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Abstract

Learning to Navigate in Visual Environments

by

Peter Jin

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Kurt Keutzer, Chair

Artificially intelligent agents with some degree of autonomy in the real world must learn
to complete visual navigation tasks. In this dissertation, we consider the learning problem of
visual navigation, as well as implementation issues facing agents that utilize learned visual
perception systems. We begin by formulating visual navigation tasks in the setting of deep
reinforcement learning under partial observation. Previous approaches to deep reinforcement
learning do not adequately address partial observation while remaining sample-efficient. Our
first contribution is a novel deep reinforcement learning algorithm, advantage-based regret
minimization (ARM), which learns robust policies in visual navigation tasks in the presence
of partial observability. Next, we are motivated by performance bottlenecks arising from large
scale supervised learning for training visual perception systems. Previous distributed training
approaches are affected by synchronization or communication bottlenecks which limit their
scaling to multiple compute nodes. Our second contribution is a distributed training algorithm,
gossiping SGD, which avoids both synchronization and centralized communication. Finally,
we consider how to train deep convolutional neural networks when inputs and activation
tensors have high spatial resolution and do not easily fit in GPU memory. Previous approaches
to reducing memory usage of deep convnets involve trading off between computation and
memory usage. Our third and final contribution is an implementation of spatially parallel
convolutions, which partition activation tensors along the spatial axes between multiple
GPUs, and achieve practically linear strong scaling.
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Chapter 1

Introduction

For artificially intelligent systems to fully participate in the physical world, they must learn
to do some basic tasks on their own. Arguably, among the most interesting basic tasks
is navigation, which simply consists of moving toward a destination in the world. Why is
navigation interesting? Although motion and navigation are not obviously requisite for AI,
we reason that freedom of motion in the physical world contributes to an agent building richer
internal representations of space than if the agent were stationary or restrained. Autonomy
itself can also be broadly interpreted to encompass both the construction and the utilization
of internal representations of an external environment [5]. So, the capability to navigate
suggests to us a richness of spatial representation and entails autonomy, which would seem
crucial for participation in the physical, spatial world.

Precisely, we are interested in having artificial agents learn to complete visual navigation
tasks, during which the agent observes images of the world around it, and based on progress
toward its objective (i.e. reach a goal position) the agent decides on and performs an
action (e.g. move forward, turn left). We think of visual navigation as comprising a “visual
perception” component and a “control and decision-making” component. State-of-the-art
approaches to learned visual perception are based on the training of deep convolutional neural
networks [53]. We also pose the learning of visual navigation tasks in the setting of deep
reinforcement learning under partial observation: a visual navigation task is represented
as a partially observable Markov decision process (POMDP), where states correspond to
configurations of the world, observations correspond to sequences of images, and actions
correspond to motion, and where policies or other function approximations are parameterized
by deep convnets.

1.1 Contributions of This Thesis

In this dissertation, we examine two varieties of problems related to learning visual navigation
tasks. The first problem class is concerned with how to solve the fundamental learning problem
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CHAPTER 1. INTRODUCTION

of visual navigation, which we posed above as deep reinforcement learning under partial
observation. Previous deep reinforcement learning approaches based on policy gradients and
Q-learning do not adequately address partial observation while remaining sample-efficient.
We take inspiration from a family of methods based on counterfactual regret minimization
which are proven to be robust under a form of partial observation [104], and as a result, we
develop a novel deep reinforcement learning algorithm, advantage-based regret minimization
(ARM). We find that ARM is able to learn strong policies compared to baseline methods in
representative visual navigation tasks in the presence of partial observation perturbations.
This work was previously published as [45].

The second problem class can be summarized as systems considerations associated with the
implementation of learning. One problem in this class is that of scaling up supervised learning
for perception to very large datasets by distributed training, while avoiding synchronization
or communication bottlenecks that hamper existing synchronous and asynchronous methods.
The building block we employ is the family of peer-to-peer gossip protocols, which, when
combined with stochastic gradient descent (SGD), yields a novel gossiping SGD algorithm
that is amenable to large scale distributed training for supervised learning. Gossiping SGD
avoids both the communication bottleneck of comparable asynchronous methods [103] and
the synchronization bottleneck of synchronous SGD, while still scaling to 16–32 nodes of
a GPU supercomputing cluster for training a ResNet to classify ImageNet. This work was
previously published as [43].

Another problem in the class of systems considerations concerns the training of deep
convnets on high resolution inputs and activation tensors, which can surpass the limited
memory capacity of GPUs. We develop a novel implementation of spatially parallel convolu-
tions for multi-GPU systems, inspired by old ideas for distributing stencil codes in scientific
computing. Interestingly, our implementation of spatially parallel convolutions on multiple
GPUs often attains near-linear speedups, and occasionally attains superlinear speedups,
compared to baseline single-GPU convolutions. This work was previously published as [44].
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Chapter 2

Advantage-based Regret Minimization

2.1 Introduction

In this chapter, we focus on the problem of learning to complete visual navigation tasks:
learning to autonomously move from one point to another in 3D environments with access only
to first-person perspective images. We pose the problem of learning to visually navigate within
the problem setting of reinforcement learning under partial observation. The difficulty of
learning to navigate in visual environments largely arises from the effects of partial observation.
Among these effects, three are especially relevant to reinforcement learning from images.
First, observed images obtained in first-person perspective are projections of the full 3D
state of the environment and are naturally partially observed. Second, images may contain
substantial occlusion, whether due to the effects of 3D perspective or due to perturbation
of the image acquisition process. Third, an agent actually observes a sequence or history of
images, but practically only a finite memory of recent images may be stacked together into
an “observation.”

Many reinforcement learning problems of practical interest have the property of partial
observability, where observations of state are generally non-Markovian. Practical deep
reinforcement learning algorithms fall into two broad classes, neither of which satisfactorily
deals with partial observability despite the prevalance of partial observations in the real
world. One class of algorithms consists of value function-based methods such as deep Q-
learning [65, 66], which are known to be highly sample efficient but generally assume a
Markovian observation space. The other class of algorithms consists of Monte Carlo policy
gradient methods such as trust region policy optimization [83], which do not need to assume
Markovian observations but are less sample efficient than value function-based methods.
Some policy gradient methods such as advantage actor-critic [64] introduce the Markov
assumption through a critic or state-dependent baseline to improve sample efficiency.

There are two common workarounds for the problem of partial observation: (a) learning
policies and value functions on finite length observation histories, and (b) learning recurrent
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CHAPTER 2. ADVANTAGE-BASED REGRET MINIMIZATION

policies and recurrent value functions. Finite length observation histories concatenate the
most recent raw observations into a stack of observations, and are a simple but effective
technique to approximate the appearance of full observability. Recurrent functions can
potentially incorporate an infinite observation history, but they can be harder to optimize.
When using either finite length observation histories or recurrent functions, the same value
function-based methods and policy gradient methods are employed with their respective
tradeoffs in partially observable domains.

We are interested in developing methods that combine the best of both value function-
based methods and policy gradient methods for partial observable domains. That is, can we
develop methods that are sample efficient but are also robust to partial observation spaces?

Our contribution is a new model-free deep reinforcement learning algorithm based on
the principle of regret minimization which does not require access to a Markovian state.
Our method learns a policy by estimating an advantage-like function which approximates a
quantity called the counterfactual regret. Counterfactual regret is central to the family of
counterfactual regret minimization (CFR) [104] algorithms for solving incomplete information
games. Hence we call our algorithm “advantage-based regret minimization” (ARM).

We evaluate our approach on three partially observable visual reinforcement learning tasks:
first-person 3D navigation in Doom and Minecraft [50, 46], avoiding partially observed objects
in Doom, and playing Pong with partial observation perturbations [3]. In our experiments, we
find that our method is more robust and offers substantial improvement over prior methods
on partially observable tasks.

2.2 Related Work

Deep Q-learning and policy gradient methods

Deep reinforcement learning algorithms have been demonstrated to achieve excellent results
on a range of complex tasks, including playing games [66, 72] and continuous control [83,
58, 56]. Prior deep reinforcement learning algorithms either learn state or state-action value
functions [65], learn policies using policy gradients [83], or perform a combination of the two
using actor-critic architectures [64].

Methods based on learning Q-functions can use replay buffers to include off-policy data,
accelerating learning [58]. However, learning Q-functions with Bellman error minimization
typically requires a Markovian state space. When learning from partial observations such
as images, the inputs might not be Markovian. [65] introduced the concatenation of short
observation sequences. Prior methods [36, 72, 64, 38] have proposed to mitigate this issue by
learning recurrent critics and Q-functions, that depend on entire histories of observations.
The recurrent deterministic policy gradient [38] for partially observable control uses a similar
DDPG-style estimator as used in ARM (see Section 2.3).
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CHAPTER 2. ADVANTAGE-BASED REGRET MINIMIZATION

Policy gradient methods typically do not need to assume a Markovian state, but tend to
suffer from poor sample complexity, due to their inability to use off-policy data. However,
all of these changes increase the size of the input space, increase variance, or make the
optimization problem more complex. Our method instead learns cumulative advantage
functions that depend only on the current observation, but can still handle non-Markovian
problems.

Other related work

The form of our advantage function update resembles positive temporal difference methods
[74, 35]. Additionally, our update rule for a modified cumulative Q-function resembles the
average Q-function [1] used for variance reduction in Q-learning. In both cases, the theoretical
foundations of our method are based on cumulative regret minimization, and the motivation
is substantively different. Previous work by [78, 77] has connected regret minimization to
reinforcement learning, imitation learning, and structured prediction, although not with
counterfactual regret minimization. Regression regret matching [98] is based on a closely
related idea, which is to directly approximate the regret with a linear regression model,
however the use of a linear model is limited in representation compared to deep function
approximation.

Finally, regret and value functions both typically take the form of expectations in re-
inforcement learning. An alternative view of value functions in RL is through the lens of
value distributions [2]. A connection between regret and distributional RL could lead to very
interesting future work.

2.3 Advantage-based Regret Minimization

In this section, we provide some background on counterfactual regret minimization, describe
ARM in detail, and give some intuition for why ARM works.

Counterfactual Regret Minimization (CFR)

First, we give a reinforcement learning-centric exposition of counterfactual regret minimization
(CFR) [104, 6].

The CFR model for partial observation is as follows. Let S be the state space. Let I
be the space of information sets: an information set I ∈ I is a set of states s ∈ I, where
s ∈ S, such that only the information set I is directly observable, and the individual states
contained in I are hidden. An information set I is therefore a kind of aggregate state.

In CFR, an extensive-form game is repeatedly played between N players, indexed by
i. We consider an iterative learning setting, where at the t-th learning iteration, the i-th
player follows a fixed policy πit, choosing actions a ∈ A conditioned on information sets I ∈ I
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CHAPTER 2. ADVANTAGE-BASED REGRET MINIMIZATION

according to their policy πit(a|I). Let σt denotes the players’ joint policy (their strategy
profile). For any strategy profile σ, the i-th player has an expected value for playing the
game, J i(σ). Let σ−it represent the joint policy of all players except the i-th player; similarly,
let the tuple (πit, σ

−i
t ) be the product of the i-th player’s policy πit and the other players’ joint

policy σ−it .
The i-th player’s overall regret after T learning iterations is defined:

(Ri
T )(overall) = max

πi
∗

T∑
t=1

J i(πi∗, σ
−i
t )− J i(πit, σ−it ). (2.1)

What is the interpretation of the overall regret? It is essentially how much better the i-th
player could have done, had it always followed an optimal policy in hindsight instead of the
actual sequence of policies πit it executed. Intuitively, the difference J i(πi∗, σ

−i
t )− J i(πit, σt) is

the suboptimality of πit compared to πi∗, and the sum of the suboptimalities over learning
iterations yields the area inside the learning curve. In other words, a smaller overall regret
implies better sample efficiency.

Let Qi
σt(I, a) be the counterfactual value of the i-th player, where the i-th player is assumed

to reach I and always chooses the action a in the aggregate state I, and otherwise follows the
policy πit, while all other players follow the strategy profile σ−it . Similarly, let the expected
counterfactual value be calculated as V i

σt(I) =
∑

a∈A π
i
t(a|I)Qi

σt(I, a). Let (Ri
T )(CF)(I, a) be

the counterfactual regret of the i-th player, which is the sum of the advantage-like quantities
Qi
σt(I, a)− V i

σt(I) after T learning iterations:

(Ri
T )(CF)(I, a) =

T∑
t=1

Qi
σt(I, a)− V i

σt(I). (2.2)

Similarly, the immediate counterfactual regret can be obtained from the counterfactual regret
by maximization over the player’s action space:

(Ri
T )(immCF)(I) = max

a∈A

T∑
t=1

Qi
σt(I, a)− V i

σt(I). (2.3)

The immediate counterfactual regret (Equation (2.3)) possesses a similar interpretation to
the overall regret (Equation (2.1)), except that the immediate counterfactual regret and its
constituent terms are additionally functions of the aggregate state I.

Suppose that one were to briefly consider each aggregate state I as a separate, independent
subproblem. By naively treating the counterfactual regret (Ri

T )(CF)(I, a) for each I as
analogous to regret in an online learning setting, then at each learning iteration one may
simply plug the counterfactual regret into a regret matching policy update [33]:

(πit+1)RM(a|I) =
max(0, (Ri

t)
(CF)(I, a))∑

a′∈Amax(0, (Ri
t)

(CF)(I, a′))
. (2.4)
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CHAPTER 2. ADVANTAGE-BASED REGRET MINIMIZATION

In the online learning setting, the regret matching policy achieves regret that increases with
rate O(

√
T ) in the number of iterations T [9, 26]; we can then say that the regret matching

policy is regret minimizing.
It turns out that updating players’ policies in the extensive game setting by iteratively

minimizing the immediate counterfactual regrets according to Equation (2.4) will also minimize
the overall regret (Ri

T )(overall) with upper bound O(|I|
√
|A|T ). The overall regret’s O(

√
T )

dependence on the number of iterations T is not impacted by the structure of the information
set space I, which is why CFR can be said to be robust to a certain kind of partial observability.
This result forms the basis of the counterfactual regret minimization algorithm and was
proved by [104].

Since we are interested in the application of CFR to reinforcement learning, we can write
down “1-player” versions of the components above: the counterfactual value, reinterpreted as
a stationary state-action value function Qπ|I 7→a(I, a), where the action a is always chosen in
the aggregate state I, and the policy π is otherwise followed [4]; the counterfactual regret,
including its recursive definition:

R
(CF)
T (I, a) =

T∑
t=1

Qπt|I 7→a(I, a)− Vπt|I(I) (2.5)

= R
(CF)
T−1 (I, a) +QπT |I 7→a(I, a)− VπT |I(I) (2.6)

where Vπt|I(I) =
∑

a∈A πt(a|I)Qπt|I 7→a(I, a); and the regret matching policy update:

πRM
t+1(a|I) =

max(0, R
(CF)
t (I, a))∑

a′∈Amax(0, R
(CF)
t (I, a′))

. (2.7)

CFR+

CFR+ [89] consists of a modification to CFR, in which instead of calculating the full
counterfactual regret as in Equation (2.6), instead the counterfactual regret is recursively
positively clipped:

R
(CF+)
T (I, a) (2.8)

= [R
(CF+)
T−1 (I, a)]+ +QπT |I 7→a(I, a)− VπT |I(I)

where [x]+ = max(0, x) is the positive clipping operator. Comparing Equation (2.6) with
Equation (2.8), the only difference in CFR+ is that the previous iteration’s quantity is
positively clipped in the recursion. This simple change turns out to yield a large practical
improvement in the performance of the algorithm [6]. One intuition for why the positive

clipping of CFR+ can improve upon CFR is that because [R
(CF+)
T−1 ]+ is nonnegative, it provides

a kind of “optimism under uncertainty,” adding a bonus to some transitions while ignoring
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CHAPTER 2. ADVANTAGE-BASED REGRET MINIMIZATION

others. The CFR+ update has also been shown to do better than CFR when the best action
in hindsight changes frequently [90]. In the rest of this work we will solely build upon the
CFR+ update.

From CFR and CFR+ to ARM

Recall that CFR and CFR+ model partial observation in extensive games with a space I
of information sets or aggregate states. Because we are interested in general observation
spaces O in partially observed Markov decision processes (MDPs), we naively map CFR
and CFR+ onto MDPs and replace I with O. It is known that Markov or stochastic games
can be converted to extensive form [59, 81, 55], and an MDP is a 1-player Markov game.
Because we are also interested in high dimensional observations such as images, we estimate
a counterfactual regret function approximation [98] parameterized as a neural network.

The exact form of the counterfactual regret (either Equation (2.6) or Equation (2.8)), after
translating aggregate states I to observations o, utilizes a stationary action-value function
Qπ|o 7→a(o, a). It is unclear how to learn a truly stationary action-value function, although [4]
propose a family of consistent Bellman operators for learning locally stationary action-value
functions. We posit that the approximation Qπ|o 7→a(o, a) ≈ Qπ(o, a), where Qπ(o, a) is the
usual action-value function, is acceptable when observations are rarely seen more than once
in a typical trajectory.

The above series of approximations finally yields a learnable function using deep rein-
forcement learning; this function is a “clipped cumulative advantage function”:

A+
T (o, a) = max(0, A+

T−1(o, a)) + AπT (o, a) (2.9)

where Aπ(o, a) is the usual advantage function. Advantage-based regret minimization (ARM)
is then the resulting batch-mode deep RL algorithm that updates the policy to the regret
matching distribution on the cumulative clipped advantage function:

πt+1(a|o) =
max(0, A+

t (o, a))∑
a′∈Amax(0, A+

t (o, a′))
. (2.10)

At the t-th batch iteration of ARM, a batch of data is collected by sampling trajectories
using the current policy πt, followed by two processing steps: (a) fit A+

t using Equation (2.9),
then (b) set the next iteration’s policy πt+1 using Equation (2.10).

Below, we will use the subscript k to refer to a timestep within a trajectory, while the
subscript t refers to the batch iteration. To implement Equation (2.9) with deep function
approximation, we define two value function approximations, Vπt(ok; θt) and Q+

t (ok, ak;ωt),
as well as a target value function V ′(ok;ϕ), where θt, ωt, and ϕ are the learnable parameters.
The cumulative clipped advantage function is represented as A+

t (ok, ak) = Q+
t (ok, ak;ωt)−

Vπt(ok; θt). Within each sampling iteration, the value functions are fitted using stochastic
gradient descent by sampling minibatches and performing gradient steps. In practice, we use
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Adam to perform the optimization [51]. The state-value function Vπt(ok; θt) is fit using n-step
returns with a moving target value function V ′(ok+n;ϕ), essentially using the estimator of the
deep deterministic policy gradient (DDPG) [58]. In the same minibatch, Q+

t (ok, ak; θt) is fit
to a similar loss, but with an additional target reward bonus that incorporates the previous
iteration’s cumulative clipped advantage, max(0, A+

t−1(ok, ak)). The regression targets vk and

q+
k are defined in terms of the n-step returns gnk =

∑k+n−1
k′=k γk

′−krk′ + γnV ′(ok+n;ϕ):

vk , gnk (2.11)

qk , rk + γgn−1
k+1 (2.12)

φk , Q+
t−1(ok, ak;ωt−1)− Vπt−1(ok; θt−1) (2.13)

q+
k , max(0, φk) + qk. (2.14)

Altogether, each minibatch step of the optimization subproblem consists of the following
three parameter updates:

θ
(`+1)
t ← θ

(`)
t −

α

2
∇
θ
(`)
t

(Vπt(ok; θ
(`)
t )− vk)2 (2.15)

ω
(`+1)
t ← ω

(`)
t −

α

2
∇
ω
(`)
t

(Q+
t (ok, ak;ω

(`)
t )− q+

k )2 (2.16)

ϕ(`+1) ← ϕ(`) + τ(θ
(`+1)
t − ϕ(`)). (2.17)

The advantage-based regret minimization algorithm is summarized in Algorithm 1.
We note again that we use a biased value function estimator, whereas only the full

returns are guaranteed to be unbiased in non-Markovian settings. In the high-dimensional
domains we evaluated on, the most practical choice of deep advantage or value function
approximation is based on biased but lower variance estimation, such as the n-step returns
we use in practice [84, 29]. We also note that ARM is essentially CFR with different design
choices to facilitate function approximation. CFR is proven to converge in domains with
non-Markovian information set spaces when using tabular representations, suggesting that
our use of biased advantage estimation does not fundamentally preclude the applicability or
effectiveness of ARM on non-Markovian domains.

ARM vs. Existing Policy Gradient Methods

We note that the fundamental operation in CFR-like algorithms, including ARM, is exemplified
by the counterfactual regret update in Equation (2.6) which superficially looks quite similar
to a policy gradient-style update: the update is in the direction of a Q-value minus a baseline.
However, we can take the analogy between ARM and policy gradient methods further and
show that ARM represents an inherently different update compared to existing policy gradient
methods.

Recent work has shown that policy gradient methods and Q-learning methods are con-
nected via maximum entropy RL [71, 31, 67, 82]. One such perspective is from the soft policy

9
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Algorithm 1 Advantage-based regret minimization (ARM).

initialize π1 ← uniform, θ0, ω0 ← arbitrary
for t in 1, . . . do

collect batch of trajectory data Dt ∼ πt
initialize θt ← θt−1, ωt ← ωt−1, ϕ← θt−1

for ` in 0, . . . do
sample transitions:
(ok, ak, rk, ok+1) ∼ Dt
δk ← 1− I[ok is terminal]
calculate n-step returns:
gnk ←

∑k+n−1
k′=k γk

′−krk′ + γnδk+nV
′(ok+n;ϕ)

calculate target values:
if t = 1 then
φk ← 0

else
φk ← Q+

t−1(ok, ak;ωt−1)− Vπt−1(ok; θt−1)
end if
v(ok)← gnk
q+(ok, ak)← max(0, φk) + rk + γgn−1

k+1

update θt (Equation (2.15))
update ωt (Equation (2.16))
update ϕ (Equation (2.17))

end for
set πt+1(a|o) ∝ max(0, Q+

t (o, a;ωt)− Vπt(o; θt))
end for

iteration framework for batch-mode reinforcement learning [32], where at the t-th batch
iteration the updated policy is obtained by minimizing the average KL-divergence between
the parametric policy class Π and a target policy ft. Below is the soft policy iteration update,
where the subscript t refers to the batch iteration:

πt+1 = arg min
π∈Π

Eo∼ρt [DKL(π(·|o)‖ft(·|o))]

= arg min
π∈Π

Eo∼ρt,a∼π(·|o)[log(π(a|o))− log(ft(a|o))]. (2.18)

Using the connection between policy gradient methods and Q-learning, we define the policy
gradient target policy as a Boltzmann or softmax distribution on the entropy regularized
advantage function Aβ-soft:

fPG
t (a|o) , exp(βAβ-soft

t (o, a))∑
a′∈A exp(βAβ-soft

t (o, a′))
. (2.19)
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Now, parameterizing the policy π in terms of an explicit parameter θ, we obtain the expression
for the existing policy gradient update, where b(o) is a baseline function:

∆θPG ∝ Eo∼ρt,a∼π(·|o;θ)

[
∇θ log(π(o|a; θ))· (2.20)(

− (1/β) log(π(o|a; θ))

+ Aβ-soft
t (o, a)− b(o)

)]
.

The non-entropy-regularized policy gradient arises in the limit β →∞, at which point (1/β)
vanishes.

Note that an alternative choice of target policy ft will lead to a different kind of policy
gradient update. A policy gradient algorithm based on ARM instead proposes a target policy
based on the regret matching distribution:

fARM
t (a|o) , max(0, A+

t (o, a))∑
a′∈Amax(0, A+

t (o, a′))
. (2.21)

Similarly, we can express the ARM-like policy gradient update, where again b(o) is a baseline:

∆θARM = Eo∼ρt,a∼π(·|o;θ)

[
∇θ log(π(o|a; θ))· (2.22)(

− log(π(o|a; θ))

+ log(max(0, A+
t (o, a)))− b(o)

)]
.

Comparing Equations (2.20) and (2.22), we see that the ARM-like policy gradient (Equation
(2.22)) has a logarithmic dependence on the clipped advantage-like function max(0, A+),
whereas the existing policy gradient (Equation (2.20)) is only linearly dependent on the
advantage function Aβ-soft. This difference in logarithmic vs. linear dependence is responsible
for a large part of the inherent distinction of ARM from existing policy gradient methods.
In particular, the logarithmic dependence in an ARM-like update may be less sensitive to
advantage overestimation compared to existing policy gradient methods, perhaps serving a
similar purpose to the double Q-learning estimator [34] or consistent Bellman operators [4].

We also see that for the existing policy gradient (Equation (2.20)), the−(1/β) log(π(a|o; θ))
term, which arises from the policy entropy, is vanishing for large β. On the other hand,
for the ARM-like policy gradient (Equation (2.22)), there is no similar vanishing effect on
the equivalent policy entropy term, suggesting that ARM may perform a kind of entropy
regularization by default.

In practice we cannot implement an ARM-like policy gradient exactly as in Equation
(2.22), because the positive clipping max(0, A+) can yield log(0). However we believe this is
not an intrinsic obstacle and leave the question of how to implement an ARM-like policy
gradient to future work.
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Comparing ARM with Other Methods in Partially Observable
Domains

The regret matching policy which is fundamental to ARM can be interpreted as a more
nuanced form of exploration compared to the epsilon-greedy policy used with Q-learning.
In partially observable domains, the optimal policy may generally be stochastic [42]. So
ε-greedy policies which put a substantial probability mass on arg maxaQ(o, a), e.g. by setting
ε = 0.01, can be suboptimal, especially compared to more general distributions on discrete
actions, such as ARM’s regret matching policy. The softmax policy typically learned by
policy gradient methods is also quite general, but can still put too much probability mass on
one action without compensation by an explicit entropy bonus as done in maximum entropy
reinforcement learning.

Policy gradient methods have an overall regret bound of RT ≤ B2/η+ ηG2T derived from
stochastic gradient descent, where B is an upper bound on the policy parameter `2-norm, G2

is an upper bound on the second moments of the stochastic gradients, and η is the learning
rate [20], Assuming an optimal learning rate η = B/(G

√
T ), the policy gradient regret bound

becomes RT ≤ 2BG
√
T . CFR has an overall regret bound of RT ≤ ∆|I|

√
|A|T , where ∆ is

the positive range of returns, and |I| and |A| are cardinalities of the information set space
and action space, respectively [104]. Both regret bounds have O(

√
T ) dependence on T . As

mentioned earlier, policy gradient methods can also be robust to partial observation, but
unlike in the case of CFR, the dependence of the policy gradient regret bound on an optimal
learning rate and on gradient variance may affect policy gradient convergence in the presence
of estimation error. On the other hand, the constants in the CFR regret bound are constant
properties of the environment.

For Q-learning per se, we are not aware of any known regret bound. Szepesvári proved
that an upper bound on the convergence rate of Q-learning (specifically, the convergence rate
of ‖QT (s, a)−Q∗(s, a)‖∞), assuming a fixed exploration strategy, depends on an exploration
condition number, which is the ratio of minimum to maximum state-action occupation
frequencies [88], and which describes how “balanced” the exploration strategy is. If partial
observability leads to imbalanced exploration due to confounding of states from perceptual
aliasing [62], then Q-learning should be negatively affected in convergence and possibly in
absolute performance.

2.4 Experiments

Because we hypothesize that ARM should perform well in partially observable domains, we
conduct our experiments on visual tasks that naturally provide partial observations of state.
Our evaluations use feedforward convnets with frame history inputs; our hyperparameters are
listed in Section 2.5. We are interested in comparing ARM with other advantage-structured
methods, primarily: (a) double deep Q-learning with dueling network streams [34, 97],
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which possesses an advantage-like parameterization of its Q-function and assumes Markovian
observations; and (b) TRPO [83, 84], which estimates an empirical advantage using a baseline
state-value function and can handle non-Markovian observations.

Learning First-person 3D Navigation

We first evaluate ARM on the task of learning first-person navigation in 3D maze-like tasks
from two domains: ViZDoom [50] based on the game Doom, and Malmö [46] based on the
game Minecraft. Doom and Minecraft both feature an egocentric viewpoint, 3D perspective,
and rich visual textures. We expect that both domains exhibit a substantial degree of partial
observability since only the immediate field-of-view of the environment is observable by the
agent due to first-person perspective.

In Doom MyWayHome, the agent is randomly placed in one of several rooms connected
in a maze-like arrangement, and the agent must reach an item that has a fixed visual
appearance and is in a fixed location before time runs out. For Minecraft, we adopt the
teacher-student curriculum learning task of [61], consisting of 5 consecutive “levels” that
successively increase the difficulty of completing the simple task of reaching a gold block: the
first level (“L1”) consists of a single room; the intermediate levels (“L2”–“L4”) consist of a
corridor with lava-bridge and wall-gap obstacles; and the final level (“L5”) consists of a 2× 2
arrangement of rooms randomly separated by lava-bridge or wall-gap obstacles. Examples of
the MyWayHome and the Minecraft levels are shown in Figure 2.1.

Our results on Doom and Minecraft are in Figures 2.2 and 2.3. Unlike previous evaluations
which augmented raw pixel observations with extra information about the game state,
e.g. elapsed time ticks or remaining health [50, 21], in our evaluation we forced all networks
to learn using only visual input. Despite this restriction, ARM is still able to quickly learn
policies with minimal tuning of hyperparameters and to reach close to the maximum achievable
score in under 1 million simulator steps, which is quite sample efficient. On MyWayHome,
we observed that ARM generally learned a well-performing policy more quickly than other
methods. Additionally, we found that ARM is able to take advantage of an off-policy replay
memory when learning on MyWayHome by storing the trajectories of previous sampling
batches and applying an importance sampling correction to the n-step return estimator;
please see Section 2.6.

We performed our Minecraft experiments using fixed curriculum learning schedules to
evaluate the sample efficiency of different algorithms: the agent is initially placed in the first
level (“L1”), and the agent is advanced to the next level whenever a preselected number of
simulator steps have elapsed, until the agent reaches the last level (“L5”). We found that
ARM and dueling double DQN both were able to learn on an aggressive “fast” schedule
of only 62500 simulator steps between levels. TRPO required a “slow” schedule of 93750
simulator steps between levels to reliably learn. ARM was able to consistently learn a well
performing policy on all of the levels, whereas double DQN learned more slowly on some of
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the intermediate levels. ARM also more consistently reached a high score on the final, most
difficult level (“L5”).

Figure 2.1: Screenshots from (left) Doom MyWayHome, (middle) Minecraft level 1, and
(right) Minecraft level 4.
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Figure 2.2: Evaluation on the Doom MyWayHome task.

Learning with Partially Observed Objects

Previously in Section 2.3, we argued that the convergence results for CFR suggest that
reducing the size of the observation space could improve the convergence of CFR compared
to methods based on policy gradients or Q-learning. We would expect that by controlling the
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Figure 2.3: Evaluation on a Minecraft curriculum learning task. The simulator step counts
at which each level begins are labeled and demarcated with dashed vertical lines.

degree of partial observability in a fixed task, one could expect the relative sample efficiency
or performance of ARM to improve compared to other methods.

Whereas the navigation tasks in Section 2.4 only dealt with first-person motion in static
3D environments, tasks that add other objects which may move and are not always visible to
the agent intuitively ought to be less observable. To test the effect of the degree of partial
observability on fixed tasks with objects, we conduct experiments with at least two variants
of each task: one experiment is based on the unmodified task, but the other experiments
occlude or mask essential pixels in observed frames to raise the difficulty of identifying relevant
objects.

We evaluate ARM and other methods on two tasks with objects: Doom Corridor via
ViZDoom, and Atari Pong via the Arcade Learning Environment [3]. In Corridor, the agent
is placed in a narrow 3D hallway and must avoid getting killed by any of several shooting
monsters scattered along the route while trying to reach the end of the hallway. In Pong, the
agent controls a paddle and must hit a moving ball past the computer opponent’s paddle on
the other side of the screen.

In our implementation of Corridor, which we call “Corridor+,” we restrict the action
space of the agent to only be able to turn left or right and to move to one side. Because the
agent spawns facing the end of the hallway, the agent has to learn to first turn to its side to
orient itself sideways before moving, while also trying to avoid getting hit from behind by
monsters in close proximity. To induce partial observability in Corridor, we mask out a large
square region in the center of the frame buffer. An example of this occlusion is shown in
Figure 2.4. Because the only way for the agent to progress toward the end of the hallway is by
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moving sideways, the monsters that are closest to the agent, and hence the most dangerous,
will appear near the center of the agent’s field-of-view. So the center pixels are the most
natural ones to occlude in Corridor+.

For Pong, we choose a rectangular area in the middle of the frame between the two
players’ paddles, then we set all pixels in the rectangular area to the background color. An
illustration of the occlusion is shown in Figure 2.4. When the ball enters the occluded region,
it completely disappears from view so its state cannot be reconstructed using a limited frame
history. Intuitively, the agent needs to learn to anticipate the trajectory of the ball in the
absence of visual cues of the ball’s position and velocity.

It is also known that for Atari games in general, with only 4 observed frames as input, it is
possible to predict hundreds of frames into the future on some games using only a feedforward
dynamics model [73]. By default, all of our networks receive as input a frame history of
length 4. This suggests that limiting the frame history length in Pong is another effective
perturbation for reducing observability. When the frame history length is limited to one,
then reconstructing the velocity of moving objects in Pong becomes more difficult [36].

Our results on Corridor+ are shown in Figure 2.5. Among all our experiments, it is on
Corridor+ that TRPO performs the best compared to all other methods. One distinguishing
feature of TRPO is its empirical full return estimator, which is unbiased on non-Markovian
observations, but which can have greater variance than the n-step return estimator used
in deep Q-learning and ARM. On Corridor+, there appears to be a benefit to using the
unbiased full returns over the biased n-step returns, which speaks to the non-Markovian
character of the Corridor+ task. It is also evident on Corridor+ that the performance of deep
Q-learning suffers when the observability is reduced by occlusion, and that by comparison
ARM is relatively unaffected, despite both methods using biased n-step returns with the
same value of n (n = 5). This suggests that even when ARM is handicapped by the bias of
its return estimator, ARM is intrinsically more robust to the non-Markovian observations
that arise from partial observability. One possible direction to improve ARM is through
alternative return estimators [84, 96].

Our results on Pong are shown in Figure 2.6. The convergence of ARM on all three variants
of Pong suggests that ARM is not affected much by partial observation in this domain. As
expected, when observability is reduced in the limited frame history and occlusion experiments,
deep Q-learning performs worse and converges more slowly than ARM. TRPO is generally
less sample efficient than either ARM or DQN, although like ARM it seems to be resilient to
the partial observation perturbations.

2.5 Experimental Details

For each experiment, we performed 5 trials for each method (some TRPO experiments on
Pong are for 3 trials).
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Figure 2.4: Screenshots from Atari Pong (left two) and Doom Corridor+ (right two),
unmodified and with occlusion.
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Figure 2.5: Results on Doom Corridor+: (left) unmodified, (right) with occlusion.

Hyperparameters

Our hyperparameter choices for each method are listed below. For all methods using Adam, we
roughly tuned the learning rate to find the largest that consistently converged in unmodified
variants of tasks.

ARM

Please see Tables 2.1 and 2.2 for hyperparameters used with ARM. Note that our choice of
ARM hyperparameters yields an equivalent number of minibatch gradient steps per sample as
used by deep Q-learning, i.e. 1 Adam minibatch gradient step per 4 simulator steps; c.f. Table
2.4 for the deep Q-learning hyperparameters. We kept hyperparameters (other than the
learning rate and the number of steps n) constant across tasks.
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Figure 2.6: Results on Atari Pong: (left) unmodified, (middle) with limited frame history,
(right) with occlusion.

Table 2.1: Hyperparameters for ARM.

Hyperparameter Atari Doom Minecraft

Adam learning rate 1e−4 1e−5 1e−5

Adam minibatch size 32 32 32
batch size 12500 12500 12500
gradient steps 3000 3000 3000
moving average (τ) 0.01 0.01 0.01
n-steps 1 5 5

A2C

Please see Table 2.3 for hyperparameters used with A2C. We found that increasing the number
of steps n used to calculate the n-step returns was most important for getting A2C/A3C to
converge on Doom MyWayHome.

DQN

Please see Table 2.4 for hyperparameters used with deep Q-learning. Dueling double DQN
uses the tuned hyperparameters [34, 97]. In particular, we found that dueling double DQN
generally performed better and was more stable when learning on Atari with the tuned
learning rate 6.25× 10−5 ≈ 6× 10−5 from [97], compared to the slightly larger learning rate
of 1× 10−4 used by ARM.
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Table 2.2: Hyperparameters for off-policy ARM.

Hyperparameter Doom

Adam learning rate 1e−5

Adam minibatch size 32
batch size 1563
gradient steps 400
importance weight clip 1
moving average (τ) 0.01
n-steps 5
replay memory max 25000

Table 2.3: Hyperparameters for A2C.

Hyperparameter Doom

Adam learning rate 1e−4

Adam minibatch size 640
entropy bonus (β) 0.01
gradient clip 0.5
n-steps 40
num. workers 16

TRPO

Please see Table 2.5 for hyperparameters used with TRPO. We generally used the defaults,
such as the KL step size of 0.01 which we found to be a good default. Decreasing the batch
size improved sample efficiency on Doom and Minecraft without adversely affecting the
performance of the learned policies.

Environment and Task Details

Our task-specific implementation details are described below.

Atari

For the occluded variant of Pong, we set the middle region of the 160 × 210 screen with
x, y pixel coordinates [55 . . . 105), [34 . . . 194) to the RGB color (144, 72, 17). The image of
occluded Pong in Figure 4 from the main text has a slightly darker occluded region for
emphasis.
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Table 2.4: Hyperparameters for dueling + double deep Q-learning.

Hyperparameter Atari Doom Minecraft

Adam learning rate 6e−5 1e−5 1e−5

Adam minibatch size 32 32 32
final exploration 0.01 0.01 0.01
gradient clip 10 — —
n-steps 1 5 5
replay memory init 50000 50000 12500
replay memory max 106 240000 62500
sim steps/grad step 4 4 4
target update steps 30000 30000 12500

Table 2.5: Hyperparameters for TRPO.

Hyperparameter Atari Doom Minecraft

batch size 100000 12500 6250
CG dampening 0.1 0.1 0.1
CG iterations 10 10 10
KL step size 0.01 0.01 0.01

We use the preprocessing and convolutional network model of Mnih et al. (2013). Specifi-
cally, we view every 4th emulator frame, convert the raw frames to grayscale, and perform
downsampling to generate a single observed frame. The input observation of the convnet is a
concatenation of the most recent frames (either 4 frames or 1 frame). The convnet consists
of an 8× 8 convolution with stride 4 and 16 filters followed by ReLU, a 4× 4 convolution
with stride 2 and 32 filters followed by ReLU, a linear map with 256 units followed by ReLU,
and a linear map with |A| units where |A| is the action space cardinality (|A| = 6 for Pong).

Doom

Our modified environment “Doom Corridor+” is very closely derived from the default “Doom
Corridor” environment in ViZDoom. We primarily make two modifications: (a) first, we
restrict the action space to the three keys {MoveRight, TurnLeft, TurnRight}, for a total
of 23 = 8 discrete actions; (b) second, we set the difficulty (“Doom skill”) to the maximum of
5.

For the occluded variant of Corridor+, we set the middle region of the 160× 120 screen
with x, y pixel coordinates [30 . . . 130), [10 . . . 110) to black, i.e. (0, 0, 0).
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For Corridor+, we scaled rewards by a factor of 0.01. We did not scale rewards for
MyWayHome.

The Doom screen was rendered at a resolution of 160×120 and downsized to 84×84. Only
every 4th frame was rendered, and the input observation to the convnet is a concatenation of
the last 4 rendered RGB frames for a total of 12 input channels. The convnet contains 3
convolutions with 32 filters each: the first is size 8× 8 with stride 4, the second is size 4× 4
with stride 2, and the third is size 3× 3 with stride 1. The final convolution is followed by a
linear map with 1024 units. A second linear map yields the output. Hidden activations are
gated by ReLUs.

Minecraft

Our Minecraft tasks are based on the tasks introduced by [61], with a few differences. Instead
of using a continuous action space, we used a discrete action space with 4 move and turn
actions. To aid learning on the last level (“L5”), we removed the reward penalty upon episode
timeout and we increased the timeout on “L5” from 45 seconds to 75 seconds due to the
larger size of the environment. We scaled rewards for all levels by 0.001.

We use the same convolutional network architecture for Minecraft as we use for ViZDoom.
The Minecraft screen was rendered at a resolution of 320×240 and downsized to 84×84. Only
every 5th frame was rendered, and the input observation of the convnet is a concatenation of
the last 4 rendered RGB frames for a total of 12 input channels.

2.6 Off-policy ARM via Importance Sampling

Our current approach to running ARM with off-policy data consists of applying an importance
sampling correction directly to the n-step returns. Given the behavior policy µ under which
the data was sampled, the current policy πt under which we want to perform estimation, and
an importance sampling weight clip c for variance reduction, the corrected n-step return we
use is:

gnk (µ‖πt) =
k+n−1∑
k′=k

γk
′−k

(
k′∏
`=k

wµ‖πt(a`|o`)

)
rk′ (2.23)

+ γnV ′(ok+n;ϕ)

where the truncated importance weight wµ‖πt(a|o) is defined:

wµ‖πt(a|o) = min

(
c,
πt(a|o)
µ(a|o)

)
. (2.24)

Note that the target value function V ′(ok+n;ϕ) does not require an importance sampling
correction because V ′ already approximates the on-policy value function Vπt(ok+n; θt). Our
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choice of c = 1 in our experiments was inspired by [96]. We found that c = 1 worked well but
note other choices for c may also be reasonable.

When applying our importance sampling correction, we preserve all details of the ARM
algorithm except for two aspects: the transition sampling strategy (a finite memory of
previous batches are cached and uniformly sampled) and the regression targets for learning
the value functions. Specifically, the regression targets vk and q+

k (Equations (11)–(14) in the
main text) are modified to the following:

vk = gnk (µ‖πt) (2.25)

qk = (1− wµ‖πt(ak|ok))rk + gnk (µ‖πt) (2.26)

φk = Q+
t−1(ok, ak;ωt−1)− Vπt−1(ok; θt−1) (2.27)

q+
k = max(0, φk) + qk. (2.28)

2.7 Additional Experiments

Recurrence in Doom MyWayHome

We evaluated the effect of recurrent policy and value function estimation in the maze-like
MyWayHome scenario of ViZDoom. For the recurrent policy and value function, we replaced
the first fully connected operation with an LSTM featuring an equivalent number of hidden
units (1024). We found that recurrence has a small positive effect on the convergence of A2C,
but was much less significant than the choice of algorithm; compare Figure 2 in the main
text with Figure 2.7 below.

Atari 2600 games

Although our primary interest is in partially observable reinforcement learning domains, we
also want to check that ARM works in nearly fully observable and Markovian environments,
such as Atari 2600 games. We consider two baselines: double deep Q-learning, and double
deep fitted Q-iteration which is a batch counterpart to double DQN. We find that double
deep Q-learning is a strong baseline for learning to play Atari games, although ARM still
successfully learns interesting policies. One major benefit of Q-learning-based methods is the
ability to utilize a large off-policy replay memory. Our results on a suite of Atari games are
in Figure 2.8.

2.8 Discussion

In this chapter, we posed the problem of visual navigation in the setting of deep reinforcement
learning under partial observation, and we presented a novel deep reinforcement learning
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Figure 2.7: Comparing A2C with a feedforward convolutional network (blue) and a recurrent
convolutional-LSTM network (orange) on the ViZDoom scenario MyWayHome.

algorithm based on counterfactual regret minimization. We call our method advantage-based
regret minimization (ARM). Similarly to prior methods that learn state or state-action
value functions, our method learns a cumulative clipped advantage function of observation
and action. However, in contrast to these prior methods, ARM is well suited to partially
observed or non-Markovian environments, making it an appealing choice in a number of
difficult domains. When compared to baseline methods, including deep Q-learning and
TRPO, on partially observable tasks such as first-person navigation in Doom and Minecraft
and interacting with partially observed objects in Doom and Pong, ARM is robust to the
degree of partial observability and can achieve substantially better sample efficiency and
performance. This illustrates the value of ARM for partially observable problems.

Some baseline deep reinforcement learning algorithms parameterize exploration in their
policies with hyperparameters. For example, maximum entropy RL methods such as soft
actor-critic [32] control exploration with a Boltzmann temperature hyperparameter, while
deep Q-learning with ε-greedy exploration [65] anneals the exploration rate ε. In contrast,
ARM lacks an explicit hyperparameter that directly controls exploration in its learned policy,
instead choosing the CFR+ defaults for updating the regret and the policy [89]. Alternative
design choices one may consider in future work concern the regret and policy updates; some
possibilities introduced since the publication of our work include laminar regret matching
[23], as well as generalized discounting schemes for CFR [8].

One notable disadvantage of ARM is that, as currently formulated, it is not obviously
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Figure 2.8: Comparing double deep Q-learning (orange), double deep fitted Q-iteration (red),
and ARM (blue) on a suite of seven Atari games from the Arcade Learning Environment.

amenable to learning policies on continuous action spaces. In future work, we plan to explore
adapting ARM to continuous action spaces and concomitant tasks.
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Chapter 3

Gossiping SGD

3.1 Introduction

Another example of an agent that must navigate in a 3D environment is a self-driving car.
Self-driving cars fuse data collected by a variety of sensors, including cameras and LIDAR,
in order to build a model of their environment and perform their core task of navigation.
In this chapter, we shift our attention from the reinforcement learning of visual navigation
policies to the supervised learning of visual perception systems for self-driving cars.

In practice, the most common way to train perception systems in practice is through
supervised learning on very large scale image datasets. As a result, reducing the training time
becomes critical. For example, estimates of the total data gathered by a self-driving car start
from at least 750 MB/s.1 As another data point, a single 1080p 24-bit RGB video camera
mounted on a self-driving car and streaming at 60 Hz yields 370 MB/s of uncompressed
image data. With proper annotation or through an unsupervised learning scheme, all of this
data can become useful for training the object detection system or grid-occupancy system of
a self-driving car. The resulting training set can lead to weeks or more of training time on a
single CPU/GPU system. Therefore, for such applications training time defines the most
time consuming element of the workflow, and reduced training time is highly desirable.

To achieve significant reductions in training time, the training must be distributed across
multiple CPUs/GPUs with the goal of strong scaling: as more nodes (i.e. compute servers)
are thrown at the problem, the training time should ideally decrease proportionally. There
are two primary approaches to distributed stochastic gradient descent (SGD) for training
deep neural networks: (i) synchronous all-reduce SGD based on a fast all-reduce collective
communication operation [40, 99, 16, 10], and (ii) asynchronous SGD using a parameter
server [17, 13].

Both approaches (i) and (ii) have weaknesses at scale. Synchronous SGD is penalized by
straggling processors, underutilizes compute resources, and is not robust in the face of failing

1 http://www.kurzweilai.net/googles-self-driving-car-gathers-nearly-1-gbsec
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processors or nodes. On the other hand, asynchronous approaches using parameter servers
create a communication bottleneck and underutilize the available network resources, slowing
convergence.

Individual researchers also have different numbers of nodes at their disposal, including
compute and network resources. So determining the best approach for a given number of
nodes, as well as the approach that scales to the most number of nodes, is of interest to
practitioners with finite resources.

We are concerned with the following questions:

a. How fast do asynchronous and synchronous SGD algorithms converge at both the
beginning of training (large step sizes) and at the end of training (small step sizes)?

b. How does the convergence of async. and sync. SGD vary with the number of nodes?

To compare the strengths and weaknesses of asynchronous and synchronous SGD al-
gorithms, we train a modern ResNet convolutional network [37] on the ImageNet dataset
[79] using various distributed SGD methods. We primarily compare synchronous all-reduce
SGD, the recently proposed asynchronous elastic averaging SGD [103], as well as our own
method, asynchronous gossiping SGD, based on an algorithm originally developed in a
different problem setting [75]. Gossiping SGD is an asynchronous method that does not use
a centralized parameter server, and in a sense, gossiping is a decentralized version of elastic
averaging. We find that asynchronous SGD, including both elastic averaging and gossiping,
exhibits the best scaling at larger step sizes and, perhaps counterintuitively in the case of
gossiping, at smaller scales (up to around 32 distributed nodes). For smaller step sizes and
at larger scales, all-reduce consistently converges to the most accurate solution faster than
the asynchronous methods.

3.2 Related Work

In this section, we will describe the baseline synchronous and asynchronous SGD methods, as
well as a recently proposed asynchronous method that is more scalable than its predecessor.
We will use the following naming convention for SGD: θ are the parameters over which the
objective is minimized, θ̃ is the center parameter (if applicable), α is the step size, µ is the
momentum, subscript i refers to the i-th node out of p total nodes, and subscript t refers to
the t-th (minibatch) iteration. Additionally, b refers to the per-node minibatch size, and m
refers to the aggregate minibatch size summed across all nodes.

Synchronous All-Reduce SGD

In traditional synchronous all-reduce SGD, there are two alternating phases proceeding
in lock-step: (1) each node computes its local parameter gradients, and (2) all nodes
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collectively communicate to calculate the aggregate gradient, as if they all formed a large
distributed minibatch. The second phase of exchanging gradients forms a barrier and
is the communication-intensive phase, usually implemented by an eponymous all-reduce
operation. The time complexity of an all-reduction can be decomposed into latency-bound
and bandwidth-bound terms. Although the latency term scales with O(log(p)), there are fast
ring algorithms which have bandwidth term independent of p [91]. With modern networks
capable of handling bandwidth on the order of 1–10 GB/s combined with neural network
parameter sizes on the order of 10–100 MB, the communication of gradients or parameters
between nodes across a network can be very fast. Instead, the communication overhead of
all-reduce results from its use of a synchronization barrier, where all nodes must wait for all
other nodes until the all-reduce is complete before proceeding to the next stochastic gradient
iteration. This directly leads to a straggler effect where the slowest nodes will prevent the rest
of the nodes from making progress. Examples of large-scale synchronous data parallel SGD
for distributed deep learning are given in [40], [99], [16], and [10]. We provide pseudocode for
synchronous data-parallel SGD in Algorithm 2.

Algorithm 2 Synchronous all-reduce SGD (with momentum).

initialize θ0,i ← θ0

for t ∈ {0, . . . , T} do
∆θt,i ← −αt∇fi(θt,i;Xt,i) + µ∆θt−1

∆θt ← all-reduce-average(∆θt,i)
θt+1,i ← θt,i + ∆θt

end for

Despite the optimal logarithmic scaling with the number of nodes p, the cost of com-
munication can become substantial and comparable to that of computation as one tries
to scale to thousands of nodes. One solution is to attempt to overlap computation with
communication: rather than strictly alternating the computation of local gradients with
the communication of the global gradient, it is instead possible to delay the communication
by one step, allowing both phases to occur simultaneously. Essentially, the communication
of the global gradient is hidden, allowing all nodes to mostly fully utilize the computation
resources. This approach is used in [85], which they call double buffering of minibatches.
However, the aforementioned solution by [85] is still bulk-synchronous, which introduces a
potentially significant synchronization cost at scale.

Large-scale synchronous SGD also implies large minibatch training. One effect of large
minibatches is to reduce the noise of stochastic gradient estimates, which can detrimentally
affect the convergence of SGD. However, since the publication of this work, new techniques
based on learning rate rampup [27] and gradient normalization [100, 101] have made practical
SGD with larger minibatch sizes, though concerns of communication and synchronization are
still not obviated.
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Asynchronous Parameter-Server SGD

A different approach to SGD consists of each node asynchronously performing its own gradient
updates and occasionally synchronizing its parameters with a central parameter store. This
form of asynchronous SGD was popularized by “Hogwild” SGD [76], which considered solving
sparse problems on single machine shared memory systems. “Downpour” SGD [17] then
generalized the approach to distributed SGD where nodes communicate their gradients
with a central parameter server. The main weakness of the asynchronous parameter-server
approach to SGD is that the workers communicate all-to-one with a central server, and the
communication throughput is limited by the finite link reception bandwidth at the server.
One approach for alleviating the communication bottleneck is introducing a delay between
rounds of communication, but increasing the delay greatly decreases the rate of convergence
[103]. Large scale asynchronous SGD for deep learning was pioneered in the Google DistBelief
[17] and Microsoft Adam [13] systems. Large scale parameter server systems in the non-deep
learning setting have also been demonstrated in [39] and [57]. We note that a second weakness
of asynchronous methods compared to synchronous methods is that asynchronous gradient
updates are naturally nondeterministic, hampering debugging and reproducibility, though we
do not address this issue.

Algorithm 3 Asynchronous parameter-server (“Downpour”) SGD.

# client code
initialize θ0,i ← θ0, g ← 0
for t ∈ {0, . . . , T} do

if t > 0 and t ≡ 0 mod τ then
send-client-gradient(g)
θ̃ ← receive-server-param()
θt+1,i ← θ̃
g ← 0

end if
g ← g +∇fi(θt,i;Xt,i)
∆θt,i ← −αt∇fi(θt,i;Xt,i)
θt+1,i ← θt,i + ∆θt,i

end for

# server code
initialize θ̃0 ← θ0

for t ∈ {0, . . . , T} do
g ← receive-client-gradient()
∆θ̃t ← −αtg + µ∆θ̃t−1

θ̃t+1 ← θ̃t + ∆θ̃t
send-server-param(θ̃t+1)

end for

Elastic Averaging SGD

Elastic averaging SGD [103] is a recently-proposed algorithm belonging to the family of asyn-
chronous parameter-server methods which introduces a modification to the usual stochastic
gradient objective to achieve faster convergence. Elastic averaging seeks to maximize the
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consensus between the center parameter θ̃ and the local parameters θi in addition to the loss:

Fconsensus(θ1, . . . , θp, θ̃) =

p∑
i=1

[
f(θi;Xi) +

ρ

2
‖θi − θ̃‖2

]
. (3.1)

The elastic averaging algorithm is given in Algorithm 4. The consensus objective of elastic
averaging is closely related to the augmented Lagrangian of ADMM, and the gradient update
derived from the consensus objective was shown to converge significantly faster than vanilla
asynchronous parameter-server SGD [103]. However, as elastic averaging is a member of the
family of asynchronous parameter-server approaches, it is still subject to a communication
bottleneck between the central server and the client workers.

Because recent published results indicate that elastic averaging dominates previous
asynchronous parameter-server methods [103], we will only consider elastic averaging from
this point on.

Algorithm 4 Elastic averaging SGD. The hyperparameter β is the moving rate.

# client code
initialize θ0,i ← θ0

for t ∈ {0, . . . , T} do
if t > 0 and t ≡ 0 mod τ then
θ̃ ← receive-server-param()
send-param-update(+β(θt,i − θ̃))
θt,i ← θt,i − β(θt,i − θ̃)

end if
∆θt,i ← −αt∇fi(θt,i;Xt,i) + µ∆θt−1,i

θt+1,i ← θt,i + ∆θt,i
end for

# server code
initialize θ̃0 ← θ0

for t ∈ {0, . . . , T} do
send-server-param(θ̃t)
∆θ ← receive-param-update()
θ̃t+1 ← θ̃t + ∆θ

end for

3.3 Gossiping SGD

Algorithm

In a nutshell, the synchronous all-reduce algorithm consists of two repeating phases: (1)
calculation of the local gradients at each node, and (2) exact aggregation of the local gradients
via all-reduce. To derive gossiping SGD, we would like to replace the synchronous all-reduce
operation with a more asynchronous-friendly communication pattern. The fundamental
building block we use is a gossip aggregation algorithm [49, 7], which combined with SGD
leads to the gossiping SGD algorithm. Asynchronous gossiping SGD was introduced in [75]
for the general case of a sparse communication graph between nodes (e.g. wireless sensor
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networks). The original problem setting of gossiping also typically involved synchronous
rounds of communication, whereas we are most interested in asynchronous gossip.

We can also derive the mathematical formulation of the gossiping SGD update by
conceptually linking gossiping to elastic averaging. We introduce a distributed version of the
global consensus objective, in which the center parameter is replaced with the average of the
local parameters:

Fdist-consensus(θ1, . . . , θp) =

p∑
i=1

f(θi;Xi) +
ρ

2

∥∥∥∥∥θi − 1

p

p∑
j=1

θj

∥∥∥∥∥
2
 . (3.2)

If we replace the distributed mean 1
p

∑p
j=1 θt,j with the unbiased “one-node estimator” θt,jt,i ,

such that jt,i ∼ Uniform({1, . . . , p}) and E[θt,jt,i ] = 1
p

∑p
j=1 θt,j, then we derive the gossiping

SGD update:

θ′t,i = θt,i − α∇f(θt,i;Xi) (3.3)

θt+1,i = θ′t,i − β(θ′t,i − θ′jt,i,t) (3.4)

= (1− β)θ′t,i + βθ′jt,i,t. (3.5)

If jt,i is chosen uniformly as in the above “one-node estimator,” then the algorithm is
equivalent to “pull-gossip,” i.e. each node pulls or receives θj from one and only one other
random node per iteration. On the other hand, if we replace the “one-node estimator” with
querying θj from multiple nodes, with the constraint that each j is represented only once per
iteration, then the algorithm becomes “push-gossip,” i.e. each node pushes or sends its own
θi to one and only one other random node, while receiving from between zero and multiple
other nodes. Push-gossiping SGD can be interpreted as an interleaving of a gradient step
and a simplified push-sum gossip step [49]. Algorithms 5 and 6 describe pull-gossiping and
push-gossiping SGD respectively.

Algorithm 5 Pull-gossiping SGD.

initialize θ0,i ← θ0

for t ∈ {0, . . . , T} do
if t > 0 and t ≡ 0 mod τ then

set xi ← θt,i
choose a target j
θt,i ← average of xi, xj

end if
∆θt,i ← −αt∇fi(θt,i;Xt,i) + µ∆θt−1,i

θt+1,i ← θt,i + ∆θt,i
end for

Algorithm 6 Push-gossiping SGD.

initialize θ0,i ← θ0

for t ∈ {0, . . . , T} do
if t > 0 and t ≡ 0 mod τ then

set xi ← θt,i
choose a target j
send xi to i (ourselves) and to j
θt,i ← average of received x’s

end if
∆θt,i ← −αt∇fi(θt,i;Xt,i) + µ∆θt−1,i

θt+1,i ← θt,i + ∆θt,i
end for
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Analysis

Our analysis of gossiping SGD is based on the analyses in [69, 7, 75, 93, 103]. We assume
that all processors are able to communicate with all other processors at each step. The main
convergence result is the following:

Theorem 1. Let f be a m-strongly convex function with L-Lipschitz gradients. Assume that
we can sample gradients g = ∇f(θ;Xi) + ξi with additive noise with zero mean E[ξi] = 0
and bounded variance E[ξTi ξi] ≤ σ2. Then, running the asynchronous pull-gossip algorithm,
with constant step size 0 < α ≤ 2

m+L
, the expected sum of squares convergence of the local

parameters to the optimal θ∗ is bounded by

E[‖θt − θ∗1‖2] ≤
(

1− 2α

p

mL

m+ L

)t
‖θ0 − θ∗1‖2 + pασ2m+ L

2mL
(3.6)

Furthermore, with the additional assumption that the gradients are uniformly bounded as
sup |∇f(θ)| ≤ C, the expected sum of squares convergence of the local parameters to the mean
θ̄t is bounded by

E[‖θt − θ̄t1‖2] ≤
(
λ

(
1− αm

p

))t
‖θ0 − θ̄01‖2 +

λα2(C2 + σ2)

1− λ
(

1− αm
p

) (3.7)

where λ = 1− 2β(1− β)

p
− 2β2

p
(3.8)

For the proofs, please see Section 3.5.

3.4 Experiments

Implementation

We implement the communication systems of gossiping SGD and other algorithms using
Message Passing Interface (MPI) [94]. Because we wanted to run our code in cluster computing
environments with Infiniband or more specialized interconnects, then targeting MPI was the
easiest solution. We targeted our code to run on GPUs, using the Nvidia CUDA 7.0 driver
and using the cuBLAS and cuDNNv4 [12] libraries for the core computational kernels.

For our experiments up to p = 16 nodes, we use a local cluster of 16 machines, each one
consisting of an Nvidia Kepler K80 dual GPU, an 8-core Intel Haswell E5-1680v2 CPU, and a
Mellanox ConnectX-3 FDR 4× Infiniband (56 Gb/s) NIC. We utilize only one GPU per K80.

For our larger scale experiments up to p = 128 nodes, we used a GPU supercomputer
with over 10,000 total nodes [70]. Nodes consist of an Nvidia Kepler K20X GPU and an
8-core AMD Bulldozer Opteron 6274 CPU, and are connected by a Cray Gemini interconnect
in a 3D torus configuration.
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Figure 3.1: Center-crop validation loss and top-1 error on ImageNet over training wall-clock
time and epochs. Shown are: (left) p = 8 nodes with per-node minibatch size b = 32, and
(right) p = 16 nodes with per-node minibatch size b = 16.
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Figure 3.2: Center-crop validation loss and top-1 error on ImageNet over training wall-clock
time and epochs, with different numbers of nodes p and per-node minibatch size b = 16.
Shown are: (left) p = 32 nodes, (middle) p = 64 nodes, and (right) p = 128 nodes.
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Methodology

We chose ResNets [37] for our neural network architecture; specifically, we trained ResNet-18,
which is small enough to train rapidly for experimentation, but also possesses features relevant
to modern networks, including depth, residual layers, and batch normalization [41]. We ran
on the image classification problem of ImageNet consisting of 1.28 million training images
and 50,000 validation images divided into 1000 classes [79]. Our data augmentation is as
follows: we performed multi-scale training by scaling the shortest dimension of images to
between 256 and 480 pixels [87], we took random 224× 224 crops and horizontal flips, and
we added pixelwise color noise [53]. We evaluate validation loss and top-1 error on center
crops of the validation set images with the shortest dimension scaled to 256 pixels.

Unless otherwise noted, we initialized the step size to α = 0.1, then we annealed it twice
by a factor of 0.1. For our experiments with aggregate minibatch size m = pb = 256, we
annealed at exactly 150k and 300k iterations into training (See Section 3.4 for details on batch
size settings). For our experiments with larger aggregate minibatch sizes, we decreased the
number of iterations at which the step size was annealed. We used Nesterov [68] momentum of
µ = 0.9 and weight decay of λ = 10−4. For elastic averaging, we set β = 0.8/p. For all-reduce
and gossiping, we used a communication interval of τ = 1, i.e. communication occurred every
iteration. For gossiping, we used both τ = 1 and τ = 10 (the latter is recommended in [103]).

Results

Our first set of experiments compare all-reduce, elastic averaging, and push-gossiping at
p = 8 and p = 16 with an aggregate minibatch size m = pb = 256. The results are in Figure
3.1. For p = 8, elastic averaging with a communication delay τ = 10 completes each iteration
more quickly the other methods. Interestingly, all-reduce has practically no synchronization
overhead on the system at p = 8 and is as fast as gossiping. All methods converge to roughly
the same minimum loss value. For p = 16, gossiping converges faster than elastic averaging
with τ = 10, and both come ahead of all-reduce. Additionally, elastic averaging with both
τ = 1 and τ = 10 has trouble converging to the same validation loss as the other methods
once the step size has been annealed to a small value (α = 0.001 in this case).

We also perform larger scale experiments at p = 32 nodes, p = 64 nodes, and p = 128
nodes in the GPU supercomputing environment. In this environment, elastic averaging did
not perform well so we do not show those results here; pull-gossiping also performed better
than push-gossiping, so we only show results for pull-gossiping. The results are in Figure
3.2. At this scale, we begin to see the scaling advantage of synchronous all-reduce SGD. One
iteration of gossiping SGD is still faster than one iteration of all-reduce SGD, and gossiping
works quickly at the initial step size. However, after the step size has been annealed, each
iteration of gossiping SGD leads to less progress towards convergence than in synchronous
SGD.
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We note that the training time of SGD can be thought of as the product:

(wall-clock time per iteration)× (number of iterations). (3.9)

One observation we made consistent with [10] was the following: letting synchronous all-
reduce SGD run for many epochs, it will typically converge to a lower optimal validation loss
(or higher validation accuracy) than either elastic averaging or gossiping SGD. We found
that letting all-reduce SGD run for over 1 million iterations with a minibatch size of 256 led
to a peak top-1 validation accuracy of 68.7% (31.3% top-1 error). However, elastic averaging
often had trouble breaking 67% accuracy using p = 16 nodes, as did gossiping using more
than p = 32 nodes. In other words, at larger scales the asynchronous methods require more
iterations to convergence despite lower wall-clock time per iteration.

3.5 Proofs

The analysis below loosely follow the arguments presented in, and use a combination of
techniques appearing from [17,16,10,18,9].

For ease of exposition and notation, we focus our attention on the case of univariate
strongly convex function f with Lipschitz gradients. (Since the sum of squares errors are
additive in vector components, the arguments below generalize to the case of multivariate
functions.) We assume that the gradients of the function f can be sampled by all processors
independently up to additive noise with zero mean and bounded variance. (Gaussian noise
satisfy these assumptions, for example.) We also assume a fully connected network where all
processors are able to communicate with all other processors. Additional assumptions are
introduced below as needed.

We denote by θt =
[
θt,1, · · · , θt,p

]T
the vector containing all local parameter values at

time step t, we denote by θ∗ the optimal value of the objective function f , and we denote by
θ̄t ≡ 1

p

∑p
i=1 θt,i the spatial average of the local parameters taken at time step t.

We derive bounds for the following two quantities:

• E[‖θt− θ∗1‖2], the squared sum of the local parameters’ deviation from the optimum θ∗

• E[‖θt − θ̄t1‖2], the squared sum of the local parameters’ deviation from the mean
θ̄t = 1

p

∑p
i=1 θt,i

where the expectation is taken with respect to both the “pull” parameter choice and the
gradient noise term. In the literature [18], the latter is usually referred to as “agent agreement”
or “agent consensus”.
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Synchronous pull-gossip algorithm

We begin by analyzing the synchronous version of the pull-gossip algorithm described in
Algorithm 3. For each processor i, let ji denote the processor, chosen uniformly randomly
from {1, · · · , p} from which processor i “pulls” parameter values. The update for each θt,i is
given by

θt+1,i =
1

2
(θt,i + θt,ji)− αt

(
∇f

(
1

2
(θt,i + θt,ji) ;Xt,i

)
+ ξt,i

)
(3.10)

We prove the following rate of convergence for the synchronous pull-gossip algorithm.

Theorem 2. Let f be a m-strongly convex function with L-Lipschitz gradients. Assume that
we can sample gradients g = ∇f(θ;Xi) + ξi with additive noise with zero mean E[ξi] = 0
and bounded variance E[ξTi ξi] ≤ σ2. Then, running the synchronous pull-gossip algorithm as
outlined above with step size 0 < α ≤ 2

m+L
, the expected sum of squares convergence of the

local parameters to the optimal θ∗ is bounded by

E[‖θt − θ∗1‖2] ≤
(

1− 2α
mL

m+ L

)t
‖θ0 − θ∗1‖2 + pασ2m+ L

2mL
(3.11)

Remark 1. Note that this bound is characteristic of SGD bounds, where the iterates converge
to within some ball around the optimal solution. It can be shown by induction that a decreasing
step size schedule of αt ∼ O(1/pt) can be used to achieve a convergence rate of O(1/t).

Proof. For notational simplicity, we denote θt,i,ji ≡ 1
2

(θt,i + θt,ji), and drop the Xt,i in the
gradient term. We tackle the first quantity by conditioning on the previous parameter values
and expanding as

E[‖θt+1 − θ∗1‖2 | θt] = E

[
p∑
i=1

(θt,i,ji − θ∗)
T (θt,i,ji − θ∗)

∣∣∣ θt] (3.12)

− 2αtE

[
p∑
i=1

∇f(θt,i,ji)
T (θt,i,ji − θ∗)

∣∣∣ θt] (3.13)

− 2αtE

[
p∑
i=1

ξTt,i (θt,i,ji − θ∗)
∣∣∣ θt] (3.14)

+ α2
t

[
p∑
i=1

(∇f(θt,i,ji) + ξt,i)
T (∇f(θt,i,ji) + ξt,i)

∣∣∣ θt] (3.15)
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Recalling that strongly convex functions satisfy [17], ∀x, z,

(∇f(x)−∇f(z))T (x− z) (3.16)

≥ mL

m+ L
(x− z)T (x− z) +

1

m+ L
(∇f(x)−∇f(z))T (∇f(x)−∇f(z))

we can use this inequality, with x = θt,i,ji and z = θ∗ to bound the term in (3.13):

− 2αtE

[
p∑
i=1

∇f(θt,i,ji)
T (θt,i,ji − θ∗)

∣∣∣ θt] (3.17)

≤ −2αtmL

m+ L
E

[
p∑
i=1

(θt,i,ji − θ∗)T (θt,i,ji − θ∗)
∣∣∣ θt]− 2αt

m+ L
E

[
p∑
i=1

∇f(θt,i,ji)
T∇f(θt,i,ji)

∣∣∣ θt]

Using (3.18), and regrouping terms in (3.12)-(3.15), we obtain

E[‖θt+1 − θ∗1‖2 | θt] ≤
(

1− 2αt
mL

m+ L

)
E

[
p∑
i=1

(θt,i,ji − θ∗)
T (θt,i,ji − θ∗)

∣∣∣ θt] (3.18)

+

(
α2
t − 2αt

1

m+ L

)
E

[
p∑
i=1

∇f(θt,i,ji)
T∇f(θt,i,ji)

∣∣∣ θt] (3.19)

+ α2
tE

[
p∑
i=1

ξTt,iξt,i

∣∣∣ θt] (3.20)

In the above expression, we have dropped the terms linear in ξt,i, using the assumption that
these noise terms vanish in expectation. In addition, if the step size parameter α is chosen
sufficiently small, 0 < αt ≤ 2

m+L
, then the second term in (3.19) can also be dropped. The

expression we must contend with is

E[‖θt+1 − θ∗1‖2 | θt] ≤
(

1− 2αt
mL

m+ L

)
E

[
p∑
i=1

(θt,i,ji − θ∗)
T (θt,i,ji − θ∗)

∣∣∣ θt]+ α2
tpσ

2

(3.21)

Using the definition of θt,i,ji , we can verify that the following matrix relation holds.
θt,1,j1 − θ∗

...
θt,i,ji − θ∗

...
θt,p,jp − θ∗

 =


1
2

1
2

. . .
1
2

1
2

. . .
1
2

1
2




θt,1 − θ∗

...
θt,i − θ∗

...
θt,p − θ∗

 ≡MI(θt − θ∗1) (3.22)
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where the random matrix MI depends on the random index set I = {ji}pi=1 of uniformly
randomly drawn indices. MI has two entries in each row, one on the diagonal, and one
appearing in the jith column, and is a right stochastic matrix but need not be doubly
stochastic.

We can express this matrix as

MI =
1

2

p∑
i=1

ei(ei + eji)
T

and compute its second moment

E[MT
I MI ] =

1

4
E

(I +

p∑
i=1

eie
T
ji

)T (
I +

p∑
i=1

eie
T
ji

) (3.23)

=
1

2

(
I +

1

p
11T

)
(3.24)

= Q


1

1
2

. . .
1
2

QT (3.25)

where in the last line, the orthogonal diagonalization reveals that the eigenvalues of this
matrix are bounded by 1

2
≤ λi ≤ 1.

Using (3.25), we can further simply (3.21) to

E[‖θt+1 − θ∗1‖2 | θt] ≤
(

1− 2αt
mL

m+ L

)
(θt − θ∗1)TE

[
MT

I MI

]
(θt − θ∗1) + α2

tpσ
2 (3.26)

≤
(

1− 2αt
mL

m+ L

)
‖θt − θ∗1‖2 + α2

tpσ
2 (3.27)

Assuming a constant step size αt ≡ α, the above recursion can be unrolled to derive the
bound

E[‖θt − θ∗1‖2] ≤
(

1− 2α
mL

m+ L

)t
‖θ0 − θ∗1‖2 + pασ2m+ L

2mL
(3.28)

We note that the above bound is characteristic of SGD bounds, where the iterates converge
to a ball around the optimal solution, whose radius now depends on the number of processors
p, in addition to the step size α and the variance of the gradient noise σ2.
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Asynchronous pull-gossip algorithm

We provide similar analysis for the asynchronous version of the pull-gossip algorithm. As is
frequently done in the literature, we model the time steps as the ticking of local clocks gov-
erned by Poisson processes. More precisely, we assume that each processor has a clock which
ticks with a rate 1 Poisson process. A master clock which ticks whenever a local processor
clock ticks is then governed by a rate p Poisson process, and a time step in the algorithm is
defined as whenever the master clock ticks. Since each master clock tick corresponds to the
tick of some local clock on processor i, this in turn marks the time step at which processor i
“pulls” the parameter values from the uniformly randomly chosen processor ji. Modeling
the time steps by Poisson processes provide nice theoretical properties, i.e. the inter-tick
time intervals are i.i.d. exponential variables of rate p, and the local clock i which causes
each master clock tick is i.i.d. drawn from {1, · · · , p}, to name a few. For an in depth analy-
sis of this model, and results that relate the master clock ticks to absolute time, please see [16].

The main variant implemented is the pull-gossip with fresh parameters in subsection
6.2.2. The update at each time step is given by{

θt+1,i = (1− β) (θt,i − αt (∇f(θt,i) + ξt,i)) + βθt,ji
θt+1,k = θt,k , for k 6= i

where ξt,i is the gradient noise

Note in the implementation we use β = 1/2, however in the analysis we retain the β parameter
for generality.

We have the following convergence result.

Theorem 3. Let f be a m-strongly convex function with L-Lipschitz gradients. Assume that
we can sample gradients g = ∇f(θ;Xi) + ξi with additive noise with zero mean E[ξi] = 0
and bounded variance E[ξTi ξi] ≤ σ2. Then, running the asynchronous pull-gossip algorithm
with the time model as described, with constant step size 0 < α ≤ 2

m+L
, the expected sum of

squares convergence of the local parameters to the optimal θ∗ is bounded by

E[‖θt − θ∗1‖2] ≤
(

1− 2α

p

mL

m+ L

)t
‖θ0 − θ∗1‖2 + pασ2m+ L

2mL
(3.29)

Furthermore, with the additional assumption that the gradients are uniformly bounded as
sup |∇f(θ)| ≤ C, the expected sum of squares convergence of the local parameters to the mean
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θ̄t is bounded by

E[‖θt − θ̄t1‖2] ≤
(
λ

(
1− αm

p

))t
‖θ0 − θ̄01‖2 +

λα2(C2 + σ2)

1− λ
(

1− αm
p

) (3.30)

where λ = 1− 2β(1− β)

p
− 2β2

p
(3.31)

Remark 2. Note again that this bound is characteristic of SGD bounds, with the additional
dependence on p, the number of processors.

Proof. For simplicity of notation, we denote gt,i ≡ ∇f(θt,i) + ξt,i. We can write the asyn-
chronous iteration step in matrix form as

θt+1,1 − θ∗
...

θt+1,i − θ∗
...

θt+1,ji − θ∗
...

θt+1,p − θ∗


=



1
. . .

1− β β
. . .

1
. . .

1







θt,1 − θ∗
...

θt,i − θ∗
...

θt,ji − θ∗
...

θt,p − θ∗


− αt



0
...
gt,i
...
0
...
0




(3.32)

≡ Di,ji ((θt − θ∗)− αtgt) (3.33)

The random matrix Di,ji depends on the indices i and ji, both of which are uniformly
randomly drawn from {1, · · · , p}. For notational convenience we will drop the subscripts,
but we keep in mind that the expectation below is taken with respect to the randomly chosen
indices. We can express the matrix as

D = I + βei(eji − ei)T (3.34)

and compute its second moment as

E[DTD] =

(
1− 2β(1− β)

p

)
I +

2β(1− β)

p2
11T (3.35)

= Q


1

1− 2β(1−β)
p

. . .

1− 2β(1−β)
p

QT (3.36)

The orthogonal diagonalization reveals that the eigenvalues of this matrix are bounded by
1− 2β(1−β)

p
≤ λi ≤ 1.
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Using (3.36), we can expand and bound the expected sum of squares deviation by

E[‖θt+1 − θ∗1‖2|θt]
= E

[
((θt − θ∗1)− αtgt)TDTD((θt − θ∗1)− αtgt)

]
(3.37)

≤ E
[
‖(θt − θ∗1)− αtgt‖2

]
(3.38)

= ‖θt − θ∗1‖2 − 2αt
p

p∑
i=1

∇f(θt,i)
T (θt,i − θ∗) +

α2
t

p

p∑
i=1

∇f(θt,i)
T∇f(θt,i) +

α2
t

p

p∑
i=1

ξTt,iξt,i

(3.39)

where in the last line, we have dropped terms that are linear in ξt,i by using the zero mean
assumption. Making use of the strong convexity inequality (3.17), we can bound the second
term in the above sum by

−∇f(θt,i)
T (θt,i − θ∗) ≤ −

mL

m+ L
(θt,i − θ∗)T (θt,i − θ∗)−

1

m+ L
∇f(θt,i)

T∇f(θt,i)

and rearrange the terms in (3.39) to derive

E[‖θt+1 − θ∗1‖2|θt] ≤
(

1− 2αt
p

mL

m+ L

)
‖θt − θ∗1‖2 (3.40)

+

(
α2
t

p
− 2αt

p

1

m+ L

) p∑
i=1

∇f(θt,i)
T∇f(θt,i) (3.41)

+ α2
tσ

2 (3.42)

The term in (3.41) can be dropped if αt is chosen sufficiently small, with the now familiar
requirement that 0 < αt <

2
m+L

. Assuming this is the case, we have

E[‖θt+1 − θ∗1‖2|θt] ≤
(

1− 2αt
p

mL

m+ L

)
‖θt − θ∗1‖2 + α2

tσ
2 (3.43)

Assuming a constant step size αt ≡ α, we can use the law of iterated expectations to
unroll the recursion, giving

E[‖θt − θ∗1‖2] ≤
(

1− 2α

p

mL

m+ L

)t
‖θ0 − θ∗1‖2 + pασ2m+ L

2mL
(3.44)

Note this is the same convergence rate guarantee as stochastic gradient descent with an extra
factor of p, albeit the coordination amongst processors required to adjust the step size is
unrealistic in practice.
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Next, we prove the bound on the processors’ local parameters’ convergence to each other
/ to the mean, E[‖θt − θ̄t1‖2].

First, we write the spatial parameter average in vector form as

θ̄t =
1

p
1T θt (3.45)

With D as previously defined in (3.33), we can write

θ̄t+11 =
1

p
1T θt+11 =

1

p
1TD(θt − αgt)1 (3.46)

and so the term we wish to bound can be expanded as

‖θt+1 − θ̄t+11‖2 = (θt − αtgt)T
(
DTD − 1

p
DT11TD

)
(θt − αtgt) (3.47)

In addition to the diagonalization we previous calculated in (3.36) (reproduced below for
convenience), we calculate some other useful diagonalizations.

E[DTD] =

(
1− 2β(1− β)

p

)
I +

2β(1− β)

p2
11T (3.48)

= Q


1

1− 2β(1−β)
p

. . .

1− 2β(1−β)
p

QT (3.49)

E[DT11TD] =
2β2

p
I +

(
1− 2β2

p2

)
11T (3.50)

= Q


p

2β2

p
. . .

2β2

p

QT (3.51)

E
[
DTD − 1

p
DT11TD

]
=

(
1− 2β(1− β)

p
− 2β2

p2

)
I +

(
2β(1− β)

p2
− 1

p

(
1− 2β2

p2

))
11T

(3.52)

= Q


0

1− 2β(1−β)
p
− 2β2

p2

. . .

1− 2β(1−β)
p
− 2β2

p2

QT (3.53)
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We note that all three matrices are diagonalized by the same orthogonal matrix Q. Further-
more, the first eigenvector, corresponding to the eigenvalues 1, p, 0 respectively, is q1 = 1√

p
1.

Continuing from (3.47), we take the expectation and use (3.53) to further bound the

expression. In the computation below we use λ ≡ 1− 2β(1−β)
p
− 2β2

p
as a notational shorthand.

E[‖θt+1 − θ̄t+11‖2|θt]

= E
[
(θt − αtgt)T

(
DTD − 1

p
DT11TD

)
(θt − αtgt)

]
(3.54)

≤ E
[
λ‖(θt − θ̄t1)− αtgt‖2

]
(3.55)

= λ

(
‖θt − θ̄t1‖2 − 2αt

p

p∑
i=1

∇f(θt,i)
T (θt,i − θ̄t) +

α2
t

p

p∑
i=1

∇f(θt,i)
T∇f(θt,i) +

α2
t

p

p∑
i=1

ξTt,iξt,i

)
(3.56)

≤ λ

(
‖θt − θ̄t1‖2 +

2αt
p

p∑
i=1

(
f(θ̄t)− f(θt,i)

)
− αtm

p

p∑
i=1

(θi,t − θ̄t)2 +
α2
t

p

p∑
i=1

(C2 + σ2)

)
(3.57)

≤ λ

(
1− αtm

p

)
‖θt − θ̄t1‖2 + λα2

t (C
2 + σ2) (3.58)

In (3.56) and (3.57), we have used the definition of strong convexity and convexity respectively.

Finally, taking constant step size αt ≡ α, and using the law of iterated expectations to
unroll the recursion, we have

E[‖θt − θ̄t1‖2] ≤
(
λ

(
1− αm

p

))t
‖θ0 − θ̄01‖2 +

λα2(C2 + σ2)

1− λ
(

1− αm
p

) (3.59)

When the step size α is small and the number of processors p is large, the quantity

λ
(

1− αm
p

)
=
(

1− 2β(1−β)
p
− 2β2

p

)(
1− αm

p

)
is well approximated by 1− 2β(1−β)

p
− 2β2

p
− αm

p
,

which makes clear the dependence of the rate on the parameter p.
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3.6 Implementation Details

Gossip variants

Gossip with stale parameters (gradient step and gossip at the same time)

Consider a one-step distributed consensus gradient update:

θi,t+1 = θi,t − α∇f(θi,t;Xi)− β

(
θi,t −

1

p

p∑
j=1

θj,t

)
. (3.60)

If we replace the distributed mean 1
p

∑p
j=1 θj,t with an unbiased one-sample estimator θji,t,t,

such that ji,t ∼ Uniform({1, . . . , p}) and E[θji,t,t] = 1
p

∑p
j=1 θj,t, then we derive the gossiping

SGD update:

θi,t+1 = θi,t − α∇f(θi,t;Xi)− β(θi,t − θji,t,t) (3.61)

= (1− β)θi,t + βθji,t,t − α∇f(θi,t;Xi). (3.62)

Gossip with fresh parameters (gradient step before gossip)

Consider a two-step distributed consensus gradient update:

θ′i,t = θi,t − α∇f(θi,t;Xi) (3.63)

θi,t+1 = θ′i,t − β

(
θ′i,t −

1

p

p∑
j=1

θ′j,t

)
. (3.64)

If we replace the distributed mean 1
p

∑p
j=1 θ

′
j,t with an unbiased one-sample estimator θ′ji,t,t,

such that ji,t ∼ Uniform({1, . . . , p}) and E[θ′ji,t,t] = 1
p

∑p
j=1 θ

′
j,t, then we derive the gossiping

SGD update:

θ′i,t = θi,t − α∇f(θi,t;Xi) (3.65)

θi,t+1 = θ′i,t − β(θ′i,t − θ′ji,t,t) (3.66)

= (1− β)θ′i,t + βθ′ji,t,t. (3.67)

ImageNet data augmentation

We found that multi-scale training could be a significant performance bottleneck due to
the computational overhead of resizing images, even when using multiple threads and
asynchronous data loading. To remedy this, we used fast CUDA implementations of linear
and cubic interpolation filters to perform image scaling during training on the GPU. We
also preprocessed ImageNet images such that their largest dimension was no larger than the
maximum scale (in our case, 480 pixels).
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ResNet implementation

We implemented ResNet-18 using stacked residual convolutional layers with 1× 1 projection
shortcuts. We used the convolution and batch normalization kernels from cuDNNv4. The
highest ImageNet validation set accuracy (center crop, top-1) our implementation of ResNets
achieved was about 68.7% with the aforementioned multi-scale data augmentation; we note
that researchers at Facebook independently reproduced ResNet with a more sophisticated data
augmentation scheme and achieved 69.6% accuracy using the same evaluation methodology
on their version of ResNet-18.2

3.7 Discussion

In this chapter, we proposed a distributed training method, gossiping SGD, for the large scale
supervised learning of visual perception. Unlike previous approaches to distributing SGD
for large scale training, gossiping SGD avoids synchronization and has no central parameter
server bottleneck. In our experiments, we found that gossiping SGD scales well up to around
32 nodes, but above 32 nodes synchronous SGD is able to converge to better accuracy.

Revisiting the questions we asked in the beginning:

a. How fast do asynchronous and synchronous SGD algorithms converge at both the
beginning of training (large step sizes) and at the end of training (large step sizes)?

Up to around 32 nodes, asynchronous SGD can converge to a given accuracy level in
fewer hours than all-reduce synchronous SGD when the step size is large. When the
step size is small (roughly 0.001 or less), gossiping can converge faster than elastic
averaging, but all-reduce synchronous SGD converges most consistently.

b. How does the convergence behavior of asynchronous and synchronous distributed SGD
vary with the number of nodes?

Both elastic averaging and gossiping seem to converge faster than synchronous all-
reduce synchronous SGD with fewer nodes (up to 16–32 nodes). With more nodes
(up to a scale of 100 nodes), all-reduce synchronous SGD can consistently converge
to a high-accuracy solution, whereas asynchronous methods seem to plateau at lower
accuracy. In particular, the fact that gossiping SGD does not scale as well as does
synchronous SGD with more nodes suggests that the asynchrony and the pattern of
communication, rather than the amount of communication (both methods have low
amounts of communication), are responsible for the difference in convergence.

2 https://github.com/facebook/fb.resnet.torch
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Chapter 4

Spatially Parallel Convolutions

4.1 Introduction

One important subtask of visual navigation consists of identifying objects and obstacles in
images, for example using methods for object detection or semantic segmentation. Distant or
small objects may not be easily perceptible in low resolution images, potentially compromising
navigation safety in important applications like self-driving cars. To ground ourselves with
some intuition about image resolution in the real world, in Table 4.1 we tabulate the size
in pixels of a small 10 cm× 10 cm object as a function of image resolution and the actual
distance of the object from the camera, using camera and lens parameters compatible with
those of the KITTI benchmark dataset [24]: namely, we use a focal length of 5 mm and a
horizontal sensor size of about 6.4 mm.1 For example, in a 720p image (1280× 720 px), the
10 cm× 10 cm object at a distance of 100 m from the camera will appear as a single pixel in
the image. As the image resolution is increased to that of a UHD image (3840× 2160 px),
the same object at a distance of 100 m will take up almost 10 pixels, which gives an object
detection or semantic segmentation algorithm a bit more input data to work with. In
Figure 4.1 we further illustrate the difference in the range of pixels available to the different
resolutions (evaluated in Table 4.1) by comparing a bounding box around a pedestrian in a
very high resolution image (3840× 2160 px) and in a lower resolution image (1392× 512 px).
Correctly perceiving these kinds of distant or small objects is crucial for enabling safe visual
navigation in the real world, necessitating high resolution images and the preservation of high
resolution information within a convnet. In this chapter, we describe some implementation
considerations for training deep convolutional neural networks with high resolution tensors.

Deep convolutional neural networks (convnets), which form the basis of state-of-the-art
models in computer vision, are often trained on GPUs with limited memory capacity; typical

1 Further details about the sensor setup for KITTI can be found at: http://www.cvlibs.net/datasets/
kitti/setup.php. The focal length is chosen from the range 4 mm–8 mm for the Edmund Optics NT59-
917 lens. The sensor size is for the Point Grey Flea 2 FL2-14S3C-C camera: https://www.ptgrey.com/

flea2-14-mp-color-firewire-1394b-sony-icx267-camera.
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Table 4.1: Pixel footprint of a 10 cm × 10 cm object varying with distance and image
resolution, based on the camera and lens parameters of the KITTI dataset [24].

Distance KITTI 720p 1080p UHD
1392× 512 px 1280× 720 px 1920× 1080 px 3840× 2160 px

10 m 118 100 225 900
20 m 30 25 56 225
50 m 5 4 9 36

100 m 1 1 2 9

high-end GPUs have only 12 GB–16 GB of DRAM or HBM. Limited GPU memory presents
an obstacle to training high resolution convnets on semantic segmentation and other tasks [48,
95]. Current frameworks implement data or model parallelism to split tensors onto multiple
GPUs [40, 52, 18, 19]. However, data and model parallelism may be insufficient. Other
approaches reduce working memory size but increase computation time: these include simply
executing convnets on overlapping slices of the input, as well as sophisticated checkpointing
techniques [11, 28]. Increasing the amount of downsampling within a convnet does reduce
memory usage, but the addition of downsampling is also a destructive change to the model
and its learning behavior that reduces the high resolution information we were originally
motivated to preserve.

Our contribution is an implementation of spatially parallel convolutions, which uses a
technique based on “halo regions” or “ghost zones” originating from stencil codes in scientific
computing. Unlike approaches that trade off between memory and computation, spatially
parallel convolutions have low overhead in additional computation and communication, while
also enabling scaling beyond the limits of data and model parallelism. Spatially parallel
convolutions are also a systems-level approach that does not change the model, as is the case
when simply more downsampling is applied. Furthermore, unlike previous implementations
of “halo regions” or “ghost zones” on GPUs [63, 14], our implementation specifically targets
modern multi-GPU systems with high bandwidth inter-GPU interconnects.

In our experiments, we demonstrate that on a modern multi-GPU system, our implemen-
tation of spatially parallel convolutions exhibits excellent multi-GPU scaling in computation
time and memory usage when applied on tensors with large spatial dimensions. In a few
cases, spatial parallelism yields surprising but explainable superlinear speedups. Spatially
parallel convolutions are additionally adjoinable: it is easy to backpropagate through spatially
parallel convolutions for gradient-based optimization methods such as SGD.
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Figure 4.1: Comparing the number of pixels in progressively higher image resolutions with
a semantic segmentation mask from the Cityscapes dataset [15]. Overlaid is the same faux
bounding box (green) for a pedestrian on both the KITTI- and UHD-resolution images:
in the lower resolution (KITTI) image, the bounding box occupies only around 2500–3000
pixels, whereas in the higher resolution (UHD) image, the bounding box occupies around
20000 pixels.

4.2 Related Work

Trading off between memory usage and (re-)computation

One family of approaches to reducing the memory usage of convnets exploits a well known
tradeoff between storing the intermediate results of a computation in memory and recomputing
the intermediate results. A simple technique from this family of approaches is as follows. For
a convnet, one can statically compute the total receptive field in the input corresponding to
any “pixel” in the output. When the convnet consists of only spatially local operations, a slice
of pixels in the output can be computed using a corresponding slice of pixels in the input that
accounts for the total receptive field of the convnet. Using this simple technique, a large output
of a convnet that cannot fit in memory can instead be split into non-overlapping slices of
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pixels, where the computation of each of the non-overlapping output slices can fit in memory.
However, the corresponding input slices are overlapping, and often substantially so due to the
total receptive field of the convnet, resulting in a signficant amount of duplicate computation.
A more sophisticated technique that trades off between memory usage and computation is
gradient checkpointing [11, 28], which selectively recomputes some intermediate activation
tensors but stores others to bound the amount of computation that must be performed while
still reducing peak memory usage. Gradient checkpointing can still substantially increase the
amount of required computation, as it may need to recompute whole operations such as an
entire convolution. Our work on spatially parallel convolutions on multiple GPUs only adds
a small amount of computation and communication overhead, which, in Section 4.4 below,
we experimentally show does not add a substantial overhead, and sometimes can even yield a
superlinear speedup compared to the baseline single-GPU convolution.

Downsampling

As convnets typically already contain downsampling operations, it is also possible to simply
increase the amount of downsampling, yielding a network that contains lower resolution
activation tensors which in turn consume less memory than the original network. However,
increasing the amount of downsampling also fundamentally changes the nature of the model
defined by the convnet and its learning behavior, possibly reducing peak accuracy and
changing the optimal hyperparameters for training. Additionally, more downsampling further
reduces the availability of high resolution information throughout the convnet, whereas we
motivated earlier the need for preserving high resolution information in computer vision,
e.g. to detect small objects in images. The selective addition of downsampling, such as in
the combination of a low resolution context stream with a high resolution fovea stream [47],
may resolve some negative effects on learning but can be domain-specific in its application.
In contrast, spatially parallel convolutions are a purely systems-level approach to reducing
memory usage that leave the model unchanged, only modifying the dataflow of the convnet
without altering the final result of the computation.

Data and model parallelism

In what is commonly referred to as data parallelism for convnets, a minibatch of activations
is distributed into multiple local batches, and each local batch is assigned to one processing
elements (e.g. one GPU). For example, a minibatch of size 256 can be distributed onto 8
GPUs, where each GPU processes a local batch of size 32. However, a local batch size of one
cannot be further distributed using data parallelism alone, and even with a batch size of one,
a large enough convnet applied to a high resolution input image will not fit in GPU memory.
Our approach of spatially parallel convolutions can be understood as distributing tensors
along the spatial axes, sidestepping limits to data parallelism along only the batch size axis.
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Alternatively, it is possible to apply model parallelism to convnets, which generically
means distributing the parameters between GPUs. For convnets, model parallelism can also be
casted as distributing the channels of activations onto the individual GPUs. When the input
and output activations of a single convolution operation possess channels that are distributed
on different GPUs, a copy must be performed, requiring an amount of communication up to
the total size of the activation tensor. In other words, the communication overhead of model
parallelism can be substantial for convnets. Furthermore, naive implementations of model
parallelism serialize the computation among GPUs so that only one GPU is performing a
convolution at a given time; this somewhat decreases the communication burden, which is
reduced to a series of hand-offs of activation tensors between GPUs, but at the significant
expense of no parallelization of computation between multiple GPUs. Our spatially parallel
convolutions have low communication overhead and effectively parallelize computation between
multiple GPUs.

4.3 Spatially Parallel Convolutions

In this section, we describe how spatially parallel convolutions work. The basic idea behind
spatially parallel convolutions is as follows. In the field of stencil codes which also deals with
spatial data, a tensor is spatially distributed into partitions, each of which lies on a single
processing element. From the point of view of any single partition, the spatially adjacent
partitions possess remote boundary data that must be communicated before performing
local computation; this boundary data is called the “halo region.” The implementation
technique used by stencil codes is to slightly pad each partition with a “ghost zone” buffer
that receives a copy of the halo region from adjacent partitions. In Figure 4.2 below, we
illustrate a tensor partition along the spatial axes and the halo regions corresponding to
a spatially parallel 3 × 3 convolution. The combined halo region copying and ghost zone
padding leads to a small communication and memory overhead while preserving the total
number of arithmetic operations. This is the basic approach we follow when implementing
spatially parallel convolutions; we note that the same idea can be implemented for other
spatially local operations, e.g. pooling.

In the rest of the section, we more precisely define the forward and backward passes of
spatially parallel convolutions. We use the following notation: P = number of GPUs, N =
batch size, C = channels, H = height, W = width, K = conv kernel size, D = dilation
rate, and R = halo region size. For simplicity, our exposition assumes that tensors are in
NCHW -layout, i.e. the leading dimension is the width axis. Additionally we assume each
partition is a horizontal stripe of the whole tensor.
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Figure 4.2: An illustration of a 128× 128 tensor partitioned along both spatial axes for a
spatially parallel 3× 3 convolution: (left) without halo regions and (right) with halo regions
highlighted.

Forward pass

First, we define the forward pass of spatially parallel convolutions. Let w be the convolution
kernel, let x be the (unpartitioned) input tensor, and let y be the (unpartitioned) output
tensor. Let xp represent a partition of the tensor x, where the partitions are indexed by
p = 1 to P and have height H/P . In vectorized notation, the forward pass is a halo region
exchange and consists of the following operations, with loop index i = 0 to R− 1:

xp[:, :, H/P + i, :]← xp+1[:, :, i, :] (4.1)

xp[:, :,−1− i, :]← xp−1[:, :, H/P − 1− i, :] (4.2)

yp ← Conv(w, xp). (4.3)

Above, out-of-bounds array indices lie within the halo region.

Backward pass

Next, we define the backward pass of spatially parallel convolutions. Let ∆x , ∇xf be the
gradient of the tensor x with respect to a function f , and let ∆xp represent a partition of
∆x. The backward pass is the “transpose” of the forward pass, taking the form of a halo
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region reduction and consisting of the following, again with loop index i = 0 to R− 1:

∆wp ← ConvBwdKernel(xp,∆yp) (4.4)

∆w ←
P∑
p=1

∆wp (4.5)

∆xp ← TransposeConv(w,∆yp) (4.6)

∆xp[:, :, i, :]← ∆xp[:, :, i, :] + ∆xp−1[:, :, H/P + i, :] (4.7)

∆xp[:, :, H/P − 1− i, :]← ∆xp[:, :, H/P − 1− i, :] + ∆xp+1[:, :,−1− i, :]. (4.8)

The sum into ∆w is done by an all-reduce operation, which can be executed asynchronously.

Implementation

Our preliminary implementation is essentially bulk-synchronous, consisting of a communi-
cation phase, during which halo region data are exchanged between adjacent GPUs, and a
computation phase, during which convolution routines are executed independently on each
GPU; a synchronization point separates the phases. A more efficient approach would be to
fuse the halo region communication with the convolution routine, taking advantage of a low
latency interconnect such as NVLink; we leave this for future work.

4.4 Experiments

We confirmed the correctness of our spatially parallel convolution implementation by training
spatially parallel ResNet architectures on ImageNet [37, 79]. For example, on a spatially
parallel version of ResNet-18 trained using up to 4 GPUs, we attained top-1, single-crop
ILSVRC2012 validation accuracy of 69.5%, which is close to the peak accuracy of 69.57%
attained by a baseline version of ResNet-18 trained with similar data augmentation but slight
variations in network architecture.2

To evaluate our implementation of spatially parallel convolutions, our microbenchmarks
compared two approaches for a given problem size: (a) computing a convolution when the
entire problem size fits on a single GPU; and (b) computing a spatially parallel convolution
when the problem size is partitioned across multiple GPUs. Our evaluation platform was a
Tesla V100 4xGPU system with NVLink 2.0 interconnect via the Amazon EC2 P3.8x GPU
instance type. We used convolution routines from cuDNN 7 with CUDA 9.0. We exclusively
ran single-precision floating point operations. We also restricted the maximum workspace
size to 4 GB.

The results of our microbenchmarks are summarized in Tables 4.2 and 4.3. The numbers
suggest that for large problem sizes (H,W & 256) spatially parallel convolutions on multiple

2 https://github.com/facebook/fb.resnet.torch
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GPUs can achieve roughly linear speedup up to 4 GPUs compared to convolutions on a single
GPU. Dilated convolutions are harder to parallelize than regular convolutions, but on larger
problems (H,W & 512) spatially parallel dilated convolutions also scale well to 4 GPUs.

In a few cases (especially the results for the backward pass), we actually observe superlinear
speedups, which is surprising but explainable. For instance, during the backward pass of a
spatially parallel 3 × 3 convolution on 4 GPUs with problem size H,W = 512 (which has
an empirical speedup of 4.7×; c.f. Table 4.2), each individual GPU executes a single-GPU
convolution on the padded subproblem of size Hsub = 130, Wsub = 514. The superlinear
speedup then arises in large part when a 512× 512 convolution on a single GPU takes more
than 4× the wall-clock time of the 130× 514 convolution also on a single GPU. We treat the
implementation details of the single-GPU convolution routines as a “black box,” but we note
that a 512× 512 convolution is quite a large problem size. One possibility then is that there
is simply further room for improvement in tuning the convolution routine for larger problem
sizes.

Table 4.2: Spatially parallel convolution (fp32): N = 32, C = 64, K = 3, D = 1, R = 1. For
each benchmark, we show both average wall-clock time (in ms) over 1000 trials and speedup
over the single-GPU case, as well as the per-GPU memory usage (in MB) and fraction of the
memory used compared to the single-GPU case.

Problem size GPUs Fwd. wall-clock Bwd. wall-clock Memory per GPU
H = W = 128 1 GPU 2.56 ms (1.0×) 6.63 ms (1.0×) 256 MB (1.00×)

2 GPUs 1.52 ms (1.7×) 3.50 ms (1.9×) 134 MB (0.52×)
4 GPUs 1.23 ms (2.1×) 2.33 ms (2.8×) 69 MB (0.27×)

H = W = 256 1 GPU 10.02 ms (1.0×) 26.81 ms (1.0×) 1024 MB (1.00×)
2 GPUs 5.34 ms (1.9×) 11.79 ms (2.3×) 524 MB (0.51×)
4 GPUs 3.11 ms (3.2×) 6.96 ms (3.9×) 266 MB (0.26×)

H = W = 512 1 GPU 45.15 ms (1.0×) 126.11 ms (1.0×) 4096 MB (1.00×)
2 GPUs 20.18 ms (2.2×) 60.15 ms (2.1×) 2072 MB (0.50×)
4 GPUs 10.65 ms (4.2×) 26.76 ms (4.7×) 1044 MB (0.25×)

4.5 Discussion

High resolutions are critical to the safe operation of visual navigation systems. However,
it is difficult to train high resolution convnets due to limited GPU memory capacity, and
existing approaches to reducing memory usage when training convnets either add significant
computational overhead or are otherwise insufficient. Our contribution in this chapter is
an implementation of spatially parallel convolutions for efficiently training high resolution
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Table 4.3: Spatially parallel dilated convolution (fp32): N = 32, C = 64, K = 3, D = 3,
R = 3.

Problem size GPUs Fwd. wall-clock Bwd. wall-clock Memory per GPU
H = W = 128 1 GPU 3.92 ms (1.0×) 11.10 ms (1.0×) 256 MB (1.00×)

2 GPUs 2.69 ms (1.5×) 6.49 ms (1.7×) 147 MB (0.57×)
4 GPUs 2.44 ms (1.6×) 5.55 ms (2.0×) 80 MB (0.31×)

H = W = 256 1 GPU 15.39 ms (1.0×) 43.99 ms (1.0×) 1024 MB (1.00×)
2 GPUs 8.43 ms (1.8×) 22.66 ms (1.9×) 549 MB (0.54×)
4 GPUs 5.33 ms (2.9×) 12.71 ms (3.5×) 287 MB (0.28×)

H = W = 512 1 GPU 61.26 ms (1.0×) 192.11 ms (1.0×) 4096 MB (1.00×)
2 GPUs 31.68 ms (1.9×) 95.42 ms (2.0×) 2120 MB (0.52×)
4 GPUs 17.51 ms (3.5×) 46.72 ms (4.1×) 1085 MB (0.26×)

convnets on multiple GPUs, thereby partitioning memory usage between GPUs while also
parallelizing the computation with low communication overhead. We evaluated the perfor-
mance of our implementation of spatially parallel convolutions on a multi-GPU system and
found excellent scaling in computation time and memory usage.

Spatial parallelism can be composed with other complementary approaches for parallelism
and memory reduction for convolutional networks. Spatially parallel convolutions are one
extreme for partitioning or splitting tensors into more general distributed tensor represen-
tations [86]. Futhermore, the combination of spatial parallelism with both data and model
parallelism is a design point, for which an optimum exists that minimizes the sum cost of
computation and communication [25]. Gradient checkpointing trades off between working
memory size and recomputation of intermediate values in a computation graph [11, 28]; its
combination with spatial parallelism further reduces per-GPU memory usage, while retaining
favorable scaling on multiple GPUs.

An open source version of our preliminary implementation is available at:
https://github.com/peterhj/arraydiff_cuda.
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Conclusion

This dissertation examined learning and systems challenges related to visual navigation
tasks. First, we approached visual navigation tasks within the setting of deep reinforcement
learning under partial observation. Previous deep reinforcement learning approaches based
on policy gradients and Q-learning do not adequately address partial observation while
remaining sample-efficient. We described a novel deep reinforcement learning algorithm,
advantage-based regret minimization (ARM), which is able to learn robust policies in visual
navigation tasks under partial observation perturbations. Second, we considered issues related
to the large scale training of deep convolutional neural networks for visual perception. Large
datasets require distributed training, but previous synchronous and asynchronous methods
for distributed training are slowed down by synchronization and communication bottlenecks.
We presented an algorithm, gossiping SGD, that can scale well on clusters without hitting
those bottlenecks. Finally, the training of convnets on high-resolution images is limited by
GPU memory capacity. We then showed that spatially parallel convolutions can partition
memory usage, while simultaneously scaling well to multiple GPUs.

5.1 Future Directions

Counterfactual regret algorithms in continuous action spaces. In our work on
advantage-based regret minimization (ARM), we exclusively evaluated partially observed
environments with discrete action spaces. However, continuous action spaces are a prominent
feature of real-world domains such as robotics. How can one extend ARM and the family of
related counterfactual regret minimization algorithms to continuous action spaces?

One obstacle to a continuous variant of ARM could be summarized as a single technical
issue: regret matching-style policies involve a normalization by the sum of counterfactual
regrets over a discrete action space, which doesn’t apply to continuous action spaces. To
our knowledge, the only known work on addressing continuous action spaces in CFR-
style algorithms involves action space discretization [54]. Because ARM involves regret
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approximation which is analogous to value function approximation, some promising approaches
may be found in how existing value function methods for deep reinforcement learning have
been adapted to continuous action spaces, e.g. continuous-action representations of the
action-value function [30] or sampling actions from learned implicit distributions [31].

Simulating visual environments. One aspect we only briefly addressed concerns the
nature of the external environment where learning occurs. For our work on ARM, we posed the
navigation problem as model-free reinforcement learning, in which the environment consists
of a black-box simulation taking actions as its inputs and returning visual observations and
reward signals as its outputs. In our experiments, we were fortunately able to utilize high
quality environments based on the 3D video games Doom (via ViZDoom [50]) and Minecraft
(via Malmö [46]). On the other hand, our work on gossiping SGD and spatially parallel
convolutions was motivated in large part by the scaling challenges that face current and future
real-world deployments of visual perception systems, e.g. those in self-driving cars. Some
promising preliminary results on bridging the gap between simulated visual environments
and the real world include the transfer of policies trained on virtual scenes to the real world
[60, 92, 80], renderable representations of visual scenes with partial observability effects [22],
and simulation of alternative visual modalities, e.g. LIDAR [102].

Finally, although we described systems issues in learning from the perspective of imple-
menting neural nets, we did not discuss implementation considerations of the other important
component, the simulator. As the rate of learning in simulation can also be limited by a slow
simulator, then future systems advances in the implementation of simulations can also directly
transfer to more iterations of learning per wall-clock time interval, potentially yielding better
performing models (in terms of the task-specific metric) within the same training time.
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