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Abstract

Adaptive and Diverse Techniques for Generating Adversarial Examples

by

Warren He

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dawn Song, Chair

Deep neural networks (DNNs) have rapidly advanced the state of the art in many important, diffi-
cult problems. However, recent research has shown that they are vulnerable to adversarial exam-
ples. Small worst-case perturbations to a DNN model’s input can cause it to be processed incor-
rectly. Subsequent work has proposed a variety of ways to defend DNN models from adversarial
examples, but many defenses are not adequately evaluated on general adversaries.

In this dissertation, we present techniques for generating adversarial examples in order to eval-
uate defenses under a threat model with an adaptive adversary, with a focus on the task of image
classification. We demonstrate our techniques on four proposed defenses and identify new limita-
tions in them.

Next, in order to assess the generality of a promising class of defenses based on adversarial
training, we exercise defenses on a diverse set of points near benign examples, other than adver-
sarial examples generated by well known attack methods. First, we analyze a neighborhood of
examples in a large sample of directions. Second, we experiment with three new attack methods
that differ from previous additive gradient based methods in important ways. We find that these
defenses are less robust to these new attacks.

Overall, our results show that current defenses perform better on existing well known attacks,
which suggests that we have yet to see a defense that can stand up to a general adversary. We hope
that this work sheds light for future work on more general defenses.
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Chapter 1

Introduction

Deep neural networks (DNNs) are vulnerable to adversarial examples, which are slightly per-
turbed inputs that cause prediction errors. Recent research on adversarial examples has proposed
techniques to defend DNN models from the effects of adversarial examples. These defense pro-
posals come in several categories, including input pre-processing, changes to the training method,
changes to the network architecture, adversarial retraining, the addition of non-deterministic steps,
and the addition of a secondary classifier (for detection approaches).

In this dissertation, we provide techniques for evaluating defenses which complicate the task
of formulating a loss function for use with existing gradient based attacks. To do so, we perform
an in-depth evaluation of three proposed defenses that were demonstrated to be effective against a
variety of attacks and describe new weaknesses that were not previously known.

• We show that feature squeezing [Xu et al., 2017a], an ensemble defense that combines two
input pre-processing techniques, can be evaded by an optimization based attack using a
surrogate loss function that imitates the pre-processing but in a differentiable way.

• We show that ensemble of specialists [Abbasi and Gagné, 2017], an ensemble defense that
combines classifiers trained to be more robust at simpler tasks, can be evaded by an opti-
mization attack using a loss function that considers each constituent classifier.

• We show that an ensemble of detectors from different defenses [Gong et al., 2017, Metzen
et al., 2017, Feinman et al., 2017] can be evaded by optimizing a loss function that favors
misclassification and

• We show that region classification [Cao and Gong, 2017], a non-deterministic defense that
samples classification results from nearby inputs, can be evaded by finding adversarial ex-
amples that are consistently misclassified when perturbed in a few random directions.

We analyze the common themes of these weaknesses and propose stronger criteria for guiding
future research in adversarial examples defenses.

In order to better assess the generality of current defenses, we then preemptively study a col-
lection of new attack techniques that differ from existing attacks in important ways.
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• We study Bhagoji et al.’s black-box attacks [2018], where the attacker can query the model.

• We study AdvGAN [Xiao et al., 2018a], which trains a neural network to create perturbations
rather than using the gradients of the model.

• We study stAdv [Xiao et al., 2018b], which perturbs an image by spatially shifting its pixels
rather than adding to the pixels’ values.

While previous attacks have been sufficient in evading some of the defenses we study, these addi-
tional results demonstrate the broadness of possible future attacks.

Although deep learning has rapidly advanced state of the art performance in important and
difficult problems, we have a limited understanding of the resulting neural networks. In order to
improve our confidence in deploying these models in the real world, we should be aware of not
only their successes but also their limitations.

1.1 Background
In this section, we introduce the topics of deep learning and adversarial examples, and we provide
an overview of previous defenses against adversarial examples and related work.

Deep learning A class of functions Fθ(x) called neural networks applies a sequence of linear
combination operations, often a matrix multiply or a convolution, and nonlinear operations, such
as a rectified linear unit (ReLU(x) = max(x, 0)). Neural networks can approximate different func-
tions by using different weights θ in the linear combination steps. Deep neural networks (DNNs),
which have many layers of linear combinations and nonlinearities, are expressive. Convolutional
neural networks (CNNs) are a class of neural networks in which some of the linear combination
operations are convolutions, which for a given intermediate value limits the number of depen-
dencies on intermediate values from the previous layer (as opposed to a “fully connected” matrix
multiply). Additionally, neural networks are differentiable, which makes them suitable for use in
machine learning. In deep learning, a system trains a neural network model for a given task by ad-
justing the model’s weights based on the derivative of an objective function of the neural network’s
inputs or intermediate values.

Advances in deep learning have greatly improved the state of the art performance in a variety
of difficult problems, such as image recognition [Krizhevsky et al., 2012, He et al., 2016], text
analysis [Collobert and Weston, 2008], and speech recognition [Hinton et al., 2012a]. New systems
that use deep neural networks [Watson Visual Recognition, Google Vision API, Clarifai] reduce
the amount of human attention needed in important processes such as online content moderation.

In this dissertation, we focus on classification models, where the task is to assign an input to a
class c ∈ C. To adapt a neural network, with real-valued output, to perform classification, we use
an architecture that has an output dimensionality of |C|, where each dimension corresponds to a
possible class. The output for each dimension represents a confidence level that the input belongs
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to the corresponding class. In our experiments, we use image classification models, where the
input, w × h pixels and c channels, is a vector x ∈ Rw×h×c.

Adversarial examples While deep neural networks appear to be robust to random noise, recent
work has pointed out that they are strongly affected by small worst-case perturbations. These
perturbations applied to an input that is normally correctly classified can cause the model to classify
it incorrectly. These are called adversarial examples [Szegedy et al., 2014a, Goodfellow et al.,
2015, Nguyen et al., 2015, Papernot et al., 2016b].

Specifically, suppose we have a classifier Fθ with model parameters θ (we may omit θ for
brevity when the context is clear). Let x be an input to the classifier with corresponding ground
truth label y. An adversarial example x∗ is some instance in the input space that is close to x by
some distance metric d(x, x∗) which causes Fθ to produce an incorrect output. In order to isolate
the effects of an attack from model inaccuracy, we only consider those x originally satisfying
Fθ(x) = y.

Prior work considers two classes of adversarial examples. First, an untargeted adversarial
example is an instance x∗ that causes the classifier to produce any incorrect output: Fθ(x∗) 6= y.
Second, a targeted adversarial example is an x∗ that causes the classifier to produce a specific
incorrect output y∗: Fθ(x∗) = y∗ where y 6= y∗.

Defenses To improve the robustness of models against adversarial examples, prior work investi-
gates in two directions. The first direction attempts to produce correct predictions on adversarial
examples, while not compromising the accuracy on legitimate inputs [Papernot et al., 2016c, Good-
fellow et al., 2015, Gu and Rigazio, 2014, Mądry et al., 2017, Cao and Gong, 2017]. The other
direction instead attempts to detect adversarial examples, without introducing too many false pos-
itives. In this case, the model can reject an instance and refuse to classify those that it detects as
adversarial [Metzen et al., 2017, Grosse et al., 2017, Xu et al., 2017a, Abbasi and Gagné, 2017].
Many defenses that have been proposed have later been shown to be ineffective in settings where
an attacker is aware of the defense in use [Carlini and Wagner, 2017a,b, Athalye and Carlini, 2018].

Threat models Research on defenses has considered different threat models, which we distin-
guish with two properties: (i) how much information the attacker has about the model and (ii) how
much information the attacker has about any defenses in use.

The level of knowledge an attacker has about the model divides attacks into white-box and
black-box attacks. In a white-box attack, the attacker has full knowledge of the model, including
the model architecture, training data, and parameters. Prior work has shown that attacks can also
be performed with less information about the model, in black-box attacks. One technique for using
white-box attack methods in a black-box setting is transfer—adversarial examples generated for
one model can successfully fool other models, even models of different architectures and models
trained on different data [Goodfellow et al., 2015, Papernot et al., 2016a]. An attacker can thus
train a model of its own and generate adversarial examples to fool a black-box model [Papernot
et al., 2017, Liu et al., 2017a].
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We additionally consider static and adaptive adversaries. A static adversary is not aware of any
defenses that may be in place to protect the model against adversarial examples. A static adversary
can generate adversarial examples using existing methods but does not tailor attacks to any specific
defense. An adaptive adversary is aware of the defense methods used in the model and can adapt
attacks accordingly. This is a strictly more powerful adversary than a static adversary. In this
dissertation, we focus on adaptive attackers because it is hard to generalize when it is appropriate
to assume that adversaries will all be static attackers.

Common experimental setup
In this dissertation, we use the following common data, models, attack methods, and performance
metrics.

Datasets and models. To evaluate the effectiveness of the different defense strategies, we use
two standard datasets, MNIST [LeCun, 1998] and CIFAR-10 [Krizhevsky and Hinton, 2009]
datasets. MNIST has 28 × 28 pixel black-and-white images (784 dimensions) of handwritten
digits. CIFAR-10 has 32 × 32 pixel RGB natural images (3,072 dimensions) of ten categories of
objects: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

We use a collection of small CNNs for MNIST. For CIFAR-10, we use residual networks [He
et al., 2016] and wide residual networks [Zagoruyko and Komodakis, 2016]. In our experiments,
we use a ResNet32 and a wide ResNet34, with a widening factor of 10.

Adversarial example generation methods. Previous work describes methods to generate ad-
versarial examples from given benign images. We use include the following well known attacks in
our experiments.

The Fast Gradient Sign Method (FGSM) [Goodfellow et al., 2015] takes a fixed-size step in
the direction of a misclassification. This generates images at a fixed L∞ distance from the original
image (modulo image box constraints).

Carlini and Wagner’s approach, which is shown to be effective on finding adversarial examples
with small distortions, uses an optimizer to minimize a loss function [2017c]:

loss(x′) = ‖x′ − x‖22 + c · J(Fθ(x′), y)

Here, Fθ is a part of the trained classifier that outputs a vector of logits, and J computes some
penalty based on the logits and some label y, either a ground truth label for non-targeted attacks
or a target label for targeted attacks. A constant c is a hyperparameter that adjusts the relative
weighting between distortion and misclassification. We omit details of the design choice and refer
the reader to the original paper.

Performance measurements. We measure an attack’s success rate on a model as the fraction of
benign inputs for which the attack can generate an adversarial example that the model misclassifies
(or classifies as the target class for targeted attacks), among benign examples that were originally
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correctly classified. For examples where an attack method successfully generates an adversarial
example, we measure the distortion between an adversarial example and the original input. The
metrics we use for distortion include the root-mean-squared (RMS), the L2-norm, and L∞-norm of
their distance. When we evaluate defenses, we measure the accuracy of the system on adversarial
examples.

1.2 Related work
We give an overview of other work related to this dissertation.

Adaptive attack evaluation. Previous work, notably by Carlini and Wagner [2017a], has evalu-
ated earlier defenses including several that were initially developed for static attackers. They found
that adaptive attackers can effectively evade these defenses. In Chapter 2, we focus on newer de-
fenses that have undergone some testing on strong adaptive adversaries already.

Adversarial examples in feature space. Previous has examined local neighborhoods around
adversarial examples in the feature space of deep learning models. Liu et al. [2017b] and Tramèr
et al. [2017b] examine limited regions around benign samples to study why some adversarial exam-
ples transfer across different models. Madry et al. [2017] explore regions around benign samples
to validate the robustness of an adversarially trained model. Tabacof and Valle [2016] examine
regions around adversarial examples to estimate the examples’ robustness to random noise. Cao
and Gong [2017] determine that considering the region around an input instance produces a more
robust classification than looking at the input instance alone as a single point. In Section 3.1, we
examine larger neighborhoods: in many directions and at greater distances.

Query based adversarial examples. In concurrent work, Chen et al. [2017] propose to use fi-
nite differences to replace back-propagated gradients in existing optimization based methods for
generating adversarial examples. In Section 3.2, we consider a technique that also uses finite dif-
ferences [Bhagoji et al., 2018], but more closely related to the fast gradient sign method (FGSM)
[Goodfellow et al., 2015] and iterative FGSM. Brendel et al. [2018] propose a different method
for generating adversarial examples when an attacker can query a model, but where the confidence
level is not available in the query output. Their method searches for the model’s decision bound-
aries. We also propose to query a model to find decision boundaries in Section 3.1, but with the
goal of characterizing adversarial and benign examples.

Using generative adversarial networks. Zhao et al. [2018] propose to use generative adversarial
networks (GANs) to generate especially realistic adversarial examples. In Section 3.2, we evaluate
an attack that also uses GANs to generate realistic adversarial examples [Xiao et al., 2018a], but
which additionally keeps the generated examples very close to the original images.
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Chapter 2

Evaluating defenses under adaptive
adversaries

In this section, we perform in-depth evaluation of four defenses against adaptive adversaries. Previ-
ously, Carlini and Wagner [2017a] have demonstrated adaptive attack methods that evade proposed
defenses, several of which they claim simply arose from insufficient testing when the defenses were
validated. With a variety of defenses that involve input pre-processing, secondary classifiers, and
distributional detection shown to have weaknesses, we turn our attention to different approaches.
We study representative examples of (i) defenses that use ensembles of detection methods and (ii)
defenses that incorporate behaviors that the adversary can’t predict.

In these cases, it is less clear how to apply existing attack methods, so it is difficult to deter-
mine how robust these defenses are against a general adaptive adversary. We present some new
techniques to experiment with for evaluating robustness by walking through our own attacks on
these defenses.

2.1 Ensemble defenses
We consider defenses that attempt to combine multiple (somewhat weaker) defenses to construct
a larger strong defense. In particular, we look at three instances of ensemble defense strategies.
First and second are feature squeezing [Xu et al., 2017a] and the specialists+1 ensemble method
[Abbasi and Gagné, 2017], both of which take this approach by construction. These defenses are
constructed from components that are intended to be useful together. Their authors have shown
that these defenses effectively detect low-perturbation adversarial examples generated by a static
adversary. Third, to study the effectiveness of ensembling defenses more broadly, we merge to-
gether many detectors that were not designed to be used in conjunction with any other detector.
In particular, as an example demonstration, we ensemble three independent detection mechanisms
[Gong et al., 2017, Metzen et al., 2017, Feinman et al., 2017] to build one detection mechanism.

For each of these defense strategies, we propose attack methods to generate adversarial ex-
amples as an adaptive adversary against the individual component defense (when applicable) as
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well as the composite defense strategy. We use these attack methods to evaluate each component
defense and composite defense: if our method succeeds at generating adversarial examples, this
means that an adaptive adversary can defeat the defense. To gauge how strong the combined de-
fense is compared to the components, we compare the level of distortion needed to fool each (using
the same optimization method).

Experimental setup
For the MNIST and CIFAR-10 datasets, we randomly sample 100 images in the test set, filter out
examples that are not correctly classified, and generate adversarial examples based on the correctly
classified images. When evaluating each defense strategy, we use the same model architectures
described in their papers respectively [Xu et al., 2017a, Abbasi and Gagné, 2017, Gong et al.,
2017, Metzen et al., 2017, Feinman et al., 2017].

Our experiments took up to three minutes to generate each adversarial example. The attacks
we use can scale up to larger models, which require more computation per optimization step. On
the other hand, prior work has shown that larger models are actually easier to fool, with lower-
distortion adversarial examples or better success at a fixed level of distortion [Goodfellow et al.,
2015, Moosavi-Dezfooli et al., 2016, Tabacof and Valle, 2016, Carlini and Wagner, 2017c]. Our
own results agree, with adversarial examples on a ResNet32 for CIFAR-10 having significantly
lower distortion than adversarial examples on a smaller CNN for MNIST (a much smaller dataset).
We expect even larger datasets would be even easier to attack.

Adaptive attacks on feature squeezing
In this and next section, we investigate ensemble defense strategies that are intentionally con-
structed to have component defenses which work together to detect adversarial examples. The first
defense we study is feature squeezing, proposed by Xu et al. [2017a,b].

Background: feature squeezing defense. To perform feature squeezing, one generates a lower
fidelity version of the input image through a process known as “squeezing” before passing it into
the classifier. Xu et al. proposed two methods of squeezing: reducing the color depth to fewer bits,
and spatially smoothing the pixels with a median filter. According to their paper, the two methods
of squeezing work well together because they address two major kinds of perturbation used in
adversarial examples: color depth reduction eliminates small changes to many pixels, while spatial
smoothing eliminates large changes to a few pixels.

In order to detect adversarial examples, Xu et al. propose a system combining the two squeezing
methods. First, the system runs the classifier on three different versions of the image: the original
image, the reduced-color-depth version and the spatially smoothed version of the original image.
Then, it compares the softmax probability vectors across these three classifier outputs. The L1

score of the input is the highest L1 distance between any pair of softmax probability vectors among
the three. It flags inputs where the L1 score exceeds a threshold as adversarial.
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In their experiments, Xu et al. show that MNIST and CIFAR-10 classifiers are accurate on
squeezed inputs. On adversarial examples generated by a static adversary using FGSM [Goodfel-
low et al., 2015] and JSMA [Papernot et al., 2016b], they show that their detector achieves 99.74%
accuracy on a test set with equal portions benign and adversarial examples. They also show that
squeezing the input alone prevents 84 – 100% of the adversarial examples (correctly classifying
them). Recently, Xu et al. showed that a simplified detector that uses the original version of the
input and the spatially-smoothed version (excluding the color-depth-reduced version) achieves a
98.80% overall detection accuracy on MNIST and 87.50% on CIFAR-10 against a static adversary
using a variety of Carlini and Wagner’s attacks [Xu et al., 2017b].

Summary of our approach and results. We demonstrate that feature squeezing is not an effec-
tive defense in two stages. First, we show that an adaptive attacker can construct an adversarial
example that remains adversarial after it is squeezed by each method (color depth reduction and
spatial smoothing). Then, we use this approach to construct adversarial examples that are classified
the same way both with and without squeezing, causing the L1 score to be smaller than a given
fixed threshold. Our results show that the combined detection method is not effective against an
adaptive attacker.

Evading individual feature squeezing defense components
In these experiments, we evaluate whether adversarial examples are robust to each individual fea-
ture squeezing defense component, i.e., whether adversarial examples remain adversarial after
each individual feature squeezing process (color depth reduction and spatial smoothing) sepa-
rately. These experiments attack the components of the combined feature squeezing detection
scheme. Performing this attack is necessary for defeating the combined detection scheme, wherein
the predicted label probabilities of squeezed images are compared against each other.

Evading color-depth-reduction defense

The first method of squeezing an image that Xu et al. propose is color depth reduction. This method
rounds each value in the input to 2b evenly spaced values spanning the same range, which we refer
to as reducing to b bits.

Attack Approach. We use Carlini and Wagner’s method described in Section 1.1 to generate
adversarial examples that are robust to color depth reduction. After each step of the optimization
procedure, an intermediate image (perturbed from the original image) is available from the opti-
mizer. We check if a reduced-color-depth version of this intermediate image is adversarial. We
run the optimization multiple times, initializing the optimization with random perturbations of the
original image each time so that it explores different optimization paths. For each original image,
we keep the successful adversarial example that has the lowest L2 distance to the original image
among all the generated successful adversarial examples for this original image.
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Figure 2.1: Adversarial examples for color depth reduction (to 1 bit) on MNIST. First row: original
images. Second row: adversarially perturbed. L2 distortions, from left to right: 1.49, 2.61, 2.63,
3.83, 3.89, 3.90.

Bit depth Adv success Avg L2

1 100% 3.86
2 99% 1.69
3 100% 1.43
4 100% 1.39
5 100% 1.44
6 100% 1.33
7 100% 1.33
8 100% 1.38

Table 2.1: Summary of MNIST adversarial examples that are misclassified when reduced to differ-
ent color depths. “Adv success” measures the fraction of original images for which we successfully
found an adversarial example. “Avg L2” measures the average L2 distortion of the successful ad-
versarial examples.

Attack results on MNIST. We evaluate color depth reduction to 1 – 7 bits. On the strongest
defense evaluated by Xu et al., which reduces color depth to 1 bit, we successfully generated
adversarial examples for all original images, with an average L2 distortion of 3.86. Figure 2.1
shows a sample of these adversarial examples.

Table 2.1 summarizes our results for other bit depths. Notice that for a system without any
color depth reduction (retaining the original 8 bits of depth), we find adversarial examples with an
average L2 distortion of 1.38. Reducing color depth to fewer bits makes the system less sensitive
to small changes, which requires larger distortions; however, the distortions are still very small.
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Figure 2.2: Adversarial examples for color depth reduction (to 3 bits) on CIFAR-10. Distortions,
from left to right: 0.0194, 0.0954, 0.322, 0.942, 0.948, 0.948. Layout is the same as Figure 2.1.

Attack results on CIFAR-10. We evaluate color depth reduction to 3 bits, which Xu et al. rec-
ommend as a good balance between the accuracy on adversarial inputs and accuracy on benign
images for CIFAR-10. We succeeded at generating adversarial examples for all original images,
with an average L2 distortion of 0.945. Figure 2.2 shows a sample of these adversarial examples.
For comparison, adversarial examples for a classifier without color depth reduction have an aver-
age L2 distortion of 0.214. Although this method of squeezing increases the distortion needed for
successfully generating non-targeted adversarial examples using the same optimization method,
again, such a distortion is still small and imperceptible.

Summary. An adaptive attacker can successfully generate adversarial examples with small dis-
tortions for a system that applies color depth reduction to the input image before classifying it.

Evading spatial smoothing

Xu et al. propose a second method for feature squeezing, which applies a median filter to the input,
which replaces each pixel with the median value of a neighborhood around the pixel.

To generate adversarial examples that are misclassified after spatial smoothing, we use Carlini
and Wagner’s method from Section 1.1 with the addition of a median filter as part of the classifi-
cation model.

A median filter for TensorFlow was not available, so we implemented our own.

Attack results on MNIST. We evaluate a range of median filter sizes, ranging from 1 × 2 to
5×5. For a 3×3 filter, with which Xu et al. achieved the best accuracy, we successfully generated
adversarial examples for all original images, with an average distortion of 1.29. Figure 2.3 shows a
sample of these adversarial examples. Table 2.2 summarizes our results for other filter sizes. Larger
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Filter size Adv success Avg L2

3× 3 100% 1.29
2× 2 100% 1.57
5× 5 100% 0.612
3× 1 100% 1.33
1× 3 100% 1.29
2× 1 100% 1.52
1× 2 100% 1.51
5× 1 100% 0.943
1× 5 100% 0.931

Table 2.2: Summary of MNIST adversarial examples that are misclassified when spatially
smoothed with varying sizes of median filters. Columns have the same meaning as in Table 2.1.
Some filters make adversarial examples easier to find.

Figure 2.3: Adversarial examples for spatial smoothing (with 3× 3 filter) on MNIST. Distortions,
from left to right: 0.236, 0.241, 0.282, 1.27, 1,31, 1.31. Layout is the same as Figure 2.1.

median filters did not require greater distortion. Compared to adversarial examples generated for
a system without any spatial smoothing (average distortion of 1.38), the average distortion is not
increased.

Attack results on CIFAR-10 We evaluate a 2 × 2 median filter, which Xu et al. identify as
achieving a good rejection rate of adversarial examples and accuracy on benign images on CIFAR-
10. We successfully generated adversarial examples for all original images, which have an average
distortion of 0.205. Figure 2.4 shows a sample of these adversarial examples. The average distor-
tion is not higher than for a system without spatial smoothing (0.214).
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Figure 2.4: Adversarial examples for spatial smoothing (with 2 × 2 filter) on CIFAR-10. Dis-
tortions, from left to right: 0.0273, 0.0537, 0.0584, 0.198, 0.211, 0.212. Layout is the same as
Figure 2.1.

Summary Spatial smoothing alone is not an effective defense against an adaptive attacker. We
have shown that an adaptive adversary can create adversarial examples for a system that applies
spatial smoothing which are not more distorted than adversarial examples for a baseline system
that does not apply spatial smoothing.

Evading combination of multiple squeezing techniques
While the individual feature squeezing techniques are weak against an adaptive attacker, we in-
vestigate whether the detection scheme that combines them is stronger. In this case, we find that
this detection scheme is not much stronger than the strongest component defense, color depth
reduction.

Background: Composite feature squeezing defense The detection scheme combines both meth-
ods of squeezing. In particular, the detection system has three “branches,” where each one runs
the classifier on a different version of the input, the original input, a reduced-color-depth version
and a spatially-smoothed version of the original input. These three branches output different soft-
max probability vectors, and the scheme compares the L1 distance between these vectors against a
threshold to determine whether the input is adversarial.

In this experiment, we evaluate the effectiveness of the combined defense against an adaptive
attacker, i.e., whether adversarial examples can be misclassified and bypass this detection scheme.

Attack Approach. We use the procedure from the color-depth-reduction evasion attack with
modifications to support the detection mechanism. In this attack, we run two instances of the
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Figure 2.5: Adversarial examples for combined feature squeezing detection on MNIST. Distor-
tions, from left to right: 2.00, 2.04, 2.39, 4.66, 4.77, 4.79. Layout is the same as Figure 2.1.

model in parallel during optimization, representing the detector branches that operate on the input
and the spatially smoothed version of the input. The optimizer receives gradients from both models,
equally. We do not include the reduced-color-depth branch in the gradient calculation, because the
color depth reduction removes gradient information; it is, however, included when we compute the
L1 score. We collect only adversarial examples that have an L1 score below a threshold of 0.3076,
a level at which Xu et al. achieved the best accuracy in their experiments on MNIST.

Attack results on MNIST We evaluate a combination of color depth reduction to 1 bit and
smoothing with a 2× 2 median filter, which Xu et al. found to be accurate on adversarial examples
generated by a static adversary [Xu et al., 2017b]. We successfully generated adversarial examples
for all original images, with an average distortion of 4.76 and L1 score of 0.209. Figure 2.5 shows
a sample of these adversarial examples. These examples are misclassified and successfully evade
detection. This distortion is 23.3% larger than for color depth reduction alone, but still very small.

Attack results on CIFAR-10. We evaluate a combination of color depth reduction to 3 bits and
smoothing with a 2 × 2 median filter, a combination of settings that perform well in Xu et al.’s
experiments. We successfully generated adversarial examples for all original images, with an
average distortion of 0.601 and L1 score of 0.168. Figure 2.6 shows a sample of these adversarial
examples. These examples are misclassified and successfully evade detection.

This distortion is even lower than that of the color depth reduction defense alone. Although Xu
et al. do not prescribe a threshold specific to CIFAR-10, the average L1 score for these examples
is lower (i.e., detected as less adversarial) than the average L1 score for the original images, which
is 0.225.
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Figure 2.6: Adversarial examples for combined feature squeezing detection on CIFAR-10. Distor-
tions, from left to right: 0.117, 0.120, 0.130, 0.604, 0.614, 0.617. Layout is the same as Figure 2.1.

Summary. The detection scheme that combines two methods of squeezing is not always stronger
than the strongest component, color depth reduction. The improvement is low even on MNIST,
which is particularly well suited for feature squeezing, with images being black and white (little
change from color depth reduction) and having large, contiguous areas of the same color (little
change from spatial smoothing). On CIFAR-10, the combined attack requires less distortion than
the color depth reduction defense alone.

Evading ensemble of specialists
We study a second defense that combines multiple component defenses, an ensemble of specialists,
proposed by Abbasi and Gagné [2017].

Background: ensemble of specialist defense. The defense consists of a generalist classifier
(which classifies among all classes) and a collection of specialists (which classify among subsets
of the classes). The specialists classify subsets of the classes as follows. Where C is the set of all
classes in the task, for each class i, let Ui be the set of classes with which i is most often confused in
adversarial examples. To compute Ui, Abbasi and Gagné select the top 80% of misclassifications
caused by non-targeted FGSM attacks for each class i. Further, K = |C| additional subsets are
defined: UK+i = C \ Ui to be the complement set of Ui. For each j = 1, ..., 2K, a specialist
classifier Fj is trained on a subset of the dataset containing images belonging to the classes in Uj
to classify input images into the classes in Uj only. In addition, a generalist classifier F2K+1 is
trained to classify input images into classes in U2K+1 = C. Each classifier in the ensemble may
be susceptible to basic adversarial examples, but the proposed defense assumes that each specialist
can detect a few specific attacks, thus the attacker cannot fool all specialists and the generalist at
the same time. The defense combines them to jointly detect general adversarial examples.
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Figure 2.7: Adversarial examples for specialists+1 on MNIST. Distortions, from left to right: 1.55,
1.76, 1.83, 3.77, 3.90, 3.93. Layout is the same as Figure 2.1.

In order to classify an input, the system first checks if, for any class i, the generalist classifier
and all specialists that can classify i agree that the input belongs to class i. If such a class i exists,
note that at most one class can get the generalist’s vote, it must be unique. In this case, the system
takes the mean of the outputs of the generalist and the specialists that can classify i. Otherwise, at
least one classifier has misclassified the input, and the system takes the mean of the outputs of all
classifiers in the ensemble.

Abbasi and Gagné [2017] find that using an ensemble constructed this way successfully reduces
the system’s confidence (mean confidence among classifiers activated by the voting scheme) on ad-
versarial examples generated by a static attacker using FGSM [Goodfellow et al., 2015], DeepFool
[Moosavi-Dezfooli et al., 2016], and Szegedy et al.’s approach [2014b]. They conclude that a clas-
sification system can use an ensemble of diverse specialists this way and detect low-confidence
examples as adversarial.

Attack approach. In this experiment, we evaluate the effectiveness of Abbasi and Gagné’s spe-
cialists+1 ensemble against an adaptive attacker. We considered a scenario where a user provides
an image to a system, and the system uses a specialists+1 ensemble to classify the image or reject
it as adversarial.

We attempt to create targeted adversarial examples, where we chose target classes randomly.
For each original image, then our goal is to create an adversarial example that is classified as
the target class by the generalist classifier and all applicable specialists at the same time, and
with high confidence from those classifiers. We adapt Carlini and Wagner’s method [2017c] to
generate adversarial examples. In this experiment, we kept only adversarial examples that were
misclassified with confidence greater than the average confidence on a sample of benign images,
0.999708. We modified the loss function to support multiple classifiers:
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loss(x′) = ‖x′ − x‖22 + c
∑

j∈{1,...,2K+1};y∗∈Uj

J(Fj(x
′), y∗)

We evaluate this defense on MNIST only. While Abbasi and Gagné also propose the defense
for CIFAR-10, the architecture described in their experiments has low accuracy on CIFAR-10,
resulting in low confidence even for benign images.

Attack results on MNIST. We successfully generated adversarial examples for all original im-
ages, which have an average L2 distortion of 3.87. Figure 2.7 shows a sample of these adversarial
examples in the second row. These adversarial examples are classified as the target label by the
generalist and all applicable specialists. For comparison, the average confidence of a single gener-
alist classifier on correctly classified benign images is 0.998951, and a batch of targeted adversarial
examples with at least that confidence has average distortion 3.65. The distortion needed for high-
confidence adversarial examples on specialists+1 is 6.03% higher than for a non-ensemble MNIST
classifier.

Although this defense defines the specialists to focus on common misclassifications caused
by non-targeted adversarial examples, it is still weaker at detecting the common misclassifications.
Among the examples, 33 targeted a class that the original image’s ground truth class was commonly
confused with. The average distortion for these images is 3.06, below the average of the entire set.

Summary. The specialists+1 ensemble does not effectively ensure low confidence on adversarial
examples generated by an adaptive attacker. An adaptive attacker can successfully generate adver-
sarial examples with small distortions, which are unanimously classified as a target class, and thus
evade the detection of the specialist+1 ensemble defense.

Evading ensemble of detectors
In the previous sections, we have investigated ensembles of defenses that are intentionally con-
structed to be useful together. In Xu et al.’s work, the color depth reduction is intended to remove
small changes to many pixels, and the median smoothing to remove large changes to a few pix-
els. Similarly, Abbasi and Gagné propose using an ensemble of generalist and specialist classifiers
together; without the others, this approach would not be useful.

To study the effectiveness of ensembling defenses more broadly, we merge together three re-
cently proposed detectors that were not designed to be used in conjunction with any other detector.
We consider only detectors that are applied to a fixed classification network for simplicity, and
therefore study the following schemes:

• Gong et al. [2017] propose using adversarial training to detect adversarial examples. Given
the original model, generate adversarial examples on the training data. Then, train a new
classifier that distinguishes the original training data from the adversarial data.

• Metzen et al. [2017] construct a similar scheme, however instead of using the original images
as the input to the detector, they train on the inner convolutional layers of the network.



CHAPTER 2. EVALUATING DEFENSES UNDER ADAPTIVE ADVERSARIES 17

Source Defense
Gong Metzen Feinman

Ta
rg

et Gong 100% 51% 21%
Metzen 43% 100% 18%
Feinman 96% 92% 100%

Table 2.3: Probability that adversarial examples constructed for a given source defense also fool
the given target defense on CIFAR-10. Defenses generated against Metzen et al. transfer to the
others with the highest probability, and Feinman et al. with the lowest.

• Feinman et al. [2017] examine the final hidden layer of a neural network and find that adver-
sarial examples are separable from the original images by training a density estimate using
Gaussian kernels.

When using Carlini and Wagner’s attack, these approaches are known to provide only slight
increases in robustness, i.e., only increase the required distortion slightly when generating the ad-
versarial examples with the detector vs. without the detector [2017a]. Given this, we now examine
if constructing an ensemble of these defenses provides additional robustness. To ensemble these
defenses, we run each detection method and report the input as adversarial if any of the three
detectors do.

Attack approach. We perform this experiment on CIFAR-10 exclusively, as Metzen et al.’s de-
fense is intended for a ResNet applied to CIFAR-10. We are able to construct adversarial examples
for all defenses independently. To defeat all three defenses together, we construct a new classifier
G(·) so that using the loss function from Section 1.1 directly can construct adversarial examples.

We use the same notation as Carlini and Wagner [2017a]. Let F (·) be a classifier on N classes,
and softmax(F (·))i be the probability of class i (so that F (·)i are the logits). Let {Dj(x)}Jj=1 be
one of J different detectors so that the probability that detector Dj reports object x as adversarial
is sigmoid(Dj(x)) (that is, Dj returns the logits). We report that an instance is adversarial if the
probability of any detector is greater than one half. That is, if for any j, sigmoid(Dj(x)) >

1
2
, or,

alternatively, Dj(x) > 0.
When we ensemble the three defenses, we set J = 3 and define D(x) = maxj Dj(x), so that

D(x) reports adversarial (i.e., D(x) > 0) if any of the three detectors do.
Given this, we use the same G(·) construction as Carlini and Wagner’s previous work on these

defenses [Carlini and Wagner, 2017a]. This function G(·) returns N + 1 classes (with the new
class reserved for adversarial examples) so that arg maxiG(x)i = arg maxi F (x)i when x is not
adversarial, and arg maxiG(x) = N + 1 when x is adversarial. To do this, Carlini and Wagner
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[2017a] specifically defines

G(x)i =

{
F (x)i if i ≤ N

(D(x) + 1) ·max
j
F (x)j if i = N + 1

If for a given instance x,Dj(x) > 0 (for any classifier j) then we will have arg maxiG(x)i = N+1
since we multiply a value greater than one by the largest of the other output logits. Conversely,
if arg maxiG(x)i 6= N + 1 then we must have D(x) < 0 implying that all detectors report the
instance is benign.

Therefore, by constructing adversarial examples on G so that the target class is not N + 1, we
can construct adversarial examples on F that are not detected by any detector.

Attack results on CIFAR-10. The L2 distortion required to construct adversarial examples on
an unsecured network is 0.11. To construct adversarial examples on this network G(·) with the
three defenses increases the distortion to 0.18, an increase of 60%. However, this distortion is still
imperceptible.

Transferability of adversarial examples across different detectors. In order to understand
the reason that these defenses do not significantly increase robustness when combined together,
we hypothesize that the transferability property Szegedy et al. [2014a], Goodfellow et al. [2015],
Papernot et al. [2016a], Liu et al. [2017a] of adversarial examples is simplifying the attacker’s
task. To verify this, we construct adversarial examples on each of the three defenses in isolation
and check the probability that these examples also fool the other two defenses. Table 2.3 contains
this data. Feinman’s defense is the weakest of the three, and so transfers least often (and adversarial
examples transfer to it most often). The other two defenses are approximately equally effective.
From this, we can see one possible reason why constructing an ensemble of these weak defenses
is not significantly more secure than each independently: the adversarial examples that fool one
detector may also fool the other detectors. We conclude that one must be careful when ensembling
defenses to build them to cover the weaknesses of the others, and not simply assemble them blindly.

Conclusion
In this section we explore techniques for evaluating ensemble defenses in under an adaptive ad-
versary. We demonstrate our proposed techniques, based on optimization, in examining whether
multiple (possibly weak) defenses can be combined to create a strong defense. We studied three
such defenses that combined multiple components: two defenses designed with a rationale of why
their components should work well together and one that combined unrelated recently proposed
detectors.

We showed that an adaptive adversary can generate adversarial examples with low distortion
that fool all of the defenses that we evaluate. The feature squeezing detection scheme, which
combines two methods of squeezing an input image, is at best marginally stronger than color
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depth reduction alone. The specialists+1 ensemble, which combines several specialist classifiers,
increases the required distortion slightly, but again, distortion is still small. We also showed that
combining a collection of recently proposed detection mechanisms is also ineffective. In particular,
our results show that adversarial examples transfer across the individual detectors.

This work sheds light on a few important lessons when evaluating defenses against adversarial
examples: (i) one should evaluate defenses using strong attacks. For example, FGSM can quickly
generate adversarial examples, but may fail to generate successful attacks when other iterative
optimization based methods can succeed; and (ii) one should evaluate defenses using adaptive
adversaries. It is important to develop defenses that are secure against attackers who know the
defense mechanisms being used.

Our results indicate that combining weak defenses does not automatically improve the robust-
ness of these systems.

2.2 Non-deterministic defenses
Next, we consider defenses that incorporate behaviors that an attacker cannot predict.

Defenses
In this section, we discuss a non-deterministic defense (from among many), region classification.
We also discuss a defense that combines region classification with adversarial training.

Region classification

Cao and Gong [2017] propose region classification, a defense against adversarial examples that
takes the majority prediction on several slightly perturbed versions of an input, uniformly sam-
pled from a hypercube around it. This approximates computing the majority prediction across the
neighborhood around an input as a region. In contrast, the usual method of classifying only the
input instance can be referred to as point classification.

Cao and Gong show that region classification approach successfully defends against low-
distortion adversarial examples generated by existing attacks, and they suggest that adversarial
examples robust to region classification, such as Carlini and Wagner’s high-confidence attack,
have higher distortion and can be detected by other means.

Adversarial training

Adversarial training modifies the training procedure, substituting a portion of the training examples
with adversarial examples. We experiment with Madry et al.’s defense, which performs adversarial
training using PGD, an attack that follows the gradient of the model’s loss function for multiple
steps to generate an adversarial example.
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Background and experimental setup
Datasets. We use two popular academic image classification datasets for our experiments: MNIST
and CIFAR-10. In these experiments, the MNIST images’ pixel values are in the range [0, 1]; in
CIFAR-10, they are in [0, 255].

Adversarial examples. For simplicity, we focus our analysis on untargeted attacks. We quan-
tify the distortion using the root-mean-square (RMS) distance metric between the original input
instance and the adversarial example. This is similar to the L2-norm, but the RMS normalizes for
different image sizes.

Models. For each dataset, we perform experiments on two models trained from one architecture.
For MNIST, the architecture is a convolutional neural network;1 for CIFAR-10, a wide ResNet34.2

In order to study the effect of PGD adversarial training on a model’s decision regions, from each
dataset, we use a defended model trained with the PGD adversarial training defense and an unde-
fended model trained with normal examples. The PGD adversarial training on MNIST used an L∞
perturbation limit of 0.3; on CIFAR-10, 8.

OPTMARGIN attack on region classification
In this section, we develop a concrete example where limiting the analysis of a neighborhood to a
small ball leads to evasion attacks on an adversarial example defense.

Proposed OPTMARGIN attack

We introduce an attack, OPTMARGIN, which can generate low-distortion adversarial examples
that are robust to small perturbations, like those used in region classification.

In our OPTMARGIN attack, we create a surrogate model of the region classifier, which classifies
a smaller number of perturbed input points. This is equivalent to an ensemble of models fi(x) =
f(x+vi), where f is the point classifier used in the region classifier and vi are perturbations applied
to the input x. Our attack uses existing optimization attack techniques to generate an example that
fools the entire ensemble while minimizing its distortion [Liu et al., 2017b, He et al., 2017].

Let Z(x) refer to the |C|-dimensional vector of class weights, in logits, that f internally uses
to classify image x. For each model in our ensemble, we define a loss term based on the objective
function in Carlini and Wagner’s L2 attack [2017c]:

`i(x
′) = `(x′ + vi) = max (−κ, Z(x′ + vi)y −max{Z(x′ + vi)j : j 6= y})

This loss term increases when model fi predicts the correct class y over the next most likely
class. When the prediction is incorrect, the value bottoms out at −κ logits, with κ referred to

1https://github.com/MadryLab/mnist_challenge
2https://github.com/MadryLab/cifar10_challenge

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge
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MNIST CIFAR-10
Examples Normal Adv tr. Normal Adv tr.

OPTBRITTLE 100% 0.0732 100% 0.0879 100% 0.824 100% 3.83
OPTMARGIN (ours) 100% 0.158 100% 0.168 100% 1.13 100% 4.08
OPTSTRONG 100% 0.214 28% 0.391 100% 2.86 73% 37.4
FGSM 91% 0.219 6% 0.221 82% 8.00 36% 8.00

Table 2.4: Average distortion (RMS) of adversarial examples generated by different attacks, along
with and attack success rate (%) under point classification. On MNIST, the level of distortion in
OPTMARGIN examples is visible to humans, but the original class is still distinctly visible (see
Figure 2.8 for sample images).

as the confidence margin. In OPTMARGIN, we use κ = 0, meaning it is acceptable that the
model just barely misclassifies its input. With these loss terms, we extend Carlini and Wagner’s L2

attack [2017c] to use an objective function that uses the sum of these terms. Whereas Carlini and
Wagner would have one `(x′) in the minimization problem below, we have:

minimize ||x′ − x||22 + c · (`1(x′) + ...+ `n(x
′)) (2.1)

We use 20 classifiers in the attacker’s ensemble, where we choose v1, ..., v19 to be random
orthogonal vectors of uniform magnitude ε, and v20 = 0. This choice is meant to make it likely for
a random perturbation to lie in the region between the vis. Adding f20(x) = f(x) to the ensemble
causes the attack to generate examples that are also adversarial under point classification.

For stability in optimization, we used fixed values of vi throughout the optimization of the
attack. This idea is similar to Carlini & Wagner’s attack [2017a] on Feinman et al.’s stochastic
dropout defense [2017].

Distortion evaluation

We compare the results of our OPTMARGIN attack with Carlini and Wagner’s L2 attack [2017c]
with low confidence κ = 0, which we denote OPTBRITTLE, and with high confidence κ = 40,
which we denote OPTSTRONG, as well as FGSM [Goodfellow et al., 2015] with ε = 0.3 (in L∞
distance) for MNIST and 8 for CIFAR-10. In our OPTMARGIN attacks, we use ε = 0.3 (in RMS
distance) for MNIST and ε = 8 for CIFAR-10. Figure 2.8 shows a sample of images generated
by each method. Table 2.4 shows the average distortion (amount of perturbation used) across a
random sample of adversarial examples.

On average, the OPTMARGIN examples have higher distortion than OPTBRITTLE examples
(which are easily corrected by region classification) but much lower distortion than OPTSTRONG

examples.
The OPTSTRONG attack produces examples with higher distortion, which Cao and Gong dis-

count; they suggest that these are easier to detect through other means. Additionally, the OPT-
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MNIST CIFAR-10
Region cls. Point cls. Region cls. Point cls.

Examples Normal Adv. tr. Normal Adv. tr. Normal Adv. tr. Normal Adv. tr.

Benign 99% 100% 99% 100% 93% 86% 96% 86%
FGSM 16% 54% 9% 94% 16% 55% 17% 55%
OPTBRITTLE 95% 89% 0% 0% 71% 79% 0% 0%
OPTMARGIN (ours) 1% 10% 0% 0% 5% 5% 0% 6%

Table 2.5: Accuracy of region classification and point classification on examples from different at-
tacks. More effective attacks result in lower accuracy. The attacks that achieve the lowest accuracy
for each configuration of defenses are shown in bold. We omit comparison with OPTSTRONG due
to its disproportionately high distortion and low attack success rate.

STRONG attack does not succeed in finding adversarial examples with satisfactory confidence
margins for all images on PGD adversarially trained models.3 The FGSM samples are also less
successful on the PGD adversarially trained models. The average distortion reported in Table 2.4
is averaged over only the successful adversarial examples in these two cases. The distortion and
success rate can be improved by using intermediate confidence values, at the cost of lower robust-
ness. Due to the low success rate and high distortion, we do not consider OPTSTRONG attacks in
the rest of our experiments.

Evading region classification

We evaluate the effectiveness of our OPTMARGIN attack by testing the generated examples on Cao
and Gong’s region classification defense.

We use a region classifier that takes 100 samples from a hypercube around the input. Cao and
Gong determined reasonable hypercube radii for similar models by increasing the radius until the
region classifier’s accuracy on benign data would fall below the accuracy of a point classifier. We
use their reported values in our own experiments: 0.3 for a CNN MNIST classifier and 5.1 (0.02
of 255) for a ResNet CIFAR-10 classifier.

In the following experiments, we test with a sample of 100 images from the test set of MNIST
and CIFAR-10.

Table 2.5 shows the accuracy of four different configurations of defenses for each task: no
defense (point classification with normal training), region classification (with normal training),
PGD adversarial training (with point classification), and region classification with PGD adversarial
training.

Cao and Gong develop their own attacks against region classification, CW-L0-A, CW-L2-A,
and CW-L∞-A. These start with Carlini & Wagner’s low-confidence L0, L2, and L∞ attacks, re-
spectively, and amplify the generated perturbation by some multiplicative factor. They evaluate

3We use the official implementation of Carlini and Wagner’s high confidence attack, which does not output a
lower-confidence adversarial example even if it encounters one.
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these in a targeted attack setting. Their best result on MNIST is with CW-L2-A with a 2× ampli-
fication, resulting in 63% attack success rate. Their best result on CIFAR-10 is with CW-L∞-A
with a 2.8× amplification, resulting in 85% attack success rate. In our experiments with OPT-
MARGIN in an untargeted attack setting, we observe high attack success rates at similar increases
in distortion.

These results show that our OPTMARGIN attack successfully evades region classification and
point classification.

Performance

Using multiple models in an ensemble increases the computational cost of optimizing adversarial
examples, proportional to the number of models in the ensemble. Our optimization code, based on
Carlini & Wagner’s, uses 4 binary search steps with up to 1,000 optimization iterations each. In
our slowest attack, on the PGD adversarially trained CIFAR-10 model, our attack takes around 8
minutes per image on a GeForce GTX 1080.

Although this is computationally expensive, an attacker can generate successful adversarial
examples with a small ensemble (20 models) compared to the large number of samples used in
region classification (100)—the slowdown factor is less for the attacker than for the defender.

Conclusion
In this section, we explore a technique for evaluating non-deterministic defenses under an adaptive
adversary. We demonstrate this technique on region classification, where we show that an attacker
can adapt an existing attack to generate adversarial examples that are consistently misclassified
within a region. We find that the increase in computational cost for the adapted attack is even
smaller than the increase in computational cost to estimate region classification by sampling points.
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MNIST

N/A Benign

Normal OPTBRITTLE

Normal OPTMARGIN

Normal OPTSTRONG

Normal FGSM

Adv. tr. OPTBRITTLE

Adv. tr. OPTMARGIN

Adv. tr. OPTSTRONG

Adv. tr. FGSM

CIFAR-10

N/A Benign

Normal OPTBRITTLE

Normal OPTMARGIN

Normal OPTSTRONG

Normal FGSM

Adv. tr. OPTBRITTLE

Adv. tr. OPTMARGIN

Adv. tr. OPTSTRONG

Adv. tr. FGSM

Figure 2.8: Adversarially perturbed images generated by different attack methods, for differently
trained models, and their corresponding original images. Instances where the attack does not
produce an example are shown as black squares.



25

Chapter 3

Exercising defenses on diverse attack
methods

So far, we have examined cases where a defense that is effective against previously known attacks
is much weaker against a new attack from an adaptive adversary. These suggest that some defenses
may be over specialized for certain attacks. In this chapter, we explore this idea further by compar-
ing defenses against newer attack methods that demonstrate important departures from previous
methods.

We focus on one class of defenses, adversarial training, which has shown promising results
on a broad category of attacks based on gradient information. First, we conduct a brute-force
examination in a large sample of directions in feature space around natural inputs. Second, we
evaluate three new attack methods:

• An attack that uses finite differences to estimate the worst case perturbation rather than
computing gradients [Bhagoji et al., 2018].

• AdvGAN [Xiao et al., 2018a], which uses a generative adversarial network (GAN) to gener-
ate a perturbation.

• stAdv[Xiao et al., 2018b], which perturbs an input image by spatially shifting its pixels,
rather than additively perturbing them.

3.1 Decision boundaries
As a first step in exploring images near natural examples that a given model classifies differently,
we study the decision boundaries of a model—the surfaces in the model’s input space where the
output prediction changes between classes. A nearby decision boundary indicates that adversarial
examples exist on the other side, while finding boundaries to be far away from benign examples
indicates robustness to perturbations. For comparison, we also analyze the decision boundaries
around adversarial examples.
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Analysis of surrounding decision boundaries
In addition to the goal of finding nearby adversarial examples, we want to characterize the decision
boundaries both near and far. We have shown in Section 2.2 that examining a small ball around a
given input instance may not adequately distinguish OPTMARGIN adversarial examples, as there
exist adversarial examples that are also consistently (mis-)classified in the surrounding region. In
this section, we introduce a more comprehensive analysis of the neighborhood around an input
instance.

Specifically, we consider the distance to the nearest boundary in many directions and adjacent
decision regions’ classes.

Decision boundary distance

To gather information on the sizes and shapes of a model’s decision regions, we estimate the
distance to a decision boundary in a sample of random directions in the model’s input space,
starting from a given input point. In each direction, we estimate the distance to a decision boundary
by computing the model’s prediction on perturbed inputs at points along the direction. In our
experiments, we check every 0.02 units (in RMS distance) for MNIST (data is in the scale of [0, 1])
and every 2 units for CIFAR-10 (data is in the scale of [0, 255]). When the model’s prediction on
the perturbed image changes from the prediction on the original image (at the center), we use that
distance as the estimate of how far the decision boundary is in that direction.

When the search encounters a boundary this way, we also record the predicted class of the
adjacent region.

For CIFAR-10, we perform this search over a set of 1,000 random orthogonal directions (for
comparison, the input space is 3,072-dimensional). For MNIST, we search over 784 random or-
thogonal directions (spanning the entire input space) in both positive and negative directions, for a
total of 1,568 directions.

Individual instances. Figure 3.1 shows the decision boundary distances for a typical set of a
benign example and adversarial examples generated as described in Section 2.2 (OPTBRITTLE

is an easily mitigated C&W low-confidence L2 attack; OPTMARGIN is our method for generat-
ing robust examples; FGSM is the fast gradient sign method from Goodfellow et al. [2015]). It
shows these attacks applied to models trained normally and models trained with PGD adversarial
examples. See Figure 3.3 for a copy of this data plotted in L∞ distance.

The boundary distance plots for examples generated by the basic optimization attack are strik-
ingly different from those for benign examples. As one would expect from the optimization cri-
teria, they are as close to the boundary adjacent to the original class as possible, in a majority of
the directions. These plots depict why region classification works well on these examples: a small
perturbation in nearly every direction crosses the boundary to the original class.

For our OPTMARGIN attack, the plots lie higher, indicating that the approach successfully
creates a margin of robustness in many random directions. Additionally, in the MNIST examples,
the original class is not as prominent in the adjacent classes. Thus, these examples are challenging
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MNIST Test image 3153 CIFAR-10 Test image 5415

No defense Adv. training No defense Adv. training

Benign

OPTBRITTLE

OPTMARGIN
(ours)

FGSM (unsuccessful)

Figure 3.1: Decision boundary distances (RMS) from single sample images, plotted in ascending
order. Colors represent the adjacent class to an encountered boundary. A black line is drawn at
the expected distance of an image sampled during region classification. Results are shown for
models with normal training and models with PGD adversarial training. For MNIST, original
example correctly classified 8 (yellow); OPTBRITTLE and OPTMARGIN examples misclassified
as 5 (brown); FGSM example misclassified as 2 (green). For CIFAR-10, original example correctly
classified as DEER (purple); OPTBRITTLE, OPTMARGIN, and FGSM examples misclassified as
HORSE (gray).

for region classification both due to robustness to perturbation and due to the neighboring incorrect
decision regions.

Summary statistics. We summarize the decision boundary distances of each image by looking
at the minimum and median distances across the random directions. Figure 3.2 shows these repre-
sentative distances for a sample of correctly classified benign examples and successful adversarial
examples. See Figure 3.4 for a copy of this data plotted in L∞ distance.

These plots visualize why OPTMARGIN and FGSM examples, in aggregate, are more robust to
random perturbations than the OPTBRITTLE attack. The black line, which represents the expected
distance that region classification will check, lies below the green OPTMARGIN line in the median
distance plots, indicating that region classification often samples points that match the adversarial
example’s incorrect class. OPTMARGIN and FGSM examples, however, are still less robust than
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MNIST CIFAR-10

Minimum dist. Median dist. Minimum dist. Median dist.

Normal

Adv tr.

Figure 3.2: Minimum and median decision boundary distances across random directions, for a
sample of images. Blue: Benign. Red: FGSM. Green: OPTMARGIN (ours). Orange: OPTBRIT-
TLE. Each statistic is plotted in ascending order. A black line is drawn at the expected distance of
images sampled by region classification.

benign examples to random noise.
Unfortunately, on MNIST, no simple threshold on any one of these statistics accurately sepa-

rates benign examples (blue) from OPTMARGIN examples (green). At any candidate threshold (a
horizontal line), there is either too much of the blue line below it (false positives) or too much of
the green line above it (false negatives).

PGD adversarial training on the MNIST architecture results in decision boundaries closer to
the benign examples, reducing the robustness to random perturbations. In CIFAR-10, however,
the opposite is observed, with boundaries farther from benign examples in the PGD adversarially
trained model. The effect of PGD adversarial training on the robustness of benign examples to
random perturbations is not universally beneficial nor harmful.

Adjacent class purity
Another observation we made from plots like those in Figure 3.1 is that adversarial examples tend
to have most directions lead to a boundary adjacent to a single class. We compute the purity of the
top k classes around an input image as the largest cumulative fraction of random directions that
encounter a boundary adjacent to one of k classes.

Figure 3.5 shows the purity of the top k classes averaged across different samples of images, for
varying values of k. These purity scores are especially high for OPTBRITTLE adversarial examples
compared to the benign examples. The difference is smaller in CIFAR-10, with the purity of benign
examples being higher.

Region classification takes advantage of cases where the purity of the top 1 class is high, and
the one class is the correct class, and random samples from the region are likely to be past those
boundaries.

Adversarial examples generated by OPTMARGIN and FGSM are much harder to distinguish
from benign examples in this metric.
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MNIST Test image 3153 CIFAR-10 Test image 5415

Normal Adv tr. Normal Adv tr.

Benign

OPTBRITTLE

OPTMARGIN

FGSM (unsuccessful)

Figure 3.3: Equivalent of Figure 3.1, decision boundary distances from sample images, plotted in
L∞ distance. A black line is drawn at the radius of the region used in region classification.

MNIST CIFAR-10

Minimum dist. Median dist. Minimum dist. Median dist.

Normal

Adv tr.

Figure 3.4: Equivalent of Figure 3.2, minimum and median decision boundary distances across
random directions, plotted in L∞ distance. Blue: Benign. Red: FGSM. Green: OPTMARGIN

(ours). Orange: OPTBRITTLE. A black line is drawn at the radius of the region used in region
classification.

Classification using surrounding decision boundaries
Cao and Gong’s region classification defense is limited in its consideration of a hypercube region
of a fixed radius, the same in all directions. We successfully bypassed this defense with our OPT-
MARGIN attack, which created adversarial examples that were robust to small perturbations in
many directions. However, the surrounding decision boundaries of these adversarial examples and
benign examples are still different, in ways that sampling a hypercube would not reveal.
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MNIST CIFAR-10

Normal

Adv tr.

Figure 3.5: Average purity of adjacent classes around benign and adversarial examples.
Orange: OPTBRITTLE. Red: FGSM. Green: OPTMARGIN (ours). Blue: Benign. Curves that
are lower on the left indicate images surrounded by decision regions of multiple classes. Curves
that near the top at rank 1 indicate images surrounded almost entirely by a single class.

In this section, we propose a more general system for utilizing the neighborhood of an input
to determine whether the input is adversarial. Our design considers the distribution of distances
to a decision boundary in a set of randomly chosen directions and the distribution of adjacent
classes—much more information than Cao and Gong’s approach.

Design

We ask the following question: Can information about the decision boundaries around an input
be used to differentiate the adversarial examples generated using the current attack methods and
benign examples? These adversarial examples are surrounded by distinctive boundaries on some
models, such as the PGD adversarially trained CIFAR-10 model (seen in Figure 3.2). However,
this is not the case for either MNIST model, where no simple threshold can accurately differentiate
OPTMARGIN adversarial examples from benign examples. In order to support both models, we
design a classifier that uses comprehensive boundary information from many random directions.

We construct a neural network to classify decision boundary information, which we show in
Figure 3.6. The network processes the distribution of boundary distances by applying two 1-D
convolutional layers to a sorted array of distances. Then, it flattens the result, appends the first
three purity scores, and applies two fully connected layers, resulting in a binary classification. We
use rectified linear units for activation in internal layers. During training, we use dropout [Hinton
et al., 2012b] with probability 0.5 in internal layers.
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Figure 3.6: Architecture of our decision boundary classifier. Sizes are shown for our MNIST
experiments.

Experimental Results

We train with an Adam optimizer with a batch size of 128 and a learning rate of 0.001. For MNIST,
we train on 8,000 examples (each example here contains both a benign image and an adversarial
image generated by a training attack) for 32 epochs, and we test on 2,000 other examples. For
CIFAR-10, where it was more costly to examine the decision boundaries on the larger models, we
train on 350 examples for 1,462 epochs, and we test on 100 other examples.

We filtered these sets only to train on correctly classified benign examples and successful ad-
versarial examples.

To arrive at the final binary decision of whether an input is adversarial or not, we choose
whichever class’s (adversarial or benign) output confidence value is higher. Table 3.1 shows the
false positive and false negative rates of the model.

FGSM creates fewer successful adversarial examples, especially for adversarially trained mod-
els. The examples from our experiments (ε = 0.3 for MNIST and 8 for CIFAR-10) have higher
distortion than the OPTMARGIN examples and are farther away from decision boundaries. We
trained a classifier on successful FGSM adversarial examples for normal models (without adver-
sarial training). Table 3.2 shows the accuracy of these classifiers. PGD adversarial training is
effective enough that we did not have many successful adversarial examples to train the classifier.

This classifier achieves high accuracy on the attacks we study in this section. These results
suggest that our current best attack, OPTMARGIN, does not accurately mimic the distribution of
decision boundary distances and adjacent classes. On MNIST, the model with normal training had
better accuracy, while the model with PGD adversarial training had better accuracy on CIFAR-10.
We do not have a conclusive explanation for this, but we do note that these were the models with
decision boundaries being farther from benign examples (Figure 3.2). It remains an open ques-
tion, however, whether adversaries can adapt their attacks to generate examples with surrounding
decision boundaries that more closely match benign data.

Performance

Assuming one already has a base model for classifying input data, the performance characteristics
of this experiment are dominated by two parts: (i) collecting decision boundary information around
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False pos. False neg. Accuracy
Training attack Benign OPTBRITTLE OPTMARGIN Our approach Cao and Gong

MNIST, normal training

90.4% 10%

OPTBRITTLE 1.0% 1.0% 74.1%
OPTMARGIN 9.6% 0.6% 7.2%

MNIST, PGD adversarial training
OPTBRITTLE 2.6% 2.0% 39.8%
OPTMARGIN 10.3% 0.4% 14.5%

CIFAR-10, normal training

96.4% 5%

OPTBRITTLE 5.3% 3.2% 56.8%
OPTMARGIN 8.4% 7.4% 5.3%

CIFAR-10, PGD adversarial training
OPTBRITTLE 0.0% 2.4% 51.8%
OPTMARGIN 3.6% 0.0% 1.2%

Table 3.1: False positive and false negative rates for the decision boundary classifier, trained on
examples from one attack and evaluated on examples generated by the same or a different attack.
We consider the accuracy under the worst-case benign/adversarial data split (all-benign if the false
positive rate is higher; all-adversarial if the false negative rate is higher), and we select the best
choice of base model and training set. These best-of-worst-case numbers are shown in bold and
compared with Cao & Gong’s approach from Table 2.5.

Normal training
Dataset False pos. False neg.

MNIST 7.0% 12.8%
CIFAR-10 20.0% 32.9%

Table 3.2: False positive and false negative rates for the decision boundary classifier, trained and
evaluated on FGSM examples.

given inputs and (ii) training a model for classifying the decision boundary information.
Our iterative approach to part (i) is expensive, involving many forward invocations of the base

model. In our slowest experiment, with benign images on the PGD adversarially trained wide
ResNet34 CIFAR-10 model, it took around 70 seconds per image to compute decision boundary
information for 1,000 directions on a GeForce GTX 1080. This time varies from image to image
because our algorithm stops searching in a direction when it encounters a boundary. Collecting
decision boundary information for OPTBRITTLE examples was much faster, for instance. Collect-
ing information in fewer directions can save time, and should perform well as long as the samples
adequately capture the distribution of distances and adjacent classes.

Part (ii) depends only on the number of directions, and the performance is independent of the
base model’s complexity. In our experiments, this training phase took about 1 minute for each
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model and training set configuration.
Running the decision boundary classifier on the decision boundary information is fast com-

pared to the training and boundary collection.

Conclusion
We analyze the neighborhood of adversarial examples from our OPTMARGIN attack by looking at
the decision boundaries around them, as well as the boundaries around benign examples and less
robust adversarial examples. Our experiments showed that with adversarial training, while it may
make models more robust to existing attacks, can decrease the distances from benign examples
to decision boundaries. We find that the comprehensive information about surrounding decision
boundaries reveals there are still differences between our robust adversarial examples and benign
examples. It remains to be seen how attackers might generate adversarial examples that better
mimic benign examples’ surrounding decision boundaries.

3.2 New attack methods
The attacks we presented so far rely on a few common techniques, sharing in common that they
use gradient descent algorithms to alter pixel values. While these techniques are effective, focus-
ing on them exclusively would limit our understanding of the full attack space. In this section,
we investigate three new attack methods that represent major departures from this paradigm. In
collaboration with Bhagoji et al., we evaluate (i) an attack that uses finite differences to generate
perturbations, and in collaboration with Xiao et al., we evaluate (ii) AdvGAN, an attack that uses
a generative adversarial network (GAN) to synthesize perturbations and (iii) stAdv, an attack that
moves pixels spatially rather than altering their values. We perform a comparative evaluation of
these attacks with previous attacks on defended models.

Defenses
We focus on defenses that use adversarial training. Recently, this category of defenses been shown
to hold up to an especially broad range of adaptive attacks [Mądry et al., 2017]. Across the exper-
iments in this section, we test on up to three variants of each model architecture for each dataset,
using different adversarial training defenses.

1. FGSM adversarial training [Goodfellow et al., 2015], which trains models on FGSM adver-
sarial examples

2. Ensemble adversarial training [Tramèr et al., 2017a], which trains models on a combination
of benign examples and FGSM adversarial examples taken from other models

3. PGD adversarial training [Mądry et al., 2017], which trains models on PGD adversarial
examples
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For the adversarial examples used in training, we limit the perturbation to an L∞ norm of 0.3
for MNIST and 8 for CIFAR-10.

Replacing gradients with finite differences
Bhagoji et al. [2018] propose a collection of black-box attacks that use finite differences, for use in
scenarios where the attacker can query the model. They first describe attacks based on FGSM—in
Bhagoji et al.’s attacks, the gradient of the loss function is replaced with a finite difference. This
way, the attacker does not need to know the model’s weights. Instead, they only need to be able
to observe the model’s output confidence on provided inputs. The authors show how to compute
the cross-entropy loss used in FGSM from a model’s confidence outputs, as well as Carlini and
Wagner’s logit based loss. Estimating one of these gradients using symmetric finite differences
requires twice as many queries as input dimensions. Bhagoji et al. go on to demonstrate ways to
approximate the gradient with fewer queries, using methods that group dimensions together. With
these approximate gradients, they propose Single-step attacks and Iterative attacks: Single-step
attacks take one fixed-sized step according to the approximate gradient, similar to FGSM; Iterative
attacks take a sequence of smaller fixed sized steps and re-approximate the gradient at each step.
They show that their attacks approach white-box level attack success rate, outperforming transfer
based black-box attacks especially in generating targeted adversarial examples.

In this section, we evaluate the adversarial training defenses on Bhagoji et al.’s attacks.

Experimental setup

Data. For MNIST, Single-step attacks are carried out on the test set of 10,000 samples, while
Iterative attacks are carried out on 1,000 randomly chosen samples from the test set. For the
CIFAR-10, we choose 1,000 random samples from the test set for both Single-step and Iterative
attacks. In our evaluation of targeted attacks, we choose target y∗ for each sample uniformly at
random from the set of classification outputs, except the true class y of that sample.

Models. On MNIST, we trained two different CNNs, denoted Model A and Model B, with the
architectures taken from Tramèr et al. [2017a]. Model A has 2 convolutional layers followed by
a fully connected layer while Model B has only 3 convolutional layers. Both models have an
accuracy of 99.2% on the test set. For CIFAR-10, we use ResNet32 and wide ResNet34. In
the ensemble adversarial training for the MNIST models, we include adversarial examples from
two additional CNNs also from Tramèr et al. [2017a]. We denote adversarially trained models with
subscripts: adv-ε for FGSM adversarial training, adv-ens-ε for ensemble adversarial training, and
adv-iter-ε for PGD adversarial training.

Results

In this section, we focus on untargeted attacks on adversarially trained models. We find that Single-
step Gradient Estimation attacks match the success rate of their white-box counterparts even with
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query reduction.

Adversarially trained models are not robust to Gradient Estimation attacks. Our experi-
ments show that Iterative black-box attacks continue to work well even against adversarially trained
networks as seen in Table 3.3. For example, the Iterative Gradient Estimation attack using Finite
Differences with a logit loss (IFD-logit) achieves an attack success rate of 76.5% against Model
Aadv-0.3 and 96.4% against Model Aadv-ens-0.3. This attack works well for CIFAR-10 models as
well, achieving attack success rates of 100% against both ResNet32 adv-8 and ResNet32 adv-ens-8.
This reduces slightly to 98% and 91% respectively when query reduction using random grouping
is used. For both datasets, IFD-logit matches white-box attack performance. For MNIST, using
PCA for query reduction to just 8000 queries per sample, a 51% attack success rate is achieved for
both Model Aadv-0.3 and Model Aadv-ens-0.3.

Dataset White-box Gradient Estimation, FD Gradient Estimation, Query Reduction

MNIST Single-step Iterative Single-step [1568] Iterative [62720] Single-step [∼ 200] Iterative [8000]
Models FGS (logit) IFGS (logit) FD-logit IFD-logit PCA-100 RG-8 PCA-100 RG-8

Aadv-0.3 2.9 (6.0) 78.5 (3.1) 2.8 (5.9) 76.5 (3.1) 4.1 (5.8) 2.0 (5.3) 50.7 (4.2) 27.5 (2.4)
Aadv-ens-0.3 6.2 (6.2) 96.2 (2.7) 6.2 (6.3) 96.4 (2.7) 5.4 (6.2) 3.7 (6.4) 51.0 (3.9) 32.0 (2.1)
Aadv-iter-0.3 7.3 (7.5) 11.0 (3.6) 7.5 (7.2) 11.6 (3.5) 3.5 (4.0) 1.6 (4.2) 9.0 (2.8) 3.0 (1.4)

CIFAR-10 Single-step Iterative Single-step [6144] Iterative [61440] Single-step [∼ 800] Iterative [∼ 8000]
Models FGS (logit) IFGS (logit) FD-logit IFD-logit PCA-400 RG-8 PCA-400 RG-8

ResNet32 adv-8 8.9 (438.8) 100.0 (73.7) 8.5 (401.9) 100.0 (73.8) 8.0 (402.1) 7.7 (401.8) 97.0 (151.3) 98.0 (92.9)
ResNet32 adv-ens-8 13.3 (437.9) 100.0 (85.3) 12.2 (399.8) 100.0 (85.2) 15.4 (396.1) 13.8 (395.9) 82.7 (178.7) 90.8 (106.6)
ResNet32 adv-iter-8 50.4 (346.6) 57.3 (252.4) 47.5 (331.1) 54.6 (196.3) 47.5 (344.1) 38.4 (341.4) 51.3 (256.6) 42.4 (153.3)

Table 3.3: Untargeted black-box attacks for models with adversarial training: attack success
rates and average L2-squared distortion in parentheses. For Gradient Estimation attacks, the num-
ber of queries is shown in brackets. Top: MNIST, ε = 0.3. Bottom: CIFAR-10, ε = 8.

Model Aadv-iter-0.3 is robust even against iterative attacks, with the highest black-box attack
success rate achieved being 11.6%—marginally higher than the white-box attack success rate. On
CIFAR-10, the iteratively trained model has poor performance on both benign and adversarial
examples. The IFD-logit attack achieves an untargeted attack success rate of 55% on this model,
which is lower than on the other adversarially trained models, but still significant. This is in line
with Mądry et al.’s observation [2017] that iterative adversarial training needs models with large
capacity for it to be effective. This highlights a limitation of this defense, since it is not clear what
model capacity is needed, and the models we use already have a large number of parameters.

Perturbations from generative adversarial networks
Xiao et al. [2018a] propose AdvGAN, an attack that uses a generative adversarial network to
generate the perturbation that would be added to an input image. They train a generator G that takes
a benign example x that outputs a perturbation G(x) and a discriminator D that tries to determine
whether x or the perturbed image x∗ = x+G(x) is the original example. The discriminator makes
the generator favor perturbations that keep the perturbed image looking realistic, and they add two
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additional terms to the GAN loss specific to the problem of generating adversarial examples: (i)
a cross-entropy loss on the target model’s classification of the perturbed image, in order to favor
misclassification; and (ii) a hinge loss on the distortion, in order to ensure small perturbations. Xiao
et al. show that the perturbed images are adversarial and are perceptually realistic. Given the fact
that AdvGAN strives to generate adversarial instances from the underlying true data distribution, it
can essentially produce more photo-realistic adversarial perturbations compared with other attack
strategies. Thus, AdvGAN could have a higher chance to produce adversarial examples that are
resilient under different defense methods. In this section, we quantitatively evaluate this property
for AdvGAN on CIFAR-10.

Threat model. As shown in the literature, most of the current defense strategies are not robust
when attacking against them [Carlini and Wagner, 2017a]. Here we consider a weaker threat
model, where the adversary is not aware of the defenses and directly tries to attack the original
learning model, which is also the first threat model analyzed in Carlini and Wagner [2017a]. In
this case, if an adversary can transfer the attack to the adversarially trained model, it implies the
robustness of the attack strategy. Under this setting, we first apply different attack methods to
generate adversarial examples based on the original model without being aware of any defense.
Then we apply different defenses to directly defend against these adversarial instances.

Semi-whitebox attack. Xiao et al. describe AdvGAN operating in a semi-whitebox setting,
where the adversary at first can access the model architecture and parameters (in these experiments,
the original non-adversarially trained model), during which they propose to train the GAN; later
the adversary must generate adversarial examples without access to the model’s information. We
first consider this attack setting, in comparison to white-box methods which continuously have
access to the model’s information (again, the non-adversarially trained model). We evaluate the
effectiveness of these transferred attacks against the adversarially trained models. We compute the
attack success rate under a fixed distortion budget of an L∞-norm of 8 ([0, 255] scale). In Table 3.4,
we show that the attack success rate of adversarial examples generated by AdvGAN on different
models is higher than those of the fast gradient sign method (FGSM) and an optimization method
(Opt.) [Carlini and Wagner, 2017c].

Opt. in our experiments uses the low-confidence L∞ attack. Carlini and Wagner note that, in
a slightly more adaptive approach, the attacker can use a higher confidence parameter to improve
transfer attack success rates. An attacker may be able to similarly adjust AdvGAN’s training favor
high confidence adversarial examples for better transferability as well.

Black-box attack. Xiao et al. provide a black-box adaptation of their attack, based on distilling
a substitute model from the target model’s outputs on chosen inputs [Hinton et al., 2015]. They
describe a dynamic distillation procedure, where the substitute model is trained along with the gen-
erator and discriminator, using the target model’s outputs on images perturbed by the generator’s
output. For AdvGAN, we use ResNet32 as the black-box model and train a distilled model on a
disjoint set of training data. We report the attack success rate in Table 3.5. For the black-box at-
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Model Defense FGSM Opt. AdvGAN

ResNet32
Adv. 13.10% 11.90% 16.03%
Ensemble. 10.00% 10.30% 14.32%
Iter. Adv 22.80% 21.40% 29.47%

Wide ResNet34
Adv. 5.04% 7.61% 14.26%
Ensemble 4.65% 8.43% 13.94%
Iter. Adv. 14.90% 13.90% 20.75%

Table 3.4: Attack success rate of transferred adversarial examples generated by AdvGAN in semi-
whitebox setting, and other transferred attacks under defenses on CIFAR-10.

tack comparison purpose, transferability based attack is applied for FGSM and optimization based
methods (Opt.), using examples generated for wide ResNet34. Again, we report attack success
rate at a fixed distortion budget of an L∞-norm of 8. We can see that the adversarial examples gen-
erated by the black-box AdvGAN consistently achieve higher attack success rate compared with
other attack methods.

Transfer

Defense FGSM Opt. AdvGAN

Adv. 13.58% 10.80% 15.96%
Ensemble 10.49% 9.60% 12.47%
Iter. Adv. 22.96% 21.70% 24.28%

Table 3.5: Attack success rate of transferred adversarial examples generated by different black-box
adversarial strategies under defenses on CIFAR-10.

Spatial perturbations
Xiao et al. [2018b] demonstrate an attack that generates adversarial examples by spatially trans-
forming the input image. In their design, they use a displacement map that specifies, for each
pixel in the output, where in the input image to sample for the color. With a differentiable sam-
pling operation, where a weighted average of four surrounding pixels is used for floating point
coordinates, they adapt existing gradient based attack techniques to find a displacement map that
results in a misclassification. They use additional loss terms to favor small, locally smooth dis-
placements. Xiao et al. show that the perturbed images are adversarial and difficult for humans to
distinguish from the original images. We experiment with the same static adversary threat model
we used with AdvGAN, where the attacker tries to transfer adversarial examples generated for the
non-adversarially trained model.
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Model Def. FGSM Opt. stAdv

ResNet32
Adv. 13.10% 11.90% 43.36%
Ens. 10.00% 10.30% 36.89%
PGD 22.80% 21.40% 49.19%

Wide ResNet34
Adv. 5.04% 7.61% 31.66%
Ens. 4.65% 8.43% 29.56%
PGD 14.90% 13.90% 31.60%

Table 3.6: Attack success rates of adversarial examples generated by stAdv against ResNet and
wide ResNet on CIFAR-10, under defenses.

We compare with the same well known attacks as we used in the AdvGAN experiments, FGSM
and Opt. under an L∞ distortion budget of 8. The distortion of adversarial examples generated by
stAdv isn’t well measured by the L∞-norm because displacing a high contrast edge makes a large
difference in the values of the displaced pixels. However, Xiao et al. [2018b] confirmed in a human
perceptual study that stAdv’s adversarial examples are rated equally realistic to benign images.
The results are shown in Table 3.6. We observe that the three defense strategies can achieve high
performance (less than 10% attack success rate) against FGSM and Opt. attacks.

These defense methods only achieve low defense performance on stAdv, which improves the
attack success rate to more than 29% among all defense strategies. These results indicate that new
types of adversarial strategies, such as Xiao et al.’s spatial transformation based attack, may open
new directions for developing better defense systems.

Mean blur defense. We also test the adversarial examples against the 3 × 3 average pooling
restoration mechanism [Li and Li, 2016]. Table 3.7 shows the classification accuracy of recovered
images after performing 3× 3 average filter on different models (without adversarial training). We
find that the simple 3 × 3 average pooling restoration mechanism can recover the original class
from FGSM examples and improve the classification accuracy up to around 70% under a static
adversary. Carlini and Wagner have also shown that such mean blur defense strategy can defend
against adversarial examples generated by their attack and improve the model accuracy to around
80% [2017a]. From Table 3.7, we can see that the mean blur defense method can only improve the
model accuracy to around 50% on stAdv examples, which means adversarial examples generated
by stAdv are more robust compared to other attacks.

Filter ResNet32 Wide ResNet34

3× 3 Average 45.12% 50.12%

Table 3.7: Performance of blurring on AdvGAN adversarial examples on CIFAR-10: model accu-
racy on recovered images.
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We also perform a perfect knowledge adaptive attack against the mean blur defense following
the same attack strategy suggested in Carlini and Wagner [2017a], where we add the 3× 3 average
pooling layer into the original network and apply stAdv to attack the new network again. We
observe that the success rate of an adaptive attack is nearly 100%, which is consistent with Carlini
and Wagner’s findings [2017a] with their attack.

Conclusion
We study the effectiveness of promising adversarial training defenses under new attacks that have
important differences from existing additive, gradient based approaches. Our results consistently
showed that the newer attacks outperform common gradient based attacks. These attacks are not
tailored for bypassing any specific defense. The results from these experiments suggest that previ-
ous work on adversarial examples defenses are not robust to a wide range of possible attacks.
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Chapter 4

Summary and conclusion

We explore techniques for evaluating defenses against adversarial examples under an adaptive ad-
versary, focusing on cases where a mechanism complicates the formulation of a loss function for
adapting existing attacks. We demonstrate these techniques on a collection of defenses, including
representative examples of ensemble detectors and a non-deterministic recovery defense. Our ex-
periments with our adaptive attacks show four examples of defenses could be bypassed effectively.

Next, we study inputs that are close to benign examples and are misclassified, other than ad-
versarial examples generated by well known methods. We perform a brute-force analysis of the
decision boundaries in a large sample of directions around different kinds of examples, and we
experiment with three new attacks that have important differences from previous gradient based
attack methods. We observed that a promising category of defense methods, adversarial training,
performs worse on these new attacks and can reduce robustness to random noise.

The results from our experiments on these attacks and defenses suggest that our current best
defenses, particularly in image classification tasks, against adversarial examples are overly spe-
cialized for the well studied attack methods. We demonstrated that defenses which can prevent
a single attack, or prevent a common technique used in attacks, or prevent an entire domain of
possible perturbations, all can be weakened and bypassed by novel, practical attacks.

Developing effective defenses against adversarial examples is an important step towards being
able to deploy deep learning systems in more real-world use cases. We hope this dissertation sheds
light for future work in more general defenses.
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