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Abstract 

Non-Linear Stiffness Extraction & Modeling of Wineglass Disk Resonators 

by 

Alain Antón 

Master of Science in Electrical Engineering and Computer Sciences 

University of California, Berkeley 

Professor Clark T.-C. Nguyen 

Over the past three to four decades the popularity of MEMS has continually grown with the 

development of different technologies ranging from thin film bulk acoustic resonators (FBAR), to 

capacitive gap transducers, and surface acoustic wave (SAW) resonators, just to name a few. Each 

of which has their own benefits and drawbacks when considering different applications, say 

sensors or radio frequency (RF) front end components. For example, the prevalent use of FBAR 

in consumer electronics for RF wideband filters is largely due to the technology’s ability to 

suppress spurious modes, temperature stability, and high coupling coefficient (𝑘𝑡
2). However, for 

the implementation of channel select filters, low phase noise and low power oscillators, and RF 

switches (or Resoswitches), capacitive gap transducers are desirable because of their low loss, high 

quality factor characteristics. Where the quality factor of a typical FBAR device at 2GHz sits at 

around 2,000, that of a capacitive gap transducer operating at 2.97 GHz sits at about 42,900. 

However, devices with very high quality factors approach their non-linear mode of operation at 

much lower input powers (drive voltages) in comparison to their low-quality factor counter parts. 

Thus, in this report, we employ the harmonic balance method to present a robust non-linear 

analytical model to study device behavior at high input powers.  

We extract the mechanical non-linear stiffness, 𝑘𝑚3, of a 61 MHz wineglass disk (WGD) to 

be 126.53 pN/nm3 by fitting typical device through measurements to the derived model. 

Additionally, we derive an analytical approximation to the non-linear electrical stiffness, 𝑘𝑒3, by 

taking up to the fourth term in the Taylor series expansion of ∂C/ ∂r. While this approximation 

serves as a reliable calculation, to solve for the exact solution of 𝑘𝑒3, requires more 

experimentation. Lastly, we accurately predict and demonstrate the bias voltage, 𝑉𝑃𝑐𝑟𝑖𝑡
, that 

eliminates non-linear behavior (both spring softening and hardening) to be 7.9079 V for the 61 

MHz WGD in this work.  

___________________________________  

Professor Clark T.-C. Nguyen  

Research Advisor 
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1.Chapter 1: Introduction 

1.1  Background and Objective 

Over the past three to four decades the popularity of MEMS has continually grown, with the 

development of different technologies ranging from thin film bulk acoustic resonators (FBAR) [1], 

to capacitive gap transducers [2], and surface acoustic wave (SAW) resonators [3], just to name a 

few. Each of which has their own benefits and drawbacks when considering different applications, 

say sensors or radio frequency (RF) front end components. For example, the prevalent use of 

FBAR in consumer electronics for RF wideband filters is largely due to the technology’s ability to 

suppress spurious modes, temperature stability, and high coupling coefficient (𝑘𝑡
2). However, for 

the implementation of channel select filters, low phase noise and low power oscillators, and RF 

switches (or Resoswitches), capacitive gap transducers are desirable because of their low loss, high 

quality factor characteristics. Where the quality factor of a 

typical FBAR device at 2GHz sits at around 2,000 [4] and that 

of a capacitive gap transducer operating at 2.97 GHz sits at 

about 42,900 [5]. However, with very high quality factors, 

devices approach their non-linear mode of operation at much 

lower input powers (drive voltages) in comparison to their low-

quality factor counter parts. Thus, non-linearity mitigation 

techniques for high 𝑄 capacitive gap transducers would enable 

linear device operation at higher input powers. 

In this report we analyze the linear and non-linear behavior of a 61 MHz wineglass disk 

(WGD), Figure 1, fabricated using the process flow described in [6] in 2009. The structural, 

interconnect, and electrode layers are composed of doped polysilicon to achieve high and reliable 

quality factors. Note from Figure 1, that there is a large overhang connecting two of the four 

electrodes together. This connection serves as one port (input/output) and, although not pictured, 

there is a second connection between electrodes routed through the interconnect layer to serve as 

the second port (input/output). Lastly the device structure also has routing for a biasing port. These 

three ports provide enough access to the device for a proper through measurement using a network 

analyzer and a power supply.  

 
    Figure 1: SEM of 61 MHz WGD 
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1.2  Overview 

This report applies established methods [6] [7] [8] to successfully extract and model the 

nonlinear mechanical and electrical stiffnesses of a WGD resonator to instill design intuition to 

maintain linear operation. 

In Chapter 2 we cover a brief review on the basic theory and operation of a 61 MHz WGD. 

Including derivations of related equations, an analytical linear model, and extraction of non-

measurable parameters.  

In Chapter 3 we expand on the linear model derived in Chapter 2 to include non-linearities at 

high vibration amplitudes due to non-linear stiffnesses. We fit duffing measured data to this model 

and validate its accuracy to predict device behavior.  

Finally, Chapter 4 concludes this work with an overall summary of the work presented and a 

path for future research.  
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2.Chapter 2: Resonator Theory and Operation 

The governing equations in the typical mode of operation will be briefly reviewed as they have 

been derived in previous works [9] [6] [10] [11]. Figure 2 shows a perspective view of a 61 MHz 

WGD connected to all the necessary test equipment to perform a two-port measurement. 

Additionally, also included, in Figure 2 are important physical parameters such as resonator 

thickness, radius, electrode to disk gap spacing, the electrodes’ overlap angle, and axes 

(𝑡, 𝑅𝑑𝑖𝑠𝑘 , 𝑑𝑜 , 𝜙𝑘 respectively). 

 
Figure 2: Test Set Up and Physical Parameters 

2.1  Governing Equation of Motion 

Applying a direct current (DC) voltage, 𝑉𝑃, on the structure and an alternating current (AC) 

voltage, 𝑣𝑖, at the input of the device, as seen on Figure 2, generates a radial electrostatic force, 

𝐹𝑒𝑠, given by [9]: 

 

 
𝐹𝑒𝑠 =

1

2
(

𝜕𝐶𝑘

𝜕𝑟
) (𝑉𝑃 − 𝑣𝑖)

2 (1) 

 

where the electrode to disk overlap capacitance is: 
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𝐶𝑘(r) =

𝜖𝑜𝜙𝑘𝑅𝑑𝑖𝑠𝑘𝑡

𝑑𝑜 − 𝑟
   →    (

𝜕𝐶𝑘

𝜕𝑟
) =

𝐶𝑜𝑘

𝑑𝑜
(1 −

𝑟

𝑑𝑜
)

−2

  (2) 

 

where 𝐶𝑜𝑘
, and 𝜖𝑜 are respectively the static electrode to resonator capacitance at the 𝑘𝑡ℎ port and 

the permittivity of free space.  The expression in the right hand side of (2) can be expanded with a 

Taylor series into the more common form of [10]: 

 

 

(
𝜕𝐶𝑘

𝜕𝑟
) =

𝐶𝑜𝑘

𝑑𝑜
⋅ ∑

(𝑛 + 1)αn𝑟𝑛

𝑑𝑜
𝑛

𝑁

𝑛=0

 (3) 

 

where the introduction of the modification factor, 𝛼𝑛, in (3) correctly modifies the change in 

capacitance per unit displacement, (
𝜕𝐶𝑘

𝜕𝑟
), of an ideal parallel plate capacitive gap transducer to 

account for a non-constant near-resonance displacement. The medication factor for the first two 

terms of the Taylor series expansion, 𝛼0 and 𝛼1, were proven to be, 𝜅𝑘 and 𝜅𝑘
2 [6]: 

 

 
𝜅𝑘 =

1

(𝜃𝑘2 − 𝜃𝑘1)
∫

ℛ𝑚𝑜𝑑𝑒(𝑅𝑑𝑖𝑠𝑘, 𝜃)

ℛ𝑚𝑜𝑑𝑒(𝑅𝑑𝑖𝑠𝑘 , 𝜙𝑐𝑜𝑟𝑒)
⋅ 𝑑𝜃

𝜃𝑘2

𝜃𝑘1

  

 

(4) 

where 𝜃𝑘2 = −𝜃𝑘1 =
𝜙𝑘

2
= 38.5°, 𝜙𝑐𝑜𝑟𝑒 = 0° (the angle where the WGD displacement is at a 

maximum) and ℛ𝑚𝑜𝑑𝑒(𝑅𝑑𝑖𝑠𝑘 , 𝜃) alongside ℛ𝑚𝑜𝑑𝑒(𝑅𝑑𝑖𝑠𝑘 , 𝜙𝑐𝑜𝑟𝑒) are the displacements at the edge 

of the disk at angles 𝜃 (integrating over) and 𝜙𝑐𝑜𝑟𝑒 respectively. The expression for ℛ𝑚𝑜𝑑𝑒(𝑟, 𝜃) 

is in [6]. 

 
Figure 3: Device Mode Shape 
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Modeling the linear operation of the device only requires the first two terms of (3). Taking 

these two terms and plugging them into (1) brings us to: 

 

 
𝐹𝑒𝑠,𝑙𝑖𝑛 =

1

2

𝜅𝑘𝐶𝑜𝑘

𝑑𝑜
(1 +

2𝜅𝑘

𝑑𝑜
𝑟) (𝑉𝑃 − 𝑣𝑖)2 (5) 

 

With some algebraic manipulations, and leaving terms only at the frequency of 𝑣𝑖, the 

electrostatic force simplifies to: 

 

 
𝐹𝑒𝑠,𝑙𝑖𝑛 ≈ −

𝜅𝑘𝑉𝑃𝑣𝑖𝐶𝑜k

𝑑𝑜
+

𝜅𝑘
2𝑉𝑃

2𝐶𝑜𝑘

𝑑𝑜
2

𝑟 (6) 

 

the second force term has a coefficient directly proportional to the radial motion of the device. 

Remembering Hooke’s Law, we note that this coefficient is a stiffness, commonly known as the 

electrical stiffness, 𝑘𝑒1𝑘
: 

 

 
𝑘𝑒1𝑘

=
𝜅𝑘

2𝑉𝑃
2𝐶𝑜𝑘

𝑑𝑜
2

 (7) 

 

Inserting the electrostatic force (6) into 222 the spring-mass-damper equation of motion and 

moving the electrical stiffness term to the other side leads us to the following governing differential 

equation of motion for the WGD: 

 

 𝑚𝑚�̈� + 𝑏𝑚�̇� + (𝑘𝑚1 − 𝑘𝑒1)𝑟 = 𝐹𝑖𝑛 (8) 

 

where 𝐹𝑖𝑛 is the first term of (6). Values for the resonator motional mass (𝑚𝑚), damping coefficient 

(𝑏𝑚), and linear stiffness (𝑘𝑚1) are in Table I. Equations and procedures to obtain said values are 

in [6]: 

Using the phasor form of (8), and solving for the displacement amplitude magnitude as a 

function of frequency, brings us to: 

 

 
|𝑟| =

|𝐹𝑖𝑛|

[((𝑘𝑚1 − 𝑘𝑒1) − 𝑚𝑚𝜔2)
2

+ (𝑏𝜔)2]

1
2

 
(9) 
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2.2  Measured Displacement Amplitude 

We would like to compare this linear analytical model, (9), with measured data gathered from 

the set up pictured in Figure 2. To do this we must convert the 𝑆21 data gathered to the WGD’s 

displacement amplitudes. We start off by noting that the output current at port 2, 𝑖𝑜2
, is dependent 

on both the voltage and time (𝜏) varying capacitance across the 2𝑛𝑑 electrode to resonator gap and 

is therefore [6]: 

 

 
|𝑖𝑜2

| = 𝑉𝑃 (
𝜕𝐶2

𝜕𝜏
) = 𝑉𝑝 (

𝜕𝐶2

𝜕𝑟
) (

𝜕𝑟

𝜕𝜏
) = 𝜔𝜅2𝑉𝑝

𝐶𝑜2

𝑑𝑜

|𝑟|𝑚𝑒𝑎𝑠 (10) 

 

to calculate the measured current at port 2 of the network analyzer we make use of the following 

equations: 

 

 
𝑆21 = 10 log (

𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
)   →   𝑃𝑜𝑢𝑡 = 𝑃𝑖𝑛10

𝑆21
10   (11) 

 

where 𝑃𝑜𝑢𝑡 and 𝑃𝑖𝑛 are, respectively, the power measured at port two of the network analyzer and 

the power delivered by port one of the network analyzer. The delivered power, 𝑃𝑖𝑛, in its linear 

form is: 

 

 
𝑃𝑖𝑛 = 1𝑚𝑊 ⋅ 10

𝑃𝑖𝑛,𝑑𝐵𝑚
10  (12) 

 

note that 𝑃𝑖𝑛,𝑑𝐵𝑚 is manually set in the network analyzer. 

 

 
𝑃𝑜𝑢𝑡 = 𝐼𝑟𝑚𝑠

2 𝑅𝑜𝑢𝑡 =
1

2
|𝑖𝑜2

|
2

𝑅𝑙𝑜𝑎𝑑   (13) 

 

where 𝑅𝑙𝑜𝑎𝑑 is the port 2 impedance. 

Using (11) - (13) we arrive at an equation for the measured displacement amplitude as a 

function of frequency and the corresponding 𝑆21 data: 

 

 

|𝑟|𝑚𝑒𝑎𝑠 =
|𝑖𝑜2

|𝑑𝑜

𝜔𝜅2𝑉𝑝𝐶𝑜2

= √1𝑚𝑊 ⋅ 2 ⋅ 10
𝑃𝑖𝑛,𝑑𝐵𝑚+𝑆21

10

𝑅𝑜𝑢𝑡
 

𝑑𝑜

𝜔𝜅2𝑉𝑝𝐶𝑜2

 (14) 
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2.3  Electrode to Resonator Gap (𝒅𝒐) 

To be able to use either (9) or (14), we must obtain the electrode to resonator gap, 𝑑𝑜. One can 

express the resonance frequency of the WGD as: 

 

 

𝜔𝑜 = √
𝑘𝑚1 − 4𝑘𝑒1

𝑚𝑚
  (15) 

 

thus we can see that the electrical stiffness is pulling down the natural mechanical resonant 

frequency of the device as shown in previous works [9] [6] [10] [11]. Noting from (7), that the 

electrical stiffness is a function of 𝑉𝑝 and 𝑑𝑜, we can measure the resonant frequency of the WGD 

as a function of 𝑉𝑝, as seen in Figure 4. 

 
Figure 4: 𝑺𝟐𝟏 Measurements at varied bias voltages, 𝑽𝑷  

With the data gathered in Figure 4, we can plot the measured resonant frequency as a function 

of the bias voltage, 𝑉𝑃, and use the expression for the measured resonance frequency, 𝑓𝑚𝑒𝑎𝑠: 

 

 

𝑓𝑚𝑒𝑎𝑠 =
1

2𝜋

√
(𝑘𝑚 − 4 ⋅

𝜅2
2𝑉𝑃

2𝜖𝑜𝜙2𝑅𝑡
𝑑𝑜3 )

𝑚𝑚
 

(16) 
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to fit the data to the electrode to resonator gap, 𝑑𝑜, as shown in Figure 5. 

 
Figure 5: Measured and fitted resonant frequency, 𝒇𝒐, as a function of bias voltage, 𝑽𝑷 

2.4  Resonator Input Voltage (𝒗𝒊) 

As mentioned in section 0, 𝑃𝑖𝑛,𝑑𝐵𝑚 is manually set in the Network Analyzer, but this is the 

power the device under test (DUT) would receive if it was perfectly matched to the impedance of 

port one. Therefore, the network analyzer is sourcing a total power, 𝑃𝑡𝑜𝑡𝑎𝑙, of:  

 

 𝑃𝑡𝑜𝑡𝑎𝑙 = 2𝑃𝑖𝑛    →    𝑃𝑡𝑎𝑡𝑎𝑙,𝑑𝐵𝑚 = 𝑃𝑖𝑛,𝑑𝐵𝑚 + 3 𝑑𝐵 (17) 

 

such that the DUT receives the programmed power under matched conditions. Since there is an 

impedance mismatch between the WGD and the network analyzer’s port impedances, we must 

consider what the input voltage, 𝑣𝑖, is as a function of frequency to properly determine the input 

electrostatic force, 𝐹𝑖𝑛. 

The impedance model of the WGD consists of a series resonant RLC circuit, with the 

expressions of each component given by [6]: 

 

 

𝑅𝑥 =
√𝑚𝑚𝑘𝑚

𝑄 (
𝑉𝑃𝜅𝑖𝐶𝑜

𝑑𝑜
)

2         𝐿𝑥 =
𝑚𝑚

(
𝑉𝑃𝜅𝑖𝐶𝑜

𝑑𝑜
)

2         𝐶𝑥 =
(

𝑉𝑃𝜅𝑖𝐶𝑜

𝑑𝑜
)

2

𝑘𝑚 − 𝑘𝑒1
 (18) 
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Note however, that the effective electrical resistance, 𝑅𝑥, is dependent on both the quality 

factor (𝑄) and bias voltage (𝑉𝑃). Thus, at low bias voltages we observe higher quality factors, and 

decreasing quality factors as 𝑉𝑃 increases because the electrical resistance of the device rapidly 

decreases as the bias voltage increases and loading from parasitics dominate. The expression for 

the loaded quality factor, 𝑄𝐿, is: 

 

 
𝑄𝐿 = 𝑄𝑜

𝑅𝑥

𝑅𝑥 + 𝑅𝑝 + 𝑅𝑠𝑜𝑢𝑟𝑐𝑒 + 𝑅𝑙𝑜𝑎𝑑
= 𝑄𝑜

𝑅𝑥

𝑅𝑥 + 𝑅𝑦
  (19) 

 

where 𝑄𝑜, 𝑅𝑝, and 𝑅𝑠𝑜𝑢𝑟𝑐𝑒, are the intrinsic quality factor, total parasitic resistance, and source 

(port 1) resistance. From (19), we can observe a key detail, the quality factors observed in 

measurements are the loaded quality factors, hence the resistance calculated by using (18) is 

actually the sum of all resistances in series with the device (i.e. 𝑅𝑥 + 𝑅𝑦). Since the calculated 

effective resistance includes parasitics (input and output ports as well), to solve for the input 

voltage we must first determine the parasitic resistances.  

To solve for the parasitic resistance, we must plot the loaded quality factor as a function of 

effective resistance (i.e. bias voltage) and fit the data to (19) as shown in Figure 6. 

 
Figure 6: Measured and fitted quality factors, 𝑸, as a function of total resistance 𝑹𝒕𝒐𝒕𝒂𝒍 
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The device resistance can be calculated now that we have obtained the parasitic resistances. 

Remembering that (18) provides the total series resistance 𝑅𝑡𝑜𝑡𝑎𝑙 (i.e. 𝑅𝑥 + 𝑅𝑦), we can obtain 𝑅𝑥 

by simply subtracting 𝑅𝑦, which we have all the values for. We now assume the WGD is perfectly 

symmetric (intended by design) and place half the parasitic resistances before the input and the 

other half after the output. In doing so, we can quickly analyze the circuit and retrieve the 

amplitude of the input voltage as: 

 

 

|𝑣𝑖𝑛| = 2√2𝑃𝑖𝑛𝑅𝑠𝑜𝑢𝑟𝑐𝑒 (
(𝑅𝑥 + 𝑅𝑙𝑜𝑎𝑑 +

1
2 𝑅𝑝)

(𝑅𝑥 + 𝑅𝑠𝑜𝑢𝑟𝑐𝑒 + 𝑅𝑙𝑜𝑎𝑑 + 𝑅𝑝)
)  (20) 

 

2.5  Linear Analytical Model vs. Measurement 

Now that all necessary parameters have been extracted and our model is complete, we compare 

the measured response (14),  and the analytical linear model (9), of the resonator. Figure 7 shows 

the measured response and the analytical response using the adjusted values provided in  

 
Figure 7: Measured and fitted vibration spectrum in the linear mode of operation 

The linear model matches the measured data well even though it does not include other 

parasitic feedthrough paths and capacitances. A more involved circuit model demonstrated in [6] 

adequately models all the different parasitics present in the device.  



 

11 

 

 

 

 

Table I: WGD Design and Performance Summary 

 Parameter 
Design 

Source 
Design Measured Adjusted Unit 

M
at

er
ia

l 

C
o

n
st

an
ts

 Young’s Modulus, 𝐸 Process 158 - 158 GPa 

Density, 𝜌 Process 2300 - 2300 kg/m3 

Frequency Material Constant, 𝐾𝑚𝑎𝑡 [6] 0.476 - 0.476 - 

W
G

D
 P

ar
am

et
er

s 

Mechanical Resonant Frequency, 𝑓𝑛𝑜𝑚 Spec. 60.06 60.41 - MHz 

WGD Radius, 𝑅𝑑𝑖𝑠𝑘 Layout 32 31.82 31.82 μm 

Structural Material Thickness, 𝑡 Process 3 3 3 μm 

Electrode Span Angle, 𝜙 Layout 77.2 77.2 77.2 ° 

Resonant Quality Factor, 𝑄 Process 75,000 72,598 72,598 - 

Dynamic Mass at 𝜙𝑐𝑜𝑟𝑒, 𝑚𝑚 [6] 8.04 - 8.08 ng 

Dynamic Stiffness at 𝜙𝑐𝑜𝑟𝑒, 𝑘𝑚 [6] 1.15 - 1.16 mN/nm 

Dynamic Damping at 𝜙𝑐𝑜𝑟𝑒, 𝑏𝑚 [6] 41.8 - 42.3 μg/s 

Electrical Stiffness, 𝑘𝑒1 (7) 394 - 1.35 μN/nm 

Electrode to Resonator Gap, 𝑑𝑜 Process 70 - 73.6 nm 

L
u

m
p

ed
 C

ir
cu

it
 

E
le

m
en

ts
 

Total Parasitic Resistance, 𝑅𝑝 Process 0 600 600 Ω 

Resonator Effective Resistance, 𝑅𝑥 (18) 6.5 - 7.97 kΩ 

Resonator Effective Capacitance, 𝐶𝑥 (18) 5.63 - 4.56 aF 

Resonator Effective Inductance, 𝐿𝑥 (18) 1.25 - 1.52 H 

T
es

t 
E

q
u

ip
m

en
t 

P
ar

am
et

er
s 

DC Bias Voltage, 𝑉𝑝 Test Setup 15 15 15 V 

NA Power 𝑃𝑖𝑛,𝑑𝐵𝑚 Test Setup -40 -40 -40 dBm 

NA Port 1 Resistance, 𝑅𝑠𝑜𝑢𝑟𝑐𝑒 Test Setup 50 50 50 Ω 

NA Port 2 Resistance, 𝑅𝑙𝑜𝑎𝑑 Test Setup 50 50 50 Ω 

∗Boldface values indicate adjustment to match measured data  
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3.Chapter 3: Duffing Theory and Operation 

Non-linear behavior in the WGD at high vibration amplitudes deviates the operation of the 

device from the linear model derived in Section 2.1. The forced Duffing equation: 

 

 𝑚𝑚�̈� + 𝑏𝑚�̇� + 𝑘1𝑟 + 𝑘2𝑟2 + 𝑘3𝑟3 = 𝐹𝑖𝑛  (21) 

 

describes the WGD non-linear operation analogously to how (9) describes the linear mode of 

operation. There have been various demonstrations of methods to arrive at an analytical solution 

to (21). These methods include, but are not limited to, the multiple scales method [12], averaging 

method [13], homotopy analysis method (HAM)  [14] and the harmonic balance method [8] [7]. 

The first two methods are known to produce accurate solutions for weakly non-linear problems, 

while the latter two serve as more suitable methods for strongly non-linear problems  [14] . 

Therefore, we employ the harmonic balance method due to its simplicity, frequency response 

solution, and ability to accurately model strongly non-linear problems. 

3.1  Harmonic Balance Frequency Response Solution 

We start off by assuming a first order sinusoidal solution to (21) in the form of: 

 

 𝑟 = 𝑥 cos(𝜔𝑡) + 𝑦 sin(𝜔𝑡) = 𝑟 cos(𝜔𝑡 + 𝜙)  (22) 

 

where  

 

 𝑟2 = 𝑥2 + 𝑦2    ,    𝜙 = tan−1 (
𝑦

𝑥
) (23) 

 

From here we plug (22) into (21) and expand the nonlinear terms. Recall, that to generate an 

input electrostatic force, 𝐹𝑖𝑛, a sinusoidal input voltage, 𝑣𝑖𝑛, at frequency 𝜔 is necessary. 

Therefore, we are only interested in observing the frequency response at 𝜔 and consequently 

ignore higher harmonics and terms at DC. In doing so, we observe that the cubic term generates a 

harmonic at 3𝜔 as well as a term at 𝜔. Therefore, the third order nonlinear stiffness, 𝑘3, contributes 

one term to the frequency response of the device. However, the quadratic term generates a 

harmonic at 2𝜔 and a term at DC and thus does not contribute anything at 𝜔. 

After expanding and truncating the terms to only those at 𝜔, we group the coefficients of cosine 

and the sine and arrive at: 
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cos(𝜔𝑡) [−𝑚𝑥𝜔2 + 𝑏𝑚𝑦𝜔 + 𝑘1𝑥 +

3

4
𝑘3𝑥3 +

3

4
𝑘3𝑥𝑦2 − 𝐹𝑖𝑛]

+ sin(𝜔𝑡) [−𝑚𝑦𝜔2 − 𝑏𝑚𝑥𝜔 + 𝑘1𝑦 +
3

4
𝑘3𝑦3 +

3

4
𝑘3𝑦𝑥2] = 0  

(24) 

 

note that 𝐹𝑖𝑛 driven as a cosine or a sine and it will not change the result. To satisfy (24) the 

coefficients of the cosine and sine must both be equal to zero and thus bring us to the two 

conditions: 

 

 
−𝑚𝑥𝜔2 + 𝑏𝑚𝑦𝜔 + 𝑘1𝑥 +

3

4
𝑘3𝑥3 +

3

4
𝑘3𝑥𝑦2 = 𝐹𝑖𝑛 (25) 

 

 
−𝑚𝑦𝜔2 − 𝑏𝑚𝑥𝜔 + 𝑘1𝑦 +

3

4
𝑘3𝑦3 +

3

4
𝑘3𝑦𝑥2 = 0  (26) 

 

squaring (25) and (26) then adding them together simplifies to: 

 

 1

16
(𝑥2 + 𝑦2)[(3𝑘3(𝑥2 + 𝑦2) + 4𝑘1 − 4𝑚𝑚𝜔2)2 + 16(𝑏𝑚𝜔)2] = 𝐹𝑖𝑛

2   (27) 

 

plugging 𝑟 from (23) into (27) and algebraically simplifying concludes in: 

 

 
𝑟2 [(

3

4
𝑘3𝑟2 + 𝑘1 − 𝑚𝑚𝜔2)

2

+ (𝑏𝑚𝜔)2] = 𝐹𝑖𝑛
2  (28) 

 

Two details to note, if 𝑘1 − 𝑚𝜔2 ≫
3

4
𝑘3𝑟2 (i.e. at small vibration amplitudes) we can solve 

for |𝑟| and (28) reduces to (9). Second, the linear and cubic stiffnesses, 𝑘1 and 𝑘3 respectively, 

include the mechanical an electrical stiffnesses, and thus: 

 

 𝑘1 = 𝑘𝑚1 − 𝑘𝑒1      𝑘3 = 𝑘𝑚3 − 𝑘𝑒3 (29) 

 

where 𝑘𝑚1 is in [6] and 𝑘𝑒1 is given by (7). There are currently no analytical expressions for the 

WGD’s nonlinear mechanical stiffness 𝑘𝑚3, but we will develop some intuition behind the 

nonlinear electrical stiffness 𝑘𝑒3 in Section 3.3 and discuss a method in how to extract 𝑘𝑚3 from 

data. 
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3.2  Fitting Measurement to Duffing Model 

As of this writing, there is no accurate analytical expression for the non-linear stiffnesses of 

the WGD. Hence, we curve fit measured data, using (14), to the duffing analytical model (28) to 

extract the effective non-linear stiffness 𝑘3. Doing so, produces the plot shown in Figure 8Error! 

Reference source not found.. Note that more examples of non-linear fits are in demonstrated in 

Appendix A. 

 
Figure 8: Non-linear measured data and model (𝑽𝑷 = 15 V and 𝑷𝒊𝒏,𝒅𝑩𝒎 = −𝟏𝟒 𝐝𝐁𝐦) 

A few details to note, to generate the measured trace in Figure 8 we take two measurements: 

the first, by sweeping from low to high frequency and second, by sweeping from high to low 

frequency. This allows us to isolate each unstable point (blue circles in figure 8) and show the 

region of instability by combining the measurement data from both sweeps. A recent work [15], 

demonstrates the measurement of what we observe here as the instability region with a closed loop 

system by taking advantage of the one to one relationship between phase and both frequency and 

amplitude. This relationship allows the authors to perfectly recreate the amplitude-to-frequency 

spectrum without the instability region, which therefore implies their perspective resonator is 

stable within that range of frequencies. However, for the purpose of this work, extracting and 

plotting the unstable points provides enough information to test our model and extract 𝑘3. 

Additionally, the effective 𝑄 to properly match the measured data to the model is smaller than that 

of the device operating at lower input powers, which in theory should be the same. We cannot 

measure the 𝑄 of the device in the duffing mode of operation since part of the -3dB bandwidth 
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falls within the region of instability. Therefore, we cannot compare the measured 𝑄 to that of the 

fitted value. Appendix A includes more demonstrations of results.   

Now that we have a reliable model to extract the total nonlinear stiffness, we delve into the 

methodology to extract the nonlinear electrical and mechanical stiffness. 

3.3  Non-Linear Electrical and Mechanical Stiffnesses (𝒌𝒆𝟑, 𝒌𝒎𝟑) 

Recall that the linear electrical stiffness, 𝑘𝑒1, sprung out of the Taylor series expansion of 
𝜕𝐶

𝜕𝑟
 

(3). Therefore, we can express up to the 𝑚𝑡ℎ order electrical stiffness by taking up to the (𝑚 − 1) 

term of (3). Doing so, generates the following electrostatic force: 

 

 
𝐹𝑒𝑠,𝑛𝑜𝑛−𝑙𝑖𝑛 =

1

2

𝜅𝑘𝐶𝑜𝑘

𝑑𝑜
(1 +

2𝜅𝑘

𝑑𝑜
𝑟 +

3𝛼3

𝑑𝑜
2

𝑟2 +
4𝛼4

𝑑𝑜
3 𝑟3) (𝑉𝑃 − 𝑣𝑖)2 (30) 

 

With some algebraic manipulations, and leaving terms only at the frequency of 𝑣𝑖, the 

electrostatic force simplifies to: 

 

 
𝐹𝑒𝑠,𝑛𝑜𝑛−𝑙𝑖𝑛 ≈ −

𝜅𝑘𝑣𝑖𝑉𝑃𝐶𝑜k

𝑑𝑜
+

𝜅𝑘
2𝑉𝑃

2𝐶𝑜𝑘

𝑑𝑜
2

𝑟 −
6𝛼3V𝑃𝑣𝑖𝐶𝑜𝑘

𝑑𝑜
3 𝑟2 +

4α4V𝑃
2𝐶𝑜𝑘

𝑑𝑜
4

𝑟3 (31) 

 

The fourth term of (31) has a coefficient directly proportional to the third power of the radial 

motion of the device. Thus, the expression for the non-linear electrical stiffness, 𝑘𝑒3: 

 

 
𝑘𝑒3𝑘

=
4𝛼4V𝑃

2𝐶𝑜𝑘

𝑑𝑜
4

  (32) 

 

and since the second order non-linearity drops off in the derivation of (28) we can ignore the 

second order nonlinear stiffness 𝑘𝑒2: 

 

 
 𝑘𝑒2𝑘

=
6𝛼3V𝑃𝑣𝑖𝐶𝑜𝑘

𝑑𝑜
3  (33) 

 

To test the accuracy of (32), we extract the nonlinear stiffness as a function of the bias voltage 

and fit the data to: 

 

 
𝑘3 = 𝑘𝑚3 − 𝛼4

16V𝑃
2𝐶o

𝑑𝑜
4

  (34) 
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as shown in Figure 9 where 𝛼4 and 𝑘𝑚3 serve as the fitting parameters. Note that we account for 

every single port’s contribution to 𝑘𝑒3 in (34). 

 
Figure 9: Non-Linear stiffness, 𝒌𝟑, as a function of bias voltage, 𝑽𝑷 

Interestingly, the value of 𝛼4 (0.2454) is approximately that of 𝜅𝑘
4 (0.2744). Which, strictly by 

observation, can lead us to believe the modification coefficients, 𝛼𝑛, introduced in (3) can take the 

form of 𝜅𝑘
𝑛+1. Providing motivation for future research into the validity of the claim: 

 

  𝛼𝑛 = 𝜅𝑘
𝑛+1 (35) 

 

Additionally, we can see from Figure 9 that the device experiences regions of spring stiffening 

(𝑘3 > 0) and spring softening (𝑘3 < 0) where the resonant peak bends toward the higher and lower 

frequencies respectively (Figure 10). We solve for the critical bias voltage, 𝑉𝑃𝑐𝑟𝑖𝑡
, that divides the 

two regions and eliminates non-linearities in the device by setting 𝑘3 to zero and solving for 𝑉𝑃. 

The solution gives us: 

 

 

 𝑉𝑃𝑐𝑟𝑖𝑡
=

1

4
𝑑𝑜

2√
𝑘𝑚3

𝛼4𝐶𝑜
  (36) 
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Once we plug in the different parameters 𝑉𝑃𝑐𝑟𝑖𝑡
 ends up being around 8 V for our case. Note that 

𝑉𝑃𝑐𝑟𝑖𝑡
 is not dependent on the input power, therefore the device will operate linearly at all input 

powers if biased to 𝑉𝑃𝑐𝑟𝑖𝑡
. Of course, this is true given the device is not operating near breakdown 

(i.e. when the resonator contacts the electrodes). Hence (36) gives insight as to what design 

parameters serve as knobs to control the bias point of the device and thus maintain linearity. All 

of which, except for 𝑘𝑚3 are readily available for the designer. Even though we don’t have an 

analytical expression for 𝑘𝑚3, we intuitively know it is dependent on the geometry of the device, 

adding motivation for future research in discovering an analytical form for 𝑘𝑚3. 

 
Figure 10: Normalized vibration amplitude with spring softening and nullification 

Plotting the normalized displacement amplitude as a function of the fractional change in 

frequency from resonance allows us to isolate the softening and nullification effect of varying 𝑉𝑃. 

In doing so, we remove the frequency shift and effective electrical resistance change due to the 

variation in 𝑉𝑃. 
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4.Chapter 4: Conclusion 

4.1  Achievements 

The work presented in this report provides a reliable method to extract mechanical and 

electrical non-linear stiffnesses from typical device through measurements while simultaneously 

accurately modeling the non-linear vibrational response of the device. With the derived model we 

can easily predict how to nullify the overall non-linear stiffness by making use of the non-linear 

electrical stiffness’ dependence on the bias voltage. Consequently, allowing design parameters to 

control the linearity of the device at high input powers. Specifically: 

1. Derived an analytical model for the non-linear mode of operation in a WGD using the 

Harmonic Balance Method. Arriving at an accurate expression to predict the behavior of 

the device.  

2. Derived and verified experimentally an expression for the non-linear electrical stiffness of 

a WGD. Also, extracted the mechanical stiffness of the WGD by fitting to said derived 

models. 

3. Derived and verified experimentally an expression for the critical bias voltage that can 

nullify the non-linear effects caused by driving the device at high input powers. 

4. Discovered the degradation of quality factor when the device is duffing, although theory 

suggests it should remain constant. 

Overall, the models and expressions provided in this report can be incorporated into circuit 

models, such as in [6], to study how the duffing mode of operation effects the behavior of 

oscillators, channel select filters, and super-regenerative receivers (to name a few) that are 

composed of WGDs. 

4.2  Future Research Directions 

Although we have shown a derivation for a comprehensive model for the non-linear vibration 

of a WGD, we still cannot solve for the non-linear mechanical stiffness analytically. Thus, we 

should direct future efforts toward experimentation and finite element simulation to generate 

theory to predict the value of 𝑘𝑚3 without having to extract it from data. 

Additionally, one can verify the unsupported claim of (35) by measuring other WGDs designed 

with different electrode coverage angles to determine 𝛼4. If the trend continues to follow (35), 

more suitable theory , similar to that of [6], can be followed to determine the analytical expression.   
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5.Appendix A: Non-Linear Model Curve Fits 

 

Figure 11: Non-linear measured data and model (𝑽𝑷 = 9 V and 𝑷𝒊𝒏,𝒅𝑩𝒎 = −𝟏𝟎 𝐝𝐁𝐦) 

 
Figure 12: Non-linear measured data and model (𝑽𝑷 = 13 V and 𝑷𝒊𝒏,𝒅𝑩𝒎 = −𝟏𝟎 𝐝𝐁𝐦) 
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Figure 13: Non-linear measured data and model (𝑽𝑷 = 14 V and 𝑷𝒊𝒏,𝒅𝑩𝒎 = −𝟏𝟒 𝐝𝐁𝐦) 

 

Figure 14: Non-linear measured data and model (𝑽𝑷 = 10 V and 𝑷𝒊𝒏,𝒅𝑩𝒎 = −𝟏𝟒 𝐝𝐁𝐦) 
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