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Abstract

Towards Practical Privacy-Preserving Data Analytics

by

Noah Michael Johnson

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Dawn Song, Chair

Organizations are increasingly collecting sensitive information about individuals. Extracting
value from this data requires providing analysts with flexible access, typically in the form of data-
bases that support SQL queries. Unfortunately, allowing access to data has been a major cause of
privacy breaches.

Traditional approaches for data security cannot protect privacy of individuals while providing
flexible access for analytics. This presents a difficult trade-off. Overly restrictive policies result
in underutilization and data siloing, while insufficient restrictions can lead to privacy breaches and
data leaks.

Differential privacy is widely recognized by experts as the most rigorous theoretical solution
to this problem. Differential privacy provides a formal guarantee of privacy for individuals while
allowing general statistical analysis of the data. Despite extensive academic research, differential
privacy has not been widely adopted in practice. Additional work is needed to address performance
and usability issues that arise when applying differential privacy to real-world environments.

In this dissertation we develop empirical and theoretical advances towards practical differential
privacy. We conduct a study using 8.1 million real-world queries to determine the requirements for
practical differential privacy, and identify limitations of previous approaches in light of these re-
quirements. We then propose a novel method for differential privacy that addresses key limitations
of previous approaches.

We present CHORUS, an open-source system that automatically enforces differential privacy for
statistical SQL queries. CHORUS is the first system for differential privacy that is compatible with
real databases, supports queries expressed in standard SQL, and integrates easily into existing data
environments. Our evaluation demonstrates that CHORUS supports 93.9% of real-world statistical
queries, integrates with production databases without modifications to the database, and scales to
hundreds of millions of records. CHORUS is currently deployed at a large technology company for
internal analytics and GDPR compliance. In this capacity, CHORUS processes more than 10,000
queries per day.
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Chapter 1

Introduction

As organizations increasingly collect sensitive information about individuals, these organizations
are ethically and legally obligated to safeguard against privacy leaks. At the same time, they
are motivated to extract maximum value by providing analysts with flexible access to the data.
Unfortunately, allowing access to data has been a major cause of privacy breaches [12–14, 16].

This presents a difficult trade-off. Overly restrictive policies result in underutilization of data,
while insufficient restrictions can lead to privacy breaches and data leaks. There is a growing and
urgent need for solutions that can balance these interests by enabling general-purpose analytics
while guaranteeing privacy protection for individuals.

Traditional approaches for data security are insufficient. Access control policies can limit ac-
cess to a particular database, but once an analyst has access these policies cannot control how
the data is used. Data anonymization attempts to provide privacy while allowing general-purpose
analysis, but cannot be relied upon as demonstrated by a number of re-identification attacks [27,
58, 61, 70].

Differential privacy [29, 35] is widely recognized by experts as the most rigorous theoretical
solution to this problem. Differential privacy provides a formal guarantee of privacy for individuals
while allowing general statistical analysis of the data. In short, it states that the presence or absence
of any single individual’s data should not have a measurable effect on the results of a query. This
allows precise answers to questions about populations in the data while guaranteeing the results
reveal little about any individual. Unlike alternative approaches such as anonymization and k-
anonymity, differential privacy protects against a wide range of attacks, including attacks using
auxiliary information [27, 58, 61, 70].

Current research on differential privacy focuses on development of new algorithms, called
mechanisms, to achieve differential privacy for a particular class of queries. These mechanisms
work by adding random noise to results of the query; their principal goal is to provide high utility
(i.e., low error) through judicious application of noise.

Researchers have developed dozens of mechanisms covering a broad range of use cases, from
general-purpose statistical queries [20,32,54–56,59,63] to special-purpose analytics tasks such as
graph analysis [23,42,46,47,66], range queries [18,24,41,50–52,64,71–73], and analysis of data
streams [33, 67]. Each mechanism works well for specific tasks and not as well, or not at all, on



CHAPTER 1. INTRODUCTION 2

other tasks.
Despite extensive academic research and an abundance of available mechanisms, differential

privacy has not been widely adopted in practice. Existing applications of differential privacy in
practice are limited to specialized use cases such as web browsing statistics [37] or keyboard and
emoji use [15].

There are several major challenges for practical adoption of differential privacy. The first is
seamless integration into real-world data environments. Data scientists often express analytics
queries in SQL, an industry-standard query language supported by most major databases. A prac-
tical system for differential privacy should therefore provide robust support for SQL queries. A few
mechanisms [20, 55–57, 59, 63] provide differential privacy for some subsets of SQL-like queries
but none support the majority of queries in practice.

Additionally, real-world environments use highly customized data architectures and industrial-
grade database engines individually tuned for performance and reliability. Previous differential
privacy approaches require replacement of the database with a custom engine [55, 56, 63]. These
approaches do not integrate easily into customized data architectures.

Another major challenge is simultaneously supporting different mechanisms. Current evidence
suggests that there is no single “best mechanism” that performs optimally for all queries. Rather,
the best mechanism depends on both the query and the dataset, and can also vary with the size
of the dataset even for a single query [43]. A practical solution must therefore provide flexibility
for mechanism selection and easy integration of new mechanisms. Previous differential privacy
systems [45, 56, 63] implement only a single mechanism; these systems are not easily combined
due to fundamental differences between their architectures.

Finally, although the theoretical aspects of differential privacy have been studied extensively,
little is known about the quantitative impact of differential privacy on real-world queries. Recent
work has evaluated this, but only for special-purpose analytics task such as histogram analysis [21]
and range queries [43]. To the best of our knowledge, no existing work has explored the design
and evaluation of differential privacy techniques for general, real-world queries.

In this dissertation we systematically address each of these challenges with the goal of sup-
porting differential privacy in a practical setting. This dissertation describes three principal contri-
butions towards this goal. First, we conduct the largest known empirical study of real-world SQL
queries using a dataset of 8.1 million queries (Chapter 2). From these results we propose a new set
of requirements for practical differential privacy on SQL queries.

To meet these requirements we propose elastic sensitivity (Chapter 3), a novel method for ap-
proximating the local sensitivity of queries with general equijoins. We prove that elastic sensitivity
is an upper bound on local sensitivity and therefore can be used to enforce differential privacy
using any local sensitivity-based mechanism.

We then present a novel approach in which query rewriting is used to enforce differential
privacy for statistical SQL queries (Chapter 4). We demonstrate this approach using four general-
purpose differential privacy mechanisms (including elastic sensitivity) and describe how additional
mechanisms can be supported.

We develop CHORUS, an open-source system based on query rewriting that automatically en-
forces differential privacy for SQL queries. CHORUS is compatible with any SQL database that
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supports standard math functions, requires no user modifications to the database or queries, and
simultaneously supports multiple differential privacy mechanisms. To the best of our knowledge,
no existing system provides these capabilities.

In the first evaluation of its kind, we use CHORUS to evaluate the four selected differential
privacy mechanisms on real-world queries and data. The results demonstrate that our approach
supports 93.9% of statistical queries in our corpus, integrates with a production DBMS without
any modifications to the database, and scales to hundreds of millions of records.

CHORUS is currently deployed at Uber for its internal analytics. It represents a significant part
of the company’s GDPR compliance, and can provide both differential privacy and access control
enforcement. In this capacity, CHORUS processes more than 10,000 queries per day.

We believe this dissertation represents a major first step towards addressing the challenges that
have inhibited adoption of differential privacy in practice. A flexible, practical system supporting
multiple state-of-the-art mechanisms and integrating easily into data environments could accelerate
adoption of differential privacy in practice. In addition, the ability to evaluate current and future
mechanisms in a real-world setting will support development of new mechanisms with greater
utility and expand the application domain of differential privacy.
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Chapter 2

Requirements for Practical Differential
Privacy

2.1 Introduction
In this chapter we establish requirements for a practical differential privacy system using a dataset
consisting of millions of real-world SQL queries. We then investigate the limitations of existing
general-purpose differential mechanisms in light of these requirements.

Dataset. We use a dataset of SQL queries written by employees at Uber. The dataset
contains 8.1 million queries executed between March 2013 and August 2016 on a broad range of
sensitive data including rider and driver information, trip logs, and customer support data.

Data analysts at Uber query this information in support of many business interests such as
improving service, detecting fraud, and understanding trends in the business. The majority of
these use-cases require flexible, general-purpose analytics.

Given the size and diversity of our dataset, we believe it is representative of SQL queries in
other real-world situations.

We investigate the following properties of queries in our dataset:

• How many different database backends are used? A practical differential privacy system
must integrate with existing database infrastructure.

• Which relational operators are used most frequently? A practical differential privacy
system must at a minimum support the most common relational operators.

• What types of joins are used most frequently and how many are used in a typical query?
Making joins differentially private is challenging because the output of a join may contain
duplicates of sensitive rows. This duplication is difficult to bound as it depends on the join
type, join condition, and the underlying data. Understanding the different types of joins
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and their relative frequencies is therefore critical for supporting differential privacy on these
queries.

• What fraction of queries use aggregations and which aggregation functions are used
most frequently? Aggregation functions in SQL return statistics about populations in the
data. Aggregation and non-aggregation queries represent fundamentally different privacy
problems, as will be shown. A practical system must at minimum support the most common
aggregations.

• How complex are typical queries and how large are typical query results? To be prac-
tical, a differential privacy mechanism must support real-world queries without imposing
restrictions on query syntax, and it must scale to typical result sizes.

2.2 Study Results
We first summarize the study results, then define requirements of a practical differential privacy
technique for real-world queries based on these results.

Question 1: How many different database backends are used?

# 
qu

er
ie

s

1

1000

1000000

Vertica Postgres MySQL Hive Presto Other

29,38739,52181,66094,206
1,494,680

6,362,631

Results. The queries in our dataset use more than 6 database backends, including Vertica, Postgres,
MySQL, Hive, and Presto.

Question 2: Which relational operators are used most frequently?

Operator Frequency
Select 100%
Join 62.1%
Union 0.57%
Minus/Except 0.06%
Intersect 0.03%

Results. All queries in our dataset use the Select operator, more than half of the queries use the
Join operator, and fewer than 1 percent use other operators such as Union, Minus, and Intersect.
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Question 3: How many joins are used by a typical query?

Jo
in

s 
in

 q
ue

ry

95

53

33

16

0

# queries
1 1000 1000000

100

0

50

75

25

Results. A significant number of queries use multiple joins, with some queries using as many as
95 joins.

Question 4: What types of joins are used most frequently?

Left join 
29%

Cross join 
1% Inner join 

69%

Other 
1%

Equijoin 
76%

Literal Comparison 
2%

Compound Expr. 
19%

Col. Comparison 
3%

Non self-join 
72%

Self-join 
28%

Many-to-many 
10%

One-to-one 
26% One-to-many 

64%

Join condition Join relationship Self join Join type

�1

Join condition. The vast majority (76%) of joins are equijoins: joins that are conditioned on value
equality of one column from both relations. A separate experiment (not shown) reveals that 65.9%
of all join queries use exclusively equijoins.

Compound expressions, defined as join conditions using function applications and conjunctions
or disjunctions of primitive operators, account for 19% of join conditions. Column comparisons,
defined as conditions that compare two columns using non-equality operators such as greater than,
comprise 3% of join conditions. Literal comparisons, defined as join conditions comparing a single
column to a string or integer literal, comprise 2% of join conditions.
Join relationship. A majority of joins (64%) are conditioned on one-to-many relationships, over
one-quarter of joins (26%) are conditioned on one-to-one relationships, and 10% of joins are con-
ditioned on many-to-many relationships.
Self join. 28% of queries include at least one self join, defined as a join in which the same database
table appears in both joined relations. The remaining queries (72%) contain no self joins.
Join type. Inner join is the most common join type (69%), followed by left join (29%) and cross
join (1%). The remaining types (right join and full join) together account for less than 1%.
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Question 5: What fraction of queries use aggregations?

Statistical 34%

Raw data 66%

Raw data 
66%

Statistical 
34%

Statistical Raw data

�1

Results. Approximately one-third of queries are statistical, meaning they return only aggregations
(count, average, etc.). The remaining queries return non-aggregated results (i.e., raw data) in at
least one output column.

Question 6: Which aggregation functions are used most frequently?

Sum 29

Avg 8.4

Max 5.9

Min 4.9

Median 0.3

Stddev 0.1

Count 51

0

15

30

45

60

Sum Avg Max Min Median Stddev Count

Count 
51%

Min 
5%

Max 
6%

Avg 
8%

Sum 
29%

Sum Avg Max Min Median Stddev Count

Median 0.3%Stddev. 0.1%

�1

Results. Count is the most common aggregation function (51%), followed by Sum (29%), Avg
(8%), Max (6%) and Min (5%). The remaining functions account for fewer than 1% of all aggrega-
tion functions.

Question 7: How complex are typical queries?

Q
ue

ry
 s

iz
e 

5000
1000
350
150
70
30
4

# queries
0 175000 350000 525000 700000
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Results. The majority of queries are fewer than 100 clauses but a significant number of queries are
much larger, with some queries containing as many as thousands of clauses.

Question 8: How large are typical query results?

Result size (rows)

O
ut

pu
t r

ow
s

10000000

10000
500

200
60

5

# queries
0 250,000 500,000 750,000 1,000,000

Result size (columns)

O
ut

pu
t c

ol
um

ns

500

300

100

60

20

3

# queries
1 1,000 1,000,000

Results. The output sizes of queries varies dramatically with respect to both rows and columns,
and queries commonly return hundreds of columns and hundreds of thousands of rows.

2.3 Discussion of Results
Our study reveals that real-world queries are executed on many different database engines—in our
dataset there are over 6. We believe this is typical; a variety of databases are commonly used within
a company to match specific performance and scalability requirements. A practical mechanism for
differential privacy will therefore allow the use of any of these existing databases, requiring neither
a specific database distribution nor a custom execution engine in lieu of a standard database.

The study shows that 62.1% of all queries use SQL Join, and specifically equijoins which
are by far the most common. Additionally, a majority of queries use multiple joins, more than
one-quarter use self joins, and joins are conditioned on one-to-one, one-to-many, and many-to-
many relationships. These results suggest that a practical differential privacy approach must at a
minimum provide robust support for equijoins, including the full spectrum of join relationships
and an arbitrary number of nested joins.
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One-third (34%) of all queries return aggregate statistics. Differential privacy is principally
designed for such queries, and in this dissertation we focus on these queries. Enforcing differential
privacy for raw data queries is beyond the scope of this work, as differential privacy is generally
not intended to address this problem.

For statistical queries, Count is by far the most common aggregation (39.3%). This validates
the focus on counting and histogram queries by the majority of previous general-purpose differen-
tial privacy mechanisms [20, 55, 57, 63]. However, a significant percentage of queries (29%) use
Sum, Avg, Min, and Max, suggesting that practical differential privacy system must additionally
support these functions.

Requirements
We summarize our requirements for practical differential privacy of real-world SQL queries:

• Requirement 1: Compatibility with existing databases. A practical differential privacy
approach must support heterogeneous database environments by not requiring a specific da-
tabase distribution or replacement of the database with a custom runtime.

• Requirement 2: Robust support for equijoin. A practical differential privacy approach
must provide robust support for equijoin, including both self joins and non-self joins, all join
relationship types, and queries with an arbitrary number of nested joins.

• Requirement 3: Support for standard aggregation functions. A practical differential
privacy approach must support the five standard SQL aggregation functions: Count, Sum,
Average, Max, and Min, which represent 99% of aggregation functions used in real-world
queries.

Our study shows that a differential privacy system satisfying these requirements is likely to
have broad impact, supporting a majority of real-world statistical queries.

2.4 Existing Differential Privacy Mechanisms
Table 2.1 lists several existing differential privacy mechanisms and their supported features relative
to our requirements. We summarize each below.

PINQ. Privacy Integrated Queries (PINQ) [55] is a mechanism that provides differential
privacy for counting queries written in an augmented SQL dialect. PINQ supports a restricted
join operator that groups together results with the same key. For one-to-one joins, this operator
is equivalent to the standard semantics. For one-to-many and many-to-many joins, on the other
hand, a PINQ query can count the number of unique join keys but not the number of joined results.
Additionally, PINQ introduces new operators that do not exist in standard SQL, so the approach is
not compatible with standard databases.
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Requirement 1︷︸︸︷ Requirement 2︷ ︸︸ ︷ Requirement 3︷︸︸︷
Database 1-to-1 1-to-many Many-many Supported

compatability equijoin equijoin equijoin aggregations

PINQ [55] no X Count

wPINQ [63] no X X X Count

Sample & aggregate [56, 59] no Avg, Sum, ...

Restricted sensitivity [20] no X X Count

DJoin [57] no X Count

Table 2.1: Comparison of general-purpose differential privacy mechanisms.

wPINQ. Weighted PINQ (wPINQ) [63] extends PINQ with support for general equijoins
and works by assigning a weight to each row in the database, then scaling down the weights of
rows in a join to ensure an overall sensitivity of 1. In wPINQ, the result of a counting query is
the sum of weights for records being counted plus noise drawn from the Laplace distribution. This
approach allows wPINQ to support all three types of joins. However, wPINQ does not satisfy
our database compatibility requirement. The system described by Proserpio et al. [63] uses a
custom runtime; applying wPINQ in an existing database would require modifying the database to
propagate weights during execution.

Sample & aggregate. Sample & aggregate [59] is a general-purpose mechanism that
supports all statistical estimators (average, sum, min, max, etc.) and works by splitting the database
into chunks, running the query on each chunk, and aggregating the results using a differentially
private algorithm. Sample & aggregate cannot support joins, since splitting the database breaks
join semantics.

Restricted sensitivity. Restricted sensitivity [20] is designed to bound the global sensitivity
of counting queries with joins, by using properties of an auxiliary data model. The approach
requires bounding the frequency of each join key globally (i.e. for all possible future databases).
This works well for one-to-one and one-to-many joins, because the unique key on the “one” side of
the join has a global bound. However, it cannot handle many-to-many joins, because the frequency
of keys on both sides of the join may be unbounded. Blocki et al. [20] formalize the restricted
sensitivity approach but do not describe how it could be used in a system compatible with existing
databases, and no implementation is available.

DJoin. DJoin [57] is a mechanism designed for differentially private queries over datasets
distributed over multiple parties. Due to the additional restrictions associated with this setting,
DJoin supports only one-to-one joins, because it rewrites join queries as relational intersections.
For example, consider the following query:
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SELECT COUNT (∗) FROM X JOIN Y ON X.A = Y.B

DJoin rewrites this query to the following (in relational algebra), which is semantically equiv-
alent to the original query only if the join is one-to-one: |πA(X) ∩ πB(Y )|. Additionally, the
approach requires the use of special cryptographic functions during query execution, so it is not
compatible with existing databases.

2.5 Summary
In summary we identified the following requirements for real-world differential privacy:

1. Compatibility with existing databases

2. Robust support for equijoin

3. Support for standard aggregation functions

We have identified the gaps of previous work based on these requirements. Specifically, no
mechanism in Table 2.1 provides compatibility with existing databases and each mechanism satis-
fies (or partially satisfies) a different subset of Requirements 2 and 3.

In the remainder of this dissertation we develop new methods for satisfying all three require-
ments. We do this in two steps. First, in Chapter 3 we address Requirements 1 and 2 by proposing
elastic sensitivity, a new differential privacy mechanism that is compatible with any existing da-
tabase and supports general equijoins. Next in Chapter 4, we develop Chorus, a unified system
that can simultaneously support multiple mechanisms (including elastic sensitivity), meeting all
Requirements 1-3.
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Chapter 3

Elastic Sensitivity

3.1 Introduction
This chapter proposes elastic sensitivity, a novel approach for differential privacy of SQL queries
with equijoins. Elastic sensitivity was developed to meet Requirements 1 and 2 as described in
Chapter 2.

In contrast to existing work, elastic sensitivity is compatible with real database systems, sup-
ports queries expressed in standard SQL, and integrates easily into existing data environments. For
simplicity our presentation of elastic sensitivity focuses on counting queries. In Section 3.2 we
discuss extensions to support other aggregation functions.

This chapter is organized as follows:

1. In Section 3.2 we introduce elastic sensitivity, a sound approximation of local sensitivity [31,
59] that supports general equijoins and can be calculated efficiently using only the query
itself and a set of precomputed database metrics. We prove that elastic sensitivity is an upper
bound on local sensitivity and can therefore be used to enforce differential privacy using any
local sensitivity-based mechanism.

2. In Section 3.3 we design and implement FLEX, an end-to-end differential privacy system for
SQL queries based on elastic sensitivity. We demonstrate that FLEX is compatible with any
existing DBMS, can enforce differential privacy for the majority of real-world SQL queries,
and incurs negligible (0.03%) performance overhead.

3. In Section 3.4 use FLEX to evaluate the impact of differential privacy on 9,862 real-world
statistical queries in our dataset. In contrast to previous empirical evaluations of differential
privacy, our experiment dataset contains a diverse variety of real-world queries executed on
real data. We show that FLEX introduces low error for a majority of these queries.
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3.2 Elastic Sensitivity
Elastic sensitivity is a novel approach for calculating an upper bound on a query’s local sensitivity.
After motivating the approach, we provide background on necessary concepts, formally define
elastic sensitivity, and prove its correctness.

Motivation
Many previous differential privacy mechanisms [20, 55] are based on global sensitivity. These
approaches do not generalize to queries with joins; the global sensitivity of queries with general
joins may be unbounded because “a join has the ability to multiply input records, so that a single
input record can influence an arbitrarily large number of output records.” [55]

Techniques based on local sensitivity [31, 59] generally provide greater utility than global
sensitivity-based approaches because they consider the actual database. Indeed, local sensitivity is
finite for general queries with joins. However, directly computing local sensitivity is computation-
ally infeasible, as it requires running the query on every possible neighbor of the true database—in
our environment this would require running more than 1 billion queries for each original query.
Previous work [59] describes efficient methods to calculate local sensitivity for a limited set of
fixed queries (e.g., the median of all values in the database) but these techniques do not apply to
general-purpose queries or queries with join.

These challenges are reflected in the design of previous mechanisms listed in Table 2.1. PINQ
and restricted sensitivity support only joins for which global sensitivity can be bounded, and
wPINQ scales weights attached to the data during joins to ensure a global sensitivity of 1. DJoin
uses a measure of sensitivity unique to its distributed setting. None of these techniques is based on
local sensitivity.

Elastic sensitivity is the first tractable approach to leverage local sensitivity for queries with
general equijoins. The key insight of our approach is to model the impact of each join in the
query using precomputed metrics about the frequency of join keys in the true database. This
novel approach allows elastic sensitivity to compute a conservative approximation of local sen-
sitivity without requiring any additional interactions with the database. In this section we prove
elastic sensitivity is an upper bound on local sensitivity and can therefore be used with any local
sensitivity-based differential privacy mechanism. In Section 3.3, we describe how to use elastic
sensitivity to enforce differential privacy.

Background
We briefly summarize existing differential privacy concepts necessary for describing our approach.
For a more thorough overview of differential privacy, we refer the reader to Dwork and Roth’s
excellent reference [35].

Differential privacy provides a formal guarantee of indistinguishability: a differentially private
result does not yield very much information about which of two neighboring databases was used
in calculating the result.
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Formally, differential privacy considers a database modeled as a vector x ∈ Dn, in which
xi represents the data contributed by user i. The distance between two databases x, y ∈ Dn is
d(x, y) = |{i|xi 6= yi}|. Two databases x, y are neighbors if d(x, y) = 1.

Definition 1 (Differential privacy). A randomized mechanism K : Dn → Rd preserves (ε, δ)-
differential privacy if for any pair of databases x, y ∈ Dn such that d(x, y) = 1, and for all sets S
of possible outputs:

Pr[K(x) ∈ S] ≤ eεPr[K(y) ∈ S] + δ

Intuitively, the sensitivity of a query corresponds to the amount its results can change when
the database changes. One measure of sensitivity is global sensitivity, which is the maximum
difference in the query’s result on any two neighboring databases.

Definition 2 (Global Sensitivity). For f : Dn → Rd and all x, y ∈ Dn, the global sensitivity of f
is

GSf = max
x,y:d(x,y)=1

||f(x)− f(y)||

McSherry [55] defines the notion of stable transformations on a database, which we will use
later. Intuitively, a transformation is stable if its privacy implications can be bounded.

Definition 3 (Global Stability). A transformation T : Dn → Dn is c-stable if for x, y ∈ Dn such
that d(x, y) = 1, d(T (x), T (y)) ≤ c.

Another definition of sensitivity is local sensitivity [31, 59], which is the maximum difference
between the query’s results on the true database and any neighbor of it:

Definition 4 (Local Sensitivity). For f : Dn → Rd and x ∈ Dn, the local sensitivity of f at x is

LSf (x) = max
y:d(x,y)=1

||f(x)− f(y)||

Local sensitivity is often much lower than global sensitivity since it is a property of the single
true database rather than the set of all possible databases.

We extend the notion of stability to the case of local sensitivity by fixing x to be the true
database.

Definition 5 (Local Stability). A transformation T : Dn → Dn is locally c-stable for true database
x if for y ∈ Dn such that d(x, y) = 1, d(T (x), T (y)) ≤ c.

Differential privacy for multi-table databases. In this chapter we consider bounded
differential privacy [48], in which x can be obtained from its neighbor y by changing (but not
adding or removing) a single tuple. Our setting involves a database represented as a multiset of
tuples, and we wish to protect the presence or absence of a single tuple. If tuples are drawn from
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the domainD and the database contains n tuples, the setting can be represented as a vector x ∈ Dn,
in which xi = v if row i in the database contains the tuple v.

For queries without joins, a database x ∈ Dn is considered as a single table. However, our
setting considers database with multiple tables and queries with joins. We map this setting into the
traditional definition of differential privacy by considering m tables t1, ..., tm as disjoint subsets of
a single database x ∈ Dn, so that

⋃m
i=1 ti = x.

With this mapping, differential privacy offers the same protection as in the single-table case: it
protects the presence or absence of any single tuple in the database. When a single user contributes
more than one protected tuple, however, protecting individual tuples may not be sufficient to pro-
vide privacy. Note that this caveat applies equally to the single- and multi-table cases—it is not a
unique problem of multi-table differential privacy.

We maintain the same definition of neighboring databases as the single-table case. Neighbors
of x ∈ Dn can be obtained by selecting a table ti ∈ x and changing a single tuple, equivalent to
changing a single tuple in a single-table database.

Smoothing functions. Because local sensitivity is based on the true database, it must be
used carefully to avoid leaking information about the data. Prior work [31,59] describes techniques
for using local sensitivity to enforce differential privacy. Henceforth we use the term smoothing
functions to refer to these techniques. Smoothing functions are independent of the method used to
compute local sensitivity, but generally require that local sensitivity can be computed an arbitrary
distance k from the true database (i.e. when at most k entries are changed).

Definition 6 (Local Sensitivity at Distance). The local sensitivity of f at distance k from database
x is:

A
(k)
f (x) = max

y∈Dn:d(x,y)≤k
LSf (y)

Definition of Elastic Sensitivity
We define the elastic sensitivity of a query recursively on the query’s structure. To allow the use
of smoothing functions, our definition describes how to calculate elastic sensitivity at arbitrary
distance k from the true database (under this definition, the local sensitivity of the query is defined
at k = 0).

Figure 3.1 contains the complete definition, which is presented in four parts: (a) Core relational
algebra, (b) Definition of Elastic sensitivity, (c) Max frequency at distance k, and (d) Ancestors of
a relation. We describe each part next.

Core relational algebra. We present the formal definition of elastic sensitivity in terms of
a subset of the standard relational algebra, defined in Figure 3.1(a). This subset includes selection
(σ), projection (π), join (./), counting (Count), and counting with grouping (CountG1..Gn). It
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admits arbitrary equijoins, including self joins, and all join relationships (one-to-one, one-to-many,
and many-to-many).

To simplify the presentation our notation assumes the query performs a count as the outermost
operation, however the approach naturally extends to aggregations nested anywhere in the query
as long as the query does not perform arithmetic or other modifications to the aggregation result.

For example, the following query counts the total number of trips and projects the “count”
attribute:

πcountCount(trips)

Our approach can support this query by treating the inner relation as the query root.

Elastic sensitivity. Figure 3.1(b) contains the recursive definition of elastic sensitivity at
distance k. We denote the elastic sensitivity of query q at distance k from the true database x as
Ŝ(k)(q, x). The Ŝ function is defined in terms of the elastic stability of relational transformations
(denoted ŜR).

Ŝ
(k)
R (r, x) bounds the local stability (Definition 5) of relation r at distance k from the true

database x. Ŝ(k)
R (r, x) is defined in terms of mfk(a, r, x), the maximum frequency of attribute a in

relation r at distance k from database x.

Max frequency at distance k. The maximum frequency metric is used to bound the
sensitivity of joins. We define the maximum frequency mf(a, r, x) as the frequency of the most
frequent value of attribute a in relation r in the database instance x. In Section 3.3 we describe
how the values of mf can be obtained from the database.

To bound the local sensitivity of a query at distance k from the true database, we must also
bound the max frequency of each join key at distance k from the true database. For attribute a of
relation r in the true database x, we denote this value mfk(a, r, x), and define it (in terms of mf) in
Figure 3.1(c).

Ancestors of a relation. The definition in Figure 3.1(d) is a formalization to identify self
joins. Self joins have a much greater effect on sensitivity than joins of non-overlapping relations.
In a self join, adding or removing one row of the underlying database may cause changes in both
joined relations, rather than just one or the other. The join case of elastic sensitivity is therefore
defined in two cases: one for self joins, and one for joins of non-overlapping relations. To dis-
tinguish the two cases, we use A(r) (defined in Figure 3.1(d)), which denotes the set of tables
possibly contributing rows to r. A join of two relations r1 and r2 is a self join when r1 and r2

overlap, which occurs when some table t in the underlying database contributes rows to both r1

and r2. Relations r1 and r2 are non-overlapping when |A(r1) ∩ A(r2)| = 0.
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Core relational algebra:
Attribute names
a
Value constants
v

Relational transformations
R ::= t | R1 ./

x=y
R2

| Πa1,...,anR | σϕR
| Count(R)

Selection predicates
ϕ ::= a1θa2 | aθv
θ ::= < | ≤ | =

| 6= | ≥ | >

Counting queries
Q ::= Count(R)

| Count
G1..Gn

(R)

(a)

Definition of elastic stability:

Ŝ
(k)
R :: R→ Dn→ elastic stability
Ŝ

(k)
R (t, x) = 1

Ŝ
(k)
R (r1 ./

a=b
r2, x) =

max(mfk(a, r1, x)Ŝ
(k)
R (r2, x),mfk(b, r2, x)Ŝ

(k)
R (r1, x)) |A(r1) ∩ A(r2)| = 0

mfk(a, r1, x)Ŝ
(k)
R (r2, x) + mfk(b, r2, x)Ŝ

(k)
R (r1, x) + Ŝ

(k)
R (r1, x)Ŝ

(k)
R (r2, x) |A(r1) ∩ A(r2)| > 0

Ŝ
(k)
R (Πa1,...,anr, x) = Ŝ

(k)
R (r, x)

Ŝ
(k)
R (σϕr, x) = Ŝ

(k)
R (r, x)

Ŝ
(k)
R (Count(r)) = 1

Definition of elastic sensitivity:
Ŝ(k) :: Q→ Dn→ elastic sensitivity
Ŝ(k)(Count(r), x) = Ŝ

(k)
R (r, x)

Ŝ(k)( Count
G1..Gn

(r), x) = 2Ŝ
(k)
R (r, x)

(b)

Maximum frequency at distance k:
mfk :: a→ R→ Dn→ N
mfk(a, t, x) = mf(a, t, x) + k

mfk(a1, r1 ./
a2=a3

r2, x) =

{
mfk(a1, r1, x)mfk(a3, r2, x) a1 ∈ r1
mfk(a1, r2, x)mfk(a2, r1, x) a1 ∈ r2

mfk(a,Πa1,...,anr, x) = mfk(a, r, x)
mfk(a, σϕr, x) = mfk(a, r, x)
mfk(a,Count(r), x) = ⊥

(c)

Ancestors of a relation:
A :: R→ {R}
A(t) = {t}
A(r1 ./

a=b
r2) = A(r1) ∪ A(r2)

A(Πa1,...,anr) = A(r)
A(σϕr) = A(r)

(d)

Figure 3.1: (a) syntax of core relational algebra; (b) definition of elastic stability and elastic sensi-
tivity at distance k; (c) definition of maximum frequency at distance k; (d) definition of ancestors
of a relation.
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Join conditions. For simplicity our notation refers only to the case where a join contains a
single equality predicate. The approach naturally extends to join conditions containing any predi-
cate that can be decomposed into a conjunction of an equijoin term and any other terms. Consider
for example the following query:

SELECT COUNT (∗) FROM a
JOIN b ON a.id = b.id AND a.size > b.size
Calculation of elastic sensitivity for this query requires only the equijoin term (a.id = b.id)

and therefore follows directly from our definition. Note that in a conjunction, each predicate adds
additional constraints that may decrease (but never increase) the true local stability of the join,
hence our definition correctly computes an upper bound on the stability.

Example: Counting Triangles
We now consider step-by-step calculation of elastic sensitivity for an example query. We select the
problem of counting triangles in a directed graph, described by Prosperio et al. in their evaluation
of WPINQ [63]. This example contains multiple self-joins, which demonstrate the most complex
recursive cases of Figure 3.1.

Following Prosperio et al. we select privacy budget ε = 0.7 and consider the ca-HepTh [8]
dataset, which has maximum frequency metric of 65.

In SQL, the query is expressed as:

SELECT COUNT (∗) FROM edges e1
JOIN edges e2 ON e1.dest = e2. source AND

e1. source < e2. source
JOIN edges e3 ON e2.dest = e3. source AND

e3.dest = e1. source AND
e2. source < e3. source

Consider the first join (e1 ./ e2), which joins the edges table with itself. By definition of Ŝ(k)
R

(self join case) the elastic stability of this relation is:
mfk(dest, edges, x)Ŝ

(k)
R (edges, x) + mfk(source, edges, x)Ŝ

(k)
R (edges, x) + Ŝ

(k)
R (edges, x)Ŝ

(k)
R (edges, x)

Furthermore, since edges is a table, Ŝ(k)
R (edges) = 1.

We then have:
mfk(dest, edges, x) = mf(dest, edges, x) + k

mfk(source, edges, x) = mf(source, edges, x) + k

Substituting the max frequency metric (65), the elastic stability of this relation is:
(65 + k) + (65 + k) + 1 = 131 + 2k.

Now consider the second join, which joins e3 (an alias for the edges table) with the previous
joined relation (e1 ./ e2). Following the same process and substituting values, the elastic stability
of this relation is:
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mfk(dest, edges, x)Ŝ
(k)
R (e1 ./ e2, x) + mfk(source, edges, x)Ŝ

(k)
R (edges, x) + Ŝ

(k)
R (e1 ./ e2, x)Ŝ

(k)
R (edges, x)

=(65 + k)(131 + 2k) + (65 + k) + (131 + 2k)

=2k2 + 199k + 8711

This expression describes the elastic stability at distance k of relation (e1 ./ e2) ./ e3. Per the
definition of Ŝ(k) the elastic sensitivity of a counting query is equal to the elastic stability of the
relation being counted, therefore this expression defines the elastic sensitivity of the full original
query.

As we will discuss in Section 3.3, elastic sensitivity must be smoothed using smooth sen-
sitivity [59] before it can be used with the Laplace mechanism. In short, this process requires
computing the maximum value of elastic sensitivity at k multiplied by an exponentially decaying
function in k:

S = max
k=0,1,...,n

e−βkŜ(k)

= max
k=0,1,...,n

e−βk(2k2 + 199k + 8711)

where β = ε
2 ln(2/δ)

and δ = 10−8.
The maximum value is S = 8896.95, which occurs at distance k = 19. Therefore, to enforce

differential privacy we add Laplace noise scaled to 2S
ε

= 17793.9
0.7

, per Definition 7 (see Section 3.3).

Elastic Sensitivity is an Upper Bound on Local Sensitivity
In this section, we prove that elastic sensitivity is an upper bound on the local sensitivity of a query.
This fundamental result affirms the soundness of using elastic sensitivity in any local sensitivity-
based differential privacy mechanism.

First, we prove two important lemmas: one showing the correctness of the max frequency at
distance k, and the other showing the correctness of elastic stability.

Lemma 1. For database x, at distance k, r has at most mfk(a, r, x) occurrences of the most
popular join key in attribute a:

mfk(a, r, x) ≥ max
y:d(x,y)≤k

mf(a, r, y)

Proof. By induction on the structure of r.

Case t. To obtain the largest possible number of occurrences of the most popular join key in a table
t at distance k, we modify k rows to contain the most popular join key. Thus, maxy:d(x,y)≤k mf(a, r, y) =
mf(a, r, x) + k.

Case r1 ./
a2=a3

r2. We need to show that:

mfk(a1, r1 ./
a2=a3

r2, x) ≥ max
y:d(x,y)≤k

mf(a1, r1 ./
a2=a3

r2, y) (3.1)
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Consider the case when a1 ∈ r1 (the proof for case a1 ∈ r2 is symmetric). The worst-case
sensitivity occurs when each tuple in r1 with the most popular value for a1 also contains attribute
value a2 matching the most popular value of attribute a3 in r2. So we can rewrite equation 3.1:

mfk(a1, r1 ./
a2=a3

r2, x) ≥ max
y:d(x,y)≤k

mf(a1, r1, y)mf(a3, r2, y) (3.2)

We then rewrite the left-hand side, based on the definition of mfk and the inductive hypothesis.
Each step may make the left-hand side smaller, but never larger, preserving the original inequality:

mfk(a1, r1 ./
a2=a3

r2, x)

= mfk(a1, r1, x)mfk(a3, r2, x)

≥ max
y:d(x,y)≤k

mf(a1, r1, y) max
y:d(x,y)≤k

mf(a3, r2, y)

≥ max
y:d(x,y)≤k

mf(a1, r1, y)mf(a3, r2, y)

Which is equal to the right-hand side of equation 3.2.

Case Πa1,...,anr. Projection does not change the number of rows, so the conclusion follows directly
from the inductive hypothesis.

Case σϕr. Selection might filter out some rows, but does not modify attribute values. In the worst
case, no rows are filtered out, so σϕr has the same number of occurrences of the most popular join
key as r. The conclusion thus follows directly from the inductive hypothesis.

Lemma 2. Ŝ(k)
R (r) is an upper bound on the local stability of relation expression r at distance k

from database x:

A
(k)
count(r)(x) ≤ Ŝ(k)

R (r, x)

Proof. By induction on the structure of r.

Case t. The stability of a table is 1, no matter its contents.

Case r1 ./
a=b

r2. We want to bound the number of changed rows in the joined relation. There are
two cases, depending on whether or not the join is a self join.

Subcase 1: no self join. When the ancestors of r1 and r2 are non-overlapping (i.e. |A(r1) ∩
A(r2)| = 0), then the join is not a self join. This means that either r1 may change or r2 may
change, but not both. As a result, either Ŝ(k)

R (r1, x) = 0 or Ŝ(k)
R (r2, x) = 0. We therefore have two

cases:

1. When Ŝ(k)
R (r1, x) = 0, r2 may contain at most Ŝ(k)

R (r2, x) changed rows, producing at most
mfk(a, r1, x)Ŝ

(k)
R (r2, x) changed rows in the joined relation.

2. In the symmetric case, when Ŝ(k)
R (r2, x) = 0, the joined relation contains at most

mfk(b, r2, x)Ŝ
(k)
R (r1, x) changed rows.
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We choose to modify the relation resulting in the largest number of changed rows, which is exactly
the definition.

Subcase 2: self join. When the set of ancestor tables of r1 overlaps with the set of ancestor tables
of r2, i.e. |A(r1) ∩A(r2)| > 0, then changing a single row in the database could result in changed
rows in both r1 and r2.

In the self join case, there are three sources of changed rows:

1. The join key of an original row from r1 could match the join key of a changed row in r2.

2. The join key of an original row from r2 could match the join key of a changed row in r1.

3. The join key of a changed row from r1 could match the join key of a changed row in r2.

Now consider how many changed rows could exist in each class.

1. In class 1, r2 could have at most Ŝ(k)
R (r2, x) changed rows (by the inductive hypothesis). In

the worst case, each of these changed rows matches the most popular join key in r1, which
occurs at most mfk(a, r1, x) times (by Lemma 1), so class 1 contains at most
mfk(a, r1, x)Ŝ

(k)
R (r2, x) changed rows.

2. Class 2 is the symmetric case of class 1, and thus contains at most mfk(b, r2, x)Ŝ
(k)
R (r1, x)

changed rows.

3. In class 3, we know that r1 contains at most Ŝ(k)
R (r1, x) changed rows and r2 contains at most

Ŝ
(k)
R (r2, x) changed rows. In the worst case, all of these changed rows contain the same join

key, and so the joined relation contains Ŝ(k)
R (r1, x)Ŝ

(k)
R (r2, x) changed rows.

The total number of changed rows is therefore bounded by the sum of the bounds on the three
classes:

mfk(a, r1, x)Ŝ
(k)
R (r2, x)+mfk(b, r2, x)Ŝ

(k)
R (r1, x) + Ŝ

(k)
R (r1, x) Ŝ

(k)
R (r2, x)

Which is exactly the definition.

Case Πa1,...,anr. Projection does not change rows. The conclusion therefore follows from the
inductive hypothesis.

Case σϕr. Selection does not change rows. The conclusion therefore follows from the inductive
hypothesis.

Case Count(r). Count without grouping produces a relation with a single row. The stability of
such a relation is 1, at any distance.
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Main Theorem
We are now prepared to prove the main theorem.

Theorem 1. The elastic sensitivity Ŝ(k)(q, x) of a query q at distance k from the true database x
is an upper bound on the local sensitivity A(k)

q (x) of q executed at distance k from database x:

A(k)
q (x) ≤ Ŝ(k)(q, x)

Proof. There are two cases: histogram queries and non-histogram queries.

Case Count(r) (non-histogram). The local sensitivity of a non-histogram counting query over r
is equal to the stability of r, so the result follows directly from Lemma 2.

Case Count
G1..Gn

(r) (histogram). In a histogram query, each changed row in the underlying relation

can change two rows in the histogram [32]. Thus by Lemma 2, the histogram’s local stability is
bounded by 2Ŝ

(k)
R (r, x).

Optimization for Public Tables
Our definition of elastic sensitivity assumes that all database records must be protected. In practice,
databases often contain a mixture of sensitive and non-sensitive data. This fact can be used to
tighten our bound on local sensitivity for queries joining on non-sensitive tables.

In our dataset, for example, city data is publicly known, therefore the system does not need to
protect against an attacker learning information about the cities table. Note the set of public tables
is domain-specific and will vary in each data environment.

More precisely, in a join expression T1 JOIN T2 ON T1.A = T2.B, if T2 is publicly known, the
elastic stability of the join is equal to the elastic stability of T1 times the maximum frequency of
T2.B. This formulation prevents the use of a publicly-known table with repeated join keys from
revealing information about a private table.

Discussion of Limitations and Extensions
This section discusses limitations of elastic sensitivity and potential extensions to support other
common aggregation functions.

Unsupported Queries

Elastic sensitivity does not support non-equijoins, and adding support for these is not straightfor-
ward. Consider the query:

SELECT count (∗) FROM A JOIN B ON A.x > B.y
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This query compares join keys using the greater-than operator, and bounding the number of matches
for this comparison would require knowledge about all the data for A.x and B.y.

Fortunately, as demonstrated in Chapter 2, more than three-quarters of joins are equijoins. Elas-
tic sensitivity could be extended to support other join types by querying the database for necessary
data-dependent bounds, but this modification would require interactions with the database for each
original query.

Elastic sensitivity can also fail when requisite max-frequency metrics are not available due to
the query structure. Consider the query:

WITH A AS ( SELECT count (∗) FROM T1),
B AS ( SELECT count (∗) FROM T2)

SELECT count (∗) FROM A JOIN B ON A.count = B.count

This query uses counts computed in subqueries as join keys. Because the mf metric covers only the
attributes available in the original tables of the database, our approach cannot bound the sensitivity
of this query and must reject it. In general, elastic sensitivity applies only when join keys are drawn
directly from original tables. Fortunately, this criterion holds for 98.5% of joins in our dataset, so
this limitation has very little consequence in practice.

Supporting Other Aggregation Functions

In this section we outline extensions of our approach to support non-count aggregation functions,
and characterize the expected utility for each. These extensions, which provide a roadmap for
potential future research, would expand the set of queries supported by an elastic sensitivity-based
system.

Value range metric. To describe these extensions we define a new metric, value range
vr(a, r), defined as the maximum value minus the minimum value allowed by the data model of
column a in relation r.

This metric can be derived in a few ways. First, it can be extracted automatically from the
database’s column constraint definitions [2], if they exist. Second, a SQL query can extract the
current value range, which can provide a guideline for selecting the permissible value range based
on records already in the database; finally, a domain expert can define the metric using knowledge
about the data’s semantics.

Once the metric is defined, it must be enforced in order for differential privacy to be guaran-
teed. The metric could be enforced as a data integrity check, for example using column check
constraints [2].

Sum and Average. For sum and average, we note that the local sensitivity of these func-
tions is affected both by the stability of the underlying relation, because each row of the relation
potentially contributes to the computed sum or average, and by the range of possible values of the
attributes involved.
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Given our definition of vr above, the elastic sensitivity of both Sum and Average on relation r
at distance k from database x is defined by vr(a, r)S(k)

R (r, x). This expression captures the largest
possible change in local sensitivity, in which each new row in r has the maximum value of a, for a
total change of vr(a, r) per row.

For Sum queries on relations with stability 1 (i.e. relations without joins), this definition of
elastic sensitivity is exactly equal to the query’s local sensitivity, so the approach will provide
optimal utility. As the relation’s stability grows, so does the gap between elastic sensitivity and
local sensitivity, and utility degrades, since elastic sensitivity makes the worst-case assumption that
each row duplicated by a join contains the maximum value allowed by the data model.

For the average function, this definition is exactly equal to local sensitivity only for the de-
generate case of averages of a single row. As more input rows are added, local sensitivity shrinks,
since the impact of a single new row is amortized over the number of averaged records, while elas-
tic sensitivity remains constant. Therefore utility degradation is proportional to both the stability
of the relation as well as the number of records being averaged.

This could be mitigated with a separate analysis to compute a lower bound on the number of
records being averaged, in which case the sensitivity could be scaled down by this factor. Such an
analysis would require inspection of filter conditions in the query and an expanded set of database
metrics.

Max and min. We observe that the stability of the underlying relation has no effect
on the local sensitivity of max and min. Consequently, for such queries the data model vr(a, r)
directly provides the global sensitivity, which is an upper bound of local sensitivity. However, the
max and min functions are inherently sensitive, because they are strongly affected by outliers in
the database [31], and therefore any differential privacy technique will provide poor utility in the
general case.

Due to this fundamental limitation, previous work [31,59,68] has focused on the robust coun-
terparts of these functions, such as the interquartile range, which are less sensitive to changes in
the database. This strategy is not viable in our setting since functions like interquartile range are
not supported by standard SQL.

3.3 FLEX: Differential Privacy via Elastic Sensitivity
This section describes FLEX, our system to enforce differential privacy for SQL queries using
elastic sensitivity. Figure 3.2 summarizes the architecture of our system. For a given SQL query,
FLEX uses an analysis of the query to calculate its elastic sensitivity, as described in Section 3.2.
FLEX then applies smooth sensitivity [59,60] to the elastic sensitivity and finally adds noise drawn
from the Laplace distribution to the original query results. In Section 3.3 we prove this approach
provides (ε, δ)-differential privacy.

Importantly, our approach allows the query to execute on any existing database. FLEX requires
only static analysis of the query and post-processing of the query results, and requires no inter-
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Figure 3.2: Architecture of FLEX.

actions with the database to enforce differential privacy. As we demonstrate in Section 3.4, this
design allows the approach to scale to big data while incurring minimal performance overhead.

Collecting max frequency metrics. The definition of elastic sensitivity requires a set of
precomputed metrics mf from the database, defined as the frequency of the most frequent attribute
for each join key. The values of mf can be easily obtained with a SQL query. For example, this
query retrieves the metric for column a of table T :

SELECT COUNT(a) FROM T GROUP BY a
ORDER BY count DESC LIMIT 1;

Obtaining these metrics is a separate step from enforcing differential privacy for a query; the
metrics can be obtained once and re-used for all queries. Note the metric must be recomputed when
the most frequent join attribute changes, otherwise differential privacy is no longer guaranteed. For
this reason, the architecture in Figure 3.2 is ideal for environments where database updates are far
less frequent than database queries.

Most databases can be configured using triggers [4] to automatically recompute the metrics on
database updates; this approach could support environments with frequent data updates.

Elastic Sensitivity analysis. To compute elastic sensitivity we built an analysis framework
for SQL queries based on the Presto parser [9], with additional logic to resolve aliases and a
framework to perform abstract interpretation-based dataflow analyses on the query tree. FLEX’s
elastic sensitivity analysis is built on this dataflow analysis engine, and propagates information
about ancestor relations and max-frequency metrics for each joined column in order to compute
the overall elastic sensitivity of the query, per the recursive definition in Section 3.2. We evaluate
the execution time and success rate of this analysis in Section 3.4.

Histogram bin enumeration. When a query uses SQL’s GROUP BY construct, the output is
a histogram containing a set of bin labels and an aggregation result (e.g., count) for each bin. To
simplify presentation, our definition of elastic sensitivity in Section 3.2 assumes that the analyst
provides the desired histogram bins labels `. This requirement, also adopted by previous work [55],
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is necessary to prevent leaking information via the presence or absence of a bin. In practice,
however, analysts do not expect to provide histogram bin labels manually.

In some cases, FLEX can automatically build the set of histogram bin labels ` for a given query.
In our dataset, many histogram queries use non-protected bin labels drawn from finite domains
(e.g. city names or product types). For each possible value of the histogram bin label, FLEX can
automatically build ` and obtain the corresponding differentially private count for that histogram
bin. Then, FLEX adds a row to the output containing the bin label and its differentially private
count, where results for missing bins are assigned value 0 and noise is added as usual.

This process returns a histogram of the expected form which does not reveal anything new
through the presence or absence of a bin. Additionally, since this process requires the bin labels
to be non-protected, the original bin labels can be returned. The process can generalize to any
aggregation function.

The above approach requires a finite, enumerable, and non-protected set of values for each
histogram bin label. When the requirement cannot be met, for example because the histogram bin
labels are protected or cannot be enumerated, FLEX can still return the differentially private count
for each bin, but it must rely on the analyst to specify the bin labels.

Proof of Correctness
In this section we formally define the FLEX mechanism and prove that it provides (ε, δ)-differential
privacy.

FLEX implements the following differential privacy mechanism derived from the Laplace-
based smooth sensitivity mechanism defined by Nissim et al. [59, 60]:

Definition 7 (FLEX mechanism). For input query q and histogram bin labels ` on true database x
of size n, with privacy parameters (ε, δ):

1. Set β = ε
2 ln(2/δ)

.

2. Calculate S = maxk=0,1,...,n e
−βkŜ(k)(q, x).

3. Release q`(x) + Lap(2S/ε).

This mechanism leverages smooth sensitivity [59, 60], using elastic sensitivity as an upper bound
on local sensitivity.

Theorem 2. The FLEX mechanism provides (ε, δ)-differential privacy.

Proof. By Theorem 1 and Nissim et al. [60] Lemma 2.3, S is a β-smooth upper bound on the local
sensitivity of q. By Nissim et al. Lemma 2.9, when the Laplace mechanism is used, a setting of
β = ε

2 ln(2/δ)
suffices to provide (ε, δ)-differential privacy. By Nissim et al. Corollary 2.4, the value

released by the FLEX mechanism is (ε, δ)-differentially private.
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Efficiently Calculating S
The definition of the FLEX mechanism (Definition 7) requires calculating the maximum smooth
sensitivity over all distances k between 0 and n (the size of the true database). For large databases
as in our setting, this can require hundred of millions of calculations for each query. Even if each
calculation is fast, this can be highly inefficient.

Fortunately, the particular combination of elastic sensitivity with smooth sensitivity allows for
an optimization. The elastic sensitivity Ŝ(k)(q, x) grows as kj(q)2 , where j(q) is the number of joins
in q (see Lemma 3 below). For a given query, j(q) is fixed. The smoothing factor (e−βk), on the
other hand, shrinks exponentially in k.

Recall that the smoothed-out elastic sensitivity at k is S(k) = e−βkŜ(k)(q, x). We will show
that to find maxk=0,1,...,n S(k), it is sufficient to find maxk=0,1,...,m S(k), where m ≥ j(q)2

β
. Since m

is typically much smaller than n (and depends on the query, rather than the size of the database),
this yields significant computational savings.

Lemma 3. For all relation expressions r and databases x, where j(r) is the number of joins in r,
Ŝ

(k)
R (r, x) is a polynomial in k of degree at most j(r)2, and all coefficients are non-negative.

Proof. Follows from the recursive definitions of Ŝ(k)
R and mfk, since each makes at most j(r)

recursive calls and only adds or multiplies the results.

Theorem 3. For all queries q and databases x, the smoothed-out elastic sensitivity at distance k
is S(k) = e−βkŜ(k)(q, x). For each x and q, if q queries a relation r, the maximum value of S(k)

occurs from k = 0 to k = j(r)2

β
.

Proof. Let the constant λ = j(r)2. By Lemma 3, we have that for some set of constants α0, . . . αλ:

Ŝ
(k)
R (r, x) =

λ∑
i=0

αik
λ−i

We therefore have that:

S(k) =

∑λ
i=0 αik

λ−i

eβk

S ′(k) =
λ∑
i=0

αie
βkkλ−i−1(λ− i− βk)

Under the condition that αi ≥ 0, each term in the numerator is≤ 0 exactly when λ−i−βk ≤ 0.
We know that αi ≥ 0 by the definition of elastic sensitivity.

We also know that λ ≥ 0, because a query cannot have a negative number of joins. Thus the
first term (i = 0) is ≤ 0 exactly when k ≥ λ

β
(we know that β ≥ 0 by its definition). All of the

other terms will also be ≤ 0 when k ≥ λ
β

, because for i > 0, λ− i− βk < λ− βk.
We can therefore conclude that S ′(k) ≤ 0 when k > λ

β
, and so S(k) is flat or decreasing for

k > j(r)2

β
.
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Privacy Budget & Multiple Queries
FLEX does not prescribe a specific privacy budget management strategy, allowing the use existing
privacy budget methods as needed for specific applications. Below we provide a brief overview of
several approaches.

Composition techniques. Composition for differential privacy [32] provides a simple way to
support multiple queries: the εs and δs for these queries simply add up until they reach a maximum
allowable budget, at which point the system refuses to answer new queries. The strong composition
theorem [36] improves on this method to produce a tighter bound on the privacy budget used. Both
approaches are independent of the mechanism and therefore apply directly to FLEX.

Budget-efficient approaches. Several approaches answer multiple queries together (i.e. in a
single workload) resulting in more efficient use of a given privacy budget than simple composition
techniques. These approaches work by posing counting queries through a low-level differentially
private interface to the database. FLEX can provide the low-level interface to support these ap-
proaches.

The sparse vector technique [34] answers only queries whose results lie above a predefined
threshold. This approach depletes the privacy budget for answered queries only. The Matrix
Mechanism [51] and MWEM [41] algorithms build an approximation of the true database using
differentially private results from the underlying mechanism; the approximated database is then
used to answer questions in the workload. Ding et al. [28] use a similar approach to release differ-
entially private data cubes. Each of these mechanisms is defined in terms of the Laplace mechanism
and thus can be implemented using FLEX.

3.4 Experimental Evaluation
We evaluate our approach with the following experiments:

• We measure the performance overhead and success rate of FLEX on real-world queries.

• We investigate the utility of FLEX-based differential privacy for real-world queries with and
without joins.

• We evaluate the effect of the privacy budget ε on the utility of FLEX-based differential pri-
vacy.

• We measure the utility impact of the public table optimization described in Section 3.2.

• We compare FLEX and wPINQ on a set of representative counting queries using join.
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Avg (s) Max (s)
Original query 42.4 3,452
FLEX: Elastic Sensitivity Analysis 0.007 1.2
FLEX: Output Perturbation 0.005 2.4

Table 3.1: Performance of FLEX-based differential privacy.

Experimental setup & dataset. We ran all of our experiments using our implementation
of FLEX with Java 8 on Mac OSX. Our test machine was equipped with a 2.2 GHz Intel Core i7
and 8GB of memory. Our experiment dataset includes 9,862 real queries executed during October
2016. To build this dataset, we identified all counting queries submitted during this time period
that examined sensitive trip data. Our dataset also includes the original (non-differentially private)
results of each query.

Success Rate and Performance of FLEX

To investigate FLEX’s support for the wide range of SQL features in real-world queries, we ran
FLEX’s elastic sensitivity analysis on the queries in our experiment dataset. We recorded the
number of errors and classified each error according to its type.

In total, FLEX successfully calculated elastic sensitivity for 76% of the queries. The largest
group of errors is due to unsupported queries (14.14%). These queries use features for which our
approach cannot compute an elastic sensitivity, as described in Section 3.2. Parsing errors occurred
for 6.58% of queries. These errors result from incomplete grammar definitions for the full set
of SQL dialects used by the queries, and could be fixed by expanding Presto parser’s grammar
definitions. The remaining errors (3.21%) are due to other causes.

To investigate the performance of FLEX-based differential privacy, we measured the total exe-
cution time of the architecture described in Figure 3.2 compared with the original query execution
time. We report the results in Table 3.1. Parsing and analysis of the query to calculate elastic
sensitivity took an average of 7.03 milliseconds per query. The output perturbation step added an
additional 4.86 milliseconds per query. By contrast, the average database execution time was 42.4
seconds per query, implying an average performance overhead of 0.03%.

Utility of FLEX on Real-World Queries
Our work is the first to evaluate differential privacy on a set of real-world queries. In contrast with
previous evaluations of differential privacy [21, 43, 44], our dataset includes a wide variety of real
queries executed on real data.

We evaluate the behavior of FLEX for this broad range of queries. Specifically, we measure the
noise introduced to query results based on whether or not the query uses join and what percentage
of the data is accessed by the query. Henceforth we use the term error to refer to the relative
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COUNT-NOJOIN SUM-NOJOIN MIN-NOJOIN MAX-NOJOIN COUNT-JOIN SUM-JOIN MIN-JOIN MAX-JOIN

4 1000.0000 7ASpHpaXyx 1 TRUE 0 COUNT null FALSE 1000.0000

4 500.0000 7ASpHpaXyx 3 TRUE 0 COUNT null FALSE 500.0000

476 4.0404 7AbOSrvWt4 0 TRUE 0 COUNT null FALSE 4.0404

4316970 0.0020 7CZ2hc4LQA 1 TRUE 1 COUNT null TRUE 0.0020

4316970 0.0098 7CZ2hc4LQA 2 TRUE 1 COUNT null TRUE 0.0098

4316970 0.0348 7CZ2hc4LQA 3 TRUE 1 COUNT null TRUE 0.0348

4316970 0.0132 7CZ2hc4LQA 4 TRUE 1 COUNT null TRUE 0.0132

227 179438.8861 7EZYJb84B1 3 TRUE 1 COUNT null FALSE 179438.8861

51510 0.0194 7H9rkgCitV 2 FALSE 0 COUNT null FALSE 0.0194

51510 0.2537 7H9rkgCitV 3 FALSE 0 SUM null FALSE 0.2537

94883.5 0.0211 7HNc779LqC 1 TRUE 0 COUNT null FALSE 0.0211

94883.5 0.0255 7HNc779LqC 2 TRUE 0 COUNT null FALSE 0.0255

2948 0.3392 7I74vfvk8T 0 FALSE 0 COUNT null FALSE 0.3392

1865182 0.0011 7Jg3Ss9WPR 2 TRUE 0 COUNT null FALSE 0.0011

21 95.2381 7KdH3rGVIm 5 TRUE 0 COUNT null FALSE 95.2381

27794 0.0744 7Kmddvtd0d 1 TRUE 0 COUNT null FALSE 0.0744

20055816 0.0002 7MY4p5Ak6M 0 FALSE 0 COUNT null FALSE 0.0002

4618 0.7890 7NQ1sH20kL 1 TRUE 0 COUNT null FALSE 0.7890

35 970150.0606 7OHYuUuqNP 1 TRUE 1 COUNT null FALSE 970150.0606

125348 0.1844 7Pan3VZlYc 0 FALSE 0 COUNT null FALSE 0.1844

125348 0.1844 7Pan3VZlYc 1 FALSE 0 COUNT null FALSE 0.1844

2 33602901728642.8
000

7PrpoiFe0Q 6 TRUE 4 COUNT null TRUE 33602901728642.8
000

2 4178932808981280
0000000000000000
000000.0000

7PrpoiFe0Q 7 TRUE 4 SUM null TRUE 4178932808981280
0000000000000000
000000.0000

1503243 0.0015 7RpvMskSzK 1 TRUE 0 COUNT null FALSE 0.0015

1503243 0.0049 7RpvMskSzK 2 TRUE 0 COUNT null FALSE 0.0049

1503243 0.0026 7RpvMskSzK 3 TRUE 0 COUNT null FALSE 0.0026

1503243 5927.7004 7RpvMskSzK 4 TRUE 0 NONE null FALSE

14 237954.7103 7SEbib5byn 1 TRUE 3 COUNT null FALSE 237954.7103

1337050 0.0015 7UHXNJx1mu 1 TRUE 0 COUNT null FALSE 0.0015

1337050 8090.8355 7UHXNJx1mu 2 TRUE 0 NONE null FALSE

1337050 46011.8494 7UHXNJx1mu 3 TRUE 0 AVG null FALSE

31441 0.0646 7YEaz5mOyn 1 TRUE 0 COUNT null FALSE 0.0646

19 7520913.7466 7Z0T0CTGWn 2 TRUE 2 COUNT null FALSE 7520913.7466

44780.5 0.1870 7Z3J3Z628y 2 TRUE 1 COUNT null TRUE 0.1870

7926.5 9622.2659 7Zf5hLFOn8 2 TRUE 1 COUNT null FALSE 9622.2659

75 18.6916 7o6abcrSW2 1 TRUE 0 COUNT null FALSE 18.6916

120215 2115.5499 7ovIHhF0T3 0 FALSE 2 COUNT null FALSE 2115.5499

120215 1376.6941 7ovIHhF0T3 1 FALSE 2 COUNT null FALSE 1376.6941

2 62363131.3057 7qzvcLDKKh 1 TRUE 2 COUNT null FALSE 62363131.3057

91 320189.9851 7rx8mPEnEJ 3 TRUE 1 COUNT null FALSE 320189.9851

4 7775285.6972 7sRtZE9Jm9 3 TRUE 1 COUNT null FALSE 7775285.6972

10762.5 0.4552 7tAURoNXHK 1 TRUE 1 COUNT null TRUE 0.4552

10762.5 6825395723679380
0000000000.0000

7tAURoNXHK 2 TRUE 1 AVG null TRUE

10762.5 1566481949223230
0000000.0000

7tAURoNXHK 4 TRUE 1 SUM null TRUE 1566481949223230
0000000.0000

10762.5 0.5442 7tAURoNXHK 7 TRUE 1 COUNT null TRUE 0.5442

10762.5 0.6388 7tAURoNXHK 8 TRUE 1 COUNT null TRUE 0.6388

10762.5 1.9030 7tAURoNXHK 9 TRUE 1 COUNT null TRUE 1.9030

3531004 0.0006 7tjSxJEHAz 1 TRUE 0 COUNT null FALSE 0.0006

3531004 0.0006 7tjSxJEHAz 2 TRUE 0 SUM null FALSE 0.0006

3531004 0.0928 7tjSxJEHAz 3 TRUE 0 SUM null FALSE 0.0928

3531004 0.0658 7tjSxJEHAz 4 TRUE 0 SUM null FALSE 0.0658

56 35.7143 7uJUfB3950 2 TRUE 0 COUNT null FALSE 35.7143

297 6.2698 7vBRiNx4t1 2 TRUE 0 COUNT null FALSE 6.2698

2 15812536.3442 7wfC5YUbOK 2 TRUE 1 COUNT null FALSE 15812536.3442

55776 0.0359 7yAqVPZOMM 1 TRUE 0 COUNT null FALSE 0.0359

13 153.8462 7yAqWBG710 1 TRUE 0 COUNT null FALSE 153.8462

13 5890538800568690
0000000000.0000

7yAqWBG710 2 TRUE 0 SUM null FALSE 5890538800568690
0000000000.0000

834 9.5328 7yX9nwJ1SS 4 TRUE 1 COUNT null TRUE 9.5328

834 4327309434033440
00000000000.0000

7yX9nwJ1SS 5 TRUE 1 AVG null TRUE

834 146.6204 7yX9nwJ1SS 6 TRUE 1 COUNT null TRUE 146.6204

834 42993.5845 7yX9nwJ1SS 7 TRUE 1 NONE null TRUE

712100 0.0323 7ygyyqhIu1 1 TRUE 1 COUNT null FALSE 0.0323

712100 0.0114 7ygyyqhIu1 2 TRUE 1 COUNT null FALSE 0.0114

712100 11470.9723 7ygyyqhIu1 3 TRUE 1 NONE null FALSE

4582933 0.0006 7zjROAwbn8 0 FALSE 0 COUNT null FALSE 0.0006

6784 0.2948 8072litR5x 1 TRUE 0 COUNT null FALSE 0.2948

54 3428814013146080
00.0000

81dbFAZlDI 2 TRUE 5 COUNT null TRUE 3428814013146080
00.0000

54 1195702759369180
00.0000

81dbFAZlDI 5 TRUE 5 COUNT null FALSE 1195702759369180
00.0000

1 8131.3932 81iRN9sqg4 2 TRUE 1 COUNT null FALSE 8131.3932

1 8131.3932 81iRN9sqg4 3 TRUE 1 COUNT null FALSE 8131.3932

73126619 0.0008 83McNffr6Z 1 TRUE 1 COUNT null TRUE 0.0008

73126619 0.0002 83McNffr6Z 2 TRUE 1 COUNT null TRUE 0.0002

1.97675E+04 0.1065 85SPmqMWQD 1 TRUE 0 COUNT null FALSE 0.1065

5125 0.4351 86F6jeq9Yv 1 TRUE 0 COUNT null FALSE 0.4351

823553 377.6584 86fxNqaBiD 0 FALSE 2 COUNT null TRUE 377.6584

8.23553E+05 334.6522 86fxNqaBiD 1 FALSE 2 COUNT null TRUE 334.6522

9998425 0.0002 87FzwcOzpJ 1 TRUE 0 COUNT null FALSE 0.0002

338 5.9172 87TLNxQlo3 1 TRUE 0 COUNT null FALSE 5.9172

28.5 67.8161 87TLOtgmiO 1 TRUE 0 COUNT null FALSE 67.8161

4889 0.4437 87lH8WMXRc 2 TRUE 0 COUNT null FALSE 0.4437

23 132493.0477 87oxckzdxT 1 TRUE 3 COUNT null FALSE 132493.0477

19515.5 4607.0670 8AikhgIcrM 1 TRUE 1 COUNT null FALSE 4607.0670

19515.5 8908.4644 8AikhgIcrM 2 TRUE 1 COUNT null FALSE 8908.4644

19515.5 56796668.7546 8AikhgIcrM 3 TRUE 1 NONE null FALSE

19515.5 9631.6012 8AikhgIcrM 4 TRUE 1 COUNT null FALSE 9631.6012

19515.5 59523910.3151 8AikhgIcrM 5 TRUE 1 NONE null FALSE

166355.5 598.3816 8BrjG3gPWO 2 TRUE 1 COUNT null FALSE 598.3816

24028142 0.0004 8C2eoF5qJf 1 TRUE 1 COUNT null TRUE 0.0004

24028142 1642642947180910
00000.0000

8C2eoF5qJf 2 TRUE 1 SUM null TRUE 1642642947180910
00000.0000

95 601052.2314 8CD97Cd96h 2 TRUE 1 COUNT null FALSE 601052.2314

0 Infinity 8Dv6bCK1WB 0 FALSE 0 COUNT null FALSE Infinity

34023 0.0622 8GTehKtDeh 2 FALSE 0 COUNT null FALSE 0.0622

34023 Infinity 8GTehKtDeh 3 FALSE 0 SUM null FALSE Infinity

7 4382340.8732 8Gftvnkg8J 4 TRUE 1 COUNT null FALSE 4382340.8732

7 5495820.2472 8Gftvnkg8J 5 TRUE 1 COUNT null FALSE 5495820.2472

7 Infinity 8Gftvnkg8J 6 TRUE 1 COUNT null FALSE Infinity

7 30823754.1768 8Gftvnkg8J 7 TRUE 1 COUNT null FALSE 30823754.1768

7 Infinity 8Gftvnkg8J 8 TRUE 1 COUNT null FALSE Infinity

7 5224303700741060
000000000000000.
0000

8Gftvnkg8J 9 TRUE 1 SUM null FALSE 5224303700741060
000000000000000.
0000

3495 2.1382 8GqPKds5R1 4 TRUE 1 COUNT null TRUE 2.1382

3 9886045.4533 8HTHvuIqeR 4 TRUE 1 COUNT null FALSE 9886045.4533

3 13291604.1509 8HTHvuIqeR 5 TRUE 1 COUNT null FALSE 13291604.1509

3 Infinity 8HTHvuIqeR 6 TRUE 1 COUNT null FALSE Infinity

3 Infinity 8HTHvuIqeR 7 TRUE 1 COUNT null FALSE Infinity

3 Infinity 8HTHvuIqeR 8 TRUE 1 COUNT null FALSE Infinity

3 1236832679950620
0000000000000000
.0000

8HTHvuIqeR 9 TRUE 1 SUM null FALSE 1236832679950620
0000000000000000
.0000

33428 0.0459 8HlCQUoVsr 2 TRUE 0 COUNT null FALSE 0.0459

33428 0.0898 8HlCQUoVsr 3 TRUE 0 COUNT null FALSE 0.0898

33428 1084.5373 8HlCQUoVsr 4 TRUE 0 NONE null FALSE

297 6.7340 8HriWsWodZ 2 TRUE 0 COUNT null FALSE 6.7340

1 2000.0000 8IgpXxF99l 1 TRUE 0 COUNT null FALSE 2000.0000

234.5 6161928.9263 8JmzhcXIb6 1 TRUE 1 COUNT null FALSE 6161928.9263

234.5 171240.6589 8JmzhcXIb6 2 TRUE 1 COUNT null FALSE 171240.6589

130931 1983.1259 8N4zO41YIW 0 FALSE 2 COUNT null FALSE 1983.1259

130931 1109.6817 8N4zO41YIW 1 FALSE 2 COUNT null FALSE 1109.6817

1 31916572.6555 8NIkAvPSpF 2 TRUE 1 COUNT null FALSE 31916572.6555

27137 2159.2687 8NafUmvqr8 0 FALSE 1 COUNT null FALSE 2159.2687

27137 16285.2522 8NafUmvqr8 1 FALSE 1 COUNT null FALSE 16285.2522

14159 0.5185 8OOtUtRs4g 0 TRUE 0 COUNT null FALSE 0.5185

477 2.4115 8ORjXCjybc 3 TRUE 0 COUNT null FALSE 2.4115

332.5 24.6760 8OjfieVDO2 1 TRUE 0 COUNT null FALSE 24.6760

2058.5 1.0083 8PjIx9KVq3 1 TRUE 0 COUNT null FALSE 1.0083

39596 2513.9975 8QBe5FO6SI 1 TRUE 1 COUNT null FALSE 2513.9975

57162943 0.0002 8QhlH5ywBZ 0 FALSE 1 COUNT null TRUE 0.0002

57162943 0.0116 8QhlH5ywBZ 1 FALSE 1 COUNT null TRUE 0.0116

57162943 0.0006 8QhlH5ywBZ 2 FALSE 1 COUNT null TRUE 0.0006

57162943 6276489784036700
0000.0000

8QhlH5ywBZ 3 FALSE 1 SUM null TRUE 6276489784036700
0000.0000

5693 0.3746 8R0MzGyQcI 0 FALSE 0 COUNT null FALSE 0.3746

34606 0.0612 8SW2U7jS4z 1 TRUE 0 COUNT null FALSE 0.0612

34606 4059679920367400
0000000.0000

8SW2U7jS4z 2 TRUE 0 SUM null FALSE 4059679920367400
0000000.0000

16 129.5547 8UuAOLv5a0 1 TRUE 0 COUNT null FALSE 129.5547

16 6295840110757340
0000000000.0000

8UuAOLv5a0 2 TRUE 0 SUM null FALSE 6295840110757340
0000000000.0000

15508 0.5020 8VpnUepDNE 3 TRUE 1 COUNT null TRUE 0.5020

26306.5 0.3184 8VxU5ETm69 3 TRUE 1 COUNT null FALSE 0.3184

1180077 0.0018 8WPpEv4aiK 1 TRUE 0 COUNT null FALSE 0.0018

2 15343607.0766 8XEwEzPgny 2 TRUE 1 COUNT null FALSE 15343607.0766

10 3207447.3388 8ZTFnzdAWN 1 TRUE 1 COUNT null FALSE 3207447.3388

188064 0.0704 8Zu6RUReOR 1 TRUE 1 COUNT null FALSE 0.0704

188064 0.1527 8Zu6RUReOR 2 TRUE 1 COUNT null FALSE 0.1527

188064 0.0438 8Zu6RUReOR 3 TRUE 1 COUNT null FALSE 0.0438

188064 0.1696 8Zu6RUReOR 4 TRUE 1 COUNT null FALSE 0.1696

84286 0.0237 8Zu6Svf2Al 1 TRUE 0 COUNT null FALSE 0.0237

84286 0.1501 8Zu6Svf2Al 2 TRUE 0 COUNT null FALSE 0.1501

29128 0.3961 8bECmPQwjm 1 TRUE 1 COUNT null FALSE 0.3961

29128 1.5583 8bECmPQwjm 2 TRUE 1 COUNT null FALSE 1.5583

29128 0.2792 8bECmPQwjm 3 TRUE 1 COUNT null FALSE 0.2792

29128 1.5935 8bECmPQwjm 4 TRUE 1 COUNT null FALSE 1.5935

502710.5 0.0040 8bSOE57nPf 1 TRUE 0 COUNT null FALSE 0.0040

12 2466445.4883 8bw6bNEHEa 1 TRUE 1 COUNT null FALSE 2466445.4883

15964.5 0.2529 8cKLI9G9wc 1 TRUE 0 COUNT null FALSE 0.2529

1864.5 0.3166 8ctJmCdErH 0 TRUE 0 COUNT null FALSE 0.3166

56655.5 0.1402 8dLeUbwN5y 2 TRUE 1 COUNT null TRUE 0.1402

796633 92.8322 8dowt24P2Q 0 FALSE 1 COUNT null FALSE 92.8322

45269 0.1690 8ducBmK18K 2 TRUE 1 COUNT null TRUE 0.1690

28154 0.3270 8dzSH8ybbB 7 TRUE 1 COUNT null TRUE 0.3270

310 3.9841 8eAlUQfsvy 0 FALSE 0 COUNT null FALSE 3.9841

1 2000.0000 8edDsLxPEI 1 TRUE 0 COUNT null FALSE 2000.0000

1023896.5 0.0020 8gbJSkwwa0 1 TRUE 0 COUNT null FALSE 0.0020

188064 0.0704 8gezVBz5qa 1 TRUE 1 COUNT null FALSE 0.0704

188064 0.1527 8gezVBz5qa 2 TRUE 1 COUNT null FALSE 0.1527

188064 0.0438 8gezVBz5qa 3 TRUE 1 COUNT null FALSE 0.0438

188064 0.1696 8gezVBz5qa 4 TRUE 1 COUNT null FALSE 0.1696

569715 0.0038 8h6wYtqIxZ 0 FALSE 0 COUNT null FALSE 0.0038

569715 1759383.8166 8h6wYtqIxZ 1 FALSE 0 NONE null FALSE

8689 14686.7767 8jFy6Pc5Pe 1 TRUE 1 COUNT null FALSE 14686.7767

8689 6027.1546 8jFy6Pc5Pe 2 TRUE 1 COUNT null FALSE 6027.1546

34606 0.0612 8jQUjnMfo4 1 TRUE 0 COUNT null FALSE 0.0612

34606 4000599375156900
0000000.0000

8jQUjnMfo4 2 TRUE 0 SUM null FALSE 4000599375156900
0000000.0000

37900 0.2046 8m8T5dkYoS 3 TRUE 1 COUNT null TRUE 0.2046

37900 3273616047487570
00000000.0000

8m8T5dkYoS 4 TRUE 1 SUM null TRUE 3273616047487570
00000000.0000

37900 0.8200 8m8T5dkYoS 5 TRUE 1 COUNT null TRUE 0.8200

37900 12.1094 8m8T5dkYoS 6 TRUE 1 COUNT null TRUE 12.1094

11243307 0.0002 8mSk04D40v 0 FALSE 0 COUNT null FALSE 0.0002

15803.5 4521.4226 8n9mkbEe6o 1 TRUE 1 COUNT null FALSE 4521.4226
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Figure 3.4: Median error vs population size for queries with no joins (a) and with joins (b).

amount of noise added to query results in order to enforce differential privacy. We use this metric
as a proxy for utility since data analysts are primarily concerned with accuracy of results.

Query population size. To evaluate the ability of FLEX to handle both small and large
populations, we define a metric called population size. The population size of a query is the
number of unique trips in the database used to calculate the query results. The population size
metric quantifies the extent to which a query targets specific users or trips: a low population size
indicates the query is highly targeted, while a higher population size means the query returns
statistics over a larger subgroup of records.

Figure 3.3 summarizes the distribution of population sizes of the queries in our dataset. Our
dataset contains queries with a wide variety of population sizes, reflecting the diversity of queries
in the dataset.

Utility of FLEX-based differential privacy. We evaluate the utility of FLEX by comparing
the error introduced by differential privacy on each query against the population size of that query.
For small population sizes, we expect our approach to protect privacy by producing high error; for
large population sizes, we expect our approach to provide high utility by producing low error.

We used FLEX to produce differentially private results for each query in our dataset. We report
separately the results for queries with no joins and those with joins. For each cell in the results, we



CHAPTER 3. ELASTIC SENSITIVITY 31

Query Description # Joins
Q1 Billed, shipped, and returned business 0
Q4 Priority system status and customer satisfaction 1
Q13 Relationship between customers and order size 1
Q16 Suppliers capable of supplying various part types 1
Q21 Suppliers with late shipping times for required parts 3

Table 3.2: Evaluated TPC-H queries.

calculated the relative (percent) error introduced by FLEX, as compared to the true (non-private)
results. Then, we calculated the median error of the query by taking the median of the error values
of all cells. For this experiment, we set ε = 0.1 and δ = n−ε lnn (where n is the size of the
database), following Dwork and Lei [31].

Figure 3.4 shows the median error of each query against the population size of that query for
queries with no joins (a) and with joins (b). The results indicate that FLEX achieves its primary
goal of supporting joins. Figure 3.4 shows similar trends with and without joins. In both cases the
median error generally decreases with increasing population size; furthermore, the magnitude of
the error is comparable for both. Overall, FLEX provides high utility (less than 10% error) for a
majority of queries both with and without joins.

Figure 3.4(b) shows a cluster of queries with higher errors but exhibiting the same error-
population size correlation as the main group. The queries in this cluster perform many-to-many
joins on private tables and do not benefit from the public table optimization described in Sec-
tion 3.2. Even with this upward shift, a high utility is predicted for sufficiently large population
size: at population sizes larger than 5 million the median error drops below 10%.

Hay et al. [43] define the term scale-ε exchangeability to describe the trend of decreasing error
with increasing population size. The practical implication of this property is that a desired utility
can always be obtained by using a sufficiently large population size. For counting queries, a local
sensitivity-based mechanism using Laplace noise is expected to exhibit scale-ε exchangeability.
Our results provide empirical confirmation that FLEX preserves this property, for both queries
with and without joins, while calculating an approximation of local sensitivity.

Utility of FLEX on TPC-H benchmark

We repeat our utility experiment using TPC-H [25], an industry-standard SQL benchmark. The
source code and data for this experiment are available for download [5].

The TPC-H benchmark includes synthetic data and queries simulating a workload for an archety-
pal industrial company. The data is split across 8 tables (customers, orders, suppliers, etc.) and the
benchmark includes 22 SQL queries on these tables.

The TPC-H benchmark is useful for evaluating our system since the queries are specifically
chosen to exhibit a high degree of complexity and to model typical business decisions [25]. This
experiment measures the ability of our system to handle complex queries and provide high utility
in a new domain.
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Figure 3.5: Median error vs population size (TPC-H queries). *Query 21 is supported, but due to
low coverage and high sensitivity, its relative error is much higher than that of the other queries.

Experiment setup. We populated a database using the TPC-H data generation tool with
the default scale factor of 1. We selected the counting queries from the TPC-H query workload,
resulting in five queries for evaluation including three queries that use join. The selected queries
use SQL’s GROUP BY operator and other SQL features including filters, order by, and subqueries.
The selected queries are summarized in Table 3.2. The remaining queries in the benchmark are not
applicable for this experiment as they return raw data or use non-counting aggregation functions.

We computed the median population size and median error for each query using the same
methodology as the previous experiment and privacy parameters ε = 0.1 and δ = 1/n2. We marked
as private every table containing customer or supplier information (customer, orders, lineitem,
supplier, partsupp). The 3 tables containing non-sensitive metadata (region, nation, part) were
marked as public.

Results. The results are presented in Figure 3.5. Elastic sensitivity exhibits the same trend
as the previous experiment: error decreases with increasing population size; this trend is observed
for queries with and without joins, but error tends to be higher for queries with many joins.

Inherently sensitive queries

Differential privacy is designed to provide good utility for statistics about large populations in the
data. Queries with low population size, by definition, pose an inherent privacy risk to individuals;
differential privacy requires poor utility for their results in order to protect privacy. As pointed out
by Dwork and Roth [35], “Questions about specific individuals cannot be safely answered with
accuracy, and indeed one might wish to reject them out of hand.”

Since queries with low population size are inherently sensitive and therefore not representative
of the general class of queries of high interest for differential privacy, we exclude queries with
sample size smaller than 100 in the remaining experiments. This ensures the results reflect the
behavior of FLEX on queries for which high utility may be expected.
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Figure 3.6: Effect of ε on median error.

Effect of Privacy Budget
In this section we evaluate the effect of the privacy budget on utility of FLEX-based differential
privacy. For each value of ε in the set {0.1, 1, 10} (keeping δ fixed at n−ε lnn), we computed the
median error of each query, as in the previous experiment.

We report the results in Figure 3.6, as a histogram grouping queries by median error. As
expected, larger values of ε result in lower median error. When ε = 0.1, FLEX produces less than
1% median error for approximately half (49.8%) of the less sensitive queries in our dataset.

High-error queries. The previous two experiments demonstrate that FLEX produces good
utility for queries with high population size, but as demonstrated by the number of queries in the
“More” bin in Figure 3.6, FLEX also produces high error for some queries.

To understand the root causes of this high error, we manually examined a random sample of 50
of these queries and categorized them according to the primary reason for the high error.

We summarize the results in Table 3.3. The category filter on individual’s data (8% of high
error queries) includes queries that use a piece of data specific to an individual—either to filter
the sample with a Where clause, or as a histogram bin. For example, the query might filter the
set of trips by comparing the trip’s driver ID against a string literal containing a particular driver’s
ID, or it might construct a histogram grouped by the driver ID, producing a separate bin for each
individual driver. These queries are designed to return information specific to individuals.

The category low-population statistics (72% of high error queries) contains queries with a
Where clause or histogram bin label that shrinks the set of rows considered. A query to determine
the success rate of a promotion might restrict the trips considered to those within a small city,
during the past week, paid for using a particular type of credit card, and using the promotion.
The analyst in this case may not intend to examine the information of any individual, but since the
query is highly dependent on a small set of rows, the results may nevertheless reveal an individual’s
information.

These categories suggest that even queries with a population size larger than 100 can carry
inherent privacy risks, therefore differential privacy requires high error for the reasons motivated
earlier.

The third category (20% of high error queries) contains queries that have many-to-many joins
with large maximum frequency metrics and which do not benefit from any of the optimizations
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Figure 3.7: Impact of public table optimization.

Category Percent
Filters on individual’s data 8%
Low-population statistics 72%
Many-to-many Join causes high elastic sensitivity 20%

Table 3.3: Manual categorization of queries with high error.

described in Section 3.2. These queries are not necessarily inherently sensitive; the high error may
be due to a loose bound on local sensitivity arising from elastic sensitivity’s design.

Impact of Public Table Optimization
Section 3.2 describes an optimization for queries joining on public tables. We measure the impact
of this optimization on query utility by calculating median error introduced by FLEX for each
query in our dataset with the optimization enabled and disabled. We use the same experimental
setup described in the previous section, with ε = 0.1 and δ = n−ε lnn. As before, we exclude
queries with population size less than 100.

The optimization is applied to 23.4% of queries in our dataset. Figure 3.7 shows the utility
impact of the optimization across all queries. The optimization increases the percentage of queries
with greatest utility (error less than 1.0%) from 28.5% to 49.8%. The majority of the increase in
high-utility queries come from the lowest-utility bin (error greater than 100%) while little change
is seen in the mid-range error bins. This suggests our optimization is most effective on queries
which would otherwise produce high error, optimizing more than half of these queries into the 1%
error bin.

Comparison with wPINQ
We aim to compare our approach to alternative differential privacy mechanisms with equivalent
support for real-world queries. Of the mechanisms listed in Chapter 2.4, only wPINQ supports
counting queries with the full spectrum of join types.

Since wPINQ programs are implemented in C#, we are unable to run wPINQ directly on our
SQL query dataset. Instead we compare the utility between the two mechanisms for a selected
set of representative queries. The precise behavior of each mechanism may differ for every query,
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Program Joined tables
Median Median Error (%)

Population
wPINQ

Elastic
Size Sensitivity

1. Count distinct drivers who have completed a trip in San
Francisco yet enrolled as a driver in a different city.

trips, drivers 663 45.9 22.6

2. Count driver accounts that are active and were tagged after
June 6 as duplicate accounts.

users, user tags 734 71.5 2.8

3. Count motorbike drivers in Hanoi who are currently active
and have completed 10 or more trips.

drivers, analytics 212 51.4 4.72

4. Histogram: Daily trips by city (for all cities) on Oct. 24,
2016.

trips, cities 87 11.5 23

5. Histogram: Total trips per driver in Hong Kong between
Sept. 9 and Oct. 3, 2016.

trips, drivers 1 974 6437

6. Histogram: Drivers by different thresholds of total com-
pleted trips for drivers registered in Syndey, AUS who have
completed a trip within the past 28 days.

drivers, analytics 72 51.5 27.8

Table 3.4: Utility comparison of wPINQ and FLEX for selected set of representative counting
queries using join.

however this experiment provides a relative comparison of the mechanisms for the most common
cases.

Experiment Setup. We selected a set of representative queries based on the most common
equijoin patterns (joined tables and join condition) across all counting queries in our dataset. We
identify the three most common join patterns for both histogram and non-histogram queries and
select a random query representing each. Our six selected queries collectively represent 8.6% of
all join patterns in our dataset.

For each selected query we manually transcribe the query into a wPINQ program. To ensure
a fair comparison, we use wPINQ’s select operator rather than the join operator for joins on a
public table. This ensures that no noise is added to protect records in public tables, equivalent to
the optimization described in Section 3.2.

Our input data for these programs includes all records from the cities table, which is public, and
a random sample of 1.5 million records from each private table (it was not feasible to download
the full tables, which contain over 2 billion records). We execute each program 100 times with the
wPINQ runtime [11].

To obtain baseline (non-differentially private) results we run each SQL query on a database
populated with only the sampled records. For elastic sensitivity we use max-frequency metrics
calculated from this sampled data. We compute the median error for each query using the method-
ology described in the previous section, setting ε = 0.1 for both mechanisms.

Table 3.4 summarizes the queries and median error results. FLEX provides lower median error
than wPINQ for programs 1, 2, 3 and 6—more than 90% lower for 2 and 3 and nearly 50% lower
for programs 1 and 6. FLEX produces higher error than wPINQ for programs 4 and 5.

In the case of program 5, both mechanisms produce errors above 900%. The median population
size of 1 for this program indicates that our experiment data includes very few trips per driver
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that satisfy the filter conditions. Elastic sensitivity provides looser bounds on local sensitivity
for queries that filter more records, resulting in a comparably higher error for queries such as
this one. Given that such queries are inherently sensitive, a high error (low utility) is required
for any differential privacy mechanism, therefore the comparably higher error of FLEX is likely
insignificant in practice.

Proserpio et al. [63] describe a post-processing step for generating synthetic data by using
wPINQ results to guide a Markov-Chain Monte Carlo simulation. The authors show that this
step improves utility for graph triangle counting queries when the original query is executed on
the synthetic dataset. While this strategy may produce higher utility than the results presented in
Table 3.4, we do not evaluate wPINQ with this additional step since it is not currently automated.

3.5 Related Work
Differential privacy was originally proposed by Dwork [29, 30, 32], and the reference by Dwork
and Roth [35] provides an excellent general overview of differential privacy. Much of this work
focuses on mechanisms for releasing the results of specific algorithms. Our focus, in contrast, is
on a general-purpose mechanism for SQL queries that supports general equijoins. We survey the
existing general mechanisms that support join in Chapter 2.

Lu et al. [53] propose a mechanism for generating differentially private synthetic data such that
queries with joins have similar performance characteristics, but not necessarily similar answers,
on the synthetic and true databases. However, Lu et al. do not propose a mechanism for answering
queries with differential privacy. As such, it does not satisfy either of the two requirements in
Section 2.3.

Airavat [65] enforces differential privacy for arbitrary MapReduce programs, but requires the
analyst to bound the range of possible outputs of the program, and clamps output values to lie
within that range. Fuzz [38, 40] enforces differential privacy for functional programs, but does not
support one-to-many or many-to-many joins.

Propose-test-release [31] (PTR) is a framework for leveraging local sensitivity that works for
arbitrary real-valued functions. PTR requires (but does not define) a way to calculate the local
sensitivity of a function. Our work on elastic sensitivity is complementary and can enable the use
of PTR by providing a bound on local sensitivity.

Sample & aggregate [59, 60] is a data-dependent framework that applies to all statistical es-
timators. It works by splitting the database into chunks, running the query on each chunk, and
aggregating the results using a differentially private algorithm. Sample & aggregate cannot sup-
port joins, since splitting the database breaks join semantics, nor does it support queries that are
not statistical estimators, such as counting queries. GUPT [56] is a practical system that leverages
the sample & aggregate framework to enforce differential privacy for general-purpose analytics.

The Exponential Mechanism [54] supports queries that produce categorical (rather than nu-
meric) data. It works by randomly selecting from the possible outputs according to a scoring
function provided by the analyst. Extending FLEX to support the exponential mechanism would
require specification of the scoring function and a means to bound its sensitivity.
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A number of less-general mechanisms for performing specific graph analysis tasks have been
proposed [42, 46, 47, 66]. These tasks often involve joins, but the mechanisms used to handle
them are specific to the task and are not applicable for general-purpose analytics. For example,
the recursive mechanism [23] supports general equijoins in the context of graph analyses, but is
restricted to monotonic queries and in the worst case, runs in time exponential in the number of
participants in the database.

Kifer et al. [48] point out that database constraints (such as uniqueness of a primary key) can
lead to leaks of private data. Such constraints are common in practice, and raise concerns for
all differential privacy approaches. Kifer et al. propose increasing sensitivity based on the specific
constraints involved, but calculating this sensitivity is computationally hard. Developing a tractable
method to account for common constraints, such as primary key uniqueness, is an interesting target
for future work.



38

Chapter 4

Differential Privacy via Query Rewriting

4.1 Introduction
The previous chapter described elastic sensitivity, a differential privacy mechanism that supports
SQL queries with joins. Elastic sensitivity significantly expands the scope of differential privacy
for SQL but it alone does not provide practical differential privacy across the full spectrum of
queries surveyed in Chapter 2. For example, elastic sensitivity works well for counting queries but
not as well for other aggregation functions.

This is emblematic of a general trend in mechanism design. As summarized in Table 2.1,
each mechanism supports a specific class of queries. Furthermore, the best mechanism for any
particular query often depends on the dataset [43]. Consequently, a practical solution for differen-
tial privacy must provide flexibility for mechanism selection, as there is not an optimal mechanism
that can provide practical differential privacy across all queries and datasets. Such a solution would
then satisfy Requirement 3 by supporting all aggregation functions via selection of an appropriate
mechanism.

This chapter describes CHORUS, a system with a novel architecture for providing differen-
tial privacy for statistical SQL queries. CHORUS supports multiple mechanisms simultaneously
while integrating easily into existing environments, meeting all three requirements established in
Chapter 2.

The key insight of our approach is to embed the differential privacy mechanism into the SQL
query before execution, so the query automatically enforces differential privacy on its own output.
We define a SQL query with this property as an intrinsically private query. CHORUS automatically
converts untrusted input queries into intrinsically private queries. This approach enables a new
architecture in which queries are rewritten, then submitted to an unmodified database management
system (DBMS).

This new architecture addresses the major challenges outlined in Chapter 1. First, CHORUS

is compatible with any SQL database that supports standard math functions (rand , ln, etc.) thus
avoiding the need for a custom runtime or modifications to the database engine. By using a standard
SQL database engine instead of a custom runtime, CHORUS can leverage the reliability, scalability
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and performance of modern databases, which are built on decades of research and engineering
experience.

Second, CHORUS enables the modular implementation and adoption of many different mech-
anisms, supporting a significantly higher percentage of queries than any single mechanism and
providing increased flexibility for both general and specialized use cases. CHORUS automatically
selects a mechanism for each input query based on an extensible set of selection rules. To the best
of our knowledge, no existing system provides these capabilities.

CHORUS also protects against an untrusted analyst: even if the submitted query is malicious,
our transformation rules ensure that the executed query returns only differentially private results.
The results can therefore be returned directly to the analyst without post-processing. This enables
easy integration into existing data environments via a single pre-processing step.

We demonstrate the CHORUS approach with four existing general-purpose differential privacy
mechanisms: Elastic Sensitivity [45], Restricted Sensitivity [20], Weighted PINQ [32] and Sample
& Aggregate [56]. These mechanisms support a range of SQL features and analytic tasks. CHORUS

contains query transformation rules for each mechanism which convert untrusted (non–intrinsically
private) queries into intrinsically private queries. We also describe how additional mechanisms can
be added to CHORUS.

Deployment. CHORUS is currently being deployed at Uber for its internal analytics
tasks. CHORUS represents a significant part of the company’s General Data Protection Regulation
(GDPR) [6] compliance, and provides both differential privacy and access control enforcement.
We have made CHORUS available as open source [3].

Evaluation. In the first evaluation of its kind, we use CHORUS to evaluate the utility and
performance of the selected mechanisms on real data. Our dataset includes 18,774 real queries
written by analysts at Uber.

Contributions

In summary, we make the following contributions:

1. We present CHORUS, representing a novel architecture for enforcing differential privacy on
SQL queries that simultaneously supports a wide variety of mechanisms and runs on any
standard SQL database (Section 4.3).

2. We describe and formalize the novel use of rule-based query rewriting to automatically trans-
form an untrusted SQL query into an intrinsically private query using four example general-
purpose mechanisms. We describe how other mechanisms can be supported using the same
approach (Section 4.4, 4.5).

3. We report on our experience deploying CHORUS to enforce differential privacy at Uber,
where it processes more than 10,000 queries per day (Section 4.6).
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General- Sensitivity Algorithmic
Mechanism Purpose Strengths Supported Constructs Measure Requirements
Elastic Sensitivity [45] X General analytics Counting queries w/ joins Local Laplace noise
Restricted Sensitivity [20] X Graph analysis Counting queries w/ joins Global Laplace noise
WPINQ [63] X Synthetic data gen. Counting queries w/ joins Global Weighted dataset

operations, La-
place noise

Sample & Aggregate [68] X Statistical estimators Single-table aggregations Local Subsampling,
Widened Win-
sorized mean,
Laplace noise

Table 4.1: Differential privacy mechanisms

4. We use CHORUS to conduct the first large-scale empirical evaluation of the utility and perfor-
mance of multiple general-purpose differential privacy on real queries and data (Section 4.7).

4.2 Background
Differential privacy provides a formal guarantee of indistinguishability. This guarantee is defined
in terms of a privacy budget ε—the smaller the budget, the stronger the guarantee. The formal
definition of differential privacy is written in terms of the distance d(x, y) between two databases,
i.e. the number of entries on which they differ: d(x, y) = |{i : xi 6= yi}|. Two databases x and y
are neighbors if d(x, y) = 1. A randomized mechanism K : Dn → R preserves (ε, δ)-differential
privacy if for any pair of neighboring databases x, y ∈ Dn and set S of possible outputs:

Pr[K(x) ∈ S] ≤ eεPr[K(y) ∈ S] + δ

Differential privacy can be enforced by adding noise to the non-private results of a query. The
scale of this noise depends on the sensitivity of the query. The literature considers two different
measures of sensitivity: global [32] and local [59], as summarized in Section 3.2.

Statistical queries. Differential privacy aims to protect the privacy of individuals in the
context of statistical queries. In SQL terms, these are queries using standard aggregation operators
(COUNT, AVG, etc.) as well as histograms created via the GROUP BY operator in which aggregations
are applied to records within each group. Differential privacy is not suitable for queries that return
raw data (e.g. rows in the database) since such queries are inherently privacy-violating. We formal-
ize the targeted class of queries in Section 4.5 and discuss how our approach supports histogram
queries, which require special care to avoid leaking information via the presence of absence of
groups.

Mechanism design. Research on differential privacy has produced a large and growing
number of differential privacy mechanisms. Some mechanisms are designed to provide broad
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support for many types of queries [20, 32, 54–56, 59, 63], while others are designed to produce
maximal utility for a particular application [18, 23, 24, 37, 41–43, 46, 47, 50, 52, 64, 66, 71–73].

While mechanisms adopt unique strategies for enforcing differential privacy in their target
domain, they generally share a common set of design choices and algorithmic components. For
example, many mechanisms require addition of Laplace noise to the result of the query.

Our approach is motivated by the observation that a wide range of distinct mechanisms can
supported with a common set of algorithmic building blocks. In this chapter we formalize several
example building blocks via transformation rules that describe how each algorithmic component
can be embedded within a SQL query. We demonstrate the flexibility of this design by showing that
each mechanism can be implemented simply by composing these transformation rules according
to the mechanism’s definition.

General-purpose mechanisms. The four mechanisms in Table 4.1 are general-purpose
because they support a broad range of queries, including commonly used SQL constructs such as
join. This chapter focuses on these four mechanisms. Many more specialized mechanisms have
substantially similar algorithmic requirements and can be supported as intrinsically private queries
using variations of the transformation rules introduced in this chapter. Section 4.7 discusses this
subject in more detail.

4.3 The CHORUS Architecture
This section presents the system architecture of CHORUS and compares it against existing archi-
tectures for differentially private analytics. We first identify the design goals motivating the CHO-
RUS architecture then describe the limitations of existing architectures preventing previous work
from attaining these goals. Finally, we describe the novel architecture of CHORUS and provide an
overview of our approach.

Existing Architectures
Existing systems for enforcing differential privacy for data analytics tasks adopt one of two ar-
chitecture types: they are either deeply integrated systems or post processing systems. These
architectures are summarized in Figure 4.1(a) and Figure 4.1(b). PINQ [55], Weighted PINQ [63],
GUPT [56], and Airavat [65] follow the deep integration architecture: each one provides its own
specialized DBMS, and cannot be used with a standard DBMS.

Elastic sensitivity [45] uses the post processing architecture, in which the original query is
run on the database and noise is added to the final result. This approach supports mechanisms
that do not modify the semantics of the original query (PINQ and Restricted sensitivity [20] could
also be implemented this way), and has the advantage that it is compatibile with existing DBMSs.
However, the post processing architecture is fundamentally incompatible with mechanisms that
change how the original query executes—including WPINQ and Sample & Aggregate, listed in
Table 4.1.
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Figure 4.1: Existing architectures: (a), (b); architecture of CHORUS: (c).

The deeply integrated and post processing architectures in Figure 4.1(a) and (b) therefore both
fail to address two major challenges in implementing a practical system for differentially private
data analytics:

• Custom DBMSs are unlikely to achieve parity with mature DBMSs for a wide range of fea-
tures including rich SQL support, broad query optimization, high-performance transaction
support, recoverability, scalability and distribution.

• Neither architecture supports the simultaneous application of a large number of different
mechanisms. The deeply integrated architecture requires building a new DBMS for each
mechanism, while the post processing architecture is inherently incompatible with some
mechanisms.

The CHORUS Architecture
In CHORUS, we propose a novel alternative to the deeply integrated and post processing architec-
tures used by existing systems. As shown in Figure 4.1(c), CHORUS transforms the input query
into an intrinsically private query, which is a standard SQL query whose results are guaranteed to
be differentially private.

An intrinsically private query provides this guarantee by embedding a differential privacy
mechanism in the query itself. When executed on an unmodified SQL database, the embedded
privacy mechanism ensures that the query’s results preserve differential privacy. The approach has
three key advantages over previous work:
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• CHORUS is DBMS-independent (unlike the deeply integrated approach): it requires neither
modifying the database nor switching to purpose-built database engines. Our approach can
therefore leverage existing high-performance DBMSs to scale to big data.

• CHORUS can implement a wide variety of privacy-preserving techniques. Unlike the post
processing approach, CHORUS is compatible with all of the mechanisms listed in Table 4.1,
and many more.

• CHORUS eliminates the need for post-processing, allowing easy integration in existing data
processing pipelines. Our approach enables a single data processing pipeline for all mecha-
nisms.

CHORUS’s architecture is specifically designed to be easily integrated into existing data envi-
ronments. We report on the deployment of CHORUS at Uber in Section 4.6.

Constructing intrinsically private queries. The primary challenge in implementing this
architecture is transforming untrusted queries into intrinsically private queries. This process must
be flexible enough to support a wide variety of privacy mechanisms and also general enough to
support ad-hoc SQL queries.

Constructing intrinsically private queries automatically has additional advantages. This ap-
proach protects against malicious analysts by guaranteeing differentially private results by con-
struction. It is also transparent to the analyst since it does not require input from the analyst to
preserve privacy or select a privacy mechanism.

As shown in Figure 4.1(c), CHORUS constructs intrinsically private queries in two steps:

1. The Mechanism Selection component automatically selects an appropriate differential pri-
vacy mechanism to apply.

2. The Query Rewriting component embeds the selected mechanism in the input query, trans-
forming it into an intrinsically private query.

To select a mechanism, CHORUS leverages an extensible mechanism selection engine, dis-
cussed next. The query rewriting step then transforms the input query to produce an intrinsi-
cally private query embedding the selected mechanism. For this step, we employ a novel use of
rule-based query rewriting, which has been studied extensively for query optimization but, to our
knowledge, never applied to differential privacy. We introduce our solution by example in Sec-
tion 4.4 and formalize it in Section 4.5. This dissertation focuses on differential privacy, but the
same approach could be used to enforce other types of privacy guarantees or security policies [69].

Mechanism selection. CHORUS implements an extensible mechanism selection engine
that automatically selects a differential privacy mechanism for each input query. This engine can
be extended based on available mechanisms, performance and utility goals, and to support custom
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mechanism selection techniques. For example, Hay et al. [49] demonstrate that a machine learning-
based approach can leverage properties of the data to select a mechanism most likely to yield high
utility. CHORUS is designed to support any such approach. We describe an example of a syntax-
based mechanism selection in Section 4.6.

Privacy budget management. CHORUS does not prescribe a specific privacy budget
management strategy, as the best way to manage the available privacy budget in practice will
depend on the deployment scenario and threat model. CHORUS provides flexibility in how the
budget is managed: the sole requirement is that rewriters are supplied with the ε value apportioned
to each query.1

For the case of a single global budget, where CHORUS is deployed as the sole interface to the
database, CHORUS can track the remaining budget according to the standard composition theorem
for differential privacy [32]. When a new query is submitted, CHORUS subtracts from the remain-
ing budget the ε value allocated to that query, and refuses to process new queries when the budget
is exhausted. In Section 4.7, we discuss more sophisticated methods that may yield better results
for typical deployments.

4.4 Query Rewriting
This section demonstrates our approach by example, using the four general-purpose differential
privacy mechanisms listed in Table 4.1. For each mechanism, we briefly review the algorithm
used. We then show, using simple example queries, how an input SQL query can be systematically
transformed into an intrinsically private query embedding each algorithm, and give an argument
for the correctness of each transformation.

Sensitivity-Based Mechanisms
We first consider two mechanisms that add noise to the final result of the query: Elastic Sensitiv-
ity [45] and Restricted Sensitivity [20]. Elastic Sensitivity is a bound on the local sensitivity of
a query, while Restricted Sensitivity is based on global sensitivity. Both approaches add Laplace
noise to the query’s result.

For a query with sensitivity s returning value v, the Laplace mechanism releases v+ Lap(s/ε),
where ε is the privacy budget allocated to the query. Given a random variable U sampled from the
uniform distribution, we can compute the value of a random variable X ∼ Lap(s/ε):

X = −s
ε

sign(U) ln(1− 2|U |)
1For simplicity we consider approaches where CHORUS stores the budget directly. Our query rewriting approach

could allow the DBMS to assist with budget accounting, for example by storing ε values in a separate table and
referencing and updating the values within the rewritten query.
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In SQL, we can sample from the uniform distribution using RANDOM(). Consider the following
query, which returns a (non–differentially private) count of trips in the database. This query can be
transformed into an intrinsically private query as follows:

SELECT COUNT (∗) AS count FROM trips

⇓
WITH orig AS ( SELECT COUNT (∗) AS count FROM trips),

uniform AS ( SELECT ∗, RANDOM ()-0.5 AS u
FROM orig)

⇓
WITH orig AS ( SELECT COUNT (∗) AS count FROM trips),

uniform AS ( SELECT ∗, RANDOM ()-0.5 AS u
FROM orig)

SELECT count-( s/ε )∗ SIGN(u)∗LN(1-2∗ ABS(u)) AS count
FROM uniform

The first step defines U using RANDOM(), and the second uses U to compute the corresponding
Laplace noise.

The correctness of this approach follows from the definition of the Laplace mechanism. The
two transformation steps generate Laplace noise with the correct scale, and add it to the sensitive
query results.

CHORUS can calculate Elastic Sensitivity with smoothing via smooth sensitivity [59]2 or Re-
stricted Sensitivity via a dataflow analysis of the query. Such an analysis is described in Chapter 3.

We formalize the construction of intrinsically private queries via sensitivity-based approaches
using the Laplace Noise transformation, defined in Section 4.5.

Weighted PINQ
Weighted PINQ (WPINQ) enforces differential privacy for counting queries with equijoins. A key
distinction of this mechanism is that it produces a differentially private metric (called a weight),
rather than a count. These weights are suitable for use in a workflow that generates differentially
private synthetic data, from which counts are easily derived. The workflow described in [63] uses
weights as input to a Markov chain Monte Carlo (MCMC) process.

CHORUS’s implementation of WPINQ computes noisy weights for a given counting query
according to the mechanism’s definition [63]. Since the weights are differentially private, they can
be released to the analyst for use with any desired workflow.

The WPINQ mechanism adds a weight to each row of the database, updates the weights as the
query executes to ensure that the query has a sensitivity of 1, and uses the Laplace mechanism
to add noise to the weighted query result. WPINQ has been implemented as a standalone data

2Smooth sensitivity guarantees ε, δ-differential privacy, and incorporates the setting of δ into the smoothed sensi-
tivity value.
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processing engine with a specialized query language, but has not been integrated into any SQL
DBMS.

Where a standard database is a collection of tuples in Dn, a weighted database (as defined in
Proserpio et al. [63]) is a function from a tuple to its weight (Dn → R). In this setting, counting
the number of tuples with a particular property is analogous to summing the weights of all such
tuples. Counting queries can therefore be performed using sum.

In fact, summing weights in a weighted dataset produces exactly the same result as the corre-
sponding counting query on the original dataset, when the query does not contain joins. When the
query does contain joins, WPINQ scales the weight of each row of the join’s output to maintain a
sensitivity of 1. Proserpio et al. [63] define the weight of each row in a join as follows:

A./B =
∑
k

Ak ×BT
k

||Ak||+ ||Bk||
(4.1)

Since the scaled weights ensure a sensitivity of 1, Laplace noise scaled to 1/ε is sufficient to
enforce differential privacy. WPINQ adds noise with this scale to the results of the weighted query.

In SQL, we can accomplish the first task (adding weights) by adding a column to each relation.
For example, using our previous example query:

SELECT COUNT (∗) FROM trips

⇓
SELECT SUM( weight )
FROM ( SELECT ∗, 1 AS weight FROM trips)

This transformation adds a weight of 1 to each row in the table, and changes the COUNT aggregation
function into a SUM of the rows’ weights. The correctness of this transformation is easy to see: as
required by WPINQ [63], the transformed query adds a weight to each row, and uses SUM in place
of COUNT.

We can accomplish the second task (scaling weights for joins) by first calculating the norms
||AK || and ||Bk|| for each key k, then the new weights for each row using Ak × BT

k . For a join
between the trips and drivers tables, for example, we can compute the norms for each key:

WITH tnorms AS ( SELECT driver id ,
SUM( weight ) AS norm

FROM trips
GROUP BY driver id ),

dnorms AS ( SELECT id , SUM( weight ) AS norm
FROM drivers
GROUP BY id)

Then, we join the norms relations with the original results and scale the weight for each row:

SELECT ...,
(t. weight ∗d. weight )/( tn.norm+dn.norm) AS weight

FROM trips t, drivers d, tnorm tn , dnorm dn
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WHERE t. driver id = d.id
AND t. driver id = tn. driver id
AND d.id = dn.id

The correctness of this transformation follows from equation (4.1). The relation tnorms corre-
sponds to ||Ak||, and dnorms to ||Bk||. For each key, t.weight corresponds to Ak, and d.weight
to Bk.

Finally, we can accomplish the third task (adding Laplace noise scaled to 1/ε) as described
earlier.

We formalize the construction of intrinsically private queries via WPINQ using three trans-
formations: the Metadata Propagation transformation to add weights to each row, the Replace
Aggregation Function transformation to replace counts with sums of weights, and the Laplace
Noise transformation to add noise to the results. All three are defined in Section 4.5.

Sample & Aggregate
The Sample & Aggregate [59,68] mechanism works for all statistical estimators, but does not sup-
port joins. Sample & Aggregate has been implemented in GUPT [56], a standalone data processing
engine that operates on Python programs, but has never been integrated into a practical database.
As defined by Smith [68], the mechanism has three steps:

1. Split the database into disjoint subsamples

2. Run the query on each subsample independently

3. Aggregate the results using a differentially-private algorithm

For differentially-private aggregation, Smith [68] suggests Widened Winsorized mean. Intu-
itively, Widened Winsorized mean first calculates the interquartile range—the difference between
the 25th and 75th percentile of the subsampled results. Next, the algorithm widens this range to
include slightly more data points, then clamps the subsampled results to lie within the widened
range. This step eliminates outliers, which is important for enforcing differential privacy. Finally,
the algorithm takes the average of the clamped results, and adds Laplace noise scaled to the size of
the range (i.e. the effective sensitivity) divided by ε.

In SQL, we can accomplish tasks 1 and 2 by adding a GROUP BY clause to the original query.
Consider a query that computes the average of trip lengths:

SELECT AVG( trip distance ) FROM trips

⇓
SELECT AVG( trip distance ), ROW NUM () MOD n AS samp
FROM trips
GROUP BY samp
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This transformation generates n subsamples and runs the original query on each one. The cor-
rectness of tasks 1 and 2 follows from the definition of subsampling: the GROUP BY ensures that
the subsamples are disjoint, and that the query runs on each subsample independently. To accom-
plish task 3 (differentially private aggregation), we can use a straightforward implementation of
Widened Winsorized mean in SQL, since the algorithm itself is the same for each original query.

We formalize the construction of intrinsically private queries via Sample & Aggregate using
the Subsampling transformation, defined in the next section.

4.5 Formalization & Correctness
This section formalizes the construction of intrinsically private queries as introduced in Section 4.4.
We begin by introducing notation, then define reusable transformation rules that can be composed
to construct mechanisms. Next, we formalize the four mechanisms described earlier in terms
of these rules. Finally, we prove a correctness property: our transformations do not modify the
semantics of the input query.

By formalizing the transformation rules separately from the individual mechanisms, we allow
the rules to be re-used when defining new mechanisms, taking advantage of the common algorith-
mic requirements demonstrated in Table 4.1. An additional benefit of this approach is the ability
to prove correctness properties of the rules themselves, so that these properties extend to all mech-
anisms implemented using the rules.

Preliminaries
Core relational algebra. We formalize our transformations as rewriting rules on a core

relational algebra that represents general statistical queries. We define the core relational algebra in
Figure 4.2. This algebra includes the most commonly-used features of query languages like SQL:
selection (σ), projection (Π), equijoins (./), and counting with and without aggregation. We also
include several features specifically necessary for our implementations: constant values, random
numbers, and the arithmetic functions ln, abs, and sign.

We use standard notation for relational algebra with a few exceptions. We extend the projec-
tion operator Π to attribute expressions, which allows projection to add new named columns to a
relation. For example, if relation r has schema U , then the expression Π

U∪weight:1r adds a new
column named “weight” with the default value 1 for each row to the existing columns in r. In
addition, we combine aggregation and grouping, writing Count

a1..an
to indicate a counting aggregation

with grouping by columns a1..an. We write Suma
a1..an

to indicate summation of column a, grouping by

columns a1..an.

Notation for rewriting rules. Each transformation is defined as a set of inference rules
that rewrites a relational algebra expression. A particular rule allows rewriting an expression as
specified in its conclusion (below the line) if the conditions specified in its antecedent (above the
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Attribute expressions
a attribute name
e ::= a | a : v
v ::= a | n ∈ N | v1 + v2 | v1 ∗ v2 | v1/v2

| rand() | randInt(n) | ln(v) | abs(v) | sign(v)

Relational transformations
R ::= t | R1 ./

x=y
R2 | Πe1,...,enR | σϕR

| Count(R) | Count
a1..an

(R)

Selection predicates
ϕ ::= e1θe2 | eθv
θ ::= < | ≤ | = | 6= | ≥ | >

Queries
Q ::= Count(R) | Count

a1..an
(R) | Suma(R) | Suma

a1..an
(R)

Figure 4.2: Syntax of core relational algebra

line) are satisfied (either through syntactic properties of the query or by applying another inference
rule).

Our approach relies on the ability to analyze and rewrite SQL queries. This rewriting can be
achieved by a rule-based query optimization engine [1, 7].

Most of the conditions specified in our rewriting rules use standard notation. One exception
is conditions of the form Q : U , which we use to denote that the query Q results in a relation
with schema U . We extend this notation to denote the schemas of database tables (e.g. t : U ) and
relational expressions (e.g. r1 : U ).

Some of our rewriting rules have global parameters, which we denote by setting them above the
arrow indicating the rewriting rule itself. For example, r x→ Πxr allows rewriting r to project only
the column named x, where the value of x is provided as a parameter. Most parameters are values,
but parameters can also be functions mapping a relational algebra expression to a new expression.
For example, r

f→ f(r) indicates rewriting r to the result of f(r).

Transformation Rules
Laplace Noise. All four mechanisms in Table 4.1 require generating noise according to

the Laplace distribution. We accomplish this task using the Laplace Noise transformation, defined
in Figure 4.3. This transformation has one parameter: γ, which defines the scale of the noise to
be added to the query’s result. For a query with sensitivity 1 and privacy budget ε, for example,
γ = 1/ε suffices to enforce differential privacy.

The Laplace Noise transformation defines a single inference rule. This rule allows rewriting
a top-level query with schema U according to the Lap function. Lap wraps the query in two
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Q
γ→ Q

Q : U

Q
γ→ Lap(Q)

where

Unif(Q) = ΠU∪{ux:rand()−0.5|x∈U}(Q))

Lap(Q) = Π{x:x+−γ sign(ux)ln(1−2 abs(ux))|x∈U}(Unif(Q))

Figure 4.3: Laplace Noise Transformation

projection operations; the first (defined in Unif) samples the uniform distribution for each value
in the result, and the second (defined in Lap) uses this value to add noise drawn from the Laplace
distribution.

Metadata Propagation. Many mechanisms require tracking metadata about each row as
the query executes. To accomplish this, we define the Metadata Propagation transformation in
Figure 4.4. The Metadata Propagation transformation adds a column to each referenced table and
initializes its value for each row in that table, then uses the specified composition functions to
compose the values of the metadata column for each resulting row of a join or an aggregation.

The Metadata Propagation transformation has three parameters: i, a function defining the initial
value of the metadata attribute for each row in a database table; j, a function specifying how to
update the metadata column for a join of two relations; and c, a function specifying how to update
the metadata column for subqueries.

The inference rule for a table t uses projection to add a new attribute to t’s schema to hold the
metadata, and initializes that attribute to the value of i(). The rules for projection and selection
simply propagate the new attribute. The rule for joins applies the j function to perform a localized
update of the metadata column. The rules for counting subqueries invoke the update function c to
determine the new value for the metadata attribute. Finally, the rules for counting queries eliminate
the metadata attribute to preserve the top-level schema of the query.

Replacing Aggregation Functions. The Replace Aggregation Function transformation,
defined in Figure 4.5, allows replacing one aggregation function (Γ) with another (Γ′). To produce
syntactically valid output, Γ and Γ′ must be drawn from the set of available aggregation functions.
The antecedent is empty in the rewriting rules for this transformation because the rules operate
only on the outermost operation of the query.

Subsampling. The Subsampling transformation, defined in Figure 4.6, splits the database
into disjoint subsamples, runs the original query on each subsample, and aggregates the results
according to a provided function. The Subsampling transformation is defined in terms of the
Metadata Propagation transformation, and can be used to implement partition-based differential
privacy mechanisms like Sample & Aggregate.

The parameters for the Subsampling transformation are A, a function that aggregates the sub-
sampled results, and n, the number of disjoint subsamples to use during subsampling. Both in-
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R
i,j,c→ R

r1
i,j,c→ r′1 r2

i,j,c→ r′2 r′1 : U1 r′2 : U2

r1 ./
A=B

r2
i,j,c→ j(r′1 ./

A=B
r′2)

t : U m 6∈ U

t
i,j,c→ ΠU∪m:i()t

r
i,j,c→ r′

ΠU (r)
i,j,c→ ΠU∪{m}(r′)

r
i,j,c→ r′

σφ(r)
i,j,c→ σφ(r′)

r
i,j,c→ r′ Count(r′) : U

Count(r)
i,j,c→ ΠU∪m:c(r′)Count(r′)

r
i,j,c→ r′ Count

a1..an
(r′) : U

Count
a1..an

(r)
i,j,c→ ΠU∪m:c(r′)Count

a1..an
(r′)

Q
i,j,c→ Q r

i,j,c→ r′

Count(r)
i,j,c→ Count(r′)

r
i,j,c→ r′

Count
a1..an

(r)
i,j,c→ Count

a1..an
(r′)

Figure 4.4: Metadata Propagation Transformation

Q
Γ,Γ′→ Q

Γ(r)
Γ,Γ′→ Γ′(r) Γ

a1..an
(r)

Γ,Γ′→ Γ′
a1..an

(r)

Figure 4.5: Replace Aggregation Function Transformation

ference rules defined by the transformation rewrite the queried relation using the Metadata Propa-
gation transformation (r

i,j,c→ r′). The parameters for Metadata Propagation initialize the metadata
attribute with a random subsample number between zero and n, and propagate the subsample num-
ber over counting subqueries. The update functions for joins and counting subqueries is undefined,
because subsampling is incompatible with queries containing these features.3

In order to satisfy the semantics preservation property, the aggregation function A must trans-
form the query results on each subsample into a final result with the same shape as the original
query. Many aggregation functions satisfy this property (e.g. the mean of all subsamples), but not
all of them provide differential privacy.

Mechanism Definitions
We now formally define the mechanisms described earlier in terms of the transformations defined
earlier. We describe each mechanism as a series of one or more transformations, and define the

3Subsampling changes the semantics of joins, since join keys in separate partitions will be prevented from match-
ing. It also changes the semantics of aggregations in subqueries, since the aggregation is computed within a single
subsample.
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Q
A→ Q r

i,j,c→ r′

Count(r) A→ A(Count
m

(r′))

r
i,j,c→ r′

Count
G1..Gn

(r)
A→ A( Count

G1..Gn,m
(r′))

where i = randInt(n), j = ⊥, c(r) = ⊥, and A aggregates over m

Figure 4.6: Subsampling Transformation

parameters for each transformation to obtain the correct semantics for the mechanism.

Elastic Sensitivity

Let s be the Elastic Sensitivity of Q. Let γ = s/ε. If Q
γ→ Q′, then Q′ is an intrinsically private

query via Elastic Sensitivity.

Restricted Sensitivity

Let s be the restricted sensitivity of Q. Let γ = s/ε. If Q
γ→ Q′, then Q′ is an intrinsically

private query via Restricted Sensitivity.

Weighted PINQ

Let i = 1 and let j scale weights as described in Section 4.4. Let γ = 1/ε. If Q
i,j,c→ Q′

Γ,Γ′→
Q′′

γ→ Q′′′, then Q′′′ is an intrinsically private query via Weighted PINQ.

Sample & Aggregate

Let A implement private Winsorized mean [68] for a desired ε. If Q A→ Q′, then Q′ is an
intrinsically private query via Sample & Aggregate.

Correctness
The correctness criterion for a traditional query rewriting system is straightforward: the rewritten
query should have the same semantics (i.e. return the same results) as the original query. For in-
trinsically private queries, however, the definition of correctness is less clear: enforcing differential
privacy requires modifying the results to preserve privacy.

In this section, we define semantic preservation, which formalizes the intuitive notion that
our transformations should perturb the result attributes of the query, as required for enforcing
differential privacy, but change nothing else about its semantics. Semantic preservation holds when
the transformation in question preserves the size and shape of the query’s output, and additionally
preserves its logical attributes. Logical attributes are those which are used as join keys or to perform
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filtering (i.e. the query makes decisions based on these attributes, instead of simply outputting
them).

Each of our transformations preserve this property. Furthermore, semantic preservation is pre-
served over composition of transformations, so semantic preservation holds for any mechanism
defined using our transformations—including those defined earlier in this section.

Definition 8 (Logical Attribute). An attribute a is a logical attribute if it appears as a join key in
a join expression, in the filter condition ϕ of a filter expression, or in the set of grouping attributes
of a Count or Sum expression.

Definition 9 (Semantic Preservation). A transformation (→) satisfies semantic preservation if for
all queries Q and Q′, if Q → Q′, then (1) the schema is preserved: Q : U ⇒ Q′ : U ; (2) the
number of output rows is preserved: |Q| = |Q′|; and (3) logical attributes are preserved (see
Definition 10).

Definition 10 (Logical Attribute Preservation). Consider a transformation Q : U → Q′ : U . Split
U into two sets of attributes {Uk, Ua}, such that Uk contains all of the attributes from U used as
logical attributes in Q and Ua contains all of the other attributes. Now construct Q′r by renaming
each attribute k ∈ Uk in Q′ to k′. Then→ preserves logical attributes if there exists a one-to-one
relation E ⊆ Q×Q′r such that for all e ∈ E and k ∈ Uk, ek = ek′ .

Theorem 4 (Composition). If two transformations (→a and→b) both satisfy semantic preserva-
tion, then their composition (→c) satisfies semantic preservation: for all queries Q, Q′, and Q′′,
if Q →a Q

′ →b Q
′′ implies that Q →c Q

′′, and both →a and →b preserve semantics, then →c

preserves semantics.

Proof. Assume that →a and →b preserve semantics, and Q →a Q
′ →b Q

′′. We have that: (1)
Q : U , Q′ : U , and Q : U ′′ ; (2) |Q| = |Q′| = |Q′′|; and (3) Q, Q′, and Q′′ contain the same logical
attributes. Thus by Definition 9,→c preserves semantics.

Theorem 5. The Laplace Noise transformation (Figure 4.3) satisfies the semantic preservation
property.

Proof. The rules in Figure 4.3 define only one transformation, at the top level of the query. The
Unif function adds a column ux for each original column x; the Lap function consumes this col-
umn, replacing the original column x with its original value plus a value sampled from the Laplace
distribution. The outermost projection produces exactly the same set of attributes as the input query
Q, preserving the schema; the transformation adds only projection nodes, so the number of output
rows is preserved; no join or select can occur at the top level of a query, so no logical attributes are
modified.

Theorem 6. The Metadata Propagation transformation (Figure 4.4) satisfies the semantic preser-
vation property.
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Proof. The only rules that make major modifications to the original query are those for joins and
counts. The other rules add a new attribute m and propagate it through the query, but do not change
the number or contents of the rows of any relation. At the top level of the query (i.e. q ∈ Q), the
transformation eliminates the attribute m. For queries without joins or subquery aggregations,
the Metadata Propagation transformation is the identity transformation, so it satisfies semantic
preservation.

We argue the remaining cases by induction on the structure of Q.

Case r1 ./
A=B

r2. Let r = r1 ./
A=B

r2. If j does not change the query’s semantics, except to update

the attribute m (i.e. r : U ⇒ r = ΠU−mj(r)), then the semantics of r are preserved.

Case Count(r) and CountG1..Gn(r). The rule modifies the m attribute, but does not modify any
other attribute or change the size of the relation, so semantics are preserved.

Theorem 7. The Replace Aggregation Function transformation (Figure 4.5) satisfies the semantic
preservation property.

Proof. Aggregation function replacement has the potential to modify the values of the query’s
results, but not its shape or logical attributes. The transformation’s only rule allows changing one
function to another, but preserves the grouping columns and number of functions. The schema,
number of rows, and logical attributes are therefore preserved.

Theorem 8 (Subsampling preserves semantics). If the aggregation functionA aggregates over the
m attribute, then our Subsampling transformation (Figure 4.6) satisfies the semantic preservation
property.

Proof. We know that Q has the form Count(r) or Count
G1..Gn,m

(r). By Theorem 6, we know that in

either case, if r
i,j,c→ r′, then r has the same semantics as r′. We proceed by cases.

Case Q = Count(r). Let q1 = Countm(r′). By the definition of the transformation, Q′ = A(q1).
The query q1 has exactly one row per unique value of m. Since A aggregates over m, A(q1) has
exactly one row, and therefore preserves the semantics of Q.

Case Q = Count
G1..Gn,m

(r). Let q1 = Count
G1..Gn,m

(r′). By the definition of the transformation, Q′ = A(q1).

The query q1 has exactly one row per unique tuple (G1..Gn,m). SinceA aggregates over m,A(q1)
has exactly one row per unique tuple (G1..Gn), and therefore preserves the semantics of Q.

Handling Histogram Queries
SQL queries can use the GROUP BY operator to return a relation representing a histogram, as in the
following query which counts the number of trips greater than 100 miles in each city:

SELECT city id , COUNT (∗) as count FROM trips WHERE distance > 100
GROUP BY city id
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This type of query presents a problem for differential privacy because the presence or absence of a
particular city in the results reveals whether the count for that city was zero.

The general solution to this problem is to require the analyst to explicitly provide a set of
desired bins, and return a (noisy) count of zero for absent bins. Such an approach is used, for
example, in PINQ [55], Weighted PINQ [63], and FLEX (Chapter 3). Unfortunately, this approach
imposes an unfamiliar user experience and is burdensome for the analyst, who is never allowed to
view the results directly.

For bins with finite domain, CHORUS provides a superior solution by enumerating missing
histogram bins automatically in the rewritten query. The missing bins are populated with empty
aggregation values (e.g., 0 for counts) before mechanism-specific rewriting, at which point they
are handled identically as non-empty bins. This allows the full results of histogram queries to be
returned to the analyst without post-processing or interposition. If the domain cannot be enumer-
ated (e.g., because it is unbounded), CHORUS falls back to the approach described above and does
not release results directly to the analyst.

This feature requires the operator to define a mapping from columns that may be used in a
GROUP BY clause to the database field containing the full set of values from that column’s domain.
This information may be defined manually or extracted from the database schema (e.g., via primary
and foreign key constraints), and is provided during initial deployment.

In this example, suppose the full set of city ids are stored in column city id of table cities.
Using this information, CHORUS generates the following intermediate query:

WITH orig AS (
SELECT city id , COUNT (∗) as count FROM trips
WHERE distance > 100
GROUP BY city id

)
SELECT cities . city id ,

(CASE WHEN orig.count IS NULL THEN 0
ELSE orig.count END) as count

FROM orig RIGHT JOIN cities
ON orig. city id = cities . city id

The RIGHT JOIN ensures that exactly one row exists in the output relation for each city id in cities,
and the CASE expression outputs a zero for each missing city in the original query’s results. The
query thus contains every city id value regardless of the semantics of the original query. This
intermediate query is then sent to the mechanism rewriter, which adds noise to each bin as normal.

4.6 Implementation
This section describes our implementation of CHORUS and our experience deploying it to enforce
differential privacy at Uber.
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Implementation
Our implementation of CHORUS automatically transforms an input SQL query into an intrinsically
private query. CHORUS currently supports the four differential privacy mechanisms discussed
here, and is designed for easy extension to new mechanisms. We have released CHORUS as an
open source project [3].

Our implementation is built on Apache Calcite [1], a generic query optimization framework that
transforms input queries into a relational algebra tree and provides facilities for transforming the
tree and emitting a new SQL query. We built a custom dataflow analysis and rewriting framework
on Calcite to support intrinsically private queries. The framework, mechanism-specific analyses,
and rewriting rules are implemented in 5,096 lines of Java and Scala code.

The approach could also be implemented with other query optimization frameworks or rule-
based query rewriters such as Starburst [62], ORCA [7], and Cascades [39].

Privacy Budget Management
We have designed CHORUS to be flexible in its handling of the privacy budget, since best approach
in a given setting is likely to depend on the domain and the kinds of queries posed. A complete
study of approaches for managing the privacy budget is beyond the scope of this work, but we
outline some possible strategies here. We describe the specific method used in our deployment in
the next subsection.

As described earlier, a simple approach to budget management involves standard composition.
More sophisticated methods for privacy budget accounting include the advanced composition [36]
and parallel composition [32], both of which are directly applicable in our setting. For some
mechanisms, the moments account [17] could be used to further reduce privacy budget depletion.

Support for other mechanisms. Mechanisms themselves can also have a positive effect on
the privacy budget, and many mechanisms have been designed to provide improved accuracy for a
workload of similar queries. Many of these mechanisms are implemented in terms of lower-level
mechanisms (such as the Laplace mechanism) that CHORUS already supports, and therefore could
be easily integrated in CHORUS.

The sparse vector technique [34] answers a sequence of queries, but only gives answers for
queries whose results lie above a given threshold. The technique is implemented in terms of the
Laplace mechanism.

The Matrix Mechanism [51] and MWEM [41] algorithms both answer a query workload by
posing carefully chosen queries on the private database using a lower-level mechanism (e.g. the
Laplace mechanism), then using the results to build a representation that can answer the queries in
the workload.

The Exponential Mechanism [54] enforces differential privacy for queries that return categor-
ical (rather than numeric) data, by picking from the possible outputs with probability generated
from an analyst-provided scoring function. This technique can be be implemented as an intrin-
sically private query if the scoring function is given in SQL; the transformed query can run the
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function on each possible output and then pick from the possibilities according to the generated
distribution.

Deployment
CHORUS is currently deployed at Uber to enforce differential privacy for internal data access. The
primary goals of this deployment are to protect the privacy of customers while enabling ad-hoc data
analytics, and to ensure compliance with the requirements of Europe’s General Data Protection
Regulation (GDPR) [6]. In the current deployment, CHORUS processes more than 10,000 queries
per day.

Data environment & architecture. The data environment into which CHORUS is deployed
consists of several DBMSs (three primary databases, plus several more for specific applications),
and a single central query interface through which all queries are submitted. The query interface is
implemented as a microservice that performs query processing and then submits the query to the
appropriate DBMS and returns the results.

Our deployment involves a minimal wrapper around the CHORUS library to expose its rewriting
functionality as a microservice. The only required change to the data environment was a single
modification to the query interface, to submit queries to the CHORUS microservice for rewriting
before execution. The wrapper around CHORUS also queries a policy microservice to determine the
security and privacy policy for the user submitting the query. This policy informs which rewriter is
used—by default, differential privacy is required, but for some privileged users performing specific
business tasks, differential privacy is only used for older data.

A major challenge of this deployment has been supporting the variety of SQL dialects used by
the various DBMSs. The Calcite framework is intended to provide support for multiple dialects,
but this support is incomplete and we have had to make changes to Calcite in order to support
custom SQL dialects such as Vertica.

Privacy budget. The privacy budget is managed by the microservice wrapper around CHO-
RUS. The microservice maintains a small amount of state to keep track of the current cumulative
privacy cost of all queries submitted so far, and updates this state when a new query is submitted.

The current design of the CHORUS microservice maintains a single global budget, and uses
advanced composition [35] to track the total budget used for the queries submitted so far.

As we gain experience with the deployment, we are beginning to consider more sophisticated
budget management approaches that take advantages of properties of the data and the query work-
load. For example, new data is added to the database continuously so recent work leveraging the
growth of the database to answer an unbounded number of queries [26] may be directly applicable.

Mechanism selection. Our deployment of CHORUS leverages a syntax-based selection
procedure which aims to optimize for utility (low error). As we show in Section 4.7, this approach
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performs well for this deployment. For different query workloads, other approaches may work
significantly better, and CHORUS is designed to support extension to these cases.

The syntax-based approach uses a set of rules that map SQL constructs supported by each
mechanism to a heuristic scoring function indicating how likely queries using that construct will
yield high utility. For example, Restricted sensitivity [20] supports counting queries with joins,
but does not support many-to-many joins. Elastic sensitivity [45] supports a wider set of equi-
joins, including many-to-many joins, but generally provides slightly lower utility than Restricted
sensitivity due to smoothing. Sample & aggregate [68] does not support joins, but does support
additional aggregation functions (including average and median).

When a query is submitted, the mechanism selection engine analyzes the query to determine
its syntactic properties including how many and what types of joins it has, and what aggregation
functions it uses. It then applies the rules to determine which mechanisms can support the query
and selects the mechanism with highest score. Since this process does not depend on the data it
does not consume privacy budget.

This approach represents a simple but effective strategy for automatic mechanism selection. In
Section 4.7, we demonstrate that our rules are effective for selecting the best mechanism on a real-
world query workload. This approach is also easily extended when a new mechanism is added:
the mechanism designer simply adds new rules for SQL constructs supported by the mechanism.
Moreover, the scoring function can be tuned for other objectives, for example favoring mechanisms
achieving low performance overhead rather than highest utility.

4.7 Evaluation
This section reports results of the following experiments:

• We report the percentage of queries that can be supported by each mechanism as intrinsically
privacy queries using a corpus of real-world queries, demonstrating that a combination of the
four evaluated mechanisms covers 93.9% of these queries.

• We use CHORUS to conduct the first empirical study of several differential privacy mech-
anisms on a real-world SQL workload. We report the performance overhead and utility of
each mechanism across its supported class of queries.

• We demonstrate that our rule-based approach for automatic mechanism selection is effective
at selecting the best mechanism for each input query. Using the simple set of rules presented
earlier, our approach selects the optimal mechanism for nearly 90% of the queries in our
corpus.

Corpus. We use a corpus of 18,774 real-world queries containing all statistical queries
executed by data analysts at Uber during October 2016.

The corpus includes queries written for several use cases including fraud detection, marketing,
business intelligence and general data exploration. It is therefore highly diverse and representative
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Elastic	Sensitivity

Restricted	Sensitivity

WPINQ

Sample	&	Aggregate
13,413	queries	(71.4%)

10,821	queries	(57.6%)
8,532	queries	(45.4%)

5,698	queries	(30.3%)

Supported	by	at	least	one	mechanism
17,628	queries	(93.9%)

Figure 4.7: Size and relationship of query sets supported by each evaluated mechanism.

of SQL data analytics queries generally. The queries were executed on a database of data sampled
from the production database.

Mechanism Support for Queries
Each mechanism evaluated supports a different subset of queries. This is due to the unique limita-
tions and supported constructs of each mechanism, as summarized in Section 4.3. We measured the
percentage of queries from our corpus supported by each mechanism to assess that mechanism’s
coverage on a real-world workload. Figure 4.7 depicts the relative size and overlap of each set of
supported queries for the evaluated mechanisms. Elastic Sensitivity is the most general mechanism
and can support 71.4% of the queries in our corpus, followed by Restricted Sensitivity (57.6%),
WPINQ (30.3%) and Sample & Aggregate (45.4%).

Elastic Sensitivity and Restricted Sensitivity support largely the same class of queries, and
WPINQ supports a subset of the queries supported by these two mechanisms. In Section 4.7 we
discuss limitations preventing the use of WPINQ for certain classes of queries supported by Elastic
Sensitivity and Restricted Sensitivity.

Sample & Aggregate supports some queries supported by other mechanisms (counting queries
that do not use join), as well as a class of queries using statistical estimators (such as sum and
average), that are not supported by the other mechanisms. In total, 93.9% of queries are supported
by at least one of the four mechanisms.

The results highlight a key advantage of our approach: different classes of queries can be si-
multaneously supported via selection of one or more specialized mechanisms. This ensures robust
support across a wide range of general and specialized use cases, and allows incremental adoption
of future state-of-the-art mechanisms.
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Overhead (%) Primary cause
Mean Median of overhead

Elastic Sensitivity 2.8 1.7 Random noise generation
Restricted Sensitivity 3.2 1.6 Random noise generation
WPINQ 50.9 21.6 Additional joins
Sample & Aggregate 587 394 Grouping/aggregation

Table 4.2: Performance overhead of evaluated differential privacy mechanisms.

Figure 4.8: Performance overhead of differential privacy mechanisms by execution time of original
query.

Performance Overhead
We conduct a performance evaluation demonstrating the performance overhead of each mechanism
when implemented as an intrinsically private query.

Experiment Setup. We used a single HP Vertica 7.2.3 [10] node containing 300 million
records including trips, rider and driver information and other associated data stored across 8 tables.
We submitted the queries locally and ran queries sequentially to avoid any effects from network
latency and concurrent workloads.

To establish a baseline we ran each original query 10 times and recorded the average after drop-
ping the lowest and highest times to control for outliers. For every mechanism, we used CHORUS

to transform each of the mechanism’s supported queries into an intrinsically private query. We



CHAPTER 4. DIFFERENTIAL PRIVACY VIA QUERY REWRITING 61

Figure 4.9: Utility of elastic sensitivity and restricted sensitivity, by presence of joins.

executed each intrinsically private query 10 times and recorded the average execution time, again
dropping the fastest and slowest times. We calculate the overhead for each query by comparing the
average runtime of the intrinsically private query against its baseline.4

Results. The results are presented in Table 4.2. The average overhead and median overhead
for Elastic Sensitivity are 2.82% and 1.7%, for Restricted Sensitivity these are 3.2% and 1.6%, for
WPINQ 50.9% and 21.58% and for Sample & Aggregate 587% and 394%.

Figure 4.9 shows the distribution of overhead as a function of original query execution time.
This distribution shows that the percentage overhead is highest when the original query was very
fast (less than 100ms). This is because even a small incremental performance cost is fractionally
larger for these queries. The values reported in Table 4.2 are therefore a conservative estimate of
the overhead apparent to the analyst.

WPINQ and Sample & Aggregate significantly alter the way the query executes (see Sec-
tion 4.4) and these changes increase query execution time. In the case of WPINQ, the query trans-
formation adds a new join to the query each time weights are rescaled (i.e. one new join for each
join in the original query), and these new joins produce additional overhead. Sample & Aggregate
requires additional grouping and aggregation steps. We hypothesize that these transformations are
difficult for the database to optimize during execution. Figure 4.9 shows that, in both cases, the
performance impact is amortized over higher query execution times, resulting in a lower relative
overhead for more expensive queries.

Utility of Selected Mechanisms
CHORUS enables the first empirical study of the utility of many differential privacy mechanisms
on a real-world query workload. This experiment reveals innate trends of each mechanism on a
common database and query workload. For each differential privacy mechanism, this experiment
reports the relative magnitude of error added to results of its supported query set. We present the
results as a function of query sample size, discussed below.

4Transformation time is negligible and therefore not included in the overhead calculation. The transformation
time averages a few milliseconds, compared with an average query execution time of 1.5 seconds.



CHAPTER 4. DIFFERENTIAL PRIVACY VIA QUERY REWRITING 62

Experiment Setup. We use the same setup described in the previous section to evaluate
the utility of Elastic Sensitivity, Restricted Sensitivity, and Sample & Aggregate. As described in
Section 4.4, WPINQ’s output is a differentially private statistic used as input to a post-processing
step, rather than a direct answer to the query. The authors [63] do not describe how to automate
this step for new queries hence we cannot measure the utility of WPINQ directly.

For each query, we set the privacy budget ε = 0.1 for all mechanisms. For Elastic Sensitivity,
we set δ = n−ε lnn (where n is the database size), following Dwork and Lei [31]. For Sample &
Aggregate, we set the number of subsamples ` = n0.4, following Mohan et al. [56].

We ran each intrinsically private query 10 times on the database and report the median relative
error across these executions. For each run we report the relative error as the percentage difference
between the differentially private result and the original non-private result. Consistent with previ-
ous evaluations of differential privacy [43] we report error as a proxy for utility since data analysts
are primarily concerned with accuracy of results.

If a query returns multiple rows (e.g., histogram queries) we calculate the mean error across all
histogram bins. If the query returns multiple columns we treat each output column independently
since noise is applied separately to every column.

Query Sample Size. Our corpus includes queries covering a broad spectrum of use cases,
from highly selective analytics (e.g., trips in San Francisco completed in the past hour) to statistics
of large populations (e.g., all trips in the US). Differential privacy generally requires the addition of
more noise to highly selective queries than to queries over large populations, since the influence of
any individual’s data diminishes as population size increases. Consequently, a query’s selectivity
is important for interpreting the relative error introduced by differential privacy. To measure the
selectivity we calculate the sample size of every aggregation function in the original query, which
represents the number of input records to which the function was applied.

Results. Figures 4.9 and 4.10 show the results of this experiment. All three mechanisms
exhibit the expected inverse relationship between sample size and error; moreover, this trend is
apparent for queries with and without joins.

Where the other three mechanisms support only counting queries, Sample & Aggregate sup-
ports all statistical estimators. Figure 4.10 shows the utility results for Sample & Aggregate, high-
lighting the aggregation function used. These results indicate that Sample & Aggregate can provide
high utility (<10% error) for each of its supported aggregation functions on approximately half of
the queries.

Automatic Mechanism Selection
We evaluated the effectiveness of the syntax-based automatic mechanism selection approach de-
scribed in Section 4.6. For each query in our corpus, this experiment compares the utility achieved
by the mechanism selected by our rule-based approach to the best possible utility achievable by
any mechanism implemented in CHORUS.
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Figure 4.10: Utility of Sample & Aggregate, by aggregation function.
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Figure 4.11: Effectiveness of automatic mechanism selection.

Experiment Setup. We used the same corpus of queries and the same database of trips as
in the other experiments. For each query, we ran all of the mechanisms that support the query and
recorded the relative error (i.e. utility) of each one. We defined the oracle utility for each query
to be the minimum error achieved by any of the four implemented mechanisms for that query.
The oracle utility is intended to represent the utility that could be obtained if a perfect oracle for
mechanism selection were available. We used our syntax-based mechanism selection method to
select a single mechanism, and determined the utility of that mechanism. Finally, we computed
the difference between the oracle utility and the utility achieved by our selected mechanism.

Results. We present the results in Figure 4.11. For 88% of the queries in our corpus, the
automatic mechanism selection rules select the best mechanism, and therefore provide the same
utility as the oracle utility. Of the remaining queries, the selected mechanism often provides nearly
optimal utility: for 7% of queries, the selected mechanism is within 10% error of the oracle utility.

The remaining queries (5%) represent opportunities for improving the approach—perhaps
through the use of a prediction model trained on features of the query and data. Previous work [43,
49] uses such a machine learning-based approach; for range queries, these results suggest that
a learning-based approach can be very effective, though the approach has not been evaluated on
other types of queries.
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Discussion and Key Takeaways
Strengths & weaknesses of differential privacy. The mechanisms we studied generally

worked best for statistical queries over large populations. None of the mechanisms was able to
provide accurate results (e.g. within 1% error) for a significant number of queries over populations
smaller than 1,000. These results confirm the existing wisdom that differential privacy is ill-suited
for queries with small sample sizes. For large populations (e.g. more than 10,000), on the other
hand, multiple mechanisms were able to provide accurate results.

Mechanism performance. Our performance evaluation highlights the variability in com-
putation costs of differential privacy mechanisms. Approaches such as Elastic Sensitivity or Re-
stricted Sensitivity incur little overhead, suggesting these mechanisms are ideal for performance
critical applications such as real-time analytics. Given their higher performance cost, mechanisms
such as WPINQ and Sample & Aggregate may be most appropriate for specialized applications
where performance is less important than suitability of the mechanism for a particular problem
domain. For example, WPINQ is the only evaluated mechanism that supports synthetic data gen-
eration, a task known to be highly computation-intensive.

The performance of intrinsically private queries can depend on the database engine and trans-
formations applied to the query. In this work we do not attempt to optimize the rewritten queries
for performance.

Unsupported queries. The current implementation of CHORUS applies a single mechanism
to an entire input query. As a result, every aggregation function used by the input query must be
supported by the selected mechanism, or the transformation fails. For example, consider a query
with joins that outputs both a count and an average. Neither Elastic Sensitivity (which does not
support average) nor Sample & Aggregate (which does not support join) can fully support this
query.

This issue disproportionately affects WPINQ, since our implementation of WPINQ does not
support COUNT(DISTINCT ...) queries. It is not obvious how to do so: the weights of any record
in the database only reflect the number of duplicate rows until a join is performed (and weights are
re-scaled).

It is possible to leverage multiple mechanisms in a single intrinsically private query by treating
each output column separately. This approach would provide improved support for queries like the
example above, which use several different aggregation functions. We leave such an extension to
future work.

4.8 Related Work
Differential Privacy. Differential privacy was originally proposed by Dwork [29, 30, 32].

The reference by Dwork and Roth [35] provides an overview of the field.
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Much recent work has focused on task-specific mechanisms for graph analysis [23, 42, 46, 47,
66], range queries [18,24,41,50–52,64,71–73], and analysis of data streams [33,67]. As described
in Section 4.7, such mechanisms are complementary to our approach, and could be implemented
on top of CHORUS to provide more efficient use of the privacy budget.

Differential Privacy Systems. A number of systems for enforcing differential privacy have
been developed. PINQ [55] supports a LINQ-based query language, and implements the Laplace
mechanism with a measure of global sensitivity. Weighted PINQ [63] extends PINQ to weighted
datasets, and implements a specialized mechanism for that setting.

Airavat [65] enforces differential privacy for MapReduce programs using the Laplace mecha-
nism. Fuzz [38,40] enforces differential privacy for functional programs, using the Laplace mech-
anism in an approach similar to PINQ. DJoin [57] enforces differential privacy for queries over
distributed datasets. Due to the additional restrictions associated with this setting, DJoin requires
the use of special cryptographic functions during query execution so is incompatible with existing
databases. GUPT [56] implements the Sample & Aggregate framework for Python programs.

In contrast to our approach, each of these systems supports only a single mechanism and, with
the exception of Airavat, each implements a custom database engine.

Security & Privacy via Query Rewriting. To the best of our knowledge, ours is the first
work on using query transformations to implement differential privacy mechanisms. However,
this approach has been used in previous work to implement access control. Stonebreaker and
Wong [69] presented the first approach. Barker and Rosenthal [19] extended the approach to
role-based access control by first constructing a view that encodes the access control policy, then
rewriting input queries to add WHERE clauses that query the view. Byun and Li [22] use a similar
approach to enforce purpose-based access control: purposes are attached to data in the database,
then queries are modified to enforce purpose restrictions drawn from a policy.
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Chapter 5

Conclusion

This dissertation takes a first step toward practical differential privacy for general-purpose SQL
queries in real-world environments.

We conducted the largest known empirical study of real-world SQL queries—8.1 million queries
in total—and from these results proposed a new set of requirements for practical differential
privacy on SQL queries. To meet these requirements we proposed elastic sensitivity, the first
efficiently-computed approximation of local sensitivity that supports joins.

We then presented CHORUS, a system with a novel architecture based on query rewriting that
enforces differential privacy for SQL queries on an unmodified database. CHORUS works by auto-
matically transforming input queries into intrinsically private queries. We have described transfor-
mation rules for four general-purpose mechanisms, and discussed how additional mechanisms can
be supported with the same approach.

We used CHORUS to perform the first empirical evaluation of multiple mechanisms on real-
world queries and data. The results demonstrate that our approach supports 93.9% of statistical
queries in our corpus, integrates with a production DBMS without any modifications, and scales
to hundreds of millions of records.

We described the deployment of CHORUS at Uber to provide differential privacy, where it
processes more than 10,000 queries per day. We have released CHORUS as open source [3].

As organizations increasingly collect sensitive information about users, they are highly mo-
tivated to make the data available to analysts in order to maximize its value. At the same time,
data breaches are becoming more common and the public is increasingly concerned about pri-
vacy. There is a growing and urgent need for technology solutions that balance these interests by
supporting general-purpose analytics while simultaneously providing privacy protection.

Differential privacy is a promising solution to this problem that enables general data analytics
while protecting individual privacy, but existing differential privacy mechanisms do not support
the wide variety of features and databases of real-world environments.

A flexible, practical system that supports multiple state-of-the-art mechanisms could accelerate
adoption of differential privacy in practice. In addition, the ability to evaluate current and future
mechanisms in a real-world setting will support development of new mechanisms with greater
utility and expand the application domain of differential privacy.
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