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Abstract

Innovations in mobile hardware and software need corresponding advances in the accurate assessment
of power consumption under realistic conditions. This is especially relevant for smartphone-based back-
ground sensing applications. Assessing the power consumption of such applications requires ease of use,
deployment in situ and well-understood error characteristics.

Existing measurement methods, based on external power meters or power models, are increasingly
unable to keep up with these requirements. External power meters require access to device batteries
and do not capture context-sensitive power drain. Power models must be rebuilt for each specific device,
adapted to each new OS version, and require administrator access to instrument fine-grained system-level
APIs. These limitations impede the inclusion of accurate, universal evaluations in the research literature.

We propose a simple and portable alternative, Zephyr, which infers an application’s power drain
using the relative State of Charge change rate (SoCCR) via the phone’s battery sensor. We validate our
methodology through experiments that characterize SoCCR on Android and iOS devices and show that
they are consistent with hardware readings, across identical phones, for the same phone over time and
over both slowly and quickly varying workloads.

The Zephyr implementation is modular, open source, and available for Android and iOS today.

This work is supported by the National Science Foundation, under grant CPS-1239552 (SDB). Author’s
addresses: K. Shankari, D. Culler, and R. Katz, Computer Science Division, University of California Berkeley;
J. Fürst, and P. Bonnet, IT University of Copenhagen; Y. Wang, Cornell University.

1 Introduction

Consider a researcher working in ubiquitous computing today. She has a novel application of background-
sensed data from smartphones that she wants to evaluate for publication. She is aware that there are
power/accuracy trade-offs inherent in inferring meaning from sensed data, and wants to include them in
her evaluation. She looks at the literature to see what prior ubiquitous computing projects have used, and
discovers that none of the techniques work any more.

She cannot use an external power meter, because the Nexus 6 used for testing does not have a removable
battery. When she does find an older Galaxy Nexus on eBay, it cannot be upgraded to the latest version
of Android. She cannot use the PowerTutor modeling app [16] from the Play Store, because it only gives
accurate numbers for the G1, G2 and Nexus One phones. She tries it anyway and discovers that on Android
7, it only displays the LCD power (Figure 1). She does find a few papers that use battery run-down tests,
which are simple, but she is not sure they will be accepted by the research community as sufficiently accurate.
Since the power measurement methodology is not the focus of the paper in which the studies appear, they
do not define a clear approach that she can re-use. When she complains to her friend who has just completed
an iOS-based application, he responds that his problem is more severe, since he has not been able to find
a single evaluation using iOS in the literature! There is a power evaluation problem for smartphone based
systems. In this paper, we characterize this problem and propose a solution.
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1.1 Power Evaluation Methods

Figure 1: Power tutor
on Android 7 with no
readings

There are three classes of methods for evaluating power consumption on smart-
phones, today, based on (i) models, (ii) external power meters or (iii) battery run-
down. We briefly review them.

1.1.1 Model-Based

Typically, a model estimates the power consumption of different components. A
trace captures system usage. Based on the trace, it is possible to infer how the
components are used and thus derive power consumption.

To build an accurate model, we need, at a minimum, a list of all the components
and the set of power states for each component. This list is already challenging to
compile for the wide variety of existing phones. Constant maintenance is required
to keep track of the power profile of evolving components.

To collect a trace of system usage we need to determine how applications and
Operating System (OS) features use phone components. New OS features like sensor
batching and sensor fusion [15] make it challenging to infer component usage from
application behavior. For example, consider an application running on Android 6+
that senses location every 10 seconds. The fused location API automatically chooses
between GPS, WiFi and cell tower sources to determine the location. Therefore, we
cannot assume that the GPS is invoked every 10 seconds. Sensor batching ensures
that although we may request updates every 10 seconds, the OS may choose to return
data faster or slower depending on the context1.

Systems such as PowerForecaster/PADA[9, 36] overcome this limitation by using /proc nodes to trace,
rather than infer, component access traces under various scenarios. While this reduces the predictive power
of the model—the power consumption can only be estimated for scenarios for which traces are available—
emulators can be used to quickly estimate power consumption for the entire set of collected traces. However,
increasing concerns about side channel attacks have resulted in Android 7+ restricting access to both /sys

and /proc nodes 2. This restriction is explicitly intended to remove the ability of regular applications to
sense the behavior of other applications (e.g. “/proc access can be used to monitor applications launching
or enabling phishing attacks”). This change already broke compatibility with most existing model-based
solutions (e.g., the popular PowerTutor, see Figure 1). On iOS, similar sandboxing has been in place since
iOS 2.03 4, released in 2008 5. Even if researchers in the field discover a loophole that again allows fine-grained
observation of system behavior, it is likely that it will be closed.

1.1.2 External Power Meter

The external power meter typically intercepts the smartphone battery terminals and measures instantaneous
voltage and current. The power consumption of a state (e.g., when an application is running or a component
is exercised) is computed by subtracting the baseline power consumption of the system from the power
consumption while in the state. This approach is frequently used to build power models for hardware
components.

Since this method relies on external instruments, such as an oscilloscope, the accuracy of the observations
can be independently established. Also, the external instrument is independently powered and transparent
to the phone hardware. As a result, the voltage and current can essentially be observed instantaneously with

1https://developers.google.com/android/reference/com/google/android/gms/location/LocationRequest, “All loca-
tion requests are considered hints, and you may receive locations that are more/less accurate, and faster/slower than requested.”

2https://issuetracker.google.com/issues/37091475
3https://www.theiphonewiki.com/wiki/Sandbox
4https://stackoverflow.com/questions/16026920/why-sandbox-in-ios-6-1-1-still-exists-for-app-even-after-i-have-jailbreak
5https://en.wikipedia.org/wiki/IOS_version_history\#iPhone_OS_2
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no observer effect. This allows fine-grained observation of uneven loads such as power spikes corresponding
to increased CPU or network activity.

The limitations of external power meters are well-known and have been extensively argued in the model-
based monitoring literature (e.g. [57, 41]): They are bulky, so they constrain power measurements to be
carried out in laboratory settings, decoupling the components of the accuracy v/s power trade-off. They
can only map the power drain of the entire phone, which makes it challenging to evaluate application-
specific impact. Finally, they require access to the battery terminals, which is vanishingly rare in modern
smartphones.

1.1.3 Battery run-down

This technique effectively treats the battery as a sensor that generates a single sample per experiment.
Similar to the external power meter, battery run-down tests also measure the power drain of the entire
phone - determining the application-specific impact is not trivial. Not all existing uses of this technique
seem to account for this complexity - some simply state that the average battery life of the app is n hours.
This is not rigorous because it does not account for the power consumption of system components, or the
differences in contexts that the phones are exposed to. The coarse sampling of the battery run-down method
also makes it hard to empirically observe differences in power consumption associated with sensing changes.

One technique to increase the granularity of this approach is to switch from battery life to battery charge.
Today, smartphones embed a fuel gauge chip that senses voltage and current values. They are converted
by the phone OS into a battery percent level, or State of Charge (SoC), and made available to applications
through the battery sensor. Although early fuel gauges had high instantaneous error [11], modern devices
which report both voltage and current, are reported to be within 2%±0.02 of external power meters [6]. The
accuracy of the State of Charge (SoC) provided by the phone OS, as compared to raw voltage and current
values measured by an external power meter is an open question.

1.2 Zephyr

All three methods of power evaluation have inherent limitations. What is the most simple and stable method
to evaluate the power consumption of smartphone-based systems? How accurate and consistent can such
evaluations be? In this paper, we focus on using the state of charge as an internal power meter. We propose
a methodology, Zephyr, that provides consistent, accurate and low overhead measurements for smartphone-
based applications. Zephyr uses SoC values provided by the phone OS over time to compute the SoC Change
Rate (SoCCR). It compares the SoCCR slope between runs of the application under controlled conditions,
and uses the difference to measure increased or decreased power consumption. To evaluate the power usage
of an adaptive sensing application, we use two phones of the same model, same OS version and same baseline
applications installed and exposed to the same stimuli. One phone runs the application; the other phone
is the baseline. The difference in SoCCR between the two phones represents the power consumption of the
application.

This minimalist approach ensures that Zephyr is: (i) easy to use, since it does not require access to the
battery terminals or training of power models, (ii) cross-platform, since it only relies on the phone’s built-in
battery sensor, (iii) usable outside the lab, since it allows mobility during measurements, and (iv) stable,
since the sensor is unlikely to be restricted even for normal apps on smartphones6.

In order to evaluate the accuracy of this approach, we explore characteristics of SoCCR on modern
smartphones. We first show that, under constant load, SoCCR measurements are consistent (0.43 – 1.62
root mean square error (RMSE)), both across identical phones and for the same phone over time. Next, we
show that applying varying loads, the SoCCR slope changes consistently across phones (0.2 – 2.6 RMSE).
This indicates that the using the difference in SoCCR can compensate for the effects of background sensing
system apps (if any). Zephyr has a configurable polling period. We show that it is able to observe coarse

6https://developer.android.com/training/monitoring-device-state/battery-monitoring.html “When you’re altering the fre-
quency of your background updates to reduce the effect of those updates on battery life, checking the current battery level and
charging state is a good place to start.”
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grained sensing changes directly, and is able to observe the cumulative effective of more fine grained changes
as well. Researchers can choose the polling granularity that is appropriate for their sensing project and
obtain the responsiveness that they need.

Our contributions are the following:

1. We start with a comprehensive survey of mobile system literature from 2011–2017 (MobiSys, UbiComp
and SenSys), and derive a set of requirements for the power evaluation problem (Section 2).

2. We describe Zephyr, the experimental procedure we propose. It accounts for the effect of standard
context-sensitive apps (e.g. Google Now) on the phone and isolate the effect of the app being evaluated
(Section 3.1).

3. We describe the architecture and implementation of a cross-platform smartphone app that can be used
to measure SoCCR and facilitate reproducible results (Section 4).

4. We characterize the behavior of SoCCR under various scenarios that demonstrate the viability of this
approach and estimate the error rate (Section 5).

Collectively, our contributions demonstrate that, with the proper methodology, it is possible to obtain
accurate and responsive power evaluation using only the built-in battery sensor on the phone. We posit that
the intuitive simplicity of our approach, combined with clearly documented results, will help researchers
conduct power evaluations in ubiquituous computing projects, even in the face of future mobile hardware
and software restrictions.

2 The State of Power Evaluation on Mobile Systems

We conduct a comprehensive literature review on how mobile systems researchers perform power evaluation
in their ubiquitous sensing projects. We then derive requirements for power evaluation in the context of
background sensing applications on smartphones.

2.1 Literature review on the extent of power evaluation

We surveyed every full paper published in the UbiComp proceedings for years 2011–2016 (480 papers in
total). Figure 2 shows the percentage of papers focused on background sensing applications on smartphones
and the percentage of those that did not include any power evaluation. We generated these results by adding
the following labels to every paper on the list. Note, that we were conservative in assigning labels—in case
of ambiguity, we assumed that the project was not focused on background sensing applications, or that the
power was evaluated.

(i) smartphone-based: whether the data was sensed using a smartphone or smartwatch, as opposed to set
of sensors connected to a microcontroller;

(ii) context-sensitive: if smartphone-based, whether the sensing occurred in the background depending on
some context (e.g., location), or only when users explicitly performed some action; and

(iii) power evaluated: if this was a background sensing project running on COTS smartphones, whether
there was a quantitative, empirical power evaluation.

Figure 2 shows that background sensing applications on smartphones accounted for a consis-
tent 15–25% of papers every year. Of these papers, 55–70% of papers had no quantitative
power evaluation.

We hypothesize that the reason for this absence of power evaluation is the lack of a standard, easy to
use evaluation methodology. Our survey showed that several of the papers that skipped the evaluation
were sensitive to power considerations. For example, [13] attempted to minimize the impact on the device’s
battery life by using event-driven operation with no processing on the phone, while [22] stated that users
reported problems with the power consumption of their applications.
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Figure 2: Percentage of papers with smartphone-based background sensing applications, and no power
evaluation. Smartphone-based sensing is an important area of ubicomp, accounting for at least 15% of the
papers every year, and a majority of those papers (min=55%) did not include a power evaluation.

2.2 Literature review on the techniques for power evaluation

We then looked more carefully at the papers that did include a power evaluation and identified the techniques
used. Since there were only a small number of such papers, we expanded our search to papers published
in MobiSys and SenSys from 2011–2016. We identified a combined 48 papers that both utilized continuous
sensing and reported power analysis of their design. As we can see from Table 1, we find measuring
power with an external hardware power monitor to be the dominant technique for evaluating
smartphone power consumption. Other techniques, in decreasing order of popularity, are battery run-
down tests, ad-hoc power models, numbers without provenance, and PowerTutor.

Table 1: Power evaluation techniques used in UbiComp 2011–2016

Mobile sensing applications Power evaluation technique n

Caloric expenditure of bicyclists [58]; Automatic labeling of transit stations
semantics [12]; UbiTouch: smartphones as touchpads [54]; Area classification
for fingerprint based indoor localization [19]

PowerTutor: model-based power esti-
mation app

4

Indoor/outdoor detection [62]; Bus arrival time estimation [61]; Social
fMRI [1]; Loci: semantic location services [28]; Crowd++: speaker count [56];
Monarca:disease insight [14]; CrossNavi: crossroad navigation for the
blind [45]; Geofencing 2.0 [43]; MaLoc: Localization [55]; Room-level Lo-
cating System [33]; Recognizing Eating Moments [53]; RunBuddy [18]

Battery run-down test 12

Transportation mode detection [20]; Indoor/outdoor detection [42]; Driv-
ing routes detection [39]; Energy-efficient trip detection [23]; ARIEL: Room
fingerprinting [25]; CAS: Context-aware application scheduling [31]7; Oppor-
tunistic Position Update for LBS [4]8; PocketParker [38]; Experiences with
eNav [21]

Ad-hoc power model: built offline
using published specs for the phone
used, or measurements from an exter-
nal power monitor, consumption com-
puted through component usage traces
or estimates

9

Device interaction [51]; Transportation mode detection [44]; Hotword de-
tection [59]; Meeting membership detection [52]; Pulse: automatic content
rating [5]; NLify: spoken natural language interface [17]; Headio: Heading ac-
quisition [50]; Storage-aware energy savings [40]; AFV: application function
virtualization [29]; GreenTouch: energy-efficient cellular radios [3]; Sensing
WiFi packets in the air [7]; MobileMiner [48]; SymDetector [49]; EnTrack [32];
Experiences with eNav [21]; Sandra helps you learn [37]

External power monitor: power mea-
surement of the whole design

16

Indoor air quality monitoring [24]; StressSense: through audio [34]; Dy-
namic home screen based on app usage [47]; Place-centric crowdsourcing [8];
Smartphone addiction detection [46]; Tasker: mobile crowdsourcing [26]9;
data hiding for sensitive smartphone data [35]10; DeepEar [30]

Unclear; numbers provided without
details on their provenance

7
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2.3 Shortcomings of power evaluation in the literature

Our review identifies the shortcomings of the power evaluations performed for smartphone-based background
sensing applications in the literature. They indicate a general, deeper problem with prevalent evaluation
methods.

1. Accuracy isolated from power. One common theme across the papers we studied is that system
accuracy and power evaluation is done in isolation. Accuracy is evaluated outside the lab by following
fixed traces or recruiting volunteers. However, most power measurements are collected in a controlled
laboratory setting. This practice persists even for mobility-based designs such as indoor/outdoor
detection and transportation mode detection [20, 44, 42, 62]. The segregation between evaluation
of accuracy and power hinders a more thorough understanding of the trade-off between these two
fundamental design goals.

2. Lack of cross-platform evaluation. Most recent power evaluations were only done on Android
(89%), with some older evaluations on Nokia and Tizen phones and only on two (4%) on iPhones
(despite its current U.S. market share of > 30% [27]). This can be explained by various reasons—
Android is a (partly) open source project, the phones are cheaper, and most older phones have easy
physical access to the battery terminals. However, focusing on only one of the two popular smartphone
platforms limits the generality of the results. For example, although [10] aims to evaluate the power
consumption of cross-platform frameworks, their experimental evaluation restricts itself to Android.
The authors’ stated reason is that iOS devices do not provide access to the battery terminals.

3. Inability to integrate with power-saving OS features. Evaluations are performed on older
smartphones that lack hardware support for new, battery-saving OS features in order to preserve
access to the battery terminals for external power meters. This reduces the applicability of the results,
since real-world deployments will have access to these features. For example, [44] was unable to evaluate
the effect of sensor batching because it was only supported on Android 5+, and they were “. . . unable
to tap into the battery of the Nexus 5 for power measurements”.

4. Use of invalid or obsolete models. The authors in [58] used PowerTutor with “Motorola Droid,
Samsung Nexus S, and Samsung Galaxy 2” phones in 2012, although PowerTutor does not support
them. On the other hand, in spite of having their work published in 2016, [12] had to resort to using
a HTC Nexus One phone, released in 2010, in order to be compatible with PowerTutor.

2.4 Requirements for Power Evaluation in Context-sensitive Sensing Projects

We have shown that power evaluations in the mobile systems literature suffer from various shortcomings.
These shortcomings could be overcome by an easy to use power evaluation technique for background sensing
applications on smartphones with a known error rate, and a standard experimental method, using stock
OSes. Any solution to the power evaluation problem should satisfy the following requirements:

1. It should be able to accurately characterize the power consumption of one single application, which
is the one that is being evaluated,

2. It should be able to exercise a variety of realistic scenarios, evaluating the power v/s accuracy
tradeoff under a combination of those scenarios.

3. It should be able to use off-the-shelf software on stock phones with minimal configuration. Our
literature survey (Table 1) shows researchers use existing power models, even when the models are not
applicable to their hardware.

4. It should be well-understood with an clear experimental procedure, and a known estimate of the
measurement error under that procedure.
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We can also consider characteristics of the solution that are desirable, but not strictly required.

1. It should be configurable, supporting both fine-grained and coarse-grained measurement, as applicable
for the needs of the project.

2. It should be reproducible, with data stored automatically and made available for download and analysis
in the future.

3. It should be cross-platform, supporting android and iOS devices at a minimum.

3 The Zephyr Way

Our approach is to substitute the popular, but limited, external power meter (see Section 2) with the internal
power meter represented by the battery sensor. Since it is built into the phone, the battery sensor addresses
the shortcomings of external power meters - it is portable, and does not require any hardware modifications to
access. It also meets several of the requirements in Section 2.4, since it is: (i) cross-platform, on both Android
and iOS; (ii) easy to use, available without unlocking the bootloader and rooting the phone; (iii) readily
available, through official APIs to allow applications to adapt behavior based on the SoC.

3.1 Methodology

Our technique is simple and builds on relative measurements against a baseline. Concretely, in Zephyr, to
compare n different sensing regimes to each other, we perform n + 1 runs of the experiment on identical
phones, one run for each sensing regime (e.g., different granularities for localization) and one run for the
baseline.

Runs can executed in parallel, serially or with a hybrid of both. For serial runs, we use one phone and
expose it to the same environment over n + 1 time periods, while running n sensing regimes. For parallel
runs, we use n + 1 phones, exposed to the same environment, for one time period, while running n sensing
regimes. This flexibility allows researchers to evaluate their projects on configurations ranging from a single
phone (taking significantly longer time, but fewer resources) up to a fully fledged parallel evaluation using
additional hardware.

Example: Location Tracking. A researcher wants to explore the design space for her new location
tracking system in terms of localization accuracy and power consumption. She first identifies a sequence of
trips that represent a typical day. Then, she executes the sequence of trips in multiple runs, one run per
phone. For a serial run, she can perform the sequence with no tracking on day one (for the baseline), with
high accuracy tracking on day two and with medium accuracy tracking on day three. For a parallel run, she
can use three phones—phone 1 with tracking turned off, phone 2 with high accuracy tracking and phone 3
with medium accuracy tracking—and perform the sequence of trips while carrying all phones simultaneously
during a single day. If she now wants to compare her approach against other location tracking projects (e.g.
[28, 39]), she can include runs of the alternative approaches, either in parallel or in serial.

3.2 Rigorous Experiment v/s Daily Activities

Precisely defined experiments—the sequence of trips in above example—are important for the serial case to
ensure that the phone is exposed to the same environment on every run. In contrast, parallel runs can be
less prescriptive—it is possible to skip the definition of the trips since the phones are exposed to the same
environment by virtue of being carried around together. So, given sufficient hardware resources, this allows
for in-the-wild tests, where volunteers are handed n + 1 phones and asked to carry them around during
unscripted daily activities.

Zephyr also supports hybrid solutions in which we have m phones, for m < n + 1 and we run the
experiment in multiple serial batches of size m. If we are able to define a rigorous experiment, we end up
with dn+1

m e serial batches, since we only need to run the baseline once. If we want to use a more natural
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experiment, we need d n
m−1e batches, since we need to include a baseline phone as part of each batch. In

the second case, regimes in different batches cannot be directly compared against each other. Instead, each
must be compared to the baseline in its batch and only then can the results be compared against each other.

3.3 Granularity and the observer effect

In software monitoring, because we read the battery sensor from the same phone whose battery drain we
measure, we could be subject to the observer effect, in which the act of measuring the value can change it.
In general, since we compare values with the baseline, the observer effect will cancel out and we can measure
fine grained values.

However, if we want to include the impact of OS-level optimizations such as Android’s Doze mode, we
need to ensure that the Zephyr is passive for long enough to activate the OS optimizations. In that case, we
read the SoC with a large interval (tm) and Zephyr cannot be used for fine grained measurement. However,
although Zephyr cannot measure fine-grained transitions when used in this mode, it can still measure the
cumulative effect of those transitions. If we keep reducing the granularity, we will eventually end up with
a single reading per experiment, which reduces to the battery run-down methodology.

Concretely, consider a situation in which the sensing regime switches between states {S1, S2, S3 . . .} with
an interval ta. If ta < tm, we may not get any readings in some of the states, which means that we may
not be able to model the power consumption in each state. Even so, the impact of power consumption
changes in each state accumulates, and when we compare against the baseline, Zephyr is able to assess
power consumption over the duration of the experiment, or over a representative set of daily activities.

3.4 Identical phones

Since we rely on relative measurements to cancel out the effect of the baseline power drain, we need to
ensure that the compared phones are identical. Concretely, this means that we use the same phone model, OS
version, carrier settings, OS settings (data-gathering settings like Android location API, automatic updates),
WiFi and Bluetooth state (e.g., connected to same network, same pairing state) and set of applications.
In addition, automatic updates of all applications, including system components, should be turned off.
Otherwise, an update could change the energy profile, and since it can be applied at different times on
different phones, the power consumption across phones may no longer be consistent.

4 Implementation

Zephyr periodically reads the battery level (SoC) through framework APIs, stores it locally in a database
and periodically posts the data to a remote server using HTTP requests to a REST API. The information
read includes SoC and charging state. These two sensor values represent a common denominator between
Android and iOS.

Zephyr consists of two periodic tasks, read sensor and server sync. Each of these tasks can be triggered
by multiple possible events. A summary of these events, along with the one that we chose for our current
implementation on Android and iOS, is shown in Table 2.

Table 2: Periodic invocations and triggers across platforms

read sensor server sync

silent remote push iOS iOS

local periodic scheduling Android Android

other sensor callback - -
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Figure 3: iOS background fetch: We use local, periodic scheduling on different time intervals. On iOS, events
are not scheduled reliably because of OS power-saving features that make scheduling context-dependent.

We align read and sync tasks by performing them sequentially in time for both platforms (i.e., a sync task
is triggered, reads sensor values and performs the HTTP request to publish to the REST API). However,
the trigger event is distinct for both platforms: On Android, we start a sync task based on local periodic
scheduling, on iOS we use silent push.11 We use silent push instead of local scheduling on iOS, because the
locally scheduled background fetch mechanism is context-sensitive, without time guarantees, and thus not
suitable for interval-based measurements. Figure 3 shows the results of using local, periodic scheduling on
iOS for different time intervals. It empirically shows that scheduling features on iOS are unreliable. Similarly,
on Android 6.0+, local scheduling is affected by doze mode, but despite that, our experiments have shown
that it is a reliable scheduling method and occurs at the same time across phone instances. We did not
tie the read sensor task or the server sync to callbacks with other sensor values (third row from Table 2).
That is because if the base sensor (i.e., the sensor that a power-measured application uses, e.g., location)
was context sensitive, it would add another variable to the frequency of power measurement, making the
following results harder to interpret. Reducing the overhead of Zephyr (see Section 5.3) by piggy-backing
power measurements on existing callbacks is a topic for future work.

On the server, we receive time series data from the phones, convert the Android and iOS data structures
into a common interface, and store time series data for each phone instance. The data in the repository can
then be pulled to a local MongoDB database for further analysis, using standard statistical tools such as
Python, Matlab and R.

We run a public server instance that also stores similar time series data from regular user phones12. Users
of Zephyr can choose to use this infrastructure (and make their experimental data public), or configure their
own server using our implementation. The data underlying all graphs and tables in this paper is publicly
available, so others can reproduce our results.

5 Evaluation

We evaluate our proposed technique for consistency, accuracy, and overhead. We evaluate the consistency
by comparing the battery drain of identical phones exposed to the same environment. We study how Zephyr
captures power consumption for workloads that vary in time. We evaluate the accuracy by comparing the
power drain reported by Zephyr with the results from hardware power monitoring. Finally, we show that a
30 minute measurement interval incurs negligible overhead.

These results collectively demonstrate that Zephyr is an alternative to traditional methods for determining
the relative power drain of continuous sensing applications on modern phones in the wild.

Our evaluation devices consist of four iPhone6 (iOS 9.3, 2014), four Nexus 6 (Android 6.01, 2014), two
Nexus 7 (Android 6.01, 2013) and two Moto E (Android 6.0, 2015). The software version and settings are

11Silent push describes a notification that is sent to an application on the user’s phone, waking it up for processing, but
without displaying notification to the user [2].

12URL removed for double blind reviewing.
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Figure 4: Continuous location tracking on different devices. We use multiple instances of each phone model. Phones
continuously track their location on high accuracy, while being placed in the same location.

consistent across devices of the same model. Besides the Zephyr application, all devices only have the set of
applications that are pre-installed.

5.1 Consistency

We evaluate the consistency of our approach for (1) parallel and (2) serial application of our methodology.

5.1.1 Validity of the parallel technique

We show that the drain across multiple phones in the same environment and with the same regime is
consistent, for constant and variable workloads.

Constant Workload Our constant workload benchmark consists of running high-accuracy location track-
ing on all phone instances while phones are stationary. I.e., on Android, we use android.location.Criteria.ACCURACY HIGH

and on iOS we use kCLLocationAccuracyBest. We then continuously track the phones’ location until they
are fully discharged. Zephyr is configured with a measurement interval of 1 hour.

Fig. 4 depicts the result for this experiment. It shows that phone instances of the same model follow the
same battery drain pattern. Nexus 7, iPhones and Nexus 6 phones all show similar battery drain rates. The
Moto E phones, however, are separated from the other models. Concretely, the average drain rate between
phones has low standard deviation, and the root mean square error (RMSE) is low (Table 3). This shows
high consistency between phones and a good fit to a linear model.

We conclude that battery drain rate depends on the phone make and model, and battery drain rate can
differ substantially on different phone types for the same benchmark.

Table 3: Battery drain across phones for a constant location tracking workload: Smartphone instances of the same
model show similar battery-drain behavior.

Model Linear fit RMSE Quadr. fit RMSE Avg drain rate (% drop/hr)

iPhone6 0.438 ± 0.091 0.343 ± 0.059 -4.34 ± 0.126
Nexus6 1.193 ± 0.141 0.372 ± 0.120 -4.52 ± 0.136
Nexus7 1.239 ± 0.198 0.765 ± 0.345 -4.13 ± 0.141
MotoE 1.692 ± 0.040 1.484 ± 0.319 -2.18 ± 0.056
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(a) Fast variable workload (b) Slow variable workload

Figure 5: Video playback at different brightness on device pairs. Vertical lines indicate state changes, slope changes
appear to lag.

Variable Workload Our variable workload consists of a white screen video playback on pairs of iPhone
6 and Android 6 phones. In order to induce controlled variability, we change the screen brightness, cycling
between 100%, 50% and 0%.13 We perform two permutations of this workload: (1) a fast adapting workload
and (2) a slow adapting workload. For the fast adapting workload, the brightness is “adapted” every 15 min
while the battery value is measured every 30 minutes. In the slow adapting workload, the brightness is
changed every 2 hours while the measurement interval remains 30 min.

Fig. 5 depicts the results for pairs of phone instances for both fast adapting (a) and slow adapting (b)
workloads. As expected, in the fast adapting workload, we are unable to detect the 15 min interval state
changes with a 30 min measurement interval. However, the overall drain is consistent across instances. In
the slow adapting workload, we are able to detect small changes in the slope when the state changes. Note
the divergence in the iPhone slopes when auto-brightness was inadvertently turned on, and the return to
parallel once it was fixed. Compared to the constant workload, battery drain rate across phone instances
is less consistent (0.2% - 2.6% RMSE). However, the results are consistent enough to allow the comparison
between different variable workloads.

5.1.2 Validity of the Serial Technique

Researchers might have only a limited number of phones available. We now evaluate Zephyr’s serial technique,
in which experiments are performed on the same model and environment, but at different times. Concretely,
we show that the battery drain on the same phone, but across multiple identical days, is consistent. We use
the constant workload described in Section 5.1.1.

Our results are summarized in Table 4. They show that the variation in the average drain rate is low
(max. < 0.233 and for most instances < 0.1).

In summary, all our experiments show highly consistent results across smartphone instances of the same
model, for constant and variable workloads and for Zephyr’s parallel and serial technique. Next, we look at
accuracy in relation to hardware based power monitoring.

5.2 Accuracy

In order to show that Zephyr accurately evaluates actual power drain, we compare its results against a baseline
obtained through hardware measurements. This required the use of a phone with removable battery, for
which we picked a Galaxy Nexus Phone (Android OS 4.4.2) from 2011. This phone model has also been
used in several of the papers discussed in Section 2.

13Screen brightness is one of the main impact factors on a smartphone energy consumption [60].
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(a) HW Measurement Setup (b) SW vs HW SOC

Figure 6: Hardware validation of continuous workload

Figure 6a shows the experimental setup, with the phone’s battery terminals used for connecting to the
hardware power source. We measure voltage and current simultaneously using two digital multimeters. Then
we compute the power consumption by multiplying the current and voltage measurements. To be able to
compare these hardware measurements with our software based SoC measurements, we obtain a comparable,
hardware-based SoC value as follows: After a full discharge, we integrate measured power values over time
to uncover the (initial) amount of energy stored in the phone battery in Joules. This allows us to compute
the “hardware SoC” by dividing the amount of energy remaining by the initial capacity in subsequent
experiments.

5.2.1 Constant Workload

Our constant workload uses the white screen video technique from Section 5.1.1, except that we fix the screen
brightness at 100% to have a constant power draw. We then measure a full discharge cycle using Zephyr
and both multimeters. We compute the “hardware SoC” as explained above.

Figure 6b shows the results, comparing between hardware and software SoC for a constant workload. We
achieve a corresponding error of 4.27% in the battery drain rate. Note that the Galaxy Nexus phone is a five
year old model. The aging battery in Galaxy Nexus and improved fuel gauge technology inside newer Nexus
phones explain why the change in SoC of the Galaxy Nexus (Figure 6b) is not as linear as a comparable
result for the Nexus 6 (Figure 4).

5.2.2 Fast Variable Workload

As a fast varying workload, we use the fast adapting brightness workload from Section 5.1.1 with 15 min
intervals of 100%, 50% and 0% brightness levels, repeated twice, and measured every 30 mins. Again, we
use the same technique as in Section 5.2.1 to compute a hardware based-SoC as our baseline.

Table 4: Avg. drain rate (mean ± std dev) across two days

Model phone1 phone2 phone3 phone4

iPhone 6 4.27
±0.021

4.18
±0.085

4.24
±0.057

4.47
±0.13

Nexus 6 4.54
±0.071

4.32
±0.028

4.53
±0.028

4.49
±0.233
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Our results are depicted in Figure 7. They show that Zephyr yields a ratio of 11.443 for the cumulative
power drain for the fast variable workload, compared to the baseline. The hardware measurement yields
13.368 for the same ratio, a difference of 14.40% between Zephyr and hardware-based monitoring. Fig 7 also
shows a strong correlation between the slopes representing both the experiment and the baseline. Further, as
expected, because the workload varies faster than we can measure it, the software slope does not vary with
the workload state. The hardware slope does show small variance at the middle of each cycle, but the lines
converge again at the end of each cycle, indicating that Zephyr is able to accurately measure the cumulative
effect of quickly varying workloads when we extend the runtime of experiments.

Figure 7: Hardware validation for a quickly varying workload where fa(1/15m) > fm(1/30m)

5.2.3 Slow Variable Workload

We now investigate if we can also detect the state of varying workloads with Zephyr. Note that this is not
necessary for the benchmarking in most of the context-sensitive sensing papers discussed in Section 2, where
the daily battery impact of an application is paramount.

In our experiment, we increase the time in each state of the varying workload (see Section 5.1.1) to
be greater than Zephyr’s measurement interval. We expect to be able to see a change in power drain, as
reflected by a change in slope, for both Zephyr and hardware-based measurements. We switch between 100%
brightness and 0% every 20 min, while measuring every minute.

Figure 8a shows the raw hardware measurements, while Figure 8b shows hardware and software based
SoC. Note that, the hardware and software plots are offset because only one starts with the baseline. However,
the plots show a clear parallel pattern. Further, the mean power drain ratio reported by Zephyr is 13.224,
while that reported by the hardware is 11.616, a difference of only 13.845%.

In conclusion, Zephyr shows only small error rates (≈ 10%) when compared to hardware based mea-
surement. Detecting the state of variable workloads with Zephyr is possible to some extent, limited by the
granularity of the phone’s fuel gauge, the ratio between Zephyr’s measurement interval and the interval of
the variable workload, and OS-level restrictions on background execution. However, detecting such variable
workloads is not required for most context-sensitive sensing papers that we surveyed in Section 2.

5.3 Overhead

Lastly, we investigate the overhead of Zephyr itself by investigating its observer effect on power consump-
tion. In our experiments, we run Zephyr with different measurement intervals to measure unloaded power
consumption. We then use our previously described external power meter setup to directly measure the
power consumption of the baseline, and of Zephyr at multiple granularities.

Figure 9a and Table 9b show the results for multiple runs, using different Zephyr measurement intervals
from 1 min to 30 min as well as Zephyr not running in the background (no sync). As can be seen in Table 9b,
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(a) Raw power readings (b) HW v/s SW drain

Figure 8: Hardware validation for a slowly varying workload where fa(1/20m) < fm(1/1m). The lines are offset
because HW monitoring started with standby while software monitoring started with the experiment.

periods longer than 30 min result in negligible power overhead (< 0.001 W).
In conclusion, Zephyr’s overhead is small compared to the energy impact of the application under mea-

surement when using sensible measurement intervals (30 min). Besides that, its overhead is neutralized by
Zephyr’s methodology that compares application measurement against baseline measurements.

Figure 9: Observer effect at various measurement intervals. The graph does have error bars but they are almost
invisible since the standard deviation is very low.

(a) Knee at 30 mins (b) Low std dev

mean (W) overhead (W) std

1 min 0.148 0.042 0.005387
10 min 0.112 0.006 0.000306
30 min 0.107 0.001 0.000283
no sync 0.106 - 0.000950

6 Conclusion

With Zephyr we propose a software-based smartphone power monitoring technique that overcomes short-
comings of traditional power monitoring tools. Zephyr enables simple power consumption monitoring across
platforms and in the wild by relying solely on software reported State of Charge (SoC) data. Our evalua-
tion has shown that this is a valid and accurate way to evaluate power drain of continuous mobile sensing
designs. In the presence of the limitations of existing power monitoring techniques and the shift towards
non-removable batteries in the mobile industry, we hope our proposed technique can help simplify the power
monitoring process, enable more testing under real-world conditions and lead to a better understanding
of the power/accuracy trade-off of design decisions. Looking forward, we would like to initiate a discussion
among mobile researchers that leads towards the establishment of a simple and reproducible power evaluation
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methodology without relying on native power measurements. All our code is freely available14.
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