed
an automated GUI testing algorithm that aims to maximize the test coverage within a
limited time period. There are two requirements for an automated GUI test generation
tool: a) the tool should achieve better test coverage than randomized algorithms, and
b) it should allow recording the sequences of inputs used by the testing algorithm to
reuse later as a regression test suite for the app, or to understand the bugs detected
while running the automatically generated test cases.

• Second, we address the problem of constructing a small GUI regression test suite by
reducing automatically generated GUI test cases. Automated GUI test generation
tools typically produce test suites containing thousands of test cases. Each test case
potentially contains tens to thousands of user actions. Such a large number of test
cases cannot be used for regression testing because it would then take several hours
to run; regression tests must run faster so that they can be used frequently during
development. The technical question is to generate such small test suites by reducing
large, automatically generated test suites. Note that even GUI test cases [45] and GUI
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test suites [74] created by human experts are reported to be reducible. Therefore, it is
reasonable to expect that test suites generated by a machine are also reducible.

Solving these two problems is important for allowing developers both to jump-start GUI
testing and to generate test suites. When beginning to test an app, a developer can focus
on writing test cases that check important invariants of the app and simultaneously run
an automated testing tool to generate an efficient test suite (instead of Monkey). The
developer can subsequently run a GUI test suite reduction tool to shrink the size of the
machine-generated test suite. Once a small test suite is obtained this way, the developer
can use it as a regression test suite after inserting assertions into the test suite or adding
invariant checks to the app.

1.3 Contributions and Outline

In this dissertation, we propose two novel algorithms to address problems in GUI testing.

Automated GUI Testing with Minimal Restart and Approximate
Learning

We propose SwiftHand, an algorithm for testing GUI apps automatically, without human
intervention. The algorithm generates sequences of test inputs for Android apps for which
we do not have an existing model of the GUI. The goal is to achieve code coverage quickly
by learning and exploring an abstraction of the model of the app’s GUI. One insight be-
hind this technique is that the automatic construction of a model of the user interface and
the testing of this interface are tasks that can cooperate in a mutually beneficial way. The
SwiftHand algorithm has two key features. First, the algorithm avoids restarting the app,
which is a significantly more expensive operation than executing the app on a sequence of
inputs. Second, SwiftHand learns an approximate model rather than a precise model. An
important insight behind our testing algorithm is that if our goal is simply guiding the test
executions into unexplored elements of the state space, this does not require the computa-
tionally intensive work of learning a precise model of the app. Our experimental results show
that SwiftHand can achieve significantly better coverage than either traditional random
testing or learning-based testing in a given time budget. Our algorithm also reaches peak
coverage more quickly than both random and learning-based testing.

Minimizing GUI Test Suites for Regression Testing

We also propose DetReduce, a GUI test suite reduction algorithm that can scalably and
effectively minimize large test suites. The key insight behind our technique is that if we can
identify and remove common redundancies introduced by existing automated GUI test gen-
eration tools, then we can significantly lower the time required to minimize a GUI test suite.
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After manually analyzing several sources of redundancies in the test suites generated by the
automated GUI test generation tool, SwiftHand, we identified three kinds of redundancy
that are common in these test suites: 1) some test cases can be safely removed from a test
suite without affecting the code and screen coverage, 2) within a test case, certain loops can
be eliminated without decreasing coverage, and 3) many test cases share common subse-
quences of actions, the repeated execution of which can be avoided by combining fragments
from different action sequences. Based on these observations, we have developed an algo-
rithm that removes such redundancies one-by-one while ensuring that this does not reduce
the overall code and screen coverage of the resulting test suite. We applied DetReduce
to test suites generated from SwiftHand and a randomized test generation algorithm, and
found that on average DetReduce could reduce a test suite by a factor of 16.9× in size
and 14.7× in running time. We also observed that the test suites reduced by DetReduce
retain all distinct exceptions raised while executing the original test suites.

The rest of this thesis is organized as follows. Chapter 2 describes the SwiftHand
algorithm. We first introduce SwiftHand using examples, then provide a formal definition
of the algorithm. Chapter 3 describes the DetReduce algorithm. We detail three types of
common redundancies in automatically generated test suites, review the current high-level
ideas to detect and remove such redundancies, and then formally describe the DetReduce
algorithm. In Chapter 4, we describe the implementation details of our Android testing
infrastructure, on which SwiftHand and DetReduce are built. Chapter 5 summarizes
the evaluation of SwiftHand and DetReduce on several real-world Android apps. In
Chapter 6, we discuss related work. Chapter 7 concludes the thesis with a discussion of the
limitations of our work and the possible future research.
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Chapter 2

SwiftHand, a GUI Testing Algorithm
with Minimal Restart and
Approximate Learning

In this chapter, we consider the problem of automatically generating sequences of test inputs
for Android apps for which we do not have an existing model of the GUI. The goal is to
achieve code coverage quickly. One promising approach is to use a learning-based testing
algorithm [11, 98]. A learning-based algorithm is capable of gradually learning a behav-
ioral model of the target app throughout the testing and to guide testing using this model.
However, our experience shows that previous learning-based testing techniques ignore the
execution cost of restarting an app. All automatic exploration algorithms will occasionally
need to restart the target app, in order to explore additional states reachable only from the
initial state. Such a restart operation is also required to clear all persistent data of the app.
For an Android app, a restart operation can be implemented by first closing the app, re-
moving all app-specific persistent data, and finally starting the app again. Our experiments
show that this particular restart operation takes 30 seconds on an Android emulator, which
is significantly longer than the time required to explore any other transition, such as a user
input. Currently, our implementation waits for up to 5 seconds after sending a user input, to
ensure that all handlers have finished. Since the cost of exploring a transition to the initial
state (a restart) is an order of magnitude more than the cost of any other transition, an
efficient exploration and learning algorithm will minimize the number of restarts.

In this chapter, we propose a new learning-based testing algorithm based on two key
observations:

1. It is possible to reduce the use of app restarts, as most user interface screens of an
Android app can be reached from other screens by triggering a sequence of user inputs,
such as “back” or “home” buttons.

2. For the purpose of test generation, we do not need to learn an exact model of the
app under test. All we need is an approximate model that can guide the generation
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License 
Term #1

Yes No

License 
Term #2

Yes No

License 
Term #3

Yes No

Sanity
Action 1
Action 2
Action 3Yes Yes Yes

EULA 1 (q1)  EULA 2 (q2) EULA 3 (q3) Main (qM)

Figure 2.1: The first four screens of the Sanity App. The screen names in parentheses are
for cross-reference from the models of this app discussed later.

of user inputs while maximizing code coverage. Note that for real-world apps a finite
state model of the GUI might not even exist. Some apps will potentially require a
push-down model and others a more sophisticated infinite model. For such apps, it is
impossible to learn a precise model.

Based on these two observations, we propose a testing algorithm, called SwiftHand,
that uses execution traces generated during the testing process to learn an approximate
model of the GUI. SwiftHand then uses the learned model to choose user inputs that
would take the app to previously unexplored states. As SwiftHand triggers the newly
generated user inputs and visits new screens, it expands the learned model, and it also
refines the model when it finds discrepancies between the app and the model learned so far.
The interplay between on-the-fly learning of the model and generation of user inputs based
on the learned model helps SwiftHand to quickly visit unexplored states of the app. A
key feature of SwiftHand is that, unlike other learning-based testing algorithms [12, 98],
it minimizes the number of restarts by searching for ways to reach unexplored states using
only user inputs.

In the rest of the chapter, we will first provide an overview of the SwiftHand algorithm
using a running example, and then explain the formal details of the algorithm.

2.1 Overview

In this section we introduce a motivating example, which we will use first to describe several
existing techniques for automated user interface testing. We then describe SwiftHand at
a high level in the context of the same example. The formal details of the SwiftHand
algorithm are in Section 2.2.

We use part of Sanity, an Android app in our benchmark-suite, as our running example.
Figure 2.1 shows the first four screens of the app. The app starts with three consecutive
end-user license agreement (EULA) screens. To test the main app, an automated testing
technique must pass all three EULA screens.
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The first and the third EULA screens have four input choices: a) Yes button to accept
the license terms, b) No button to decline the license terms, c) ScrollUp the license terms,
and d) ScrollDown the license terms. Pressing No at any point terminates program.
ScrollDown and ScrollUp do not change the non-visual state of the program. The second
EULA screen doesn’t have the scrolling option. Pressing the Yes button three times leads
the user to the main screen of the app. For convenience, in the remainder of this chapter we
are going to use short names q1, q2, q3, and qM , instead of EULA1, EULA2, EULA2, and
Main.

Goals and Assumptions

We want to develop an algorithm that generates sequences of user inputs and feeds them to
the app in order to achieve high code coverage quickly.

The design of our testing algorithm is guided by the following practical assumptions.

Testing Interface. We assume that it is possible to dynamically inspect the state of the
running app to determine the set of user inputs enabled on a given app screen. We also
assume that our algorithm can restart the app under test, can send a user input to the app,
and can wait for the app to become stable after receiving a user input.

Cost Model. We assume that restarting the app takes significantly more time than sending
a user input and waiting for the app to stabilize. Note that a few complicated tasks are
performed when an app is restarted: initializing a virtual machine, removing the app’s
private data, clearing the persistent storage, and executing the app’s own initialization code.
Testing tools have to wait until the initialization is properly done. Our experiments show
that the restart operation takes 30 seconds. Sending a user input is itself very fast, but
at the moment our implementation waits for up to 5 seconds for the app to stabilize. We
expect that with a more complex implementation, or with some assistance from the mobile
platform, we can detect when the handlers have actually finished running. In this case we
expect that the ratio of restart cost to the cost of sending a user input will be even higher.

User-Interface Model. We assume that an abstract model of the graphical user interface
of the app under test is not available a priori to our testing algorithm. This is a reasonable
assumption if we want to test arbitrary real-world Android apps.

When learning a user interface model we have to compare a user interface state with
states that are already part of the learned model. For this purpose, we define a notion of
state abstraction which enables us to approximately determine if we are visiting the same
abstract state. Our abstraction uses a set of enabled user actions inferred from a GUI
component tree (e.g., clicking a CheckBox type component) and augments each action with
some details captured from the GUI component tree (e.g., the checkbox is the third child of
the root component, and the box is checked). This means that we do not care about the full
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details of GUI components such as colors, coordinates, or text alignment1. This abstraction is
similar to the one proposed by MacHiry et al. [69]. The details of the abstraction mechanism
are available in Chapter 4.

Test Coverage Criteria. We assume that the app under test is predominantly concerned
with the user interface, and a significant part of the app state is reflected in the state of
the user interface. Thus we assume that a testing approach that achieves good coverage of
the user interface states also achieves good code coverage. This assumption is not always
entirely accurate, e.g., for apps that have significant internal application state that is not
exposed in the user interface.

Existing Approaches

Random Testing. Random testing [69] tests an app by randomly selecting a user input
from the set of enabled inputs at each state and by executing the selected input. Random
testing also restarts the app at each state with some probability. In the case of Sanity, after
a restart, random testing has a low probability (1

2
∗ 1

2
∗ 1

2
= 0.125) of reaching the main

app screen. User inputs that do not change the non-visual state, for example ScrollUp and
ScrollDown, or clicking outside the buttons, do not affect this probability. The expected
number of user inputs and restarts required to reach the main app screen are 24 and 7,
respectively.2 This will take about 330 seconds according to our cost model. In summary,
random testing has a difficult time on achieving good coverage if an interesting screen is
reachable only after executing a specific sequence of user inputs. This is true for our example
and is common in real-world apps.

Note that this analysis, and our experiments, use a random testing technique that is
aware of the set of enabled user inputs at each state and can make a decision based on
this set. A näıve random testing technique, such as the widely-used Monkey tester, which

1 In the original SwiftHand paper [23], an enabled user input is considered according to its type
and the bounding box of screen coordinates where it is enabled. We found this abstraction is sensitive to
small changes on screen. The new abstraction mechanism, on the contrary, does not depend on the actual
coordinate of GUI components and is more tolerant to such small changes.

2Let R be the expected number of restarts. At the first EULA screen, if No is chosen, the app will
terminate and testing should be restarted. This case happens with probability 1

4 . The expected number of
restarts is R1 = 1

4 (1 + R). If either ScrollUp or ScrollDown is picked, the app is still in the first EULA
screen. Therefore, the expected number of restarts in this case is R2 = 1

2R. After considering two more
cases (Yes,No and Yes,Yes,Scroll∗,No), we can construct an equation for R.

R = R1 +R2 +R3 +R4

= 1
4 (1 +R) + 1

2R+ 1
8 (1 +R) + 1

16 (1 +R)
= 7

16 + 15
16R

Solving the equation, we have R = 7. We can perform a similar analysis to get the expected number of all
actions including restarts, which is 31. The number of actions except restarts is 24.
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q1
q2 q3Yes Yes Yes

NoNo
No

Scroll Up
Scroll Down

Scroll Up
Scroll Down

qEND

qM

Action 1

Action 2

Action 3

Figure 2.2: A partial model of Android app Sanity.

touches random coordinates on the screen, will do nothing meaningful because most of the
screen coordinates have no associated event handler.

Model-based Testing. Model-based testing [10,17,78,96,103,113] is a popular alternative
to automatically test GUI programs and other event-driven programs. Model-based testing
assumes that a finite state model of the GUI is provided by the user. The idea behind
model-based testing is to create an efficient set of user input sequences from the model of
the target program. The generated test cases could either try to maximize coverage of states
or try to maximize coverage of short sequences of user inputs.

Figure 2.2 is a partial model for the Sanity app. The model describes a finite state
machines. A finite state machine abstracts the infinite state space of the app into a finite
number of interesting states and describes equivalence classes of user input sequences leading
to those states. A key advantage of using a finite state machine (FSM) model is that an
optimal set of test cases can be generated based on a given coverage criterion.

For our running example, if we want to avoid a restart, a model-based testing algorithm
could generate the sequence ScrollDown, ScrollUp, Yes, Yes, ScrollDown, ScrollUp,
Yes to obtain full coverage of non-terminating user inputs and to lead the test execution to
the main screen.

Model-based testing can generate optimal test cases for GUI apps, if the model is finite
and accurate. Unfortunately, it is a non-trivial task to manually come up with a precise
model of the GUI app under test. For several real-world apps, a finite model may not even
exist. Some apps could require a push-down automaton or a Turing machine as a model.
Moreover, manually generated models may miss transitions that could be introduced by a
programmer by mistake.

Testing with Active Learning. Testing with model-learning [41,88,91] tries to address
the limitations of model-based testing by learning a model of the app as testing is performed.
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An active learning algorithm is used in conjunction with a testing engine to learn a model
of the GUI app and to guide the generation of user input sequences based on the model.

A testing engine is used as a teacher in active learning. The testing engine executes the
app under test to answer two kinds of queries: 1) membership queries—whether a sequence
of user inputs is valid from the initial state, i.e. if the user inputs in the sequence can
be triggered in order, and 2) equivalence queries—whether a learned model abstracts the
behavior of the app under test. The testing engine resolves equivalence queries by executing
untried scenarios until a counter-example is found. An active learning algorithm repeatedly
asks the teacher membership and equivalence queries to infer the model of the app.

However, existing active learning techniques are not suitable to test GUI apps because
they perform restart without considering the cost. For example, Angluin’s L∗ [12] requires
at least O(n2) restarts, where n is the number of states in the model of the user interface.
Rivest and Schapire’s algorithm [98] reduces the number of restarts to O(n), which is still
high, by computing homing sequences, and it also increases the runtime by a factor of n,
which is again not acceptable when we want to achieve code coverage quickly.

A case study: L∗. Angluin’s L∗ [12] is the most widely used active learning algorithm
for learning finite state machine. The algorithm has been successfully applied to various
problem domains from network protocol inference [106] to functional confirmation testing of
circuits [66].

We applied L∗ to the running example. We observed that L∗ restarts frequently. More-
over, L∗ made a large number of membership queries to learn a precise and minimal model.
Specifically, testing with L∗ required 29 input sequences (i.e. 29 restarts) consisting of 64
user inputs to fully learn the partial model in Figure 2.2. This translates to spending around
870 seconds to restart the app under test (AUT) and 320 seconds for executing the user
inputs. 73% of running time is spent on restarting the app. It is important to note that
L∗ has to learn the partial model completely and precisely before it can explore the screens
beyond the main screen. We show in the experimental evaluation section that L∗ has similar
difficulties in actual benchmarks.

Our Testing Algorithm: SwiftHand

SwiftHand combines active learning with testing. However, unlike standard learning algo-
rithms such as L∗, SwiftHand restarts the app under test sparingly. At each state, instead
of restarting, SwiftHand tries to extend the current execution path by selecting a user
input enabled at the state. SwiftHand uses the model learned so far to select the next
user input to be executed.

Informally, SwiftHand works as follows. SwiftHand installs and launches the app
under test and waits for the app to reach a stable state. This is the initial app-state. For
each app-state, we compute a model-state based on the set of enabled user inputs in the
app-state. Initially the model contains only one state, the model-state corresponding to the
initial app-state.
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Figure 2.3: Progress of learning-guided testing on the Sanity example. The initial state is
marked with a short incoming arrow. A solid line with arrow denotes a transition in the
model. A circle with a solid line is used to denote a state in the model. A circle with a
double line denotes the current model-state.

If a model-state has at least one unexplored outgoing transition, we call it a frontier
model-state. At each app-state s, SwiftHand heuristically picks a frontier model-state q
that can be reached from the current model-state without a restart.

Case 0. If such a state is not found, SwiftHand restarts the app. This covers both the case
when a frontier-state exists but is not reachable from the current state with user inputs
alone, and also the case when there are no frontier-states, in which case our algorithm
restarts the app to try to find inconsistencies in the learned model by exploring new
paths.

Otherwise, SwiftHand avoids restart by heuristically finding a path in the model from
the current model-state to q and executes the app along the path. SwiftHand then executes
the unexplored enabled input of state q. Three scenarios can arise during this execution.

Case 1. The app-state reached by SwiftHand has a corresponding model-state that has not
been encountered before. SwiftHand adds a fresh model-state to the model corre-
sponding to the newly visited app-state and adds a transition to the model.

Case 2. If the reached app-state is equivalent based on enabled user inputs to the screen of
a previously encountered app-state, say s′, then SwiftHand adds a transition from
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q to the model-state corresponding to s′. This is called state merging. If there are
multiple model-states whose corresponding app-states have equivalent screens, then
SwiftHand picks one of them heuristically for merging.

Case 3. During the execution of the user inputs to reached the frontier state, SwiftHand
discovers that an app-state visited during the execution of the path does not match
the corresponding model-state along the same path in the model. This is likely due to
an earlier merging operation that was too aggressive. At this point, SwiftHand runs a
passive learning algorithm using the execution traces observed so far, i.e. SwiftHand
finds the smallest model that can explain the app-states and transitions observed so
far.

Note that SwiftHand applies heuristics at three steps in the above algorithm. We dis-
cuss these heuristics in Section 2.2. If the target model is finite, SwiftHand will be able
to learn the target model irrespective of what heuristics we use at the above three decision
points. However, our goal is not necessarily to learn the exact model, but to achieve cover-
age quickly. Therefore, we apply heuristics that enable SwiftHand to explore previously
unexplored states quickly. In order to avoid SwiftHand from getting stuck in some remote
part of the app, we allow SwiftHand to restart when it has executed a predefined number
of user inputs from the initial state.

Figure 2.3 illustrates how SwiftHand works on the running example. For this example,
we pick user inputs carefully in order to keep our illustration short, yet comprehensive. For
this reason we do not pick the No user input to avoid restart. In actual implementation, we
use various heuristics to make such decisions. A model-state with at least one unexplored
outgoing transition is called a frontier state. A solid line with arrow denotes a transition
in the model. The input sequence shown below the diagram of a model denotes an input
sequence of the current execution from the initial state.

• Initialization: After launching the app, we reach the initial app-state, where the en-
abled inputs on the state are {Yes, No, ScrollUp, ScrollDown}. We abstract this
app-state as the model-state q1 (using the same terminology as in Figure 2.1 and Fig-
ure 2.2). This initial state of the model is shown in Figure 2.3(a).

• 1st Iteration: Starting from the initial state of the model, SwiftHand finds that the
state q1 is a frontier state and chooses to execute a transition for the input Yes. The
resulting state has a different set of enabled inputs from the initial state. Therefore,
according to Case 1 of the algorithm, SwiftHand adds a new model-state q2 to the
model. The modified model is shown in Figure 2.3(b).

• 2nd Iteration: The app is now at an app-state whose corresponding model-state is
q2, as shown in Figure 2.3(b). Both q1 and q2 have unexplored outgoing transitions.
However, if we want to avoid restart, we can only pick a transition from q2 because
according to the current model there is no sequence of user inputs to get to q1 from the
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current model-state. SwiftHand chooses to execute a transition on Yes, and obtains
a new app-state for which it creates a new model-state q3, as shown in Figure 2.3(c).
However, the new app-state has the same set of enabled inputs as the initial app-state
q1. Therefore, SwiftHand merges q3 with q1 according to Case 2. This results in the
model shown in Figure 2.3(d). If you compare the partial model learned so far with
the actual underlying model shown in Figure 2.2, you will notice that the merging
operation is too aggressive. In the actual underlying model the state reached after a
sequence of two Yes clicks is different than the initial state. This will become apparent
to SwiftHand once it explores the app further.

• 3rd Iteration: The app is now at an app-state whose corresponding model-state is q1, as
shown in Figure 2.3(d). SwiftHand can now pick either q1 or q2 as the next frontier
state to explore. Assume that SwiftHand picks q2 as the frontier state to explore.
A path from the current model-state q1 to q2 consists of a single transition Yes. After
executing this input, however, SwiftHand encounters an inconsistency—the app has
reached the main screen after executing the input sequence Yes,Yes,Yes from the
initialization (see Figure 2.2). In the current model learned so far (Figure 2.3(d)), the
abstract state after the same sequence of actions ought to be q2. Yet the set of enabled
inputs associated with this screen (Action1, Action2, and Action3) is different from
the set of enabled inputs associated with q2.

We say that SwiftHand has discovered that the model learned so far is inconsistent
with the app, and the input sequence Yes,Yes,Yes is a counter-example showing
this inconsistency. Figure 2.3(e) illustrates this situation; notice that there are two
outgoing transitions labeled Yes from state q2. This is Case 3 of the algorithm. The
inconsistency happened because of the merging decision made at the second iteration.
To resolve the inconsistency, SwiftHand abandons the model learned so far and runs
an off-the-shelf passive learning algorithm [63] to rebuild the model from scratch using
all execution traces observed so far. Figure 2.3(f) shows the result of passive learning.
Note that this learning is done using the transitions that we have recorded so far,
without executing any additional transitions in the actual app.

• 4th Iteration: SwiftHand is forced to restart the app when it has executed a prede-
fined number of user inputs from the initial state. Assume that SwiftHand restarts
the app in the 4th iteration so that we can illustrate another scenario of SwiftHand.
After restart, q1 becomes the current state (see Figure 2.3(g)). SwiftHand now has
several options to execute an unexplored transition. Assume that SwiftHand picks
ScrollDown transition out of the q1 state for execution. Since scrolling does nothing
to the screen state and the set of enabled inputs, we reach an app-state that has the
same screen and enabled inputs as q1 and q3. SwiftHand can now merge the new
model-state with either q1 or q3 (see Figure 2.3(h)). In practice, we found that the
nearest ancestor or the nearest state with the same set of enabled inputs works better
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than other model-states. We use this heuristics to pick q1. The resulting model at this
point is shown in Figure 2.3(i).

After the first four iterations, SwiftHand will execute 4 restarts and 11 more user
inputs, in the worst case, to learn the partial model in Figure 2.2. The restarts are necessary
to learn the transitions to the terminal state, End. If SwiftHand wants to explore states
beyond the main screen after a restart, it can consult the model and execute the input
sequence Yes, Yes, and Yes to reach the main screen. Random testing will have a hard time
reaching the main screen through random inputs. In terms of our cost model, SwiftHand
will spend 190 seconds or 60% of the execution time in restarting the app. The percentage of
time spent in restarting drops if the search space becomes larger. In our actual benchmarks,
we observed that SwiftHand spent about 10% of the total time in restarting.

2.2 Learning-guided Testing Algorithm

In this sections, we formally describe the SwiftHand algorithm. We first introduce a
few definitions that we use in our algorithm. We then briefly describe the algorithm. Swift-
Hand uses a variant of an existing passive learning algorithm to refine a model whenever it
observes any inconsistency between the learned model and the app. We describe this passive
learning algorithm to keep the section self-contained.

Models as ELTS. We use extended deterministic labeled transition systems (ELTS) as
models for GUI apps. An ELTS is a deterministic labeled transition system whose states are
labeled with a set of enabled transitions (or user inputs). Formally, an ELTS M is a tuple

M = (Q, q0,Σ, δ, λ)

where

• Q is a set of states,

• q0 ∈ Q is the initial state,

• Σ is an input alphabet,

• δ : Q× Σ→ Q is a partial state transition function,

• λ : Q → ℘(Σ) is a state labeling function. λ(q) denotes the set of inputs enabled at
state q, and

• for any q ∈ Q and a ∈ Σ, if there exists a p ∈ Q such that δ(q, a) = p, then a ∈ λ(q).

The last condition implies that if there is a transition from q to some p on input a, then a
is an enabled input at state q.
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Arrow. We use q
a−→ p to denote δ(q, a) = p.

Arrow∗. We say q
l−→ p where l = a1, . . . , an ∈ Σ∗ if there exists q1, . . . , qn−1 such that

q
a1−→ q1

a2−→ q2 . . . qn−1
an−→ p.

Trace. An execution trace, or simply a trace, is a sequence of pairs of inputs and sets of
enabled inputs. Formally, a trace t is an element of (Σ×℘(Σ))∗. In this section, we use this
simplified trace definition for the clarity of the presentation.

Trace Projection. We use π(t) to denote the sequence of inputs in the trace t. Formally,
if t = (a1,Σ1), . . . , (an,Σn), then π(t) = a1, . . . , an.

Arrow Trace. We say q
t−→ p if q

π(t)−→ p.

Consistency. A trace t = (a1,Σ1), . . . , (an,Σn) is consistent with a modelM = (Q, q0,Σ, δ, λ)
if and only if

∃q1, . . . qn ∈ Q.
∧

i∈[1,n]

qi−1
ai−→ qi ∧ λ(qi) = Σi.

Frontier State. A state in an ELTS is a frontier-state if there is no transition from the
state on some input that is enabled on the state. Formally, a state q is a frontier-state if
there exists a a ∈ λ(q) such that q

a−→ p is not true for any p ∈ Q.

Terminal State. When the execution of an app terminates, we assume that it reaches a
state that has no enabled inputs.

Learning-guided Testing Algorithm

Interface with the App under Test. SwiftHand treats the app state as a black box.
However, it can query the set of enabled inputs on an app state. We assume that λ(s) returns
the set of enabled inputs on an app state s. SwiftHand can also ask the app to return a
new state and trace after executing a sequence of user inputs from a given app state. Let s
be an app state, t be a trace of executing the app from the initial state s0 to s, and l be a
sequence of user inputs. Then Execute(s, t, l) returns a pair containing the app state after
executing the app from state s on the input sequence l and the trace of the entire execution
from the initial state s0 to the new state.
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Algorithm 1 SwiftHand: Learning-guided testing algorithm
1: procedure Testing(s0) . s0 is the initial state of the app
2: M ← ({q0}, q0,Σ, ∅, {q0 7→ λ(s0)}) for some fresh state q0 . M is the current model
3: T ← ∅ . T accumulates the set of traces executed so far
4: p← q0 and s← s0 and t← ε
5: . p, s, and t are the current model-state, app-state, and trace, respectively
6: while ¬timeout() do . While time budget for testing has not expired
7: if |t| > MAX LENGTH then . Current trace is longer than a maximum limit
8: p← q0 and s← s0 and T ← T ∪ {t} and t← ε . Restart the app
9: else if there exists a frontier-state q in M then . Model is not complete yet

10: if there exists l ∈ Σ∗ and a ∈ Σ such that p
l−→ q and a ∈ λ(q) then

11: (s, t)← Execute(s, t, l)
12: if t is consistent with M then
13: (s, t)← Execute(s, t, a)
14: if there exists a state r in M such that λ(r) = λ(s) then . Merge with an existing state

15: add q
a−→ r to M

16: p← r . Update current model-state
17: else . Add a new model-state

18: add a fresh state r to M such that q
a−→ r and λ(r) = λ(s)

19: p← r . Update current model-state
20: end if
21: else . Inconsistent model. Need to re-learn the model.
22: T ← T ∪ {t} and M ← PassiveLearn(T )

23: p← r where q0
t−→ r . Update current model-state

24: end if
25: else . A frontier-state cannot reached from the current state
26: p← q0 and s← s0 and T ← T ∪ {t} and t← ε . Restart the app
27: end if

28: else if there exists state q in M and l ∈ Σ∗ such that p
l−→ q and l is not a subsequence of π(t) for any t ∈ T then

29: . Model is complete, but may not be equivalent to target model
30: (s, t)← Execute(s, t, l)
31: if t is not consistent with M then . Inconsistent model. Need to re-learn the model.
32: T ← T ∪ {t} and M ← PassiveLearn(T )

33: p← r where q0
t−→ r . Update current model-state

34: end if
35: else . Model is complete and equivalent to target model
36: return T . Done with learning
37: end if
38: end while
39: return T
40: end procedure

Description of the Actual Algorithm. The pseudo-code of the algorithm is shown in
Algorithm 1. The algorithm maintains five local variables: 1) s denotes the current app-state
and is initialized to s0, the initial state of the app, 2) p denotes the current model-state, 3)
t denotes the current trace that is being executed, 4) T denotes the set of traces tested so
far, and 5) M denotes the ELTS model learned so far.

At each iteration the algorithm tries to explore a new app state. To do so, it finds a
frontier-state q in the model, then finds a sequence of transitions l that could lead to the
frontier-state from the current model-state, and a transition a enabled at the frontier-state
(lines 9–10). It then executes the app on the input sequence l from the current app state s
and obtains a trace of the execution (line 11). If the trace is not consistent with the model,
then we know that some previous merging operation was incorrect and we re-learn the model
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using a passive learning algorithm from the set of traces observed so far (lines 21–24). On the
other hand, if the trace is consistent with the model learned so far, the algorithm executes
the app on the input a from the latest app state (lines 12–13). If the set of enabled inputs
on the new app state matches with the set of enabled inputs on an existing model-state
(line 14), then it is possible that we are revisiting an existing model-state from the frontier
state q on input a. The algorithm, therefore, merges the new model-state with the existing
model-state (line 15). Note that this is an approximate check of equivalence between two
model-states, but it helps to prune the search space. If the algorithm later discovers that
the two states are not equivalent, it will perform a passive learning to learn a new model,
effectively undoing the merging operation. Nevertheless, this aggressive merging strategy is
key to prune similar states and guide the app into previously unexplored state space. On
the other hand, if the algorithm finds that the set of enabled inputs on the new app-state is
not the same as the set of enabled inputs of any existing model-state, then we have visited a
new app-state. The algorithm then adds a new model-state corresponding to the app-state
to the model (line 18). In either case, that is whether we merge or we add a new model-state,
we update our current model-state to the model-state corresponding to the new app state
and repeat the iteration (lines 16 and 19).

During the iteration, if we fail to find a frontier state, we know that our model is complete,
i.e. every transition from every model-state has been explored. However, there is a possibility
that some incorrect merging might have happened in the process. We, therefore, need to
now confirm that the model is equivalent to the target model of the app. This is similar to
the equivalence check in the L∗ algorithm. The algorithm picks a sequence of transitions l
such that l is not a subsequence of any trace that has been explored so far (lines 28–30).
Moreover, l should lead to a state q from the current state in the model. If such an l is not
found, we know that our model is equivalent to the target model (lines 35–36). On the other
hand, if such an l exists, the algorithm executes the app on l and checks if the resulting
trace is consistent with the model (lines 30–31). If an inconsistency is found, the model is
re-learned from the set of traces executed so far (lines 32–33). Otherwise, we continue the
refinement process over any other existing l.

During the iteration, if the algorithm finds a frontier state, but fails to find a path from
the current state to the frontier state in the model, it restarts the app (lines 25–26). We
observed that in most GUI apps, it is often possible to reach most screen states from another
screen state after a series of user inputs while avoiding a restart. As such, this kind of restart
is rare in SwiftHand. In order to make sure that our testing does not get stuck in some
sub-component of an app with a huge number of model-states, we do restart the app if the
length of a trace exceeds some user defined limit (i.e. MAX LENGTH) (lines 7–8).

Heuristics and Decision Points

The described algorithm has five decision points and we use the following heuristics to resolve
them. We came up with these heuristics after extensive experimentation.
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• If there are multiple frontier-states and if there are multiple enabled inputs on those
frontier-states (lines 9–10), then which frontier-state and enabled transition should we
pick? SwiftHand picks a random state from the set of frontier-states and picks a
random transition from the frontier state. We found through experiments that the
effectiveness of SwiftHand does not depend on what heuristics we use for this case.

• If there are multiple transition sequences l from the current model-state to a frontier
state (line 10), which one should we pick? We found that picking a short sequence is not
necessarily the best strategy. Instead, SwiftHand selects a sequence of transitions
from the current model-state to the frontier state so that the sequence contains a
previously unexplored sequence of inputs. This helps SwiftHand to learn a more
accurate model early in the testing process.

• If multiple states are available for merging (at line 14), then which one should Swift-
Hand pick? If we pick the correct model-state, we can avoid re-learning in future.
We experimented with a random selection strategy and with a strategy that selects
a nearby state. However, we discovered after some experimentation that if we prefer
the nearest ancestor to other states, our merge operations are often correct. There-
fore, SwiftHand uses a heuristics that first tries to merge with an ancestor. If an
ancestor is not available for merging, SwiftHand picks a random state from the set
of candidate states.

• If there are multiple transition sequences l available for checking equivalence (line 28),
which one should we pick? In this case, we again found that none of the strategies we
tried make a difference. We therefore use random walk to select such an l.

• We set the maximum length of a trace (i.e. MAX LENGTH) to 50. We again found
this number through trial-and-error.

Rebuilding a Model using Passive Learning.

We describe the passive learning algorithm that we use for re-learning a model from a set
of traces. The algorithm is a variant of Lambeau et al.’s [63] state-merging algorithm. We
have modified the algorithm to learn ELTS. We describe this algorithm to keep the section
self-contained.

Prefix Tree Acceptor. A prefix tree acceptor [11] (or a PTA) is an ELTS whose state
transition diagram is a tree with the initial state of the ELTS being the root of the tree.
Given a set of traces T , we build a prefix tree acceptor PTAT whose states are the set of
all prefixes of the traces in T . There is a transition with label a from t to t′ if t can be
extended to t′ using the transition a. The λ(t) is Σ′ if the last element of t has Σ′ as the
second component.
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Partitioning and Quotient Model. Π ⊆ ℘(Q) is a partition of the state space Q if all
elements of Π are disjoint, all elements of Q are a member of some element of Π, and λ of
all elements of a given element of Π are the same. An element of Π is called an equivalence
class and is denoted by π. element(π) denotes a random single element of π. M/Π is a
quotient model of M obtained by merging equivalent states with respect to Π:

π0 is the partition containing q0

δ′
def
= {(π, a) 7→ π′ | ∃q ∈ π and ∃q′ ∈ π′ .(q, a) 7→ q′ ∈ δ}

∀π ∈ Π.λ′(π)
def
= λ(element(π))

M/Π = (Π, π0,Σ, δ
′, λ′)

Note that a quotient model can be non-deterministic even though the original model is
deterministic.

The Algorithm. Algorithm 2 describes the state-merging based learning algorithm. Con-
ceptually, the algorithm starts from a partial tree acceptor PTAT and repeatedly gener-
alizes the model by merging states. The merging procedure first checks whether any two
states agree on the λ function, and then tries to merge them. If merging results in a non-
deterministic model, the algorithm tries to eliminate non-determinism by merging target
states of non-deterministic transitions provided that the merged states have the same λ.
This process is applied recursively until the model is deterministic. If at some point of the
procedure, merging of two states fails because λs of the states are different, the algorithm
unrolls the entire merging process for the original pair of states.

The ChoosePair procedure decides the order of state merging. The quality of the
learned model solely depends on the implementation of this function. We will explain the
procedure in short.

Our algorithm differs from the original algorithm on two fronts. First, the original algo-
rithm [63] aims to learn DFA with mandatory merging constraints and blocking constraints.
Our algorithm learns an ELTS and only uses the idea of blocking constraints. We use the
λ function or the set of enabled transitions at any state to avoid illegal merging. Second,
DFA learning requires both positive and negative examples. ELTS has no notion of negative
examples.

Selecting a pair of equivalence classes. Algorithm 3 describes our algorithm for select-
ing a pair of model-states to merge. The ChoosePair procedure selects a pair of model-
states such that merging the pair would minimize the number of states in the model after
the merge. This strategy is known as evidence-driven state-merging [28,64].

The procedure works by constructing a set of candidate pairs (line 2-3) and evaluating
each pair by simulating the merge (lines 3-10). The procedure stores the evaluation result of
each pair in table f , which maps a pair of states to the size of the model after merging the
pair. If a pair can be merged successfully, the table will update (line 8). After constructing
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Algorithm 2 Passive learning algorithm
1: procedure Rebuild(T )
2: Π← {{q} | q ∈ QPTAT }
3: while (πi, πj)← ChoosePair(Π) do
4: Try
5: Π←Merge(Π, πi, πj)
6: CatchAndIngnore
7: end while
8: return PTAT /Π
9: end procedure

10: procedure Merge(Π, πi, πj)
11: M ← PTAT /Π
12: if λM (πi) 6= λM (πj) then
13: throw exception
14: end if
15: πpivot ← πi ∪ πj
16: Π← (Π \ {πi, πj}) + πpivot
17: while (πk, πl)← FindNondeter(Π, πpivot) do
18: Π←Merge(Π, πk, πl)
19: end while
20: return Π
21: end procedure

22: procedure FindNondeter(Π, π)
23: M ← PTAT /Π

24: S ← {(πi, πj) | ∃a ∈ λM (π).π
a→M πi ∧ π

a→M πj ∧ πi 6= πj}
25: return pick(S)
26: end procedure

the evaluation table, the procedure returns a candidate pair that minimizes the number of
states if the table is not empty (line 14). However, if the table is empty the procedure returns
null because this indicates that no two states can be merged (line 12).

It would be ideal to consider all possible pairs of model-states, as this provides an optimal
solution. However, only a small portion of state pairs is worth considering [64], so consid-
ering all possible pairs is inefficient. As such, the procedure applies the ChooseCandidates

function to select a subset of candidate pairs using the BlueFringe [64] method, generally
considered as the best-known heuristic.

Optimizations. In practice, a straightforward implementation of the passive learning al-
gorithm (Algorithm 2 and Algorithm 3) can be a bottleneck if the SwiftHand algorithm
is executed for several hours. Note the worst case time complexity of the passive learning
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Algorithm 3 Selecting a pair of equivalence classes to merge
1: procedure ChoosePair(Π)
2: P ← {(πi, πj) | πi, πj ∈ Π ∧ πj 6= πj ∧ λ(element(πi)) = λ(element(πj))}
3: C ← ChooseCandidates(P )
4: f ← [ ]
5: for (πi, πj) ∈ C do
6: Try
7: Π′ ←Merge(Π, πi, πj)
8: f ← f + [(πi, πj) 7→ |Π′|]
9: CatchAndIngnore

10: end for
11: if dom(f) = ∅ then
12: return null
13: else
14: return argmin

(πi,πj) ∈ dom(f)
f(πi, πj)

15: end if
16: end procedure

algorithm is O(n3) where n the size of the initial partial tree acceptor PTAT . The passive
learning algorithm calls the Merge procedure O(n2) times and the execution time of each
Merge call is linear in n. When SwiftHand runs for several hours, PTAT could incor-
porate tens of thousands of states. The cubic time complexity is unacceptable in such a
case.

The time complexity of the algorithm could be decreased using dynamic programming:

• Within a single Rebuild procedure call, we can maintain a set of candidate pairs
that cannot be merged. Note that if two model-states πi and πj are identified as non-
mergeable, then they will remain non-mergeable throughout the rest of the execution
of the same Rebuild call. Therefore, if a pair of model-states is identified as non-
mergeable, we can bookkeep the unavailability and never check that particular pair
again in the same Rebuild call.

• We can also accelerate the Merge procedure by collecting and reusing information
across multiple Rebuild procedure calls. Assume that a pair of model-states cannot be
merged in one instance of Rebuild call. This means that there is a counter-example
(a sequence of actions) revealing a difference between two model-states. The same
sequence might prevent other pairs of model-states from being merged in a future
Rebuild call. As such, we can maintain a list of counter-examples for merge fail-
ures and check this list before calling the Merge procedure. Modern active-learning
algorithms [54, 60] have used a discriminator tree, a technique based on the same ob-
servation, to reduce the number of membership queries.
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Chapter 3

DetReduce, a GUI Test Suite
Minimization Algorithm

In the previous chapter we introduced SwiftHand, an automated GUI testing algorithm
for Android apps. It works by injecting sequences of automatically generated user actions to
an app. Each sequence of actions injected by the algorithm can be seen as a test case, and
the set of all sequences of actions can be considered as a test suite. Although SwiftHand
achieves good code and screen coverage (i.e. covering all distinct screens of an app), as we
will see in Chapter 5, it must run for several hours to saturate branch coverage and screen
coverage. As a result, SwiftHand typically generates test suites containing thousands of
test cases—each of which could contain tens to thousands of user actions. Such a large
number of test cases cannot be used for regression testing because regression testing would
then take the same time as running the actual automated testing tool. Regression tests need
to run faster so that they can be used frequently during development.

In this chapter, we address the problem of generating a small regression GUI test suite
for an Android app. We assume that we are given a large test suite generated by an ex-
isting automated GUI testing tool, such as SwiftHand. We assume that the test suite is
replayable in the sense that if we rerun the test suite multiple times we will achieve the same
coverage and observe the same sequence of app screens. A test suite directly produced by a
test generation tool can contain non-replayable test cases. However, we can find a replayable
prefix of the test case by executing the same test case multiple times (ten in our evaluation).
By repeating this process for all test cases in a test suite, we obtain a test suite composed
of replayable prefixes of the test cases in the original test suite1. A replayable test suite
obtained in this way, however, can take several hours to run on the app. Our goal is to
spend a reasonable amount of time—perhaps one day— to generate a small regression test
suite for the app that runs for less than an hour and that achieves similar code and screen
coverage similar to that of the original test suite.

1 Section 5.3 explains how to determine if a test case is replayable and how to obtain a replayable test
suite from an automated GUI testing tool.
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Several techniques have been proposed to minimize test suites for GUIs. For example,
Clapp et al. [25] proposed a delta-debugging [124] based algorithm that can minimize the test
suite of a GUI app while tolerating non-determinism. Hammoudi et al. [45] proposed another
delta-debugging technique to minimize manually-written test suites for web applications.
These existing techniques work well if the size of the input test suite is small, containing
fewer than one thousand user inputs. However, they do not scale for large test suites because
these techniques depend heavily on the rapid generation and feasibility checking of new test
cases. Unfortunately, for most real-world GUI apps it takes several minutes to check the
feasibility of a new input sequence. For large test suites containing tens of thousands of
user actions, it can therefore take more than a month to effectively minimize a test suite.
McMaster and Memon [74] proposed a technique [118] for reducing the number of test
cases in a test suite, but this technique does not reduce the size of each test case. In our
experimental evaluation, we observed that test cases generated by an automated tool can
contain subsequences of redundant user actions, which can be removed to obtain smaller test
suites.

We propose a GUI test suite reduction algorithm that can scalably and effectively min-
imize large test suites. The key insight behind our technique is that if we can identify and
remove common forms of redundancies introduced by existing automated GUI testing tools,
then we can markedly lower the time required to minimize a GUI test suite. We manually
analyzed several sources of redundancies in the test suites generated by the automated GUI
testing tool SwiftHand, and identified three kinds of redundancies that are common in
these test suites: 1) some test cases can be safely removed from a test suite without decreas-
ing code and screen coverage, 2) within a test case, certain loops can be eliminated without
decreasing coverage, and 3) many test cases share common subsequences of actions whose
repeated execution can be avoided by combining fragments from different action sequences.
Based on these observations, we have developed an algorithm that removes such redundan-
cies one-by-one while ensuring that we do not reduce the overall code and screen coverage
of the resulting test suite.

In order to identify redundant loops and common subsequences of test cases, we define
a notion of state abstraction that enables us to approximately determine if we are visiting
the same abstract state at least twice while executing a test case. If an abstract state is
visited twice during the execution, we have identified a loop that can potentially be removed.
Similarly, if the execution of two test cases visits a subsequence of the same abstract states,
we know that fragments from the two test cases can be combined to obtain a longer trace
that avoids executing the common fragment. However, when we create a new test case by
removing a loop or combining two fragments, the resulting test case might not traverse the
same abstract states as expected. In our algorithm, we check the feasibility of a newly created
test case by executing it ten times and determining if the execution visits the same sequence
of abstract states every time—we call this replayability. We have observed that if our state
abstraction is too coarse-grained, feasibility checks fail often, leading to longer running time
of the algorithm. On the other hand, if we use a too fine-grained state abstraction, we fail to
identify many redundancies. One contribution of this chapter is to put forward a sufficiently
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effective abstraction that works well in practice. Our algorithm spends most of its time
checking the feasibility of newly created test cases; if such a check fails for a new test case,
we remember the prefix of the test case that failed and use it to avoid checking the feasibility
of any future test case with the same prefix. This simple pruning helps us to reduce the
number of new test cases to check.

One key advantage of our algorithm over delta-debugging or other black-box oriented al-
gorithms is that we do not blindly generate all possible new test cases that can be generated
by dropping some actions. Rather, we apply a suitable state abstraction to drop only redun-
dant loops. Another key advantage is that we create new test cases by combining fragments
from input test cases, which enables us to produce new, longer test cases that cannot be
generated using delta-debugging. Longer test cases are generally superior to multiple shorter
test cases because we need not perform a clean restart of the app. A clean restart of an app
is timing-consuming, because it requires killing the app, erasing app data, and erasing SD
card contents. A longer test case in place of several shorter test cases avoids several such
expensive restarts.

3.1 Overview

In this section, we give a brief overview of our technique using formal notation and a series
of examples. The formal details of our technique are in Section 3.2

Definitions and Problem Statement

We introduce a few simple definitions and describe the problem that we are solving.

Trace. The execution of an app on a sequence of user inputs can be denoted by a trace of
the form

s0
a1,C1−−−→ s1

a2,C2−−−→ . . .
an,Cn−−−−→ sn

where

• each si is an abstract state of the program, usually computed by abstracting the screen
of the app,

• each si−1
ai,Ci−−−→ si is a transition denoting that the app transitioned from state si−1 to

state si on user input (or action) ai and Ci is the set of branches covered during the
handling of the action by the app. Here we focus on branch coverage; however, one
could use other kinds of coverage for Ci.

Coverage. If si−1
ai,Ci−−−→ si is a transition, then Ci ∪ {si} is the coverage of the transition.

In the coverage we include both the set of branches and the abstract states visited by the

transition. We can similarly define the coverage of a trace τ = s0
a1,C1−−−→ s1

a2,C2−−−→ . . .
an,Cn−−−→ sn
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as the union of the coverage of all the transitions in the trace, i.e. ∪i∈[1,n](Ci ∪ {si}) and
denote it by C(τ).

Replayable traces. In our technique, we are only interested in replayable traces. A trace

τ = s0
a1,C1−−−→ s1

a2,C2−−−→ . . .
an,Cn−−−→ sn of an app is replayable, if every time the app is given the

sequence of user actions a1, a2, . . . , an in a state s0, it generates the exact trace τ .

Test suite: A set of replayable traces. We assume that an automated testing tool for
GUI generates a set Ts of replayable traces that can be treated as a regression test suite.
Our evaluation section describes a methodology to obtain a replayable set of traces from
SwiftHand. The coverage of a set of traces T , denoted by C(T ), is defined as the union
of the coverage of the traces contained in the set. The cost of a set of traces T is the pair
(
∑

τ∈T |τ |, |T |). The first component of the pair gives the number of transitions present in
the traces in T . This number roughly estimates the amount of time necessary to replay the
traces in T . Between the replay of two traces, one needs to perform a clean restart of the
app by erasing the app data and SD card contents, which has high cost. In order to take
that cost into account, we have a second component in the pair denoting the number of clean
restarts necessary to replay all the traces in T .

Problem statement. Given a set of replayable traces Ts, the goal of our technique is to
find a minimal set of traces T0 such that T0 is replayable, T0 consists of transitions from the
traces in Ts, C(Ts) = C(T0), and the cost of T0 is minimal.

Unfortunately, finding a minimal T0 is intractable in practice. First, without the re-
playability requirement, the problem can be reduced to an instance of the prize-collecting
traveling salesman problem (PCTSP), a well-known NP-hard problem [16]. Unfortunately,
with the replayability requirement, a solution found by solving the corresponding PCTSP
problem could include non-replayable traces. Therefore, we need to solve multiple PCTSP
problems until we finally find a replayable solution. This makes the problem intractable
in practice. Instead of solving the problem of finding the global minimum, we developed a
two-phase heuristic algorithm, which we found to work effectively in practice.

Limitations of Existing Approaches

In any test-suite reduction technique, we need to construct new traces. Although the creation
of a trace takes minimal time, we have to ensure that the trace can be replayed. It is
impossible to precisely determine if a trace is replayable. In our technique, we check if
a trace is replayable by executing it few times (which is ten times in our experimental
evaluation). We found experimentally that if a trace is non-replayable, it will fail to replay
within ten executions. Faithfully executing a single transition in a trace could take a few
seconds because after injecting an input or action, we need to wait until the screen stabilizes.
Therefore, executing a trace composed of several transitions could take several minutes.
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Moreover, after executing each trace we need to erase app data and SD card contents before
a clean restart. This action takes several seconds. Therefore, it is generally time consuming
to check if a trace is replayable. This is the key bottleneck faced by a GUI test suite reduction
technique.

Existing test minimization techniques, such as delta-debugging [124] and evolutionary-
algorithms [70], will create and check the replayability of lots of traces. Therefore, these
techniques cannot scale when the initial set of traces is large. Unfortunately, all existing
automated techniques for GUI test generation create lots of traces. Clapp et al. [25] recently
proposed a delta-debugging based GUI test minimization technique. Their experimental
results show that their technique can take a few hours to several tens of hours to handle
traces composed of only 500 transitions. In our experiments, we had to handle test suites
having 10,000 transitions. If we extrapolate the timings reported by Clapp et al. to 10,000
transitions, delta-debugging will easily take a month. We want a technique that can minimize
a test suite in a day or less.

Our Observations

We observed that the set of traces generated by an automated testing tool has lots of re-
dundancies. Our technique for GUI test suite reduction tries to remove these redundancies
using a heuristic algorithm. We next describe these redundancies using a series of examples.

Redundant Traces

Among the traces in a test suite, the coverage provided by some traces is a subset of cov-
erage provided by the remaining traces. Such traces can be removed from the test suite
without decreasing the cumulative coverage. Our technique greedily finds a large set of such
redundant traces and removes them from the test suite.

Redundant Loops

We also observed that there could be redundancies within a trace, for example, if the trace
contains a redundant loop. A loop in a trace is a sub trace of the trace that begins and ends in
the same abstract state. Traces generated by automated testing tools tend to contain many
loops, and some such loops do not provide additional coverage over the coverage that can be
achieved by the trace without the loop and the remaining traces. Such loops are redundant
and can be potentially removed from the trace if the resulting trace can be replayed. We
next illustrate such redundant loops using a couple of examples. All examples utilize the file
browser app shown in Figure 3.1.

Example 3.1. (A redundant loop)
Assume that the user touches the menu button three times. This input sequence will

open the pop-up menu, close it, and then open it again. The user then selects the first item
(i.e. the Option button) of the menu. This action will lead the app to the configuration
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Figure 3.1: A partial model of a file browser app. The main screen of the app is a file system
browser. When the app starts, it shows the root directory (abstract state/screen s0). In this
initial state/screen, a user can invoke a pop-up menu (abstract state/screen s1) by touching
a menu button on the screen (the button at the top-right corner of the screen with three dot
characters). Once the pop-up menu is visible, the user can close the menu by touching the
menu button on the screen again or by pushing the hardware back button. Selecting an item
on the menu results in a completely different abstract state/screen of the app. Pressing the
Option button leads the app to the configuration screen (s2). The app also allows the user
to navigate the file system (abstract state/screen s0 and s3). Note we intentionally made
the root directory, the /foo directory, and the /foo/foo directory to have the same look to
reduce the size of the example.

screen. Let us assume that there are no event handlers associated with the menu open and
close events. The execution of the above action sequence will then generate the following
trace:

s0
Menu,∅−−−−−→ s1

Menu,∅−−−−−→ s0
Menu,∅−−−−−→ s1

Option,Co−−−−−−→ s2.

where ∅ is the empty set and Co denotes the test coverage generated when the app moves

to the configuration screen. In this trace, the sub trace s0
Menu,∅−−−−−→ s1

Menu,∅−−−−−→ s0 forms a loop
since it begins and ends with the same abstract state or screen.2 The coverage of this loop
only contains the states s1 and s0. The coverage is a subset of the coverage of the rest of
the trace, which is Co ∪ {s0, s1, s2}. Thus the loop does not add any extra coverage than
what is already achieved by the rest of the trace. This makes sense because the loop merely

2Note that the trace contains one more loop: s1
Menu,∅−−−−−→ s0

Menu,∅−−−−−→ s1. We are going to ignore it for
now.
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opens and closes the pop-up menu. After removing the loop from the trace, if the trace is
replayable, we can replace the original trace with the modified trace. Removing the loop
gives us the following shorter replayable trace:

s0
Menu,∅−−−−−→ s1

Option,Co−−−−−−→ s2

. N

Example 3.2. (A non-redundant loop)
A loop is non-redundant when the loop provides coverage that cannot be achieved by

the rest of the trace(s). Let us assume that the app now has event handlers attached to the
menu open and close events. Re-executing the same sequence of actions from Example 3.1
will generate the following slightly different trace:

s0
Menu,Cp−−−−−−→ s1

Menu,Cc−−−−−−→ s0
Menu,Cp−−−−−−→ s1

Option,Co−−−−−−→ s2,

where Cp and Cc denote the coverage generated by executing the menu open and close event
handlers, respectively. In this modified trace, the loop contributes the test coverage Cc,
which cannot be achieved by any other transition in the trace. Therefore, the loop should
not be removed from the trace. N

Example 3.3. (Another non-redundant loop)
A loop can be non-redundant if the removal of the loop makes the trace non-replayable,

even if it does not achieve any new coverage. Note that if we use the concrete state of the app
and its environment instead of a screen abstraction, a trace will be replayable if we remove
a loop. However, since each si denotes an abstract state, the start and end states of a loop
may not correspond to the same concrete state. Therefore, the trace may not be replayable
after the removal of a loop. Let us illustrate this with an example. This time, we are going
to navigate the file system to reach the folder containing pictures (i.e. reach the state s3).
This task can be done by simply touching the foo folder three times. The execution of the
sequence of actions will generate the following trace:

s0
foo,Cf1−−−−−→ s0

foo,Cf1−−−−−→ s0
foo,Cf2−−−−−→ s3,

where Cf1 denotes the test coverage generated when opening a folder only containing sub-
folders, and Cf2 denotes the test coverage generated when opening a folder only containing
files. The trace has three loops (the first transition, the second transition, and the sub trace
containing the first two transitions). The third loop cannot be removed because removing
it will reduce the coverage of the trace. The first and seconds loops, however, look identical
and one may think that one of the two loops can be removed from the trace. However,
removing one of these two loops will make the trace non-replayable because touching the
foo folder twice leads the app to the screen showing the contents of /foo/foo folder and we
will miss Cf2 and s3. The trace obtained after removing one of the loops is non-replayable
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because our state abstraction is coarse-grained which maps three distinct app states to s0.
However, if we do not use the abstraction, we will have unbounded number of abstract states
which will make both automated test generation and test minimization fail. This example
shows that a loop is non-redundant if its removal makes the trace non-replayable. Note that
whether removing a loop will have an impact on the rest of a trace can only be determined
by trying to replay the modified trace. N

Redundant Trace Fragments

While analyzing traces in test suites of several apps generated by an automated testing
tool, we observed that many traces share common sub traces. If we execute these traces, the
common sub traces get executed multiple times, i.e. once for each trace without contributing
any new coverage over what is achieved when a common sub trace is executed for the first
time. We can avoid redundant execution of these common sub traces if we can somehow
combine fragments of traces in a way so that we can avoid repetitions of common sub traces.
Combining fragments of traces will also result in longer traces. Such longer traces will reduce
the number of restarts, which are more expensive operations than triggering an action. We
next describe using examples how common sub traces contribute to redundancy.

Example 3.4. (Redundant sub trace)
Consider following two sample traces.

s0
a,C1−−−→ s1

b,C2−−→ s2
c,C3−−→ s3

d,C4−−−→ s4 s0
a,C1−−−→ s1

b,C2−−→ s2
e,C4−−−→ s4

f,C5−−−→ s5

For simplicity of exposition, let us assume that each si is a unique screen, and the coverage
sets C1, C2, . . . , C5 are mutually exclusive. Note that the two traces have a common prefix

s0
a,C1−−→ s1

b,C2−−→ s2. Note that the two traces have a common state s4 in addition to the
common prefix. This means that executing action f at the end of the first trace may enable
us to replay the last transition of the second trace, resulting in the following trace:

s0
a,C1−−−→ s1

b,C2−−→ s2
c,C3−−→ s3

d,C4−−−→ s4
f,C5−−−→ s5.

We use the color black to denote a state where two trace fragments were combined. The
spliced trace may or may not be replayable because s4 is an abstract state. Therefore, we
need to check its replayability. If the spliced trace is replayable, we can use the spliced trace
to test the app instead of the original two traces. We got rid of the redundant common prefix
from the second trace. The spliced trace avoids three actions by skipping the uninteresting
prefix of the second trace and one restart operation by combining two traces into one. N

The above example demonstrated a simple case involving two traces and a common prefix.
Let us consider a more complicated example to see the potential of the idea of splicing trace
fragments.

Example 3.5. (Splicing three traces)
Consider the following three artificially crafted traces:
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Trace 1 s0
a,C1−−→ s1

b,C2−−→ s2
c,C3−−→ s3

d,C4−−→ s4

Trace 2 s0
a,C1−−→ s1

d,C4−−→ s4
e,C5−−→ s2

c,C3−−→ s3
d,C4−−→ s4

Trace 3 s0
a,C1−−→ s1

b,C2−−→ s2
c,C3−−→ s3

f,C6−−→ s5

Note the first and second traces have two common sub traces: s0
a,C1−−→ s1 and s2

c,C3−−→ s3
d,C4−−→

s4. Similarly, the first and third traces have the common prefix s0
a,C1−−→ s1

b,C2−−→ s2
c,C3−−→ s3.

By combining fragments of the traces, we can create the following trace:

s0
a,C1−−−→ s1

b,C2−−→ s2
c,C3−−→ s3

d,C4−−−→ s4
e,C5−−−→ s2

c,C3−−→ s3
f,C6−−−→s5

The spliced trace is constructed by appending sub trace s4
e,C5−−→ s2

c,C3−−→ s3 to the first trace,

and then by appending the sub trace s3
f,C6−−→ s5 to the resulting trace. The new trace gets

rid of six actions and two restart operations from the original traces. Note that the spliced

trace still contains two copies of the sub trace s2
c,C3−−→ s3, which we could not get rid of. If

the spliced trace is replayable, it can replace the original traces in the test suite. The running
time of the spliced trace will be approximately half of the original traces, while providing
the same coverage. This example shows that one could aggressively combine fragments from
multiple traces while getting rid of redundant fragments (including redundant prefixes). Such
aggressive splicing helps us to achieve more reduction. However, in practice, we also found
that a trace composed of a large number of fragments from different traces tends to be non-
replayable. Therefore, in our technique we limit the number of different trace fragments that
we can combine to a small bound, which is three in our implementation. N

Our Approach

State abstraction. In our discussion so far, we assumed we have a suitable state abstrac-
tion that enables us to cluster similar looking screens of the app. The performance of our
technique for test minimization depends heavily on our choice of state abstraction. If we
choose a fine-grained abstraction, then our technique runs faster, but misses a lot of oppor-
tunities for reduction. For example, the algorithm will not identify and remove some loops.
On the other hand, if we pick a coarse-grained abstraction, a lot of traces that we construct
in our technique become non-replayable. Therefore, our technique spends a lot of time in
checking replayability of various traces, but we get a bigger reduction by eliminating more
loops compared to the case of using a coarse-grained abstraction.

We observed that a human tester can easily identify screens that are similar by analyzing
what is visible on the screen. In our technique we needed an abstraction that will tell
that two app screens are the same with respect to the abstraction if and only if a human
tester finds the two screens visually identical. After analyzing several apps, we picked a
suitable state abstraction that abstracts the screen of an app using information from the
GUI component tree. Intuitively, a GUI component tree represents what is visible on the
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screen. Therefore, by carefully analyzing a GUI component tree, we should be able to
identify high level information that a human tester would use to infer if two screens are
similar. Our abstraction uses a set of enabled actions from a GUI component tree (e.g.,
clicking a CheckBox type component) and augments each action with some details captured
from the GUI component tree (e.g., the checkbox is the third child of the root component,
and the box is checked). We found this abstraction works well in practice. The details of
the abstraction are described in Chapter 4.

Removing redundancies. We propose a two-phase algorithm to remove redundancies
from a GUI test suite. The first phase removes redundant traces and redundant loops
greedily. It first removes redundant traces by greedily selecting traces in a way that each
selected trace contributes new coverage to the coverage of the set of already selected traces.
The non-selected traces are then redundant and are removed from the test suite. It then
removes redundant loops from each remaining trace. In order to remove redundant loops
in a trace, the algorithm creates the set of all traces obtained from the trace by removing
zero or more loops. It then selects a trace from the set that does not decrease cumulative
coverage, lowers cost of the trace maximally, and is replayable. Such a trace replaces the
original trace in the test suite.

The second phase removes redundant trace fragments as much as possible. For that it
constructs a new set of traces by combining fragments of the traces in the set computed by
the first phase. When splicing trace fragments, we found it useful to limit the number of
fragments that each spliced trace can have to a small number, which is three in our case,
because a trace composed of many fragments tends to be non-replayable in practice. Thus,
the second phase of the algorithm first creates the set of candidate traces composed of a
bounded number of trace fragments. It then constructs a new test suite by greedily selecting
traces from the set of candidate traces.

In both phases, whenever our algorithm generates a new trace, it checks whether the trace
is replayable or not by executing it a few times. This helps the algorithm to avoid adding
a non-replayable trace to the resulting regression test suite. If the algorithm finds a trace
to be non-replayable, it identifies the shortest prefix of the trace that is non-replayable and
saves it. In the future, if the algorithm finds that a new trace has a prefix that it has saved,
then it can safely infer that the trace is non-replayable and discard it. This optimization
helps the algorithm to aggressively discard some non-replayable traces without executing
them multiple times. We describe the reduction algorithm formally in the next section.
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3.2 Algorithm

Redundant Loop and Trace Elimination to Reduce Number of
Transitions

In order to construct a minimal set of traces, we only retain the traces from Ts whose
cumulative coverage is same as the coverage of Ts. We then remove as many loops from
the remaining traces as possible while maintaining the same cumulative coverage and the
replayability of the traces. This results in a set of traces Tr whose cost is much lower than the
cost of Ts. During the removal of loops, our algorithm discovers that certain trace prefixes
are not replayable. We speedup the loop elimination phase by pruning out the traces whose
prefix matches the non-replayable prefixes. We next describe this algorithm formally.

Given a trace τ , we say that a sub-trace of τ is a loop if it begins and ends in the same

state. For example, if in the trace τ = s0
a1,C1−−−→ s1

a2,C2−−−→ . . .
an,Cn−−−→ sn there exists two states

si and sj such that i 6= j and si = sj, then the sub-trace ` = si
ai+1,Ci+1−−−−−→ . . .

aj ,Cj−−−→ sj is a

loop. If we remove the loop from τ , we get a shorter trace τ` = s0
a1,C1−−−→ . . .

ai,Ci−−−→ si
aj+1,Cj+1−−−−−−→

. . .
an,Cn−−−→ sn. A trace obtained after eliminating one or more loops from τ may not be

replayable anymore. Therefore, anytime our algorithm removes a loop from a trace, we need
to check if the resulting trace is still replayable. Let L(τ) be the set of all traces obtained by
removing different combinations of zero or more loops from τ . Note that L(τ) contains τ .

The pseudocode of the algorithm is shown in Algorithm 4. The algorithm uses the
function Replay, which takes a trace τ and returns τ if the trace is replayable. When
τ is not replayable, there are two possible reasons. First, it is possible that re-executing
the actions of τ gives the expected sequence of screens, but fails to provide the expected
test coverage. In such a case, Replay returns the new trace with the correct test coverage
information. Another possibility is that the re-execution gives a different screen at some
point. If this is the case, the Replay function returns the shortest prefix of τ that is not
replayable. In both cases, the check τ = Replay(τ) indicates whether τ is replayable. The
algorithm also uses the CheckScreens function to determine whether two traces have the
same sequence of screens. In the first part of the algorithm, we remove all redundant traces.
To do this, we create an empty set T to store the non-redundant traces. The algorithm
goes over each trace τ in Ts. If C(τ) has coverage that is not already present in C(T ), then
τ is not redundant and we add τ to T . After going over all traces in Ts, T will contain
non-redundant traces of Ts such that C(T ) = C(Ts).

In the second part, the algorithm performs redundant loop elimination. It maintains a
set of reduced traces Tr, which is initialized to the empty set. The algorithm goes over each
trace τ in T , then over each trace τ ′ in L(τ) (the set of all traces obtained from τ by removing
zero or more loops) in the order of increasing cost. The algorithm also computes Tsyn, the set
of all synthesized traces in L(τ). If C(τ ′)∪C(Tr) = C(τ)∪C(Tr) and τ ′ is replayable—that
is, if τ ′ = Replay(τ ′)—the algorithm adds τ ′ to Tr and stops processing elements of L(τ).
This indicates that the algorithm has computed a trace possibly shorter than τ . However, if
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τ ′ is not replayable there can be two cases. If candidate trace τ ′ is a synthesized trace and
re-executing the sequence of actions of τ ′ gives the same sequence of screens, this indicates
that the test coverage information of τ ′ was incorrect because τ ′ is synthesized. In such a
case, the algorithm adds the result of the Replay function call to T , in order to give another
chance to the candidate trace with the correct test coverage information. Otherwise, τ ′ is
discarded and any trace in L(τ) having Replay(τ ′) as a prefix is removed from the set L(τ)
because all such traces will also be non-replayable. This reduces the number of the traces
that we must process from the set L(τ), and thus helps to optimize the running time of the
algorithm. Note that during the processing of the traces in L(τ), we will end up adding
τ to Tr if none of the loops in τ can be eliminated without reducing coverage or without
the resultant trace non-replayable. The algorithm always terminates because the two outer
loops iterate exactly |Ts| times and |T | times, respectively, and the inner loop (lines 14 - 26)
can use at most 2 ∗ |L(τ)| − 1 candidate traces.

Practical concerns. The algorithm relies on a robust implementation of Replay(τ).
However, in practice it is not easy to have a precise implementation of Replay(τ) that will
guarantee that Replay(τ) returns τ if and only if τ is replayable. Such an implementation
would require us to track the entire state of the app including the state of any internet server
it might be interacting with. Moreover, if we make the implementation of Replay(τ) too
precise, in many acceptable cases it will report that τ is not replayable. In our tool, we
make a practical trade-off where we re-execute the trace τ a few times, which is ten in our
experiments. If in all the executions we find that τ is replayable, Replay(τ) returns τ .
If executing the action sequence of τ generates trace τ ′ that has the expected sequence of
screens but does not to provide the expected test coverage, Replay(τ) returns τ ′. Otherwise,
Replay(τ) reports the shortest prefix of τ that is non-replayable over all ten re-executions.

The algorithm also needs to compute L(τ), i.e. the set of traces obtained from τ by
removing 0 or more loops. Our implementation does not compute the set L(τ) ahead of
time. Rather it performs a depth-first traversal of the trace τ to enumerate the traces in
L(t) one-by-one from the shortest to the longest one.

Finally, the result of the first phase of the algorithm will change depending on the order
of selecting elements from Ts (line 3) and T (line 10). Our implementation uses queues to
store test cases, which guarantees that test cases are always handled in first-come first-serve
order.

Trace Splicing

While analyzing traces in the set Tr, i.e. the traces generated by loop and trace elimination,
we noticed traces often share common sub traces. Therefore, if we can combine traces in a
way so that we can avoid common sub traces as much as possible, we will generate longer
traces, which will have a couple of advantages: longer traces will avoid expensive restarts
and they will avoid execution of redundant sub traces. However, we also found that the more
traces we combine, the more likely we will get traces that are non-replayable. Specifically, we
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Algorithm 4 Eliminate redundant traces and loops
1: procedure EliminateRedundantTracesAndLoops(Ts) . Ts is the input trace set.
2: T ← ∅ . Part 1: Eliminate redundant traces.
3: for τ ∈ Ts do . Loop over the input trace set.
4: if C(τ) 6⊆ C(T ) then
5: T ← T ∪ {τ} . Collect τ if it has a unique coverage.
6: end if
7: end for
8:
9: Tr ← ∅ . Part 2: Eliminate redundant loops.
10: for τ ∈ T do . Loop over the filtered trace set T .
11: TL ← L(τ) . L(τ) is a set of traces obtained by removing zero or more loops from τ .
12: Tsyn ← TL \ {τ} . Tsyn is a set of synthesized candidate traces.
13: while TL 6= ∅ do
14: τ ′ ← argmin

τ∈TL

|τ | . Get the shortest element of L(τ).

15: TL ← TL \ {τ ′}
16: if C(τ ′) ∪ C(Tr) = C(τ) ∪ C(Tr) then
17: if τ ′ = Replay(τ ′) then
18: Tr ← Tr ∪ {τ ′} . τ ′ is replayable and keeping the coverage of τ .
19: break the inner loop
20: else if τ ′ ∈ Tsyn ∧ CheckScreens(τ ′,Replay(τ ′)) then . τ is a synthesized trace.
21: Tk ← Tk ∪ {Replay(τ ′)} . Give one more chance with the corrected test coverage information.
22: else . Replay(τ ′) is the shortest prefix of τ ′ that is not replayable.
23: TL ← {τ ∈ TL | Replay(τ ′) is not a prefix of τ} . Remove non-replayable traces from TL.
24: end if
25: end if
26: end while
27: end for
28: return Tr . Return the reduced trace set Tr.
29: end procedure

found experimentally that if we combine three or fewer trace fragments, we can get longer
traces that avoid restarts and redundant execution while being replayable. Based on these
observations, we devised the second part of our minimization algorithm where we combine
fragments from different traces to create longer replayable traces.

A trace fragment is a contiguous portion of a trace obtained by removing a prefix and a

suffix of the trace. For example, if τ = s0
a1,C1−−−→ s1

a2,C2−−−→ . . .
an,Cn−−−→ sn is a trace, then for

any i, j ∈ [0, n] where i ≤ j, si
ai+1,Ci+1−−−−−→ . . .

aj ,Cj−−−→ sj is a fragment of the trace τ . A set of
trace fragments τ1, τ2, . . . , τm can be combined to form the trace τ1τ2 . . . τm if τ1 begins with
the state s0 and for all i ∈ [2,m], the end state of τi−1 is the same as the first state in τi.
Given a set of traces Tr, let Tk be the set of all traces obtained by combining at most k trace
fragments obtained from the traces in Tr.

The pseudocode of the algorithm is shown in Algorithm 5. The algorithm first constructs
the set Tk from the set Tr. The algorithm also computes Tsyn, the set of all synthesized traces
in Tk, and initializes the final set of minimized traces Tm to the empty set. The algorithm
then performs the following in a loop: First, it finds a trace τ in Tk such that τ results in the
maximal increase in coverage over the coverage of Tm—that is, τ maximizes |C(τ) \C(Tm)|.
If no such trace is found in Tk, the algorithm returns Tm. Otherwise, the algorithm removes
τ from Tk and checks whether it is replayable. If τ is replayable, the algorithm adds τ to Tm.
When τ is not replayable, there can be two cases. If candidate trace τ is a synthesized trace
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Algorithm 5 Bounded splicing
1: procedure BoundedSplicing(Tr, k) . Tr is the input trace set. k bounds the number of trace fragments.
2: Tk ← {τ | τ is a trace composed of at most k fragments of traces in Tr} . Tk is a set of candidate traces.
3: Tsyn ← Tk \ Tr . Tsyn is a set of synthesized candidate traces.
4: Tm ← ∅ . We use Tm to collect selected traces.
5: while ∃τ ∈ Tk.C(τ) \ C(Tm) 6= ∅ do . Iterate until no trace in Tk can increase coverage.
6: τ ← argmax

τ∈Tk

|C(τ) \ C(Tm)| . τ is the candidate maximizing the increase in coverage.

7: Tk ← Tk \ {τ}
8: if τ = Replay(τ) then . Select the candidate if it is replayable.
9: Tm ← {τ}
10: else if τ ∈ Tsyn ∧ CheckScreens(τ,Replay(τ)) then . τ is a synthesized trace.
11: Tk ← Tk ∪ {Replay(τ)} . Give one more chance with the corrected test coverage information.
12: else . Replay(t) is the shortest prefix of t that is not replayable.
13: Tk ← {τ ∈ Tk | Replay(τ) is not a prefix of τ } . Skip the candidate and remove non-replayable candidate

traces.
14: end if
15: end while
16: return Tm . Return the result of splicing.
17: end procedure

and Replay(τ) and τ have the same sequence of screens, the algorithm adds the result of
the Replay function call to Tr, in order to give another chance to the candidate trace with
the correct test coverage information. Otherwise, all traces in Tk with Replay(τ) as a prefix
are removed from Tk. This step speeds up the search for optimal τ in future iterations. The
loop is then repeated.

This algorithm terminates and computes a Tm such that C(Tm) = C(Tr). The algorithm
terminates because in each iteration we increase the coverage of Tm and the coverage of Tm
cannot be increased beyond the coverage of Tr, which is the same as the coverage of Tk.
Moreover, the algorithm ensures that C(Tm) = C(Tr) because for any finite k, Tk contains
the traces in Tr. Therefore, in the worst case if none of the traces obtained by combining
two or more trace fragments from different traces are replayable, we will end up adding all
the traces in Tr to Tm, which will ensure that C(Tm) = C(Tr).

Computing Tk. The above description of the splicing algorithm uses a declarative spec-
ification to describe the trace set Tk. We next describe an algorithm to compute the set
efficiently. For any set of traces, we can construct a labeled transition system composed of
the transitions of the traces in the set. Formally, if Tr is a set of traces, we can construct a
labeled transition system QTr = (S, s0, L, A, C, δ), where

• S is the set of all states in Tr,

• s0 is the initial state of the app,

• L ⊆ N ×N is a set of labels,

• A is the set of all actions in Tr,

• C is the set of coverage sets in Tr, and
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• δ is a set of labeled transitions of the form si−1
ai,Ci−−−→
l

si, which is defined as

δ = {si−1
ai,Ci−−−→
(j,i)

si | ∃τj ∈ Tr such that si−1
ai,Ci−−−→ si is the ith transition in τj}.

Informally, an element of δ is a transition from a trace in Tr, augmented with a pair
of indices denoting the trace to which the transition belongs and the position of the
transition in the trace.

Note that for any trace in Tr, there is a path in the labeled transition system QTr .
Moreover, any path in QTr represents a trace that could be obtained by combining trace
fragments from Tr. We can check if a path from QTr belongs to Tk by analyzing the labels
of the path as follows. Two consecutive transitions with labels (j1, i1) and (j2, i2) in a path
constitute a switch if either j1 6= j2 or i1 + 1 6= i2. A path in QTr belongs to Tk if the number
of switches in the path is less than k. The algorithm to construct Tk enumerates the paths
in QTr using depth-first search and discards a path as soon as the number of switches along
the path reaches k. The algorithm terminates because k is finite and the number of trace
fragments is bounded.
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Chapter 4

Implementation

This chapter describes the implementation of our automated testing infrastructure for An-
droid apps. We created a testing infrastructure that provides common building blocks for
various testing algorithms, and implemented SwiftHand, L∗, random, and DetReduce
on top of this infrastructure. The initial testing infrastructure was built to implement and
evaluate SwiftHand using asmdex [85], a Dalvik bytecode instrumentation library, and
chimpchat, a low-level test automation library for Android. Later we reimplemented the
infrastructure due to instability issues in the underlying libraries. The new implementation
is built on top of Soot [110] and UIAutomator [3]. The infrastructure itself is written in
Java. In this thesis, we use the reimplemented version of the infrastructure to evaluate
both SwiftHand and DetReduce. We have made the latest version publicly available at
https://github.com/wtchoi/swifthand2 under the three-clause BSD license.

The rest of the chapter is organized as follows: Section 4.1 offers an overview of the design
of the automated Android testing infrastructure. Section 4.2 , Section 4.3, and Section 4.4
explain how screens are abstracted, how Android app packages are instrumented, and what
limitations remain in the current testing infrastructure implementation, respectively. We
refer readers to our conference paper on SwiftHand [23] for details about implementing
the older version of the testing infrastructure.

4.1 Design Overview

The testing infrastructure is composed of four major components: the instrumentation tool,
runtime information proxy, test driver, and testing strategies. Figure 4.1a and Figure 4.1b
show how the components work together during the test execution. Note that the APK
instrumentation tool does not appear in the diagram, because it runs before starting a
testing session.

• APK instrumentation tool: The APK instrumentation tool instruments an Android
app to collect runtime information during its execution and to send this information to a
runtime information proxy on the same device. Once the information is transmitted to
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Figure 4.1: The structure of the testing infrastructure

the proxy, the instrumented app discards the information. Other than the existence of
the runtime information proxy, an instrumented app is unaware of the rest of the testing
infrastructure. In the current version of the testing infrastructure, instrumented apps
collect only branch coverage information. Further details about the instrumentation
tool are explained in Section 4.3.

• Runtime information proxy: A runtime information proxy is a process running on
the same device as the target app. When a new testing session begins, the testing
infrastructure first launches the runtime information proxy before initiating the actual
testing. During the testing session, the proxy receives branch coverage information
from the target. The proxy also collects other information—such as GUI component
trees and whether the target app is in a stable state—using UIAutomator, a low-level
Android GUI testing library. The proxy runs a simple server over TCP, to which a
test driver can connect and retrieve the collected information. The proxy collects the
following information from the app under test.

– GUI component trees: GUI component trees are collected using the UiSelector
interface of UIAutomator and the reflection API of Java. UiSelector retrieves
information about a set of GUI components satisfying a given search condition.
However, the information provided by UiSelector is limited—for example, it is
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insufficient to determine the hierarchy among the GUI components. The runtime
proxy overcomes this limitation by accessing private fields of UiSelector objects
using the Java reflection API.

– Transition completion: When a user input is sent to an Android app, a number
of event handlers are executed and the screen content is modified. After sending
a user input, a testing algorithm must wait until all event handler executions and
screen modifications are complete. The proxy uses an API provided by UIAu-
tomator to detect the completion of a state transition, the waitForIdle method
of the UIDevice class. Once invoked, this method waits until the GUI of the
currently running app enters an idle state. However, it cannot guarantee that all
event handler executions are complete. Therefore, the proxy also checks whether
the target app is sending any branch coverage information. If no branch coverage
information has been recently sent from the app, the proxy concludes that there
is no running event handler. The current implementation waits 100 milliseconds.
By combining these two mechanisms, the proxy checks whether a state transition
has been completed.

– App liveness: The proxy also checks whether the target app is alive. An An-
droid app is composed of a set of activities. Each activity implements a single
application screen and its functionality. When an app is terminated, all activities
associated with the app are stopped. Thus, the problem of checking app termi-
nation reduces to the problem of tracking the status of the app’s activities. The
proxy uses the getCurrentActivityName method of the UIDevice class provided
by UIAutomator to identify the foreground activity—if the foreground activity
does not belong to the app under test, the proxy concludes that the target app
has been terminated.

• Test driver: The test driver is the main entry point of the testing infrastructure.
Because of the computational demand, the test driver runs on a desktop or laptop ma-
chine and communicates with the target app and the proxy via ADB. At the beginning
of a session the driver launches both the target app and the runtime information proxy
on the target device. The driver also selects and initializes a testing strategy. Once all
components are ready, the driver begins the testing loop, which performs several tasks.
First, it combines pieces of runtime information gathered from the target app into a
package and relays that package to a testing strategy. Most information is collected
via the runtime information proxy, and the test driver adds two additional pieces of
information to the package.

– Exceptions: The test driver checks whether an uncaught exception is raised
from the target app. Such exceptions can be checked by analyzing the Android
system log messages, as uncaught exceptions are always logged and always tagged
with the ‘‘AndroidRuntime’’ keyword. Thus, the driver retrieves the system log
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messages by using the ADB logcat command, then searches exceptions from the
logs.

– Screen abstraction: The test driver computes a screen abstraction and infers
a set of enabled inputs from the current screen information (given as a GUI
component tree), then adds it to the package. The details of the screen abstraction
mechanism are explained in Section 4.2.

Second, once all necessary information is gathered and delivered to the testing strategy,
the test driver then receives high-level commands (Actions), from the testing strategy
and executes them by using a combination of underlying library functions. The test
driver currently supports three types of actions:

– Start: The Start action is used to initiate the target app, and it is used without
any parameter. If the app is not started, the test driver launches the app using
ADB (via shell am start command). If the app is already running, the test
driver does nothing.

– Close: The Close action is used to close the target app, and used without any
parameter. If the app is running, the test driver first kills the app through (via
shell am force-stop command), then removes app data. Because the Android
file system is sandboxed, the data private to each app can be cleared with a simple
ADB command (shell pm clear). The only exception is the contents of SD
cards. Because removing an app or clearing the app’s private data will not remove
persistent data from SD cards, we must explicitly clear SD card contents. The
test driver clears the contents of SD cards using ADB (via shell rm command).
If the app is already terminated, the Close action only cleans the app data and
the contents of SD cards. We implement the clean restart operation by executing
the Close and Start actions in sequence.

– Event: The Event action triggers one of the enabled inputs of the current screen,
taking an integer (the identifier of the input to be triggered) as a parameter. Upon
receiving the Event action, the test driver executes the action using UIAutomator,
which provides APIs to inject various kinds of user inputs to the target app,
including touch, long touch, scroll, and key stroke. UIAutomator also supports
replacing the contents of editable text boxes, such as EditText. If the target app
is inactive, the test driver does nothing.

The test driver handles all actions in a synchronous manner—that is, after executing an
action the test driver waits until the app transition caused by the action completes. The
test driver determines whether the transition is completed based on the information
sent from the runtime information proxy. Once the action is fully handled, the driver
returns to the beginning of the loop.

• Testing strategies: Testing strategies, such as SwiftHand, L∗, and DetReduce,
guide automated testing sessions by communicating with the test driver. Test strate-
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gies run on the same machine as the test driver. A single testing session can apply only
a single strategy, but each testing session is free to choose any strategy. Testing strate-
gies utilize the information provided by the test driver to make high-level decisions
independent of low-level details. Each strategy is implemented as a module of several
standardized API methods that the test driver uses to communicate with strategies.
There are two key methods in the testing strategy API:

– void reportCurrentAppState(AppState s, Coverage c)

– Action getNextAction()

The test driver invokes reportCurrentAppState to report the state of the target app
and the test coverage achieved by executing the most recent action. A testing strategy
can use the received information to build a model or to determine the next action to per-
form. After giving the information to the strategy, the driver invokes getNextAction

of the strategy to retrieve a further action to execute.

4.2 Screen Abstraction

Both SwiftHand and DetReduce use a suitable screen abstraction computed by the test
driver to cluster app states. This screen abstraction is computed from a GUI component
tree collected from an app via UIAutomator at runtime. A GUI component tree represents
the hierarchical structure of GUI components on the screen of the app. The coordinate,
size, and type information of each GUI component is also available. We observed that the
following information is often sufficient to characterize a screen.

• Which GUI components are actionable? For example, Checkbox, EditText, and TextBut-
ton components are actionable in Android, while TextBox and DecorationBar compo-
nents are not.

• Which attribute values of actionable GUI components are visible on the screen? For ex-
ample, for a screen with a checkbox one could observe whether the box is checked. GUI
components also contain several invisible attributes, such as focused and focusable,
which we have found are not useful to characterize screens.

We use an abstraction to extract this information from a raw GUI component tree. The
abstraction is computed by collecting a set of actionable GUI components (i.e., the compo-
nents whose event handlers can be triggered by user actions) from a GUI component tree.
The test driver determines whether a GUI component is actionable by checking two Boolean
attributes of the components: actionable and visible. If both are true, the event handlers
of the component can be triggered by user actions. Note that this method gives an over-
approximate set of actionable GUI components, as some GUI components satisfying the
above condition might not have attached event handlers. A potential concern is that such
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over-approximation could make an automated testing algorithm less effective in achieving
greater test coverage in a limited time; however, we found that injecting an action to a GUI
component with no attached event handler keeps the app state unchanged. When executing
such an idle transition, SwiftHand adds a self-loop to the current state of the app’s model
and avoids executing the loop afterwards. This learning capability, along with the aggres-
sive state-merging, allows SwiftHand to execute only a small number of idle transitions.
As such, this over-approximation does not pose a performance issue for SwiftHand. In
contrast, an automated testing algorithm not based on a learning could in fact suffer from
the over-approximation. DetReduce is independent of any over-approximation because it
selects actions from the input test suite that it is minimizing.

After the abstraction collects the actionable GUI components, each collected component
is augmented with the access path to the component from the root of the GUI component
tree. For example, if a GUI component is the second child of the first child of the root GUI
component, its access path will be [0, 1]. The access path of the root GUI component is []
(an empty list), because it does not have siblings and parents. We then remove all invisible
attributes except type from each GUI component. The type attribute is necessary because it
allows us to analyze what actions are meaningful for each GUI component. We also remove
the coordinates and size from each GUI component even if they are visible attributes, because
coordinates and size change easily and unpredictably when scrolling a list or editing a text
box. Ignoring these attributes allows us to identify more logically identical screens. We
have observed that this abstraction is appropriate for grouping screens that users might find
similar.

Inferring Enabled Inputs from a Screen Abstraction

The abstraction also provides sufficient details to determine enabled user inputs. Given an
abstract screen, the test driver can infer a representative set of enabled inputs by analyzing
each element (a simplified GUI component) of the screen. For components that can be
touched, such as a Button type component, a touch input corresponding to the component
is added to the set of enabled inputs. If a GUI component is a subclass of EditText, then
a user input capable of replacing the text contents of the GUI component is added to the
set of enabled inputs. The infrastructure allows using any text. However, the current
implementation of SwiftHand always uses a “random string” in order to restrict the app
state space to test. Note that generating string values for testing is an independent research
topic, and considering both GUI actions and string values simultaneously is an open problem
we do not aim to solve in this thesis. For scrollable components, scroll inputs are added to
the set of enabled inputs. Inputs corresponding to pressing the Back and Menu buttons
are always added to the enabled input set.
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Figure 4.2: Screen abstraction and enabled input inference example

An Example

Figure 4.2 shows an EULA screen from the Sanity example, its simplified GUI component
tree, the corresponding screen abstraction, and the corresponding enabled inputs. In the GUI
component tree (Figure 4.2(b)), each component is described with its type and identifier.
Note that here we use identifiers for ease of exposition. In the real implementation, access
paths are used instead. For example, the identifier 5 of the second LinearLayout type
component will be replaced by the access path [0, 1] in the real implementation, which
indicates that this is the second child of the first child of the root (the DecorView component).
Among the components in the GUI component tree, two Button type components with
ID 6 and ID 7 can be touched, and the ScrollableLayout type component can be scrolled.
Therefore, we add these components to the screen abstraction (Figure 4.2(c)). From the
screen abstraction, we can easily deduce the set of enabled inputs by adding ScrollDown
and ScrollUp for the ScrollableLayout(3) component, and Touch actions for the two Button
type components. We also add actions corresponding to pressing the Back and Menu
buttons. Figure 4.2(d) shows the resulting set of enabled inputs.

4.3 APK Instrumentation Tool

Android apps are distributed as a single APK package file. To perform instrumentation,
the testing infrastructure first extracts a program binary from a package file and injects the
modified binary into the package file.

An APK file is a zip archive with a predefined directory structure. The archive contains
a class.dex file, a Manifest.xml file, a META-INF directory, and other resource files. The
class.dex file contains Dalvik byte code to be executed, the Manifest.xml file is a binary
encoded xml file describing various parameters such as main activity and privilege setting,
and the META-INF directory includes the app signature.

Figure 4.3 shows the flow of the app-modification process. First, the app package is
unpacked. Then the class.dex and Manifest.xml files are instrumented. We instrument
the dex file using Soot [110], a Java static analysis and instrumentation toolkit, to collect
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branch coverage information at runtime. The instrumentation makes two changes to the dex
file.

• First, it injects the bytecode of a pre-compiled library into the dex file. The library
provides a method that logs the execution of various branches in an app, taking the
unique identifier of a branch as an argument. When invoked, the method records the
identifier of the reported branch. It also launches a helper thread that periodically (ev-
ery 50 milliseconds) sends the recorded branch information to the runtime information
proxy if the thread is not yet initiated.

• Second, it adds a static method invoke instruction (invokestatic) that calls one of the
methods of the injected library to the head of every basic block of every method. The
instrumentation tool assigns a unique identifier to each basic block, and provides the
identifier as the argument to the injected method invoke statement.

The xml file is modified using axml [4], an xml-encoded binary manipulation library. The
Manifest.xml file must be modified because the modified app requires network access privi-
lege to communicate with the runtime information proxy. The META-INF directory is removed
as the original signature conflicts with the modified package. After modification, the app is
repacked, signed, and delivered to experiment devices. For testing purposes, the key for the
re-signed signature does not need to be identical to the key for the original signature.

4.4 Limitations

We next discuss the limitations of the testing infrastructure. First, the current implemen-
tation does not support apps whose main entry routine is native. Several games fall under
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this category, and these are excluded from our benchmark suite. The testing infrastructure
also cannot collect branch coverage information from apps equipped with a tamper-detection
mechanism, such as LVL 1 or DexGuard 2, because such apps cannot be modified. These
apps can be immediately identified because they do not start properly with binary instru-
mentation. We have also found that several apps from large companies, such as Microsoft
and Google, are tamper-resistant. Although this restricts the applicability of the testing in-
frastructure, we did not find this limitation to be a serious problem while we were procuring
apps to test.

Second, the current implementation works correctly only on devices running Android
4.3 or higher versions. This is a requirement of the UIAutomator library. However, this
limitation does not restrict the applicability of the testing infrastructure in practice because
more than 90% of activated Android devices run Android 4.3 or higher version. 3

Finally, the current testing infrastructure does not support several features of the Android
framework. For example, it ignores the contents of WebView components due to limitations
of the UIAutomator library. The current implementation also does not support inter-app
communication because of the implementation overhead. Although these two limitations
restrict the maximum test coverage that can be achieved by an automated testing tool built
on top of the infrastructure, they did not restrict the apps we could test.

1https://android-developers.googleblog.com/2010/09/securing-android-lvl-applications.

html
2https://www.guardsquare.com/en/dexguard
3https://developer.android.com/about/dashboards/index.html
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Chapter 5

Evaluation

This chapter provides an evaluation of the SwiftHand and DetReduce algorithms using
several real-world Android apps. In Section 5.1 we briefly introduce the set of benchmark
apps and the experimental environment. In Section 5.2 we evaluate the SwiftHand algo-
rithm, showing that SwiftHand can achieve significantly better coverage than traditional
random testing and L∗-based testing in a given time budget. SwiftHand also reaches peak
coverage faster than both random and L∗-based testing. In Section 5.3 we evaluate the De-
tReduce algorithm, finding that DetReduce reduces a test suite by an average factor of
16.9 in size and 14.7 in running time with equivalent test coverage. We also find that given a
test suite generated by running SwiftHand for eight hours, DetReduce can reduce such
a test suite in 10.6 hours on average.

5.1 Experimental Setup

Benchmark Apps

We applied SwiftHand and DetReduce to eighteen free apps downloaded from the
Google Play store [35] and F-Droid store [95]. Table 5.1 lists these apps along with their
package name, the store from which that app was downloaded, the type of the app, and
the number of branches (#Br) in the app (which offers a rough estimate of the size of the
app.) Since the apps were downloaded directly from app stores, we have access to only
their bytecode. Thirteen of these apps were used for experimental evaluation in previous
research projects [24,32,125]; other apps, which we mark with asterisks, are newly selected.
We avoided selecting apps that are highly non-deterministic or that cannot be restarted
cleanly. For example, the Amazon online store app is highly non-deterministic because its
main screen recommends a different set of items every time the app is launched. A mail app
cannot be restarted cleanly because it depends on data stored on a third-party server, which
we cannot reset easily. As such, we cannot automatically generate replayable test suites for
such apps. We also excluded apps for which SwiftHand saturates the test coverage in less
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Name Package name Market Type #Br

acar com.zonewalker.acar play car management 20380
amemo org.liberty.android.fantastischmemo play flashcard 6394
amoney* com.kpmoney.android play finance 28141
astrid org.tasks play task manager 16844
cnote* com.socialnmobile.dictapps.notepad.color.note fdorid note 14524
dmoney com.bottleworks.dailymoney play finance 5099
emobile org.epstudios.epmobile play fitness tracker 3201
explore com.speedsoftware.explorer play file system 54302
mileage com.evancharlton.mileage fdroid car management 7728
mnote jp.gr.java conf.hatalab.mnv fdroid text editor 1959
monefy com.monefy.app.lite play finance 22615
sanity cri.sanity play device manager 4610
tippy net.mandaria.tippytipper fdroid tip calculator 5243
todo* com.splendapps.splendo play task manager 11858
ttable* com.gabrielittner.timetable play scheduler 11858
vlc* org.videolan.vlc play media player 14410
whohas de.freewarepoint.whohasmystuff fdroid inventory 369
xmp org.helllabs.android.xmp play media player 5855

Table 5.1: Benchmark apps. #Br means the number of branches in the apps.

than an hour. Note that adding such apps would only improve experimental results because
most traces in test suites for such apps are redundant.

Experiment Environment

We used five smartphones (Motorola XT1565) running Android 6.1 to run the benchmark
apps. We controlled the execution of the smartphones using a Linux machine running Ubuntu
16.04 equipped with an Intel E3-1225v3 CPU (four cores) and 32Gb RAM. We did not use
more recent versions of Android (such as 7.X) because our smartphones do not support them.

5.2 Evaluation of SwiftHand

In this section, we evaluate SwiftHand on the apps shown in Table 5.1. We first compare
SwiftHand with random testing and L∗-based testing, focusing on the relative performance
of the SwiftHand algorithm when all three algorithms inject events at the same speed. We
then discuss the results and identify shortcomings in SwiftHand.

We use four hours as the testing budget per app for every strategy, implementing all three
strategies on top of the testing infrastructure described in Chapter 4. In random testing, we
restart an app with probability 0.1 and select an input from a set of enabled inputs uniformly
at random. We are going to name the random testing algorithm as Random.
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Figure 5.1: Comparison of the branch coverage of SwiftHand, Random and L∗, #1
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Figure 5.2: Comparison of the branch coverage of SwiftHand, Random and L∗, #2
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Figure 5.3: Comparison of the branch coverage of SwiftHand, Random, and L∗, #3
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App
% Br % Timereset Resets / Inputs (%) #Unique prefixes # Scr

SH Rand L∗ SH Rand L∗ SH Rand L∗ SH Rand L∗ SH Rand L∗
acar 21.46 17.89 14.60 21.59 34.65 50.50 1.80 18.09 16.63 5520 1788 2263 227 123 108

amoney 19.24 14.56 13.37 20.78 44.11 45.26 1.65 14.53 15.69 5743 3487 2151 194 99 58
amemo 45.66 36.83 31.01 22.34 37.52 48.39 1.87 11.53 16.89 5633 4568 2352 143 100 70
astrid 35.68 32.90 28.59 15.62 22.21 42.27 1.47 13.00 18.61 4395 2486 2071 223 129 78
cnote 36.58 36.64 30.09 20.23 29.62 51.07 1.76 8.91 17.96 6236 5818 2534 143 133 69
dmoney 46.81 43.36 39.61 22.91 14.62 49.73 1.60 8.65 17.21 5425 2510 2055 91 81 71
emobile 46.36 37.30 32.39 18.35 22.17 53.31 1.68 8.20 18.28 6500 5217 2749 261 197 170
explore 12.57 11.40 10.30 12.10 22.92 35.82 1.21 11.13 16.58 2694 2837 1728 98 69 43
mileage 24.81 23.55 21.41 18.15 19.43 51.45 1.64 9.02 20.53 5771 4068 2559 130 111 62
mnote 45.22 45.78 30.83 23.97 33.28 54.33 2.17 10.34 18.97 6212 5538 2822 127 106 51
monefy 20.99 18.20 15.60 21.74 35.79 60.08 1.68 8.95 19.43 6223 6388 2597 69 47 20
sanity 20.54 15.55 15.11 19.03 46.04 38.39 1.64 14.81 13.07 4968 3239 2027 179 93 98
ttable 32.66 33.22 30.14 20.07 35.17 50.78 1.74 11.68 17.95 5827 4614 2489 144 109 74
tippy 19.53 18.97 18.97 20.19 34.96 50.77 1.76 10.23 17.00 6415 6200 2634 21 19 17
todo 15.10 14.48 12.95 15.26 28.11 46.42 1.39 11.84 17.89 4760 3597 2169 81 56 36
vlc 16.36 15.84 14.89 18.13 33.44 48.33 1.60 11.66 17.42 5050 3626 2076 64 58 48

whohas 65.58 58.26 54.20 20.49 36.20 40.18 1.83 14.44 15.54 6272 3127 1935 28 21 23
xmp 36.68 36.66 27.07 20.71 27.46 45.34 1.78 8.33 14.45 6129 5358 2408 75 62 42

Table 5.2: Summary of comparison experiments: SwiftHand, Random, and L∗

Comparison with Random and L∗-based Testing

Table 5.2 summarizes the results of applying the three testing strategies to the eighteen
Android apps. In the table, we use SH to denote SwiftHand. The % Br columns report
branch coverage percentage for each strategy. % Timereset shows the percentage of execution
time spent on restarting the app. Reset/Input reports the ratio of the number of restarts
to the number of inputs generated for each strategy. #Unique prefixes reports the number
of unique input prefixes attempted in each testing strategy. # Scr reports the number of
abstract screens covered by each strategy.

Figures 5.1, 5.2, and 5.3 plot the progress of the branch coverage in percentage against
testing time.

• In all cases, SwiftHand achieves greater branch coverage than L∗-based testing.
SwiftHand also achieves more branch coverage than Random for twelve apps. For
six apps (cnote, mnote, ttable, tippy, vlc, xmp), the Random strategy and
SwiftHand performed equally well.

• For most of the apps, SwiftHand achieves branch coverage at a rate significantly
faster than Random or L∗-based testing. For example, in amemo, SwiftHand reaches
almost 40% branch coverage within 40 minutes, whereas both Random and L∗-based
testing fail to reach 40% coverage in 240 minutes. This suggests that SwiftHand is
superior for these apps when the time budget for testing is limited.

• Random restarts more frequently than SwiftHand. In comparison with desktop
apps, Android apps have fewer GUI components on screen. Therefore, the probability
is relatively high that Random will terminate an app by accidentally pushing the back
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button or some other quit button. SwiftHand can circumvent this by merging states
and by avoiding input sequences that lead to a terminal state.

• For some apps, Random catches up with SwiftHand given additional time budget.
These apps can be categorized into two groups.

– There are apps that cannot be tested efficiently by using only GUI-level inputs
(such as touch and scroll). For example, if an app depends heavily on the contents
of files, no testing strategy can reach deep states of the app without properly
preparing the content of the file system. Among our benchmark apps, explorer,
mnote, vlc, and xmp belong to this category. Similarly, if an app depends heavily
on data values (i.e., numbers and texts), there is a limit to what can be achieved by
considering only the GUI of the app; a more involved dynamic or static program
analysis is necessary to handle such an app. In our benchmark set, cnote, dmoney,
ttable, and todo belong to this category.

– Several apps are just too simple (mileage, tippy, and whohas). For these apps,
any testing strategy can achieve good test coverage.

When an app is sufficiently complicated and can be tested efficiently by concentrating
on the GUI (acar, amemo, amoney, astrid, emobile, monefy, and sanity), Random
cannot achieve same coverage as SwiftHand.

• These experiments confirm the inadequacy of L∗ as a testing strategy when restart is
expensive, because L∗ spends approximately half of its execution time restarting the
app under test (Table 5.2). This results in low branch coverage over time (Figure 5.1
to 5.3). Furthermore, L∗ has relatively low numbers in the #Unique Input Prefixes
column compared with Random and SwiftHand. This indicates that L∗ executes
the same prefix more often than Random and SwiftHand.

What Restricts Test Coverage?

Manual analysis of apps with coverage lower than 30% reveals three key reasons for low
branch coverage.

Combinatorial state explosion. mileage is a vehicle management app with a moder-
ately complex GUI. The app provides a tab bar for easy context-switching between different
tasks, and this tab bar creates a combinatorial state-explosion problem. Conceptually, each
tab view is meant for a different independent task—most actions on a tab view affect the
local state of the tab, with only few affecting the app’s global state. SwiftHand does not
understand this difference. As a result, even a small change in one tab view makes all other
tabs treat the change as a new state in the model. The following diagram illustrates this
situation:
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Figure 5.4: Model state explosion with tab view

The app sanity has a similar problem. This is an inherent limitation of our current model.
We believe that this limitation can be overcome by considering a framework in which each
model is a cross-product of several independent models. We could then perform composi-
tional machine learning to learn the sub-models independently of one another. That said,
at this point, it is not clear how this compositional learning can be done online.

Files and data values. As explained in Section 5.2, if apps depend on the content of
files or data values then they cannot be tested effectively with a purely GUI-based testing
strategy. For example, xmp is a media player app and cannot be tested thoroughly without
video files to play. Similarly, cnote is a personal information manager app. Testing its
search or editing features requires first filling the app with proper data.

Inter-app communication. mnote uses an intent to open a text file from file system
navigation. When an intent is captured, the Android system pops up a system dialog for
confirmation, but this is not part of the app itself. In such a situation, SwiftHand simply
waits for the app to wake up and terminates it when there is no response. As a result, the
viewer component of the app is never tested. The 45% code coverage results from testing
only the file system navigation.

5.3 Evaluation of DetReduce

In this section, we evaluate the effectiveness of the DetReduce algorithm using test suites
automatically generated by SwiftHand and Random. Specifically, we are interested in the
size of the test suites reduced by DetReduce and the speed of the DetReduce algorithm.

We aim to answer the following research questions.

• RQ1: How effective is DetReduce in reducing test suites?

• RQ2: Does DetReduce run in a reasonable amount of time?
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• RQ3: Does DetReduce preserve test coverage?

• RQ4: Does DetReduce preserve fault-detection capability?

• RQ5: How many re-executions are required to demonstrate the replayability of a trace?

• RQ6: What will happen to the splicing algorithm if the number of fragments in traces
is increased beyond three?

To answer RQ1 to RQ5, we generated test suites using two test generation algorithms
(SwiftHand [23] and Random [23]) on eighteen benchmark apps and applied DetReduce
to them. To answer RQ6, we analyzed the relationship between the likelihood of finding a
replayable trace and the bound on the number of fragments in traces using four relatively
complicated apps.

Experimental Setup

Generating a Deterministic Test Suite to be Used for Minimization

To generate a test suite to be used as inputs to DetReduce, we first collected execution
traces by running an implementation of the SwiftHand [23] and Random [23] algorithms.
We ran each for eight hours, then checked whether the generated traces are replayable by
re-executing each trace ten times. For each non-replayable trace, we identified a non-empty
replayable prefix of the trace and retained the prefix rather than throwing the entire trace
away. Note that the traces used for evaluating DetReduce are different from the traces
used for evaluating SwiftHand.

Avoiding non-replayable traces. The actual execution of an app can generate a non-
replayable trace for several reasons: a) the app has external dependency (e.g., it receives
messages from the outside world, depends on a timer, or reads and writes to the file system),
b) the app uses animation that the underlying GUI testing library UIAutomator [3] cannot
properly handle, or c) the app has inherent non-determinism due to the use of a random
number generator or multi-threading. We eliminated dependency of an app on the outside
world by resetting the contents of the SD card and the app data with every restart, and
reduced the effect of animation on non-determinism by checking the contents of the GUI-tree
at one-second intervals (which allowed us to check if a screen is still changing). However, it is
nonetheless impossible to eliminate all sources of non-determinism. Therefore, we replayed
each trace generated by the SwiftHand and Random algorithms ten times to remove the
non-replayable suffixes of traces. We determined experimentally that eight re-executions is
sufficient to detect most of non-replayable traces for the benchmark apps.
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Why we did not use Monkey to generate the initial test suite?

Monkey [36] is a fuzz testing tool for Android apps. Monkey is widely-used to automatically
find bugs. We initially attempted to use Monkey to generate inputs for DetReduce. How-
ever, we found that Monkey is not capable of generating replayable traces. We now describe
our experience with Monkey.

Monkey is a simple black box tool that reports only the sequence of actions it used to
drive a testing session. To get a trace would require non-trivial modifications to Monkey.
Before jumping into this effort, we performed an experiment to determine whether Monkey
is even capable of generating replayable traces or not—if Monkey cannot generate replayable
traces, there is no point in the modification.

In this experiment, we used a script to generate traces with partial information from
Monkey and checked if those traces could be replayed. The script injects user actions at
the rate of m actions per second, collecting branch coverage and screen abstraction after
injecting every n actions. The script picks the value of m from the set {1, 2, 5, 10, 100, 300}
and value of n from the set {2, 10, 50, 100, 200}. For each pair of values for m and n, the script
runs Monkey until it injects 2000 actions. By combining the sequence of actions reported
by Monkey with the collected coverage information, the script can generate traces that have
coverage and screen information after every n actions (instead of having the information
after every event.) We call such traces partial traces.

Using this script, we collected three partial traces for each possible value of m and n
using the same random seed and checked if the partial traces are equal. If the partial traces
do not match, this indicates that Monkey cannot generate a replayable trace. We performed
the experiment using ten apps with three different random seeds.

The results of this experiment showed that Monkey passes the test for four apps when
n = 2 and m = 2. For the other six apps, Monkey fails the test even when injecting one action
per second. At this speed Monkey becomes useless in practice because its power primarily
comes from its ability to inject many actions quickly. It will take too long to generate a
sufficiently good test suite using Monkey at this speed. Therefore, we have concluded that
using Monkey is not viable for generating the initial replayable test suite.

We found that Monkey injects actions asynchronously—that is, Monkey injects an action
without checking whether the previously injected action has been fully handled or not.
This allows Monkey to inject an order of magnitude more actions than testing tools that
synchronously inject actions, but this also makes Monkey highly non-deterministic. For
example, we noticed that if actions are injected while the app is unresponsive, those actions
are dropped. Because the period of unresponsiveness varies from execution to execution, the
number of dropped actions varies across executions. Note that this is an inherent problem
with Monkey regardless of whether the target app is non-deterministic.
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app
initial test suites phase 1 results phase 2 results running time

#br #sc #act #tr #br #sc #act #tr #br #sc #act #tr tp1 (hr.) tp2 (hr.) tr (hr.) tr/t
acar 4427 171 13478 822 4427 171 1808 170 4427 171 1283 121 11.86 8.31 0.90 11.22%
amemo 2955 114 13604 835 2955 114 1380 135 2955 135 1030 101 11 8.03 0.72 9.06%
amoney 4481 159 13213 779 4481 159 2793 269 4462 157 1595 146 11.27 12.07 1.14 14.21%
astrid 6201 170 10532 680 6201 170 1828 188 6201 170 1168 120 15.95 9.20 1.07 13.32%
cnote 5089 102 13584 157 5089 102 1515 156 5089 102 1083 117 12.3 7.84 1.09 13.61%
dmoney 2387 47 13511 785 2387 47 728 74 2387 47 574 63 5.9 3.53 0.43 5.45%
emobile 1554 214 13261 782 1554 214 1593 179 1554 214 1224 137 10.2 8.49 0.95 11.89%
explore 6647 105 7559 703 6647 105 1458 153 6596 103 867 92 19.35 10.57 1.07 13.42%
mileage 1766 81 13570 809 1766 81 507 61 1766 81 402 46 4.43 4.14 0.31 3.84%
mnote 889 76 13697 1003 889 76 988 96 889 76 718 71 9.14 7.59 0.47 5.92%
monefy 4966 62 13703 806 4966 62 2001 121 4966 62 1331 85 11.32 10.98 0.80 9.98%
sanity 978 186 12735 764 978 186 1639 142 978 186 1045 94 13.59 10.39 0.76 9.54%
tippy 712 15 14200 819 712 15 294 32 712 15 198 23 13.28 7.18 0.15 1.83%
todo 1415 58 10164 641 1415 58 735 82 1415 58 520 57 5.96 3.96 0.50 6.38%
ttable 2651 125 13028 1516 2651 125 1385 152 2251 125 891 97 9.71 10.25 0.53 6.36%
vlc 2341 60 11978 770 2341 60 719 76 2279 59 440 45 5.89 3.83 0.35 4.41%
whohas 230 15 12857 757 230 15 179 20 230 15 119 12 1.26 1.14 0.09 1.14%
xmp 2079 50 1326 761 2079 50 617 64 2079 50 342 34 3.98 2.27 0.28 3.53%
median 2333 91.5 13237 780.5 2333 91.5 1384 128 2333 91.5 879 88.5 9.96 7.92 0.63 7.84%

Table 5.3: Test suite reduction result using DetReduce on SwiftHand traces

DetReduce Configuration

In the evaluation, we configured the second phase of DetReduce to use at most three
fragments to construct a trace. We also set both phases of DetReduce to re-execute each
trace ten times to check the replayability of the trace. We intentionally set the number
of re-executions conservatively to learn the relationship between the capability to detect
non-replayable traces and the number of re-executions.

Evaluation of DetReduce

Table 5.3 and Table 5.4 show the results of applying DetReduce to the test suites generated
by the SwiftHand and Random algorithms, respectively. Each table has four parts.
The first part shows the following information about the test suites to be minimized: total
branch coverage (#br.), total screen coverage (#s.), total number of transitions (#act.),
and total number of traces (#tr.) of each initial test suite. The second and third parts
of the table show information about the test suites generated after running the first and
second phase, respectively, of DetReduce. The fourth part shows important statistics
summarizing the experiment results: the running time of each phase of the algorithm (tp1
and tp2), the execution time (tr) of the resulting reduced regression test suite, and the ratio
of the execution time of the resulting regression suite to the execution time of the original
test suite in percentage (tr/t). We make the following observations from the data shown in
the tables:

• RQ1: The execution time of the reduced test suites (tr) is several orders of magnitude
shorter than that of the original test suites (eight hours). This shows that DetReduce
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app
initial test suites phase 1 results phase 2 results running time

#br #sc #act #tr #br #sc #act #tr #br #sc #act #tr tp1 (hr.) tp2 (hr.) tr (hr.) tr/t
acar 2897 102 6990 2162 2897 102 943 96 2897 102 719 70 6.07 4.85 0.54 6.70%
amemo 2663 99 11680 1358 2663 99 1072 108 2663 99 768 74 10.06 5.4 0.48 6.03%
amoney 3285 110 10290 1406 3285 110 921 88 3261 106 671 66 6.81 4.61 0.42 5.32%
astrid 4797 112 7297 954 4797 112 1095 115 4797 112 760 79 17.01 6.38 0.66 8.22%
cnote 5000 88 12909 1140 5000 88 1252 123 5000 88 885 82 11.95 9.26 0.56 7.00%
dmoney 2057 46 7202 577 2057 46 567 59 2057 46 435 45 5.47 2.95 0.44 5.44%
emobile 1359 195 10500 847 1359 195 1276 153 1357 194 978 121 10.99 7.07 0.90 11.20%
explore 6145 76 5960 747 6145 76 913 86 6145 76 604 55 9.54 9.51 0.70 8.75%
mileage 1722 80 7013 670 1722 80 530 60 1722 80 344 44 4.74 3.19 0.39 4.84%
mnote 909 65 9559 1087 909 65 824 82 909 65 636 59 8.32 4.57 0.48 5.94%
monefy 3549 36 11435 970 3549 36 1449 78 3549 36 622 37 10.57 2.42 0.38 4.78%
sanity 701 110 8778 1350 701 110 706 66 701 110 433 42 4.64 3.84 0.31 3.93%
tippy 686 15 10999 1057 686 15 269 28 686 15 174 19 1.63 1.14 0.13 1.68%
todo 1312 39 7873 975 1312 39 557 76 1312 39 317 38 6.58 5.57 0.57 7.12%
ttable 2589 100 9242 1125 2589 100 1034 114 2589 100 730 71 17.56 14.48 0.32 3.96%
vlc 2001 44 7706 922 2001 44 528 62 2001 44 316 33 5.53 3.73 0.32 4.00%
whohas 206 44 7879 1179 206 16 141 19 206 16 81 11 1.2 0.75 0.08 0.98%
xmp 1798 45 9734 844 1798 45 566 48 1798 45 318 27 5.25 2,31 0.26 3.24%
median 2029 78 9269 1016 2029 78 868 80 2029 78 613 50 6.29 4.59 0.43 5.38%

Table 5.4: Test reduction result using DetReduce on Random traces

is highly effective in minimizing the test suites for the benchmark apps. Regarding the
sizes of test suites, phase 1 of DetReduce removes 91.27% of transitions (median)
and 90.5% of restarts (median). Phase 2 of DetReduce further removes 33.07% of
transitions and 31.81% of restarts from the test suites obtained after Phase 1. These
two phases of DetReduce cumulatively remove 93.84% of transitions and 93.52% of
restarts. We also found that the rate of reduction is higher for test suites generated
from Random. This is because these test suites have lower test coverage and more
redundancies.

• RQ2: The running time of the algorithm is within a factor of 6 of the execution time
of the original test suites generated by the test generation algorithms. More than half
of the running time was spent in detecting and eliminating loops in phase 1 (and note
that DetReduce spends no time removing redundant traces because those traces
do not require any execution). The time spent in phase 1 is reasonable because the
phase searches for a minimized test suite while eliminating redundant loops from each
trace. Note that these experiments employed a conservative parameter (ten) for the
number of re-executions to perform to check trace replayability, and the running cost
of DetReduce can be further reduced by setting this parameter to eight. If we apply
delta-debugging to minimize the test suites, the result will be a slowdown of several
orders of magnitude. This is because delta-debugging executes a test suite O(log(n))
times in the best case, and O(n2) times in the worst case, where n is the number of
transitions in the initial test suite.

• RQ3: Despite using an approximate method for checking if a trace a replayable, the
minimized test suites nonetheless cover most of the original branch and screen coverage.
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DetReduce fails to provide 100% coverage only for amoney. We manually analyzed
the reasons for the missing branches and screens, and determined that non-replayable
traces were not fully removed while generating the original test suites before phase 1
of DetReduce.

• RQ4: In order to check how DetReduce affects the fault-detection capability of test
suites, we collected exceptions raised while executing each test suite. We identified
seven distinct exceptions, and all survived after applying DetReduce. Note that
DetReduce does not consider exceptions to be part of the test coverage it tries to
preserve.

• RQ5: We measured how many re-executions were required to identify each non-
replayable trace created during our experiments. The following table summarizes the
results.

app T n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

acar 558 90 5 7 4 0 4 1 0 0 0
amemo 893 459 4 6 1 1 1 0 0 0 0
amoney 787 280 3 3 5 3 5 3 0 0 0
astrid 1468 963 0 2 1 0 0 0 0 0 0
cnote 1433 942 5 5 1 1 2 0 0 0 0
dmoney 535 294 0 0 0 0 0 0 0 0 0
emobile 1630 518 2 2 1 5 0 0 0 0 0
explore 1440 450 14 7 2 4 1 2 1 0 0
mileage 500 280 3 0 3 3 0 0 0 0 0
mnote 1045 812 4 6 3 1 3 0 1 0 0
monefy 447 190 5 1 3 2 3 1 0 0 0
sanity 1665 1317 1 0 2 0 1 0 0 0 0
tippy 293 136 1 0 0 0 0 1 0 0 0
todo 1006 742 11 8 5 2 1 0 0 0 0
ttable 3009 2561 6 1 2 1 3 0 0 0 0
vlc 499 238 16 15 6 4 0 2 1 0 0
whohas 211 149 0 0 0 0 0 0 0 0 0
xmp 668 538 40 23 16 8 3 4 0 0 0

sum 18043 10956 120 86 55 34 27 14 3 0 0

The first column (app) shows the name of the app, the second column (T) shows the
total number of traces created during the experiments, and the remaining columns
show the number of non-replayable traces that required n re-executions for detection.
The last row (sum) shows the summation of each column. The results show that all
non-replayable traces were detected within the first eight iterations. The results also
show that 39.3% of traces attempted during the experiments were replayable traces,
suggesting that DetReduce is good at selecting candidate traces in our benchmarks.
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app
#replayable traces (replay success rate)

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10

acar 195 159 119 96 94 80 70 47 54 47
astrid 189 108 93 64 51 41 22 16 19 14
cnote 186 117 77 73 53 31 22 31 16 11
emobile 199 169 139 116 96 93 62 41 50 57

Table 5.5: The number of replayable traces out of 200 sampled traces.

Splicing and the Number of Fragments in Traces

RQ6: To understand the effect of bounding the number of trace fragments in phase 2 of our
algorithm, we measured the relationship between the bound and the likelihood of finding a
replayable trace, and the average number of trace fragments in a trace generated by splicing.
For these measurements, we used four relatively complex benchmark apps.

Bounding the Number of Fragments and the Replayability of Traces

We measured the correlation between the bound on the number of fragments and the possi-
bility of finding a replayable trace using ten different bounds on k (1 ≤ k ≤ 10). For each k,
we constructed 200 random traces by combining k trace fragments from the test suite after
phase 1. Furthermore, we restricted each trace to containing only 20 transitions. In order
to construct the traces, we first collected at most 20,000 traces satisfying the requirement
using breadth-first search of the transition system QTr (described in section 3.2). Note that
the paths of QTr consist of traces that can be constructed via splicing. We then sampled 200
traces from the set of 20,000 traces. Finally, we checked how many of the sampled traces are
replayable by executing each trace ten times. Table 5.5 shows the results. The first column
shows the name of the app and the rest of the columns indicate the number of replayable
traces for each k. Our hypothesis was that increasing the number of fragments would de-
crease the possibility of finding replayable traces, and the results confirm this hypothesis for
the four apps.

Number of Fragments in Traces Generated by Splicing

A possibly simpler algorithm for generating a minimized test suite would be to construct a
labeled transition system QT from T and then generate a minimal set of paths from QT so
that these paths cumulatively attain full coverage. Such an algorithm would be equivalent
to running phase 2 of DetReduce on the original test suite—that is, the algorithm would
construct traces by combining trace fragments from T without imposing a bound on the
number of trace fragments to be combined. Our hypothesis was that this algorithm would
not scale because a significant number of traces generated using such an algorithm would
contain many trace fragments, making them non-replayable with high probability. Therefore,
the algorithm would spend considerable time checking the replayability of non-replayable
traces. In order to validate this hypothesis, we constructed 1000 traces composed of at
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app
#traces

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10+

acar 25 14 22 28 37 24 42 48 73 689
astrid 29 3 15 16 10 13 23 38 70 783
cnote 12 4 11 2 7 8 10 6 13 927
emobile 25 16 20 23 24 59 33 59 88 685

Table 5.6: The number of traces composed of k fragments out of 1000 sampled traces

most 20 transitions by sampling random paths from QT , and checked the number of trace
fragments in each sampled trace. Table 5.6 shows the results. The first column shows
the name of the app and the rest of the columns indicates the number of traces composed
of k fragments for each k between 1 to 10. The results show that there are many more
traces composed of a larger number of fragments compared with traces composed of fewer
fragments. Consequently, if we perform splicing without bounding the number of fragments,
we are more likely to get traces composed of a large number of fragments. The results of the
previous experiment (Section 5.3) suggest that such traces are likely to be non-replayable.
This validates our hypothesis that a simple algorithm exploring the paths of QT without
bounding the number of fragments in each trace will not scale.

Threats to Validity

We now discuss threats to the validity of our evaluations. We have identified three major
issues.

Selection of apps We used a limited number of benchmark apps to evaluate DetReduce,
so it is possible that our results do not generalize. To address this issue, we carefully selected
the benchmark apps, and the details of the selection process are explained in Section 5.1.

Selection of test generation algorithms The selection of the test generation algorithms
could potentially bias the evaluation results. Specifically, the results obtained from a single
test generation algorithm cannot determine whether the results can be generalized to the
other test generation algorithms. To address this, we used both SwiftHand and Random
algorithm. We could not use Monkey because Monkey cannot generate replayable traces, as
described in Section 5.3. The results obtained using Random show that DetReduce is
not an artifact that works only with SwiftHand. However, the results are still not strong
enough to decisively conclude that DetReduce can effectively reduce test suites generated
from an arbitrary test generation tool.

The robustness of the fault detection capability evaluation In the evaluation, we
checked whether the exceptions raised by the original test suites are also raised by the test
suites reduced by DetReduce. However, this is a limited evaluation. A more robust
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evaluation would involve injecting artificial faults into the benchmark apps and measuring
the number of injected faults detected before and after the test suite reduction. We did not
take this approach because of the difficulty of injecting faults into the binary of an Android
app.
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Chapter 6

Related Work

6.1 Automated GUI Testing

In this section, we compare automated GUI testing techniques with SwiftHand. Specif-
ically, we consider four types of techniques: model-based testing, evolutionary-algorithms,
fuzz testing, and symbolic execution.

Model-based Testing

Model-based testing approaches are often applied to testing graphical user interfaces [10,17,
78,96,103,113]. Such approaches model the behavior of the GUI abstractly using a suitable
formalism such as event-flow graphs [78], finite state machines [86, 103], or Petri nets [96].
The models are then used to automatically generate a set of sequences of inputs (or actions),
called a test-suite.

Memon et al. [8,78,119] proposed a two-staged automatic model-based GUI testing idea.
In the first stage, a model of the target application is extracted by dynamically analyzing the
target program. In the second stage, test cases are created from the inferred model. However,
this approach differs from our work in two ways: First, in our research model creation and
testing form a feedback loop. Second, we use ELTS, a richer model than Event Flow Graph
(EFG). Yuan and Memon [120] also investigated a way to reflect runtime information on top
of EFG model to guide testing. The two-staged model-based testing has also been combined
with targeted exploration [13,57], combinatorial testing [82,87] and symbolic execution [81].
Azim and Neamtiu [13], Bhoraskar et al. [20], and Mirzaei et al. [82] proposed the use of
static analysis to infer a behavior-model of an Android app to remove the need to construct
models manually.

Crawljax [80] is an online model-leaning based testing technique for JavaScript programs.
Crawljax tries to learn a finite state model of the program under test using state-merging.
State-merging is based on the edit distance between DOMs. Crawljax can be seen as a
learning-based GUI testing technique that uses ad-hoc criteria for state-merging. Recently,
a number of model-learning based testing techniques targeting Android app [7, 93, 108, 117]
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have been proposed. Yang et al. [117] take an online model-based testing approach similar
to Crawljax [80]. They use static pre-analysis to refine the search space. Takala et al. [108]
report a case study using online model-based testing. Rastogi et al. [93] proposed a testing
technique based on learning a behavior-model of the target app. All of these techniques
use some form of heuristic state-merging and are not based on formal automata learning.
The main difference is in the treatment of counter-examples. Online automata learning
techniques try to learn an exact model reflecting counter-examples. On the contrary, none
of the above approaches learn from counter-examples. Therefore, these techniques may fail
to learn the target model even for a finite state system, unlike online automata learning
techniques. As far as we know, SwiftHand is the first GUI testing technique based on
automata learning.

Ermuth and Pradel [30] recently proposed a technique to infer a set of meaningful action
sequences from manually created test cases. The technique combines frequent subsequence
mining [115] and inference of finite state machines [19] to infer meaningful action sequences.
Once these sequences are inferred, one can construct longer action sequences using the in-
ferred sequences as components. This technique can be a building block for other test gener-
ation techniques, including SwiftHand, although Ermuth and Pradel originally evaluated
the inference technique using a random test generation method.

Evolutionary Algorithms

Evolutionary algorithms [14,127] have been used to test programs [102]. An approach based
on an evolutionary algorithm generates a test suite that maximizes test coverage, and it
can take a long time to generate such a test suite. Regarding GUI apps, EXSYST [42]
first applied a genetic algorithm to GUI testing. EXSYST uses a set of test cases as an
individual, and each test case as a gene. EvoDroid [70] is the first Android testing tool
based on an evolutionary algorithm. Sapienz [73] uses a multi-object evolutionary algorithm
to simultaneously maximize test coverage and minimize the size of the resulting test suite.
These techniques outperform state-of-the-art fuzz testing tools such as Monkey [36] and
Dynodroid [69] in terms of test coverage. However, it is not clear how much time is required
to get such a good result.

Fuzz Testing

Monkey [36] is an automated fuzz testing tool. It creates random inputs without considering
app’s state. Hu and Neamtiu [52] developed a useful bug finding and tracing tool based
on Monkey . Choudhary et al. [24] recently compared the performance of several automated
testing tools for Android apps. Their results suggest that Monkey outperforms more sophis-
ticated tools [8,13,23,47,69,117] in terms of maximizing coverage in a limited period of time.
However, this observation does not conflict with our result from the SwiftHand experi-
ment (Section 5.2), with the difference coming primarily from the speed of injecting actions.
Our results indicate that a carefully designed model-learning based testing algorithm, such
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as SwiftHand, can outperform a randomized algorithm if both inject actions at the same
speed. In contrast, Monkey is capable of injecting two orders of magnitude more actions
in the same period compared with the other testing tools. At the moment, sophisticated
testing tools [8,13,23,47,69,117] cannot achieve the same speed because they need to collect
information about the target app after injecting each action. However, the gap in injection
speed can gradually be reduced by incorporating various optimization techniques, such as
PCE [68].

MacHiry et al. [69] suggest a technique to infer a representative set of actions and per-
form action aware random testing. The idea is similar to the random strategy used in our
experiment. Their action inference technique targets a larger action space including tilting
and long-touching while our technique only considers touching and scrolling actions. Also,
their tool acquires more runtime information by modifying Android framework to prune
more actions at the expense of being less portable. On the contrary, SwiftHand modifies
only the target app binary. Finally, they provide a comparison with Monkey . The result
shows that Monkey needs significantly more time to tie the branch coverage of action aware
random testing techniques.

Liang et al. [67] suggest a way to prioritize testing contexts when handling a multitude
of apps. A testing context is the configuration of a testing environment, such as a network
connection and a device to run a testing session. A key observation behind their approach is
that if one testing context enabled a fuzz testing algorithm to find a bug in an app, then the
same context tends to help finding a bug in similar apps as well. Thus, by first categorizing
apps based on a similarity metric, one can plan a testing context prioritization strategy per
category. This technique is orthogonal to our research, and SwiftHand can be used as a
fuzz testing component of it.

Symbolic Execution

Anand et al. [9] applied concolic execution [33] to guide Android app testing. They use
state subsumption checking to avoid repeatedly visiting equivalent program states. Their
technique is relatively sound than our approach since concolic execution engine creates an
exact input to find new branches in each iteration. In Mirzaei et al. [83]’s compiles Android
apps to Java bytecode and applies JPF [50] with a mock Android framework to explore the
state-space.

6.2 Model-learning and Testing

In this section, we compare model-learning algorithms and testing techniques based on
model-learning with the SwiftHand algorithm.
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Model-learning Algorithms

Angluin’s L∗ [12] is the most well-known active model-learning algorithm. The technique
has been successfully applied to modular verification [26] and API specification inference [6].
However, the L∗ algorithm and its descendants [54,60,98] are not adequate for guiding GUI
testing for several reasons. First, these techniques try to learn a precise model for the target
application, which is not necessary for testing. Second, they do not use a precise cost-model
of learning queries, treating all queries as having the same execution cost. SwiftHand is
specifically designed to be good at guiding GUI testing and so avoids these problems. Note
that SwiftHand is not a variation of L∗, although it is heavily inspired by L∗; one should
not use SwiftHand to replace L∗, because SwiftHand is not designed to efficiently learn
an exact model. We refer readers to the introductory article by Vaandrager [109] for more
details regarding active model-learning algorithms and their applications.

Passive learning techniques [29, 65] do not assume the presence of a teacher and uses
positive and negative examples to learn a model. François et al. [27] have introduced ideas
of exploiting domain knowledge to guide passive learning. The technique was subsequently
improved by Lambeau et al. [63].

Learning-based Testing

Machine learning has previously been used to make software testing effective and effi-
cient [18, 40, 41, 43, 75, 88, 91, 111, 112, 114]. Meinke and Walkinshaw’s survey [76] provides
a convenient introduction to the topic. In general, classic learning-based testing techniques
aim to check whether a program module satisfies a predefined functional specification. Also,
they use a specification and a model checker to resolve equivalence queries. On the con-
trary, SwiftHand tries to maximize test coverage and actually executes a target program
to resolve equivalence queries.

Meinke and Sindhu [75] reported that learning algorithms similar to L∗ are inadequate
as a testing guide. They proposed an efficient active learning algorithm for testing reactive
systems, which uses a small number of membership queries.

6.3 Test Reduction Techniques

In this section, we discuss test reduction techniques compared with DetReduce. Specif-
ically, we consider GUI test case minimization algorithms, delta-debugging, and test suite
reduction algorithms.

GUI Test Minimization Techniques

ND3MIN [25] is the most closely related work to our research. It is a GUI test minimization
algorithm for Android apps, based on delta-debugging [124]. We compare ND3MIN and
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DetReduce in three aspects: their goals, the way they handle non-determinism, and their
running time.

• Goals: ND3MIN aims to minimize each test case in isolation while keeping the final
activity1 that the test case reaches at the end. DetReduce tries to minimize a whole
test suite while keeping the branch and screen coverage of the test suite. The tools
have different goals.

• Handling non-determinism: ND3MIN aims to generate a test case that reaches the de-
sired activity with a high probability, even if non-deterministic behaviors occur during
the execution. On the contrary, DetReduce is designed to actively detect and avoid
non-deterministic behaviors during the process of minimization.

• Running time: ND3MIN is a variation of delta-debugging. The worst case time com-
plexity of delta-debugging is O(n2) where n is the size of input test case [124]. This
time complexity could make the algorithm fail to scale because the cost of performing
each test run is expensive in GUI testing. ND3MIN uses up to 50 hours to minimize
a test case composed of 500 actions. DetReduce is capable of handling a test suite
composed of more than 10,000 transitions in less than 30 hours.

Hammoudi et al. [45] also proposed a delta-debugging based test minimization algorithm.
Unlike ND3MIN and DetReduce, their work aims to minimize manually written test cases
for web apps. Their results showed that the execution time of the minimized test cases is
on average 22% shorter than that of the original test cases. This shows that there is room
to minimize even manually written test cases. Since they used relatively small test cases
composed of less than 150 actions, it is hard to say if their delta-debugging approach would
scale on a large GUI test case.

Test Suite Reduction Techniques

Test suite reduction techniques [46, 51, 55, 56, 59, 74, 104, 105, 118, 126] automatically reduce
the size of a test suite without losing the coverage of the test suite. Unlike our work, these
techniques assume that test suites consist of already compacted test cases; these techniques
do not focus on reducing the size of each test case. They only focus on selecting a small set
of test cases from a test suite. The first part of the first phase of DetReduce, where we
remove redundant traces, can be seen as a test suite reduction technique. In the context of
GUI testing, McMaster and Memon [74] proposed call-stack history as a metric for reducing
GUI test suites. We might be able to reduce redundant traces more efficiently by adopting
this technique. However, it is possible that removing too many traces at the first phase of
DetReduce might negatively affect the capability of the second phase of DetReduce.

1Android apps are composed of a number of activities. Each activity represents a different functionality.
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Delta-debugging

Delta-debugging [122, 124] is probably the most widely-known test minimization technique.
It was proposed in the context of fault isolation and has been successfully applied to many
problems [22, 84, 99, 123]. We found it difficult to use delta-debugging to minimize a large
GUI test suite because of the cost of running the test suite.

It might be possible to make delta-debugging scale better on GUI test suites by incor-
porating domain specific knowledge. Delta-debugging performs a partitioning based search,
and it is often possible to accelerate the partitioning based search by incorporating domain
specific knowledge. For example, hierarchical delta-debugging (HDD) [84] works on struc-
tured texts, such as XML, by first performing delta-debugging on top-level structures, then
gradually moving into substructures. This allows HDD to significantly reduce the time re-
quired to reduce structured texts compared to the original delta-debugging. A similar idea
has been used in DEMi [100] to minimize test cases for a distributed system. However, we
have yet to find a way to make delta-debugging scale better on GUI test suites.

6.4 Test Generation Techniques

In this section, we discuss test generation techniques focused on how they are related to
DetReduce.

Automated GUI Testing Techniques

In this thesis, we used SwiftHand [23] to generate test suites as inputs for DetReduce.
One can use any automated GUI testing technique, such as A3E [13], Dynodroid [69], App-
sPlayground [93], or MobiGUITAR [8], to generate initial test suites. Automated test-
ing techniques can also be directly used to find crashing bugs [94, 121], responsiveness
bugs [89,116], concurrency bugs [21,71], and security problems [5, 15,39,92]

One may argue that test minimization might not be necessary for the future if automated
testing techniques continue to improve. Automated GUI testing techniques are indeed be-
coming better in maximizing test coverage and finding bugs in a limited period of time [30,73].
However, the results of Hammoudi et al. [45] show that even test cases generated by human
experts are reducible. The study by Yoo et al. [118] also suggests that even a test suite main-
tained by human testers needs to be compacted. Therefore, we predict that GUI test suite
minimization techniques will remain useful, even though automated GUI testing techniques
continue to improve.

Monkey

A recent survey [24] compares the performance of several automated testing tools for Android
apps. Their results suggest that Monkey outperforms other more sophisticated tools in terms
of maximizing coverage in a limited period of time. However, we observed that it is difficult



68

to replay test cases generated by Monkey . Even if Monkey finds a bug, it might be difficult
to reproduce the bug or minimize the sequence of actions obtained from Monkey . [107]

Test scripts and Record-and-replay

GUI test scripts [37, 38, 95] and record-and-replay frameworks [34, 38, 44, 53, 90] are tools
to generate reusable test cases reflecting human knowledge. These tools complement our
approach. One can use these tools either to generate a set of test cases to be minimized or
to add more test cases to already minimized regression test suites.
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Chapter 7

Conclusion

This chapter summarizes the main technical contributions of the research in this thesis and
addresses limitations and potential future work.

7.1 Summary

In this thesis, we presented SwiftHand, an automated GUI test generation algorithm for
Android apps for which we do not have an existing model of the GUI. SwiftHand achieves
code coverage quickly by learning and exploring a model of the app’s GUI. Specifically,
SwiftHand uses an extended labeled transition system that models how the app’s GUI
responds to user inputs. Using model-learning for test generation is not new [76], and existing
algorithms typically employ the L∗ [11] learning algorithm or one of its variants [98, 101].
However, L∗-based test generation algorithms are inefficient in testing Android apps because
L∗ frequently restarts the app under testing in order to learn a precise model of the app. This
results in meaningfully diminished performance because restarting is an expensive operation.
SwiftHand instead performs an approximate learning in order to avoid frequent restart. We
evaluated SwiftHand using eighteen Android apps, for which SwiftHand achieves better
branch coverage than L∗ or a randomized test generation algorithm. Even when an app
is simple or an app cannot be tested efficiently using a purely GUI-based testing approach,
when the branch coverage gap between the randomized algorithm and SwiftHand becomes
less significant, SwiftHand achieves maximum branch coverage more quickly than the
randomized algorithm. This evaluation also confirmed that the L∗-based test generation
algorithm is inadequate for testing Android apps because of frequent restart.

We have also presented DetReduce, an algorithm that automatically constructs a small
regression test suite by reducing a large test suite generated by an automated test generation
tool. An automated test generation tool tends to generate a test suite that is difficult to reuse
and understand because of its large size. However, through manual analysis we have identified
three kinds of common redundancy in automatically generated test suites: redundant test
cases, redundant loops, and redundant subsequences. We also observed that some of these
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redundancies could be removed without decreasing the coverage of the test suites. Based
on this observation, we created DetReduce, a greedy algorithm to reduce automatically
generated GUI test suites by removing these three kinds of redundancies. Being specialized to
handle GUI test suites, DetReduce can reduce a large test suite more quickly than general-
purpose test reduction algorithms, such as delta-debugging. Evaluation of DetReduce
using eighteen Android apps revealed that DetReduce is capable of reducing the running
time of the test suites generated with SwiftHand by an order of magnitude. We also
observed that the test suites reduced by DetReduce retain all distinct exceptions raised
while executing the original test suites.

7.2 Discussion

Although the techniques proposed in this thesis can help with testing GUI apps by auto-
matically generating test cases, there are limitations and open problems whose resolution
would make these techniques more broadly usable. Here, we address such limitations and
open problems.

Limitation: Apps that Cannot Be Handled Efficiently

Both SwiftHand and DetReduce make several assumptions about the app to be tested:
a) that the app can be restarted to bring it back to its initial state, b) that GUI-level user
inputs (such as touch and scroll actions) are sufficient to test the app, c) that when the app
is in a stable state, it is possible to infer a set of enabled user inputs by analyzing the GUI
component tree of the app, and d) that the app is deterministic. In the real world, not every
app satisfies these assumptions. In this section, we discuss several categories of apps that
our algorithms cannot handle efficiently because one or more of the above assumptions is
violated.

Non-determinism in Android apps. Many Android apps exhibit non-deterministic be-
haviors, for one of several reasons. The four primary sources of non-determinism are built-in
randomness, time dependency, concurrency, and external dependency.

• Randomness appears mostly in games, but non-game apps also use randomness—for
example, to control the frequency of exposing advertisements or to provide a random-
ized quiz. To test such an app, every random number generator in the app must be
controlled to produce a deterministic sequence of numbers. This can be achieved by re-
placing every usage of random number generators using a binary instrumentation tool.
We do not automatically modify apps in this manner because of the implementation
overhead.

• Some apps depend heavily on the current time and date. For example, a calendar app
shows different content depending on the date. To test such an app, every access to
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the time and date must be controlled to consistently provide the same artificial value.
Somewhat surprisingly, and unlike controlling random number generators, controlling
the time and date value is a non-trivial exercise. One might think that it is sufficient
to reset the system clock to a pre-configured value during app tests, but this will not
work if the target app has an additional source (such as a remote server) from which
to access the time and date. The situation becomes even more complicated if timers
are involved. For example, an app might use a timer to show an alert ten seconds after
the app is executed. If we cannot fully control the speed of test execution, the alert
might appear on a different screen every time we execute a test case— on one run, we
might be able to inject ten events in ten seconds, and on another run eleven. In some
sense, the existence of a timer poses a real-time constraint on executing a test case.
Overall, dealing with time dependency remains an open problem.

• In a GUI app, concurrency is extensively used to improve responsiveness. It is recom-
mended to delegate long-running computations to worker threads, and not to perform
anything demanding at the main GUI thread of the app. To faithfully replay an exe-
cution of a concurrent program, we must record the logical ordering among execution
steps of multiple threads and replay the exact order. This means that a proper test
case for a concurrent program must include the thread ordering information for it to be
deterministically replayed. In the case of an Android app, obtaining thread-ordering
information and enforcing it requires instrumenting the app binary and modifying the
Android framework. However, the current implementations of SwiftHand and De-
tReduce do not provide such mechanisms because of the implementation overhead.

• Smartphone apps often feature an external dependency, such as communication with re-
mote servers. If data sent from a sever change over time, it can lead to non-deterministic
behavior in an app communicating with that server. It is therefore preferable to use
mock servers sending consistent data to test such apps, instead of connecting to real
servers. Similarly, some apps use servers as storage. To restart such an app, an app-
specific script to erase remotely stored data must be executed before running every
single test case. Without providing mock servers and an app-specific restart script, an
app depending heavily on remote severs will appear to be highly non-deterministic to
SwiftHand and DetReduce.

Although both SwiftHand and DetReduce are designed to work with mostly determin-
istic apps, we implemented fallback mechanisms to handle when non-determinism occurs.
When a non-determinism is detected, the implementation of SwiftHand reflects it to the
learned model as a non-deterministic transition, and uses this information to avoid trig-
gering non-deterministic transitions learned so far. DetReduce detects non-deterministic
traces by re-executing all traces multiple times, and tries to keep deterministic prefixes of
the detected non-deterministic traces. Even with these treatments, we found that neither al-
gorithm (particularly DetReduce) works well if the target app is highly non-deterministic.
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Developing testing algorithms that can effectively handle non-deterministic apps remains an
open problem.

Files and strings. Smartphone apps often access files, and the execution of these apps
depends heavily on the contents of the files. To test such an app, one must therefore prepare
files with the proper content. Similarly, an app might take a string from a text input field
and determine what to do next based on the contents of the string. Any testing algorithm
based purely on GUI-level user inputs (such as touch and scroll actions) will face difficulty in
testing such apps. To the best of our knowledge, automatically testing a GUI app handling
files and strings remains an open problem. To resolve this, we would need to combine
existing GUI test generation techniques with symbolic execution [61] or search-based testing
techniques [48, 49], in the sense that hybrid concolic testing [72] combines random testing
and concolic execution [33]. We could start by first using a GUI-testing technique to explore
the execution space and identify a sequence of user inputs that leads the execution to a point
where files and strings are used, and it is sufficient to employ a limited set of pre-defined
strings and files at this stage. Once a specific input sequence is found, we could switch to
symbolic execution or a search-based method to explore various files and strings. Note this
is a limitation of SwiftHand and not a problem for DetReduce.

Inter-app communication. An Android app can communicate with another Android app
running on the same device using intent communication1. An intent is used when an app
wants to delegate a task to a different app. For example, most apps use intent communication
to take a photo or to send an email. An app can start intent communication by first creating
an intent and sending it to the Android framework. The Android framework, then, identifies
and starts the appropriate app to delegate the intent. While the intent is being handled,
the app that initiated the intent goes to the background, and the app receiving the intent
comes to the foreground and takes the screen. Once the app that received the intent finishes
the requested task, it returns execution control and the intent handling result to the original
app. However, the current implementations of SwiftHand and DetReduce do not follow
intent communications. The algorithms themselves do not have difficulty handling intent
communication—rather, the difficulty lies in implementing a logic to detect whether a target
app is terminated. The current implementation checks the package name of the active
app (that is, the app holding the screen) to determine whether the target app has been
terminated, and this method cannot distinguish temporarily inactive apps from terminated
apps. To precisely track whether an app is still live requires access to the full activity stack
and the intent communication history. Acquiring this information necessitates modifying the
Android framework. We did not adopt this approach because of the implementation overhead
and because this limitation does not restrict the choice of apps we can test. However, it does
limit the maximum test coverage that SwiftHand can achieve.

1https://developer.android.com/reference/android/content/Intent.html
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WebView. The current implementations of SwiftHand and DetReduce ignore the
contents of WebView2 components. This is because UIAutomator, the underlying low-level
GUI testing library used in our implementation, offers only limited support for WebView.
In Android, a WebView component is a wrapper of the WebKit3 rendering engine, which
is used to embed the contents of a web page into an app. The contents of a WebView
component are stored internally as a DOM tree4. Unfortunately, UIAutomator provides
only partial information about DOM trees. This prevents us from correctly inferring a set
of enabled inputs. For example, UIAutomator does not provide the z-index and display

attributes of DOM elements. Both attributes are frequently employed to control the visibility
of DOM elements, and not knowing the values for these attributes prevents us from inferring
a set of enabled inputs correctly. As such, our current implementation ignores the contents
of WebView components. Although we do not have a solution for this problem, it limits
only the maximum test coverage that SwiftHand can achieve and it does not restrict the
breadth of apps for testing.

Games. SwiftHand and DetReduce cannot test games, and we do not plan to support
games in the future. The most prominent reason for this is that games do not use a GUI
library developed to support typical apps. Instead, games have their own GUI system
internally and use only a single rectangular widget from an existing GUI library as a canvas
for rendering a snapshot of the internal GUI. As such, to a GUI testing tool—which does
not understand how games internally manage GUIs—games appear to have only a single
canvas widget. Therefore, testing a game at the GUI level requires building a new testing
infrastructure that understands how a game builds and manipulates its GUI. Further, games
also involve additional difficulties discussed above: concurrency, time dependency, external
dependency, and files.

Future Work

In the previous section, we discussed major limitations of SwiftHand and DetReduce. In
this section, we discuss broad open problems in automated GUI test generation and propose
future work.

Incorporating human knowledge. Although automated test generation tools are good
at quickly generating a large number of test cases, they cannot replace human testers. Rather,
human testers and automated tools should complement each other. Human testers are far
more proficient than automated test generation tools for certain types of tasks—for example,
a human tester can easily recognize a login screen during testing and quickly pass through
by providing a proper credential. An automated test generation tool, on the other hand, will

2https://developer.android.com/reference/android/webkit/WebView.html
3https://webkit.org/
4https://www.w3.org/DOM
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not be able to pass the login screen without being pre-programmed to behave properly when
facing this screen. The pre-programming approach does not scale because login screens of
different apps will look different and function differently. A more effective approach would
be to provide an interface through which a human tester can transfer knowledge about
such special cases to an automated test generation tool. A simple method would be for
the testing tool to receive a manually crafted set of test cases from a human tester. This
approach would allow SwiftHand to reach deep program states. However, DetReduce
would gain no advantage from this approach. A more advanced approach would be to infer
a set of meaningful subsequences from a set of manually created test cases. This would
benefit both SwiftHand and DetReduce. SwiftHand could use the inferred sequences
of actions as building blocks for constructing test cases, while DetReduce could maintain
the occurrence of these sequences as much as possible while reducing test cases to avoid
non-replayable test cases.

Test oracle. In order to achieve fully automated testing of a GUI app, an automated
test generation technique alone is not sufficient because a human tester must nonetheless
manually determine whether each test case diverges from the expectation. Automated test
oracle [97] is a technique to mitigate this problem. The role of a test oracle is to automatically
check the execution of test cases and to report when the execution diverges from the expec-
tation. One way to implement an automated test oracle is to export test cases to executable
test scripts. Once a test case is materialized as a script, a human tester can implement a test
oracle by adding assertions to the script. Typically, GUI test oracles extract values or infor-
mation from GUI components rendered on the screen [77], but this can result in scalability
issues because all test scripts must be modified and maintained manually. Another option is
to use a monitoring-oriented programming (MOP) framework [79], such as JavaMOP [58] or
RV-Droid [31]. MOP frameworks allow a programmer to inject runtime specification checks
into an existing program. Once specification checks are injected, the app will automatically
check whether the specification is violated at runtime. This approach saves a human tester
from the manual labor of modifying test scripts, but also has a higher entry barrier of imple-
menting specification-checking using a MOP framework. Another interesting open problem
is to develop a GUI app specific test oracle. For example, many GUI apps have a fragile
GUI layout problem; the layout is fragile if the layout does not render correctly on certain
screen resolutions. Checking the fragility of a GUI layout is a labor-intensive task because
it must be tested manually on various resolutions.
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