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Abstract

Optimization Everywhere: Convex, Combinatorial, and Economic

By

Chiu Wai Wong

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Prasad Raghavendra, Chair

In this thesis we study fundamental problems that arise in optimization and its ap-
plications. We present provably efficient algorithms that achieve better running times or
approximation guarantees than previously known. Our method draws on the toolkit from
convex and combinatorial optimization as well as economics. By intertwining techniques
from these disciplines, we are able to make progress on multiple old and new problems, some
of which have stood open for many years. Main results of this thesis include the following:

• Convex Programming: We show how to solve convex programming with an ex-
pected O(n log(nR/ε)) evaluations of the separation oracle and additional time

O(n3 logO(1)(nR/ε)). This matches the oracle complexity and improves upon the
O(nω+1 log(nR/ε)) additional time of the previous fastest algorithm achieved over 25
years ago for the current value of the matrix multiplication constant ω < 2.373 when
R/ε = O(poly(n)).

• Submodular Function Minimization: We provide new weakly and strongly poly-
nomial time algorithms with a running time of O(n2 log nM ·EO + n3 logO(1) nM) and
O(n3 log2 n · EO + n4 logO(1) n), improving upon the previous best of O((n4 · EO +
n5) logM) and O(n5 · EO + n6) respectively. We also provide the first subquadratic
time algorithm for computing an approximately optimal solution.

• Matroid Intersection: We provide new algorithms with a running time of

O(nrTrank log n log(nM)+n3 logO(1) nM) andO(n2Tind log(nM)+n3 logO(1) nM), achiev-
ing the first quadratic bound on the query complexity for the independence and rank
oracles. In the unweighted case, this is the first improvement since 1986 for indepen-
dence oracle.

• Submodular Flow: We obtain a faster weakly polynomial running time ofO(n2 log(nCU)·
EO +n3 logO(1)(nCU)), improving upon the previous best of O(mn5 log(nU) ·EO) and
O (n4hmin {logC, logU}) from 15 years ago by a factor of Õ(n4).
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• Semidefinite Programming: We obtain a running time of Õ(n(n2 + mω + S)),
improving upon the previous best of Õ(n(nω +mω + S)) for the regime S is small.

• Market Equilibrium: We present the first polynomial time algorithm for computing
market equilibrium in an economy with indivisible goods and general buyer valuations
having only access to an aggregate demand oracle.

• Vertex Cover with Hard Capacity: We give a f -approximation algorithm for
the minimum unweighted Vertex Cover problem with Hard Capacity constraints on f -
hypergraphs This improves over the previous 2f -approximation and is the best possible
assuming the unique game conjecture.

• Network Design for Effective Resistance: We initiate the study of network design
for s-t effective resistance. Among other results we present a constant factor approxi-
mation by applying classic techniques to a convex quadratic programming relaxation.
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20 Walrasian Equilibrium for Gross Substitutes in Õ(nTAD + n3) 133
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21.1 Faster Algorithm via regularization . . . . . . . . . . . . . . . . . . . . . . . 137

22 Robust Walrasian Prices, Market Coordination and Walrasian allocations140
22.1 Two combinatorial lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
22.2 Robust Walrasian Prices and Market Coordination . . . . . . . . . . . . . . 141
22.3 Computing Optimal Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 144

23 Combinatorial approach to Walrasian Equilibrium for Gross Substitutes 145
23.1 The assignment problem for valuated matroids . . . . . . . . . . . . . . . . . 146
23.2 Gross substitutes welfare problem in Õ(mn+ n3) time . . . . . . . . . . . . 147
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1 Introduction

Over the century optimization has established itself as an important branch of mathematics
with relevance to engineering as well as natural and social sciences. As the invisible backbone
behind numerous applications from airline scheduling to internet commerce, optimization
has continued to evolve its role thanks to developments in both the basic theory and the
application to other domains. Due to our greater than ever demand for efficiency in terms of
time, energy and resources, sustained research efforts on optimization are imperative to serve
our present and future needs. We envision a future with optimization being an omnipresent
technology.

In this thesis we study various fundamental problems in optimization, both combinato-
rial and continuous, and develop new provably efficient algorithms for them. An overarching
theme of our works is the interplay between convex optimization and problems from com-
binatorics and economics. New and improved algorithms are obtained by synthesizing ideas
and tools from these separate research areas in nontrivial manners. While this thesis is
hardly the first to explore their connections, (some of) our approaches substantially devi-
ate from the traditional thinking on the role of convex optimization in these areas. In the
broader context, our results add to the recent growing body of works that establish convex
optimization as a core tool in algorithm design.

In this Chapter, we present our new results and explain their significance in their respec-
tive research areas. To this end we describe how convex optimization is classically employed
in Section 1.1. In Section 1.2, we provide a high-level summary of our results, obtained
partly by applying convex optimization differently from before. We end the Chapter with a
roadmap how this thesis is structured.

1.1 Overview

We assume general familiarity with optimization, the study of maximization or minimization
problems under certain given constraints.

1.1.1 Opening the black box of convex optimization

The first half of this thesis is on the application of convex optimization in other research
areas, primarily for designing fast algorithms.

Convex optimization is historically used in algorithm design via a black-box manner:

1. Formulate the given problem as a special case of convex minimization

2. Apply convex optimization algorithm to solve the problem

While black-box applications abstract the technical details and make those algorithms acces-
sible to more researchers, much of the intricacies of convex optimization are sacrificed in the
abstraction. As is common in mathematics, very often textbook theorems are too general to
address all scenarios adequately. Faster algorithms can be expected by tailor-making those
general results in view of the problem-specific structures, i.e. opening the black box. To
execute this agenda, familiarity with both convex optimization and the application domain
is needed in order to recognize and combine the necessary ingredients from both disciplines.

1



A prominent example is the recent nearly linear algorithms for solving approximate max
flow [235, 148]. The algorithms, which massively outperform any black-box application of
iterative methods, intertwine tools from structural graph theory and iterative methods in
convex optimization. Indeed, since the celebrated result of Spielman and Teng on Laplacian
solvers, a great body of works have been devoted to adapt the power of convex optimization
for cut and flow problems in graphs.

We expand the reach of convex optimization to other fundamental problems such as
submodular function minimization and market equilibrium computation. We will see that
existing tools in convex optimization have to be extended and strengthened before they can
be applied to our problems. This is in fact a two-way process: not only did optimization
enable us to make progress in other fields, this effort has also contributed back positively by
driving advances in convex optimization (e.g. cutting plane methods).

We use the cutting plane methods as an example to explain our philosophy. The class
of cutting plane methods include the famous ellipsoid method as a special case. For a given
problem, cutting plane methods are classically employed only to show the existence of poly-
nomial time algorithms due to the impression that this class of methods have poor running
times both in theory and in practice. We challenge this conventional wisdom by exhibiting
several problems where cutting plane methods, coupled with appropriate modifications (i.e.
opening the black box) and problem-specific properties, produce the fastest known algo-
rithms for these problems. The interplay between cutting plane methods (along with other
techniques in continuous optimization) and the problem-specific properties are so intertwined
that a black box application of the original guarantee of the cutting plane method would not
yield the same result.

1.1.2 Rounding linear and convex programs

The second half of this thesis studies approximation algorithms for NP-hard problems based
on rounding their linear or convex programming relaxation.

The use of linear or convex programming relaxation is one of the most popular paradigms
for designing approximation algorithms [259, 253]. It consists of two ingredients:

• a linear or convex relaxation of our problem whose optimal fractional solution can be
computed in polynomial time via general convex optimization algorithms

• a rounding algorithm which converts the fractional solution to an integral solution

A wide variety of techniques and results have been developed for approximation algorithms
in the literature. In this thesis we study two NP-hard combinatorial problems and present
companion approximation algorithms that add new twists to this diverse toolkit. Both of
them are graph optimization problems with a capacity constraint. More specifically:

Our algorithm for the minimum vertex cover with capacity problem employs iterative
rounding, which incrementally constructs an integral solution by repeatedly rounding certain
variables and solving the updated linear relaxation until all variables are integral. This is in
contrast to previous works which solve only the relaxations once or twice.

Our algorithm for the minimum effective resistance with capacity problem involves a
convex quadratic program relaxation and a corresponding rounding algorithm that heavily

2



leverages the optimality conditions of the relaxation. To the best of our knowledge this is
the first time the optimality conditions of a convex quadratic program play a major role in
designing approximation algorithms for graph problems.

1.2 New results and thesis organization

Chapter 2: Basic concepts and problems

In Chapter 2 we give a summary of the problems addressed in this thesis along with a crash
course on the technical background.

Part I-V: Fast Algorithms via Convex Optimization

Part I: Cutting plane methods

We improve upon the running time for finding a point in a convex set given a separation
oracle. In particular, given a separation oracle for a convex set K ⊂ Rn that is contained
in a box of radius R we show how to either compute a point in K or prove that K does
not contain a ball of radius ε using an expected O(n log(nR/ε)) evaluations of the oracle
and additional time O(n3 logO(1)(nR/ε)). This matches the oracle complexity and improves
upon the O(nω+1 log(nR/ε)) additional time of the previous fastest algorithm achieved over
25 years ago by Vaidya [248] for the current value of the matrix multiplication constant
ω < 2.373 [258, 97] when R/ε = O(poly(n)).

Using a mix of standard reductions and new techniques we show how our algorithm
can be used to improve the running time for solving classic problems in continuous and
combinatorial optimization in the next three Parts.

This Part is based on joint works with Yin Tat Lee and Aaron Sidford.

Part II: Convex minimization and the intersection problem

We explain how the cutting plane method can be applied to solve convex minimization and
the intersection problem.

The intersection problem involves the optimization over the intersection of two convex
bodies provided that we can do so for each of them. Our algorithm is faster than previous and
inspired by regularization, a classic optimization technique. In the special case of matroid
intersection, we achieve an oracle complexity of Õ(nr), an improvement over the previous

Õ(nr1.5) from 1986 [51]. Additional applications include submodular flow and semidefinite
programming.

This Part is based on joint works with Yin Tat Lee and Aaron Sidford.

Part III: Submodular function minimization (SFM)

Submodualr minimization is the problem of minimizing submodular functions, which are
the discrete analogue to convex functions. Suppose n is the size of the ground set, M is the
maximum absolute value of function values and EO is the time for function evaluation.
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Our weakly and strongly polynomial time algorithms have a running time of O(n2 log nM ·
EO+n3 logO(1) nM) and O(n3 log2 n ·EO+n4 logO(1) n), improving upon the previous best of
O((n4 ·EO+n5) logM) and O(n5 ·EO+n6) respectively. At the technical level our algorithms
rely on the interplay between a new duality guarantee of the cutting plane method as well
as classic combinatorial properties of submodular functions.

This Part is based on joint works with Yin Tat Lee and Aaron Sidford.

Part IV: Market equilibrium computation

We present the first polynomial time algorithm for computing Walrasian equilibrium in an
economy with indivisible goods and general buyer valuations having only access to an ag-
gregate demand oracle, i.e., an oracle that given prices on all goods, returns the aggregated
demand over the entire population of buyers. For the important special case of gross sub-
stitute valuations, our algorithm queries the aggregate demand oracle Õ(n) times and takes

Õ(n3) time, where n is the number of goods. At the heart of our solution is a method for
exactly minimizing certain convex functions which cannot be evaluated but for which the
subgradients can be computed.

We also give the fastest known algorithm for computing Walrasian equilibrium for gross
substitute valuations in the value oracle model. Our algorithm has running time Õ((mn +
n3)TV ) where TV is the cost of querying the value oracle. A key technical ingredient is to
regularize a convex programming formulation of the problem in a way that subgradients are
cheap to compute. En route, we give necessary and sufficient conditions for the existence
of robust Walrasian prices, i.e., prices for which each agent has a unique demanded bundle
and the demanded bundles clear the market. When such prices exist, the market can be
perfectly coordinated by solely using prices.

This Part is based on joint works with Renato Paes Leme.

Part V: Subquadratic submodular function minimization (SFM)

Having explored the cutting plane method for SFM, in this Part we turn to the application
of first-order methods to SFM.

We present subquadratic time SFM algorithms. For integer-valued submodular functions,
we give an SFM algorithm which runs in O(nM3 log n · EO) time giving the first nearly
linear time algorithm in any known regime. For real-valued submodular functions with
range in [−1, 1], we give an algorithm which in Õ(n5/3 · EO/ε2) time returns an ε-additive
approximate solution. At the heart of it, our algorithms are projected stochastic subgradient
descent methods on the Lovasz extension of submodular functions where we crucially exploit
submodularity and data structures to obtain fast, i.e. sublinear time, subgradient updates.

This Part is based on joint works with Deeparnab Chakrabarty, Yin Tat Lee and Aaron
Sidford.

Part VI-VII: Approximation Algorithms via Linear and Convex Relaxations
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Part VI: Vertex cover with hard capacity

We give a f -approximation algorithm for the minimum unweighted Vertex Cover problem with

Hard Capacity constraints (VCHC) on f -hypergraphs. This problem generalizes standard vertex

cover for which the best known approximation ratio is also f and cannot be improved assuming
the unique game conjecture. Our result is therefore essentially the best possible. This
improves over the previous 2.155 (for f = 2) and 2f approximation algorithms by Cheung,
Goemans and Wong.

At the heart of our approach is to apply iterative rounding to a natural LP relaxation that
is slightly different from prior works which used (non-iterative) rounding. Our algorithm is
significantly simpler and offers an intuitive explanation why f -approximation can be achieved
for VCHC.

No coauthor for this Part.

Part VII: Minimum effective resistance with capacity

We consider a new problem of designing a network with small s-t effective resistance. In this
problem, we are given an undirected graph G = (V,E) where each edge e has a cost ce and
a resistance re, two designated vertices s, t ∈ V , and a cost budget k. Our goal is to choose
a subgraph to minimize the s-t effective resistance, subject to the constraint that the total
cost in the subgraph is at most k. This problem is an interpolation between the shortest
path problem and the minimum cost flow problem and has applications in electrical network
design.

We present several algorithmic and hardness results for this problem. On the hardness
side, we show that the problem is NP-hard, and is hard to approximate within a factor
smaller than two assuming the small-set expansion conjecture. On the algorithmic side, we
analyze a convex programming relaxation of the problem, and design a constant factor ap-
proximation algorithm when every edge has the same cost and the same resistance. The key
of the rounding algorithm is a randomized path-rounding procedure based on the optimality
conditions and a flow decomposition of the fractional solution.

This Part is based on joint works with Pak Hay Chan, Lap Chi Lau, Aaron Schild and
Hong Zhou. My contribution includes formulating the problem and being the main architect
behind an earlier O(log2n) approximation cycle-pushing algorithm which was later improved
to a constant factor approximation by my coauthors Lap Chi Lau and Hong Zhou.

2 Basic Concepts and Problems

We introduce the concepts and problems studied throughout this thesis. This chapter is to
give readers a glimpse into the flavor of this thesis; more in-depth discussions are deferred
to later chapters.

2.1 General

Basics: We use nnz(~x) or nnz(A) to denote the number of nonzero entries in a vector or a
matrix respectively. Frequently, for ~x ∈ Rd we let X ∈ Rd×d denote diag(~x), the diagonal
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matrix such that Xii = xi. For a symmetric matrix, M, we let diag(M) denote the vector

corresponding to the diagonal entries of M, and for a vector, ~x, we let ‖~x‖M
def
=
√
~xTM~x.

Running Times : We typically use XO to denote the running time for invoking the or-
acle, where X depends on the type of oracle, e.g., SO typically denotes the running time of
a separation oracle, EO denotes the running time of an evaluation oracle, etc. Furthermore,
we use Õ(f)

def
= O(f logO(1) f).

Spectral Approximations: For symmetric matrices N,M ∈ Rn×n, we write N � M
to denote that ~xTN~x ≤ ~xTM~x for all ~x ∈ Rn and we define N �M, N ≺M and N �M
analogously.

Misc: We let ω < 2.373 [258] denote the matrix multiplication constant.

2.2 Convex Optimization

Basic concepts and definitions

Convex sets: A set S ∈ Rn is convex if for any x, y ∈ S, any point on the line between x
and y also belongs to S, i.e. tx+ (1− t)y ∈ S for 0 ≤ t ≤ 1.

Standard Convex Sets: We let Bp(r)
def
= {~x :

∥∥~x∥∥
p
≤ r} denote a ball of radius r in

the `p norm. For brevity we refer to B2(r) as a a ball of radius r and B∞(r) as a box of
radius r.

Convex functions: Let S be convex. A function f : S −→ R is convex if for any x, y ∈ S,
f(x) + f(y) ≥ f

(
x+y

2

)
.

Gradients: The gradient of a differentiable function f at x is denoted by ∇f(x).

Subgradients: A subgradient of a convex function f : S −→ R at x ∈ S, denoted by
∂f(x) ∈ Rn, satisfies f(y)− f(x) ≥ ∂f(x) · (y − x) for any y ∈ S.

Problems

Convex minimization: The problem of solving minx∈S f(x) for a convex function f :
S −→ R.
Algorithms for convex minimization generally proceed by generating a sequence of points
that approach a minimizer based on the (sub)gradient.

Intersection problem: Let S, T be convex sets and f be a convex function defined on
a set containing S and T . Given oracles for solving minx∈S f(x) and minx∈T f(x), compute
minx∈S∩T f(x).
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2.3 Separation Oracles

We frequently make assumptions about the existence of separation oracles for sets and func-
tions. Here we formally define these objects as we use them throughout. Our definitions are
possibly non-standard and chosen to handle the different settings that occur in this thesis.

Definition 1 (Separation Oracle for a Set). Given a set K ⊂ Rn and δ ≥ 0, a δ-separation
oracle for K is a function on Rn such that for any input ~x ∈ Rn, it either outputs “successful”
or a half space of the form H = {~z : ~cT~z ≤ ~cT~x+ b} ⊇ K with b ≤ δ

∥∥~c∥∥
2

and ~c 6= ~0. We let
SOδ(K) be the time complexity of this oracle.

The parameter δ indicates the accuracy of the oracle. For brevity we refer to a 0-
separation oracle for a set as just a separation oracle.

Note that in Definition 1 we do not assume that K is convex. However, we remark that
it is well known that there is a separation oracle for a set if and only if it is convex and that
there is a δ separation oracle if and only if the set is close to convex in some sense.

Definition 2 (Separation Oracle for a Function). For any function f , η ≥ 0 and δ ≥ 0, a
(η, δ)-separation oracle on a set Γ for f is a function on Rn such that for any input ~x ∈ Γ,
it either asserts f(~x) ≤ min~y∈Γ f(~y) + η or outputs a half space H such that

{~z ∈ Γ : f(~z) ≤ f(~x)} ⊂ H
def
= {~z : ~cT~z ≤ ~cT~x+ b} (2.1)

with b ≤ δ
∥∥~c∥∥ and ~c 6= ~0. We let SOη,δ(f) be the time complexity of this oracle.

2.4 Combinatorial Optimization

Basic concepts and definitions

Submodular functions: A function f : 2V −→ Z is submodular if f(T + i) − f(T ) ≤
f(S + i)− f(S) for all S ⊆ T and i ∈ V \T .
Submodular functions can be viewed as the discrete analogue to convex functions, and gen-
eralize the graph cut function.

Matroids: Given a ground set E and a family of subsets I ⊆ 2E (called independent
sets), M = (E, I) is a matroid if (1) any subset of an independent set is also independent;
(2) for I1, I2 ∈ I with |I1| > |I2|, there is some e ∈ I1 for which I2 + e ∈ I.
Matroids can be viewed as a generalization of linear independence.

Problems

Submodular function minimization: The problem of solving minA⊆V f(A) for a sub-
modular function f : 2V −→ Z.
This problem generalizes the well-known minimum s-t cut problem in graph theory.

Matroid Intersection: The problem of finding the maximum (weighted) set independent
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in both of the two given matroids.
This problem generalizes the well-known maximum (weighted) bipartite matching problem
in graph theory.

2.5 Economics

Basic concepts and definitions

Valuation functions: Given a set of items S, v : 2S −→ R measures the valuation of an
agent for each subset of items of S.

Utility functions: Given an agent with valuation function v and prices pi on item i (∀i),
u(S, p) = v(S)−

∑
i∈S pi measures the utility (“satisfaction”) of the agent if he/she purchases

S.

Market equilibrium: Given an economy consisting of a number of agents and items, a
market equilibrium is the state in which the prices on the items clear the market, i.e. there
exists an allocation of the items to agents that maximizes the utility of every agent.

Problem

Market equilibrium computation: The problem of finding a market equilibrium under
certain assumptions on what we know about the market.

2.6 Graph Theory

Basic concepts and definitions

Graphs: A graph G = (V,E) consists of a (finite) set of vertices V and a set of edges E.
Each edge e ∈ E connects two vertices (formally, an unordered pair of vertices).

f-hypergraphs: A f -hypergraph G = (V,E) consists of a (finite) set of vertices V and
a set of edges E. Each edge e ∈ E connects at most f vertices (formally, a subset of at most
k vertices).

Vertex cover: Given (hyper)graph G, S ⊆ V is a vertex cover if every edge has at least
one endpoint in S.

s-t effective resistance: Given a graph G = (V,E) with resistances on the edges, for
s, t ∈ V the s-t effective resistance is the potential difference between s and t when one unit
of electrical flow is sent from s to t.

Problems

Vertex cover with hard capacity: Given a f -hypergraph G = (V,E) and capacity k ∈ N,
find the minimum cardinality vertex cover S where each vertex v ∈ S is only allowed to cover
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at most k edges, i.e. there is a mapping of E to S such that at most k edges are mapped to
the same vertex.

s-t effective resistance network design: Given a graph G = (V,E) with resistances
on the edges and capacity k ∈ N, find the subgraph given by selecting at most k edges with
the minimum s-t effective resistance.
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Part I

A Faster Cutting Plane Method
This Part is based on joint works with Yin Tat Lee and Aaron Sidford.

3 Introduction

Throughout Part I we study the following feasibility problem:

Definition 3 (Feasibility Problem). Given a separation oracle for a set K ⊆ Rn contained
in a box of radius R, either find a point ~x ∈ K or prove that K does not contain a ball of
radius ε.

This feasibility problem is one of the most fundamental and classic problems in optimiza-
tion. Since the celebrated result of Shor [238], Yudin and Nemirovski [262] and Khachiyan
[152] in 1970s essentially proving that it can be solved in time O(poly(n) · SO · log(R/ε)),
this problem has served as one of the key primitives for solving numerous problems in both
combinatorial and convex optimization.

Despite the prevalence of this feasibility problem, the best known running time for solving
this problem has not been improved in over 25 years. In a seminal paper of Vaidya in 1989
[248], he showed how to solve the problem in Õ(n · SO · log(nR/ε) + nω+1 log(nR/ε)) time.
While there had been interesting generalizations and practical improvements [8, 226, 106,
13, 107, 210, 261, 108, 31], the best theoretical guarantees for solving this problem have not
been improved since.

In Part I we show how to improve upon Vaidya’s running time in certain regimes. We
provide a cutting plane algorithm which achieves an expected running time of O(n · SO ·
log(nR/ε)+n3 logO(1)(nR/ε)), improving upon the previous best running time for the current
known value of ω < 2.373 [258, 97] when R/ε = O(poly(n)).

We achieve our results by the combination of multiple techniques. First we show how to
use techniques from the work of Vaidya and Atkinson to modify Vaidya’s scheme so that it is
able to tolerate random noise in the computation in each iteration. We then show how to use
existing numerical machinery [249, 240, 177] in combination with some new techniques (Sec-
tion 6.1 and Section 6.2) to implement each of these relaxed iterations efficiently. We hope
that both these numerical techniques as well as our scheme for approximating complicated
methods, such as Vaidya’s, may find further applications.

While our work focuses on theoretical aspects of cutting plane methods, we achieve our
results via the careful application of practical techniques such as dimension reduction and
sampling. As such we hope that ideas in this work may lead to improved practical1 algorithms
for non-smooth optimization.

1Although cutting plane methods are often criticized for their empirical performance, recently, Bubeck,
Lee and Singh [31] provided a variant of the ellipsoid method that achieves the same convergence rate as
Nesterov’s accelerated gradient descent. Moreover, they provided numerical evidence that this method can
be superior to Nesterov’s accelerated gradient descent, thereby suggesting that cutting plane methods can
be as aggressive as first order methods if designed properly [31, 30].
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3.1 Previous Work

Throughout, we restrict our attention to algorithms for the feasibility problem that have
a polynomial dependence on SO, n, and log(R/ε). Such “efficient” algorithms typically
follow the following iterative framework. First, they compute some trivial region Ω that
contains K. Then, the separation oracle is queried at some point ~x ∈ Ω. If ~x ∈ K, the
algorithm successfully solved the problem. Otherwise the separation oracle must return a
half-space containing K. The algorithm then uses this half-space to shrink the region Ω
while maintaining the invariant that K ⊆ Ω. This process is then repeated until it finds a
point ~x ∈ K or the region Ω becomes too small to contain a ball with radius ε.

Previous works on efficient algorithms for the feasibility problem all follow this iterative
framework. They vary in terms of what set Ω they maintain, how they compute the center
to query the separation oracle, and how they update the set. In Table 1, we list the previous
running times for solving the feasibility problem. As usual SO indicates the cost of the
separation oracle.

The first efficient algorithm for the feasibility problem is the ellipsoid method, due to Shor
[238], Nemirovksii and Yudin [262], and Khachiyan [152]. The ellipsoid method maintains
an ellipsoid as Ω and uses the center of the ellipsoid as the next query point. It takes
Θ(n2 log(nR/ε)) calls of oracle which is far from the lower bound Ω(n log(R/ε)) [209].

To alleviate the problem, the algorithm could maintain all the information from the or-
acle, i.e., the polytope created from the intersection of all half-spaces obtained so far. The
center of gravity method [182] achieves the optimal oracle complexity using this polytope
and its center of gravity as the next point. However, computing center of gravity is com-
putationally expensive and hence we do not list its running time in Table 1. The Inscribed
Ellipsoid Method [153] also achieved the optimal oracle complexity using this polytope as
Ω but instead using the center of the maximal inscribed ellipsoid in the polytope to query
the separation oracle. We listed it as occurring in year 1988 in Table 1 because it was [212]
that yielded the first polynomial time algorithm to actually compute this maximal inscribed
ellipsoid for polytope.

Vaidya [248] obtained a faster algorithm by maintaining an approximation of this polytope
and using a different center, namely the volumetric center. Although the oracle complexity
of this volumetric center method is very good, the algorithm is not extremely efficient as
each iteration involves matrix inversion. Atkinson and Vaidya [13] showed how to avoid
this computation in certain settings. However, they were unable to achieve the desired
convergence rate from their method.

Bertsimas and Vempala [20] also gives an algorithm that avoids these expensive linear
algebra operations while maintaining the optimal convergence rate by using techniques in
sampling convex sets. Even better, this result works for a weaker oracle, namely the mem-
bership oracle. However, the additional cost of this algorithm is relatively high. We remark
that while there are considerable improvements on the sampling techniques [187, 145, 177],
the additional cost is still quite high compared to standard linear algebra.
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Year Algorithm Complexity

1979 Ellipsoid Method [238, 262, 152] O(n2SO log κ+ n4 log κ)

1988 Inscribed Ellipsoid [153, 212] O(nSO log κ+ (n log κ)4.5)
1989 Volumetric Center [248] O(nSO log κ+ n1+ω log κ)

1995 Analytic Center [13] O

(
nSO log2 κ+ nω+1 log2 κ

+ (n log κ)2+ω/2

)
2004 Random Walk [20] → O(nSO log κ+ n7 log κ)

2015 This work O(nSO log κ+ n3 logO(1) κ)

Table 1: Algorithms for the Feasibility Problem. κ indicates nR/ε. The arrow → indicates
that it solves a more general problem where only a membership oracle is given.

3.2 Challenges in Improving Previous Work

Our algorithm builds upon the previous fastest algorithm of Vaidya [250]. Ignoring imple-
mentation details and analysis, Vaidya’s algorithm is quite simple. This algorithm simply
maintains a polytope P (k) = {x ∈ Rn : A~x−~b ≥ ~0} as the current Ω and uses the volumetric
center, the minimizer of the following volumetric barrier function

argmin~x
1

2
log det

(
ATS−2

~x A
)

where S~x
def
= diag(A~x−~b) (3.1)

as the point to query the separation oracle. The polytope is then updated by adding shifts
of the half-spaces returned by the separation oracle and dropping unimportant constraints.
By choosing the appropriate shift, picking the right rule for dropping constraints, and using
Newton’s method to approximately compute the volumetric center, a running time of O(n ·
SO · log κ+ n1+ω log κ) can be achieved.

While Vaidya’s algorithm’s dependence on SO is essentially optimal, the additional per-
iteration costs of his algorithm could possibly be improved. The computational bottleneck
in each iteration of Vaidya’s algorithm is computing the gradient of log det which in turn

involves computing the so-called leverage scores ~σ(~x)
def
= diag(S−1

x A
(
ATS−2

x A
)−1

ATS−1
x ),

a commonly occurring quantity in numerical analysis and convex optimization [240, 47,
183, 177, 176]. As the best known algorithms for computing leverage scores exactly in this
setting take time O(nω), directly improving the running time of Vaidya’s algorithm seems
challenging.

However, since an intriguing result of Spielman and Srivastava in 2008 [240], it has
been well known that using Johnson-Lindenstrauss transform these leverage scores can be
computed up to a multiplicative (1±ε) error by solving O(ε−2 log n) linear systems involving
ATS−2

x A. While in general this still takes time O(ε−2nω), there are known techniques for
efficiently maintaining the inverse of a matrix so that solving linear systems takes amortized
O(n2) time [249, 176, 177]. Consequently if it could be shown that computing approximate
leverage scores sufficed, this would potentially decrease the amortized cost per iteration of
Vaidya’s method.

Unfortunately, Vaidya’s method does not seem to tolerate this type of multiplicative
error. If we compute gradients of (3.1) using this approximation of leverage scores, it seems
that the point computed would be far from the true center. Moreover, without being fairly
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close to the true volumetric center, it is difficult to argue that such a cutting plane method
would make sufficient progress.

To overcome this issue, it is tempting to directly use the recent work on faster linear
programming [176]. In this work, the authors faced a similar issue where a volumetric,
i.e. log det, potential function had the right analytic and geometric properties but was
computational expensive to minimize. To overcome this issue the authors instead computed
a weighted analytic center:

argmin~x −
∑
i∈[m]

wi log si(~x) where ~s(~x)
def
= A~x−~b .

For carefully chosen weights this center provides the same convergence guarantees as the
volumetric potential function, while each step can be computed by solving few linear systems
(rather than forming the matrix inverse).

Unfortunately, it is unclear how to directly extend the work in [176] on solving an explicit
linear program to the feasibility problem specified by a separation oracle. While it is possible
to approximate the volumetric barrier by a weighted analytic center in many respects, proving
that this approximation suffices for fast convergence remains open. In fact, the volumetric
barrier function as used in Vaidya’s algorithm is well approximated simply by the standard
analytic center

argmin~x −
∑
i∈[m]

log si(~x) where ~s(~x)
def
= A~x−~b .

as all the unimportant constraints are dropped during the algorithm. However, despite
decades of research, the best running times known for solving the feasibility problem using the
analytic center are Vaidya and Atkinson algorithm from 1995 [13]. While the running time
of this algorithm could possibly be improved using approximate leverage score computations
and amortized efficient linear system solvers, unfortunately without further insight this would
at best yield an algorithm which requires suboptimal O(n logO(1) κ) queries to the separation
oracle.

As pointed out in [13], the primary difficulty in using any sort of analytic center is
quantifying the amount of progress made in each step. We still believe providing direct
near-optimal analysis of weighted analytic center is a tantalizing open question warranting
further investigation. However, rather than directly address the question of the performance
of weighted analytic centers for the feasibility problem, we take a slightly different approach
that side-steps this issue. We provide a partial answer that still sheds some light on the
performance of the weighted analytic center while still providing our desired running time
improvements.

3.3 Our Approach

To overcome the shortcoming of the volumetric and analytic centers we instead consider a
hybrid barrier function

argmin~x −
∑
i∈[m]

wi log si(~x) + log det(ATS−1
x A) where ~s(~x)

def
= A~x−~b .
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for careful chosen weights. Our key observation is that for correct choice of weights, we can
compute the gradient of this potential function. In particular if we let ~w = ~τ −~σ(~x) then the
gradient of this potential function is the same as the gradients of

∑
i∈[m] τi log si(~x), which

we can compute efficiently. Moreover, since we are using log det, we can use analysis similar
to Vaidya’s algorithm [248] to analyze the convergence rate of this algorithm.

Unfortunately, this simple observation does not immediately change the problem sub-
stantially. It simply pushes the problem of computing gradients of log det to computing ~w.
Therefore, for this scheme to work, we would need to ensure that the weights do not change
too much and that when they change, they do not significantly hurt the progress of our al-
gorithm. In other words, for this scheme to work, we would still need very precise estimates
of leverage scores.

To salvage the idea, we observe that the leverage scores ~σ(~x) do not change too much
between iterations. Moreover, we provide what we believe is an interesting technical result
that an unbiased estimate to the changes in leverage scores can be computed using linear
system solvers such that the total error of the estimate is bounded by the total change of
the leverage scores (See Section 6.1). Using this result our scheme simply follows Vaidya’s
basic scheme in [248], however instead of minimizing the hybrid barrier function directly we
alternate between taking Newton steps we can compute, changing the weights so that we
can still compute Newton steps, and computing accurate unbiased estimates of the changes
in the leverage scores so that the weights do not change adversarially by too much.

To make this scheme work, there are two additional details that need to be dealt with.
First, we cannot let the weights vary too much as this might ultimately hurt the rate of
progress of our algorithm. Therefore, in every iteration we compute a single leverage score
to high precision to control the value of wi and we show that by careful choice of the index
we can ensure that no weight gets too large (See Section 6.2).

Second, we need to show that changing weights does not affect our progress by much
more than the progress we make with respect to log det. To do this, we need to show the
slacks are bounded above and below. We enforce this by adding regularization terms and
consider the potential function

p~e(~x) = −
∑
i∈[m]

wi log si(~x) +
1

2
log det

(
ATS−2

x A + λI
)

+
λ

2

∥∥x∥∥2

2

This allows us to ensure that the entries of ~s(~x) do not get too large or too small and therefore
changing the weighting of the analytic center cannot affect the function value too much.

Third, we need to make sure our potential function is convex. If we simply take ~w =
~τ − ~σ(~x) with ~τ as an estimator of ~σ(~x), ~w can be negative and the potential function
could be non-convex. To circumvent this issue, we use ~w = ce + ~τ − ~σ(~x) and make sure∥∥~τ − ~σ(~x)

∥∥
∞ < ce.

Combining these insights, using efficient algorithms for solving a sequence of slowly
changing linear systems [249, 176, 177], and providing careful analysis ultimately allows
us to achieve a running time of O(nSO log κ+ n3 logO(1) κ) for the feasibility problem. Fur-
thermore, in the case that K does not contain a ball of radius ε, our algorithm provides
a proof/certificate that the polytope does not contain a ball of radius ε. This proof ulti-
mately allows us to achieve running time improvements for strongly polynomial submodular
minimization in Part III.
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3.4 Organization

The rest of Part I is organized as follows. In Section 4 we provide some preliminary infor-
mation and notation used throughout Part I. In Section 5 we then present and analyze our
cutting plane method. In Section 6 we provide key technical tools for the analysis which
may be of independent interest.

4 Preliminaries

Here we introduce some notation and concepts used throughout Part I.

4.1 Leverage Scores

Our algorithms make extensive use of leverage scores, a common measure of the importance
of rows of a matrix. We denote the leverage scores of a matrix A ∈ Rn×d by ~σ ∈ Rn and

the leverage score of row i ∈ [n] by σi
def
= [A

(
ATA

)−1
AT ]ii. For A ∈ Rn×d, ~d ∈ Rn

>0,

and D
def
= diag(~d) we use the shorthand ~σA(~d) to denote the leverage scores of the matrix

D1/2A. We frequently use well known facts regarding leverage scores, such as σi ∈ [0, 1]
and

∥∥~σ∥∥
1
≤ d. (See [240, 189, 183, 47] for a more in-depth discussion of leverage scores,

their properties, and their many applications.) In addition, we make use of the fact that
given an efficient linear system solver of ATA we can efficiently compute multiplicative
approximations to leverage scores (See Definition 4 and Lemma 5 below).

Definition 4 (Linear System Solver). An algorithm S is a LO-time solver of a PD matrix

M ∈ Rn×n if for all ~b ∈ Rn and ε ∈ (0, 1/2], the algorithm outputs a vector S(~b, ε) ∈ Rn in

time O(LO · log(ε−1)) such that with high probability in n,
∥∥S(~b, ε)−M−1~b

∥∥2

M
≤ ε
∥∥M−1~b

∥∥2

M
.

Lemma 5 (Computing Leverage Scores [240]). Let A ∈ Rn×d, let ~σ denote the leverage scores
of A, and let ε > 0. If we have a LO-time solver for ATA then in time Õ((nnz(A)+LO)ε−2)
we can compute ~τ ∈ Rn such that with high probability in d, (1− ε)σi ≤ τi ≤ (1 + ε)σi for all
i ∈ [n].

4.2 Hybrid Barrier Function

As explained in Section 3.3 our cutting plane method maintains a polytope P = {~x ∈ Rn :

A~x ≥ ~b} for A ∈ Rm×n and ~b ∈ Rn that contains some target set K. We then maintain a
minimizer of the following hybrid barrier function:

p~e(~x)
def
= −

∑
i∈[m]

(ce + ei) log (si(~x)/R) +
1

2
log det

(
R2
(
ATS−2

x A + λI
))

+
λ

2

∥∥x∥∥2

2

where ~e ∈ Rm is a variable we maintain, ce ≥ 0 and λ ≥ 0 are constants we fix later,
~s(~x)

def
= A~x −~b, Sx = diag(~s(~x)), and R is the radius of the box containing P . When the

meaning is clear from context we often use the shorthand Ax
def
= S−1

x A. The R terms are
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only used in the proof and can be ignored in the algorithm because it only adds a constant
term to the barrier function.

Rather than maintaining ~e explicitly, we instead maintain a vector ~τ ∈ Rm that approx-
imates the leverage score

~ψ(~x)
def
= diag

(
Ax

(
AT
xAx + λI

)−1
AT
x

)
and pick ~e using the function ~eP (~τ , ~x)

def
= ~τ − ~ψ(~x). Note that ~ψ(~x) is simply the leverage

scores of the top rows of the matrix [
Ax√
λI

]
.

and therefore the usual properties of leverage scores hold, i.e. ψi(~x) ∈ (0, 1) and
∥∥ψi(~x)

∥∥
1
≤

n. We write ~ψ(~x) equivalently as ~ψx or ~ψP when we want the matrix to be clear. Furthermore,

we let Ψx
def
= diag(~ψ(~x)) and µ(~x)

def
= mini ψi(~x). Again, we use the subscripts of x and P

interchangeably and often drop them when the meaning is clear from context.

We remark that the last term λ
2

∥∥x∥∥2

2
ensures that our point is always within a certain

region (Lemma 23) and hence the term (ce + ei) log si(~x)i never gets too large. However,
this `2 term changes the Hessian of the barrier function and hence we need to put a λI term
inside both the log det and the leverage score to reflect this. This is the reason why we use
~ψ instead of the standard leverage score.

5 Our Cutting Plane Method

In this section we develop and prove the correctness of our cutting plane method. We use
the notation introduced in Sections 2 and 4 as well as the technical tools introduced later in
Section 6.

We break the presentation and proof of correctness of our cutting plane methods into
multiple parts. First in Section 5.1 we describe how we maintain an approximate cen-
ter/minimizer of the hybrid barrier function p~e and analyze this procedure. Then, in Sec-
tion 5.2 we carefully analyze the effect of changing constraints on the hybrid barrier function
and in Section 5.3 we prove properties of an approximate center of hybrid barrier function,
which we call the hybrid center. In Section 5.4 we then provide our cutting plane method
and in Section 5.5 we prove that the cutting plane method solves the feasibility problem as
desired.

5.1 Centering

In this section we show how to compute approximate centers or minimizers of the hybrid
barrier function for the current polytope P = {~x : A~x ≥ ~b}. We split this proof up
into multiple parts. First we simply bound the gradient and Hessian of the hybrid barrier
function, p~e, as follows.

Lemma 6. For f(~x)
def
= 1

2
log det

(
ATS−2

x A + λI
)
, we have that

∇f(~x) = −AT
x
~ψ(~x) and AT

xΨ(~x)Ax � 52f(~x) � 3AT
xΨ(~x)Ax .
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Proof. Our proof is similar to [7, Appendix] which proved the statement when λ = 0. This
case does not change the derivation significantly, however for completeness we include the
proof below.

We take derivatives on ~s first and then apply chain rule. Let f(~s) = 1
2

log det
(
ATS−2A + λI

)
.

We use the notation Df(~x)[~h] to denote the directional derivative of f along the direction ~h
at the point ~x. Using the standard formula for the derivative of log det, i.e. d

dt
log det Bt =

Tr((Bt)
−1(dBt

dt
)), and the commutative property Tr(KJ) = Tr(JK), we have

Df(~s)[~h] =
1

2
Tr((ATS−2A + λI)−1(AT (−2)S−3HA)) (5.1)

= −
∑
i

hi
si
~1T
i S−1A

(
ATS−2A + λI

)−1
ATS−1~1i = −

∑
i

ψihi
si

.

Applying chain rules, we have∇f(~x) = −AT
x
~ψ.Now let P

def
= S−1A

(
ATS−2A + λI

)−1
ATS−1.

Taking the derivative of (5.1) again and using the commutative property of trace, we have

D2f(~s)[~h1,~h2] = Tr
((

ATS−2A + λI
)−1 (

AT (−2)S−3H2A
) (

ATS−2A + λI
)−1 (

ATS−3H1A
))

−Tr
((

ATS−2A + λI
)−1 (

AT (−3)S−4H2H1A
))

= 3Tr
(
PS−2H2H1

)
− 2Tr

(
PS−1H2PS−1H1

)
= 3

∑
i

Pii
~h1(i)~h2(i)

s2
i

− 2
∑
ij

Pij
~h2(j)

sj
Pji
~h2(i)

si

= 3
∑
i

ψi
~h1(i)~h2(i)

s2
i

− 2
∑
ij

P 2
ij

~h2(j)

sj

~h2(i)

si
.

Consequently, D2f(~x)[~1i, ~1j] = [S−1
(
3Ψ− 2P(2)

)
S−1]ij where P(2) is the Schur product of

P with itself.
Now note that∑

i

P 2
ij = ~1jS

−1A
(
ATS−2A + λI

)−1
ATS−2A

(
ATS−2A + λI

)−1
ATS−1~1j

≤ ~1jS
−1A

(
ATS−2A + λI

)−1
ATS−1~1j = Pjj = Ψjj .

Hence, the Gershgorin circle theorem shows that the eigenvalues of Ψ−P(2) are lies in union
of the interval [0, 2ψj] over all j. Hence, Ψ − P(2) � 0. On the other hand, Schur product
theorem shows that P(2) � 0 as P � 0. Hence, the result follows by chain rule.

Lemma 6 immediately shows that under our choice of ~e = ~eP (~x, ~τ) we can compute the
gradient of the hybrid barrier function, p~e(~x) efficiently. Formally, Lemma 6 immediately
implies the following:

Lemma 7 (Gradient). For ~x ∈ P = {~y ∈ Rn : A~y ≥ ~b} and ~e ∈ Rm we have

5p~e(~x) = −AT
x (ce~1 + ~e+ ~ψP (~x)) + λ~x
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and therefore for all ~τ ∈ Rm, we have

5p~e(~τ,~x)(~x) = −AT
x

(
ce~1 + ~τ

)
+ λ~x.

Remark 8. To be clear, the vector 5p~e(~τ,~x)(~x) is defined as the vector such that

[5p~e(~τ,~x)(~x)]i = lim
t→0

1

t

(
p~e(~τ,~x)(~x+ t~1i)− p~e(~τ,~x)(~x)

)
.

In other words, we treat the parameter ~e(~τ , ~x) as fixed. This is the reason we denote it by
subscript to emphasize that p~e(~x) is a family of functions, p~e(~τ,~x) is one particular function,
and ∇p~e(~τ,~x) means taking gradient on that particular function.

Consequently, we can always compute 5p~e(~τ,~x)(~x) efficiently. Now, we measure centrality
or how close we are to the hybrid center as follows.

Definition 9 (Centrality). For ~x ∈ P =
{
~y ∈ Rn : A~y ≥ ~b

}
and ~e ∈ Rm, we define the

centrality of ~x by
δ~e(~x)

def
=
∥∥5 p~e(~x)

∥∥
H(~x)

−1

where H(~x)
def
= AT

x (ceI + Ψ(~x)) Ax + λI. Often, we use weights ~w ∈ Rm
>0 to approximate

this Hessian and consider Q(~x, ~w)
def
= AT

x (ceI + W) Ax + λI.
Next, we bound how much slacks can change in a region close to a nearly central point.

Lemma 10. Let ~x ∈ P =
{
~y ∈ Rn : A~y ≥ ~b

}
and ~y ∈ Rn such that

∥∥~x − ~y
∥∥

H(~x)
≤

ε
√
ce + µ(~x) for ε < 1. Then ~y ∈ P and (1− ε)Sx � Sy � (1 + ε)Sx .

Proof. Direct calculation reveals the following:∥∥S−1
x (~s~y − ~sx)

∥∥
∞ ≤

∥∥Ax(~y − ~x)
∥∥

2
≤ 1√

ce + µ(~x)

∥∥Ax(~y − ~x)
∥∥
ceI+Ψ(~x)

≤ 1√
ce + µ(~x)

∥∥~y − ~x∥∥
H(~x)
≤ ε .

Consequently, (1 − ε)Sx � Sy � (1 + ε)Sx. Since y ∈ P if and only if Sy � 0 the result
follows.

Combining the previous lemmas we obtain the following.

Lemma 11. Let ~x ∈ P = {~y ∈ Rn : A~y ≥ ~b} and ~e, ~w ∈ Rm such that
∥∥~e∥∥∞ ≤ 1

2
ce ≤ 1 and

Ψ(~x) �W � 4
3
Ψ(~x). If ~y ∈ Rn satisfies

∥∥~x− ~y∥∥
Q(~x,~w)

≤ 1
10

√
ce + µ(~x), then

1

4
Q(~x, ~w) � 52p~e(~y) � 8Q(~x, ~w) and

1

2
H(~x) � H(~y) � 2H(~x) .

Also, we have that H(~x) � Q(~x, ~w) � 4
3
H(~x).
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Proof. Lemma 6 shows that

AT
y (ceI + E + Ψ(~y)) Ay + λI � 52p~e(~y) � AT

y (ceI + E + 3Ψ(~y)) Ay + λI . (5.2)

Since W � Ψ, we have that Q(~x, ~w) � H(~x) and therefore
∥∥~x− ~y∥∥

H(~x)
≤ ε
√
ce + µ(~x) with

ε = 0.1. Consequently, by Lemma 10 we have (1− ε)Sx � Sy � (1 + ε)Sx and therefore

(1− ε)2

(1 + ε)2
Ψ(~x) � Ψ(~y) � (1 + ε)2

(1− ε)2
Ψ(~x)

and
1

2
H(~x) � (1− ε)2

(1 + ε)4
H(~x) � H(~y) � (1 + ε)2

(1− ε)4
H(~x) � 2H(~x)

Furthermore, (5.2) shows that

52p~e(~y) � AT
y (ceI + E + 3Ψ(~y)) Ay + λI

� (1 + ε)2

(1− ε)4
AT
x (ceI + E + 3Ψ(~x)) Ax + λI

� 2AT
x

(
3

2
ceI + 3W

)
Ax + λI � 8Q(~x, ~w)

and

52p~e(~y) � AT
y (ceI + E + Ψ(~y)) Ay + λI

� (1− ε)4

(1 + ε)2
AT
x (ceI + E + Ψ(~x)) Ax + λI

� 1

2
AT
x

(
1

2
ceI +

3

4
W

)
Ax + λI � 1

4
Q(~x, ~w).

The last inequality follows from the definition of H(~x) and Q(~x, ~w) and the fact Ψ(~x) �
W � 4

3
Ψ(~x).

To analyze our centering scheme we use standard facts about gradient descent we prove
in Lemma 12.

Lemma 12 (Gradient Descent). Let f : Rn → R be twice differentiable and Q ∈ Rn×n

be positive definite. Let ~x0 ∈ Rn and ~x1
def
= ~x0 − 1

L
Q−1 5 f(~x0). Furthermore, let ~xα =

~x0 + α(~x1 − ~x) and suppose that µQ � 52f(~xα) � LQ for all α ∈ [0, 1]. Then,

1.
∥∥5 f(~x1)

∥∥
Q−1 ≤

(
1− µ

L

) ∥∥5 f(~x0)
∥∥

Q−1

2. f(~x1) ≥ f(~x0)− 1
L

∥∥5 f(~x0)
∥∥2

Q−1

Proof. Integrating we have that

5f(~x1) = 5f(~x0) +

∫ 1

0

52f(~xα)(~x1 − ~x0)dα =

∫ 1

0

(
Q− 1

L
52 f(~xα)

)
Q−15 f(~x0)dα

19



Consequently, by applying Jensen’s inequality we have

∥∥5 f(~x1)
∥∥

Q−1 =

∥∥∥∥∫ 1

0

(
Q− 1

L
52 f(~xα)

)
Q−15 f(~x0)dα

∥∥∥∥
Q−1

≤
∫ 1

0

∥∥∥∥(Q− 1

L
52 f(~xα)

)
Q−15 f(~x0)

∥∥∥∥
Q−1

dα

≤
∥∥Q−1/25 f(~x0)

∥∥
[Q−1/2(Q− 1

L
52f(~xα))Q−1/2]

2

Now we know that by assumption that

0 � Q−1/2

(
Q− 1

L
52 f(~xα)

)
Q−1/2 �

(
1− µ

L

)
I

and therefore combining these (1) holds.
Using the convexity of f , we have

f(~x1) ≥ f(~x0) + 〈5f(~x0), ~x1 − ~x0〉
≥ f(~x0)−

∥∥5 f(~x0)
∥∥

Q−1

∥∥~x1 − ~x0

∥∥
Q

and since
∥∥~x1 − ~x0

∥∥
Q

= 1
L

∥∥5 f(~x0)
∥∥

Q−1 , (2) holds as well.

Next we bound the effect of changing ~e on the hybrid barrier function p~e(~x).

Lemma 13. For ~x ∈ P = {~y ∈ Rn : A~y ≥ ~b}, ~e, ~f ∈ Rm, and ~w ∈ Rm
>0 such that

W � Ψ(~x) ∥∥5 p~f (~x)
∥∥

Q(~x,~w)−1 ≤
∥∥5 p~e(~x)

∥∥
Q(~x,~w)−1 +

1√
ce + µ(~x)

∥∥~f − ~e∥∥
2

Proof. Direct calculation shows the following∥∥5 p~f (~x)
∥∥

Q(~x,~w)−1 =
∥∥−AT

x (ce~1 + ~f + ~ψP (~x)) + λ~x
∥∥

Q(~x,~w)−1 (Formula for 5p~f (~x))

≤
∥∥5 p~e(~x)

∥∥
Q(~x,~w)−1 +

∥∥AT
x (~f − ~e)

∥∥
Q(~x,~w)−1 (Triangle inequality)

≤
∥∥5 p~e(~x)

∥∥
Q(~x,~w)−1 +

1√
ce + µ(~x)

∥∥AT
x (~f − ~e)

∥∥
(AT

xAx)−1

(Bound on Q(~x, ~w))

≤
∥∥5 p~e(~x)

∥∥
Q(~x,~w)−1 +

1√
ce + µ(~x)

∥∥~f − ~e∥∥
2

(Property of projection matrix)

where in the second to third line we used Q(~x, ~w) � H(~x) � (ce + µ(~x))AT
xAx.

We now have everything we need to analyze our centering algorithm.
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Algorithm 1: (~x(r), ~τ (r)) = Centering(~x(0), ~τ (0), r, c∆)

Input: Initial point ~x(0) ∈ P = {~y ∈ Rn : A~y ≥ ~b}, Estimator of leverage scores
~τ (0) ∈ Rn

Input: Number of iterations r > 0, Accuracy of the estimator 0 ≤ c∆ ≤ 0.01ce.
Given:

∥∥~e(0)
∥∥
∞ ≤

1
3
ce ≤ 1

3
where ~e(0) = ~e(~τ (0), ~x(0)).

Given: δ~e(0)(~x(0)) =
∥∥5 p~e(0)(~x(0))

∥∥
H(~x(0))−1 ≤ 1

100

√
ce + µ(~x(0)).

Compute ~w such that Ψ(~x(0)) �W � 4
3
Ψ(~x(0)) (See Lemma 5)

Let Q
def
= Q(~x(0), ~w).

for k = 1 to r do
~x(k) := ~x(k−1) − 1

8
Q−15 p~e(k−1)(~x(k−1)).

Sample ~∆(k) ∈ Rn s.t.
E[~∆(k)] = ~ψ(~x(k))− ~ψ(~x(k−1)) and

with high probability in n,∥∥~∆(k) − (~ψ(~x(k))− ~ψ(~x(k−1)))
∥∥

2
≤ c∆

∥∥S−1
~x(k−1)(~s~x(k) − ~s~x(k−1))

∥∥
2

(See Section 6.1)

~τ (k) := ~τ (k−1) + ~∆(k).
~e(k) := ~e(~τ (k), ~x(k)).

end

Output: (~x(r), ~τ (r))

Lemma 14. Let ~x(0) ∈ P = {~y ∈ Rn : A~y ≥ ~b} and let ~τ (0) ∈ Rm such that
∥∥~e(~τ (0), ~x(0))

∥∥
∞ ≤

1
3
ce ≤ 1

3
. Assume that r is a positive integer, 0 ≤ c∆ ≤ 0.01ce and δ~e(0)(~x(0)) ≤ 1

100

√
ce + µ(~x(0)).

With high probability in n, the algorithm Centering(~x(0), ~τ (0), r, c∆) outputs (~x(r), ~τ (r)) such
that

1. δ~e(r)(~x
(r)) ≤ 2

(
1− 1

64

)r
δ~e(0)(~x(0)).

2. E[p~e(k)(~x(r))] ≥ p~e(0)(~x(0))− 8
(
δ~e(0)(~x(0))

)2
.

3. E~e(r) = ~e(0) and
∥∥~e(r) − ~e(0)

∥∥
2
≤ 1

10
c∆.

4.
∥∥S−1

~x(0)(~s(~x
(r))− ~s(~x(0)))

∥∥
2
≤ 1

10
.

where ~e(r) = ~e(~τ (r), ~x(r)).

Proof. Let η =
∥∥5p~e(0)(~x(0))

∥∥
Q−1 . First, we use induction to prove that

∥∥~x(r)−~x(0)
∥∥

Q
≤ 8η,∥∥5 p~e(r)(~x

(r))
∥∥

Q−1 ≤
(
1− 1

64

)r
η and

∥∥~e(r) − ~e(0)
∥∥

2
≤ 1

10
c∆ for all r.

Clearly the claims hold for r = 0. We now suppose they hold for all r ≤ t and show that
they hold for r = t + 1. Now, since

∥∥~x(t) − ~x(0)
∥∥

Q
≤ 8η, ~x(t+1) = ~x(t) − 1

8
Q−1 5 p~e(t)(~x

(t)),

and
∥∥5 p~e(t)(~x

(t))
∥∥

Q−1 ≤
(
1− 1

64

)t
η ≤ η, we have

∥∥~x(t+1) − ~x(0)
∥∥

Q
≤
∥∥~x(t) − ~x(0)

∥∥
Q

+
1

8

∥∥5 p~e(t)(~x
(t))
∥∥

Q−1 ≤ 9η.
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We will improve this estimate later in the proof to finish the induction on
∥∥~x(t+1) − ~x(0)

∥∥
Q

,

but using this, η ≤ 0.01
√
ce + µ(~x(0)), and

∥∥~e(t)
∥∥
∞ ≤

∥∥~e(t) − ~e(0)
∥∥
∞ +

∥∥~e(0)
∥∥
∞ ≤

ce
2

, we can
invoke Lemma 11 and Lemma 12 and therefore∥∥5 p~e(t)(~x

(t+1))
∥∥

Q−1 ≤
(

1− 1

32

)∥∥5 p~e(t)(~x
(t))
∥∥

Q−1 .

By Lemma 13 we have

∥∥5p~e(t+1)(~x(t+1))
∥∥

Q−1 ≤
(

1− 1

32

)∥∥5p~e(t)(~x(t))
∥∥

Q−1 +
1√

ce + µ(~x(0))

∥∥~e(t+1)−~e(t)
∥∥

2
. (5.3)

To bound
∥∥~e(t+1) − ~e(t)

∥∥
2
, we use the definition of ~∆ to shows that∥∥~e(t+1) − ~e(t)
∥∥

2
=
∥∥∥(~τ (t+1) − ~ψ(~x(t+1))

)
−
(
~τ (t) − ~ψ(~x(t))

)∥∥∥
2

=
∥∥∥~∆(t+1) −

(
~ψ(~x(t+1))− ~ψ(~x(t))

)∥∥∥
2

≤ c∆

∥∥S−1
x(t)(~sx(t+1) − ~sx(t))

∥∥
2

with high probability in n. Now, we note that Lemma 10 and the induction hypothesis∥∥~x(t) − ~x(0)
∥∥

H(~x(0))
≤
∥∥~x(t) − ~x(0)

∥∥
Q
≤ 8η shows that (1 − 0.1)Sx(0) � Sx(t) � (1 + 0.1)Sx(0)

and therefore ∥∥~e(t+1) − ~e(t)
∥∥

2
≤ c∆

∥∥S−1
x(t)(~sx(t) − ~sx(t+1))

∥∥
2

≤ c∆

1− 0.1

∥∥S−1
x(0)A

(
~x(t) − ~x(t+1)

) ∥∥
2

=
c∆

1− 0.1

∥∥∥∥1

8
Q−15 p~e(t)(~x

(t))

∥∥∥∥
ATS−2

x(0)
A

≤ c∆

8 (1− 0.1)
√
ce + µ(~x(0))

∥∥5 p~e(t)(~x
(t))
∥∥

Q−1 (5.4)

where in the last line we used mini∈[m] wi ≥ µ(~x(0)). Since c∆ < 0.01ce ≤ 0.01, by (5.3), we
have∥∥5 p~e(t+1)(~x(t+1))

∥∥
Q−1 ≤

(
1− 1

32

)∥∥5 p~e(t)(~x
(t))
∥∥

Q−1 +
0.01

8 (1− 0.1)

∥∥5 p~e(t)(~x
(t))
∥∥

Q−1

≤
(

1− 1

64

)∥∥5 p~e(t)(~x
(t))
∥∥

Q−1 .

Furthermore, this implies that

∥∥~x(t+1) − ~x(0)
∥∥

Q
≤

∥∥∥∥∥
t∑

k=0

1

8
Q−15 p~e(k)(~x(k))

∥∥∥∥∥
Q−1

≤ 1

8

∞∑
i=0

(
1− 1

64

)k
η ≤ 64

8
η = 8η .
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Similarly, we have that

∥∥~e(t+1) − ~e(0)
∥∥

2
≤

t∑
k=0

c∆

8 (1− 0.1)
√
ce + µ(~x(0))

(
1− 1

64

)k ∥∥5 p~e(0)(~x(0))
∥∥

Q−1

≤ 8c∆η

(1− 0.1)
√
ce + µ(~x(0))

≤ 8c∆

(1− 0.1)
√
ce + µ(~x(0))

δ~e(0)(~x(0)) ≤ 1

10
c∆

where we used η =
∥∥5 p~e(0)(~x(0))

∥∥
Q−1 ≤

∥∥5 p~e(0)(~x(0))
∥∥

H−1 = δ~e(0)(~x(0)) and this finishes the

induction on
∥∥5 p~e(t)(~x

(t))
∥∥

Q−1 ,
∥∥~x(t) − ~x(0)

∥∥
Q

and
∥∥~e(t) − ~e(0)

∥∥
2
.

Hence, for all r, Lemma 11 shows that

δ~e(r)(~x
(r)) =

∥∥5 p~e(r)(~x
(r))
∥∥

H(~x(r))−1 ≤
√

2
∥∥5 p~e(r)(~x

(r))
∥∥

H(~x(0))−1

≤
√

8

3

∥∥5 p~e(r)(~x
(r))
∥∥

Q−1 ≤
√

8

3

(
1− 1

64

)r ∥∥5 p~e(0)(~x(0))
∥∥

Q−1

≤ 2

(
1− 1

64

)r
δ~e(0)(~x(0)).

Using that E~e(t+1) = ~e(t), we see that the expected change in function value is only due to
the change while taking centering steps and therefore Lemma 12 shows that

E[p~e(r)(~x
(r))] ≥ p~e(0)(~x(0))−1

8

∞∑
k=0

(
1− 1

64

)2k ∥∥5p~e(0)(~x(0))
∥∥2

Q−1 ≥ p~e(0)(~x(0))−8
(
δ~e(0)(~x(0))

)2
.

Finally, for (4), we note that∥∥∥∥s(~x(r))− s(~x(0))

s(~x(0))

∥∥∥∥
2

=
∥∥~x(r) − ~x(0)

∥∥
ATS−2

x(0)
A
≤ 1√

µ(~x(0)) + ce

∥∥~x(r) − ~x(0)
∥∥

Q−1 ≤
1

10
.

5.2 Changing Constraints

Here we bound the effect that adding or a removing a constraint has on the hybrid barrier
function. Much of the analysis in this section follows from the following lemma which follows
easily from the Sherman Morrison Formula.

Lemma 15 (Sherman Morrison Formula Implications). Let B ∈ Rn×n be an invertible
symmetric matrix and let ~a ∈ Rn be arbitrary vector satisfying ~aTB−1~a < 1. The following
hold:

1.
(
B± ~a~aT

)−1
= B−1 ∓ B−1~a~aTB−1

1±~aTB−1~a
.

2. 0 � B−1~a~aTB−1

1±~aTB−1~a
� ~aTB−1~a

1±~aTB−1~a
B−1.

3. log det
(
B± ~a~aT

)
= log det B + log

(
1± ~aTB−1~a

)
.
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Proof. (1) follows immediately from Sherman Morrison [234]. (2) follows since ~a~aT is PSD,

B−1~a~aTB−1

1± ~aTB−1~a
= B−1/2

[
B−1/2~a~aTB−1/2

1± ~aTB−1~a

]
B−1/2 ,

and ~y~yT �
∥∥~y∥∥2

2
I for any vector ~y. (3) follows immediately from the Matrix Determinant

Lemma.

We also make use of the following technical helper lemma.

Lemma 16. For A ∈ Rn×m and all ~a ∈ Rn we have∑
i∈[m]

1

ψA[i]

(
A
(
ATA + λI

)−1
~a
)4

i
≤
(
~aT
(
ATA + λI

)−1
~a
)2

Proof. We have by Cauchy Schwarz that(
~1T
i A
(
ATA + λI

)−1
~a
)2

≤ ψA[i] · ~aT
(
ATA + λI

)−1
~a

and consequently

∑
i∈[m]

(
~1T
i A
(
ATA + λI

)−1
~a
)4

ψA[i]
≤
(
~aT
(
ATA + λI

)−1
~a
) ∑
i∈[m]

(
~1iA

(
ATA + λI

)−1
~a
)2

.

Since ∑
i∈[m]

(
~1T
i A
(
ATA + λI

)−1
~a
)2

= ~aT
(
ATA + λI

)−1
ATA

(
ATA + λI

)−1
~a

≤ ~aT
(
ATA + λI

)−1
~a,

we have the desired result.

We now bound the effect of adding a constraint.

Lemma 17. Let A ∈ Rm×n, ~b ∈ Rm, ~τ ∈ Rm, and ~x ∈ P def
=
{
~y ∈ Rn : A~y ≥ ~b

}
. Let A ∈

R(m+1)×n be A with a row ~am+1 added, let b ∈ Rm+1 be the vector ~b with an entry bm+1 added,

and let P
def
=
{
~y ∈ Rn : A~y ≥ b

}
. Let sm+1 = ~aTm+1~x− bm+1 > 0, ψa =

~aTm+1(AT
xAx+λI)−1~am+1

s2m+1
.

Now, let ~υ ∈ Rm+1 be defined so that υm+1 = ψa
1+ψa

and for all i ∈ [m]

υi = τi −
1

1 + ψa

[
Ax

(
AT
xAx + λI

)−1 ~am+1

sm+1

]2

i

.

Then, the following hold

• [Leverage Score Estimation] eP (~υ, ~x)m+1 = 0 and eP (~υ, ~x)i = eP (~τ , ~x)i for all i ∈ [m].
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• [Function Value Increase] p~eP (~υ,~x)(~x) = p~eP (~τ,~x)(~x)− ce log (s(~x)m+1/R) + log(1 + ψa).

• [Centrality Increase] δ~eP (~υ,~x)(~x) ≤
√

1 + ψaδ~eP (~τ,~x)(~x) +
(
ce
√

1 + ψa + ψa
)√

ψa
µ(~x)

+ ψa.

Proof. By (1) in Lemma 15, we have that for all i ∈ [m]

ψP (~x)i = ψP (~x)i −
1

1 + ψa

[
Ax

(
AT
xAx + λI

)−1 ~am+1

sm+1

]2

i

and that

ψP (~x)m+1 = ψa −
ψ2
a

1 + ψa
=

ψa
1 + ψa

.

Consequently [Leverage Score Estimation] holds.
By (3) in Lemma 15 we have that [Function Value Change] holds.
To bound the change in centrality, we first note that

ψP (~x)i ≥ ψP (~x)i −
1

1 + ψa

[
~aTi
si

(
AT
xAx + λI

)−1 ~ai
si

] [
~aTm+1

sm+1

(
AT
xAx + λI

)−1 ~am+1

sm+1

]
=

ψP (~x)i
1 + ψa

.

Therefore, we have that the approximate Hessian for P , denoted H(~x), is bounded by H
−1 �

(1 + ψa)H
−1.

To bound the change in centrality note that by (2) in Lemma 15 we have that H
−1 � H−1.

Therefore if let ~υ′ ∈ Rm be defined so that ~υ′i = ~υi for all i ∈ [m] then by triangle inequality
we have

δ~ep(~υ,~x)(~x) =
∥∥AT

x (ce~1 + ~υ)
∥∥

H
−1 ≤

√
1 + ψa

∥∥AT

x (ce~1 + ~υ)
∥∥

H−1

≤
√

1 + ψa

(∥∥AT
x (ce~1 + ~τ)

∥∥
H−1 +

∥∥∥∥~am+1

sm+1

(ce + υm+1)

∥∥∥∥
H−1

+
∥∥AT

x (~υ′ − ~τ)
∥∥

H−1

)
=
√

1 + ψa

(
δ~eP (~τ,~x)(~x) +

(
ce +

ψa
1 + ψa

)∥∥∥∥~am+1

sm+1

∥∥∥∥
H−1

+
∥∥AT

x (~υ′ − ~τ)
∥∥

H−1

)
Now, since H−1 � 1

µ(~x)

(
AT
xAx + λI

)−1
, we have that

∥∥∥∥~am+1

sm+1

∥∥∥∥
H−1

≤ 1√
µ(~x)

∥∥∥∥~am+1

sm+1

∥∥∥∥
(AT

xAx+λI)−1

=

√
ψa
µ(~x)

.

Since Ψ1/2Ax

(
AT
xΨAx

)−1
AT
xΨ1/2 is a projection matrix, we have Ψ−1 � Ax

(
AT
xΨAx

)−1
AT
x �
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AxH
−1AT

x . By Lemma 16, we have∥∥AT
x (~τ ′ − ~υ)

∥∥2

H−1 ≤
∥∥~τ ′ − ~υ∥∥2

Ψ−1

=
∑
i∈[m]

1

ψ(~x)i

(
1

1 + ψa

(
~1iAx

(
AT
xAx + λI

)−1 ~am+1

sm+1

)2
)2

≤
(

1

1 + ψa

)2
(
~aTm+1

(
AT
xAx + λI

)−1
~am+1

s2
m+1

)2

=

(
ψa

1 + ψa

)2

Combining, we have that

δ~eP (~υ,~x)(~x) ≤
√

1 + ψa

(
δ~eP (~τ,~x)(~x) +

(
ce +

ψa
1 + ψa

)√
ψa
µ(~x)

+
ψa

1 + ψa

)

≤
√

1 + ψaδ~eP (~τ,~x)(~x) +
(
ce
√

1 + ψa + ψa

)√ ψa
µ(~x)

+ ψa.

We now bound the effect of removing a constraint.

Lemma 18 (Removing a Constraint). Let A ∈ Rm×n, ~b ∈ Rm, ~τ ∈ Rm, and ~x ∈ P def
= {~y ∈

Rn : A~y ≥ ~b}. Let A ∈ R(m−1)×n be A with row m removed, let b ∈ Rm−1 denote the first

m− 1 coordinates of ~b, and let P
def
= {~y ∈ Rn : A~y ≥ b}. Let ψd = ψP (~x)m.

Now, let ~υ ∈ Rm−1 be defined so that for all i ∈ [m− 1]

υi = τi +
1

1− ψd

(
Ax

(
AT
xAx + λI

)−1
AT
x
~1m

)2

i
.

Assume ψd ≤ 1.1µ(~x) ≤ 1
10

and
∥∥~eP (~τ , ~x)

∥∥
∞ ≤ ce ≤ 1

2
, we have the following:

• [Leverage Score Estimation] eP (~υ, ~x)i = eP (~τ , ~x)i for all i ∈ [m− 1].

• [Function Value Decrease] p~ep(~υ,~x)(~x) = p~eP (~τ,~x)(~x) + [ce + eP (~τ , ~x)m] log (s(~x)m/R) +
log(1− ψd)

• [Centrality Increase] δ~ep(~υ,~x)(~x) ≤ 1√
1−2µ(~x)

δ~eP (~τ,~x)(~x) + 3(ce + µ(~x)).

Proof. By (1) in Lemma 15, we have that for all i ∈ [m− 1]

ψP (~x)i = ψP (~x)i +
1

1− ψd

(
~1T
i Ax

(
AT
xAx + λI

)−1
AT
x
~1m

)2

.

Consequently, [Leverage Score Estimation] holds. Furthermore, by (3) in Lemma 15, this
then implies that [Function Value Change] holds.
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To bound the change in centrality, we first note that by (1) and (2) in Lemma 15 and
the fact ψP (~x)i ≥ ψP (~x)i, we have that the approximate Hessian for P , denoted H(~x), is
bounded by

H(~x)−1 �
(
H(~x)−AT

x (ceI + Ψx)
1/2 ~1m

~1T
m (ceI + Ψx)

1/2 Ax

)−1

�
(

1 +
α

1− α

)
H(~x)−1 =

(
1

1− α

)
H(~x)−1

where α
def
= ~1T

m (ceI + Ψx)
1/2 AxH(~x)−1AT

x (ceI + Ψx)
1/2 ~1m. Using ce + µ(~x) ≤ 1

2
+ 1

10
≤ 1,

we have

H(~x)−1 �
(
AT
x (ce + µ(~x))Ax + λI

)−1 � (ce + µ(~x))−1
(
AT
xAx + λI

)−1
. (5.5)

Using this, we have

α ≤
(
ce + ψd
ce + µ(~x)

)
~1T
mAx

(
AT
xAx + λI

)−1
AT
x
~1m =

(
ce + ψd
ce + µ(~x)

)
ψd . (5.6)

Now let ~τ ′ ∈ Rm−1 be defined so that τ ′i = τi for all i ∈ [m− 1]. We have by above that

δ~ep(~υ,~x)(~x) =
∥∥AT

x (ce~1 + ~υ)
∥∥

H
−1 ≤ 1√

1− α
∥∥AT

x (ce~1 + ~υ)
∥∥

H−1

and therefore, by triangle inequality∥∥AT

x (ce~1 + ~υ)
∥∥

H−1 ≤
∥∥AT

x (ce~1 + ~τ)
∥∥

H−1 +
∥∥AT

x
~1m(ce + τm)

∥∥
H−1 +

∥∥AT
x (~τ ′ − ~υ)

∥∥
H−1

= δ~eP (~τ,~x)(~x) + (ce + τm)
∥∥AT

x
~1m

∥∥
H−1 +

∥∥AT
x (~τ ′ − ~υ)

∥∥
H−1 .

Now, (5.5) shows that

∥∥AT
x
~1m

∥∥
H−1 ≤

1√
ce + µ(~x)

∥∥AT
x
~1m

∥∥
(AT

xAx+λI)−1 ≤

√
ψd

ce + µ(~x)

Furthermore, since Ψ−1 � Ax

(
AT
xΨAx

)−1
AT
x � AxH

−1AT
x , by Lemma 16 we have∥∥AT

x (~τ ′ − ~υ)
∥∥2

H−1 ≤
∥∥~τ ′ − ~υ∥∥2

Ψ−1

=
∑
i∈[m]

1

ψ(~x)i

(
1

1− ψd

(
~1T
i Ax

(
AT
xAx + λI

)−1
AT
x
~1m

)2
)2

≤
(

1

1− ψd

)2 (
~1T
mAx

(
AT
xAx + λI

)−1
AT
x
~1m

)2

=

(
ψd

1− ψd

)2

Combining, we have that

δ~ep(~υ,~x)(~x) ≤ 1√
1− α

[
δ~eP (~τ,~x)(~x) + (ce + τm)

√
ψd

ce + µ(~x)
+

ψd
1− ψd

]
.
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Using the assumption ψd ≤ 1.1µ(~x) ≤ 1
10

,
∥∥~eP (~τ , ~x)

∥∥
∞ ≤ ce and (5.6), we have α ≤ 1.1ψd ≤

1.21µ(~x) and τm ≤ ψd + ce, and

δ~ep(~υ,~x)(~x) ≤ 1√
1− 1.3µ(~x)

[
δ~eP (~τ,~x)(~x) + (ce + τm)

√
1.1 + 1.2ψd

]
≤ 1√

1− 2µ(~x)
δ~eP (~τ,~x)(~x) +

1√
1− 1.3

10

(√
1.1 · 2ce + 1.1(

√
1.1 + 1.2)µ(~x)

)

5.3 Hybrid Center Properties

Here we prove properties of points near the hybrid center. First we bound the distance
between points in the H(~x) norm in terms of the `2 norm of the points.

Lemma 19. For A ∈ Rm×n and ~b ∈ Rm suppose that ~x ∈ P = {~y : A~y ≥ ~b} and ~e ∈ Rm

such that
∥∥~e∥∥∞ ≤ 1

2
ce <

1
20

and δ~e ≤ 0.1
√
ce + µ(~x). Then for all ~y ∈ P we have

∥∥~x− ~y∥∥
H(~x)
≤

12mce + 6n+ 2λ
∥∥~y∥∥2

2√
ce + µ(~x)

(5.7)

and ∥∥~x∥∥2

2
≤ 4λ−1(mce + n) + 2

∥∥~y∥∥2

2
.

Proof. For notational simplicity let ~t
def
= ce~1+~e+ ~ψx, T

def
= diag(~t), and M

def
= AT

x (ceI+Ψx)Ax.
We have

∥∥~x− ~y∥∥2

AT
xTAx

=
∑
i∈[m]

ti
[~sx − ~sy]2i

[~sx]2i
=
∑
i∈[m]

ti

(
1− 2

[~sy]i
[~sx]i

+
[~sy]

2
i

[~sx]2i

)
(5.8)

and ∑
i∈[m]

ti
[~sy]

2
i

[~sx]2i
≤

∑
i∈[m]

ti
[~sy]i
[~sx]i

max
i∈[m]

[~sy]i
[~sx]i

≤

∑
i∈[m]

ti
[~sy]i
[~sx]i

(1 +
∥∥S−1

x (~sy − ~sx)
∥∥
∞

)
(5.9)

and∥∥S−1
x (~sx − ~sy)

∥∥
∞ = max

i∈[m]

∣∣∣~1iS
−1
x A (~x− ~y)

∣∣∣ ≤ ∥∥~x− ~y∥∥
H(~x)

√
max
i∈[m]

[S−1
x AH(~x)−1ATS−1

x ]ii

≤ (ce + µ(~x))−1/2
∥∥~x− ~y∥∥

H(~x)
. (5.10)

Now, clearly
∑

i∈[m] ti[~sy]i/[~sx]i is positive and since
∥∥~e∥∥∞ ≤ 1

2
ce we know that 1

2
M �

AT
xTAx. Therefore, by combining, (5.8), (5.9), and (5.10) we have

1

2

∥∥~x− ~y∥∥2

M
≤

∥∥~t∥∥
1
−
∑
i∈[m]

ti
[~sy]i
[~sx]i

+

∑
i∈[m]

ti
[~sy]i
[~sx]i

 ∥∥~x− ~y∥∥H(~x)√
ce + µ(~x)

≤
∥∥~t∥∥

1
+

∑
i∈[m]

ti
[~sy]i
[~sx]i

 ∥∥~x− ~y∥∥H(~x)√
ce + µ(~x)

(5.11)
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Now since 5p~e(~x) = −ATS−1
x T~1 + λ~x we have

〈~x− ~y,5p~e(~x)〉 = −
∑
i∈[m]

ti
[~sx − ~sy]i

[~sx]i
+ λ~xT (~x− ~y)

and therefore by Cauchy Schwarz and ~xT~y ≤
∥∥~x∥∥2

2
+ 1

4

∥∥~y∥∥2

2
,∑

i∈[m]

ti
[~sy]i
[~sx]i

=
∥∥~t∥∥

1
− λ
∥∥~x∥∥2

2
+ λ~xT~y + 〈~x− ~y,5p~e(~x)〉 (5.12)

≤
∥∥t∥∥

1
+
λ

4

∥∥~y∥∥2

2
+
∥∥~x− ~y∥∥

H(~x)
δ~e(~x) . (5.13)

Now, using (5.11), (5.13) and the definition of H(~x), we have

1

2

∥∥~x− ~y∥∥2

H(~x)
=

1

2

∥∥~x− ~y∥∥2

M
+
λ

2

∥∥~x− ~y∥∥2

2

≤
∥∥~t∥∥

1
+

∑
i∈[m]

ti
[~sy]i
[~sx]i

 ∥∥~x− ~y∥∥H(~x)√
ce + µ(~x)

+
λ

2

∥∥~x− ~y∥∥2

2

≤
∥∥~t∥∥

1
+

∥∥t∥∥
1

+ λ
4

∥∥~y∥∥2

2√
ce + µ(~x)

∥∥~x− ~y∥∥
H(~x)

+ δe(~x)

∥∥~x− ~y∥∥2

H(~x)√
ce + µ(~x)

+
λ

2

∥∥~x− ~y∥∥2

2
.

Using the fact that δe(~x) ≤ 0.1
√
ce + µ(~x), we have

1

4

∥∥~x− ~y∥∥2

H(~x)
≤
∥∥~t∥∥

1
+
λ

2

∥∥~x− ~y∥∥2

2
+

∥∥t∥∥
1

+ λ
4

∥∥~y∥∥2

2√
ce + µ(~x)

∥∥~x− ~y∥∥
H(~x)

. (5.14)

Furthermore, since
∑

i∈[m] ti[~sy]i/[~sx]i is positive, (5.12) shows that

λ~xT (~x− ~y) = λ
∥∥~x∥∥2

2
− λ~xT~y ≤

∥∥~t∥∥
1

+ 〈~x− ~y,5p~e(~x)〉 ≤
∥∥~t∥∥

1
+
∥∥~x− ~y∥∥

H(~x)
δe(~x)

and hence

λ

2

∥∥~x− ~y∥∥2

2
≤ λ

2

∥∥~x− ~y∥∥2

2
+
λ

2

∥∥~x∥∥2

2
= λ~xT (~x− ~y) +

λ

2

∥∥~y∥∥2

2

≤
∥∥~t∥∥

1
+
λ

2

∥∥~y∥∥2

2
+
∥∥~x− ~y∥∥

H(~x)
δe(~x) . (5.15)

Putting (5.15) into (5.14) and using the fact that δe(~x) ≤ 0.1
√
ce + µ(~x), we have

1

4

∥∥~x− ~y∥∥2

H(~x)
≤ 2
∥∥~t∥∥

1
+
λ

2

∥∥~y∥∥2

2
+

(
0.1 +

∥∥~t∥∥
1

+ λ
4

∥∥~y∥∥2

2√
ce + µ(~x)

)∥∥~x− ~y∥∥
H(~x)

.

Now, using
∥∥~t∥∥

1
≤ 2mce + n and

√
ce + µ(~x) ≤ 1.05, we have

1

4

∥∥~x− ~y∥∥2

H(~x)
≤ 2.2α + (0.1 + α)

∥∥~x− ~y∥∥
H(~x)

for α =
2mce + n+ λ

4

∥∥~y∥∥2

2√
ce + µ(~x)

.
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Since α ≥ 1/
√

1.1, we have that∥∥~x− ~y∥∥
H(~x)
≤

0.1 + α +
√

(α + 0.1)2 + 2.2α

2 · 1
4

≤ 6α

yielding (5.7).
We also have by (5.12) and the fact that δe(~x) ≤ 0.1

√
ce + µ(~x),

λ
∥∥~x∥∥2

2
=
∥∥t∥∥

1
+ λ~xT~y + 〈~x− ~y,5p~e(~x)〉 −

∑
i∈[m]

ti
[~sy]i
[~sx]i

≤
∥∥t∥∥

1
+
λ

2

∥∥~x∥∥2

2
+
λ

2

∥∥~y∥∥2

2
+
∥∥~x− ~y∥∥

H(~x)
δe(~x)

≤
∥∥t∥∥

1
+
λ

2

∥∥~x∥∥2

2
+
λ

2

∥∥~y∥∥2

2
+ 0.1

√
ce + µ(~x)

∥∥~x− ~y∥∥
H(~x)

Hence, using
∥∥~t∥∥

1
≤ 2mce + n and

∥∥~x− ~y∥∥
H(~x)
≤ 6α, we have

λ

2

∥∥~x∥∥2

2
≤
∥∥t∥∥

1
+
λ

2

∥∥~y∥∥2

2
+ 0.6

(
2mce + n+

λ

4

∥∥~y∥∥2

2

)
≤ λ

∥∥~y∥∥2

2
+ 2(mce + n).

In the following lemma we show how we can write one hyperplane in terms of the others
provided that we are nearly centered and show there is a constraint that the central point is
close to.

Lemma 20. Let A ∈ Rm×n and ~b ∈ Rm such that
∥∥ai∥∥2

= 1 for all i. Suppose that ~x ∈ P =

{~y : A~y ≥ ~b} and ~e ∈ Rm such that
∥∥~e∥∥∞ ≤ 1

2
ce ≤ 1

2
. Furthermore, let ε = minj∈[m] sj(~x)

and suppose that i = argminj∈[m]sj(~x) then∥∥∥∥∥~ai +
∑
j 6=i

(
s(x)i
s(x)j

)(
ce + ej + ψj(~x)

ce + ei + ψi(~x)

)
~aj

∥∥∥∥∥
2

≤ 2ε

(ce + µ(~x))

[
λ
∥∥~x∥∥

2
+ δe(~x)

√
mce + n

ε2
+ λ

]
.

Proof. We know that

5pe(~x) = −ATS−1
x (ce~1 + ~e+ ~ψx) + λ~x

= λ~x−
∑
i∈[m]

(ce + ei + ψi)

s(~x)i
~ai

Consequently, by
∥∥~e∥∥∞ ≤ 1

2
ce, and ψi(~x) ≥ µ(~x), we have∥∥∥∥∥~ai +

∑
j 6=i

(
s(x)i
s(x)j

)(
ce + ej + ψj(~x)

ce + ei + ψi(~x)

)
~aj

∥∥∥∥∥
2

=
si(~x)

ce + ei + ψi(~x)

∥∥∥ATS−1
x (ce~1 + ~e+ ~ψx)

∥∥∥
2

≤ 2ε

ce + µ(~x)

[
λ
∥∥~x∥∥

2
+
∥∥5 pe(~x)

∥∥
2

]
.
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Using
∥∥~ai∥∥ = 1,

∑
i ψi ≤ n, and si(~x) ≥ ε, we have

Tr(AT
x (ceI + Ψx)Ax) = Tr(AxA

T
x (ceI + Ψx))

=
∑
i

(ce + ψi)

∥∥ai∥∥2

2

s2
i (~x)

≤ mce + n

ε2
. (5.16)

Hence, we have H(~x) �
(
mce+n
ε2

+ λ
)

I and
∥∥ 5 pe(~x)

∥∥
2
≤ δe(~x)

√
mce+n
ε2

+ λ yielding the

result.

5.4 The Algorithm

Here, we put all the results in the previous sections to get our ellipsoid algorithm. Below is
a sketch of the pseudocode; we use ca, cd, ce, c∆ to denote parameters we decide later.

Algorithm 2: Our Cutting Plane Method

Input: A(0) ∈ Rm×n, ~b(0) ∈ Rm, ε > 0, and radius R > 0.
Input: A separation oracle for a non-empty set K ⊂ B∞(R).
Check: Throughout the algorithm, if si(~x

(k)) < ε output P (k).
Check: Throughout the algorithm, if ~x(k) ∈ K, output ~x(k).
Set P (0) = B∞(R).

Set ~x(0) := ~0 and compute τ
(0)
i = ψP (0)(~x(0))i for all i ∈ [m] exactly.

for k = 0 to ∞ do
Let m(k) be the number of constraints in P (k).
Compute ~w(k) such that ΨP (k)(~x(k)) �W(k) � (1 + c∆)ΨP (k)(~x(k)).

Let i(k) ∈ arg maxi∈[m(k)]

∣∣∣w(k)
i − τ

(k)
i

∣∣∣.
Set τ

(k+ 1
3

)

i(k) = ψP (k)(~x(k))i(k) and τ
(k+ 1

3
)

j = τ
(k)
j for all j 6= i(k).

if mini∈[m(k)] w
(k)
i ≤ cd then

Remove constraint with minimum w
(k)
i yielding polytope P (k+1).

Update ~τ according to Lemma 18 to get τ
(k+ 2

3
)

j .

else
Use separation oracle at ~x(k) to get a constraint {~x : ~aT~x ≥ ~aT~x(k)} with∥∥~a∥∥

2
= 1.

Add constraint {~x : ~aT~x ≥ ~aT~x(k) − c−1/2
a

√
~aT (ATS−2

~x(k)A + λI)−1~a} yielding

polytope P (k+1).

Update ~τ according to Lemma 17 to get τ
(k+ 2

3
)

j .

(~x(k+1), ~τ (k+1)) = Centering(~x(k), ~τ (k+ 2
3

), 200, c∆).
end

In the algorithm, there are two main invariants we maintain. First, we maintain that the
centrality δP,~e(~x), which indicates how close ~x is to the minimum point of p~e, is small. Second,
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we maintain that
∥∥~e(~τ , ~x)

∥∥
∞, which indicates how accurate the leverage score estimate ~τ is,

is small. In the following lemma we show that we maintain both invariants throughout the
algorithm.

Lemma 21. Assume that ce ≤ cd ≤ 1
106 , ca

√
ca ≤ cd

103 , cd ≤ ca, and c∆ ≤ Cce/ log(n log(R/ε))
for some small enough universal constant C. During our cutting plane method, for all k,
with high probability in n, we have

1.
∥∥~e(~τ (k+ 1

3
), ~x(k))

∥∥
∞ ≤

1
1000

ce,
∥∥~e(~τ (k+ 2

3
), ~x(k))

∥∥
∞ ≤

1
1000

ce,
∥∥~e(~τ (k+1), ~x(k+1))

∥∥
∞ ≤

1
400
ce.

2. δ
P (k),~e(~τ (k+ 2

3 ),~x(k))
(~x(k)) ≤ 1

100

√
ce + min (µ(~x(k)), cd).

3. δP (k+1),~e(~τ (k+1),~x(k+1))(~x
(k+1)) ≤ 1

400

√
ce + min (µ(~x(k+1)), cd).

Proof. Some statements of the proof hold only with high probability in n; we omit mentioning
this for simplicity.

We prove by induction on k. Note that the claims are written in order consistent with the
algorithm and proving the statement for k involves bounding centrality at the point ~x(k+1).
Trivially we define, ~τ (−1) = ~τ (− 2

3
) = ~τ (− 1

3
) = ~τ (0), ~x(−1) = ~x(0) and note that the claims

then hold for k = −1 as we compute the initial leverage scores, ~τ (0), exactly and since the
polytope is symmetric we have δ~e(~τ (0),~x(0))(~0) = 0. We now suppose they hold for all t < k
and show that they hold for t = k.

We first bound δ. For notational simplicity, let ηt
def
=
√
ce + min(µ(~x(t)), cd). By the

induction hypothesis we know that δP (t),~e(~τ (t),~x(t))(~x
(t)) ≤ 1

400
ηt. Now, when we update

τ (t) to τ (t+ 1
3

), we set ~ei(t) to 0. Consequently, Lemma 13 and the induction hypothesis∥∥~e(~τ (t), ~x(t))
∥∥
∞ ≤

1
400
ce show that

δ
P (t),~e(~τ (t+ 1

3 ),~x(t))
(~x(t)) ≤ δP (t),~e(~τ (t),~x(t))(~x

(t)) +
1√

ce + µ(~x(t))
ei(t)(~τ

(t), ~x(t))

≤ 1

400
ηt +

√
ce

400
≤ ηt

200
(5.17)

Next, we estimate the δ changes when we remove or add a constraint.
For the case of removal, we note that it happens only if µ(~x(t)) ≤ miniwi ≤ cd ≤ 1

106 .
Also, the row we remove has leverage score at most 1.1µ(~x(t)) because we pick the row with
minimum w. Hence, Lemma 18 show that

δ
P (t+1),~e(~τ (t+ 2

3 ),~x(t))
(~x(t)) ≤ 1√

1− 2µ(~x(t))
δ
P (t),~e(~τ (t+ 1

3 ),~x(t))
(~x(t)) + 3(ce + µ(~x(t)))

≤ 1√
1− 2 · 10−6

( ηt
200

)
+ 3(ce + µ(~x(t))) ≤ ηt

100

where we used the fact µ(~x(t)) ≤ cd and hence ce + µ(~x(t)) ≤
√

2cdηt ≤
√

2
1000

ηt.
For the case of addition, we note that it happens only if 2µ(~x(t)) ≥ miniwi ≥ cd. Further-

more, in this case the hyperplane we add is chosen precisely so that ψa = ca. Furthermore,
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since ce ≤ cd ≤ ca ≤ 1
100

by Lemma 17 we have that

δ
P (t+1),~e(~τ (t+ 2

3 ),~x(t))
(~x(t)) ≤

√
1 + caδP (t),~e(~τ (t+ 1

3 ),~x(t))
+
(
ce
√

1 + ca + ca
)√ ca

µ(~x(t))
+ ca

≤ ηt
190

+ 4ca

√
ca
cd

.

Furthermore, since ca
√
ca ≤ cd

1000
, µ(~x(t)) ≥ cd/2, and cd ≤ 10−6 we know that 4ca

√
ca/cd ≤

1
250
ηt and consequently in both cases we have δ

P (t+1),~e(~τ (t+ 2
3 ),~x(t))

(~x(t)) ≤ 1
100
ηt.

Now, note that Lemmas 17 and 18 show that ~e does not change during the addition
or removal of an constraint. Hence, we have

∥∥~e(~τ (t+ 2
3

), ~x(t))
∥∥
∞ ≤

∥∥~e(~τ (t+ 1
3

), ~x(t))
∥∥
∞. Fur-

thermore, we know the step “~τ
(k+ 1

3
)

i(k) = ψP (k)(~x(k))i(k)” only decreases
∥∥~e∥∥∞ and hence we

have
∥∥~e(~τ (t+ 2

3
), ~x(t))

∥∥
∞ ≤

∥∥~e(~τ (t), ~x(t))
∥∥
∞ ≤

ce
400

. Thus, we have all the conditions needed for
Lemma 14 and consequently

δP (t+1),~e(~τ (t+1),~x(t+1))(~x
(t+1)) ≤ 2

(
1− 1

64

)200

δ
P (t+1),~e(~τ (t+ 2

3 ),~x(t))
(~x(t)) ≤ 1

1000
ηt .

Lemma 14 also shows that that
∥∥∥ s(~x(t+1))−s(~x(t))

s(~x(t))

∥∥∥
2
≤ 1

10
and hence ψi(~x

(t)) ≤ 2ψi(~x
(t+1)) for

all i. Therefore, ηt ≤ 2ηt+1 and thus

δP (t+1),~e(~τ (t+1),~x(t+1))(~x
(t+1)) ≤

√
ce + min (cd, µ(~x(t+1)))

400
.

completing the induction case for δ.
Now, we bound

∥∥~e∥∥∞. Lemma 17 and 18 show that ~e does not change during the

addition or removal of an constraint. Hence, ~e is affected by only the update step “τ
(k+ 1

2
)

i(k) =

ψP (k)(~x(k))i(k)” and the centering step. Using the induction hypothesis δ
P (t),~e(~τ (t+ 2

3 ),~x(t))
(~x(t)) ≤

1
100
ηt and Lemma 14 shows that E~e(~τ (t+1), ~x(t+1)) = ~e(~τ (t+ 2

3
), ~x(t)) and

∥∥~e(~τ (t+1), ~x(t+1)) −
~e(~τ (t+ 2

3
), ~x(t))

∥∥
2
≤ 1

10
c∆. The goal for the update step is to decrease ~e by updating ~τ . In

Section 6.2, we give a self-contained analysis of the effect of this step as a game. In each
round, the vector ~e is corrupted by some mean 0 and bounded variance noise and the problem
is how to update ~e such that

∥∥~e∥∥∞ is bounded. Theorem 34 shows that we can do this by
setting the ~ei = 0 for the almost maximum coordinate in each iteration. This is exactly
what the update step is doing. Since our algorithm would run only O(n log(nR/ε)) many
iterations, Theorem 34 shows that this strategy guarantees that after the update step, we
have ∥∥∥~e(τ (t+ 1

3
), ~x(t))

∥∥∥
∞

= O (c∆ log (n log(R/ε))) .

Now, by our choice of c∆, we have
∥∥~e(~τ (t+ 1

3
), ~x(t))

∥∥
∞ ≤

1
1000

ce. Lemma 17 and 18 show
that ~e does not change during the addition or removal of an constraint. Hence, we have∥∥~e(~τ (t+ 2

3
), ~x(t))

∥∥
∞ ≤

1
1000

ce. Now, we note that again Lemma 14 shows
∥∥~e(~τ (t+1), ~x(t+1)) −

~e(~τ (t+ 2
3

), ~x(t))
∥∥

2
≤ 1

10
c∆ ≤ 1

1000
ce, and we have

∥∥~e(~τ (t+1), ~x(t+1))
∥∥
∞ ≤

ce
400

. This finishes the

induction case for
∥∥~e∥∥∞ and proves this lemma.
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Next, we show the number of constraints is always linear to n.

Lemma 22. Throughout our cutting plane method, there are at most 1 + 2n
cd

constraints.

Proof. We only add a constraint if miniwi ≥ cd. Since 2ψi ≥ wi, we have ψi ≥ cd
2

for all i.
Letting m denote the number of constraints after we add that row, we have n ≥

∑
i ψi ≥

(m− 1)(cd/2).

Using K 6= ∅ and K ⊂ B∞(R), here we show that the points are bounded.

Lemma 23. During our Cutting Plane Method, for all k, we have
∥∥~x(k)

∥∥
2
≤ 6
√
n/λ+2

√
nR.

Proof. By Lemma 21 and Lemma 19 we know that
∥∥~x(k)

∥∥2

2
≤ 4λ−1(mce +n) + 2

∥∥~y∥∥2

2
for any

~y ∈ P (k). Since our method never cuts out any point in K and since K is nonempty, there is

some ~y ∈ K ⊂ P (k). Since K ⊂ B∞(R), we have
∥∥~y∥∥2

2
≤ nR2. Furthermore, by Lemma 22

we have that mce ≤ ce + 2n ≤ 3n yielding the result.

Lemma 24. si
(
~x(k)
)
≤ 12

√
n/λ + 4

√
nR +

√
1
caλ

for all i and k in the our cutting plane

method.

Proof. Let ~x(j) be the current point at the time that the constraint corresponding to si,
denoted {~x : ~aTi ~x ≥ aTi ~x

(j) − si(~x(j))}, was added. Clearly

si(~x
(k)) = ~aTi ~x

(k) − aTi ~x(j) + si(~x
(j)) ≤

∥∥~ai∥∥ · ∥∥~x(k)
∥∥+

∣∣~aTi ~x(j) − si(~x(j))
∣∣ .

On the one hand, if the constraint for si comes from the initial symmetric polytope P (0) =
B∞(R), we know

∣∣~aT~x(j) − ~si(~x(j))
∣∣ ≤ R . On the other hand, if the constraint was added

later then we know that

si(~x
(j)) = c−1/2

a

√
~aT (ATS−2

~x(j)A + λI)−1~a ≤ (caλ)−1/2

and
∣∣~aT~x(j) − si(~x(j))

∣∣ ≤ ∥∥~ai∥∥ · ∥∥~x(j)
∥∥ +

∣∣si(~x(j))
∣∣. Since

∥∥~ai∥∥2
= 1 by design and

∥∥~x(j)
∥∥

2

and
∥∥~x(k)

∥∥
2

are upper bounded by 6
√
n/λ + 2

√
nR by Lemma 23, in either case the result

follows.

Now, we have everything we need to prove that the potential function is increasing in
expectation.

Lemma 25. Under the assumptions of Lemma 21 if λ = 1
caR2 , ce = cd

4 log(6nR/ε)
, and 24cd ≤

ca ≤ 1
1000

then for all k we have

Ep~e(~τ (k+1),~x(k+1))(~x
(k+1)) ≥ p~e(~τ (k),~x(k))(~x

(k))− cd + log(1 + β)

where β = ca for the case of adding a constraint and β = −cd for the case of removal.
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Proof. Note that there are three places which affect the function value, namely the update
step for τ (k+ 1

3
), the addition/removal of constraints, and the centering step. We bound the

effect of each separately.
First, for the update step, we have

p
~e(~τ (k+ 1

3 ),~x(k))
(~x(k)) = (c+ ei(k)) log(si(k)(~x(k))/R) + p~e(~τ (k),~x(k))(~x

(k)).

Lemma 24, the termination condition, λ = 1
caR2 and ca <

1
1000

ensure that

ε ≤ si(k)(~x(k)) ≤ 12
√
n/λ+ 4

√
nR +

√
1

caλ
≤ 6
√
nR (5.18)

and Lemma 21 shows that |ei(k)| ≤ ce. Hence, we have

p
~e(~τ (k+ 1

3 ),~x(k))
(~x(k)) ≥ p~e(~τ (k),~x(k))(~x

(k)) + 2ce log(ε/R).

For the addition step, Lemma 17 shows that

p
~e(~τ (k+ 2

3 ),~x(k))
(~x(k)) = p

~e(~τ (k+ 1
3 ),~x(k))

(~x(k))− ce log (s(~x)m+1/R) + log(1 + ca)

≥ p
~e(~τ (k+ 1

3 ),~x(k))
(~x(k))− ce log(6

√
n) + log(1 + ca)

and for the removal step, Lemma 18 and |ei| ≤ ce shows that

p
~e(~τ (k+ 2

3 ),~x(k))
(~x(k)) ≥ p

~e(~τ (k+ 1
3 ),~x(k))

(~x(k)) + [ce + eP (~τ , ~x)m] log (s(~x)m/R) + log(1− cd)

≥ p
~e(~τ (k+ 1

3 ),~x(k))
(~x(k))− 2ce log(R/ε) + log(1− cd)

After the addition or removal of a constraint, Lemma 21 shows that

δ
P (k),~e(~τ (k+ 2

3 ),~x(k))
(~x(k)) ≤ 1

100

√
ce + min (µ(~x(k)), cd)

and therefore Lemma 14 and ce ≤ cd show that

Ep~e(~τ (k+1),~x(k+1))(~x
(k+1)) ≥ p

~e(~τ (k+ 2
3 ),~x(k))

(~x(k))− 8

(√
ce + min (µ(~x(k)), cd)

100

)2

≥ p
~e(~τ (k+ 2

3 ),~x(k))
(~x(k))− cd

625
.

Combining them with ce = cd
4 log(6nR/ε)

, we have

Ep~e(~τ (k+1),~x(k+1))(~x
(k+1)) ≥ p~e(~τ (k),~x(k))(~x

(k))− 2ce log(6nR/ε)− cd
625

+ log(1 + β)

≥ p~e(~τ (k),~x(k))(~x
(k))− cd + log(1 + β)

where β = ca for the case of addition and β = −cd for the case of removal.

Theorem 26. For ca = 1
1010 , cd = 1

1012 , ce = cd
4 log(6nR/ε)

, c∆ = Cce
log(n log(R/ε))

and λ = 1
caR2 for

some small enough universal constant C, then we have

Ep~e(~τ (k+1),~x(k+1))(~x
(k+1)) ≥ p~e(~τ (k),~x(k))(~x

(k))− 1

1011
+

9β

1011

where β = 1 for the case of addition and β = 0 for the case of removal.

Proof. It is easy to see that these parameters satisfy the requirements of Lemma 25.
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5.5 Guarantees of the Algorithm

In this section we put everything together to prove Theorem 31, the main result of this
section, providing the guarantees of our cutting plane method.

For the remainder of this section we assume that ca = 1
1010 , cd = 1

1012 , ce = cd
4 log(6nR/ε)

,

c∆ = Cce
log(n log(R/ε))

and λ = 1
caR2 . Consequently, throughout the algorithm we have∥∥~x∥∥

2
≤ 6
√
n/λ+ 2

√
nR ≤ 3

√
nR. (5.19)

Lemma 27. If si(~x
(k)) < ε for some i and k during our Cutting Plane Method then

max
~y∈P (k)∩B∞(R)

〈~ai, ~y〉 − min
~y∈P (k)∩B∞(R)

〈~ai, ~y〉 ≤
8nε

cace
.

Proof. Let ~y ∈ P (k) ∩ B∞(R) be arbitrary. Since ~y ∈ B∞(R) clearly
∥∥~y∥∥2

2
≤ nR2. Further-

more, by Lemma 22 and the choice of parameters mce+n ≤ 3n. Consequently, by Lemma 19
and the fact that λ = 1

caR2 and ca < 1 we have

∥∥~x− ~y∥∥
H(~x)
≤

12mce + 6n+ 2λ
∥∥~y∥∥2

2√
ce + µ(~x)

≤
30n+ 2 n

ca√
ce + µ(~x)

≤ 4n

ca
√
ce

and therefore∥∥S−1
x(k)(s(~x

(k))− s(~y))
∥∥
∞ ≤

1
√
ce

∥∥S−1
x(k)(s(~x

(k))− s(~y))
∥∥
ceI+Ψ

≤ 4n

cace
.

Consequently, we have (1 − 4n
cace

)si(~x
(k)) ≤ si(~y) ≤ (1 + 4n

cace
)si(~x

(k)) for all ~y ∈ P (k) ∩
B∞(R).

Now let us show how to compute a proof (or certificate) that the feasible region has small
width on the direction ~ai.

Lemma 28. Suppose that during some iteration k for i = argminjsj(~x
(k)) we have si(~x

(k)) ≤
ε. Let (~x∗, ~τ∗) = Centering(~x(k), ~τ (k), 64 log(2R/ε), c∆) where ~τ (k) is the τ at that point in
the algorithm and let

~a∗ =
∑
j 6=i

tj~aj where tj =

(
s(~x∗)i
s(~x∗)j

)(
ce + ej(~x∗, ~τ∗) + ψj(~x∗)

ce + ei(~x∗, ~τ∗) + ψi(~x∗)

)
.

Then, we have that
∥∥~ai + ~a∗

∥∥
2
≤ 8

√
nε

caceR
and tj ≥ 0 for all j. Furthermore, we haveO(n)∑

j 6=i

tjaj

T

~x∗ −
O(n)∑
j 6=i

tjbj ≤
4nε

ce
.
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Proof. By Lemma 14 and Lemma 21 we know that ~e(~x∗, ~τ∗) ≤ 1
2
ce and δ~e(~x∗,~τ∗) ≤ ε

R

√
ce + µ(~x∗).

Since ~e(~x∗, ~τ∗) ≤ 1
2
ce, we have tj ≥ 0 for all j. Furthermore, by Lemma 20 and (5.19), we

then have that with high probability in n∥∥~ai + ~a∗
∥∥

2
≤ 2ε

(ce + µ(~x∗))

[
λ
∥∥~x∗∥∥2

+ δe(~x∗)

√
mce + n

ε2
+ λ

]

≤ 2ε

ce

[
1

caR2
(3
√
nR) +

2ε

R

√
3n

ε2
+

1

caR2

]
≤ 2ε

ce

[
3
√
n

caR
+

2
√

3n

R
+

2
√
caR

]
≤ 8
√
nε

caceR
.

By Lemma 21 we know that ~e(~x∗, ~τ∗) ≤ 1
2
ce and henceO(n)∑

j 6=i

tjaj

T

~x∗ −
O(n)∑
j 6=i

tjbj =

O(n)∑
j 6=i

tjs(~x∗)j = si(~x∗)

O(n)∑
j 6=i

(
ce + ej(~x∗, ~τ∗) + ψj(~x∗)

ce + ei(~x∗, ~τ∗) + ψi(~x∗)

)

≤ si(~x∗)

O(n)∑
j 6=i

( 3
2
ce + ψj(~x∗)

1
2
ce + ψi(~x∗)

)
≤ si(~x∗)

3mce + 2n

ce

≤ 3n

ce
si(~x∗) ≤

4nε

ce

where the last line follows the fact that si(~x∗) ≤ 1.1si(~x
(k)) ≤ 1.1ε (Lemma 14).

Lemma 29. During our Cutting Plane Method, if p~e(~x
(k)) ≥ 2n log(nR

caε
) + 6n

ca
, then we have

si(~x
(k)) ≤ ε for some i.

Proof. Recall that

p~e(~x
(k)) = −

∑
i∈[m]

(ce + ei) log
(
si(~x

(k))i/R
)

+
1

2
log det

(
R2
(
ATS−2

x(k)A + λI
))

+
λ

2

∥∥~x(k)
∥∥2

2
.

Using
∥∥~x(k)

∥∥ ≤ 3
√
nR (5.19) and λ = 1

caR2 , we have

p~e(~x
(k)) ≤ −

∑
i∈[m]

(ce + ei) log(s(~x(k))i/R) +
1

2
log det

(
R2
(
ATS−2

x(k)A + λI
))

+
5n

ca
.

Next, we note that
∥∥ei∥∥∞ ≤ ce ≤ 1

4 log(6nR/ε)
and si

(
~x(k)
)
≤ 12

√
n/λ+4

√
nR+

√
1
caλ
≤ 6
√
nR

(Lemma 24). Hence, we have

p~e(~x
(k)) ≤ 1

2
log det

(
R2
(
ATS−2

x(k)A + λI
))

+
6n

ca
− n

2
log(

mini si
R

).

We prove si(~x
(k)) ≤ ε by contradiction. Since p~e(~x

(k)) ≥ 2n log(nR
caε

) + 6n
ca

and si(~x
(k)) > ε

for all i, we have that 1
2

log det
(
R2
(
ATS−2

x(k)A + λI
))
≥ n log(nR

caε
). Using ε < R, we have

that ∑
i

log λi
(
R2
(
ATS−2

x(k)A + λI
))
≥ n log

(
n2R2

c2
aε

2

)
≥ n log

(
nR2

2c2
aε

2
+R2λ

)
.
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Therefore, we have log λmax

(
R2
(
ATS−2

x(k)A + λI
))
≥ log

(
nR2

2c2aε
2 +R2λ

)
. Hence, we have

some unit vector ~v such that ~vATS−2
x A~v + λ~vT~v ≥ n

2c2aε
2 + λ. Thus,

∑
i

(A~v)2
i

s(~x(k))2
i

≥ n

2c2
aε

2
.

Lemma 22 shows that the number of constraints is bounded by 1 + 2n/cd ≤ n/(2c2
a) and

hence there is some i such that
(A~v)2

i

s(~x(k))2
i
≥ 1

ε2
. Since ~ai and ~v are unit vectors, we have

1 ≥ 〈~ai, ~v〉2 ≥ s(~x(k))2
i /ε

2 and hence s(~x(k))i ≤ ε (contradiction).

Lemma 30. With constant probability, the algorithm ends in 1024n log(nR
ε

) iterations. 2

Proof. Theorem 26 shows that for all k

Ep~e(~τ (k+1),~x(k+1))(~x
(k+1)) ≥ p~e(~τ (k),~x(k))(~x

(k))− 1

1011
+

9β

1011
(5.20)

where β = 1 for the case of adding a constraint and β = 0 for the case of removing a
constraint. Now, for all t consider the random variable

Xt = p~e(~τ (t),~x(t))(~x
(t))− 4.5m(t)

1011
− 3.5t

1011

where m(t) is the number of constraints in iteration t of the algorithm. Then, since m(t+1) =
m(t) − 1 + 2β, (5.20) shows that

EXt+1 ≥ p~e(~τ (t),~x(t))(~x
(t))− 1

1011
+

9β

1011
− 4.5m(t+1)

1011
− 3.5(t+ 1)

1011

= Xt −
1

1011
+

9β

1011
− 4.5(−1 + 2β)

1011
− 3.5

1011
= Xt.

Hence, it is a sub-martingale. Let T be the iteration the algorithm outputs ~x(k) or P (k).
Optional stopping theorem shows that

EXmin(T,t) ≥ EX0. (5.21)

Since the polytope is B∞(R), we have

p~0(~0) = −
∑

i∈[m(0)]

ce log
(
si(~0)/R

)
+

1

2
log det

(
R2
(
ATS−2

0 A + λI
))

+
λ

2

∥∥~0∥∥2

2

≥ 1

2
log det

(
R2

(
2

R2
I +

1

caR2
I

))
≥ −15n

2We have made no effort on improving this constant and we believe it can be improved to less than 300
using techniques in [8, 9].
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where we used ca = 1/1010 on the last line. Hence, we have

X0 ≥ −15n− 4.5m(0)

1011

≥ −20n.

Therefore, (5.21) shows that for all t we have

−20n ≤ EXmin(T,t)

= pE
[
Xmin(T,t)|T < t

]
+ (1− p)E

[
Xmin(T,t)|T ≥ t

]
(5.22)

where p
def
= P(T < t).

Note that

E
[
Xmin(T,t)|T ≥ t

]
≤ E

[
p~e(~τ (t),~x(t))(~x

(t))|T ≥ t
]
− 4.5m(t)

1011
− 3.5t

1011
.

≤ E
[
p~e(~τ (t),~x(t))(~x

(t))|T ≥ t
]
− 3.5t

1011
.

Furthermore, by Lemma 29 we know that when p~e(~τ (t),~x(t))(~x
(t)) ≥ 2n log(nR

caε
) + 6n

ca
, there is a

slack that is too small and the algorithm terminates. Hence, we have

E
[
Xmin(T,t)|T ≥ t

]
≤ 2n log(

nR

caε
) +

6n

ca
− 3.5t

1011
.

The proof of Lemma 21 shows that the function value does not change by more than 1 in
one iteration by changing ~x and can change by at most mce log(3nR

ε
) by changing τ . Since by

Lemma 22 we know that m ≤ 1+ 2n
ca

and ce = cd
4 log(6nR/ε)

, we have that p~e(~x) ≤ 2n log(nR
caε

)+ 7n
ca

throughout the execution of the algorithm. Therefore, we have

E
[
Xmin(T,t)|T ≤ t

]
≤ ET<tp~e(~τ (t),~x(t))(~x

(t)) ≤ 2n log(
nR

caε
) +

7n

ca
.

Therefore, (5.22) shows that

−20n ≤ 2n log

(
nR

caε

)
+

7n

ca
− (1− p) 3.5t

1011
.

Hence, we have

(1− p) 3.5t

1011
≤ 2n log

(
nR

caε

)
+

7n

ca
+ 20n

≤ 2n log

(
nR

caε

)
+

7n

ca
+ 20n

= 2n log

(
Rn

caε

)
+ 8 · 1010n.

Thus, we have

P(T < t) = p ≥ 1− 1

t

(
1011n log

(
nR

ε

)
+ 1022n

)
.
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Now, we gather all the result as follows:

Theorem 31 (Our Cutting Plane Method). Let K ⊆ Rn be a non-empty set contained in a
box of radius R, i.e. K ⊆ B∞(R). For any ε ∈ (0, R) in expected time O(nSOΩ(ε/

√
n)(K) log(nR/ε)+

n3 logO(1)(nR/ε)) our cutting plane method either outputs ~x ∈ K or finds a polytope P =

{~x : A~x ≥ ~b} ⊇ K such that

1. P has O(n) many constraints (i.e. A ∈ RO(n)×n and ~b ∈ RO(n)).

2. Each constraint of P is either an initial constraint from B∞(R) or of the form 〈~a, ~x〉 ≥
b − δ where 〈~a, ~x〉 ≥ b is a normalized hyperplane (i.e.

∥∥~a∥∥
2

= 1) returned by the

separation oracle and δ = Ω
(

ε√
n

)
.

3. The polytope P has small width with respect to some direction ~a1 given by one of the
constraints, i.e.

max
~y∈P∩B∞(R)

〈~a1, ~y〉 − min
~y∈P∩B∞(R)

〈~a1, ~y〉 ≤ O (nε log(nR/ε))

4. Furthermore, the algorithm produces a proof of the fact above involving convex combi-
nation of the constraints, namely, non-negatives t2, ..., tO(n) and ~x ∈ P such that

(a)
∥∥~x∥∥

2
= O (

√
nR),

(b)
∥∥∥~a1 +

∑O(n)
i=2 ti~ai

∥∥∥
2

= O
(
ε
R

√
n log(nR/ε)

)
,

(c) ~aT1 ~x−~b1 ≤ ε,

(d)
(∑O(n)

i=2 tiai

)T
~x−

∑O(n)
i=2 tibi ≤ O(nε log(nR/ε)) .

Proof. Our algorithm either finds ~x ∈ K or we have si(~x
(k)) < ε. When si(~x

(k)) < ε, we

apply Lemma 28 to construct the polytope P and the linear combination
∑O(n)

i=2 ti~ai.
Notice that each iteration of our algorithm needs to solve constant number of linear

systems and implements the sampling step to find ~∆(k) ∈ Rn s.t. E[~∆(k)] = ~ψ(~x(k)) −
~ψ(~x(k−1)). Theorem 33 shows how to do the sampling in Õ(1) many linear systems. Hence,
in total, each iterations needs to solve Õ(1) many linear systems plus nearly linear work. To
output the proof for (4), we use Lemma 28.

Note that the linear systems the whole algorithm need to solve is of the form

(ATS−2
x A + λI)−1~x = ~y.

where the matrix ATS−2
x A + λI can be written as A

T
DA for the matrix A = [A I] and

diagonal matrix

D =

[
S−2 0
0 λI

]
.

Note that Lemma 14 shows that
∥∥ (S(k)

)−1
(~s(k+1) − ~s(k))

∥∥
2
≤ 1

10
for the kth and (k + 1)th

linear systems we solved in the algorithm. Hence, we have
∥∥ (D(k)

)−1
(~d(k+1) − ~d(k))

∥∥
2
≤
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1
10

. In [177], they showed how to solve such sequence of systems in Õ(n2) amortized cost.
Moreover, since our algorithm always changes the constraints by δ amount where δ = Ω( ε√

n
)

an inexact separation oracle SOΩ(ε/
√
n) suffices. (see Def 1). Consequently, the total work

O(nSOΩ(ε/
√
n)(K) log(nR/ε) + n3 logO(1)(nR/ε)). Note that as the running time holds with

only constant probability, we can restart the algorithm whenever the running time is too
large.

To prove (2), we note that from the algorithm description, we know the constraints are
either from B∞(R) or of the form ~aT~x ≥ ~aT~x(k) − δ where

δ =

√
~aT (ATS−2

~x(k)A + λI)−1~a

ca
.

From the proof of Lemma 29, we know that if λmax(ATS−2
x A + λI) ≥ n

c2aε
2 , then there is

si < ε. Hence, we have λmin((ATS−2
x A + λI)−1) ≥ c2aε

2

n
. Since ~a is a unit vector, we have√

~aT (ATS−2
~x(k)A + λI)−1~a

ca
≥
√
caε2

n
.

6 Technical Tools

In this section we provide stand-alone technical tools we use in our cutting plane method in
Section 5. In Section 6.1 we show how to efficiently compute accurate estimates of changes
in leverage scores using access to a linear system solver. In Section 6.2 we study what we
call the “Stochastic Chasing ~0 Game” and show how to maintain that a vector is small in `∞
norm by making small coordinate updates while the vector changes randomly in `2 norm.

6.1 Estimating Changes in Leverage Scores

In previous sections, we needed to compute leverage scores accurately and efficiently for use
in our cutting plane method. Note that the leverage score definition we used was

ψ(~w)i = ~1T
i

√
WA

(
ATWA + λI

)−1
AT
√

W~1i

for some λ > 0 which is different from the standard definition

σ(~w)i = ~1T
i

√
WA

(
ATWA

)−1
AT
√

W~1i.

However, note that the matrix ATWA + λI can be written as A
T
DA for the matrix A

T
=

[AT I] and diagonal matrix

D =

[
W 0
0 λI

]
.

and therefore computing ψ is essentially same as computing typical leverage scores. Conse-
quently, we use the standard definition σ to simplify notation.
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In [240], Spielman and Srivastava observed that leverage scores can be written as the
norm of certain vectors

σ(~w)i =
∥∥∥√WA

(
ATWA

)−1
AT
√

W~1i

∥∥∥2

2

and therefore leverage scores can be approximated efficiently using dimension reduction.
Unfortunately, the error incurred by this approximation is too large to use inside the cutting
point method. In this section, we show how to efficiently approximate the change of leverage
score more accurately.

In particular, we show how to approximate σ(~w)−σ(~v) for any given ~w,~v with
∥∥ log(~w)−

log(~v)
∥∥

2
� 1. Our algorithm breaks σ(~w)i−σ(~v)i into the sum of the norm of small vectors

and then uses the Johnson-Lindenstrauss dimension reduction to approximate the norm
of each vector separately. Our algorithm makes use of the following version of Johnson-
Lindenstrauss.

Lemma 32 ([1]). Let 0 ≤ ε ≤ 1
2

and let ~x1, ..., ~xm ∈ Rn be arbitrary m points. For
k = O(ε−2 log(m)) let Q be a k×n random matrix with each entry sampled from {− 1√

k
, 1√

k
}

uniformly and independently. Then, E ‖Q~xi‖2 =
∥∥~xi∥∥2

for all i ∈ [m] and with high proba-
bility in m we have that for all i ∈ [m]

(1− ε)
∥∥~xi∥∥2 ≤ ‖Q~xi‖2 ≤ (1 + ε)

∥∥~xi∥∥2
.

Algorithm 3: ĥ = LeverageChange(A, ~v, ~w, ε)

Input: A ∈ Rm×n, ~v, ~w ∈ Rm
>0, ε ∈ (0, 0.5).

Given:
∥∥V−1(~v − ~w)

∥∥
2
≤ 1

10
; ATVA and ATWA are invertible.

Sample Qd ∈ RO(ε−2 log(m))×n as in Lemma 32.

Let d̂i =
∥∥Qd

√
WA

(
ATWA

)−1
AT ~1i

∥∥2

2
for all i ∈ [n].

Let t = O (log(ε−1)).
Sample Qf ∈ RO(ε−2 log(mt))×n as in Lemma 32.
Pick positive integer u randomly such that Pr[u = i] = (1

2
)i.

for j ∈ {1, 2, · · · , t} ∪ {t+ u} do
if j is even then

Let f̂
(j)
i =

∥∥Qf

√
VA

(
ATVA

)−1
(
AT (V −W) A

(
ATVA

)−1
) j

2
AT ~1i

∥∥2

2
.

else

Let ∆+ def
= (V −W)+, i.e. the matrix V −W with negative entries set to 0.

Let ∆−
def
= (W −V)+, i.e. the matrix W −V with negative entries set to 0.

Let α̂
(j)
i =

∥∥Qf

√
∆+A(ATVA)−1(AT (V −W) A

(
ATVA

)−1
)
j−1

2 AT ~1i

∥∥2

2
.

Let β̂
(j)
i =

∥∥Qf

√
∆−A(ATVA)−1(AT (V −W)A(ATVA)−1)

j−1
2 AT ~1i

∥∥2

2
.

Let f̂
(j)
i = α̂

(j)
i − β̂

(j)
i .

end

end

Let f̂i = 2uf̂
(t+u)
i +

∑t
j=1 f̂

(j)
i .

Output: ĥi = (wi − vi)d̂i + vif̂i. for all i ∈ [m]
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Theorem 33. Let A ∈ Rm×n and ~v, ~w ∈ Rm
>0 be such that α

def
=
∥∥V−1(~v − ~w)

∥∥
2
≤ 1

10

and both ATVA and ATWA are invertible. For any ε ∈ (0, 0.5), Algorithm 3 generates a

random variable ĥ such that Eĥ = σ(~w)−σ(~v) and with high probability in m, we have ‖ĥ−
(σ(~w)− σ(~v)) ‖2 ≤ O (αε). Furthermore, the expected running time is Õ((nnz(A) + LO)/ε2)

where LO is the amount of time needed to apply
(
ATVA

)−1
and

(
ATWA

)−1
to a vector.

Proof. First we bound the running time. To compute d̂i, f̂
(j)
i , α̂

(j)
i , β̂

(j)
i , we simply perform

matrix multiplications from the left and then consider the dot products with each of the rows
of A. Naively this would take time Õ((t+u)2 log(mt)(nnz(A)+LO)). However, we can reuse
the computation in computing high powers of j to only take time Õ((t+u) log(mt)(nnz(A)+
LO)). Now since E[u] is constant we see that the total running time is as desired. It only
remains to prove the desired properties of ĥ.

First we note that we can re-write leverage score differences using

σ(~w)i−σ(~v)i = (wi − vi)
[
A
(
ATWA

)−1
AT
]
ii
+vi

[
A
((

ATWA
)−1 −

(
ATVA

)−1
)

AT
]
ii

.

Consequently, for all i ∈ [m], if we let

di
def
= ~1T

i A
(
ATWA

)−1
AT ~1i,

fi
def
= ~1T

i A
[(

ATWA
)−1 −

(
ATVA

)−1
]

AT ~1i.

then
σ(~w)i − σ(~v)i = (wi − vi)di + (vi)fi . (6.1)

We show that d̂i approximates d and f̂i approximate f̂ well enough to satisfy the statements
in the Theorem.

First we bound the quality of d̂i. Note that di =
∥∥√WA

(
ATWA

)−1
AT ~1i

∥∥2

2
. Con-

sequently, Lemma 32 shows that E[d̂i] = di and that with high probability in m we have
(1− ε)di ≤ d̂i ≤ (1 + ε)di for all i ∈ [m]. Therefore, with high probability in m, we have∥∥ (~w − ~v) d̂− (~w − ~v) ~d

∥∥2

2
=
∑
i∈[m]

(wi − vi)2
(
d̂i − di

)2

≤ ε2
∑
i∈[m]

(wi − vi)2d2
i

= ε2
∑
i∈[m]

(wi − vi)2

(
σ(~w)i
~wi

)2

≤ 2ε2
∑
i∈[m]

(
wi − vi
vi

)2

.

Next we show how to estimate f . Let X
def
=
(
ATVA

)−1/2
AT (V −W) A

(
ATVA

)−1/2
.

By the assumption on α we know −1
2
V ≺ V −W ≺ 1

2
V and therefore −1

2
I ≺ X ≺ 1

2
I.

Consequently we have that(
ATWA

)−1
=

(
ATVA

)−1/2
(I−X)−1 (ATVA

)−1/2

=
∞∑
j=0

(
ATVA

)−1/2
Xj
(
ATVA

)−1/2
.
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and therefore

fi = ~1T
i A

(
∞∑
j=0

(
ATVA

)−1/2
Xj
(
ATVA

)−1/2 −
(
ATVA

)−1

)
AT ~1i

=
∞∑
j=1

f
(j)
i where f

(j)
i

def
= ~1T

i A
(
ATVA

)−1/2
Xj
(
ATVA

)−1/2
AT ~1i .

Furthermore, using the definition of X we have that for even j

f
(j)
i =

∥∥∥X j
2

(
ATVA

)−1/2
AT ~1i

∥∥∥2

2

=

∥∥∥∥(ATVA
)−1/2

(
AT (V −W) A

(
ATVA

)−1
) j

2
AT ~1i

∥∥∥∥2

2

=

∥∥∥∥√VA
(
ATVA

)−1
(
AT (V −W) A

(
ATVA

)−1
) j

2
AT ~1i

∥∥∥∥2

2

For odd j, using our definition of ∆+ and ∆− we have that

f
(j)
i = ~1T

i A
(
ATVA

)−1/2
Xj
(
ATVA

)−1/2
AT ~1i

= ~1T
i A
((

ATVA
)−1

AT (V −W) A
) j−1

2 (
ATVA

)−1
AT (V −W)

×A
(
ATVA

)−1
(
AT (V −W) A

(
ATVA

)−1
) j−1

2
AT ~1i

= α
(j)
i − β

(j)
i

where

α
(j)
i

def
=

∥∥∥∥√∆+A
(
ATVA

)−1
(
AT (W −V) A

(
ATVA

)−1
) j−1

2
AT ~1i

∥∥∥∥2

2

,

β
(j)
i

def
=

∥∥∥∥√∆−A
(
ATVA

)−1
(
AT (W −V) A

(
ATVA

)−1
) j−1

2
AT ~1i

∥∥∥∥2

2

.

Consequently, by Lemma 32 and the construction, we see that

Ef̂i =
∞∑
j=1

f
(j)
i = fi

and therefore Eĥ = σ(~w)− σ(~v) as desired. All that remains is to bound the variance of f̂i.

To bound the variance of f̂ , let |X| =
(
ATVA

)−1/2
AT |W −V|A

(
ATVA

)−1/2
. Note

that −1
4
I � − |X| � X � |X| � 1

4
I and consequently for all j

g
(j)
i

def
= ~1T

i A
(
ATVA

)−1/2 |X|j
(
ATVA

)−1/2
AT ~1i

≤ 1

4j−1
~1T
i A
(
ATVA

)−1/2 |X|
(
ATVA

)−1/2
AT ~1i

def
=

1

vi4j−1
~1T
i Pv∆Pv

~1i
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where Pv =
√

VA
(
ATVA

)−1/2
AT
√

V and ∆ is a diagonal matrix with ∆ii =
∣∣∣wi−vivi

∣∣∣.
Using that 0 � Pv � I, we have that for all j

(4j−1)2

m∑
i=1

(
vig

(j)
i

)2

=
m∑
i=1

(
~1T
i Pv∆Pv

~1i

)2

= Tr (Pv∆PvPv∆Pv)

≤ Tr (Pv∆∆Pv) = Tr (∆PvPv∆)

≤ Tr
(
∆2
)

=
m∑
i=1

(
wi − vi
vi

)2

≤ α2

and thus
∥∥V~g(j)

∥∥
2
≤ 4α

4j
. Furthermore, since ∆+ � |W −V| and ∆− � |W −V| we have

that
∣∣∣α(j)

i

∣∣∣ ≤ g
(j)
i and

∣∣∣β(j)
i

∣∣∣ ≤ g
(j)
i . Consequently, by Lemma 32 again, we have

∥∥Vf̂ (j) −V ~f (j)
∥∥2

2
=

∑
i

v2
i

(
f̂

(j)
i − f

(j)
i

)2

≤ 2
∑
i

v2
i

(
α̂

(j)
i − α

(j)
i

)2

+ 2
∑
i

v2
i

(
β̂

(j)
i − β

(j)
i

)2

≤ 2ε2
∑
i

v2
i

((
α

(j)
i

)2

+
(
β

(j)
i

)2
)

≤ 4ε2
∑
i

(
vig

(j)
i

)2

≤ 4α2ε2

(4j−1)2 .

Putting this all together we have that

∥∥Vf̂ −V ~f
∥∥

2
≤
∥∥2uVf̂ (t+u) +

t∑
j=1

Vf̂ (j) −
∞∑
j=1

V ~f (j)
∥∥

2

≤ 2u
∥∥Vf̂ (t+u)

∥∥
2

+
t∑

j=1

∥∥Vf̂ (j) −V ~f (j)
∥∥

2
+

∞∑
j=t+1

∥∥V ~f (j)
∥∥

2

≤ 2u
4α

4t+u−1
+

t∑
j=1

2αε

4j−1
+

∞∑
j=t+1

2α

4j−1

= O
(
αε+

α

4t

)
.

Consequently, since t = O(log(ε−1)) we have the desired result.

6.2 The Stochastic Chasing ~0 Game

To avoid computing leverage scores exactly, in Section 6.1 we showed how to estimate the
difference of leverage scores and use these to update the leverage scores. However, if we
only applied this technique, the error of leverage scores would accumulate in the algorithm
and we need to fix it. Naturally, one may wish to use dimension reduction to compute a
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multiplicative approximation to the leverage scores and update our computed value if the
error is too large. However, this strategy would fail if there are too many rows with inaccurate
leverage scores in the same iteration. In this case, we would change the central point too
much that we are not able to recover. In this section, we present this update problem in a
general form that we call Stochastic Chasing 0 game and provide an effective strategy for
playing this game.

The Stochastic chasing 0 game is as follows. There is a player, a stochastic adversary,
and a point ~x ∈ Rm. The goal of the player is to keep the point close to ~0 ∈ Rm in `∞
norm and the goal of the stochastic adversary is to move ~x away from ~0. The game proceeds
for an infinite number of iterations where in each iteration the stochastic adversary moves
the current point ~x(k) ∈ Rm to some new point ~x(k) + ~∆(k) ∈ Rm and the player needs
to respond. The stochastic adversary cannot move the ~∆(k) arbitrarily, instead he is only
allowed to choose a probability distribution D(k) and sample ~∆(k) from it. Furthermore, it

is required that ED(k)
~∆ = ~0 and

∥∥~∆∥∥2

2
≤ c for some fixed c and all ~∆ ∈ D(k). The player

does not know ~x(k) or the distribution D(k) or the move ~∆(k) of the stochastic adversary. All
the player knows is some ~y(k) ∈ Rn that is close to ~x(k) in `∞ norm. With this information,
the player is allowed to choose one coordinate i and set x

(k+1)
i to be zero and for other j, we

have x
(k+1)
j = x

(k)
j + ∆

(k)
j .

The question we would like to address is, what strategy the player should choose to keep
~x(k) close to ~0 in `∞ norm? We show that there is a trivial strategy that performs well:
simply pick the largest coordinate and set it to 0.

Algorithm 4: Stochastic chasing ~0 game

Constant: c > 0, R > 0.
Let ~x(1) = ~0 ∈ Rm.
for k = 1 to ∞ do

Stochastic Adversary: Pick D(k) such that ED(k)
~∆ = ~0 and

∥∥~∆∥∥
2
≤ c all

~∆ ∈ D(k).
Stochastic Adversary: Pick ~y(k) ∈ Rm such that

∥∥~y(k) − ~x(k)
∥∥
∞ ≤ R.

Player: Pick a coordinate i(k) using only ~y(k).
Sample ~∆(k) from D(k).
Set x

(k+1)

i(k) = 0 and x
(k+1)
j = x

(k)
j + ∆

(k)
j for all j 6= i(k).

end

Theorem 34. Using the strategy i(k) = arg maxi

∣∣∣y(k)
i

∣∣∣, with probability at least 1 − p, we

have ∥∥~x(k)
∥∥
∞ ≤ 2(c+R) log

(
4mk2/p

)
for all k in the Stochastic Chasing ~0 Game.

Proof. Consider the potential function Φ(~x) =
∑

i e
αxi +

∑
i e
−αxi where α is to be deter-

mined. Now for all x we know that ex ≤ 1 + x+ x2

2
e|x| and therefore for all |δ| ≤ c, x and α,

we have

eαx+αδ ≤ eαx + αδeαx +
1

2
α2δ2eαx+|α|c .
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Consequently,

E~∆∈D(k)Φ(~x(k) + ~∆) ≤ Φ(~x(k)) + αE~∆∈D(k)

∑
i∈[m]

eαx
(k)
i ∆i −

∑
i∈[m]

e−αx
(k)
i ∆i


+
α2

2
eα
∥∥~∆∥∥

∞E~∆∈D(k)

∑
i∈[m]

eαx
(k)
i ∆2

i +
∑
i∈[m]

e−αx
(k)
i ∆2

i

 .

Since ED(k)
~∆ = ~0 and

∥∥~∆∥∥
2
≤ c, we have E~∆∈D(k)

(∑
i e
αx

(k)
i ∆i −

∑
i e
−αx(k)

i ∆i

)
= 0 and

E~∆∈D(k)

(∑
i

eαx
(k)
i ∆2

i +
∑
i

e−αx
(k)
i ∆2

i

)
≤ E~∆∈D(k)

(∑
i

∆2
i

)(
max
i
eαx

(k)
i + max

i
e−αx

(k)
i

)
≤ 2c2 max

i
e
α
∣∣∣x(k)
i

∣∣∣
.

Letting η(k) = maxi e
α
∣∣∣x(k)
i

∣∣∣
, we then have

E~∆∈D(k)Φ(~x(k) + ~∆) ≤ Φ(~x(k)) + α2eαcc2η(k).

Since i(k) = arg maxi

∣∣∣y(k)
i

∣∣∣ and
∥∥~y(k) − ~x(k)

∥∥
∞ ≤ R, the player setting x

(k+1)

i(k) = 0 decreases

Φ by at least e−α(R+c)η(k). Hence, we have

E~∆∈D(k)Φ(~x(k+1)) ≤ Φ(~x(k)) + α2eαcc2η(k) − e−α(R+c)η(k).

Picking α = 1
2(c+R)

, we have e2α(c+R)(α(c+R))2 ≤ 1 and hence α2eαcc2 ≤ e−α(R+c). Therefore,
we have that

E~∆∈D(k)Φ(~x(k+1)) ≤ EΦ(~x(k)) ≤ ... ≤ Φ(~x(1)) = 2m.

Consequently, by Markov’s inequality we have that Pr[Φ(~x(k)) ≥ λk] ≤ 2m
λk

for any λk.

Furthermore, since clearly Φ(~x) ≥ eα‖~x‖∞ we have that Pr[‖~x(k)‖∞ ≥ log(λk)/α] ≤ 2m
λk

for all

k. Choosing λk = 4mk2

p
and taking a union bound over all k, we have that∥∥~x(k)

∥∥
∞ ≤ 2(c+R) log

(
4mk2/p

)
for all k with probability at least

1−
∞∑
i=1

2m

λk
= 1−

∞∑
k=1

p

2k2
≥ 1− p .
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7 Glossary

Here we summarize problem specific notations used throughout this Part. For many quan-
tities we included the typical order of magnitude as they appear in our algorithms.

• Our algorithm maintains a polytope {Ax ≥ b} which contains the set of solution K.

• Slacks ~s(~x) = A~x − ~b, S(~x) is the diagonal matrix corresponding to ~s(~x). Rescaled
constraint matrix As = S−1A.

• Leverage Score: ~ψ(~x) = diag
(
Ax

(
AT
xAx + λI

)−1
AT
x

)
, µ(~x) = minψi(~x), λ = 1

caR2

and ca = 1
1010 .

• In each iteration constraints with leverage score less than cd = 1
1012 are deleted. Oth-

erwise, we add a constraint and put the leverage score ca.

• In each iteration, our algorithm computes the change of leverage scores with accuracy
c∆ = Cce

log(n log(R/ε))
where ce = cd

4 log(6nR/ε)
and R is the diameter of the box containing

K.

• Hybrid barrier function p~e(~x) = −
∑

i∈[m] (ce + ei) log (si(~x)/R)+1
2

log det
(
R2
(
ATS−2

x A + λI
))

+
λ
2

∥∥x∥∥2

2
.

• The algorithm starts with p~e(~x) ∼ −Θ(1)n and ends when p~e(~x) ∼ Θ(1)n log(nR/ε).

• Centrality δ~e(~x) =
∥∥5 p~e(~x)

∥∥
H(~x)

−1 where H(~x) = AT
x (ceI + Ψ(~x)) Ax + λI. δ~e(~x) ≈

Θ(
√
ce + µ(~x)).

• Approximate Hessian Q(~x, ~w) = AT
x (ceI + W) Ax + λI.
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Part II

Convex Minimization & Intersection
Problem via Cutting Plane Method
This Part is based on joint works with Yin Tat Lee and Aaron Sidford.

8 Introduction

Cutting plane methods have long been employed to obtain polynomial time algorithms for
solving optimization problems. However, for many problems cutting plane methods are often
regarded as inefficient both in theory and in practice. Here, in Part II we provide several
techniques for applying cutting plane methods efficiently. Moreover, we illustrate the efficacy
and versatility of these techniques by applying them to achieve improved running times for
solving multiple problems including semidefinite programming, matroid intersection, and
submodular flow.

We hope these results revive interest in ellipsoid and cutting plane methods. We believe
these results demonstrate how cutting plan methods are often useful not just for showing
that a problem is solvable in polynomial time, but in many yield substantial running time im-
provements. We stress that while some results in Part II are problem-specific, the techniques
introduced here are quite general and are applicable to a wide range of problems.

In the remainder of this introduction we survey the key techniques we use to apply our
cutting plane method (Section 8.1) and the key results we obtain on improving the running
time for solving various optimization problems (Section 8.2). We conclude in Section 8.3 by
providing an overview of where to find additional technical result in Part II.

8.1 Techniques

Although cutting plane methods are typically introduced as algorithms for finding a point
in a convex set (as we did with the feasibility problem in Part I), this is often not the easiest
way to apply the methods. Moreover, improperly applying results on the feasibility problem
to solve convex optimization problems can lead to vastly sub-optimal running times. Our
central goal, here, in Part II is to provide tools that allow cutting plane methods to be
efficiently applied to solve complex optimization problems. Some of these tools are new and
some are extensions of previously known techniques. Here we briefly survey the techniques
we cover in Section 10 and Section 11.

Technique 0: From Feasibility to Optimization

In Section 10.1, we explain how to use our cutting plane method to solve convex optimiza-
tion problems using an approximate subgradient oracle. Our result is based on a result of
Nemirovski [207] in which he showed how to use a cutting plane method to solve convex
optimization problems without smoothness assumptions on the function and with minimal
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assumptions on the size of the function’s domain. We generalize his proof to accommodate
for an approximate separation oracle, an extension which is essential for our applications.
We use this result as the starting point for two new techniques we discuss below.

Technique 1: Dimension Reduction through Duality

In Section 10.2, we discuss how cutting plane methods can be applied to obtain both primal
and dual solutions to convex optimization problems. Moreover, we show how this can be
achieved while only applying the cutting plane method in the space, primal or dual, which
has a fewer number of variables. Thus we show how to use duality to improve the convergence
of cutting plane methods while still solving the original problem.

To illustrate this idea consider the following very simple linear program (LP)

min
xi≥0,

∑
xi=1

n∑
i=1

wixi

where ~x ∈ Rn and ~w ∈ Rn. Although this LP has n variables, it should to be easy to solve
purely on the grounds that it only has one equality constraint and thus dual linear program
is simply

max
y≤wi∀i

y ,

i.e. a LP with only one variable. Consequently, we can apply our cutting plane method to
solve it efficiently.

However, while this simple example demonstrates how we can use duality to decrease
dimensions, it is not always obvious how to recover the optimal primal solution x variable
given the optimal dual solution y. Indeed, for many problems their dual is significantly
simpler than itself (primal), so some work is required to show that working in the space
suffices to require a primal solution.

One such recent example of this approach proving successful is a recent linear program-
ming result [176]. In this result, the authors show how to take advantage of this observation
and get a faster LP solver and maximum flow algorithm. It is interesting to study how far
this technique can extend, that is, in what settings can one recover the solution to a more
difficult dual problem from the solution to its easier primal problem?

There is in fact another precedent for such an approach. Gr̈ı¿œtschel, Lov̈ı¿œsz and
Schrijver[113] showed how to obtain the primal solution for linear program by using a cutting
plane method to solve the linear program exactly. This is based on the observation that
cutting plane methods are able to find the active constraints of the optimal solution and
hence one can take dual of the linear program to get the dual solution. This idea was further
extended in [165] which also observed that cutting plane methods are incrementally building
up a LP relaxation of the optimization problem. Hence, one can find a dual solution by
taking the dual of that relaxation.

In Section 10.2, we provide a fairly general technique to recover a dual optimal solution
from an approximately optimal primal solution. Unfortunately, the performance of this
technique seems quite problem-dependent. We therefore only analyze this technique for
semidefinite programming (SDP), a classic and popular convex optimization problem. As
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a result, we obtain a faster SDP solver in both the primal and dual formulations of the
problem.

Technique 2: Using Optimization Oracles Directly

In the seminal works of Gr̈ı¿œtschel, Lov̈ı¿œsz, Schrijver and independently Karp and Pa-
padimitriou [111, 147], they showed the equivalence between optimization oracles and sepa-
ration oracles, and gave a general method to construct a separation oracle for a convex set
given an optimization oracle for that set, that is an oracle for minimizing linear functionals
over the set. This seminal result led to the first weakly polynomial time algorithm for many
algorithms such as submodular function minimization. Since then, this idea has been used
extensively in various settings [141, 33, 34, 54].

Unfortunately, while this equivalence of separation and optimization is a beautiful and
powerful tool for polynomial time solvability of problems, in many case it may lead to ineffi-
cient algorithms. In order to use this reduction to get a separation oracle, the optimization
oracle may need to be called multiple times – essentially the number of times needed to
run a cutting plane method and hence may be detrimental to obtaining small asymptotic
running times. Therefore, it is an interesting question of whether there is a way of using an
optimization oracle more directly.

In Section 11 we provide a partial answer to this question for the case of a broad class
of problems, that we call the intersection problem. For these problems we demonstrate how
to achieve running time improvements by using optimization oracles directly. The problem
we consider is as follows. We wish to solve the problem for some cost vector ~c ∈ Rn and
convex set K. We assume that the convex set K can be decomposed as K = K1 ∩K2 such
that max~x∈K1 〈~c, ~x〉 and max~x∈K2 〈~c, ~x〉 can each be solved efficiently. Our goal is to obtain a
running time for this problem comparable to that of minimizing K given only a separation
oracle for it.

We show that by considering a carefully regularized variant, we obtain a problem such
that optimization oracles for K1 and K2 immediately yield a separation oracle for this reg-
ularized problem. By analyzing the regularizer and bounding the domains of the problem
we are able to show that this allows us to efficiently compute highly accurate solutions to
the intersection problem by applying our cutting plane method once. In other words, we do
not need to use a complicated iterative scheme or directly invoke the equivalence between
separation and optimization and thereby save O(poly(n)) factors in our running times.

We note that this intersection problem can be viewed as a generalization of the matroid
intersection problem and in Section 11.2, we show our reduction gives a faster algorithm in
certain parameter regimes. As another example, in Section 11.3 we show our reduction gives
a substantial polynomial improvement for the submodular flow problem. Furthermore, in
Section 11.4 we show how our techniques allow us to minimize a linear function over the
intersection of a convex set and an affine subspace in a number of iterations that depends
only on the co-dimension of the affine space.
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8.2 Applications

Our main goal in Part II is to provide general techniques for efficiently using cutting plane
methods for various problems. Hence, in Part II we use minimally problem-specific tech-
niques to achieve the best possible running time. However, we also demonstrate the efficacy
of our approach by showing how techniques improve upon the previous best known running
times for solve several classic problems in combinatorial and continuous optimization. Here
we provide a brief overview of these applications, previous work on these problems, and our
results.

In order to avoid deviating from our main discussion, our coverage of previous methods
and techniques is brief. Given the large body of prior works on SDP, matroid intersection
and submodular flow, it would be impossible to have an in-depth discussion on all of them.
Therefore, this section focuses on running time comparisons and explanations of relevant
preivous techniques.

Semidefinite Programming

In Section 10.2 we consider the classic semidefinite programming (SDP) problem:

max
X�0

C •X s.t. Ai •X = bi (primal) min
~y

~bT~y s.t.
n∑
i=1

yiAi � C (dual)

where X, C, Ai are m×m symmetric matrices, ~b, ~y ∈ Rn, and A•B def
= Tr(ATB). For many

problems, n � m2 and hence the dual problem has fewer variables than the primal. There
are many results and applications of SDP; see [252, 246, 195] for a survey on this topic.
Since our focus is on polynomial time algorithms, we do not discuss pseudo-polynomial
algorithms such as the spectral bundle method [121], multiplicative weight update methods
[11, 12, 140, 4], etc.

Currently, there are two competing approaches for solving SDP problems, namely interior
point methods (IPM) and cutting plane methods. Typically, IPMs require fewer iterations
than the cutting plane methods, however each iteration of these methods is more complicated
and possibly more computationally expensive. For SDP problems, interior point methods
require the computations of the Hessian of the function − log det (C−

∑n
i=1 yiAi) whereas

cutting plane methods usually only need to compute minimum eigenvectors of the slack
matrix C−

∑n
i=1 yiAi.

In [10], Anstreicher provided the current fastest IPM for solving the dual SDP problem
using a method based on the volumetric barrier function. This method takes O((mn)1/4)
iterations and each iteration is as cheap as usual IPMs. For general matrices C,X,Ai, each
iteration takes O(n2mω−1+nω+mω) time where ω is the fast matrix multiplication exponent.
If the constraint matrices Ai are rank one matrices, the iteration cost can be improved[167].
If the matrices are sparse, then [93, 206] show how to use matrix completion inside the IPM.
However, the running time depends on the extended sparsity patterns which can be much
larger than the total number of non-zeros.

In [166], Krishnan and Mitchell observed that the separation oracle for dual SDP takes
only O(mω + S) time, where S =

∑n
i=1 nnz(Ai) be the total number of non-zeros in the
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Authors Years Running times

Nesterov, Nemirovsky[213] 1992 Õ(
√
m(n2mω−1 + nω +mω))

Anstreicher [10] 2000 Õ((mn)1/4(n2mω−1 + nω))

Krishnan, Mitchell [166] 2003 Õ(n(nω +mω + S)) (dual SDP)

This work 2015 Õ(n(n2 +mω + S))

Table 2: Previous algorithms for solving a m×m SDP with n constraints and S non-zeros
entries

constant matrix. Hence, the cutting plane method by [250] gives a faster algorithm for SDP
for many regimes. For ω = 2.38, the cutting plane method is faster when Ai is not rank 1
and the problem is not too dense. While there are previous methods for using cutting plane
methods to obtain primal solutions[165] , to the best of our knowledge, there are no worst
case running time analysis for these techniques.

In Section 10.2, show how to alleviate this issue. We provide an improved algorithm for
finding the dual solution and prove carefully how to obtain a comparable primal solution as
well. See Figure 9.1 for a summary of the algorithms for SDP and their running times.

Matroid Intersection

In Section 11.2 we show how our optimization oracle technique can be used to improve upon
the previous best known running times for matroid intersection. Matroid intersection is
one of the most fundamental problems in combinatorial optimization. The first algorithm
for matroid intersection is due to the seminal paper by Edmonds [66]. In Figures 9.2 and
9.3 we provide a summary of the previous algorithms for unweighted and weighted matroid
intersection as well as the new running times we obtain in this work. While there is no total
ordering on the running times of these algorithms due to the different dependence on various
parameters, we would like to point out that our algorithms outperform the previous ones
in regimes where r is close to n and/or the oracle query costs are relatively expensive. In
particular, in terms of oracle query complexity our algorithms are the first to achieve the
quadratic bounds of Õ(n2) and Õ(nr) for independence and rank oracles. We hope our work
will revive the interest in the problem of which progress has been mostly stagnated for the
past 20-30 years.

Minimum-Cost Submodular Flow

In Section 11.3 we show how our optimization oracle technique can be used to improve upon
the previous best known running times for (Minimum-cost) Submodular Flow. Submodular
flow is a very general problem in combinatorial optimization which generalizes many problems
such as minimum cost flow, the graph orientation, polymatroid intersection, directed cut
covering [89]. In Figure 9.4 we provide an overview of the previous algorithms for submodular
flow as well as the new running times we obtain in this work.

Many of the running times are in terms of a parameter h, which is the time required for
computing an “exchange capacity”. To the best of our knowledge, the most efficient way of
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Authors Years Running times

Edmonds [66] 1968 not stated
Aigner, Dowling [3] 1971 O(nr2Tind)
Tomizawa, Iri [247] 1974 not stated

Lawler [173] 1975 O(nr2Tind)
Edmonds [69] 1979 not stated

Cunningham [51] 1986 O(nr1.5Tind)

This work 2015
O(n2 log nTind + n3 logO(1) n)

O(nr log2 nTrank + n3 logO(1) n)

Table 3: Previous algorithms for (unweighted) matroid intersection. Here n is the size of
the ground set, r = max{r1, r2} is the maximum rank of the two matroids, Tind is the time
needed to check if a set is independent (independence oracle), and Trank is the time needed
to compute the rank of a given set (rank oracle).

Authors Years Running times

Edmonds [66] 1968 not stated
Tomizawa, Iri [247] 1974 not stated

Lawler [173] 1975 O(nr2Tind + nr3)
Edmonds [69] 1979 not stated

Frank [80] 1981 O(n2r(Tcircuit + n))
Orlin, Ahuja [218] 1983 not stated

Brezovec, Cornüı¿œjols, Glover[28] 1986 O(nr(Tcircuit + r + log n))
Fujishige, Zhang [91] 1995 O(n2r0.5 log rM · Tind)
Shigeno, Iwata [236] 1995 O((n+ Tcircuit)nr

0.5 log rM)

This work 2015
O((n2 log nTind + n3 logO(1) n) log nM)

O((nr log2 nTrank + n3 logO(1) n) log nM)

Table 4: Previous algorithms for weighted matroid intersection. In additions to the notations
used in the unweighted table, Tcircuit is the time needed to find a fundamental circuit and M
is the bit complexity of the weights.
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Authors Years Running times

Fujishige [83] 1978 not stated
Gr̈ı¿œtschel, Lov̈ı¿œsz, Schrijver[111] 1981 weakly polynomial

Zimmermann [263] 1982 not stated
Barahona, Cunningham [18] 1984 not stated

Cunningham, Frank [52] 1985 → O(n4h logC)
Fujishige [85] 1987 not stated

Frank, Tardos [81] 1987 strongly polynomial
Cui, Fujishige [255] 1988 not stated

Fujishige, R̈ı¿œck, Zimmermann[90] 1989 → O(n6h log n)
Chung, Tcha [44] 1991 not stated

Zimmermann [264] 1992 not stated
McCormick, Ervolina [193] 1993 O(n7h∗ log nCU)

Wallacher, Zimmermann [256] 1994 O(n8h log nCU)
Iwata [124] 1997 O(n7h logU)

Iwata, McCormick, Shigeno [130] 1998 O (n4hmin {log nC, n2 log n})
Iwata, McCormick, Shigeno [131] 1999 O (n6hmin {log nU, n2 log n})
Fleischer, Iwata, McCormick[78] 1999 O (n4hmin {logU, n2 log n})
Iwata, McCormick, Shigeno [132] 1999 O (n4hmin {logC, n2 log n})

Fleischer, Iwata [76] 2000 O(mn5 log nU · EO)

This work 2015 O(n2 log nCU · EO + n3 logO(1) nCU)

Figure 8.1: Previous algorithms for Submodular Flow with n vertices, maximum cost C and
maximum capacity U . The factor h is the time for an exchange capacity oracle, h∗ is the
time for a “more complicated exchange capacity oracle” and EO is the time for evaluation
oracle of the submodular function. The arrow,→, indicates that it used currently best
maximum submodular flow algorithm as subroutine which was non-existent at the time of
the publication.

computing an exchange capacity is to solve an instance of submodular minimization which
previously took time Õ(n4EO + n5) (and now takes Õ(n2EO + n3) time using our result in
Part III). Readers may wish to substitute h = Õ(n2EO + n3) when reading the table.

The previous fastest weakly polynomial algorithms for submodular flow are by [132, 76,
78], which take time Õ(n6EO + n7) and O(mn5 log nU · EO), assuming h = Õ(n2EO + n3).
Our algorithm for submodular flow has a running time of Õ(n2EO+n3), which is significantly
faster by roughly a factor of Õ(n4).

For strongly polynomial algorithms, our results do not yield a speedup but we remark that
our faster strongly polynomial algorithm for submodular minimization in Part III improves
the previous algorithms by a factor of Õ(n2) as a corollary (because h requires solving an
instance of submodular minimization).
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8.3 Overview

After providing covering some preliminaries on convex analysis in Section 9 we split the
remainder of Part II into Section 10 and Section 11. In Section 10 we cover our algorithm
for convex optimization using an approximate subgradient oracle (Section 10.1) as well as
our technique on using duality to decrease dimensions and improve the running time of
semidefinite programming (Section 10.2). In Section 11 we provide our technique for using
minimization oracles to minimize functions over the intersection of convex sets and provide
several applications including matroid intersection (Section 11.2), submodular flow (Sec-
tion 11.3), and minimizing a linear function over the intersection of an affine subspace and
a convex set (Section 11.4).

9 Preliminaries

In this section we review basic facts about convex functions that we use throughout Part II.
We also introduce two oracles that we use throughout Part II, i.e. subgradient and optimiza-
tion oracles, and provide some basic reductions between them. Note that we have slightly
extended some definitions and facts to accommodate for the noisy separation oracles used
in this work.

First we recall the definition of strong convexity

Definition 35 (Strong Convexity ). A real valued function f on a convex set Ω is α-strongly
convex if for any ~x, ~y ∈ Ω and t ∈ [0, 1], we have

f(t~x+ (1− t)~y) +
1

2
αt(1− t)

∥∥~x− ~y∥∥2 ≤ tf(~x) + (1− t)f(~y).

Next we define an approximate subgradient.

Definition 36 (Subgradient). For any convex function f on a convex set Ω, the δ-subgradients
of f at x are defined to be

∂δf(~x)
def
= {~g ∈ Ω : f(~y) + δ ≥ f(~x) + 〈~g, ~y − ~x〉 for all ~y ∈ Ω}.

Here we provide some basic facts regarding convexity and subgradients. These statements
are natural extensions of well known facts regarding convex functions and their proof can be
found in any standard textbook on convex optimization.

Fact 37. For any convex set Ω and ~x be a point in the interior of Ω, we have the following:

1. If f is convex on Ω, then ∂0f(~x) 6= ∅ and ∂sf(~x) ⊆ ∂tf(~x) for all 0 ≤ s ≤ t.Otherwise,

we have
∥∥~g∥∥

2
> 1

2

√
δ
D

. For any f(~y) ≤ f(~x), we have δ ≥ 〈~g, ~y − ~x〉 and hence

2. If f is a differential convex function on Ω, then ∇f(~x) ∈ ∂0f(~x).

3. If f1 and f2 are convex function on Ω, ~g1 ∈ ∂δ1f1(~x) and ~g2 ∈ ∂δ2f1(~x), then α~g1+β~g2 ∈
∂αδ1+βδ2(~g1 + ~g2)(~x).
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4. If f is α-strongly convex on Ω with minimizer x∗, then for any ~y with f(~y) ≤ f(~x∗)+ε,

we have 1
2
α
∥∥~x∗ − ~y∥∥2 ≤ ε.

Next we provide a reduction from subgradients to separation oracles. We will use this
reduction several times in Part II to simplify our construction of separation oracles.

Lemma 38. Let f be a convex function. Suppose we have ~x and ~g ∈ ∂δf(~x) with
∥∥~x∥∥

2
≤ 1 ≤

D and δ ≤ 1. If
∥∥~g∥∥

2
≤ 1

2

√
δ
D

, then f(~x) ≤ min‖~y2‖2≤D f(~y) + 2
√
δD and if

∥∥~g∥∥
2
≤ 1

2

√
δ
D

then
{
∥∥~y∥∥

2
≤ D : f(~y) ≤ f(~x)} ⊂ {~y : ~dT~y ≤ ~dT~x+ 2

√
δD}

with ~d = ~g/
∥∥~g∥∥

2
. Hence, this gives a (2

√
δD, 2

√
δD)-separation oracle on the set {

∥∥~x∥∥
2
≤

D}.

Proof. Let ~y such that
∥∥~y∥∥

2
≤ D. By the definition of δ-subgradient, we have

f(~y) + δ ≥ f(~x) + 〈~g, ~y − ~x〉 .

If
∥∥~g∥∥ ≤ 1

2

√
δ
D

, then, we have |〈~g, ~y − ~x〉| ≤
√
δD because

∥∥~x∥∥ ≤ D and
∥∥~y∥∥

2
≤ D.

Therefore,
min∥∥~y∥∥

2
≤D

f(~y) + 2
√
δD ≥ f(~x).

Otherwise, we have
∥∥~g∥∥

2
> 1

2

√
δ
D

. For any f(~y) ≤ f(~x), we have δ ≥ 〈~g, ~y − ~x〉 and hence

2
√
δD ≥

〈
~g∥∥~g∥∥ , ~y − ~x

〉
.

At several times in Part II we will wish to construct subgradient oracles or separation
oracles given only the ability to approximately maximize a linear function over a convex set.
In the remainder of this section we formally define such a optimization oracle and prove this
equivalence.

Definition 39 (Optimization Oracle). Given a convex set K and δ > 0 a δ-optimization
oracle for K is a function on Rn such that for any input ~c ∈ Rn, it outputs ~y such that

max
~x∈K
〈~c, ~x〉 ≤ 〈~c, ~y〉+ δ.

We denote by OOδ(K) the time complexity of this oracle.

Lemma 40. Given a convex set K, any ε-optimization oracle for K is a ε-subgradient oracle
for f(~c)

def
= max~x∈K 〈~c, ~x〉 .
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Proof. Let ~xc be the output of ε-optimization oracle on the cost vector ~c. We have

max
~x∈K
〈~c, ~x〉 ≤ 〈~c, ~xc〉+ ε.

Hence, for all ~d, we have and therefore〈
~xc, ~d− ~c

〉
+ f(~c) ≤ f(~d) + ε.

Hence, ~xc ∈ ∂δf(~c).

Combining these lemmas shows that having an ε-optimization oracle for a convex set K
contained in a ball of radius D yields a O(

√
Dε,
√
Dε) separation oracle for maxx∈K 〈~c, ~x〉.

We use these ideas to construction separation oracles throughout Part II.

10 Convex Optimization

In this section we show how to apply our cutting plane method to efficiently solve problems
in convex optimization. First, in Section 10.1 we show how to use our result to minimize a
convex function given an approximate subgradient oracle. Then, in Section 10.2 we illustrate
how this result can be used to obtain both primal and dual solutions for a standard convex
optimization problems. In particular, we show how our result can be used to obtain improved
running times for semidefinite programming across a range of parameters.

10.1 From Feasibility to Optimization

In this section we consider the following standard optimization problem. We are given a
convex function f : Rn → R ∪ {+∞} and we want to find a point ~x that approximately
solves the minimization problem

min
~x∈Rn

f(~x)

given only a subgradient oracle for f .
Here we show how to apply the cutting plane method from Part I turning the small width

guarantee of the output of that algorithm into a tool to find an approximate minimizer of
f . Our result is applicable to any convex optimization problem armed with a separation or
subgradient oracle. This result will serve as the foundation for many of our applications in
Part II.

Our approach is an adaptation of Nemiroski’s method [207] which applies the cutting
plane method to solve convex optimiziation problems, with only minimal assumption on the
cutting plane method. The proof here is a generalization that accommodates for the noisy
separation oracle used in this work. In the remainder of this subsection we provide a key
definition we will use in our algorithm (Defintion 41), provide our main result (Theorem 42),
and conclude with a brief discussion of this result.

Definition 41. For any compact set K, we define the minimum width by MinWidth(K)
def
=

min‖~a‖2=1 max~x,~y∈K 〈~a, ~x− ~y〉 .
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Theorem 42. Let f be a convex function on Rn and Ω be a convex set that contains a
minimizer of f . Suppose we have a (η, δ)-separation oracle for f and Ω is contained inside
B∞(R). Using B∞(R) as the initial polytope for our Cutting Plane Method, for any 0 < α <
1, we can compute ~x ∈ Rn such that

f(~x)−min
~y∈Ω

f(~y) ≤ η + α

(
max
~y∈Ω

f(~y)−min
~y∈Ω

f(~y)

)
. (10.1)

with an expected running time of

O
(
nSOη,δ(f) log

(nκ
α

)
+ n3 logO(1)

(nκ
α

))
,

where δ = Θ
(
αMinWidth(Ω)

n3/2 log(κ)

)
and κ = R

MinWidth(Ω)
. Furthermore, we only need the oracle

defined on the set B∞(R).

Remark. The algorithm requires no information about Ω (other than that Ω ⊆ B∞(R)). The
function f can have +∞ value outside Ω.

Proof. Let ~x∗ ∈ arg min~x∈Ω f(~x). Since B∞(R) ⊃ Ω contains a minimizer of f , by the
definition of (η, δ)-separation oracles, our Cutting Plane Method (Theorem 31) either returns
a point ~x that is almost optimal or returns a polytope P of small width. In the former case
we have a point ~x such that f(~x) ≤ min~y f(~y) + η. Hence, the error is clearly at most
η + α (max~z∈Ω f(~z)−min~x∈Ω f(~x)) as desired. Consequently, we assume the latter case.

Theorem 31 shows MinWidth(P ) < Cnε log(R/ε) for some universal constant C. Picking

ε = C ′
αMinWidth(Ω)

n log
(
nκ
α

) (10.2)

for small enough constant C ′, we have MinWidth(P ) < αMinWidth(Ω). Let Ωα = ~x∗ +
α(Ω− ~x∗), namely, Ωα = {~x∗ + α(~z − ~x∗) : ~z ∈ Ω}. Then, we have

MinWidth(Ωα) = αMinWidth(Ω) > MinWidth(P ).

Therefore, Ωα is not a subset of P and hence there is some point ~y ∈ Ωα\P . Since Ωα ⊆
Ω ⊆ B∞(R), we know that ~y does not violate any of the constraints of B∞(R) and therefore
must violate one of the constraints added by querying the separation oracle. Therefore, for
some j ≤ i, we have 〈

~c(j−1), ~y
〉
>
〈
~c(j−1), ~x(j−1)

〉
+ csε/

√
n .

By the definition of (η, csε/
√
n)-separation oracle (Definition 2), we have f(~y) > f(~x(j−1)).

Since ~y ∈ Ωα, we have ~y = (1− α)~x∗ + α~z for some ~z ∈ Ω. Thus, the convexity of f implies
that

f(~y) ≤ (1− α)f(~x∗) + αf(~z).

Therefore, we have

min
1≤k≤i

f(~x(k))−min
~x∈Ω

f(~x) < f(~y)− f(~x∗) ≤ α

(
max
~z∈Ω

f(~z)−min
~x∈Ω

f(~x)

)
.
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Hence, we can simply output the best ~x among all ~x(j) and in either case ~x satisfies (10.1).
Note that we need to call (η, δ)-separation oracle with δ = Ω(ε/

√
n) to ensure we do

not cut out ~x∗. Theorem 31 shows that the algorithm takes O(nSOη,δ(f) log(nR/ε) +

n3 logO(1)(nR/ε)) expected time, as promised. Furthermore, the oracle needs only be de-
fined on B∞(R) as an obvious separating hyperplane can be returned for a query point
outside B∞(R).

Observe that this algorithm requires no information about Ω (other than that Ω ⊆
B∞(R)) and does not guarantee that the output is in Ω. Hence, even though Ω can be com-
plicated to describe, the algorithm still gives a guarantee related to the gap max~x∈Ω f(~x)−
min~x∈Ω f(~x). For specific applications, it is therefore advantageous to pick a Ω as large as
possible while the bound on function value is as small as possible.

Before indulging into specific applications, we remark on the dependence on κ. Using
John’s ellipsoid, it can be shown that any convex set Ω can be transformed linearly such
that (1) B∞(1) contains Ω and, (2) MinWidth(Ω) = Ω(n−3/2). In other words, κ can be
effectively chosen as O(n3/2). Therefore if we are able to find such a linear transformation,

the running time is simply O
(
nSO(f) log (n/α) + n3 logO(1) (n/α)

)
. Often this can be done

easily using the structure of the particular problem and the running time does not depend
on the size of domain at all.

10.2 Duality and Semidefinite Programming

In this section we illustrate how our result in Section 10.1 can be used to obtain both primal
and dual solutions for standard problems in convex optimization. In particular we show how
to obtain improved running times for semidefinite programming.

To explain our approach, consider the following minimax problem

min
~y∈Y

max
~x∈X
〈A~x, ~y〉+ 〈~c, ~x〉+

〈
~d, ~y
〉

(10.3)

where ~x ∈ Rm and ~y ∈ Rn. When m � n, solving this problem by directly using Part I
could lead to an inefficient algorithm with running time at least m3. In many situations,
for any fixed ~y, the problem max~x∈X 〈A~x, ~y〉 is very easy and hence one can use it as a
separation oracle and apply Part I and this would gives a running time almost independent
of m. However, this would only give us the ~y variable and it is not clear how to recover ~x
variable from it.

In this section we show how to alleviate this issue and give semidefinite programming
(SDP) as a concrete example of how to apply this general technique. We do not write down
the general version as the running time of the technique seems to be problem specific and
faster SDP is already an interesting application.

For the remainder of this section we focus on the semidefinite programming (SDP) prob-
lem:

max
X�0

C •X s.t. Ai •X = bi (10.4)

and its dual

min
~y

~bT~y s.t.
n∑
i=1

yiAi � C (10.5)
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where X, C, Ai are m × m symmetric matrices and ~b, ~y ∈ Rn. Our approach is partially
inspired by one of the key ideas of [121, 166]. These results write down the dual SDP in the
form

min
y

~bT~y −K min(λmin(
n∑
i=1

yiAi −C), 0) (10.6)

for some large number K and use non-smooth optimization techniques to solve the dual SDP
problem. Here, we follow the same approach but instead write it as a max-min problem
min~y fK(~y) where

fK(~y) = max
TrX≤K,X�0

(
~bT~y +

〈
X,C−

n∑
i=1

yiAi

〉)
. (10.7)

Thus the SDP problem in fact assumes the form (10.3) and many ideas in this section can
be generalized to the minimax problem (10.3).

To get a dual solution, we notice that the cutting plane method maintains a subset of
the primal feasible solution conv(Xi) such that

min
~y

~bT~y + max
TrX≤K,X�0

〈
X,C−

n∑
i=1

yiAi

〉
∼ min

~y

~bT~y + max
X∈conv(Xi)

〈
X,C−

n∑
i=1

yiAi

〉
.

Applying minimax theorem, this shows that there exists an approximation solution X in
conv(Xi) for the primal problem. Hence, we can restrict the primal SDP on the polytope
conv(Xi), this reduces the primal SDP into a linear program which can be solved very
efficiently. This idea of getting primal/dual solution from the cutting plane method is quite
general and is the main purpose of this example. As a by-product, we have a faster SDP
solver in both primal and dual! We remark that this idea has been used as a heuristic to
obtain [165] for getting the primal SDP solution and our contribution here is mainly the
asymptotic time analysis.

We first show how to construct the separation oracle for SDP. For that we need to
compute smallest eigenvector of a matrix. Below, for completeness we provide a folklore
result showing we can do this using fast matrix multiplication.

Lemma 43. Given a n× n symmetric matrix Y such that −RI � Y � RI, for any ε > 0,
with high probability in n in time O(nω+o(1) logO(1)(R/ε)) we can find a unit vector ~u such
that ~uTY~u ≥ λmax(Y)− ε.

Proof. Let B
def
= 1

R
Y + I. Note that B � 0. Now, we consider the repeated squaring B0 = B

and Bk+1 =
B2
k

TrB2
k
. Let 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of B and ~vi be the

corresponding eigenvectors. Then, it is easy to see the the eigenvalues of Bk are
λ2k

i∑n
i=1 λ

2k
i

.

Let ~q be a random unit vector and ~r
def
= Bk~q. Now ~q =

∑
αi~vi for some αi such that∑

α2
i = 1. Letting

~p =

∑
λi>(1−δ)λn αiλ

2k

i ~vi∑n
i=1 λ

2k
i
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we have

‖~r − ~p‖2 =

∥∥∥∥∥
∑

λi≤(1−δ)λn αiλ
2k

i ~vi∑n
i=1 λ

2k
i

∥∥∥∥∥
2

≤
∑

λi≤(1−δ)λn λ
2k

i∑n
i=1 λ

2k
i

≤ (1− δ)2kn.

Letting k = log2

(
log(n3/2/δ)

δ

)
, we have ‖~r − ~p‖2 ≤ δ/

√
n. Since 0 � B � 2I, we have

√
~rTB~r ≥

√
~pTB~p−

√
(~r − ~p)TB(~r − ~p)

≥
√
~pTB~p− 2δ/

√
n.

Note that ~p involves only eigenvectors between (1− δ)λn to λn. Hence, we have

√
~rTB~r ≥

√
(1− δ)λn

∥∥~p∥∥
2
− 2δ/

√
n.

With constant probability, we have αn = Ω(1/
√
n). Hence, we have

∥∥~p∥∥
2

= Ω(1/
√
n). Using

B � 2I and
∥∥~p∥∥

2
≥
∥∥~r∥∥

2
− δ/

√
n we have that so long as δ is a small enough universal

constant
√
~rTB~r∥∥~r∥∥

2

≥
√

(1− δ)λn
∥∥~p∥∥

2
− 2δ/

√
n∥∥~p∥∥

2
+ δ/
√
n

= (1−O(δ))
√
λn −O(δ)

=
√
λn −O(δ

√
R).

Therefore, we have ~rTY~r∥∥~r∥∥2 ≥ λmax(Y)− O(Rδ). Hence, we can find vector ~r by computing k

matrix multiplications. [56] showed that fast matrix multiplication is stable under Frobenius
norm, i.e., for any η > 0, using O(log(n/b)) bits, we can find C such that

∥∥C −AB
∥∥
F
≤

1
b

∥∥A∥∥∥∥B∥∥ in time O(nω+η) where ω is the matrix multiplicative constant. Hence, this

algorithm takes only O(nω+o(1) logO(1)(δ−1)) time. The result follows from renormalizing
the vector ~r, repeating the algorithm O(log n) times to boost the probability and taking
δ = Ω(ε/R).

The following lemma shows how to compute a separation for fK defined in (10.7).

Lemma 44. Suppose that
∥∥Ai

∥∥
F
≤ M and

∥∥C∥∥
F
≤ M . For any 0 < ε < 1 and ~y

with
∥∥~y∥∥

2
= O(L), with high probability in m, we can compute a (ε, ε)-separation of fK on

{
∥∥~x∥∥

2
≤ L} at ~y in time O(S +mω+o(1) logO(1)(nKML/ε)) where where S is the sparsity of

the problem defined as nnz(C) +
∑n

i=1 nnz(Ai).

Proof. Note that −O(nML)I � C−
∑n

i=1 yiAi � O(nML)I. Using Lemma 43, we can find

a vector ~v with
∥∥~v∥∥

2
= K in time O(mω+o(1) logO(1)(nKML/δ)) such that

~vT

(
C−

n∑
i=1

yiAi

)
~v ≥ max

TrX≤K,X�0

〈
X,C−

n∑
i=1

yiAi

〉
− δ. (10.8)
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In other words, we have a δ-optimization oracle for the function fK . Lemma 40 shows this

yields a δ-subgradient oracle and Lemma 38 then shows this yields a
(
O(
√
δL), O(

√
δL)
)

-

separation oracle on the set {
∥∥~x∥∥

2
≤ L}. By picking δ = ε2/L, we have the promised

oracle.

With the separation oracle in hand, we are ready to give the algorithm for SDP:

Theorem 45. Given a primal-dual semidefinite programming problem in the form (10.4)
and (10.5), suppose that for some M ≥ 1 we have

1.
∥∥b∥∥

2
≤M ,

∥∥C∥∥
F
≤M and

∥∥Ai

∥∥
F
≤M for all i.

2. The primal feasible set lies inside the region TrX ≤M .

3. The dual feasible set lies inside the region
∥∥~y∥∥∞ ≤M .

Let opt be the optimum solution of (10.4) and (10.5). Then, with high probability, we can
find X and ~y such that

1. X � 0, TrX = O(M),
∑

i |bi − 〈X,Ai〉| ≤ ε for all i and C •X ≥ opt− ε.

2.
∥∥~y∥∥∞ = O(M),

∑n
i=1 yiAi � C− εI and ~bT~y ≤ opt + ε.

in expected time O
((
nS + n3 + nmω+o(1)

)
logO(1)

(
nM
ε

))
where S is the sparsity of the prob-

lem defined as nnz(C) +
∑n

i=1 nnz(Ai) and ω is the fast matrix multiplication constant.

Proof. Let K ≥M be some parameter to be determined. Since the primal feasible set is lies
inside the region TrX ≤M ≤ K, we have

min∑n
i=1 yiAi�C

~bT~y = max
X�0,TrX≤K,Ai•X=bi

C •X

= max
X�0,TrX≤K

min
~y

C •X−
∑
i

yi (Ai •X− bi)

= min
~y

max
X�0,TrX≤K

(
~bT~y + (C−

∑
i

yiAi) •X

)
= min

~y
fK(~y).

Lemma 44 shows that it takes SOδ,δ(fK) = O(S + mω+o(1) log(nKML/δ)) time to com-
pute a (δ, δ)-separation oracle of fK for any point ~y with ‖~y‖∞ = O(L) where L is some
parameter with L ≥ M . Taking the radius R = L, Theorem 42 shows that it takes

O
(
nSOδ,δ(fK) log

(
n
α

)
+ n3 logO(1)

(
n
α

))
expected time with δ = Θ

(
αn−3/2L

)
to find ~y such

that

fK(~y)− min∥∥~y∥∥
∞
≤L
fK(~y) ≤ δ+α

 max∥∥~y∥∥
∞
≤L
fK(~y)− min∥∥~y∥∥

∞
≤L
fK(~y)

 ≤ δ+2α (nML+ 2nKML) .
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Picking α = ε
7nMKL

, we have fK(~y) ≤ min~y fK(~y) + ε. Therefore,

~bT~y +K max(λmax(C−
n∑
i=1

yiAi), 0) ≤ opt + ε.

Let β = max(λmax(C−
∑n

i=1 yiAi), 0). Then, we have that
∑n

i=1 yiAi � C− βI and

~bT~y ≥ min∑n
i=1 yiAi�C−βI

~bT~y

= max
X�0Ai•X=bi

(C− βI) •X

≥ opt− βM

because TrX ≤M . Hence, we have

opt− βM + βK ≤ ~bT~y +K max(λmax(C−
n∑
i=1

yiAi), 0) ≤ opt + ε

Putting K = M + 1, we have β ≤ ε. Thus,

n∑
i=1

yiAi � C− εI.

This gives the result for the dual with the running timeO
((
nS + n3 + nmω+o(1)

)
logO(1)

(
nML
ε

))
.

Our Cutting Plane Method accesses the sub-problem

max
X�0,TrX≤K

(C−
∑
i

yiAi) •X

only through the separation oracle. Let ~z be the output of our Cutting Plane Method and
{~vi~vTi }

O(n)
i=1 be the matrices used to construct the separation for the O(n) hyperplanes the

algorithm maintains at the end. Let ~u be the maximum eigenvector of C−
∑n

i=1 ziAi. Now,
we consider a realization of fK

f̃K(~y) = ~bT~y + max
X∈conv(K~u~uT ,~vi~vTi )

〈
X,C−

n∑
i=1

yiAi

〉
.

Since applying our Cutting Plane Method to either fK or f̃K gives the same result, the
correctness of the our Cutting Plane Method shows that

f̃K(~z) ≤ min∥∥~y∥∥
∞
≤L
f̃K(~y) + ε.

Note that the function f̃K is defined such that f̃K(~z) = fK(~z). Hence, we have

min∥∥~y∥∥
∞
≤L
fK(~y) ≤ fK(~z) ≤ f̃K(~z) ≤ min∥∥~y∥∥

∞
≤L
f̃K(~y) + ε.
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Also, note that f̃K(~x) ≤ fK(~x) for all ~x. Hence, we have

min∥∥~y∥∥
∞
≤L
fK(~y)− ε ≤ min∥∥~y∥∥

∞
≤L
f̃(~y) ≤ min∥∥~y∥∥

∞
≤L
fK(~y).

Now, we consider the primal version of f̃ , namely

g(X)
def
= min∥∥~y∥∥

∞
≤L

~bT~y +

〈
X,C−

n∑
i=1

yiAi

〉
.

Sion’s minimax theorem [239] shows that

opt ≥ max
X∈conv(K~u~uT ,~vi~vTi )

g(X) = min∥∥~y∥∥
∞
≤L
f̃(~y) ≥ opt− ε.

Therefore, to get the primal solution, we only need to find ~u by Lemma 43 and solve the
maximization problem on g. Note that

g(X) = min∥∥~y∥∥
∞
≤L

n∑
i=1

yi (bi − 〈X,Ai〉) + 〈X,C〉

= −L
∑
i

|bi − 〈X,Ai〉|+ 〈X,C〉 .

For notation simplicity, we write K~u~uT = ~v0~v
T
0 . Then, X =

∑O(n)
j=0 αj~vj~v

T
j for some

∑
αj = 1

and αj ≥ 0. Substituting this into the function g, we have

g(~α) = −L
∑
j

∣∣∣∣∣bi −∑
j

αj~v
T
j Ai~vj

∣∣∣∣∣+
∑
j

αj~v
T
j C~vj.

Hence, this can be easily written as a linear program withO(n) variables andO(n) constraints
in time O(nS). Now, we can apply interior point method to find ~α such that

g(~α) ≥ max
X∈conv(K~u~uT ,~vi~vTi )

g(X)− ε ≥ opt− 2ε.

Let the corresponding approximate solution be X̃ =
∑
αj~vj~v

T
j . Then, we have〈

X̃,C
〉
− L

∑
i

|bi − 〈X,Ai〉| ≥ opt− 2ε.

Now, we let b̃i =
〈
X̃,Ai

〉
. Then, we note that〈
X̃,C

〉
≤ max

X�0Ai•X=b̃i

C •X

= min∑n
i=1 yiAi�C

b̃Ti ~y

≤ opt +M
∑
i

∣∣∣bi − 〈X̃,Ai

〉∣∣∣
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because
∥∥~y∥∥∞ ≤M . Hence, we have

opt + (M − L)
∑
i

∣∣∣bi − 〈X̃,Ai

〉∣∣∣ ≥ 〈X̃,C
〉
− L

∑
i

∣∣∣bi − 〈X̃,Ai

〉∣∣∣ ≥ opt− 2ε.

Now, we put L = M + 2, we have∑
i

∣∣∣bi − 〈X̃,Ai

〉∣∣∣ ≤ ε.

This gives the result for the primal. Note that it only takes O(n5/2 logO(1)(nM/ε)) to solve a
linear program with O(n) variables and O(n) constraints because we have an explicit interior
point deep inside the feasible set, i.e. αi = 1

m
for some parameter m [177].3 Hence, the run-

ning time is dominated by the cost of cutting plane method which isO
((
nS + n3 + nmω+o(1)

)
logO(1)

(
nM
ε

))
by putting L = M + 2.

We leave it as an open problem if it is possible to improve this result by reusing the compu-

tation in the separation oracle and achieve a running time ofO
(

(nS + n3 + nm2) logO(1)
(
nM
ε

))
.

11 Intersection of Convex Sets

In this section we introduce a general technique to optimize a linear function over the inter-
section of two convex sets, whenever the linear optimization problem on each of them can
be done efficiently. At the very high level, this is accomplished by applying cutting plane
to a suitably regularized version of the problem. In Section 11.1 we present the technique
and in the remaining sections we provide several applications including, matroid intersection
(Section 11.2), submodular flow (Section 11.3), and minimizing over the intersection of an
affine subspace and a convex set (Section 11.4).

11.1 The Technique

Throughout this section we consider variants of the following general optimization problem

max
~x∈K1∩K2

〈~c, ~x〉 (11.1)

where ~x,~c ∈ Rn, K1 and K2 are convex subsets of Rn. We assume that

max
~x∈K1

‖~x‖2 < M, max
~x∈K2

‖~x‖2 < M, ‖~c‖2 ≤M (11.2)

for some constant M ≥ 1 and we assume that

K1 ∩K2 6= ∅. (11.3)

3Without this, the running time of interior point method depends on the bit complexity of the linear
programs.
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Instead of a separation oracle, we assume that K1 and K2 each have optimization oracles
(see Section 9).

To solve this problem we first introduce a relaxation for the problem (11.1) that we
can optimize efficiently. Because we have only the optimization oracles for K1 and K2, we
simply have variables ~x and ~y for each of them in the objective. Since the output should

(approximately) be in the intersection of K1 and K2, a regularization term −λ
2

∥∥~x − ~y∥∥2

2
is

added to force ~x ≈ ~y where λ is a large number to be determined later. Furthermore, we
add terms to make the problem strong concave.

Lemma 46. Assume (11.2) and (11.3). For λ ≥ 1, let

fλ(~x, ~y)
def
=

1

2
〈~c, ~x〉+

1

2
〈~c, ~y〉 − λ

2

∥∥~x− ~y∥∥2

2
− 1

2λ

∥∥~x∥∥2

2
− 1

2λ

∥∥~y∥∥2

2
. (11.4)

There is an unique maximizer (~xλ, ~yλ) for the problem max~x∈K1,~y∈K2 fλ(~x, ~y). The maximizer

(~xλ, ~yλ) is a good approximation of the solution of (11.1), i.e.
∥∥~xλ − ~yλ∥∥2

2
≤ 6M2

λ
and

max
~x∈K1∩K2

〈~c, ~x〉 ≤ fλ(~xλ, ~yλ) +
M2

λ
. (11.5)

Proof. Let ~x∗ be a maximizer of max~x∈K1∩K2 〈~c, ~x〉. By assumption (11.2),
∥∥~x∗∥∥

2
≤M , and

therefore

fλ(~x
∗, ~x∗) = 〈~c, ~x∗〉 −

∥∥~x∗∥∥2

2

λ
≥ max

~x∈K1∩K2

〈~c, ~x〉 − M2

λ
. (11.6)

This shows (11.5). Since fλ is strongly concave in ~x and ~y, there is a unique maximizer
(~xλ, ~yλ). Let optλ = fλ(~xλ, ~yλ). Then, we have

optλ ≤
1

2

∥∥~c∥∥
2

∥∥~xλ∥∥2
+

1

2

∥∥~c∥∥
2

∥∥~yλ∥∥2
− λ

2

∥∥~xλ − ~yλ∥∥2

2

≤ M2

2
+
M2

2
− λ

2

∥∥~xλ − ~yλ∥∥2

2
.

On the other hand, using λ ≥ 1, (11.6) shows that

optλ ≥ fλ(~x
∗, ~x∗) ≥ max

~x∈K1∩K2

〈~c, ~x〉 − M2

λ
≥ −2M2.

Hence, we have ∥∥~xλ − ~yλ∥∥2

2
≤ 2 (M2 − optλ)

λ
≤ 6M2

λ
. (11.7)

Now we write max fλ(~x, ~y) as a max-min problem. The reason for doing this is that the
dual approximate solution is much easier to obtain and there is a way to read off a primal
approximate solution from a dual approximate solution. This is analogous to the idea in
[174] which showed how to convert a cut solution to a flow solution by adding regularization
terms into the problem.
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Lemma 47. Assume (11.2) and (11.3). Let λ ≥ 2. For any ~x ∈ K1 and ~y ∈ K2, the
function fλ can be represented as

fλ(~x, ~y) = min
(~θ1,~θ2,~θ3)∈Ω

gλ(~x, ~y, ~θ1, ~θ2, ~θ3) (11.8)

where Ω = {(~θ1, ~θ2, ~θ3) :
∥∥~θ1

∥∥
2
≤ 2M,

∥∥~θ2

∥∥
2
≤M,

∥∥~θ3

∥∥
2
≤M} and

gλ(~x, ~y, ~θ1, ~θ2, ~θ3) =

〈
~c

2
+ λ~θ1 +

~θ2

λ
, ~x

〉
+

〈
~c

2
− λ~θ1 +

~θ3

λ
, ~y

〉
+
λ

2

∥∥~θ1

∥∥2

2
+

1

2λ

∥∥~θ2

∥∥2

2
+

1

2λ

∥∥~θ3

∥∥2

2
.

(11.9)

Let hλ(~θ1, ~θ2, ~θ3) = max~x∈K1,~y∈K2 gλ(~x, ~y,
~θ1, ~θ2, ~θ3). For any (~θ′1,

~θ′2,
~θ′3) such that hλ(~θ

′
1,
~θ′2,

~θ′3) ≤
min(~θ1,~θ2,~θ3)∈Ω hλ(

~θ1, ~θ2, ~θ3) + ε, we know ~z = 1
2
(~θ′2 + ~θ′3) satisfies

max
~x∈K1∩K2

〈~c, ~x〉 ≤ 〈~c, ~z〉+
20M2

λ
+ 20λ3ε.

and
∥∥~z − ~xλ∥∥2

+
∥∥~z − ~yλ∥∥2

≤ 4
√

2λε+
√

6M2

λ
where (~xλ, ~yλ) is the unique maximizer for the

problem max~x∈K1,~y∈K2 fλ(~x, ~y).

Proof. Note that for any
∥∥~ξ∥∥

2
≤ α, we have

−1

2

∥∥~ξ∥∥2

2
= min∥∥~θ∥∥

2
≤α

〈
~θ, ~ξ
〉

+
1

2

∥∥~θ∥∥2

2

Using this and (11.2), we have (11.8) for all ~x ∈ K1 and ~y ∈ K2 as desired. Since Ω is closed

and bounded set and the function gλ is concave in (~x, ~y) and convex in (~θ1, ~θ2, ~θ3), Sion’s
minimax theorem [239] shows that

max
~x∈K1,~y∈K2

fλ(~x, ~y) = min
(~θ1,~θ2,~θ3)∈Ω

hλ(~θ1, ~θ2, ~θ3) (11.10)

Since fλ is strongly concave, there is an unique maximizer (~xλ, ~yλ) of fλ. Since hλ is strongly

convex, there is a unique minimizer (~θ∗1,
~θ∗2,

~θ∗3). By the definition of fλ and hλ, we have

hλ(~θ
∗
1,
~θ∗2,

~θ∗3) ≥ gλ(~xλ, ~yλ, ~θ
∗
1,
~θ∗2,

~θ∗3) ≥ fλ(~xλ, ~yλ) .

Using (11.10), the equality above holds and hence (~θ∗1,
~θ∗2,

~θ∗3) is the minimizer of gλ(~xλ, ~yλ, ~θ1, ~θ2, ~θ3)

over (~θ1, ~θ2, ~θ3). Since the domain Ω is large enough that (~θ∗1,
~θ∗2,

~θ∗3) is an interior point in

Ω, the optimality condition of gλ shows that we have ~θ∗2 = ~xλ and ~θ∗3 = ~yλ.

Since hλ is 1
λ

strongly convex, we have
∥∥~θ′1 − ~θ∗1∥∥2

2
+
∥∥~θ′2 − ~θ∗2∥∥2

2
+
∥∥~θ′3 − ~θ∗3∥∥2

2
≤ 2λε (Fact

37). Since ~θ∗2 = ~xλ and ~θ∗3 = ~yλ, we have∥∥~θ′2 − ~xλ∥∥2

2
+
∥∥~θ′3 − ~yλ∥∥2

2
≤ 2λε. (11.11)
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Therefore, we have
∥∥~xλ − ~yλ∥∥2

≥
∥∥~θ′2 − ~θ′3∥∥2

− 2
√

2λε,
∥∥~xλ∥∥2

≥
∥∥~θ′2∥∥2

−
√

2λε and
∥∥~yλ∥∥2

≥∥∥~θ′3∥∥2
−
√

2λε. Using these,
∥∥~xλ∥∥2

≤M and
∥∥~yλ∥∥2

≤M , we have

fλ(~θ
′
2,
~θ′3) =

1

2

〈
~c, ~θ′2

〉
+

1

2

〈
~c, ~θ′3

〉
− λ

2

∥∥~θ′2 − ~θ′3∥∥2

2
− 1

2λ

∥∥~θ′2∥∥2

2
− 1

2λ

∥∥~θ′3∥∥2

2

≥ 1

2
〈~c, ~xλ〉+

1

2
〈~c, ~yλ〉 −M

√
2λε

−λ
2

(∥∥~xλ − ~yλ∥∥2
+ 2
√

2λε
)2

− 1

2λ

(∥∥~xλ∥∥2
+
√

2λε
)2

− 1

2λ

(∥∥~yλ∥∥2
+
√

2λε
)2

=
1

2
〈~c, ~xλ〉+

1

2
〈~c, ~yλ〉 −

λ

2

∥∥~xλ − ~yλ∥∥2

2
− 1

2λ

∥∥~xλ∥∥2

2
− 1

2λ

∥∥~yλ∥∥2

2

−M
√

2λε− 2λ
√

2λε
∥∥~xλ − ~yλ∥∥2

− 4λ2ε

−1

λ

∥∥~xλ∥∥2

√
2λε− ε− 1

λ

∥∥~yλ∥∥2

√
2λε− ε.

Using
∥∥~xλ − ~yλ∥∥2

≤
√

6M2

λ
(Lemma 46),

∥∥~xλ∥∥2
< M and

∥∥~yλ∥∥2
< M , we have

fλ(~θ
′
2,
~θ′3) ≥ fλ(~xλ, ~yλ)

−M
√

2λε− 2λ
√

2λε
∥∥~xλ − ~yλ∥∥2

− 4λ2ε

−1

λ

∥∥~xλ∥∥2

√
2λε− ε− 1

λ

∥∥~yλ∥∥2

√
2λε− ε.

≥ fλ(~xλ, ~yλ)

−M
√

2λε− 2λ
√

12εM − 4λ2ε

−2M

√
2
ε

λ
− 2ε.

Since λ ≥ 2, we have

fλ(~θ
′
2,
~θ′3) ≥ fλ(~xλ, ~yλ)− 20Mλ

√
ε− 10λ2ε.

Let ~z =
~θ′2+~θ′3

2
. Lemma 46 shows that

max
~x∈K1∩K2

〈~c, ~x〉 ≤ max
~x∈K1,~y∈K2

fλ(~x, ~y) +
M2

λ

≤ fλ(~θ
′
2,
~θ′3) +

M2

λ
+ 20Mλ

√
ε+ 10λ2ε

≤ 〈~c, ~z〉+
20M2

λ
+ 20λ3ε

because 20Mλ
√
ε ≤ 10M

2

λ
+ 10λ3ε. Furthermore, we have∥∥~z − ~xλ∥∥2

+
∥∥~z − ~yλ∥∥2

≤
∥∥~θ′2 − ~xλ∥∥2

+
∥∥~θ′3 − ~yλ∥∥2

+
∥∥~θ′2 − ~θ′3∥∥2

≤ 4
√

2λε+

√
6M2

λ
.
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We now apply our cutting plane method to solve the optimization problem (11.1). First
we show how to transform the optimization oracles for K1 and K2 to get a separation oracle
for hλ, with the appropriate parameters.

Lemma 48. Suppose we have a ε-optimization oracle for K1 and K2 for some 0 < ε < 1.
Then on the set {

∥∥~θ∥∥
2
≤ D}, we have a (O(

√
ελD), O(

√
ελD))-separation oracle for hλ with

time complexity OOε(K1) + OOε(K2).

Proof. Recall that the function hλ is defined by

hλ(~θ1, ~θ2, ~θ3)

= max
~x∈K1,~y∈K2

(〈
~c

2
+ λ~θ1 +

~θ2

λ
, ~x

〉
+

〈
~c

2
− λ~θ1 +

~θ3

λ
, ~y

〉
+
λ

2

∥∥~θ1

∥∥2

2
+

1

2λ

∥∥~θ2

∥∥2

2
+

1

2λ

∥∥~θ3

∥∥2

2

)

= max
~x∈K1

〈
~c

2
+ λ~θ1 +

~θ2

λ
, ~x

〉
+ max

~y∈K2

〈
~c

2
− λ~θ1 +

~θ3

λ
, ~y

〉
+
λ

2

∥∥~θ1

∥∥2

2
+

1

2λ

∥∥~θ2

∥∥2

2
+

1

2λ

∥∥~θ3

∥∥2

2
.

Lemma 40 shows how to compute the subgradient of functions of the form f(~c) =
max~x∈K 〈~c, ~x〉 using the optimization oracle for K. The rest of the term are differentiable so
its subgradient is just the gradient. Hence, by addition rule for subgradients (Fact 37), we
have a O(ελ)-subgradient oracle for fλ using a O(ε)-optimization oracle for K1 and K2. The
result then follows from Lemma 38.

Theorem 49. Assume (11.2) and (11.3). Suppose that we have ε-optimization oracle for
every ε > 0. For 0 < δ < 1, we can find ~z ∈ Rn such that

max
~x∈K1∩K2

〈~c, ~x〉 ≤ δ + 〈~c, ~z〉

and
∥∥~z − ~x∥∥

2
+
∥∥~z − ~y∥∥

2
≤ δ for some ~x ∈ K1 and ~y ∈ K2 in time

O

(
n (OOη(K1) + OOη(K2)) log

(
nM

δ

)
+ n3 logO(1)

(
nM

δ

))
where η = Ω

((
δ
nM

)O(1)
)

.

Proof. Setting λ = 40M2

δ2 and ε = δ7

107M6 in Lemma 47 we see that so long as we obtain any

approximate solution (~θ′1,
~θ′2,

~θ′3) such that

hλ(~θ
′
1,
~θ′2,

~θ′3) ≤ min
(~θ1,~θ2,~θ3)∈Ω

hλ(~θ1, ~θ2, ~θ3) + ε,

then we obtain the point we want. To apply Theorem 42, we use

h̃(~θ1, ~θ2, ~θ3) =

{
hλ(~θ1, ~θ2, ~θ3) if (~θ1, ~θ2, ~θ3) ∈ Ω

+∞ else
.

Lemma 48 shows that for any γ > 0 we can obtain a (γ, γ)-separation oracle of hλ(~θ) by
using sufficiently accurate optimization oracles. Since Ω is just a product of `2 balls, we
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can produce a separating hyperplane easily when (~θ1, ~θ2, ~θ3) /∈ Ω. Hence, we can obtain a

(γ, γ)-separation oracle of h̃(~θ). For simplicity, we use ~θ to represent (~θ1, ~θ2, ~θ3). Note that

B∞(2M) ⊇ Ω and therefore we can apply Theorem 42 with R = 2M to compute ~θ′ such

h̃(~θ′)−min
~θ∈Ω

h̃(~θ) ≤ γ + α

(
max
~θ∈Ω

h̃(~θ)−min
~θ∈Ω

h̃(~θ)

)
in timeO

(
nSOγ,γ log

(
nκ
α

)
+ n3 logO(1)

(
nκ
α

))
where γ = Ω

(
αMinWidth(Ω)/nO(1)

)
= Ω

(
αM/nO(1)

)
and κ = 2M

MinWidth(Ω)
= O(1). Using λ ≥ 1 and M ≥ 1, we have

max
~θ∈Ω

h̃(~θ)−min
~θ∈Ω

h̃(~θ) ≤ O
(
λM2

)
≤ O

(
M4

δ2

)
.

Setting α = Θ
(

δ9

M10

)
with some small enough constant, we have that we can find ~θ′ such

that

hλ(~θ
′) ≤ min

~θ∈P
hλ(~θ) + γ + αO

(
M4

δ2

)
= min

~θ∈P
hλ(~θ) +O

(
δ7

M6

)
= min

~θ∈P
hλ(~θ) + ε

in time O
(
nSOγ,γ log

(
nM
δ

)
+ n3 logO(1)

(
nM
δ

))
where γ = Ω

((
δ
nM

)O(1)
)

. Lemma 48 shows

that the cost of (γ, γ)-separation oracle is justO(OOη(K1)+OOη(K2)) where η = Ω
((

δ
nM

)O(1)
)

.

Remark 50. Note that the algorithm does not promise that we obtain a point close to K1∩K2.
It only promises to give a point that is close to both some point in K1 and some point in
K2. It appears to the authors that a further assumption is needed to get a point close to
K1 ∩ K2. For example, if K1 and K2 are two almost parallel lines, it would be difficult to
get an algorithm that does not depend on the angle. However, as far as we know, most
algorithms tackling this problem are pseudo-polynomial and have polynomial dependence
on the angle. Our algorithm depends on the logarithmic of the angle which is useful for
combinatorial problems.

This reduction is very useful for problems in many areas including linear programming,
semi-definite programming and algorithmic game theory. In the remainder of this section
we demonstrate its power by applying it to classical combinatorial problems.

There is however one issue with applying our cutting plane algorithm to these problems.
As with other convex optimization methods, only an approximately optimal solution is found.
On the other hand, typically an exact solution is insisted in combinatorial optimization. To
overcome this gap, we introduce the following lemma which (1) transforms the objective
function so that there is only one optimal solution and (2) shows that an approximate
solution is close to the optimal solution whenever it is unique. As we shall see in the next
two subsections, this allows us to round an approximate solution to an optimal one.

71



Lemma 51. Given a linear program minA~x≥~b ~c
T~x where ~x,~c ∈ Zn, ~b ∈ Zm and A ∈ Zm×n.

Suppose {A~x ≥ ~b} is an integral polytope (i.e. all extreme points are integral) contained
in the set {

∥∥~x∥∥∞ ≤ M}. Then we can find a random cost vector ~z ∈ Zn with
∥∥~z∥∥∞ ≤

O(n2M2
∥∥~c∥∥∞) such that with constant probability, minA~x≥~b ~z

T~x has an unique minimizer ~x∗

and this minimizer is one of the minimizer(s) of minA~x≥~b ~c
T~x. Furthermore, if there is an

interior point ~y such that ~zT~y < minA~x≥~b ~z
T~x+ δ, then

∥∥~y − ~x∗∥∥∞ ≤ 2nMδ.

Proof. The first part of the lemma follows by randomly perturbing the cost vector ~c. We
consider a new cost vector ~z = 100n2M2~c+~r where each coordinate of ~r is sampled randomly
from {0, 1, · · · , 10nM}. [156, Lem 4] shows that the linear program minA~x≥~b ~z

T~x has a
unique minimizer with constant probability. Furthermore, it is clear that the minimizer of
minA~x≥~b ~z

T~x is a minimizer of minA~x≥~b ~c
T~x (as ~ri � 100n2M2|~ci|).

Now we show the second part of the lemma. Given an interior point ~y of the polytope
{A~x ≥ ~b}, we can write ~y as a convex combination of the vertices of {A~x ≥ ~b}, i.e. ~y =∑
ti~vi. Note that ~zT~y =

∑
ti~z

T~vi. If all ~vi are not the minimizer, then ~zT~vi ≥ opt + 1 and
hence ~zT~y ≥ opt + 1 which is impossible. Hence, we can assume that ~v1 is the minimizer.
Hence, ~zT~vi = opt if i = 1 and ~zT~vi ≥ opt + 1 otherwise. We then have ~zT~y ≥ opt + (1− t1)
which gives 1 − t1 < δ. Finally, the claim follows from

∥∥~y − ~v1

∥∥
∞ ≤

∑
i 6=1 ti

∥∥~vi − ~v1

∥∥
∞ ≤

2nMδ.

11.2 Matroid Intersection

Let M1 = (E, I1) and M2 = (E, I2) be two matroids sharing the same ground set. In this
section we consider the weighted matroid intersection problem

min
S∈I1∩I2

~w(S).

where ~w ∈ RE and w(S)
def
=
∑

e∈S we.
For any matroid M = (E, I), it is well known that the polytope of all independent sets

has the following description [69]:

conv(I1) = {~x ∈ RE s.t. 0 ≤ x(S) ≤ r(S) for all S ⊆ E} (11.12)

where r is the rank function for M , i.e. r(S) is the size of the largest independent set that is
a subset of S. Furthermore, the polytope of the matroid intersection satisfies conv(I1∩I2) =
conv(I1) ∩ conv(I2).

It is well known that the optimization problem

min
S∈I1

w(S) and min
S∈I2

w(S)

can be solved efficiently by the greedy method. Given a matroid (polytope), the greedy
method finds a maximum weight independent subset by maintaining a candidate independent
subset S and iteratively attempts to add new element to S in descending weight. A element
i is added to S if S ∪ {i} is still independent. A proof of this algorithm is well-known and
can be found in any standard textbook on combinatorial optimization.
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Clearly, the greedy method can be implemented by O(n) calls to the independence oracle
(also called membership oracle). For rank oracle, it requires O(r log n) calls by finding the
next element to add via binary search. Therefore, we can apply Theorem 49 to get the
following result (note that this algorithm is the fastest if r is close to n for the independence
oracle).

Theorem 52. Suppose that the weights ~w are integer with
∥∥w∥∥∞ ≤M . Then, we can find

S ∈ argminS∈I1∩I2w(S)

in time O
(
nGO log (nM) + n3 logO(1) (nM)

)
where GO is the cost of greedy method for I1

and I2.

Proof. Applying Lemma 51, we can find a new cost ~z such that

min
~x∈conv(I1)∩conv(I2)

~zT~x

has an unique solution. Note that for any ~x ∈ conv(I1), we have
∥∥~x∥∥∞ ≤ 1. Hence, applying

theorem 49, we can find ~q such that ~qT~z ≤ opt + ε and
∥∥~q − ~x∥∥

2
+
∥∥~q − ~y∥∥

2
≤ ε for some

~x ∈ conv(I1) and ~y ∈ conv(I2). Using (11.12), we have the coordinate wise minimum of ~x, ~y,
i.e. min{~x, ~y}, is in conv(I1)∩ conv(I2). Since

∥∥~q−min{~x, ~y}
∥∥

2
≤
∥∥~q− ~x∥∥

2
+
∥∥~q− ~y∥∥

2
≤ ε,

we have
(min{~x, ~y})T ~z ≤ opt + nMε.

Hence, we have a feasible point min{~x, ~y} which has value close to optimal and Lemma 51
shows that

∥∥min(~x, ~y) − ~s
∥∥
∞ ≤ 2n2M2ε where ~s is the optimal solution. Hence, we have∥∥~q − ~s∥∥∞ ≤ 2n2M2ε + ε. Picking ε = 1

6n2M2 , we have
∥∥~q − ~s∥∥∞ < 1

2
and hence, we can get

the optimal solution by rounding to the nearest integer.
Since optimization over I1 and I2 involves applying greedy method on certain vectors, it

takes onlyO(GO) time. Theorem 49 shows it only takesO
(
nGO log (nM) + n3 logO(1) (nM)

)
in finding such ~q.

This gives the following corollary.

Corollary 53. We have O(n2Tind log(nM) + n3 logO(1) nM) and O(nrTrank log n log(nM) +
n3 logO(1) nM) time algorithms for weighted matroid intersection. Here Tind is the time needed
to check if a subset is independent, and Trank is the time needed to compute the rank of a
given subset.

Proof. By Theorem 52, it suffices to show that the optimization oracle for the matroid
polytope can be implemented in O(nTind) and O(rTrank log n) time. This is simply attained by
the well-known greedy algorithm which iterates through all the positively-weighted elements
in decreasing order, and adds an element to our candidate independent set whenever possible.

For the independence oracle, this involves one oracle call for each element. On the other
hand, for the rank oracle, we can find the next element to add by binary search which takes
time O(Trank log n). Since there are at most r elements to add, we have the desired running
time.
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11.3 Submodular Flow

Let G = (V,E) be a directed graphwith |E| = m, let f be a submodular function on RV

with |V | = n, f(∅) = 0 and f(V ) = 0, and let A be the incidence matrix of G. In this
section we consider the submodular flow problem

Minimize 〈c, ϕ〉 (11.13)

subject to l(e) ≤ ϕ(e) ≤ u(e) ∀e ∈ E
x(v) = (Aϕ)(v) ∀v ∈ V∑
v∈S

x(v) ≤ f(S) ∀S ⊆ V

where c ∈ ZE, l ∈ ZE, u ∈ ZE where C =
∥∥~c∥∥∞ and U = max

(∥∥u∥∥∞,∥∥l∥∥∞,maxS⊂V |f(S)|
)
.

Here c is the cost on edges, ϕ is the flow on edges, l and u are lower and upper bounds on
the amount of flow on the edges, and x(v) is the net flow out of vertex v. The submodular
function f upper bounds the total net flow out of any subset S of vertices by f(S).

Theorem 54. Suppose that the cost vector ~c is integer weight with
∥∥~c∥∥∞ ≤ C and the capac-

ity vector and the submodular function satisfy U = max
(∥∥u∥∥∞,∥∥l∥∥∞,maxS⊂V |f(S)|

)
. Then,

we can solve the submodular flow problem (11.13) in time O
(
n2EO log(mCU) + n3 logO(1)(mCU)

)
where EO is the cost of function evaluation.

Proof. First, we can assume l(e) ≤ u(e) for every edge e, otherwise, the problem is infeasible.
Now, we apply a similar transformation in [111] to modify the graph. We create a new vertex
v0. For every vertex v in V , we create a edge from v0 to v with capacity lower bounded by
0, upper bounded by 4nU , and with cost 2mCU . Edmonds and Giles showed that the
submodular flow polytope is integral [70]. Hence, there is an integral optimal flow on this
new graph. If the optimal flow passes through the newly created edge, then it has cost at
least 2mCU −mCU because the cost of all other edges in total has at least −mCU . That
means the optimal flow has the cost larger than mCU which is impossible. So the optimal
flow does not use the newly created edges and vertex and hence the optimal flow in the new
problem gives the optimal solution of the original problem. Next, we note that for any ϕ on
the original graph such that l(e) ≤ ϕ(e) ≤ u(e), we can send suitable amount of flow from
v0 to v to make ϕ feasible. Hence, this modification makes the feasibility problem trivial.

Lemma 51 shows that we can assume the new problem has an unique solution and it only
blows up C by a (mU)O(1) factors.

Note that the optimal value is an integer and its absolute value at most mCU . By
binary search, we can assume we know the optimal value opt. Now, we reduce the problem
to finding a feasible ϕ with {〈d, ϕ〉 ≤ opt + ε} with ε determined later. Let Pε be the set of
such ϕ. Note that Pε = K1,ε ∩K2,ε where

K1,ε =

x ∈ RV such that
l(e) ≤ ϕ(e) ≤ u(e) ∀e ∈ E
x(v) = (Aϕ)(v) ∀v ∈ V
〈d, ϕ〉 ≤ opt + ε

for some ϕ

 ,

K2,ε =

{
y ∈ RV such that

∑
v∈S

y(v) ≤ f(S) ∀S ⊆ V,
∑
v∈V

y(v) = f(V )

}
.
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Note that the extra condition
∑

v y(v) = f(V ) is valid because
∑

v y(v) =
∑

v(Aϕ)(v) = 0
and f(V ) = 0, and K1,ε has radius bounded by O((mCU)O(1)) and K2,ε has radius bounded
by O(nU). Furthermore, for any vector ~c ∈ RV , we note that

max
x∈K1,ε

〈c, x〉 = max
l≤ϕ≤u,〈d,ϕ〉≤opt+ε,x=Aϕ

〈c, x〉

= max
l≤ϕ≤u,〈d,ϕ〉≤opt+ε

〈c, Aϕ〉

= max
l≤ϕ≤u,〈d,ϕ〉≤opt+ε

〈
AT c, ϕ

〉
.

To solve this problem, again we can do a binary search on 〈d, ϕ〉 and reduce the problem to

max
l≤ϕ≤u,〈d,ϕ〉=K

〈
AT c, ϕ

〉
for some value of K. Since AT c is fixed, this is a linear program with only the box constraints
and an extra equality constraint. Hence, it can be solved in nearly linear time [177, Thm
17, ArXiv v1]. As the optimization oracle for K1,ε involves only computing AT c and solving

this simple linear program, it takes only O(n2 logO(1)(mCU/ε)) time. On the other hand,
since K2,ε is just a base polyhedron, the optimization oracle for K2,ε can be done by greedy
method and only takes O(nEO) time.

Applying Theorem 49, we can find q such that
∥∥q−x∥∥

2
+
∥∥q−y∥∥

2
≤ δ for some x ∈ K1,ε,

y ∈ K2,ε and δ to be chosen later. According to the definition of K1,ε, there is ϕ such that
l(e) ≤ ϕ(e) ≤ u(e) and x(v) = (Aϕ)(v) for all v and 〈d, ϕ〉 ≤ opt + ε. Since

∥∥y − x∥∥
2
≤ 2δ,

that means |y(v)− (Aϕ)(v)| ≤ 2δ for all v.

• Case 1) If y(v) ≥ (Aϕ)(v), then we can replace y(v) by (Aϕ)(v), note that y is still in
K2,ε because of the submodular constraints.

• Case 2) If y(v) ≤ (Aϕ)(v), then we can send a suitable amount of flow from v0 to v to
make ϕ feasible y(v) ≤ (Aϕ)(v).

Note that under this modification, we increased the objective value by (δn)(2mCU) because
the new edge cost 2mCU per unit of flow. Hence, we find a flow ϕ which is feasible in new
graph with objective value ε+ (δn)(2mCU) far from optimum value. By picking δ = 1

2mnCU
,

we have the value 2ε far from opt. Now, we use Lemma 51 to shows that when ε is small
enough, i.e, 1

(mCU)c
for some constant c, then we can guarantee that

∥∥y − x∗∥∥∞ ≤ 1
4

where

x∗ is the optimal demand. Now, we note that
∥∥q − y

∥∥
2
≤ δ and we note that we only

modify y by a small amount, we in fact have
∥∥q − x∗

∥∥
∞ < 1

2
. Hence, we can read off

the solution x∗ by rounding q to the nearest integer. Note that we only need to solve the
problem K1,ε∩K2,ε to 1

(mCU)Θ(1) accuracy and the optimization oracle for K1,ε and K2,ε takes

time O(n2 logO(1)(mCU)) and O(nEO) respectively. Hence, Theorem 49 shows that it takes

O
(
n2EO log(mCU) + n3 logO(1)(mCU)

)
time to find x∗ exactly.

After getting x∗, one can find ϕ∗ by solving a min cost flow problem using interior point
method [175], which takes O(m

√
n logO(1)(mCU)) time.
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11.4 Affine Subspace of Convex Set

In this section, we give another example about using optimization oracle directly via regu-
larization. We consider the following optimization problem

max
~x∈K and A~x=~b

〈~c, ~x〉 (11.14)

where ~x,~c ∈ Rn, K is a convex subset of Rn, A ∈ Rr×n and ~b ∈ Rm. We suppose that r � n
and thus, the goal of this subsection is to show how to obtain an algorithm takes only Õ(r)
many iterations. To do this, we assume a slightly stronger optimization oracle for K:

Definition 55. Given a convex set K and δ > 0. A δ-2nd-order-optimization oracle for K
is a function on Rn such that for any input ~c ∈ Rn and λ > 0, it outputs ~y such that

max
~x∈K

(
〈~c, ~x〉 − λ

∥∥~x∥∥2
)
≤ δ + 〈~c, ~y〉 − λ

∥∥~y∥∥2
.

We denote by OO
(2)
δ,λ(K) the time complexity of this oracle.

The strategy for solving this problem is very similar to the intersection problem and
hence some details are omitted.

Theorem 56. Assume that max~x∈K ‖~x‖2 < M ,
∥∥~b∥∥

2
< M ,

∥∥~c∥∥
2
< M ,

∥∥A∥∥
2
< M and

λmin(A) > 1/M . Assume that K ∩ {A~x = ~b} 6= ∅ and we have ε-2nd-order-optimization
oracle for every ε > 0. For 0 < δ < 1, we can find ~z ∈ K such that

max
~x∈K and A~x=~b

〈~c, ~x〉 ≤ δ + 〈~c, ~z〉

and
∥∥A~z −~b∥∥

2
≤ δ. This algorithm takes time

O

(
rOO

(2)
η,λ(K) log

(
nM

δ

)
+ r3 logO(1)

(
nM

δ

))
where r is the number of rows in A, η =

(
δ
nM

)Θ(1)
and λ =

(
δ
nM

)Θ(1)
.

Proof. The proof is based on the minimax problem

OPTλ
def
= min∥∥~η∥∥

2
≤λ

max
~x∈K
〈~c, ~x〉+

〈
~η,A~x−~b

〉
− 1

λ

∥∥~x∥∥2

2

where λ =
(

δ
nM

)c
for some large constant c. We note that

OPTλ = max
~x∈K

min∥∥~η∥∥
2
≤λ
〈~c, ~x〉+

〈
~η,A~x−~b

〉
− 1

λ

∥∥~x∥∥2

2

= max
~x∈K
〈~c, ~x〉 − λ

∥∥A~x−~b∥∥
2
− 1

λ

∥∥~x∥∥2

2
.
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Since λmin(A) > 1/M and the set K is bounded by M , one can show that the saddle point
(~x∗, ~η∗) of the minimax problem gives a good enough solution ~x for the original problem for
large enough constant c.

For any ~η, we define

~x~η = arg max
~x∈K

〈~c, ~x〉+
〈
~η,A~x−~b

〉
− 1

λ

∥∥~x∥∥2

2
.

Since the problem is strongly concave in ~x, one can prove that

∥∥~x~η − ~x∗∥∥2
≤
(
nM

δ

)O(c) ∥∥~η − ~η∗∥∥
2
.

Hence, we can first find an approximate minimizer of the function f(~η) = max~x∈K 〈~c, ~x〉 +〈
~η,A~x−~b

〉
− 1

λ

∥∥~x∥∥2

2
and use the oracle to find ~x~η.

To find an approximate minimizer of f , we note that the subgradient of f can be found
using the optimization oracle similar to Theorem 49. Hence, the result follows from our
cutting plane method and the fact that ~η ∈ Rr.

Remark 57. In [175], they considered the special case K = {~x : 0 ≤ xi ≤ 1} and showed that
it can be solved in Õ(

√
r) iterations using interior point methods. This gives the current

fastest algorithm for the maximum flow problem on directed weighted graphs. Our result
generalizes their result to any convex set K but with Õ(r) iterations. This suggests the
following open problem: under what condition on K can one optimize linear functions over
affine subspaces of K with r constraints in Õ(

√
r) iterations?
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Part III

Submodular Function Minimization
via Cutting Plane Method

This Part is based on joint works with Yin Tat Lee and Aaron Sidford.

12 Introduction

Submodularity is a fundamental concept central in the field of combinatorial optimization.
Examples of submodular functions include graph cut functions, set coverage function, and
utility functions from economics. Since the seminal work by Edmonds in 1970 [67], sub-
modular functions and the problem of minimizing such functions (i.e. submodular function
minimization (SFM)) have served as a popular modeling and optimization tools in various
fields such as theoretical computer science, operations research, game theory, and most re-
cently, machine learning. Given its prevalence, fast algorithms for SFM are of immense
interest both in theory and in practice.

Throughout Part III our goal is to provide faster algorithms for SFM. We consider the
standard formulation of SFM: we are given a submodular function f defined on subsets of a
n-element ground set and we wish to find the set of minimum value. We assume f is integer
valued with absolute value at most M and we assume f can be evaluated on a set in time
EO. Our goal is to produce an algorithm that solves the SFM problem for f , i.e. finds a
minimizer of f , while minimizing both the number of oracle calls made and the total running
time.

Our main results of Part III are an O(n2 log nM · EO + n3 logO(1) nM) time algorithm
and an O(n3 log2 n · EO + n4 logO(1) n) time algorithm for SFM. These algorithms improve
upon the previous fastest weakly and strongly polynomial time algorithms for SFM which
had a running times of O((n4 ·EO + n5) logM) [126] and O(n5 ·EO + n6) [217] respectively.
Consequently, we improve the running time for SFM in both regimes by roughly a factor of
O(n2).

Both of our algorithms bear resemblance to the classic approach of Grotschel, Lovasz
and Schrijver [111, 113] using the Lovasz extension. In fact, our weakly polynomial time
algorithm directly applies the results of Part II to the Lovasz Extension. Our strongly
polynomial time algorithm does the same as a first step, but then uses further structure
of our cutting plan method as well as more modern tools for submodular funciton analysis
to proceed. In particular, we apply our cutting plane method for enough iterations to
prove that the minimizer is contained in some narrow convex set and then apply techniques
originally developed by Iwata, Fleischer, and Fujishige (IFF) [128] to deduce useful structural
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information about the minimizers. To achieve our fastest algorithms we provide an extension
of these IFF techniques that may be of independent interest.

Over the past few decades, SFM has drawn considerable attention from various research
communities, most recently in machine learning [16, 164]. Given this abundant interest in
SFM, we hope that our ideas will be of value in various practical applications. Indeed,
one of the critiques against existing theoretical algorithms is that their running time is too
slow to be practical. We hope that given the magnitude of our theoretical running time
improvements, our results may ultimately be used to inform the design of faster algorithms
in practice.

12.1 Previous Work

Here we provide a brief survey of the history of algorithms for SFM. For a more comprehensive
account of the rich history of SFM, we refer the readers to recent surveys [191, 127].

The first weakly and strongly polynomial time algorithms for SFM were based on the
ellipsoid method [152] and were established in the foundational work of Grotschel, Lovasz
and Schrijver in 1980’s [111, 113]. Their work was complemented by a landmark paper by
Cunningham in 1985 which provided a pseudopolynomial algorithm that followed a flow-
style algorithmic framework [50]. His tools foreshadowed many SFM advances that would
take place 15 years later; many modern algorithms synthesize his framework with techniques
inspireed by maximum flow algorithms.

The first such “flow style” strongly polynomial algorithms for SFM were discovered in-
dependently in breakthrough papers by Schrijver [231] and Iwata, Fleischer, and Fujishige
(IFF) [128]. Schrijver’s algorithm has a running of O(n8 · EO + n9) and borrows ideas from
the push-relabel algorithms [109, 57] for maximum flow. On the other hand, IFF’s algorithm
runs in time O(n7 log n · EO) and O(n5 · EO logM), and applies a flow-scaling scheme with
the aid of certain proximity-type lemmas as in work of Tardos [245]. Their method has roots
in flow algorithms such as [124, 110].

Subsequent work on SFM provided algorithms with considerably faster running time by
extending the ideas in these two “genesis” papers [231, 128] in various novel directions [254,
77, 126, 217, 133]. Currently, the fastest weakly and strongly polynomial time algorithms
for SFM have running times of O((n4 · EO + n5) logM) [126] and O(n5 · EO + n6) [217]
respectively. Despite this impressive track record, the running time has not been improved
further in the last eight years.

We remark that all of the previous algorithms for SFM proceed by maintaining a convex
combination of O(n) BFS’s of the base polyhedron, and incrementally improving it in a
relatively local manner. As we shall discuss in Section 12.2, our algorithms do not explicitly
maintain a convex combination in the same manner and instead operate a bit more globally.
This may be one of the fundamental reasons why our algorithms achieve a faster running
time.

Finally, beyond the distinction between weakly and strongly polynomial time algorithms
for SFM, there has been interest in another type of SFM algorithm, known as fully combi-
natorial algorithms in which only additions and subtractions are permitted. Previous such
algorithms include [133, 126, 125]. We do not consider such algorithms in the remainder of
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Authors Years Running times Remarks

Grotschel, Lovasz,
1981,1988 Õ(n5 · EO + n7)[191]

first weakly
Schrijver [111, 113] and strongly
Cunningham [50] 1985 O(Mn6 log nM · EO) first pseudopoly

Schrijver [231] 2000 O(n8 · EO + n9) first combin. strongly
Iwata, Fleischer,

2000
O(n5 · EO logM)
O(n7 log n · EO)

first combin. strongly
Fujishige[128]

Iwata, Fleischer [77] 2000 O(n7 · EO + n8)

Iwata [126] 2003
O((n4 · EO + n5) logM)
O((n6 · EO + n7) log n)

current best weakly

Vygen [254] 2003 O(n7 · EO + n8)
Orlin [217] 2007 O(n5 · EO + n6) current best strongly

Iwata, Orlin [133] 2009
O((n4 · EO + n5) log nM)
O((n5 · EO + n6) log n)

Our algorithms 2015
O(n2 log nM · EO + n3 logO(1) nM)

O(n3 log2 n · EO + n4 logO(1) n)

Table 5: Algorithms for submodular function minimization. Note that some of these
algorithms were published in both conferences and journals, in which case the year provided
is the earlier one.

the thesis and leave it as an open question if it is possible to turn our algorithms into fully
combinatorial ones.

12.2 Our Results and Techniques

In Part III we show how to improve upon the previous best known running times for SFM by
a factor of O(n2) in both the strongly and weakly polynomial regimes. Table 5 summarizes
both the previous known running times as well as those presented in this work.

Both our weakly and strongly polynomial algorithms for SFM utilize a convex relaxation
of the submodular function, called the Lovasz extension. Our algorithms apply our cutting
plane method from Part I using as a separation oracle the subgradient of the Lovasz extension.
This convex optimization framework for SFM is a well known classic approach that to the
best of the author’s knowledge originated in the seminal work of Grotschel, Lovasz and
Schrijver [111, 113].

Our weakly polynomial algorithms follow from two rather direct observations. First,
we show that cutting plane methods such as Vaidya’s [250] can be applied to SFM to yield
faster algorithms. Second, as our cutting plane method, Theorem 42, improves upon previous
cutting plane algorithms we show that it further improves the running time of SFM. This
yields a running time of O(n2 log nM ·EO+n3 logO(1) nM) improving upon the previous best
algorithm by Iwata [126] by a factor of almost O(n2).

Our strongly polynomial algorithms require substantially more innovation. We first
providea a simple geometric argument that SFM can be solved in O(n3 log n · EO) ora-
cle calls (but in exponential time). This proof only uses Grunbaum’s Theorem from convex
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geometry and is completely independent from the rest of the thesis. It was the starting point
of our method and suggests that a running time of Õ(n3 ·EO + nO(1)) for SFM is achievable
in principle.

To turn this oracle call bound into an effecient algorithm, instead of appealing to Grubaum’s
Theorem we use our cutting plane method from Part I. We first run our cutting plane method,
i.e. Theorem 31, for enough iterations to either comput a minimizer or a set P containing
the minimizers that fits within a narrow strip. This narrow strip consists of the intersec-
tion of two approximately parallel hyperplanes. If our narrow strip separates P from one
of the faces xi = 0, xi = 1, we can eliminate the element i from consideration and reduce
the dimension of our problem by 1. Otherwise a pair of elements p, q can be identified for
which q is guaranteed to be in any minimizer containing p (but p may not be contained in a
minimizer). Our first algorithm deduces only one such pair at a time and thereby achieves

a Õ(n4 ·EO +n5) time algorithm for SFM (See Section 15.3). We then improve the running

time to Õ(n3 ·EO + n4) by showing how to deduce many such pairs simultaneously. Similar
to past algorithms, this structural information is deduced from a point in the so-called base
polyhedron (See Section 13).

Readers well-versed in SFM literature may recognize that our strongly polynomial al-
gorithms are reminiscent of the scaling-based approach first used by IFF [128] and later
in [126, 133]. While both approaches share the same skeleton, there are differences in how
structural information about minimizers is deduced. A comparison of these algorithms is
presented in Section 16.

There is one more crucial difference between these algorithms which we believe is respon-
sible for much of our speedup. One common feature of the previous algorithms is that they
maintain a convex combination of O(n) BFS’s of the base polyhedron, and incrementally
improve by introducing new BFS’s by making local changes to existing ones. Our algorithms,
on the other hand, choose new BFS’s by our cutting plane method. Because of this, our
algorithm considers the geometry of a larger set of BFS’s and threby essentially chooses the
next BFS is in a more “global” manner.

12.3 Organization

The rest of Part III is organized as follows. We begin with a gentle introduction to sub-
modular functions in Section 13. In Section 14, we apply our cutting plane method to SFM
to obtain a faster weakly polynomial algorithms. In Section 15 we then present our results
for achieving better strongly polynomial algorithms, where a warm-up Õ(n4 ·EO +n5) algo-

rithm is given before the full-fledged Õ(n3 · EO + n4) algorithm. We conclude Part III with
a discussion and comparison between our algorithms and previous ones in Section 16.

There are a few results in Part III that can be read fairly independently of the rest
of the thesis. In Theorem 67 we show how Vaidya’s algorithm can be applied to SFM to
obtain a faster weakly polynomial running time for SFM and in Theorem 71 we present a
simple geometric argument that SFM can be solved with O(n3 log n · EO) oracle calls (but
exponential time). These results can be read with only a working knowledge of the Lovasz
extension of submodular functions as presented in Section 13.
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13 Preliminaries

Here we introduce background on submodular function minimization (SFM) and notation
that we use throughout Part III. Our exposition is kept to a minimal amount sufficient for
our purposes. We refer interested readers to the extensive survey by McCormick [191] for
further intuition.

13.1 Submodular Function Minimization

Throughout the rest of this Part, let V = {1, ..., n} = [n] denote a ground set and let
f : 2V −→ Z denote a submodular function defined on subsets of this ground set. We use
V and [n] interchangeably and let [0]

def
= ∅. We abuse notation and let S + i

def
= S ∪ {i}

and S − i def
= S\{i} for an element i ∈ V and a set S ⊆ 2V . Formally, we call a function

submodular if it obeys the following property of diminishing marginal returns :

Definition 58 (Submodularity). A function f : 2V −→ Z is submodular if f(T +i)−f(T ) ≤
f(S + i)− f(S) for all S ⊆ T and i ∈ V \T .

For convenience we assume without loss of generality that f(∅) = 0 by replacing f(S)

by f(S)− f(∅) for all S. We also let M
def
= maxS∈2V |f(S)|.

The central goal of Part III is to design algorithms for SFM, i.e. computing a minimizer
of f . We call such an algorithm strongly polynomial if its running time depends only poly-
nomially on n and EO, the time needed to compute f(S) for a set S, and we call such an
algorithm weakly polynomial if it also depends polylogarithmically on M .

13.2 Lovasz Extension

Our new algorithms for SFM all consider a convex relaxation of a submodular function,
known as the Lovasz extension, and then carefully apply our cutting plane methods to
it. Here we formally introduce the Lovasz extension and present basic facts that we use
throughout Part III.

The Lovasz extension of f̂ : [0, 1]n −→ R of our submodular function f is defined for all
~x by

f̂(~x)
def
= Et∼[0,1][f({i : xi ≥ t})],

where t ∼ [0, 1] is drawn uniformly at random from [0, 1]. The Lovasz extension allows us
to reduce SFM to minimizing a convex function defined over the interior of the hypercube.
Below we state that the Lovasz extension is a convex relaxation of f and that it can be
evaluated efficiently.

Theorem 59. The Lovasz extension f̂ satisfies the following properties:

1. f̂ is convex;

2. f(S) = f̂(IS), where IS is the characteristic vector for S, i.e. IS(i) =

{
1 if i ∈ S
0 if i /∈ S

;
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3. S is a minimizer of f if and only if IS is a minimizer of f̂ ;

4. Suppose x1 ≥ · · · ≥ xn ≥ xn+1
def
= 0, then

f̂(~x) =
n∑
i=1

f([i])(xi − xi+1) =
n∑
i=1

(f([i])− f([i− 1]))xi .

Proof. See [113] or any standard textbook on combinatorial optimization, e.g. [233].

Next we provide the well known fact that we can efficiently compute a subgradient of the
Lovasz extension, which in turn is a separating hyperplane for the set of minimizers of our
submodular function f . First we remind the reader of the definition of a separation oracle,
and then we prove the result, Theorem 61.

Definition 60 (separation oracle, Defintion 1 restated for Lovasz extension). Given a point
x̄ and a convex function f̂ over a convex set P , ~aT~x ≤ b is a separating hyperplane if ~aT x̄ ≥ b
and any minimizer x∗ of f̂ over P satisfies ~aTx∗ ≤ b.

Theorem 61. Given a point x̄ ∈ [0, 1]n assume without loss of generality (by re-indexing the
coordinates) that x̄1 ≥ · · · ≥ x̄n. The following inequality is a valid separating hyperplane
for ~x and f :

n∑
i=1

(f([i])− f([i− 1]))xi ≤ f̂(x̄)

i.e., it satisfies the following:

1. (separating) x̄ lies on
∑n

i=1(f([i])− f([i− 1]))xi ≤ f̂(x̄).

2. (valid) For any ~x, we have
∑n

i=1(f([i])−f([i−1]))xi ≤ f̂(~x). In particular,
∑n

i=1(f([i])−
f([i− 1]))x∗i ≤ f̂(x̄) for any minimizer ~x∗, i.e. the separating hyperplane does not cut
out any minimizer.

Moreover, such a hyperplane can be computed with n oracle calls to f and in time O(n ·EO+
n2).

Proof. Note that by Theorem 59 we have that
∑

i∈[n](f([i])− f([i− 1]))xi = f̂(x̄) and thus
the hyperplane satisfies the separating condition. Moreover, clearly computing it only takes
time O(n ·EO+n2) as we simply need to sort the coordinates and evaluate f at n points, i.e.
each of the [i]. All that remains is to show that the hyperplane satisfies the valid condition.

Let L(t) def
= {i : xi ≥ t}. Recall that f̂(~x) = Et∼[0,1][f(Lt)]. Thus f̂(~x) can be written

as a convex combination f̂(~x) =
∑

t αtf(L(t)), where αt ≥ 0 and
∑

t αt = 1. However, by
diminishing marginal differences we see that for all t∑

i∈[n]

(f([i])− f([i− 1])) (IL(t))i =
∑
i∈L(t)

(f([i])− f([i− 1]))

≤
∑
i∈L(t)

(
f([i] ∩ L(t))− f([i− 1] ∩ L(t))

)
= f(L(t))− f(∅) = f(L(t))
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and therefore since
∑

t αtIL(t) = ~x we have

∑
i∈[n]

(f [i]− f([i− 1])xi =
∑
t

αt

n∑
i=1

(f([i])− f([i− 1])) (IL(t))i ≤
∑
t

αtf(L(t)) = f̂(~x).

13.3 Polyhedral Aspects of SFM

Here we provide a natural primal dual view of SFM that we use throughout the analysis. We
provide a dual convex optimization program to minimizing the Lovasz extension and provide
several properties of these programs. We believe the material in this section helps crystallize
some of the intuition behind our algorithm and we make heavy use of the notation presented
in this section. However, we will not need to appeal to the strong duality of these programs
in our proofs.

Consider the following primal and dual programs, where we use the shorthands y(S) =∑
i∈S yi and y−i = min{0, yi}. Here the primal constraints are often called the base polyhedron

B(f)
def
= {~y ∈ Rn : y(S) ≤ f(S)∀S 6⊆ V, y(V ) = f(V )} and the dual program directly

corresponds to minimizing the Lovasz extension and thus f .

Primal Dual

maxy−(V )

y(S) ≤ f(S)∀S 6⊆ V

y(V ) = f(V )

minf̂(~x)

0 ≤ ~x ≤ 1

Theorem 62. ~h is a basic feasible solution (BFS) of the base polyhedron B(f) if and only if

hi = f({v1, ..., vi})− f({v1, ..., vi−1})

for some permutation v1, ..., vn of the ground set V . We call v1, ..., vn the defining permutation
of ~h. We call vi precedes vj for i < j.

This theorem gives a nice characterization of the BFS’s of B(f). It also gives the key
observation underpinning our approach: the coefficients of each separating hyperplane
in Theorem 61 precisely corresponds to a primal BFS (Theorem 62). Our analysis
relies heavily on this connection. We re-state Theorem 61 in the language of BFS.

Lemma 63. We have ~hT~x ≤ f̂(~x) for any ~x ∈ [0, 1]n and BFS ~h.

Proof. Any BFS is given by some permutation. Thus this is just Theorem 61 in disguise.

We also note that since the objective function of the primal program is non-linear, we
cannot say that the optimal solution to the primal program is a BFS. Instead we only know
that it is a convex combination of the BFS’s that satisfy the following property. A proof can
be found in any standard textbook on combinatorial optimization.
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Theorem 64. The above primal and dual programs have no duality gap. Moreover, there
always exists a primal optimal solution ~y =

∑
k λ

(k)~h(k) with
∑

k λ
(k) = 1 (a convex com-

bination of BFS ~h(k)) s.t. any i with yi < 0 precedes any j with yj > 0 in the defining

permutation for each BFS ~h(k).

Our algorithms will maintain collections of BFS and use properties of ~h ∈ B(f), i.e.
convex combination of BFS. To simplify our analysis at several points we will want to assume
that such a vector ~h ∈ B(f) is non-degenerate, meaning it has both positive and negative
entries. Below, we prove that such degenerate points in the base polytope immediately allow
us to trivially solve the SFM problem.

Lemma 65 (Degenerate Hyperplanes). If ~h ∈ B(f) is non-negative then ∅ is a minimizer

of f and if ~h is non-positive then V is a minimizer of f .

Proof. While this follows immediately from Theorem 64, for completeness we prove this
directly. Let S ∈ 2V be arbitrary. If ~h ∈ B(f) is non-negative then by the we have

f(S) ≥ ~h(S) =
∑
i∈S

hi ≥ 0 = f(∅) .

On the other hand if ~h is non-positive then by definition we have

f(S) ≥ ~h(S) =
∑
i∈S

hi ≥
∑
i∈V

hi = h(V ) = f(V ) .

14 Our Weakly Polynomial Algorithm

In this section we show how our cutting plane method can be used to obtain a O(n2 log nM ·
EO+n3 logO(1) nM) time algorithm for SFM. Our main result in this section is the following
theorem, which shows how directly applying our results from earlier parts to minimize the
Lovasz extension yields the desired running time.

Theorem 66. We have an O(n2 log nM ·EO+n3 logO(1) nM) time algorithm for submodular
function minimization.

Proof. We apply Theorem 42 to the Lovasz extension f̂ : [0, 1]n −→ R with the separation
oracle given by Theorem 61. f̂ fulfills the requirement on the domain as its domain Ω = [0, 1]n

is symmetric about the point (1/2, . . . , 1/2) and has exactly 2n constraints.
In the language of Theorem 42, our separation oracle is a (0, 0)-separation oracle with

η = 0 and δ = 0.
We first show that δ = 0. Firstly, our separating hyperplane can be written as

n∑
i=1

(f([i])− f([i− 1]))xi ≤ f̂(x̄) =
n∑
i=1

(f([i])− f([i− 1]))x̄i,
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where the equality follows from Theorem 59. Secondly, for any ~x with f̂(~x) ≤ f̂(x̄) we have
by Theorem 61 that

n∑
i=1

(f([i])− f([i− 1]))xi ≤ f̂(~x) ≤ f̂(x̄)

which implies that ~x is not cut away by the hyperplane.
Next we show that η = 0. Our separating hyperplane induces a valid halfspace whenever

it is not nonzero, i.e. f([i]) 6= f([i − 1]) for some i. In the case that it is zero f([i]) =
f([i − 1])∀i, by the same argument above, we have f̂(x̄) =

∑n
i=1(f([i]) − f([i − 1]))x̄i = 0

and

f̂(~x) ≥
n∑
i=1

(f([i])− f([i− 1]))xi = 0 = f̂(x̄).

In other words, x̄ is an exact minimizer, i.e. η = 0.

Note that
∣∣∣f̂(~x)

∣∣∣ =
∣∣Et∼[0,1][f({i : xi ≥ t})]

∣∣ ≤ M as M = maxS |f(S)|. Now plugging in

α = 1
4M

in the guarantee of Theorem 31, we can find a point x∗ such that

f̂(x∗)− min
~x∈[0,1]n

f̂(~x) ≤ 1

4M

(
max
~x∈[0,1]n

f̂(~x)− min
~x∈[0,1]n

f̂(~x)

)
≤ 1

4M
(2M)

< 1

We claim that mint∈[0,1] f({i : x∗i ≥ t}) is minimum. To see this, recall from 59 that f̂ has

an integer minimizer and hence min~x∈[0,1]n f̂(~x) = minS f(S). Moreover, f̂(x∗) is a convex
combination of f({i : x∗i ≥ t}) which gives

1 > f̂(x∗)− min
~x∈[0,1]n

f̂(~x) = f̂(x∗)−min
S
f(S) ≥ min

t∈[0,1]
f({i : x∗i ≥ t})−min

S
f(S).

Since f is integer-valued, we must then have mint∈[0,1] f({i : x∗i ≥ t}) = minS f(S) as
desired. Since our separation oracle can be computed by n oracle calls and runs in time O(n ·
EO+n2), by Theorem 42 the overall running time is then O(n2 log nM ·EO+n3 logO(1) nM)
as claimed.

Needless to say the proof above completely depends on Theorem 42. We remark that one
can use the Vaidya’s cutting plane instead of ours to get a time complexity O(n2 log nM ·
EO + nω+1 logO(1) n · logM). There is actually an alternate argument that gives a time
complexity of O(n2 logM ·EO + nO(1) · logM). Thus it requires slightly fewer oracle calls at
the expense of slower running time. A proof is offered in this section, which can be skipped
without any risk of discontinuation. This proof relies the following cutting plane method.

Theorem 67 ([20] ). Given any convex set K ⊂ [0, 1]n with a separation oracle of cost SO,
in time O(kSO + knO(1)) one can find either find a point ~x ∈ K or find a polytope P such

that K ⊂ P and the volume of K is at most
(

2
3

)k
.
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The Theorem allows us to decrease the volume of the feasible region by a factor of(
2
3

)k
after k iterations. Similar to above, we apply cutting plane to minimize f̂ over the

hypercube [0, 1]n for O(n logM) iterations, and outputs any integral point in the remaining
feasible region P .

Lemma 68. Let x∗ achieve the minimum function value f̂(x∗) among the points used to
query the separation oracle. Then

1. x∗ ∈ P (k), the current feasible region.

2. Any ~x with f̂(~x) ≤ f̂(x∗) belongs to P (k).

3. suppose x∗i1 ≥ · · · ≥ x∗in and let Sj = {i1, . . . , ij}. Then Sl ∈ arg minSj f(Sj) also

belongs to P (k).

Proof. For any separating hyperplane ~hTx ≤ f̂(x̄) given by x̄, we have by Lemma 63 that
~hTx∗ ≤ f̂(x∗). Since f̂(x∗) is the minimum among all f̂(x̄), ~hTx∗ ≤ f̂(x̄) and hence x∗ is not
removed by any new separating hyperplane. In other words, x∗ ∈ P (k) . The argument for
(2) is analogous.

For (3), recall that by the definition of Lovasz extension f̂(x∗) is a convex combination of
f(Sj) and thus the indicator variable ISl for Sl satisfies f(ISl) ≤ f̂(x∗). By Lemma 63 again,

this implies ~hT ISl ≤ f(ISl) ≤ f̂(x∗) ≤ f̂(x̄) for any separating hyperplane ~hTx ≤ f̂(x̄).

Theorem 69. Suppose that we run Cutting Plane in Theorem 67 for O(n logM) iterations.
Then Sl from the last lemma also minimizes f .

Proof. We use the notations from the last lemma. After k = Kn log2/3M iterations, the

volume of the feasible region P (k) is at most 1/MKn. By the last lemma, ISl ∈ P (k).
Suppose for the sake of contradiction that S minimizes f but f(S) < f(Sl). Since f is

integer-valued, f(S) + 1 ≤ f(Sl). Let r
def
= 1/6M . Consider the set B

def
= {~x : 0 ≤ xi ≤ r ∀i /∈

S, 1− r ≤ xi ≤ 1 ∀i ∈ S}. We claim that for ~x ∈ B,

f̂(~x) ≤ f(S) + 1.

To show this, note that f({i : xi ≥ t}) = f(S) for r < t ≤ 1− r as xi ≤ r for i /∈ S and
xi ≥ 1− r for i ∈ S. Now using conditional probability and |f(T )| ≤M for any T ,

f̂(~x) = Et∼[0,1][f({i : xi ≥ t})]
= (1− 2r)E[f({i : xi ≥ t})|r < t ≤ 1− r] +

r (E[f({i : xi ≥ t})|0 ≤ t ≤ r] + E[f({i : xi ≥ t})|1− r ≤ t ≤ 1]])

= (1− r) f(S) + r (E[f({i : xi ≥ t})|0 ≤ t ≤ r + E[f({i : xi ≥ t})|1− r ≤ t ≤ 1]])

≤ (1− 2r) f(S) + 2rM

≤ f(S) + 4rM

≤ f(S) + 1
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But now B ⊆ P (k) as f̂(~x) ≤ f(S) + 1 ≤ f(Sl) and by (2) of the last lemma. This would
lead to a contradiction since

vol(B) =
1

(6M)n
>

1

MKn
≥ vol(P (k))

for sufficiently large K.

Corollary 70. There is an O(n2 logM · EO + nO(1) logM) time algorithm for submodular
function minimization.

Proof. This simply follows from the last lemma, Theorem 67, and the fact that our separation
oracle runs in time O(n · EO + n2).

Curiously, we obtained O(logM) rather than O(log nM) as in our algorithm. We leave it
as an open problem whether one can slightly improve our running time to O(n2 logM ·EO+
n3 logO(1) n · logM). The rest of this Part is devoted to obtaining better strongly polynomial
running time.

15 Our Strongly Polynomial Algorithm

In this section we show how our cutting plane method can be used to obtain a Õ(n3 ·EO+n4)
time algorithm for SFM improving upon the previous best strongly polynomial running time
of O(n5 · EO + n6) due to Orlin [217]. We provide this result in several steps. First in
Section 15.1 we show that f can be minimized with O(n3 log n) oracle calls. The running
time for this algorithm is large but the proof is simple and motivates our approach. In
Section 15.2 we then introduce various technical tools which we will use to improve the
running time of our algorithms. In Section 15.3 we then present a Õ(n4 · EO + n5) time
algorithm that uses many of these technical tools. Finally, in Section 15.4 we show how to
improve this algorithm to achieve our Õ(n3 · EO + n4) running time for SFM.

15.1 Improved Oracle Complexity

Here we present a simple geometric argument that f can be minimized with O(n3 log n)
oracle calls. This improves upon the previous best known bound by a factor of O(n2) and
is the strongest bound we present in this thesis, but unfortunately the algorithm associated
with the proof runs in exponential time. Nevertheless, this analysis provides insight into how
our more efficient algorithms should proceed. In the rest of this Part, we combine this insight
with existing SFM tools developed over the last decade (as well as some improvements) to
get our fastest strongly polynomial time algorithms.

Theorem 71. Submodular functions can be minimized with O(n3 log n · EO) oracle calls.

Proof. We use the cutting plane method in Theorem 67 with the separation oracle given by
Theorem 61. This method reduce the volume of the feasible region by a factor of (2

3
)k after

k iterations if the optimal has not found yet.
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Now, we argue that after O(n log n) iterations of this procedure we have either found a
minimizer of f or we have enough information to reduce the dimension of the problem by
1. To see this, first note that if the separation oracle ever returns a degenerate hyperplane,
then by Lemma 65 then either ∅ or V is the minimizer, which we can determine in time
O(EO +n). Otherwise, after 100n log n iterations, our feasible region P must have a volume
of at most 1/n10n . In this case, we claim that the remaining integer points in P all lie on a
hyperplane. This holds, as if this was not the case, then there is a simplex 4, with integral
vertices v0, v1, . . . , vn, contained in P . But then

vol(P ) ≥ vol(4) =
1

n!
|det (v1 − v0 v2 − v0 . . . vn − v0)| ≥ 1

n!

where the last inequality holds since the determinant of an integral matrix is integral, yielding
a contradiction.

In other words after O(n log n) iterations, we have reduced the dimension of all viable
solutions by at least 1. Thus, we can recurse by applying the cutting plane method to the
lower dimensional feasible region, i.e. P is (replaced by) the convex combination of all the
remaining integer points. There is a minor technical issue we need to address as our space
is now lower dimensional and the starting region is not necessarily the hypercube anymore
and the starting volume is not necessarily equal to 1.

We argue that the starting volume is bounded by nO(n). If this is indeed the case, then our
previous argument still works as the volume goes down by a factor of 1/nO(n) in O(n log n)
iterations.

Let v ∈ P be an integer point. Now the dim(P )-dimensional ball of radius
√
n centered

at v must contain all the other integer points in P as any two points of {0, 1}n are at most√
n apart. Thus the volume of P is bounded by the volume of the ball which is nO(n). Now

to get the volume down to 1/n10n, the number of iterations is still O(n log n).
In summary, we have reduced our dimension by 1 using O(n log n) iterations which re-

quires O(n2 log n · EO) oracle calls (as each separating hyperplane is computed with n · EO
oracle calls). This can happen at most n times. The overall query complexity is then
O(n3 log n · EO).

Note that the minimizer ~x obtained may not be integral. This is not a problem as the
definition of Lovasz extension implies that if f̂(~x) is minimal, then f({i : xi ≥ t}) is minimal
for any t ∈ [0, 1].

We remark that this algorithm does not have a polynomial runtime. Even though all the
integral vertices of P lie on a hyperplane, the best way we know of that identifies it takes
exponential time by checking for all the integer points {0, 1}n.

Remark 72. Note that this algorithm works for minimizing any convex function over the
hypercube that obtains its optimal value at a vertex of the hypercube. Formally, our proof
of Theorem 71 holds whenever a function f : 2V −→ Rn admits a convex relaxation f̂ with
the following properties:

1. For every S ⊆ V , f̂(IS) = f(S).

2. Every f̂(~x) can be written as a convex combination
∑

S∈S αSf(S), where
∑
αS = 1,

|S| = O(n), and S can be computed without any oracle call.
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3. A subgradient ∂f̂(~x) of f̂ at any point ~x ∈ [0, 1]n can be computed with O(n · EO)
oracle calls.

In this case, the proof of Theorem 71, implies that f̂ and f can be minimized with O(n3 log n·
EO) oracle calls by using the separating hyperplane ∂f̂(x̄)T (~x− x̄) ≤ 0.

15.2 Technical Tools

To improve upon the running time of the algorithm in the previous section, we use more
structure of our submodular function f . Rather than merely showing that we can decrease
the dimension of our SFM problem by 1 we show how we can reduce the degrees of freedom of
our problem in a more principled way. In Section 15.2.1 we formally define the abstraction we
use for this and discuss how to change our separation oracle to accommodate this abstraction,
and in Section 15.2.2 we show how we can deduce these constraints. These tools serve as the
foundation for the faster strongly polynomial time SFM algorithms we present in Section 15.3
and Section 15.4.

15.2.1 SFM over Ring Family

For the remainder of this Part we consider a more general problem than SFM in which we
wish to compute a minimizer of our submodular function f over a ring family of the ground
set V = [n]. A ring family F is a set of subsets of V such that for any S1, S2 ∈ F , we
have S1 ∪ S2, S1 ∩ S2 ∈ F . Thus SFM corresponds to the special case where F consists of
every subset of V . This generalization has been considered before in the literature and was
essential to the IFF algorithm.

It is well known that any ring family F over V can be represented by a directed graph
D = (V,A) where S ∈ F if and only if S contains all of the descendants of any i ∈ S. An
equivalent definition is that for any arc (i, j) ∈ A, i ∈ S implies j ∈ S. It is customary to
assume that A is acyclic as any (directed) cycle of A can be contracted (see Section 15.3.1).

We let R(i) denote the set of descendants of i (including i itself) in D and let Q(i) denote
the set of ancestors of i (including i itself). To perform SFM restricted to a ring family we
can encode an arc (i, j) ∈ A by the constraint xi ≤ xj as shown by the next lemma.

Lemma 73. Let F be a ring family over V and D = (V,A) be its directed acyclic graph
representation. Suppose f : V −→ R is submodular with Lovasz extension f̂ . Then the
characteristic vector IS of any minimizer S = arg minS∈F f(S) over F is also the solution
to

minf̂(~x)

xi ≤ xj ∀(i, j) ∈ A
0 ≤ ~x ≤ 1

(15.1)

Proof. Let x∗ be a minimizer, and L(t) = {i : x∗i ≥ t}. It is easy to check that the indicator
variable IL(t) satisfies (15.1) since x∗ does. Moreover, recall that f̂(x∗) = Et∼[0,1][f(Lt)]. Thus

f̂(x∗) can be written as a convex combination f̂(x∗) =
∑

t αtf(L(t)) =
∑

t αtf̂(IL(t)), where

αt > 0 and
∑

t αt = 1. Thus all such f̂(IL(t)) are minimal, i.e. (15.1) has no “integrality
gap”.
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We also modify our separation oracle to accommodate for this generalization as follows.
Before doing so we need a definition which relates our BFS to the ring family formalism.

Definition 74. A permutation (v1, . . . , vn) of V is said to be consistent with an arc (i, j) if
j precedes i in (v1, . . . , vn). Similarly, a BFS of the base polyhedron is consistent with (i, j)
if j precedes i in its defining permutation. (v1, . . . , vn) (or a BFS) is consistent with A if it
is consistent with every (i, j) ∈ A.

Readers may find it helpful to keep in mind the following picture which depicts the
relative positions between R(i), i, Q(i) in the defining permutation of ~h that is consistent
with A:

· · · · · · R(i)\{i} · · · · · · i · · · · · · Q(i)\{i} · · · · · ·
In Theorem 61, given x̄ ∈ [0, 1]n our separating hyperplane is constructed by sorting the

entries of x̄. This hyperplane is associated with some BFS ~h of the base polyhedron. As
we shall see towards the end of the section, we would like ~h to be consistent with every arc
(i, j) ∈ A.

This task is easy initially as x̄ satisfies xi ≤ xj for (i, j) ∈ A for the starting polytope of
(15.1). If xi < xj, nothing special has to be done as j must precede i in the ordering. On
the other hand, whenever xi = xj, we can always break ties by ranking j ahead of i.

However, a technical issue arises due to the fact that our cutting plane algorithm may
drop constraints from the current feasible region P . In other words, x̄ may violate xi ≥ 0,
xj ≤ 1 or xi ≤ xj if it is ever dropped. Fortunately this can be fixed by reintroducing the
constraint. We summarize the modification needed in the pseudocode below and formally
show that it fulfills our requirement.

Algorithm 5: Modified Separation Oracle

Input: x̄ ∈ Rn and the set of arcs A
if x̄i < 0 for some i then

Output: xi ≥ 0
else if x̄j > 1 for some j then

Output: xj ≤ 1
else if x̄i > x̄j for some (i, j) ∈ A then

Output: xi ≤ xj
else

Let i1, . . . , in be a permutation of V such that x̄i1 ≥ . . . ≥ x̄inand for all
(i, j) ∈ A, j precedes i in i1, . . . , in.

Output: ~hT~x ≤ f̂(x̄), where ~h is the BFS defined by the permutation i1, . . . , in.

Lemma 75. Our modified separation oracle returns either some BFS ~h = 0 or a valid
separating hyperplane, i.e.

1. x̄ either lies on the separating hyperplane or is cut away by it.

2. Any minimizer of (15.1) is not cut away by the separating hyperplane.
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Such a hyperplane can be computed with n oracle calls to f and in time O(n · EO + n2).

Proof. If we get xi ≥ 0, xj ≤ 1 or xi ≤ xj (if loop or the first two else loops), then clearly
x̄ is cut away by it and any minimizer must of course satisfy xi ≥ 0, xj ≤ 1 and xi ≤ xj
as they are the constraints in (15.1). This proves (1) and (2) for the case of getting xi ≥ 0,
xj ≤ 1 or xi ≤ xj.

Thus it remains to consider the case ~hT~x ≤ f̂(x̄) (last else loop). First of all, x̄ lies on

it as f̂(x̄) = ~hT x̄. This proves (1). For (2), we have from Lemma 63 that ~hT~x ≤ f̂(~x). If

x∗ is a minimizer of (15.1), we must then have ~hTx∗ ≤ f̂(x∗) ≤ f̂(x̄) as x̄ is also feasible for
(15.1).

Finally we note that the running time is self-evident.

We stress again that the main purpose of modifying our separation oracle is to ensure
that any BFS ~h used to define a new separating hyperplane must be consistent with every
(i, j) ∈ A.

15.2.2 Identifying New Valid Arcs

The reason for considering the ring family generalization of SFM is that our algorithms (and
some previous algorithms too) work by adding new arcs to our digraph D. This operation
yields a strongly polynomial algorithm since there are only 2 ·

(
n
2

)
possible arcs to add. Of

course, a new arc (i, j) is valid only if i ∈ Smin =⇒ j ∈ Smin for some minimizer Smin. Here
we show how to identify such valid arcs by extracting information from certain nice elements
of the base polyhedron.

This is guaranteed by the next four lemmas, which are stated in a way different from
previous works e.g. our version is extended to the ring family setting. This is necessary as
our algorithms require a more general formulation. We also give a new polyhedral proof,
which is mildly simpler than the previous combinatorial proof. On the other hand, Lemma
80 is new and unique to our work. It is an important ingredient of our Õ(n3 ·EO + n4) time
algorithm.

Recall that each BFS of the base polyhedron is defined by some permutation of the
ground set elements.

First, we prove the following two lemmas which show that should we ever encounter a
non-degenerate point in the base polytope with a coordinate of very large value, then we can
immediately conclude that that coordinate must be or must not be in solution to SFM over
the ring family.

Lemma 76. If ~y ∈ B(f) is non-degenerate and satisfies yi > −(n− 1) minj yj, then i is not
in any minimizer of f (over the ring family A).

Proof. We proceed by contradiction and suppose that S is a minimizer of f that contains i.
Now since ~y is non-degenerate we know that minj yj ≤ 0 and by the definition of ~y we have
the following contradiction

0 < yi + (n− 1) min
j
yj ≤

∑
j∈S

yj = ~y(S) ≤ f(S) ≤ f(∅) = 0 .
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Lemma 77. If ~y ∈ B(f) is non-degenerate and satisfies yi < −(n− 1) maxj yj, then i is in
every minimizer of f (over the ring family A).

Proof. We proceed by contradiction and suppose that S is a minimizer of f that does not
contain i. Now since ~y is non-degenerate we know that maxj yj ≥ 0 and therefore∑
j∈[n]

yj = yi+
∑
j∈S

yj+
∑

j∈V−(S+i)

yj < −(n−1) max
j
yj+

∑
j∈S

yj+(|V |−|S|−1) max
j
yj ≤

∑
j∈S

yj .

However by the definition of ~y we have∑
j∈S

yj = ~y(S) ≤ f(S) ≤ f(V ) =
∑
j∈[n]

yj .

Thus we have a contradiction and the result follows.

Now we are ready to present conditions under which a new valid arc can be added. We
begin with a simple observation. Let upper(i)

def
= f(R(i)) − f(R(i) − i) and lower(i)

def
=

f(V \Q(i) + i)− f(V \Q(i)). As the names suggest, they bound the value of hi for any BFS
used.

Lemma 78. For any BFS ~h used to construct a separating hyperplane given by our modified
separation oracle, we have lower(i) ≤ hi ≤ upper(i).

Proof. Note that by Lemma 75, ~h is consistent with every (j1, j2) ∈ A and hence i must
precede Q(i) and be preceded by R(i). Let S be the set of elements preceding i in the

defining permutation of ~h. Then hi = f(S + i) − f(S) ≤ f(R(i)) − f(R(i) − i) because of
diminishing return and R(i) − i ⊆ S. The lower bound follows from the same argument as
Q(i)− i comes after i, and so Q(i) ⊆ V \S.

In the following two lemmas, we show that if upper(i) is ever sufficiently positive or
lower(i) is sufficiently negative, then we find a new arc.

While these lemmas may appear somewhat technical but actually has an intuitive inter-
pretation. Suppose an element p is in a minimizer Smin of f over the ring family D. Then
R(p) must also be part of Smin. Now if f(R(p)) is very large relative to f(R(p) − p), there
should be some element q ∈ Smin\R(p) compensating for the discrepancy. The lemma says
that such an element q can in fact be found efficiently.

Lemma 79 (new arc). Let ~y =
∑

k λ
(k)~y(k) be a non-degenerate convex combination of O(n)

base polyhedron BFS’s ~y(k) which are consistent with every arc (i, j) ∈ A. If some element
p satisfies upper(p) > n4 max yj, then we can find, using O(n · EO) oracle calls and O(n2)
time, some q /∈ R(p) such that the arc (p, q) is valid, i.e. if p is in a minimizer, then so is q.

Proof. If max yj < 0 then we are immediately done by Lemma 65. We assume max yj ≥ 0
in the proof. For all k let ~y′(k) be the BFS obtained by taking the defining permutation of
~y(k) and moving R(p) to the front while preserving the relative ordering of R(p) within each

permutation). Furthermore, let ~y′
def
=
∑

k λ
(k)~y′(k). Then since y

′(k)
p = f(R(p))−f(R(p)−p) =

upper(p) we have upper(p) = y′p = f(R(p))− f(R(p)− p). Moreover,

y′j ≥ yj ∀j ∈ R(p) and y′j ≤ yj ∀j /∈ R(p) (15.2)
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by diminishing marginal return.
Now, suppose p is in a minimizer Smin. Then R(p) ⊆ Smin by definition. We then define

f ′(S) = f(S ∪ R(p)) for S ⊆ V \R(p). It can be checked readily that f ′ is submodular and
Smin\R(p) is a minimizer of f ′ (over the corresponding ring family). Note that now ~y′V \R(p)

(the restriction of ~y′ to V \R(p)) is a convex combination of the BFS’s of the base polyhedron
B(f ′) of f ′. We shall show that ~y′V \R(p) has the desired property in Lemma 77.

Note that y′(V \R(p) + p) ≤ y(V \R(p) + p) since

y′(V \R(p)+p) = y′(V )−y′(R(p)−p) = y(V )−y′(R(p)−p) ≤ y(V )−y(R(p)−p) = y(V \R(p)+p).

But now since ~y is non-degenerate maxj yj ≥ 0 and therefore

y′(V \R(p)) ≤ y(V \R(p) + p)− y′p
= y(V \R(p) + p)− (f(R(p))− f(R(p)− p)) (15.3)

≤ nmax yj − (f(R(p))− f(R(p)− p))
< (n− n4) max yj

Therefore by the Pigeonhole Principle some q /∈ R(p) must satisfy

y′q <
(
(n− n4) max yj

)
/(n− 1)

= −(n3 + n2 + n) max yj

≤ −(n3 + n2 + n) max
j /∈R(p)

yj

≤ −(n3 + n2 + n) max
j /∈R(p)

y′j by (15.2)

By Lemma 77, this q must be in any minimizer of f ′. In other words, whenever p is in a
minimizer of f , then so is q.

Note however that computing all ~y′ would take O(n2) oracle calls in the worst case as
there are O(n) ~y′(k)’s. We use the following trick to identify some q with y′q < −(n−1) max yj
using just O(n) calls. The idea is that we actually only want to have sufficient decreases
in y′(V \R(p)) which can be accomplished by having a large corresponding decrease in some
~y′(k).

For each k, by the same argument above (see (15.3))

y′(k)(V \R(p))− y(k)(V \R(p)) ≤ y(k)
p − (f(R(p))− f(R(p)− p)) (15.4)

The “weighted decrease” λ(k)
(
y

(k)
p − (f(R(p))− f(R(p)− p))

)
for ~y′(k) sum up to∑

λ(k)
(
y(k)
p − (f(R(p))− f(R(p)− p))

)
= yp − (f(R(p))− f(R(p)− p)) < (1− n4) max yj

Thus by the Pigeonhole Principle, some l will have

λ(l)
(
y(l)
p − (f(R(p))− f(R(p)− p))

)
<
(
(1− n4) max yj

)
/O(n) < −n2 max yj.

94



For this ~y(l) we compute ~y′(l). We show that ~y′′ = λ(l)~y′(l) +
∑

k 6=l λ
(k)~y(k) has the same

property as ~y′ above.

y′′(V \R(p)) = λ(l)y′(l)(V \R(p)) +
∑
k 6=l

λ(k)y(k)(V \R(p))

= y(V \R(p)) + λ(l)
(
y′(l)(V \R(p))− y(l)(V \R(p))

)
≤ y(V \R(p)) + λ(l)

(
y(l)
p − (f(R(p))− f(R(p)− p))

)
by (15.4)

< (n− 1) max yj − n2 max yj

< (n− n2) max yj

Then some q ∈ V \R(p) must satisfy

y′′q <
n− n2

n− 1
max yj = −nmax yj

That is, the arc (p, q) is valid. This takes O(n) oracle calls as given ~y =
∑

k λ
(k)~y(k) ,

computing ~y′′ requires knowing only f(R(p)), f(R(p)− p), and ~y′(l) which can be computed
from ~y(l) with n oracle calls. The runtime is O(n2) which is needed for computing ~y′′.

Lemma 80. Let ~y =
∑

k λ
(k)~y(k)be a non-degenerate convex combination of base polyhedron

BFS ~y(k) which is consistent with every arc (i, j) ∈ A. If lower(p) < n4 min yj, then we can
find, using O(n · EO) oracle calls and O(n2) time, some q /∈ Q(p) such that the arc (q, p) is
valid, i.e. if p is not in a minimizer, then q is not either.

Proof. It is possible to follow the same recipe in the proof of Lemma 79 but using Lemma 76
instead of Lemma 77. Here we offer a proof which directly invokes Lemma 77 on a different
submodular function.

Let g be defined by g(S)
def
= f(V \S) for any S, and Ag be the set of arcs obtained by

reversing the directions of the arcs of A. Consider the problem of minimizing g over the
ring family Ag. Using subscripts to avoid confusion with f and g, e.g. Rg(i) is the set of
descendants of i w.r.t. Ag, it is not hard to verify the following:

• g is submodular

• Rg(i) = Qf (i)

• g(Rg(p))− g(Rg(p)− p) = − (f(V \Qf (p) + p)− f(V \Qf (p)))

• −~y(k) is a BFS of B(g) if and only if ~y(k) is a BFS of B(f)

• max(−yj) = −min yj

By using the above correspondence and applying Lemma 79 to g and Ag, we can find, using
O(n) oracle calls and O(n2) time, some q /∈ Rg(p) = Q(p) such that the arc (p, q) is valid for
g and Ag. In other words, the reverse (q, p) will be valid for f and A.
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These lemmas lay the foundation of our algorithm. They suggests that if the positive
entries of a point in the base polyhedron are small relative to some upper(p) = f(R(p)) −
f(R(p) − p), a new arc (p, q) can be added to A. This can be seen as a robust version of
Lemma 65.

Finally, we end the section with a technical lemma that will be used crucially for both
of our algorithms. The importance of it would become obvious when it is invoked in our
analyses.

Lemma 81. Let ~h′′ denote a convex combination of two vectors ~h and ~h′ in the base poly-
hedron, i.e. ~h′′ = λ~h+ (1− λ)~h′ for some λ ∈ [0, 1]. Further suppose that∥∥~h′′∥∥

2
≤ αmin

{
λ
∥∥~h∥∥

2
, (1− λ)

∥∥~h′∥∥
2

}
for some α ≤ 1

2
√
n

. Then for p = arg maxj(max{λ|hj|, (1− λ)|h′j|}) we have

lower(p) ≤ − 1

2α
√
n
·
∥∥~h′′∥∥∞ and upper(p) ≥ 1

2α
√
n
·
∥∥~h′′∥∥∞ .

Proof. Suppose without loss of generality that λ|hp| ≥ (1− λ)|h′p|. Then by assumptions we
have ∥∥~h′′∥∥∞ ≤ ∥∥~h′′∥∥2

≤ α ·min
{
λ
∥∥~h∥∥

2
, (1− λ)

∥∥~h′∥∥
2

}
≤ α
√
n |λhp| .

However, since α ≤ 1
2
√
n

we see that

∣∣λhp + (1− λ)h′p
∣∣ ≤ ∥∥h′′∥∥∞ ≤ α

√
n |λhp| ≤

1

2
|λhp| .

Consequently, λhp and (1 − λ)h′p have opposite signs and
∣∣(1− λ)h′p

∣∣ ≥ 1
2

∣∣λh′p∣∣. We then
have,

lower(p) ≤ min
{
hp, h

′
p

}
≤ min

{
λhp, (1− λ)h′p

}
≤ −1

2
|λhp| ≤ −

1

2α
√
n

∥∥h′′∥∥∞
and

upper(p) ≥ max
{
hp, h

′
p

}
≥ max

{
λhp, (1− λ)h′p

}
≥ 1

2
|λhp| ≥

1

2α
√
n

∥∥h′′∥∥∞ .

15.3 Õ(n4 · EO + n5) Time Algorithm

Here we present a Õ(n4 · EO + n5) time, i.e. strongly polynomial time algorithm, for SFM.
We build upon this algorithm to achieve a faster running time in Section 15.4.

Our new algorithm combines existing tools for SFM developed over the last decade with
our cutting plane method and some new extensions of the tools. While there are certain
similarities with previous algorithms (especially [126, 133, 128]), our approach significantly
departs from all the old approaches in one important aspect.
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All of the previous algorithms actively maintain a point in the base polyhedron and
represent it as a convex combination of BFS’s. At each step, a new BFS may enter the
convex combination and an old BFS may exit. Our algorithm, on the other hand, maintains
only a collection of BFS’s (corresponding to our separating hyperplanes), rather than an
explicit convex combination. A “good” convex combination is computed from the collection
of BFS’s only after running Cutting Plane for enough iterations. We believe that this crucial
difference is the fundamental reason which offers the speedup. This is achieved by the Cutting
Plane method which considers the geometry of the collection of BFS’s. On the other hand,
considering only a convex combination of BFS’s effectively narrows our sight to only one
point in the base polyhedron.

Overview

Now we are ready to describe our strongly polynomial time algorithm. Similar to the weakly
polynomial algorithm, we first run our cutting plane for enough iterations on the initial
feasible region {~x ∈ [0, 1]n : xi ≤ xj ∀(i, j) ∈ A}, after which a pair of approximately parallel
supporting hyperplanes F1, F2 of width 1/nΘ(1) can be found. Our strategy is to write F1

and F2 as a nonnegative combination of the facets of remaining feasible region P . This
combination is made up of newly added separating hyperplanes as well as the inequalities
xi ≥ 0, xj ≤ 1 and xi ≤ xj. We then argue that one of the following updates can be done:

• Collapsing: xi = 0, xj = 1 or xi = xj

• Adding a new arc (i, j): xi ≤ xj for some (i, j) /∈ A

The former case is easy to handle by elimination or contraction. If xi = 0, we simply
eliminate i from the ground set V ; and if xi = 1, we redefine f so that f(S) = f(S + i) for
any S ⊆ V − i. xi = xj can be handled in a similar fashion. In the latter case, we simply
add the arc (i, j) to A. We then repeat the same procedure on the new problem.

Roughly speaking, our strongly polynomial time guarantee follows as eliminations and
contractions can happen at most n times and at most 2 ·

(
n
2

)
new arcs can be added. While

the whole picture is simple, numerous technical details come into play in the execution. We
advise readers to keep this overview in mind when reading the subsequent sections.

Algorithm

Our algorithm is summarized below. Again, we remark that our algorithm simply uses
Theorem 82 regarding our cutting plane and is agnostic as to how the cutting plane works,
thus it could be replaced with other methods, albeit at the expense of slower runtime.

1. Run cutting plane on (15.1) (Theorem 82 with τ = Θ(1)) using our modified separation
oracle (Section 15.2.1).

2. Identify a pair of “narrow” approximately parallel supporting hyperplanes or get some
BFS ~h = 0 (in which case both ∅ and V are minimizers).

3. Deduce from the hyperplanes some new constraint of the forms xi = 0, xj = 1, xi = xj
or xi ≤ xj (Section 15.3.2).
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4. Consolidate A and f (Section 15.3.1).

5. Repeat by running our cutting plane method on (15.1) with updated A and f . (Note
that Any previously found separating hyperplanes are discarded.)

We call step (1) a phase of cutting plane. The minimizer can be constructed by unraveling
the recursion.

15.3.1 Consolidating A and f

Here we detail how the set of valid arcs A and submodular function f should be updated
once we deduce new information xi = 0, xi = 1, xi = xj or xi ≤ xj. Recall that R(i) and Q(i)
are the sets of descendants and ancestors of i respectively (including i itself). The changes
below are somewhat self-evident, and are actually used in some of the previous algorithms
so we only sketch how they are done without a detailed justification.

Changes to the digraph representation D of our ring family include:

• xi = 0: remove Q(i) from the ground set and all the arcs incident to Q(i)

• xi = 1: remove R(i) from the ground set and all the arcs incident to R(i)

• xi = xj: contract i and j in D and remove any duplicate arcs

• xi ≤ xj: insert the arc (i, j) to A

• For the last two cases, we also contract the vertices on a directed cycle of A until there
is no more. Remove any duplicate arcs.

Here we can contract any cycle (i1, . . . , ik) because the inequalities xi1 ≤ xi2 , . . . , xik−1
≤

xik , xik ≤ xi1 imply xi1 = . . . = xik .
Changes to f :

• xi = 0: replace f by f ′ : 2V \Q(i) −→ R, f ′(S) = f(S) for S ⊆ V \Q(i)

• xi = 1: replace f by f ′ : 2V \R(i) −→ R, f ′(S) = f(S ∪R(i)) for S ⊆ V \R(i)

• xi = xj: see below

• xi ≤ xj: no changes to f needed if it does not create a cycle in A; otherwise see below

• Contraction of C = {i1, . . . , ik}: replace f by f ′ : 2V \C+l −→ R, f ′(S) = f(S) for
S ⊆ V \C and f ′(S) = f((S − l) ∪ C) for S 3 l

Strictly speaking, these changes are in fact not needed as they will automatically be taken
care of by our cutting plane method. Nevertheless, performing them lends a more natural
formulation of the algorithm and simplifies its description.
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15.3.2 Deducing New Constraints xi = 0, xj = 1, xi = xj or xi ≤ xj

Here we show how to deduce new constraints through the result of our cutting plane method.
This is the most important ingredient of our algorithm. As mentioned before, similar argu-
ments were used first by IFF [128] and later in [126, 133]. There are however two important
differences for our method:

• We maintain a collection of BFS’s rather a convex combination; a convex combination
is computed and needed only after each phase of cutting plane.

• As a result, our results are proved mostly geometrically whereas the previous ones were
proved mostly combinatorially.

Our ability to deduce such information hinges on the power of the cutting plane method
in Part I. We re-state our main result Theorem 31 in the language of SFM. Note that
Theorem 82 is formulated in a fairly general manner in order to accommodate for the next
section. Readers may wish to think τ = Θ(1) for now.

Theorem 82 (Theorem 31 restated for SFM). For any τ ≥ 100, applying our cutting plane
method, Theorem 82, to (15.1) with our modified separation oracle (or its variant in Section
15.4) with high probability in n either

1. Finds a degenerate BFS ~h ≥ ~0 or ~h ≤ ~0.

2. Finds a polytope P consisting of O(n) constraints which are our separating hyperplanes
or the constraints in (15.1). Moreover, P satisfies the following inequalities

~cT~x ≤M and ~c′T~x ≤M ′,

both of which are nonnegative combinations of the constraints of P , where ||~c+~c′||2 ≤
min{||~c||2, ||~c′||2}/nΘ(τ) and |M +M ′| ≤ min{||~c||2, ||~c′||2}/nΘ(τ).

Furthermore, the algorithm runs in expected time O(n2τ log n · EO + n3τO(1) logO(1) n).

Proof. In applying Theorem 82 we let K be the set of minimizers of f over the ring family
and the box is the hypercube with R = 1. We run cutting plane with our modified separation
oracle (Lemma 75). The initial polytope P (0) can be chosen to be, say, the hypercube. If
some separating hyperplane is degenerate, then we have the desired result (and know that
either ∅ or V is optimal). Otherwise let P be the current feasible region. Note that P 6= ∅,
because our minimizers of f̂ are all in P (0) and P (k) as they are never cut away by the
separating hyperplanes.

Let S be the collection of inequalities (15.1) as well as the separating hyperplanes ~hT~x ≤
f̂(x̄h) = ~hT x̄h used. By Theorem 31, all of our minimizers will be contained in P , consisting

of O(n) constraints A~x ≥ ~b. Each such constraint ~aTi ~x ≥ bi is a scaling and shifting of some
inequality ~pTi ~x ≥ qi in S, i.e. ~ai = ~pi/||~pi||2 and bi ≤ qi/||~pi||2.
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By taking ε = 1/nΘ(τ) with sufficiently large constant in Θ, our theorem certifies that P

has a narrow width by ~a1, some nonnegative combination
∑O(n)

i=2 ti~ai and point ~xo ∈ P with
||~xo||∞ ≤ 3

√
nR = 3

√
n satisying the following:∥∥∥∥∥∥~a1 +

O(n)∑
i=2

ti~ai

∥∥∥∥∥∥
2

≤ 1/nΘ(τ)

0 ≤ ~aT1 ~xo −~b1 ≤ 1/nΘ(τ)

0 ≤

O(n)∑
i=2

tiai

T

~xo −
O(n)∑
i=2

tibi ≤ 1/nΘ(τ)

We convert these inequalities to ~p and q. Let t′i
def
= ti · ||~p1||2/||~pi||2 ≥ 0.∥∥∥∥∥∥~p1 +

O(n)∑
i=2

t′i~pi

∥∥∥∥∥∥
2

≤ ||~p1||2/nΘ(τ)

0 ≤ ~pT1 ~xo − q1 ≤ ||~p1||2/nΘ(τ)

0 ≤

O(n)∑
i=2

t′i~pi

T

~xo −
O(n)∑
i=2

t′iqi ≤ ||~p1||2/nΘ(τ)

We claim that4 ~c = −~p1, M = −q1, ~c′ = −
∑O(n)

i=2 t′i~pi, M
′ = −

∑O(n)
i=2 t′iqi satisfy our

requirement.
We first show that ||~c + ~c′||2 ≤ min{||~c||2, ||~c′||2}/nΘ(τ). We have ||~c + ~c′||2 ≤ ||~c||2/nΘ(τ)

from the first inequality. If ||~c||2 ≤ ||~c′||2 we are done. Otherwise, by triangle inequality

||~c′||2 − ||~c||2 ≤ ||~c+ ~c′||2 ≤ ||~c||2/nΘ(τ) =⇒ 2||~c||2 ≥ ||~c′||2

and hence ||~c+ ~c′||2 ≤ ||~c||2/nΘ(τ) ≤ ||~c′||2/2nΘ(τ) = ||~c′||2/nΘ(τ).
We also need to prove |M + M ′| ≤ min{||~c||2, ||~c′||2}/nΘ(τ). Summing the second and

third inequalities,
−||~c||2/nΘ(τ) ≤ (~c+ ~c′)T~xo − (M +M ′) ≤ 0

Recall that we have ||~xo||∞ ≤ 3
√
n. Then

|M +M ′| ≤ |(~c+ ~c′)T~xo − (M +M ′)|+ |(~c+ ~c′)T~xo|
≤ ||~c||2/nΘ(τ) + 3

√
n||~c+ ~c′||2

≤ ||~c||2/nΘ(τ) + 3
√
n||~c||2/nΘ(τ)

= ||~c||2/nΘ(τ)

as desired. Our result then follows as we proved 2||~c′||2 ≥ ||~c||2.
Finally, we have the desired runtime as our modified separation oracle runs in time

O(n · EO + n2 logO(1) n).

4Minus signs is needed because we express our inequalities as e.g. ~hT~x ≤ ~hT x̄h whereas in Theorem 31,
~aTi ~x ≥ bi is used. We apologize for the inconvenience.
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Informally, the theorem above simply states that after O(nτ log n) iterations of cutting
plane, the remaining feasible region P can be sandwiched between two approximately parallel
supporting hyperplanes of width 1/nO(τ). A good intuition to keep in mind is that every
O(n) iterations of cutting plane reduces the minimum width by a constant factor.

Remark 83. As shown in the proof of Theorem 82, one of the two approximately parallel
hyperplanes can actually be chosen to be a constraint of our feasible region P . However we
do not exploit this property as it does not seem to help us and would break the notational
symmetry in ~c and ~c′.

Setup

In each phase, we run cutting plane using Theorem 82 with τ = Θ(1). If some separating
hyperplane used is degenerate, we have found the minimizer by Lemma 65.

Now assume none of the separating hyperplanes are degenerate. By Theorem 82, P is
sandwiched by a pair of approximately parallel supporting hyperplanes F, F ′ which are of
width 1/10n10 apart. The width here can actually be 1/nc for any constant c by taking a
sufficiently large constant in Theta.

Here, we show how to deduce from F and F ′ some xi = 0, xj = 1, xi = xj, or xi ≤ xj
constraint on the minimizers of f over the ring family. Let

~cT~x =
∑

cixi ≤M and ~c′T~x =
∑

c′ixi ≤M ′

be the inequality for F and F ′ such that

|M +M ′|, ||~c+ ~c′||2 ≤ gap, where gap
def
=

1

10n10
min{||~c||2, ||~c′||2}.

By the same theorem we can write ~cT~x ≤ M as a nonnegative combination of the con-
straints for P . Recall that the constraints for P take on four different forms: (1) −xi ≤ 0;

(2) xj ≤ 1; (3) −(xj − xi) ≤ 0; (4) ~hT~x =
∑
hixi ≤ f̂(x̄h). Here the first three types

are present initially whereas the last type is the separating hyperplane added. As alleged
previously, the coefficient vector ~h corresponds to a BFS of the base polyhedron for f . Our
analysis crucially exploits this property.

Thus suppose ~cT~x =
∑

i cixi ≤ M is a nonnegative combination of our constraints with
weights αi, βj, γij, λh ≥ 0. The number of (positive) αi, βj, γij, λh is at most O(n). Here we

denote separating hyperplanes by ~hT~x ≤ f̂(x̄h). Let H be the set of BFS’s used to construct
separating hyperplanes.

~cT~x = −
∑
i

αixi+
∑
j

βjxj+
∑

(i,j)∈A

γij(xi−xj)+
∑
h∈H

λh~h
T~x and M =

∑
j

βj+
∑
h∈H

λhf̂(x̄h).

(15.5)
Similarly, we write the inequality for F ′ as a nonnegative combination of the constraints

for P and the number of (positive) α′i, β
′
j, γ
′
ij, λ

′
h is O(n):

~c′T~x = −
∑

α′ixi+
∑

β′jxj+
∑

(i,j)∈A

γ′ij(xi−xj)+
∑
h∈H

λ′h
~hT~x and M ′ =

∑
β′j+

∑
h∈H

λ′hf̂(x̄h).

(15.6)
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We also scale ~c,~c′, α, α′, β, β′, γ, γ′, λ, λ′ so that∑
h∈H

(λh + λ′h) = 1

as this does not change any of our preceding inequalities regarding F and F ′.
Now that F, F ′ have been written as combinations of our constraints, we have gathered

the necessary ingredients to derive our new arc. We first give a geometric intuition why we
would expect to be able to derive a new constraint. Consider the nonnegative combination
making up F . We think of the coefficient βj as the contribution of xj ≤ 1 to F . Now if βj
is very large, F is “very parallel” to xj ≤ 1 and consequently F ′ would miss xj = 0 as the
gap between F and F ′ is small. P would then miss xj = 0 too as it is sandwiched between
F and F ′. Similarly, a large αi and a large γij would respectively imply that xi = 1 and
(xi = 0, xj = 1) would be missed. The same argument works for F ′ as well.

But on the other hand, if the contributions from xi ≥ 0, xj ≤ 1, xi ≤ xj to both F and F ′

are small, then the supporting hyperplanes ~cT~x ≤ ... and ~c′T~x ≤ ... would be mostly made
up of separating hyperplanes ~hT~x ≤ f̂(x̄h). By summing up these separating hyperplanes
(whose coefficients form BFS’s), we would then get a point in the base polyhedron which is
very close to the origin 0. Moreover, by Lemma 81 and Lemma 79 we should then be able
to deduce some interesting information about the minimizer of f over D.

The rest of this section is devoted to realizing the vision sketched above. We stress that
while the algebraic manipulations may be long, they are simply the execution of this elegant
geometric picture.

Now, consider the following weighted sum of ~hT~x ≤ f̂(x̄h):(∑
h∈H

λh~h
T +

∑
h∈H

λ′h
~hT

)
~x =

∑
h∈H

λh~h
T~x+

∑
h∈H

λ′h
~hT~x ≤

∑
h∈H

λhf̂(x̄h) +
∑
h∈H

λ′hf̂(x̄h).

Observe that
∑

h∈H λh
~hT +

∑
h∈H λ

′
h
~hT is in the base polyhedron since it is a convex

combination of BFS ~h. Furthermore, using (15.5) and (15.6) this can also be written as(∑
h∈H

λh~h
T +

∑
h∈H

λ′h
~hT

)
~x =

~cT~x+
∑

αixi −
∑

βjxj +
∑

(i,j)∈A

γij(xj − xi)


+

~c′T~x+
∑

α′ixi −
∑

β′jxj +
∑

(i,j)∈A

γ′ij(xj − xi)


(15.7)

and ∑
h∈H

λhf̂(x̄h) +
∑
h∈H

λ′hf̂(x̄h) =
(
M −

∑
βj

)
+
(
M ′ −

∑
β′j

)
= (M +M ′)−

∑
βj −

∑
β′j

Furthermore, we can bound ~cT~x + ~c′T~x by ~cT~x + ~c′T~x ≥ −||~c + ~c′||1 ≥ −
√
n||~c + ~c′||2 ≥

−
√
ngap as ~x ≤ 1. Since M +M ′ ≤ gap, we obtain

LHS
def
=
∑

αixi +
∑

α′ixi −
∑

βjxj −
∑

β′jxj +
∑

(i,j)∈A

γij(xj − xi) +
∑

(i,j)∈A

γ′ij(xj − xi)
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≤ 2
√
ngap−

∑
βj −

∑
β′j

Geometrically, the next lemma states that if the contribution from, say xi ≥ 0, to F is
too large, then F ′ would be forced to miss xi = 1 because they are close to one another.

Lemma 84. Suppose ~x satisfies (15.1) and LHS ≤ 2
√
ngap−

∑
βj−

∑
β′j with αi, βj, γij, α

′
i, β
′
j, γ
′
ij ≥

0.

1. If αi > 2
√
ngap or α′i > 2

√
ngap, then xi < 1.

2. If βj > 2
√
ngap or β′j > 2

√
ngap, then xj > 0.

3. If γij > 2
√
ngap or γ′ij > 2

√
ngap, then 0 ≤ xj − xi < 1.

Proof. We only prove it for αi, βj, γij as the other case follows by symmetry.
Using 0 ≤ x ≤ 1 and xi ≤ xj for (i, j) ∈ A, we have LHS ≥ αixi −

∑
βj −

∑
β′j. Hence

αixi ≤ 2
√
ngap and we get xi < 1 if αi > 2

√
ngap.

Similarly, LHS ≥ −βkxk −
∑

j 6=k βj −
∑
β′j which gives −βkxk ≤ 2

√
ngap − βk. Then

xk > 0 if βk > 2
√
ngap.

Finally, LHS ≥ γij(xj − xi) −
∑
βj −

∑
β′j which gives γij(xj − xi) ≤ 2

√
ngap. Then

xj − xi < 1 if γij > 2
√
ngap. We have xi ≤ xj since (i, j) ∈ A.

So if either condition of Lemma 84 holds, we can set xi = 0 or xj = 1 or xi = xj since

our problem (15.1) has an integral minimizer and any minimizer of f̂ is never cut away by
Lemma 75. Consequently, in this case we can reduce the dimension by at least 1. From now
on we may assume that

max{αi, α′i, βj, β′j, γij, γ′ij} ≤ 2
√
ngap. (15.8)

Geometrically, (15.8) says that if the supporting hyperplanes are both mostly made up of
the separating hyperplanes, then their aggregate contributions to F and F ′ should be small
in absolute value.

The next lemma identifies some p ∈ V for which f(R(p)) − f(R(p) − p) is “big”. This
prepares for the final step of our approach which invokes Lemma 79.

Lemma 85. Let ~y
def
=
∑

h∈H λh
~h and ~y′

def
=
∑

h∈H λ
′
h
~h and let p ∈ arg maxl{max{|yl|, |y′l|}}

then
upper(p) ≥ n7

∥∥~y + ~y′
∥∥
∞

assuming (15.8).

Proof. Recall that
∥∥~c+ ~c′

∥∥
2
≤ gap where gap = 1

10n10 min{||~c||2, ||~c′||2},

~c = ~y−
∑
i

αi~1i+
∑
j

βj~1j+
∑
(i,j)

γij(~1i−~1j) and ~c′ = ~y′−
∑
i

α′i
~1i+

∑
j

β′j
~1j+

∑
(i,j)

γ′ij(
~1i−~1j) .

By (15.8) we know that
∥∥~c− ~y∥∥

2
≤ 4n2gap ≤ 4

10n8

∥∥~c∥∥
2

and
∥∥~c′− ~y′∥∥

2
≤ 4n2gap ≤ 4

10n8

∥∥~c′∥∥
2
.

Consequently, by the triangle inequality we have that∥∥~y + ~y′
∥∥

2
≤
∥∥~c+ ~c′

∥∥
2

+
∥∥~c− ~y∥∥

2
+
∥∥~c′ − ~y′∥∥

2
≤ 9n2gap
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and ∥∥~c∥∥
2
≤
∥∥~c− ~y∥∥

2
+
∥∥~y∥∥

2
≤ 4

10n8

∥∥~c∥∥
2

+
∥∥~y∥∥

2
⇒

∥∥~c∥∥
2
≤ 2
∥∥~y∥∥

2

Similarly, we have that
∥∥~c′∥∥

2
≤ 2

∥∥~y′∥∥
2
. Consequently since gap ≤ 1

10n10 min{||~c||2, ||~c′||2},
we have that ∥∥~y + ~y′

∥∥
2
≤ 2

n8
min

{∥∥~y∥∥
2
,
∥∥~y′∥∥

2

}
and thus, invoking Lemma 81 yields the result.

We summarize the results in the lemma below.

Corollary 86. Let P be the feasible region after running cutting plane on (15.1). Then one
of the following holds:

1. We found a degenerate BFS and hence either ∅ or V is a minimizer.

2. The integral points of P all lie on some hyperplane xi = 0, xj = 1 or xi = xj which we
can find.

3. Let H be the collection of BFS’s ~h used to construct our separating hyperplanes for P .
Then there is a convex combination ~y of H such that n4|yi| < maxp upper(p) for all i.

Proof. As mentioned before, (1) happens if some separating hyperplane is degenerate. We

have (2) if one of the conditions in Lemma 84 holds. Otherwise, y =
∑

h∈H λh
~h+

∑
h∈H λ

′
h
~h

is a candidate for Case 3 by Lemma 85.

Let us revisit the conditions of Lemma 79 and explain that they are satisfied by Case 3
of the last lemma.

• ~y is a convex combination of at most O(n) BFS’s. This holds in Case 3 since our
current feasible region consists of only O(n) constraints thanks to the Cutting Plane
method.

• Those BFS’s must be consistent with every arc of A. This holds because Case 3 uses
the BFS’s for constructing our separating hyperplane. Our modified separation oracle
guarantees that they are consistent with A.

Thus in Case 3 of the last corollary, Lemma 79 allows us to deduce a new constraint xp ≤ xq
for some q /∈ R(p).

15.3.3 Running Time

Here we bound the total running time of our algorithm and prove the following.

Theorem 87. Our algorithm runs in expected time O(n4 log n · EO + n5 logO(1) n).

Proof. To avoid being repetitive, we appeal to Corollary 86. Each phase of cutting plane
takes time O(n2 log n ·EO +n3 logO(1) n) (Theorem 82 with τ being a big constant. Given F
and F ′ represented as a nonnegative combination of facets, we can check for the conditions
in Lemma 84 in O(n) time as there are only this many facets of P . This settles Case 2 of
Corollary 86. Finally, Lemma 79 tells us that we can find a new arc in O(n · EO + n2) time
for Case 3 of Corollary 86. Our conclusion follows from the fact that we can get xi = 0,
xi = 1, xi = xj at most n times and xi ≤ xj at most O(n2) times.
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15.4 Õ(n3 · EO + n4) Time Algorithm

Here we show how to improve our running time for strongly polynomial SFM to Õ(n3 ·EO +
n4). Our algorithm can be viewed as an extension of the algorithm we presented in the
previous Section 15.3. The main bottleneck of our previous algorithm was the time needed
to identify a new arc, which cost us Õ(n2 · EO + n3). Here we show how to reduce our

amortized cost for identifying a valid arc down to Õ(n · EO + n2) and thereby achieve our
result.

The key observation we make to improve this running time is that our choice of p for
adding an arc in the previous lemma can be relaxed. p actually need not be arg maxi upper(i);
instead it is enough to have upper(p) > n4 max{αi, α′i, βj, β′j, γij, γ′ij}. For each such p a new
constraint xp ≤ xq can be identified via Lemma 79. So if there are many p’s satisfying this
we will be able to obtain many new constraints and hence new valid arcs (p, q).

On the other hand, the bound in Lemma 85 says that our point in the base polyhedron
is small in absolute value. This is actually stronger than what we need in Lemma 79 which
requires only its positive entries to be “small”. However as we saw in Lemma 80 we can
generate a constraint of the form xq ≤ xp whenever lower(p) is sufficiently negative.

Using this idea, we divide V into different buckets according to upper(p) and lower(p).
This will allow us to get a speedup for two reasons.

First, bucketing allows us to disregard unimportant elements of V during certain exe-
cutions of our cutting plane method. If both upper(i) and lower(i) are small in absolute

value, then i is essentially negligible because for a separating hyperplane ~hT~x ≤ f̂(x̄), any
hi ∈ [lower(i), upper(i)] small in absolute value would not really make a difference. We can
then run our cutting plane algorithm only on those non-negligible i’s, thereby reducing our
time complexity. Of course, whether hi is small is something relative. This suggests that
partitioning the ground set by the relative size of upper(i) and lower(i) is a good idea.

Second, bucketing allows us to ensure that we can always add an arc for many edges
simultaneously. Recall that we remarked that all we want is nO(1)|yi| ≤ upper(p) for some ~y
in the base polyhedron. This would be sufficient to identify a new valid arc (p, q). Now if the
marginal differences upper(p) and upper(p′) are close in value, knowing nO(1)|yi| ≤ upper(p)
would effectively give us the same for p′ for free. This suggests that elements with similar
marginal differences should be grouped together.

The remainder of this section simply formalizes these ideas. In Section 15.4.1 we discuss
how we partition the ground set V . In Section 15.4.2, we present our cutting plane method
on a subset of the coordinates. Then in Section 15.4.3 we show how we find new arcs. Finally,
in Section 15.4.4 we put all of this together to achieve our desired running time.

15.4.1 Partitioning Ground Set into Buckets

We partition the ground set V into different buckets according to the values of upper(i) and
lower(i). This is reminiscent to Iwata-Orlin’s algorithm [133] which considers elements with
big upper(i). However they did not need to do bucketing by size or to consider lower(i),
whereas these seem necessary for our algorithm.

Let N = maxi{max{upper(i),−lower(i)}} be the largest marginal difference in absolute
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value. By Lemma (78), N ≥ 0. We partition our ground set V as follows:

B1 = {i : upper(i) ≥ N/n10 or lower(i) ≤ −N/n10}

Bk = {i /∈ B1 ∪ . . . ∪Bk−1 : N/n10k ≤ upper(i) < N/n10(k−1)

or −N/n10(k−1) < lower(i) ≤ −N/n10k}, k ≥ 2

We call Bk buckets. Our buckets group elements by the values of upper(i) and lower(i) at
1/n10 “precision”. There are two cases.

• Case 1: the number of buckets is at most log n5, in which case upper(i) > N/nO(logn)

or lower(i) < −N/nO(logn) for all i.

• Case 2: there is some k for which |B1 ∪ . . . ∪Bk| ≥ |Bk+1|.

This is because if there is no such k in Case 2, then by induction each bucket Bk+1 has at
least 2k|B1| ≥ 2k elements and hence k ≤ log n.

Case 1 is easier to handle, and is in fact a special case of Case 2. We first informally
sketch the treatment for Case 1 which should shed some light into how we deal with Case 2.

We run Cutting Plane for O(n log2 n) iterations (i.e. τ = Θ(log n)). By Theorem 82,
our feasible region P would be sandwiched by a pair of approximately parallel supporting
hyperplanes of width at most 1/nΘ(logn). Now proceeding as in the last section, we would
be able to find some ~y in the base polyhedron and some element p such that nΘ(logn)|yi| ≤
upper(p). This gives

nΘ(logn)|yi| ≤
upper(p)

nΘ(logn)
≤ N

nΘ(logn)
.

Since upper(i) > N/nΘ(logn) or lower(i) < −N/nΘ(logn) for all i in Case 1, we can then
conclude that some valid arc (i, q) or (q, i) can be added for every i. Thus we add n/2
arcs simultaneously in one phase of the algorithm at the expense of blowing up the runtime
by O(log n). This saves a factor of n/ log n from our runtime in the last section, and the

amortized cost for an arc would then be Õ(n · EO + n2).
On the other hand, in Case 2 we have a “trough” at Bk+1. Roughly speaking, this trough

is useful for acting as a soft boundary between B1 ∪ . . . ∪ Bk and
⋃
l≥k+2Bl. Recall that

we are able to “ignore”
⋃
l≥k+2 Bl because their hi is relatively small in absolute value. In

particular, we know that for any p ∈ B1 ∪ . . . ∪Bk and i ∈ Bl, where l ≥ k + 2,

max{upper(p),−lower(p)} ≥ n10 max{upper(i),−lower(i)}.

This is possible because Bk+1, which is sandwiched in between, acts like a shield prevent-
ing Bl to “mess with” B1 ∪ . . .∪Bk. This property comes at the expense of sacrificing Bk+1

which must confront Bl.
Furthermore, we require that |B1 ∪ . . . ∪ Bk| ≥ |Bk+1|, and run Cutting Plane on B =

(B1 ∪ . . . ∪ Bk) ∪ Bk+1. If |Bk+1| � |B1 ∪ . . . ∪ Bk|, our effort would mostly be wasted on
Bk+1 which is sacrificed, and the amortized time complexity for B1 ∪ . . .∪Bk would then be
large.

Before discussing the algorithm for Case 2, we need some preparatory work.

5More precisely, Bk = ∅ for k > dlog ne.
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15.4.2 Separating Hyperplane: Project and Lift

Our speedup is achieved by running our cutting plane method on the projection of our
feasible region onto B := (B1 ∪ · · · ∪ Bk) ∪ Bk+1. More precisely, we start by running our
cutting plane on PB = {~x ∈ RB : ∃~x′ ∈ RB̄ s.t. (~x, ~x′) satisfies (15.1)}, which has a lower
dimension. However, to do this, we need to specify a separation oracle for PB. Here we
make one of the most natural choices.

We begin by making an apparently immaterial change to our set of arcs A. Let us take the
transitive closure of A by adding the arc (i, j) whenever there is a path from i to j. Clearly
this would not change our ring family as a path from i to j implies j ∈ R(i). Roughly
speaking, we do this to handle pathological cases such as (i, k), (k, j) ∈ A, (i, j) /∈ A and
i, j ∈ B, k /∈ B. Without introducing the arc (i, j), we risk confusing a solution containing i
but not j as feasible since we are restricting our attention to B and ignoring k /∈ B.

Definition 88. Given a digraph D = (V,A), the transitive closure of A is the set of arcs
(i, j) for which there is a directed path from i to j. We say that A is complete if it is equal
to its transitive closure.

Given x̄ ∈ [0, 1]B, we define the completion of x̄ with respect to A as follows.

Definition 89. Given x̄ ∈ [0, 1]B and a set of arcs A, xC ∈ [0, 1]n is a completion of x̄ if
xCB = x̄ and xCi ≤ xCj for every (i, j) ∈ A. Here xCB denotes the restriction of xC to B.

Lemma 90. Given x̄ ∈ [0, 1]B and a complete set of arcs A, there is a completion of x̄ if
x̄i ≤ x̄j for every (i, j) ∈ A ∩ (B ×B). Moreover, it can be computed in O(n2) time.

Proof. We set xCB = x̄. For i /∈ B, we set

xCi =

{
1 if @j ∈ B s.t. (i, j) ∈ A
min(i,j)∈A,j∈B x

C
j otherwise

One may verify that xC satisfies our requirement as A is complete. Computing each xCi
takes O(n) time. Since |V \B| = |B̄| ≤ n, computing the whole xC takes O(n2) time.

This notion of completion is needed since our original separation oracle requires a full
dimensional input x̄. Now that x̄ ∈ RB, we need a way of extending it to Rn while retaining
the crucial property that ~h is consistent with every arc in A.

Note that the runtime is still O(n · EO + n2 logO(1) n) as xC can be computed in O(n2)
time by the last lemma.

We reckon that the hyperplane ~hTB~xB ≤
∑

i∈B hix̄i returned by the oracle is not a valid
separating hyperplane (i.e. it may cut out the minimizers). Nevertheless, we will show that

it is a decent “proxy” to the true separating hyperplane ~hT~x ≤ f̂(xC) =
∑

i∈V hix
C
i and is

good enough to serve our purpose of sandwiching the remaining feasible region in a small
strip. To get a glimpse, note that the terms missing ~hTB~xB ≤

∑
i∈B hix̄i all involve hi for

i /∈ B, which is “negligible” compared to B1 ∪ · · · ∪Bk.
One may try to make ~hTB~xB ≤

∑
i∈B hix̄i valid, say, by ~hTB~xB ≤

∑
i∈B hix̄i +

∑
i/∈B |hi|.

The problem is that such hyperplanes would not be separating for x̄ anymore as ~hTBx̄ =
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Algorithm 6: Projected Separation Oracle

Input: x̄ ∈ RB and a complete set of arcs A
if x̄i < 0 for some i ∈ B then

Output: xi ≥ 0
else if x̄j > 1 for some j ∈ B then

Output: xj ≤ 1
else if x̄i > x̄j for some (i, j) ∈ A ∩B2 then

Output: xi ≤ xj
else

Let xC ∈ Rn be a completion of x̄
Let i1, . . . , in be a permutation of V such that xCi1 ≥ . . . ≥ xCin and for all
(i, j) ∈ A, j precedes i in i1, . . . , in.

Output: ~hTB~xB =
∑

i∈B hixi ≤
∑

i∈B hix̄i, where ~h is the BFS defined by the
permutation i1, . . . , in.

∑
i∈B hix̄i <

∑
i∈B hix̄i +

∑
i/∈B |hi|. Consequently, we lose the width (or volume) guarantee

of our cutting plane algorithm. Although this seems problematic, it is actually still possible
to show a guarantee sufficient for our purpose as

∑
i/∈B |hi| is relatively small. We leave it as

a nontrivial exercise to interested readers.
In conclusion, it seems that one cannot have the best of both worlds: the hyperplane

returned by the oracle cannot be simultaneously valid and separating.

Algorithm

We take k to be the first for which |B1 ∪ . . . ∪ Bk| ≥ |Bk+1|, i.e. |B1 ∪ . . . ∪ Bl| < |Bl+1| for
l ≤ k − 1. Thus k ≤ log n. Let b = |B|, and so |B1 ∪ · · · ∪ Bk| ≥ b/2. Case 1 is a special
case by taking B = V .

Our algorithm is summarized below. Here A is always complete as A is replaced its
transitive closure whenever a new valid arc is added.

1. Run Cutting Plane on PB = {x ∈ RB : ∃x′ ∈ RB̄ s.t. (x, x′) satisfies (15.1)} with the
new projected separation oracle.

2. Identify a pair of “narrow” approximately parallel supporting hyperplanes.

3. Deduce from the hyperplanes certain new constraints of the forms xi = 0, xj = 1, xi =
xj or xi ≤ xj by lifting separating hyperplanes back to Rn

4. Consolidate A and f . If some xi ≤ xj added, replace A by its transitive closure.

5. Repeat Step 1 with updated A and f . (Any previously found separating hyperplanes
are discarded.)

The minimizer can be constructed by unraveling the recursion.
First of all, to be able to run Cutting Plane on PB we must come up with a polyhedral

description of PB which consists of just the constraints involving B. This is shown in the
next lemma.
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Lemma 91. Let PB = {~x ∈ RB : ∃~x′ ∈ RB̄ s.t. (~x, ~x′) satisfies (15.1)}. Then

PB = {~x ∈ RB : 0 ≤ ~x ≤ 1, xi ≤ xj∀(i, j) ∈ A ∩ (B ×B)}

Proof. It is clear that PB ⊆ {~x ∈ RB : 0 ≤ ~x ≤ 1, xi ≤ xj∀(i, j) ∈ A ∩ (B × B)} as the
constraints 0 ≤ x ≤ 1, xi ≤ xj∀(i, j) ∈ A ∩ (B ×B) all appear in (15.1).

Conversely, for any ~x ∈ RB satisfying 0 ≤ ~x ≤ 1, xi ≤ xj∀(i, j) ∈ A ∩ (B × B), we know
there is some completion xC of ~x by Lemma 90 as A is complete. Now xC satisfies (15.1) by
definition, and hence ~x ∈ PB.

The only place where we have really changed the algorithm is Step (3).

15.4.3 Deducing New Constraints xi = 0, xj = 1, xi = xj or xi ≤ xj

Our method will deduce one of the following:

• xi = 0, xj = 1 or xi = xj

• for each p ∈ B1 ∪ · · · ∪Bk, xp ≤ xq for some q /∈ R(p) or xp ≥ xq for some q /∈ Q(p)

Our argument is very similar to the last section’s. Roughly speaking, it is the same argument
but with “noise” introduced by i /∈ B. We use extensively the notations from the last section.

Our main tool is again Theorem 82. Note that n should be replaced by b in the Theorem
statement. We invoke it with τ = k logb n = O(log2 n) (using k ≤ log n) to get a width
of 1/bΘ(τ) = 1/nΘ(k). This takes time at most O(bn log2 n · EO + bn2 logO(1) n). Again,
this is intuitively clear as we run it for O(kb log n) iterations, each of which takes time
O(n · EO + n2 logO(1) n).

After each phase of (roughly O(kb log n) iterations) of Cutting Plane, PB is sandwiched
between a pair of approximately parallel supporting hyperplanes F and F ′ which have width
1/n20k. Let F and F ′ be

~cT~xB =
∑
i∈B

cixi ≤M, ~c′T~xB =
∑
i∈B

c′ixi ≤M ′,

such that

|M +M ′|, ||~c+ ~c′||2 ≤ gap, where gap =
1

n20k
min{||~c||2, ||~c′||2}.

The rest of this section presents an execution of the ideas discussed above. All of our work
is basically geared towards bringing the amortized cost for identifying a valid arc down to
Õ(n · EO + n2). Again, we can write these two constraints as a nonnegative combination.

Here x̄Ch is the completion of the point x̄h used to construct ~hTB~xB ≤ ~hTB
(
x̄Ch
)
B

. (Recall that(
x̄Ch
)
B

is the restriction of x̄Ch to B.)

~cT~xB = −
∑
i∈B

αixi+
∑
j∈B

βjxj+
∑

(i,j)∈A∩B2

γij(xi−xj)+
∑
h∈H

λh~h
T
B~xB and M =

∑
j∈B

βj+
∑
h∈H

λh~h
T
B

(
x̄Ch
)
B
.
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~c′T~xB = −
∑
i∈B

α′ixi+
∑
j∈B

β′jxj+
∑

(i,j)∈A∩B2

γ′ij(xi−xj)+
∑
h∈H

λ′h
~hTB~xB and M ′ =

∑
j∈B

β′j+
∑
h∈H

λ′h
~hTB
(
x̄Ch
)
B
.

As we have discussed, the problem is that the separating hyperplanes ~hTB~xB ≤ ~hTB
(
x̄Ch
)
B

are not actually valid. We can, however, recover their valid counterpart by lifting them back
to ~hT~x ≤ ~hT x̄Ch. The hope is that ~hTB~xB ≤ ~hTB

(
x̄Ch
)
B

and ~hT~x ≤ ~hT x̄Ch are not too different
so that the arguments will still go through. We show that this is indeed the case.

Again, we scale c, c′, α, α′, β, β′, γ, γ′, λ, λ′ so that∑
h∈H

(λh + λ′h) = 1.

By adding all the constituent separating hyperplane inequalities, we get∑
h∈H

λh~h
T~x+

∑
h∈H

λ′h
~hT~x ≤

∑
h∈H

λh~h
T x̄Ch +

∑
h∈H

λ′h
~hT x̄Ch

Let

LHS
def
=
∑

αixi +
∑

α′ixi −
∑

βjxj −
∑

β′jxj +
∑

γij(xj − xi) +
∑

γ′ij(xj − xi).

Here we know that∑
h∈H

λh~h
T~x+

∑
h∈H

λ′h
~hT~x = LHS + (~c+ ~c′)T~xB +

∑
h∈H

λh~h
T
B̄~xB̄ +

∑
h∈H

λ′h
~hTB̄~xB̄

∑
h∈H

λh~h
T x̄Ch +

∑
h∈H

λ′h
~hT x̄Ch = (M +M ′) +

∑
h∈H

λh~h
T
B̄

(
x̄Ch
)
B̄

+
∑
h∈H

λ′h
~hTB̄
(
x̄Ch
)
B̄
−
∑

βj −
∑

β′j

Combining all yields

LHS+(~c+~c′)T~xB+
∑
h∈H

λh~h
T
B̄~xB̄+

∑
h∈H

λ′h
~hTB̄~xB̄ ≤ (M+M ′)+

∑
h∈H

λh~h
T
B̄

(
x̄Ch
)
B̄

+
∑
h∈H

λ′h
~hTB̄
(
x̄Ch
)
B̄
−
∑

βj−
∑

β′j

Here (~c + ~c′)T~xB can be bounded as before: (~c + ~c′)T~xB ≥ −
√
n||~c + ~c′||2 ≥ −

√
ngap.

Since M +M ′ ≤ gap, We then obtain

LHS+
∑
h∈H

λh~h
T
B̄~xB̄+

∑
h∈H

λ′h
~hTB̄~xB̄ ≤ 2

√
ngap+

∑
h∈H

λh~h
T
B̄

(
x̄Ch
)
B̄

+
∑
h∈H

λ′h
~hTB̄
(
x̄Ch
)
B̄
−
∑

βj−
∑

β′j

We should expect the contribution from ~hB̄ to be small as hi for i /∈ B is small compared
to B1 ∪ . . . ∪Bk. We formalize our argument in the next two lemmas.

Lemma 92. We have
∑

h∈H λh
~hT
B̄

(
x̄Ch
)
B̄

+
∑

h∈H λ
′
h
~hT
B̄

(
x̄Ch
)
B̄
≤ N/n10(k+1)−1.
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Proof. We bound each component of
∑

h∈H λh
~hT
B̄

(
x̄Ch
)
B̄

+
∑

h∈H λ
′
h
~hT
B̄

(
x̄Ch
)
B̄

. For i ∈ B̄, we

have upper(i) ≤ N/n10(k+1). By Lemma 78 hi ≤ upper(i). Therefore,

∑
h∈H

λh~h
T
i

(
x̄Ch
)
i
+
∑
h∈H

λ′h
~hTi
(
x̄Ch
)
i
≤

(∑
h∈H

λh +
∑
h∈H

λ′h

)
N/n10(k+1) = N/n10(k+1).

Our result then follows since

∑
h∈H

λh~h
T
B̄

(
x̄Ch
)
B̄

+
∑
h∈H

λ′h
~hTB̄
(
x̄Ch
)
B̄

=
∑
i∈B̄

(∑
h∈H

λh~h
T
i

(
x̄Ch
)
i
+
∑
h∈H

λ′h
~hTi
(
x̄Ch
)
i

)
.

Lemma 93. We have
∑

h∈H λh
~hT
B̄
~xB̄ +

∑
h∈H λ

′
h
~hT
B̄
~xB̄ ≥ −N/n10(k+1)−1.

Proof. The proof is almost identical to the last lemma except that we use hi ≥ lower(i)
instead of hi ≤ upper(i), and lower(i) ≥ −N/n10(k+1).

The two lemmas above imply that

LHS ≤ 2
√
ngap−

∑
βj −

∑
βj + 2N/n10(k+1)−1 = gap′ −

∑
βj −

∑
βj

where gap′ = 2
√
ngap + 2N/n10(k+1)−1.

Lemma 94. Suppose x satisfies (15.1) and LHS ≤ gap′−
∑
βj−

∑
β′j with αi, βj, γij, α

′
i, β
′
j, γ
′
ij ≥

0.

1. If αi > gap′ or α′i > gap′, then xi < 1.

2. If βj > gap′ or β′j > gap′, then xj > 0.

3. If γij > gap′ or γ′ij > gap′, then 0 ≤ xj − xi < 1.

Proof. The proof is exactly the same as Lemma 84 with 2
√
ngap replaced by gap′.

From now on we may assume that

max{αi, α′i, βj, β′j, γij, γ′ij} ≤ gap′. (15.9)

Lemma 95. Let ~y
def
=
∑

h∈H λh
~h and ~y′

def
=
∑

h∈H λ
′
h
~h and let p ∈ arg maxl∈B{max{|yl|, |y′l|}

then
N ≥ n10k+6

∥∥~yB + ~y′B
∥∥
∞

assuming (15.9).
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Proof. Recall that
∥∥~c + ~c′

∥∥
2
≤ gap < gap′ where gap = 1

n20k min{||~c||2, ||~c′||2} and gap′ =

2
√
ngap + 2N/n10(k+1)−1. Now there are two cases.
Case 1: 2

√
ngap ≥ 2N/n10(k+1)−1. Then gap′ ≤ 4

√
ngap and we follow the same proof

of Lemma 85. We have

~c = ~yB−
∑
i

αi~1i+
∑
j

βj~1j+
∑
(i,j)

γij(~1i−~1j) and ~c′ = ~y′B−
∑
i

α′i
~1i+

∑
j

β′j
~1j+

∑
(i,j)

γ′ij(
~1i−~1j) .

By (15.9) we know that
∥∥~c−~yB∥∥2

≤ 4n2gap′ ≤ 1
n17k

∥∥~c∥∥
2

and
∥∥~c′−~y′B∥∥2

≤ 4n2gap′ ≤ 1
n17k

∥∥~c∥∥
2
.

Consequently, by the triangle inequality we have that∥∥~yB + ~y′B
∥∥

2
≤
∥∥~c+ ~c′

∥∥
2

+
∥∥~c− ~yB∥∥2

+
∥∥~c′ − ~y′B∥∥2

≤ 9n2gap′

and ∥∥~c∥∥
2
≤
∥∥~c− ~yB∥∥2

+
∥∥~yB∥∥2

≤ 1

n17k

∥∥~c∥∥
2

+
∥∥~yB∥∥2

⇒
∥∥~c∥∥

2
≤ 2
∥∥~yB∥∥2

Similarly, we have that
∥∥~c′∥∥

2
≤ 2

∥∥~y′B∥∥2
. Consequently since gap′ ≤ 1

n19k min{||~c||2, ||~c′||2},
we have that ∥∥~yB + ~y′B

∥∥
2
≤ 18

n17k
min

{∥∥~yB∥∥2
,
∥∥~y′B∥∥2

}
and thus, invoking Lemma 81 yields N ≥ upper(p) ≥ n16k

∥∥~yB + ~y′B
∥∥
∞, as desired.

Case 2: 2
√
ngap < 2N/n10(k+1)−1. Then for any i ∈ B, |ci + c′i| ≤ ||~c + ~c′||2 ≤ gap <

2N/n10(k+1)−1. Since

~yB+~y′B = (~c+~c′)+
∑
i

αi~1i−
∑
j

βj~1j−
∑
(i,j)

γij(~1i−~1j)+
∑
i

α′i
~1i−

∑
j

β′j
~1j−

∑
(i,j)

γ′ij(
~1i−~1j)

we have ∥∥~yB + ~y′B
∥∥
∞ ≤ 2N/n10(k+1)−1 + 2n1.5gap′ ≤ N/n10k+7.

Corollary 96. Let P be the feasible region after running Cutting Plane on (15.1) with the
projected separation oracle. Then one of the following holds:

1. We found a BFS ~h with ~hB = 0.

2. The integral points of P all lie on some hyperplane xi = 0, xj = 1 or xi = xj.

3. Let H be the collection of BFS’s ~h used to construct our separating hyperplanes for P .
Then there is a convex combination ~y of H such that for p ∈ B1 ∪ · · · ∪ Bk, we have
n4|yi| < upper(p) or lower(p) < −n4|yi| for all i.

Proof. As mentioned before, (1) happens if some separating hyperplane satisfies ~hB = 0 when
running cutting plane on the non-negligible coordinates. We have (2) if some condition in
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Lemma 94 holds. Otherwise, we claim y =
∑

h λhh +
∑

h λ
′
hh is a candidate for Case 3. y

is a convex combination of BFS and by Lemma 95, for the big elements i ∈ B we have

|yi| ≤ N/n10k+6 ≤ 1

n4
max{upper(p),−lower(p)}.

where the last inequality holds since for p ∈ B1 ∪ · · · ∪ Bk, max{upper(p),−lower(p)} ≥
N/n10k.

On the other hand, for the small elements i /∈ B, |yi| ≤ N/n10(k+1) ≤ 1
n4 max{upper(p),−lower(p)}

as desired.

The gap is then smaller enough to add an arc for each p ∈ B1 ∪ · · · ∪ Bk by Lemmas
79 and 80. Therefore we can add a total of |B1 ∪ · · · ∪ Bk|/2 ≥ b/4 arcs with roughly

O(kb log n) = Õ(b) iterations of Cutting Plane, each of which takes Õ(n ·EO +n2). That is,

the amortized cost for each arc is Õ(n · EO + n2). We give a more formal time analysis in
below but it should be somewhat clear why we have the desired time complexity.

Lemma 97. Suppose there is a convex combination ~y of H such that for p ∈ B1 ∪ · · · ∪Bk,
we have n4|yi| < upper(p) or lower(p) < −n4|yi| for all i. Then we can identify at least b/4
new valid arcs.

Proof. We have |H| = O(n) since H is the set of BFS’s used for the constraints of P which
has O(n) constraints. By Lemmas 79 and 80, for p ∈ B1 ∪ · · · ∪ Bk we can add a new valid
arc (p, q) or (q, p). However note that a new arc (p1, p2) may added twice by both p1 and p2.
Therefore the total number of new arcs is only at least |B1 ∪ · · · ∪Bk|/2 ≥ b/4.

15.4.4 Running Time

Not much changes to the previous runtime analysis are needed. To avoid repetition, various
details already present in the corresponding part of the last section are omitted. Recall
k ≤ log n, and of course, b ≤ n.

For each (roughly) O(kb log n) iterations of Cutting Plane we either get xi = 0,xi =
1,xi = xj or b/4 xi ≤ xj’s. The former can happen at most n times while in the latter case,
the amortized cost of each arc is O(k log n) iterations of Cutting Plane. In the worst case

the overall number of iterations required is Õ(n2). Thus our algorithm has a runtime of

Õ(n3 · EO + n4) since each iteration is Õ(n · EO + n2) as shown below.

Theorem 98. Our algorithm runs in time O(n3 log2 n · EO + n4 logO(1) n).

Proof. We use Corollary 96. First we note that Case 1 can actually be integrated into Case
3 since max{upper(p),−lower(p)} ≥ N/n10k = n10N/n10(k+1) ≥ hi for i /∈ B.

As we have argued in the beginning of the last section, Theorem 82 with τ = k logb n
implies that the runtime for each phase is O(bn log2 n · EO + bn2 logO(1) n). In each phase
we either get xi = 0, xi = 1, xi = xj (Case 2) or b/4 xi ≤ xj’s (Case 3), the latter of which
follows from Corollary 96 and Lemma 97.

Case 2 can only happen n times. Thus the total cost is at most O(n3 log2 n · EO +
n4 logO(1) n). The overhead cost is also small. Similar to before, given F and F ′ represented

113



as a nonnegative combination of facets, we can check for the conditions in Lemma 94 in O(n)
time as there are only this many facets of P . This settles Case 2.

For case 3 the amortized cost for each arc is O(n log2 n · EO + n2 logO(1) n). Our desired
runtime follows since there are only O(n2) arcs to add. Unlike Case 2 some extra care is
needed to handle the overhead cost. The time needed to deduce a new arc (applying Lemmas
79 and 80 to ~y and p ∈ B1∪· · ·∪Bk) is still O(n ·EO+n2). But as soon as we get a new arc,
we must update A to be its transitive closure so that it is still complete. Given A complete
and a new arc (p, q) /∈ A, we can simply add the arcs from the ancestors of p to q and from
p to the descendants of q. There are at most O(n) arcs to add so this takes time O(n2) per
arc, which is okay.

16 Discussion and Comparison with Previous Algo-

rithms

We compare and contrast our algorithms with the previous ones. We focus primarily on
strongly polynomial time algorithms.

Convex combination of BFS’s
All of the previous algorithms maintain a convex combination of BFS’s and iteratively

improve over it to get a better primal solution. In particular, the new BFS’s used are typically
obtained by making local changes to existing ones. Our algorithms, on the other hand,
considers the geometry of the existing BFS’s. The weighted “influences”6 then aggregately
govern the choice of the next BFS. We believe that this is the main driving force for the
speedup of our algorithms.

Scaling schemes
Many algorithms for combinatorial problems are explicitly or implicitly scaling a poten-

tial function or a parameter. In this Part, our algorithms in some sense aim to minimize
the volume of the feasible region. Scaling schemes for different potential functions and pa-
rameters were also designed in previous works [128, 126, 133, 125]. All of these functions
and parameters have an explict form. On the contrary, our potential function is somewhat
unusual in the sense that it has no closed form.

Deducing new constraints
As mentioned in the main text, our algorithms share the same skeleton and tools for

deducing new constraints with [128, 126, 133, 125]. Nevertheless, there are differences in
the way these tools are employed. Our algorithms proceed by invoking them in a geometric
manner, whereas previous algorithms were mostly combinatorial.

Big elements and bucketing
Our bucketing idea has roots in Iwata-Orlin’s algorithm [133] but is much more sophis-

ticated. For instance, it is sufficient for their algorithm to consider only big elements, i.e.
upper(i) ≥ N/nO(1). Our algorithm, on the other hand, must carefully group elements
by the size of both upper(i) and lower(i). The speedup appears impossible without these

6In the terminology of Part I, these weighted influences are the leverage scores.
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new ideas. We do however note that it is unfair to expect such a sophisticated scheme in
Iwata-Orlin’s algorithm as it would not lead to a speedup. In other words, their method is
fully sufficient for their purposes, and the simplicity in their case is a virtue rather than a
shortcoming.

16.1 Open Problems

One natural open problem is improving our weakly polynomial algorithm to O(n2 logM ·
EO +n3 logO(1) n · logM) time. Our application of center of mass to SFM demonstrates that
it should be possible.

For strongly polynomial algorithms, the existential result of Theorem 71 shows that
SFM can be solved with O(n3 log n · EO) oracle calls. Unfortunately, our algorithm incurs
an overhead of log n as there can be as many as log n buckets each time. One may try to
remove this log n overhead by designing a better bucketing scheme or arguing that more arcs
can be added.

The other log n overhead seem much trickier to remove. Our method currently makes
crucial use of the tools developed by [128], where the log n factors in the runtime seem
inevitable. We suspect that our algorithm may have an analogue similar to [231, 217], which
do not carry any log n overhead in the running time.

Perhaps an even more interesting open problem is whether our algorithm is optimal (up to
polylogarithmic factors). There are grounds for optimism. So far the best way of certifying
the optimality of a given solution S ⊆ V is to employ duality and express some optimal
solution to the base polyhedron as a convex combination of n+ 1 BFS’s. This already takes
n2 oracle calls as each BFS requires n. Thus one would expect the optimal number of oracle
calls needed for SFM to be at least n2. Our bound is not too far off from it, and anything
strictly between n2 and n3 seems instinctively unnatural.
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Part IV

Computing Walrasian Equilibria: Fast
Algorithms and Structural Properties
This Part is based on joint works with Renato Paes Leme.

17 Introduction

17.1 A macroscopic view of the market

As part of our everyday experience, prices reach equilibria in a wide range of economics
settings. Yet, markets are complicated and consist of heterogeneous goods and a huge
population of buyers can have very diverse preferences that are hard to model analytically.
With the sheer amount of information needed to describe the economy, how can the market
possibly reach an equilibrium? Well, perhaps not all this information is needed.

In this Part, we provide evidence supporting this belief through the lens of algorithms.
Specifically, we propose algorithms for computing market equilibrium using very limited
amount of information. Our result suggests that information theoretically, it is not necessary
to make too many measurements or observations of the market to compute an equilibrium.
This may also shed light into how markets operate.

As the first step, we must design a realistic model to represent the economy. The standard
approach in Theoretical Computer Science would require the entire input be specified but
for a market, it is simply too computationally expensive to model its individual agents in
full details. So what should we turn to? If equilibrium represents the collective behavior of
the agents, perhaps some kind of aggregate information would be enough. Such information
can be average salaries, interest rate, population, fashion trend and so on. An algorithm
would ideally process these macroscopic-scale information in an efficient manner to compute
equilibrium price that allows the market to clear.

We show that it is possible to compute market equilibrium by exploiting the very rudi-
mentary information of aggregate demand, i.e. the quantity demanded for each item at a
given price aggregated over the entire population of buyers. This result implies, among
other things, that a market can be viewed as an aggregate entity. For the sake of reaching
equilibrium, detailed knowledge about its individual buyers at the microscopic level may not
really be needed. Rather, it should be their collective behavior that dictates the outcome of
the market.

The use of aggregate demand by our algorithm also resonates with a common perception
of the role played by excess demand/supply. A highly sought-after good would usually see
its price soar whereas an unpopular good would be inexpensive. This is similar to our
algorithms which, in some sense, operate by increasing the price of overdemanded good and
vice versa in an iterative fashion. We note however that by no means are we suggesting
that our algorithms closely mirror how a market actually works. While the holy grail of this
research direction is to understand how a market reaches equilibrium in practice, perhaps a
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humble first step is to show that this can be done algorithmically with as little information
and assumption as possible.

Our starting point is the Gul and Stachetti’s model [115] of an economy of (multi-unit)
indivisible goods, but we make no further assumptions on the structure of the valuation
functions. The goal is to compute market equilibrium: a set of item prices and allocations
of items to buyers such that the market clears and each buyer gets his or her favorite bundle
of goods under the current prices.

The market can only be accessed via an aggregate demand oracle: given prices for each
item, what is the demand for each item aggregated over the entire population. Clearly in
this model, it is not possible to compute an allocation of items to buyers, since the oracle
access model allows no access to buyer-specific information. Curiously, equilibrium prices
are still computable and in a very efficient manner:

Theorem 99 (informal). In a consumer market with n goods and m buyers, we can find a

vector of equilibrium prices, whenever it exists, using Õ(n2) calls to the aggregate demand

oracle and Õ(n5) time. If valuations are gross substitutes, Õ(n) calls to the aggregate demand

oracle and Õ(n3) time suffice.

Notably, the number of buyers plays no role. Our algorithm has query and time com-
plexity essentially independent of the number of buyers. This feature is especially relevant in
practice as markets are usually characterized by a large population and relatively few num-
ber of goods. The city of Berkeley, for example, has about 350 restaurants but 120,000+
people!

17.2 From telescopes to augmenting lenses

Aggregate demand oracles are like looking at the economy from a telescope. Having a
telescope has its advantages: it is possible to get a very global view of the economy with a
few queries. On the other hand, extracting details is hard.

Our second question is how fast equilibrium can be computed with only a local view of the
economy? Our analogue for augmenting lenses will be the value oracle model, in which one
can query the value of each buyer for each bundle of items. This again has its advantages:
it provides very fine-grained information about the market, but has the shortcoming that
many queries are needed to extract any sort of global information.

Can equilibrium prices be computed with small amount of information even at the mi-
croscopic level? This quest is clearly hopeless for general valuation functions. But for one of
the most important classes of valuation functions in economics, gross substitute valuations,
there are enough structures to allow us to construct equilibrium prices using microscopic
information.

The history of gross substitutes is intertwined with the development of theory of Walrasian
equilibrium (also called market equilibrium in this Part). Indeed, Kelso and Crawford [149]
show that Walrasian equilibrium always exists for gross substitute valuations. Hatfield and
Milgrom [119] argue that most important examples of valuation functions arising in matching
markets belong to the class of gross substitutes. Gross substitutes were used to guarantee
the convergence of salary adjustment processes in the job market [149], to guarantee the

117



existence of stable matchings in a variety of settings [227, 159], to show the stability of
trading networks [118, 123], to design combinatorial auctions [14, 204] and even to analyze
settings with complementarities [243, 117].

Since the oracle access is very local, we clearly need to query each agent at least once, so
the dependence on the number of buyers must be at least linear. We show that indeed it is
possible to solve this problem with a linear dependence on the number of buyers and cubic
dependence in the number of items:

Theorem 100 (informal). In a consumer market with n goods and m buyers whose valuation
functions satisfy the gross substitute condition, we can find an equilibrium (or Walrasian)

price and allocation using mn+ Õ(n3) calls to the value oracle and Õ(n3) time7.

With buyer-specific information, we can also compute the optimal allocation in the same
runtime.

Proving this result requires novel insights about the structure of gross substitute valua-
tions. In particular, one of our main structural lemmas answers a question posed by Hsu et
al [122]: when do prices coordinate markets? In general, Walrasian prices mean that there is
a choice of favorite bundles for each buyer that clears the market. It is far from trivial how
to choose those bundles, since each agent can have various favorite bundles (for example,
consider the case where all items are identical and all agents have the same valuation for
the items). We say that a price vector form robust Walrasian prices if each agent demands
a unique bundle under those prices and the bundles clear the market. Such vectors would
allow prices alone to clear the market without any extra coordination. We show that:

Theorem 101 (informal). In a consumer market with n goods and m buyers whose valuation
functions satisfy the gross substitute condition, robust Walrasian prices exist if and only if
there is a unique Walrasian allocation (i.e. buyers get the same bundle in any Walrasian

equilibrium). Whenever they exist, they can be computed in Õ(mn + n3) time from the
Walrasian allocation.

17.3 Our algorithms and techniques

We study the Walrasian equilibrium problem in three different settings: (i) general valuations
in the aggregate demand oracle model; (ii) gross substitute valuations in the aggregate
demand oracle model and (iii) gross substitutes in the value oracle model. In all three
settings, the starting point is the linear programming formulation of Bikhchandani and
Mamer [21].

General valuations in the aggregate demand oracle model (Section 3). The main
difficulty in working with the LP in Bikhchandani and Mamer [21] is that the constraints
depend on the value of buyers for each bundle, to which we have no access to. In particular,
we are not able to test for any given setting of variables of the LP if it is feasible or not.
We are in a strange situation that if we knew that a point was infeasible, we could find an
appropriate separating hyperplane, and if we knew it was feasible, we could use the objective

7The notation g = Õ(f) means that g ≤ αf logβ(f) for some constants α, β > 0
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function as a separating hyperplane, but since we can’t test feasibility, we can’t decide which
to use. Our solution is to move the constraints to the objective function and turn the problem
into an unconstrained convex minimization problem. The problem in hand has the feature
that we can’t evaluate the function but we can compute its subgradients.

Traditional cutting plane algorithms such as the Ellipsoid Method need access to both
a separation oracle and functional values. To overcome this issue we use the fact that the
cutting plane of Lee, Sidford and Wong [178] provides strong dual guarantees and that our
separation oracle is given by subgradients. Originally, [178] show how to adapt their cutting
plane method to convex optimization, however, their algorithm and proof still rely on being
able to evaluate the function. We show in our Theorem 114 that their algorithm can be
slightly modified to achieve the same guarantee using only subgradients, (i.e., without using
functional values).

A second obstacle we face is that algorithms to minimize convex functions only provide
approximate guarantees and to find a Walrasian equilibrium we need the exact minimum. In
general minimizing a convex function exactly is impossible, but in our case, this can be done
by exploiting the connection to the LP. Note that given the very restricted way that we can
access the problem (only via the aggregate demand oracle), we can’t apply the techniques
to perturb and round the linear programming in a black-box fashion. Khachiyan’s approach
[152] can be adapted to our setting, but can’t be applied directly since we don’t have a
proper LP. We show how to perturb and round the objective function to achieve the desired
running time.

Gross substitutes in the aggregate demand model (Section 4). If valuation func-
tions satisfy gross substitutes, then we can exploit the fact that the set of Walrasian prices
form an integral polytope with a lattice structure to simplify the algorithm and obtain an
improved running time and oracle call complexity. The improvement comes from using struc-
tural properties of gross substitutes to show that a simpler and milder perturbation to the
objective is enough and that rounding can be done in a simpler manner. This highlights the
importance of looking at perturbation and rounding in a non-black-box manner.

Gross substitutes in the value oracle model (Section 5). An aggregate demand
oracle call can be simulated from O(mn2) value oracles calls. This can be plugged into the
previous algorithm to obtain a running time of Õ(mn3TV ) where TV is the time required by
the value oracle. We use two ideas to improve the running time to Õ((mn+n3)TV ). The first
one is to regularize the objective function. As with the use of regularizers in other context
in optimization, this is to penalize the algorithm for being too aggressive. The bound of
O(mn2) value oracle calls per iteration of the cutting plane algorithm is so costly precisely
because we are trying to take an aggressively large step. A second idea is to re-use one
of the stages of the subgradient computation in multiple iterations, amortizing its cost per
iteration.

Robust Walrasian Prices and Market Coordination (Section 6). Still in the value
oracle model, we show how to obtain the efficient allocation from the subgradients observed
in the optimization procedure. An important by-product of our analysis is that we give
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necessary and sufficient conditions for the existence of robust Walrasian prices, i.e., Walrasian
prices under which each buyer has a unique bundle in their demand set. Whenever such prices
exist, we give an Õ(mn + n3) algorithm to compute them. This answers an open question
in Hsu et al [122], who ask when it is possible to completely coordinate markets by solely
using prices.

Combinatorial Algorithms for Walrasian equilibrium (Section 7). Murota and
Tamura [205] gave combinatorial algorithms for the problem of computing Walrasian equi-
libria via a reduction to the M -convex submodular flow problem. It is also possible to obtain
combinatorial algorithms for the welfare problem by reducing it to the valuated matroid in-
tersection problem and applying the algorithms in Murota [199, 200]. The running time is
not explicitly analyzed in [205, 199, 200]. Here we describe those algorithms for the reader
unfamiliar with M-convex submodular flows in terms of a sequence of elementary shortest
path computations and analyze its running time. We show that they have running time of
Õ(mn3) in the value oracle model. We use the same ideas used to speed up the computation
of Walrasian prices by regularizing the market potential to speed up those algorithms and
improve its running time to Õ(mn+ n3).

17.4 Comparison to related work

Iterative auctions and subgradient algorithms. The first algorithm for computing
Walrasian equilibria in an economy of indivisible goods is due to Kelso and Crawford [149]
and it is inspired by Walras’ tâtonnement procedure [257], which means “trial-and-error”.
Despite the name, it constitutes a very ingenious greedy algorithm: goods start with any
price, then we compute the aggregate demand of the agents, increase the price by one for all
goods that were over-demanded and decrease by one the price of all goods that are under-
demanded. This gives a very natural and simple algorithm in the aggregate demand oracle
model. This algorithm, however, is not polynomial time since it runs in time proportional
to the magnitude of the valuations.

The seminal work of [149] originated two lines of attack of the problem of computing
Walrasian equilibria: the first line is by applying subgradient descent methods [219, 220, 14].
Such methods typically either only guarantee convergence to an approximate solution or
converge in pseudo-polynomial time to an exact solution. This is unavoidable if subgradient
descent methods are used, since their convergence guarantee is polynomial in M/ε where
M is the maximum valuation of a buyer for a bundle and ε is the accuracy of the desired
solution. To be able to round to an exact optimal solution the running time must depend
on the magnitude of the valuations. Another family of methods is based on primal-dual
algorithms. We refer to de Vries, Schummer and Vohra [55] for a systematic treatment of
the topic. For primal-dual methods to converge exactly, they need to update the prices
slowly – in fact, in [55] prices change by one unit in each iteration – causing the running
time to be pseudo-polynomial time.

Polynomial time approaches via the Ellipsoid Method. The Welfare Problem for
gross substitutes was independently shown to be solvable in polynomial by Murota [200] and

120



Nisan and Segal [215]. Remarkably, this was done using completely different methods.
Nisan and Segal’s approach is based on a linear programming formulation of Walrasian

equilibrium due to Bikhchandani and Mamer [21]. The authors show that the dual of this
formulation can be solved using both the value and demand oracles for gross substitutes as
a separation oracle for the LP. This can be combined with the fact that demand oracles
for gross substitutes can be constructed from value oracles in O(n2) time [65] to obtain a
polynomial-time algorithm in value oracle model.

This is the method that is closer to ours in spirit: since we both approach the problem
via a mathematical programming formulation and apply interior point methods. In terms
of oracle access, Nisan and Segal crucially rely on value oracles to implement the separation
oracle in their LP – so their solution wouldn’t generalize to the aggregate demand oracle
model, since neither per-agent demand oracles nor value oracles can be recovered from ag-
gregate demand oracle8. The running time in their paper is never formally analyzed, but
since their formulation has m+n variables, it would lead to a superlinear dependence in the
number of agents.

Nisan and Segal employ the LP to compute a set of Walrasian prices and the value of
the Walrasian allocation. In order to compute the allocation itself, they employ a clever
technique called self-reducibility, commonly used in complexity theory. While it allows for
an elegant argument, it is a very inefficient technique, since it requires solving nm linear
programs. In total, this would lead to a running time of O(mn2(m + n)3) using currently
fastest cutting plane algorithms as the LP solver.

Combinatorial approaches. A second technique was developed by Murota [199, 200]
and leads to very efficient combinatorial algorithms. Murota’s original paper never men-
tions the term “gross substitutes”. They were developed having a different object in mind,
called valuated matroids, introduced by Dress and Wenzel [63, 62] as a generalization of the
Grassmann-Plücker relations in p-adic analysis. Murota developed a strongly-polynomial
time algorithm based on network flows for a problem called the valuated matroids assign-
ment problem. There is a tortuous path connecting gross substitutes to valuated matroids.
Valuated matroid turned out to be one aspect of a larger theory, Discrete Convex Analysis,
developed by Murota (see his book [197] for a comprehensive discussion). One central object
of this theory is the concept of M \-concave functions, introduced by Murota and Shioura
[203]. It came to many as a surprise when Fujishige and Yang [92] showed that M \-concave
functions and gross substitutes are the same thing. Their equivalence is highly non-trivial
and their definitions are very different to the point it took at least a decade for those concepts
to be connected. Murota and Tamura [205] later apply the ideas in discrete convex analysis
to give polynomial time algorithms to various equilibrium problems in economics. The run-
ning time is never explicitly analyzed in their paper. Here we show that their running time
is Õ(mn3) and improve it to Õ(mn+ n3)

8Note that the construction of Blumrosen and Nisan [24] to construct value oracles from demand oracles
crucially requires per-buyer demand oracles. The same construction doesn’t carry over to aggregate demand
oracles.
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Market Coordination Related to Section 22 in our work is the line of research on Market
Coordination. This line of inquiry was initiated by Hsu, Morgenstern, Rogers, Roth and
Vohra [122] who pose the question of when prices are enough to coordinate markets. They
argue that the minimum vector of Walrasian prices always causes ties and bound how much
overdemand can be caused by any given vector of Walrasian prices for unit-demand valuations
and matroid based valuations. They ask such questions in both the traditional market
model of Gul and Stachetti and in a stochastic setting where valuations are drawn from
distributions. In the traditional market model, we answer the question in the title of their
paper for the general class of gross substitutes, by giving necessary and sufficient conditions
for markets to be coordinated by only using prices (Theorem 138). We also give a simple
algorithm for computing those prices whenever they exist. Such necessary and sufficient
conditions were given simultaneously and independently by Cohen-Addad, Eden, Feldman
and Fiat [48]

18 Preliminaries

Let Z be the set of integers, Z≥0 be the set of non-negative integers. For any k ∈ Z≥0, we
define [k] := {1, 2, . . . , k} and [[k]] = {0, 1, . . . , k}. Given ~cs = (s1, . . . , sn) ∈ Zn≥0, we define
[[~cs]] =

∏n
j=1[[sj]].

18.1 Market equilibrium: prices, allocations and welfare

Following the classic model of Gul and Stachetti [115], we define a market of indivisible goods
as a set [m] of buyers, a set [n] of items and a supply sj ∈ Z≥0 of each item j. Each buyer
i has a valuation function vi : Zn≥0 → Z over the multisets of items with vi(0) = 0. For the
first part of our work, we make no further assumptions about the valuation function or the
supply.

Given a price vector ~cp ∈ Rn, we define the utility of agent i for a bundle x ∈ [[~cs]] under
price vector ~cp as: ui(x;~cp) := vi(x)−~cp · x, where ~cp · x refers to the standard dot product∑n

j=1 pjxj. Notice also that we make no assumptions about the signs of vi and ~cp.

An allocation ~cx = (x(1), x(2), . . . , x(m)) is simply an assignment of items to each agent
where i receives x(i) ∈ [[~cs]]. An allocation ~cx is valid if it forms a partition of the items,

i.e.
∑

i x
(i)
j = sj for every j. The social welfare of a valid allocation ~cx is defined as

Sw(~cx) =
∑

i∈[m] vi(x
(i)). Finally, the optimal social welfare is simply the largest possible

social welfare among all valid allocations.
Given prices ~cp ∈ Rn, we would expect a rational agent to buy x such that his utility

vi(x)− ~cp · x is maximized. We call x the demand of i under ~cp, as defined formally below.
Note that there may be multiple utility-maximizing subsets.

Definition 102 (Demand set). Given prices ~cp ∈ Rn on each item, the demand set D(v,~cp)
for a valuation function v is the collection of vectors (bundles) for which the utility is maxi-
mized:

D(v,~cp) := arg maxx∈[[~cs]] v(x)− ~cp · x.
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If v is the valuation function vi of agent i, we also use the shorthand D(i,~cp) as the demand
set.

Definition 103 (Equilibrium). A Walrasian equilibrium (also called competitive equilib-
rium) consists of a price vector ~cp ∈ Rn and a valid allocation ~cx = (x(1), x(2), . . . , x(m)) s.t.
x(i) ∈ D(i,~cp)∀i. We call ~cp a Walrasian/equilibrium price and ~cx a Walrasian/equilibrium
allocation induced by ~cp.

In other words, a competitive equilibrium describes a state where items are sold in such a
way that the total demand

∑
i x

(i)
j for each item precisely meets its supply sj, i.e. the market

clears. The reason for the name competitive equilibrium is that it achieves the optimal social
welfare. This is known as the first and second welfare theorems in economics.

Lemma 104 (First & Second Welfare Theorems). Let ~cx be an equilibrium allocation induced
by an equilibrium prices ~cp. Then ~cx achieves the optimal social welfare. Moreover, if ~cp is
any Walrasian price and ~cx is any optimal allocation, then the pair (~cp,~cx) form a Walrasian
equilibrium.

This nicely reduces social welfare maximization to finding competitive equilibrium when-
ever it exists. Note that the definition of social welfare has nothing to do with prices. In a
way, this lemma shows that equilibrium prices act as a certificate for optimality of equilibrium
allocation.

18.2 Oracles

To study market equilibrium computationally, we must clarify how we can extract informa-
tion about the market. In this Part we consider three models that access the market in
different scales:

Microscopic Scale: Value Oracle Model Here the algorithm has access to the value
that each agent has for each bundle. This gives the algorithm very fine-grained information,
but may require many calls for the algorithm to access any sort of macroscopic information
about the market.

Definition 105 (Value oracle). The value oracle for agent i ∈ [m] takes x ∈ [[~cs]] as input
and outputs vi(x). We denote by TV the time spent by the value oracle to answer a query.

Agent Scale: Demand Oracle Model Here the algorithm presents a price vector ~cp to
an agent and obtains how many units are demanded at ~cp. At any given price, the agent
could be indifferent between various bundles. The demand oracle can return an arbitrary
bundle.

Definition 106 (Demand oracle). The demand oracle for agent i takes as input a price
vector ~cp ∈ Rn and outputs a demand vector di(~cp) ∈ D(i,~cp). We denote by TD the time
spent by the demand oracle to answer a query.

123



Macroscopic (Market) Scale: Aggregate Demand Oracle Model The aggregate
demand oracle model presents a macroscopic view of the market where algorithms cannot
observe individual agents but only their aggregate response to any given price ~cp.

Definition 107 (Aggregate Demand oracle). The aggregate demand oracle takes as input a
price vector ~cp ∈ Rn and outputs a demand vector d(~cp) ∈ Z≥0 such that there exist bundles
x(i) ∈ D(i,~cp) satisfying d(~cp) =

∑
i x

(i). We denote by TAD the time spent to answer a
query.

19 Walrasian equilibrium for General Valuations in Õ(n2·
TAD + n5)

We show that in the aggregate demand oracle model, whenever a Walrasian equilibrium
exists, it can be computed using Õ(n2) aggregate demand oracles calls and Õ(n2 · TAD + n5)
time. We emphasize that our result is in the aggregate demand oracle model – which is
the typical information available to markets: which goods are under- and over-demanded by
the population of buyers? Previous polynomial-time algorithms for computing Walrasian
equilibria [21, 215, 200, 205] require buyer-level demand oracles or value oracles. Previous
algorithms that use only aggregate demand oracles (such as [149, 115, 14, 220, 55] and related
methods based on ascending auctions) are pseudopolynomial since they depend linearly on
the magnitude of the valuation functions.

First we discuss a linear programming formulation for this problem and a corresponding
convex programming formulation. The formulation itself is fairly standard and appears
in various previous work. When we try to find an exact minimizer of this formulation in
polynomial time using only aggregate demand oracles, we encounter a series of obstacles.
The main ones are: (i) how to optimize a function we cannot evaluate; and (ii) how to find
an exact minimizer using convex optimization (which typically gives only an approximate
guarantee). In both cases, we must apply optimization algorithms in a non-black-box manner
and exploit special structures of the problem.

Linear Programming Formulation We start from the formulation of Bikhchandani and
Mamer [21] (also studied by Nisan and Segal [215]) of the Walrasian equilibrium problem as
a linear program. Consider the following primal-dual pair:

max
z

∑
i∈[m],x∈[[~cs]]

vi(x) · zi,x s.t.

∑
x

zi,x = 1, ∀i (ui)∑
i,x

xj · zi,x = sj, ∀j (pj)

zi,x ≥ 0, ∀i, x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
(~cp,~cu)

∑
i

ui + ~cp · ~cs s.t.

ui ≥ vi(x)− ~cp · x, ∀i, x (zi,x)
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Lemma 108 ([21]). A market equilibrium (~cpeq,~cx) exists iff the primal program has an
integral solution. In such case, the set of equilibrium prices is the set of solutions to the dual
LP projected to the ~cp-coordinate.

We provide a proof of the previous lemma in the appendix for completeness. This lemma
reduces the problem of finding a Walrasian equilibrium, whenever it exists, to the problem
of solving the dual program. The approach in Nisan and Segal [215] is to use a (per buyer)
demand oracle as a separation oracle for the dual program. Given that we care only about
the ~cp variables, we can reformulate the dual as:

min
(~cp,u)

u+ ~cp · ~cs s.t.

u ≥
∑
i

vi(x
(i))− ~cp · x(i), ∀x(i) ∈ [[~cs]]

(D)

It is simple to see that for every feasible vector (~cp,~cu) of the original dual, we can find
a corresponding point (~cp,

∑
i ui) of the transformed dual with the same value. Conversely,

given a feasible point (~cp, u) of the transformed dual, we can come up with a point (~cp,~cu)
of the original dual with equal or better value by setting ui = maxx vi(x)− ~cp · x.

Thus it suffices to find an optimal solution to the transformed dual program. The separa-
tion problem is now simpler: consider a point (~cp0, u0) that is infeasible. If some constraint
is violated, then it must be the constraint for x(i) maximizing

∑
i vi(x

(i)) − ~cp0 · x(i), so
u0 <

∑
i vi(x

(i)) − ~cp0 · x(i). For all feasible (~cp, u) we know that u ≥
∑

i vi(x
(i)) − ~cp · x(i).

Therefore:
u− u0 + (~cp− ~cp0) · ~cd(~cp0) ≥ 0

is a valid separating hyperplane, where ~cd(~cp0) =
∑

i x
(i) is the output of the aggregate

demand oracle. If on the other hand (~cp0, u0) is feasible, we can use the objective function to
find a separating hyperplane, since for any optimal solution (~cp, u) we know that u+~cp ·~cs ≤
u0 + ~cp0 · ~cs. So we can separate it using:

u− u0 + (~cp− ~cp0) · ~cs ≤ 0

An Obstacle The main obstacle to this approach is that since the aggregate demand
oracle has no access to the value of

∑
i vi(x

(i)), one cannot construct a separation oracle
from the aggregate demand oracle.

Convex Programming Formulation One way to get around this obstacle is to further
transform the dual program to get rid of utility variable u altogether. We do so by moving
the constraints to the objective function in the form of penalties. The LP then becomes the
problem of minimizing a convex function. The same function has been used as a potential
function to analyze price adjustment procedures [15] and combinatorial algorithms [204] and
is the basis for the family of algorithms known as subgradient algorithms (e.g. [219, 220, 14,
41]).

Given a market with supply ~cs and agents with valuations v1, . . . , vm, we define the
market potential function f : Rn → R as:
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f(~cp) =
m∑
i=1

(
max
x∈[[~cs]]

vi(x)− ~cp · x
)

+ ~cp · ~cs. (C)

Since f is nothing more than the dual linear program with the constraints moved to
the objective function, the set of minimizers of f is exactly the set of optimal solutions of
the dual linear program (or more precisely, their projections to the ~cp-variable). Each term
maxx∈[[~cs]] vi(x)−~cp ·x is a convex function in ~cp since it is a maximum over linear functions.
Hence f is convex since it is a sum of convex functions.

One remarkable fact about f is that we can obtain a subgradient from the aggregate
demand oracle:

Lemma 109 (Subgradient oracle). Let ~cd(~cp) be the aggregate demand, then ~cs− ~cd(~cp) is
a subgradient of f in ~cp.

Proof. From the Envelope Theorem, a subgradient of maxx∈[[~cs]] vi(x)−~cp · x is given by the
subgradient of vi(x

(i))−~cp · x(i) for x(i) ∈ arg maxx vi(x)−~cp · x. Since vi(x
(i))−~cp · x(i) is a

linear function in ~cp, its gradient is simply −x(i). So, for any x(i) in the arg max, the vector
~cs−

∑
i x

(i) is a subgradient o f f . In particular, ~cs− ~cd(~cp).

A useful fact in studying this function is that we have an initial bound on the set of
minimizers:

Lemma 110. If there exists a Walrasian equilibrium, then the set of minimizers P :=
arg min~cp f(~cp) is contained in the box [−2M, 2M ]n for M = maxi maxx∈[[s]] |vi(x)|.

Proof. Let ~cp ∈ P be a vector of equilibrium prices and ~cx an optimal allocation. Since the
pair (~cp,~cx) constitute a Walrasian equilibrium, then for any item j, there is some x

(i)
j ≥ 1

and therefore,
vi(x

(i))− ~cp · x(i) ≥ vi(x
(i) − ~c1j)− ~cp · (x(i) − ~c1j)

where ~c1j is the unit vector in the j-th coordinate. This gives us: pj ≤ vi(x
(i))−vi(x(i)−~c1j) ≤

2M .
For the lower bound, if there is more than one buyer then pj must be larger than −2M ,

otherwise all the supply of item j will be demanded by all buyers and therefore ~cp cannot
be Walrasian.

Lemma 111. The set of Walrasian prices is a polytope P whose vertices have coordinates
of the form pj = aj/bj with aj, bj ∈ Z and |bj| ≤ (Sn)n for S = maxj sj.

Proof. The vertices of P correspond to ~cp-coordinates of the basic feasible solutions of the
dual linear program. Given that the coefficients of the ~cp variables in the linear program are
integers from 0 to S, solving the linear system using Cramer’s rule (see Section 5 in [23]) we
get that every solution must be a fraction with denominator at most n! · Sn ≤ (Sn)n.
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Two More Obstacles The natural approach at this point is to try to apply convex opti-
mization algorithms as a black box to optimize f . There are two issues with this approach.
The first, which is easier to address, is that unlike algorithms for linear programming which
are exact, algorithms for general convex optimization give only ε-approximation guarantees.
We will get around this issue by exploiting the connection between f and the linear program
from which it is derived.

A second more serious obstacle is that we don’t have access to the functional value of
f , only to its subgradient. This is a problem for the following reasons. Traditional cutting
plane methods work by keeping in each iteration t a set Gt called a localizer. The localizer is
a subset of the domain which is guaranteed to contain the optimal solution. We start with a
large enough localizer set G0 that is guaranteed to contain the solution. In each iteration t,
a point ~cpt ∈ Gt−1 is queried for the subgradient ∂f(~cpt). Now, if ~cp∗ is an optimal solution
we know that:

0 ≥ f(~cp∗)− f(~cpt) ≥ ∂f(~cpt) · (~cp∗ − ~cpt)
where the first inequality comes from the fact ~cp∗ is an optimal solution and the second
inequality comes from the definition of the subgradient. This in particular means that any
optimal solution must be contained in Ht = Gt−1∩{~cp; ∂f(~cpt) ·(~cp−~cpt) ≤ 0}. The method
then updates Gt to either Ht or a superset thereof. The Ellipsoid Methods, for example,
updates Gt to the smallest ellipsoid containing Ht. So far, all the steps depend only on the
subgradient and not on the actual functional values of f(~cpt). The guarantee of the method,
however, is that after a sufficient number of steps, one of the iterates is close to the optimal,
i.e., mint f(~cpt)− f(~cp∗) ≤ ε. To find the approximate minimizer, however, we need to look
at the actual functional values, which we have not access to. See Section 2.2 in Nemirovski
[208] for a complete discussion on the guarantees provided by cutting plane methods.

A special case : Walrasian prices with non-empty interior The set of Walrasian
prices P forms a convex set, since it corresponds to the set of minimizers of the convex
function f . If P has non-zero volume, it is possible to find a Walrasian equilibrium using
the Ellipsoid Method without needing to know the functional value. If the set is large, the
Ellipsoid method cannot avoid querying a point in the interior of P for too long. And when
a point in the interior of P is queried, the only subgradient is zero, or in market terms, each
agent has a unique favorite bundle and those bundles clear the market. This means that the
aggregate demand oracle returns exactly the supply. Next we make this discussion formal:

Theorem 112. Assume that the set of Walrasian prices P has non-zero volume, then the El-
lipsoid method9 is guaranteed to query a Walrasian price ~cp∗ for which the aggregate demand
oracle returns ~cd(~cp∗) = ~cs in Õ(n3) iterations.

Proof. By Lemma 110, P ⊆ [−2M, 2M ]n, so we can take the initial set of localizers G0 in
the ellipsoid methods to be the ball of radius 2M

√
n around 0, which has volume O(Mn).

The Ellipsoid guarantee (see Section 3 of [208]) is that the volume of Gt is at most e−t/2n of
the initial volume. So if the method hasn’t queries any point in the interior of P , then we
must have Gt containing P .

9One may use cutting plane methods to derive a better running time but for simplicity we omit doing it
for this special case.
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To bound the volume of P we use the fact that if a polytope has vertices ~cp0,~cp1, . . . ,~cpn
then the volume of the polytope is lower bounded by the volume of the convex hull of those
vertices:

vol(P ) ≥ 1

n!
det

[
1 1 . . . 1
~cp0 ~cp1 . . . ~cpn

]
≥ 1

n!

(
1

O((Sn)n)

)n
= Ω((Sn)−n

2

)

where the last inequality follows from Lemma 111.
Therefore, if Gt contains P then: O(Mn)e−t/2n ≥ Ω((Sn)−n

2
) which implies that t ≤

O(n3 log(Sn) +n2 log(M)) = Õ(n3). So after so many iterations we are guaranteed to query
a point in the interior of P . For a point ~cp in the interior of P , there is a small ball around
it for which f is flat, so zero must be the unique subgradient at that point. Therefore, the
aggregate demand oracle has no choice but to return ~cd(~cp) = ~cs.

The main drawback of this method is that it strongly relies on the fact that P has
non-empty interior. Some very simple and well-behaved markets have a set of Walrasian
prices of zero volume. Consider for example a market with two items with supply one of
each and three buyers, each having valuation v(0) = 0 and v(x) = 1 otherwise. The set of
Walrasian prices is P = {(1, 1, 1)}. Even for ~cp∗ = (1, 1, 1), the subgradient is not unique
since the aggregate demand oracle can return any ~cd(~cp∗) = (d1, d2) for 0 ≤ d1 + d2 ≤ 3 and
d1, d2 ∈ [[3]]. In this case even trying to modify the objective function is hopeless, since there
is no point in the domain for which the aggregate demand oracle is guaranteed to return
the supply vector. Since there is no point for which the subgradient oracle is guaranteed to
return zero, there is no direct way to recognize a vector of Walrasian prices even if we see
one!

Approach for the general case Our approach for optimizing f is as follows: first
we show how to obtain an ε-approximate minimizer of f in time O(n log(nM/ε)TAD +
n3 logO(1)(nM/ε)). In order to round the ε-approximate solution to the optimal solution,
we exploit the fact that f came from a linear program and customize the traditional ap-
proach of Khachiyan [152] for rounding approximate to exact solutions.

The idea is to use Lemma 111 to argue that if f has a unique minimizer, and we set
ε small enough, then all ε-approximate solutions are in a small neighborhood of the exact
optimal. Moreover, for small enough ε, there should be only one point in the format indicated
by Lemma 111 in a small neighborhood of the approximate minimizer, so we can recognize
this as the exact solution by rounding.

For this approach to work, we need f to have a unique minimizer. To achieve that, we
perturb the objective function f to f̂ in such a way that f̂ has a unique minimizer and that
this minimizer is still a minimizer of f . There are several ways to implement this approach,
the simplest of which uses the isolation lemma (see Lemma 116). We note that the isolation
lemma was not available to Khachiyan at the time so he had to resort to something more
complicated.

A Cutting Plane Method without using functional values The first part of the
algorithm consists in obtaining an ε-approximate minimizer of f without using its functional
value. In order to do so, we use our previous result on the cutting plane method. Recall
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that we show an efficient algorithm which either identifies a point inside the desired convex
set K or certifies that K contains no ball of radius ε. We show that our previous main
theorem can be used to compute approximate minimizers of convex functions using only the
subgradient. Note that our previous application of the main theorem to minimizing convex
functions relies on using functional values as we did not assume a separation oracle given by
subgradients.

For readers’ convenience, our previous main theorem is restated below:

Theorem 113 (Lee, Sidford, Wong (Theorem 31 in [179])). Let K ⊆ [−M,M ]n be a convex
set and consider a separation oracle that can be queried for every point in ~cp ∈ [−M,M ]n

and will either return that ~cp ∈ K or return a half-space H = {~cp ∈ Rn;~ca · ~cp ≤
b} containing K. Then there exists an algorithm with running time O(nT log(nM/δ) +
n3 logO(1)(nM) log2(nM/δ))10 that either produces a point ~cp ∈ K or finds a polytope P =
{~cp ∈ Rn;~cai · ~cp ≤ bi, i = 1, . . . , k}, k = O(n) such that:

• The constraints ~cai · ~cp ≤ ~cb are either from the original box, pi ≤ M or pi ≥ −M or
are constraints returned by the separation oracle normalized such that

∥∥~cai∥∥2
= 1.

• The width of P is small, i.e., there is a vector ~ca with
∥∥~ca∥∥

2
= 1 such that

max
~cp∈P

~ca · ~cp− min
~cp∈P

~ca · ~cp ≤ O(nδ log(Mn/δ))

• The algorithm produces a certificate of the previous fact in the form of a convex com-
bination t1, . . . , tk with ti ≥ 0,

∑k
i=1 ti = 1 and k = O(1) such that:

–
∥∥∑k

i=1 ~cai
∥∥

2
≤ O

(
δ
M

√
n log

(
M
δ

))
–
∣∣∣∑k

i=1 bi

∣∣∣ ≤ O
(
nδ log

(
M
δ

))
Now, we show that this result can be used to obtain a convex minimization algorithm

that uses only subgradients:

Theorem 114. Let f : Rn → R be an L-Lipschitz convex function equipped with a subgradi-
ent oracle with running time T . If f has a minimizer in [−M,M ]n we can find a point ~̄pc such
that f(~̄pc)−min~cp f(~cp) ≤ ε in time O(nT log(nML/ε) + n3 logO(1)(nML) log2(nML/ε)).

Proof. Let K = argmin~cpf(~cp) and use the subgradient as the separation oracle, since if
∂f(~cpt) is the subgradient at ~cpt we know that for all ~cp ∈ K, it holds that ∂f(~cpt)·(~cp−~cpt) ≤
0. What we will do is to run the algorithm in Theorem 113 starting from a very large box
[−M ′,M ′] for M ′ = nO(1)M instead of starting from [−M,M ], which appears to be more
natural. The reason we do that is to avoid having the constraints defining the bounding box
added to P .

Either the algorithm will return a point ~cp ∈ K, in which case we are done or will return
a set P like in statement of the theorem. If we are lucky and all constraints added to P are

10The running time stated beofre has logO(1)(nM/δ) dependence which is, upon a closer examination,

actually logO(1)(nM) log2(nM/δ)). (The difference was ignored because both runtimes give the same result
for previous applications)
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of the type ∂f(~cpt) · ~cp ≤ ∂f(~cpt) · ~cpt, then we can use the certificate t1, . . . , tk to produce
a point ~̄pc =

∑k
i=1 ti~cpi. Now:

f(~̄pc)− f(~cp∗) ≤
∑
i

tif(~cpi)− f(~cp∗) ≤
∑
i

∂f(~cpi) · (~cpi − ~cp∗)

≤ L ·

[∥∥∑
i

ti~cai
∥∥ · ∥∥~cp∗∥∥+

∣∣∣∣∣∑
i

tibi

∣∣∣∣∣
]

≤ L ·
[
O

(
δ

M ′

√
n log

(
M ′

δ

))
·M ′√n+O

(
nδ log

(
M ′

δ

))]
= O

(
nδL log

(
M ′

δ

))
Then setting δ such that ε = O

(
nδL log

(
M ′

δ

))
gives us the desired result.

To be done, we just need to worry about the case where some of the box constraints are
present in P . In that case, we argue that the weight put by the coefficients ti on the box
constraints must be tiny, so it is possible to remove those and rescale t. Formally, observe
that

∑
i

ti(bi − ~cai · ~cp∗) ≤

∣∣∣∣∣∑
i

tibi

∣∣∣∣∣+
∥∥∑

i

ti~cai
∥∥

2
·
∥∥~cp∗∥∥

2
= O

(
nδ log

(
M ′

δ

))
Now, if i is an index corresponding to a box constraint such as pi ≤ M ′ or pi ≥ −M ′ then
bi − ~cai · ~cp∗ ≥ |M ′ −M | = Ω(nO(1)M). This implies in particular that:

O

(
nδ log

(
M ′

δ

))
≥
∑
i

ti(bi − ~cai · ~cp∗) ≥ ti(bi − ~cai · ~cp∗) ≥ tiΩ(nO(1)M)

so ti ≤ O
(
n−O(1)δ
M

log
(
M ′

δ

))
. By choosing a very small δ, say δ = O

(
ε

LnO(1)MO(1)

)
we guar-

antee that is B is the set of indices corresponding to box constraints, then
∑

i∈B ti ≤
O
(

ε
nO(1)MO(1)

)
≤ 1

2
and that

∑
i ti(bi − ~cai · ~cp∗) ≤ O

(
ε

LnO(1)MO(1)

)
. This allows us to de-

fine for i /∈ B, t′i = ti/
(
1−

∑
i∈B ti

)
, so we have:

ε

2L
≥ O

( ε

LnO(1)MO(1)

)
≥
∑
i

ti(bi − ~cai · ~cp∗) ≥
∑
i/∈B

ti(bi − ~cai · ~cp∗)

=

(
1−

∑
i∈B

ti

)(∑
i/∈B

t′i(bi − ~cai · ~cp∗)

)

≥ 1

2

(∑
i/∈B

t′i(bi − ~cai · ~cp∗)

)

Now we can repeat the argument in the beginning of the proof with ~̄pc =
∑

i/∈B t
′
i~cpi.
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Perturbation, Approximation and Rounding The next step is to use the algorithm
for finding an approximate solution to find an exact solution. This is impossible for generic
convex programs, but since the function we are trying to optimize comes from a linear
program, we can do that by exploiting this connection. As done for linear programs, we
will do this in three steps: first we perturb the function to be optimized, then we find an
approximate solution by Theorem 114 and finally we round it to an exact solution in the
format of the optimal solution given by Lemma 111.

We can perturb the objective of the dual linear program by changing it to:

minu+ ~cp · (~cs+ ~cr) s.t. u ≥
∑
i

vi(x
(i))− ~cp · x(i),∀x(i) ∈ [[s]] (PD)

We want to specify the real-valued vector ~cr in such a way that the optimal solution to this
linear program is still the optimal solution to the original program, but also in a way that
the optimal solution becomes unique. First we observe the following:

Lemma 115. If ri < (nS)−(2n+1) then an optimal solution of the perturbed program is also
an optimal solution to the original program.

Proof. Let C be the set of vertices (basic feasible solutions) of the dual LP. By Lemma 111 we
know that the coordinates of those vertices must be of the form ai/bi for integers ai, bi such
that 0 ≤ bi ≤ (nS)n. For any linear objective function, the optimal solution must be a point
in C. Since the original objective has integral coefficients, when evaluated on any vertex, the
objective is a fraction with denominator bi ≤ (nS)n. Therefore, the difference between the
objective evaluated at an optimal vertex and the objective evaluated at a suboptimal one is

at least
∣∣∣aibi − a′i

b′i

∣∣∣ =
∣∣∣aib′i−a′ibibib′i

∣∣∣ ≥ 1
(nS)2n . Therefore, if ri < (nS)−(2n+1), then its effect in the

objective function is at most nS · (nS)−(2n+1) ≤ (nS)−2n, so it cannot cause a suboptimal
solution to the original program to become an optimal solution of the perturbed program.

Our final ingredient is a lemma by Klivans and Spielman [156] which is in the spirit of
the Isolation Lemma of Mulmuley, Vazirani and Vazirani [196].

Lemma 116 (Klivans and Spielman (Lemma 4 in [156])). Let C be a set of points in Rn where
all coordinates assume at most K distinct values. Then if ~cr is a vector with coordinates
sampled at random from {0, 1, . . . , Kn/ε}, then with probability 1−ε, there is a unique ~cp ∈ C
minimizing ~cr · ~cp.

We note that although Lemma 4 in [156] is stated for C having coordinates in {0, 1, . . . , K−
1}, the proof only uses the fact that the coordinates of C assume at most K distinct values.

Lemma 117. If rj = zj/ [Mn(nS)2n+1] where zj is drawn uniformly from
{0, . . . , nM(nS)2n − 1}, then with probability 1

2
, the dual program has a unique minimizer

and this minimizer is a minimizer of the original program.

Proof. Let C be the set of vertices (basic feasible solutions) of the dual linear program in
[−M,M ]n. All the minimizers of the original dual program are guaranteed to be in this set
because of Lemma 110. Lemmas 110 and 111 tell us that the coordinates of points in C are
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of the form ai/bi where ai and bi are integers such that 1 ≤ bi ≤ (nS)n and |ai| ≤ Mbi. So

there are at most
∑(nS)n

b=1 b · 2M ≤ 2M(nS)2n coordinates.
Now, Lemma 115 guarantees that the magnitude of the perturbation will prevent subop-

timal vertices in the original program to become optimal vertices in the perturbed program.
Lemma 116 guarantees that with half probability the vertex minimizing the objective is
unique.

The perturbed dual program translates to the following perturbed objective function:

f̂(~cp) =
m∑
i=1

(
max
x∈[[~cs]]

vi(x)− ~cp · x
)

+ ~cp · (~cr + ~cs). (PC)

Since the subgradient of f̂ can be computed from the aggregate demand oracle ∂f̂(~cp) =
~cs+ ~cr − ~cd(~cp) we can use Theorem 114 to find an ε-minimizer.

Lemma 118. For ε = (nMS)−O(n), if ~cp is an ε-approximation to the optimal value of f̂ ,
i.e., f̂(~cp)− f̂(~cp∗) ≤ ε then the optimal solution is the only point ~cp∗ such that

∥∥~cp−~cp∗∥∥
2
≤

1
(nMS)O(n) and has coordinates of the form described in Lemma 111.

Proof. Let C be the set of vertices of the dual linear program, which are points of the form
(ui,~cpi) and let ~cp be an ε-approximation to f̂ . Now, if u =

∑
i (maxx vi(x)− ~cp · x) then

(u,~cp) is feasible in the dual linear program, and in particular, it can be written as a convex
combination of points in C, i.e., (u,~cp) =

∑
i ti(ui,~cpi) for ti ≥ 0 and

∑
i ti = 1. There is

only one vector in C, call it (u∗,~cp∗) for which the objective evaluates to f̂ ∗. For all other
vertices, the objective evaluates to at least f̂ ∗ + 1

Mn(nS)2n+1 · 1
(nS)n

= f̂ ∗ + 1
Mn(nS)3n+1 due to

Lemmas 111 and 117. Therefore, by evaluating (u,~cp) =
∑

i ti(ui,~cpi) on the linear objective
of the perturbed dual program, we get:

f̂ ∗ + ε ≥ f̂(~cp) ≥ t∗f̂
∗ + (1− t∗)

(
f̂ ∗ +

1

Mn(nS)3n+1

)
where t∗ is the weight put on (u∗,~cp∗) by the convex combination, therefore, if ε = (nMS)−O(n)

then t∗ ≥ 1− (nMS)−O(n). In particular:∥∥~cp− ~cp∗∥∥
2
≤
∥∥∑
i 6=∗

ti(~cpi − ~cp∗)
∥∥

2
≤ (1− t∗) ·max

i 6=∗

∥∥~cpi − ~cp∗∥∥ ≤ (nMS)−O(n)

Therefore, ~cp∗ is in a ball of radius (nMS)−O(n) around ~cp. Also, any other point ~cp′ 6= ~cp∗

with coordinates of the form ai/bi with bi ≤ (nS)n can be in this ball, since two distinct
points of this type differ in at least one coordinate by at least (nS)−n so their distance is at
least that much.

Putting it all together:

Theorem 119. There is an algorithm of running time O(n2TAD log(SMn)+n5 logO(1)(SMn))
to compute an exact vector of Walrasian prices whenever it exists using only access to an
aggregate demand oracle.
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Proof. From the potential function f of the market, use Lemma 117 to construct a perturbed
potential function f̂ . Then use Theorem 114 to optimize f̂ with ε = (nMS)−O(n). Finally,
use the guarantee to argue that the exact optimal value is the only point in the format
of Lemma 111 in the ball of radius (nMS)−O(n) around the ε-approximate minimizer. At
this point, we can round the solution to the exact point by using the method of continuous
fractions in Kozlov et al [163] (see [230] for a complete exposition of this and related methods
of rounding).

20 Walrasian Equilibrium for Gross Substitutes in Õ(nTAD+

n3)

In the previous section we discussed how Walrasian equilibria can be computed without any
assumptions on the valuation function using only an aggregate demand oracle. The focus
was to address various difficulties in applying optimization tools for this problem.

Here we remain in the aggregate demand oracle model and focus on computing Walrasian
equilibria for markets typically studied in economics, which are those where buyers have
gross substitute valuations. The development of the theory of gross substitute valuations is
intertwined with the development of the theory of Walrasian equilibrium for markets with
discrete goods. In particular, it is the largest class of valuation functions that is closed under
perturbation by an additive function11 for which Walrasian equilibria always exist.

Gross substitutes play a central role in economics. Hatfield and Milgrom [119] argue
that most important examples of valuation functions arising in matching markets belong
to the class of gross substitutes. Gross substitutes have been used to guarantee the con-
vergence of salary adjustment processes in the job market [149], to guarantee the existence
of stable matchings in a variety of settings [227, 159], to show the stability of trading net-
works [118, 123], to design combinatorial auctions [14, 204] and even to analyze settings with
complementarities [243, 117].

The concept of gross substitutes has been re-discovered in different areas from different
perspectives: Dress and Wenzel [63] propose the concept of valuated matroids as a general-
ization to the Grassmann-Plücker relations in p-adic analysis. Dress and Terhalle [64] define
the concept of matroidal maps which are the exact class of functions that can be optimized
by greedy algorithms. Murota [198] generalized the concept of convex functions to discrete
lattices, which gave birth to the theory known as Discrete Convex Analysis. One of the
central objects in the Discrete Convex Analysis are M -concave and M \-concave functions
(the latter class was introduced by Murota and Shioura [203]). We refer to a recent survey
by Murota [202] for comprehensive discussion on application of Discrete Convex Analysis in
economics.

Surprisingly, gross substitutes, valuated matroids, matroidal maps and M \-concave func-
tions are all equivalent definitions – despite being originated from very different motivations.
We refer to [181] for a detailed historic description and a survey on their equivalence.

11A class C of valuation functions is closed under perturbations by additive functions if for every v ∈ C
and every vector ~cw ∈ Rn, the function w(x) = v(x) + ~cw · x is also in C.
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Before presenting our algorithms, we first give a quick summary of the standard facts
about gross substitutes that are needed. For a more comprehensive introduction, please see
[181].

20.1 A crash course on gross substitutes

First we define gross substitute valuations on the hypercube {0, 1}[n] and then we extend
the defn to [[~cs]] for any supply vector ~cs. When talking about functions defined on the
hypercube, we will often identify vectors x ∈ {0, 1}[n] with the set S = {i ∈ [n] : xi = 1}, so
we write v(S) where S ⊆ [n] meaning v(~c1S) where ~c1S is the indicator vector of S.

Next we define three classes of valuation functions. The reader who saw the spoilers in
the previous subsection will already suspect that they are equivalent.

Definition 120. (Gross substitutes, Kelso and Crawford [149]) A function v : 2[n] → Z
is a gross substitute (GS) if for any price ~cp ∈ Rn and S ∈ D(v,~cp), any price ~cp′ ≥ ~cp
(entry-wise) has some S ′ ∈ D(v,~cp′) satisfying S ∩ {j : pj = p′j} ⊆ S ′.

In other words, price increases for some items can’t affect the purchasing decisions for
the items whose price stayed the same.

The second definition concerns when the demand oracle problem max v(S)−p(S) can be
solved efficiently:

Definition 121. [Matroidal Maps, Dress and Terhalle [65]]A function v : 2[n] → Z is called
matroidal if for any price ~cp ∈ Rn, the set S obtained by the following greedy algorithm
solves maxS⊆[n] v(S)− p(S):

Greedy algorithm: Start with the empty set S = ∅. While |S| < n and there
exists i /∈ S such that v(S ∪ i) − pi − v(S) > 0, then update S ← S ∪ i∗ where i∗ =
arg maxi∈[n]−S v(S ∪ i)− pi − v(S) (break ties arbitrarily).

The third definition generalizes the concept of convexity and concavity to the hypercube.
We can define convexity for continuous functions f : Rn → R as being function such that
for all vectors ~cv ∈ Rn, if x∗ is a local minimum of f(x) − ~cv · x, then x∗ is also a global
minimum. This definition generalizes naturally to the hypercube as follows:

Definition 122. [Discrete Concavity, Murota [197], Gul and Stachetti [115]] A function
v : 2[n] → Z is discrete concave function if local optimality implies global optimality for all
price vectors ~cp. Formally: if S ⊆ [n] is such that for all i ∈ S and j /∈ S, v(S) ≥ v(S∪j)−pj,
v(S) ≥ v(S−i)+pi and v(S) ≥ v(S∪j−i)+pi−pj, then v(S)−~cp(S) ≥ v(T )−~cp(T ), ∀T ⊆ [n].

Discrete concave functions have two important properties: (i) the demand oracle has a
succinct certificate of optimality and (ii) the function can be optimized via local search for
any given prices.

Those definitions arose independently in different communities and, amazingly enough,
those definitions turned out to be equivalent. The equivalence of discrete concavity and gross
substitutes is due to Fujishige and Yang [92] and the equivalence of discrete concavity and
matroidal maps appears explicitly in Paes Leme [181].
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Theorem 123. A valuation function is in gross substitutes iff it is a matroidal map and iff
it is a discrete concave valuation.

The concept of gross substitutes generalizes naturally to multi-unit valuations: given any
function v : [[~cs]] → Z we can translate it to a single-unit valuation function ṽ : 2[

∑
i si] → Z

by treating each of the si copies of item i as a single item. We say that a multi-unit valuation
function v is gross substitutes if its corresponding single item version ṽ is in gross substitutes.
We refer to the excellent survey by Shioura and Tamura [237] on gross substitutability for
multi-unit valuations.

An important property of gross substitutes is:

Theorem 124 ([149, 53]). If all buyers have gross substitute valuations, then a Walrasian
equilibrium always exists.

The original theorem showing the existence of Walrasian equilibrium for gross substitutes
in the single-unit case (sj = 1 for all j) is due to Kelso and Crawford [149]. The extension
to multi-units is due to Danilov, Koshevoy and Murota [53].

20.2 Walrasian Prices form an integral polytope

By Theorem 124, the set of Walrasian prices is non-empty. We also know that it forms a
convex polyhedral set, since they are the set of minimizers of a convex function that comes
from a linear program. Perhaps a more direct way to see it is that given an optimal allocation
~cx, the set of Walrasian prices can be characterized by the following set of inequalities:

P = {~cp ∈ Rn | vi(x(i))− ~cp · x(i) ≥ vi(x)− ~cp · x, ∀i ∈ [m], x ∈ [[s]]}

Lemma 111 provided a good characterization of the vertices of this polytope in the general
case. For gross substitutes, however, there is an even nicer characterization. The next lemma
is a special case of a result by Murota (Theorem 11.16 in [197]) that shows that the set of
Walrasian prices form an L\-convex polytope and hence is an integral polyhedron with a
lattice structure. To keep the Part self-contained we give a proof from first principles.

Lemma 125. If buyer valuations are gross substitutes, then all the vertices of the feasible
region of the dual program D (defined in Section 19) have integral coordinates. In particular,
the set of Walrasian prices form an integral polytope.

Proof. Let (u,~cp) be a non-integral feasible point of the dual program D. We will write
it as a convex combination of integral points. Let x(i) ∈ arg max vi(x) − ~cp · x and w =
u−

∑
i vi(x

(i))− ~cp · x(i).
Now, we define a distribution over integral points in the following way: sample a random

threshold θ ∈ [0, 1]. If θ < pi − bpic, set p̂i = dpie, otherwise set p̂i = bpic. Similarly, if

θ < w − bwc, set ŵ = dwe otherwise set ŵ = bwc. Set û = ŵ +
∑

i vi(x
(i)) − ~̂pc · x(i). It is

easy to see that (û, ~̂pc) are integral and that E[(û, ~̂pc)] = (u,~cp). We are only left to prove

that (û, ~̂pc) are feasible.

We know that û ≥
∑

i vi(x
(i))−~̂pc·x(i) since ŵ ≥ 0. If we show that x(i) ∈ arg maxx vi(x)−

~cp · x, then we are done, since it automatically implies that all other constraints in the dual
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program D are satisfied. To see this notice that since x(i) ∈ arg max vi(x) − ~cp · x, then for

all items j and k such that x
(i)
j < sj and x

(i)
k > 0 we have that:

vi(x
(i)) ≥ vi(x

(i) + ~c1j)− pj, vi(x(i)) ≥ vi(x
(i) − ~c1k) + pk

vi(x
(i)) ≥ vi(x

(i) − ~c1k + ~c1j) + pk − pj
Since the valuations are integer valued, it is simple to check that rounding using a threshold
won’t violate any of the above inequalities. Thus:

vi(x
(i)) ≥ vi(x

(i) + ~c1j)− p̂j, vi(x(i)) ≥ vi(x
(i) − ~c1k) + p̂k

vi(x
(i)) ≥ vi(x

(i) − ~c1k + ~c1j) + p̂k − p̂j
Therefore under price vector ~̂pc, a buyer can’t improve his utility from x(i) by adding, remov-
ing or swapping an item. Since gross substitutes are equivalent to discrete concavity (Defi-

nition 122), local optimality implies global optimality, i.e., x(i) ∈ arg maxx vi(x)− ~̂pc · x.

Another important property proved by Gul and Stachetti [115] is that the set of Walrasian
prices forms a lattice. This property is also a consequence of the L\-convex structure in
Murota [197].

Theorem 126 (Gul and Stachetti [115], Murota [197]). If buyer valuations are gross sub-
stitutes, then the set of Walrasian prices form a lattice, i.e., if ~cp and ~cp′ then ~̄pc and ~cp are
also Walrasian prices for p̄i = max(pi, p

′
i) and p

i
= min(pi, p

′
i).

20.3 A simpler and faster algorithm for gross substitutes

Using the fact that the set of Walrasian prices is an integral polytope with a lattice structure
we simplify the algorithm described in the previous section and improve its running time.
First, since we have a lattice structure we no longer need to randomly perturb the objective
function to make the solution unique. A simple and deterministic perturbation suffices.
Integrality also allows us to round to an optimal solution from an approximate solution of
smaller accuracy (i.e. larger ε).

Lemma 127. If valuations are gross substitutes, then by taking rj = 1
2Sn

in the perturbed dual
program PD, its optimal solution is unique and also optimal for the original dual program
D.

Proof. Since all the vertices of the polytope are integral and the coefficients are at most S,
a perturbation of rj = 1

2Sn
can’t affect the objective by more than half. So it can’t cause a

suboptimal vertex to become optimal. Also, since the set of Walrasian prices form a lattice,
there is a Walrasian price ~̄pc such that ~̄pc ≥ ~cp for every Walrasian price ~cp. Therefore this
must be the unique optimal solution to the perturbed program.

The previous lemma allows us to prove a better version of Lemma 118:

Lemma 128. For ε < 1/(4nMS), if ~cp is an ε-approximation to the optimal value of f̂ ,
i.e., f̂(~cp) − f̂(~cp∗) ≤ ε then the optimal solution is the only integral point ~cp∗ such that∥∥~cp− ~cp∗∥∥

2
< 1

2
.
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Proof. The proof can be obtained following the proof of Lemma 118, replacing the generic
guarantees in Lemmas 111 and 117 by the better guarantees provided by Lemma 127 for
gross substitutes.

Putting it all together we have:

Theorem 129. There is an algorithm of running time O(nTAD log(SMn)+n3 logO(1)(SMn))
to compute an exact vector of Walrasian prices in a market where buyers have gross substitute
valuations.

Proof. Same proof as in Theorem 119 with ε = 1/(5nMS). Also, since the optimal price
vector is integral, instead of using the method of continuous fractions to round a solution,
it is enough to round each component to the nearest integer.

21 Walrasian Equilibrium for Gross Substitutes in Õ((mn+

n3) · TV )
We now move from the macroscopic view of the market to a microscopic view. We assume
access to the market via a value oracle, i.e, given a certain buyer i and a bundle S ⊆ [n]
of goods, we can query the value of vi(S). We also assume from this point on that the
supply of each good is one, or in other words, that the valuation functions are defined on
the hypercube.

The fact that the demand of each buyer for any given price can be computed by the
greedy algorithm (Definition 121) let us simulate the aggregate demand oracle by the value
oracle model.

Lemma 130. The outcome of the aggregate demand oracle can be computed in time O(mn2TV ),
where TV is the running time of the value oracle.

Proof. The number of queries required for the greedy algorithm described in Definition 121
to compute Si ∈ arg maxS vi(S) − ~cp(S) is n · (|Si| + 1)TV ≤ O(n2TV ). Since there are m
buyers, the total time to compute the demand of all buyers is O(mn2TV ). The aggregate
demand oracle simply outputs d(~cp) where dj(~cp) = #{i : j ∈ S∗i }.

Now we can plug Lemma 130 directly into Theorem 129 and obtain a running time of
Õ(mn3TV ). In the rest of this section, we show how to improve this to Õ((mn+ n3)TV ).

21.1 Faster Algorithm via regularization

The idea to improve the running time from Õ(mn3TV ) to Õ((mn + n3)TV ) is to regularize
the objective function. As with the use of regularizers in other context in optimization, this
is to penalize the algorithm for being too aggressive. The bound of O(mn2) value oracle
calls per iteration of the cutting plane algorithm is so costly precisely because we are trying
to take an aggressively large step.

To provide some intuition, imagine that we have a price ~cp that is very close to optimal
and that Si are the set of items demanded by the buyers at price ~cp. Intuitively, if ~cp is
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close to a Walrasian price then the sets S1, . . . , Sm should be almost disjoint, which means
that the total cost of the greedy algorithm should be

∑
i n(|Si|+ 1) ≈ mn+n2. So when the

prices are good, oracle calls should be cheaper. This tells us that when prices are good, fewer
calls to the value oracle suffice to compute the aggregate demand oracle. When prices are
far from equilibrium, perhaps a more crude approximation to the aggregate demand oracle
is enough.

Based on this idea we define the following regularized objective function:

f̃(~cp) = max∑
i|Si|=n

[
m∑
i=1

vi(Si)− ~cp(Si)

]
+ ~cp([n]). (RC)

The regularization consists of taking the maximum over all sets (S1, . . . , Sm) such that∑
i |Si| = n. Without this restriction, we have the original market potential function f . The

new function f̃ has three important properties: (i) it is still convex, since it is a maximum
over linear functions in ~cp and therefore we can minimize it easily; (ii) its set of minimizers
is the same as the set of minimizers of f and (iii) subgradients are cheaper to compute.
Intuitively, f̃ is very close to f when ~cp is close to equilibrium prices but only a crude
estimate when ~cp is far from equilibrium. Next we show those statements formally and
present an algorithm for computing the subgradient of f̂ .

We give an alternate form of f̃ which is nicer to work with algorithmically. A consequence
of the next lemma, is that for every ~cp there is a constant γ such that f̃(~cp) = f(~cp+γ ·~c1[n])
and that such parameter γ can be found algorithmically. In other words:

f̃(~cp) =
m∑
i=1

(
max
S⊆[n]

vi(S)− ~cp(S)− γ · |S|
)

+ ~cp([n]) + γ · n

for some γ that depends on ~cp (and the tiebreaking rule used by the greedy algorithm).
Among other things, this formulation of f̃ resembles common regularizers used in optimiza-
tion better. One can think of it as if ~cp is changed to ~cp+ γ · 1[n].

Lemma 131. Suppose vi(j) are given and stored as n lists sorted in decreasing order Lj =
{vi(j)}i=1..m. With a running time12 of n2 ·TV +Õ(n2) , given price ~cp, there is an algorithm,
which we call AllGreedy, that finds

1. S∗1 , . . . , S
∗
m maximizing max∑

i |Si|=n (
∑m

i=1 vi(Si)− ~cp(Si)) .

2. γ such that for all i, S∗i ∈ D(i,~cp + γ · ~c1[n]). Moreover, for any γ′ > γ and S ′i ∈
D(i,~cp+ γ′ · ~c1[n]), we have

∑
i |S ′i| < n.

3. f̃(~cp) = f(~cp+ γ · ~c1[n]).

Proof. First, we define the algorithm AllGreedy. The algorithm starts with a very large
value of γ such that D(i,~cp+ γ ·~c1[n]) = {∅} for all agents i. Then we gradually decrease γ
keeping at each step a set S∗i (γ) ∈ D(i,~cp+γ ·~c1[n]) that monotonically grow as γ decreases,

12Assuming the cost of initializing S∗i = ∅ is not needed. This is acceptable here because our algorithm
would only use S∗i to compute the subgradient which S∗i = ∅ has no effect on.
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in the sense that for γ1 > γ2, S∗i (γ1) ⊆ S∗i (γ2). We stop the algorithm as
∑

i |S∗i (γ)| reaches
n.

The algorithm is best visualized as a continuous process, although it admits a very
efficient discrete implementation as we will see in a moment. Before, we note that we can
use the Greedy algorithm to compute S∗i (γ) ∈ D(i,~cp + γ · ~c1[n]) and if we fix the same tie
breaking, the order in which we add the elements is the same for every γ, the only thing
that changes is the stopping criteria (the larger γ is, the later we stop).

So this procedure can be implemented by running a greedy algorithm in parallel for each
agent i. Initially γ is very large and all S∗i (γ) = ∅. Then in any given moment, we can
compute what is the largest value of γ for which it is possible to add one more item to the
demanded set of i. This is simply the largest marginal of an i for the next item:

max
i

max
j /∈S∗i

vi(S
∗
i ∪ j)− vi(S∗i )− pj

We can decrease γ to this value and advance one of the agent’s greedy algorithm one step
further.

We need to argue that it satisfies the three properties in the lemma and that it can be
implemented in n2TV + O(n2) time. The algorithm achieves this running time by updating
lists Lj such that in each iteration, it is a sorted list of vi(S

∗
i ∪ j)−vi(S∗i ). Since all sets start

as the empty set, this is correct in the beginning of the algorithm. Now, in each iteration,
we can scan all the lists to find the next largest marginal, taking O(n) to inspect the top of
each list. This gives us the next value of γ and the pair i, j to update S∗i ← S∗i ∪ j. Now,
after the update, we go through each list Lk updating the value of the marginal of agent i for
k, since S∗i was updated. This takes O(log(m)) for each list, so in total, this process takes
nTV + Õ(n). Since there are at most n iterations, the overall running time is n2TV + Õ(n2).

Now, for three properties in the lemma, property 2 is true by construction. For properties
1 and 3, consider the following chain of inequalities:

f̃(~cp) = max∑
i |Si|=n

(
m∑
i=1

vi(Si)− ~cp(Si)

)
+ ~cp([n])

= max∑
i |Si|=n

(
m∑
i=1

vi(Si)− ~cp(Si)− γ · |Si|

)
+ ~cp([n]) + γ · n

≤ max
Si⊆[n]

(
m∑
i=1

(vi(Si)− ~cp(Si)− γ · |Si|

)
+ ~cp([n]) + γ · n = f(~cp+ γ · ~c1[n])

=
m∑
i=1

[vi(S
∗
i )− ~cp(S∗i )− γ · |S∗i |] + ~cp([n]) + γ · n =

m∑
i=1

[vi(S
∗
i )− ~cp(S∗i )] + ~cp([n])

≤ max∑
i |Si|=n

(
m∑
i=1

vi(Si)− ~cp(Si)

)
+ ~cp([n]) = f̃(~cp)

Hence, all inequalities hold with equality, which means in particular that f̃(~cp) = f(~cp+
γ · ~c1[n]) and S∗1 , . . . , S

∗
m maximize max∑

i |Si|=n (
∑m

i=1 vi(Si)− ~cp(Si)).
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Corollary 132. Suppose vi(j) are given and stored as n sorted lists {vi(j)}j each of which
has m elements. Then the greedy algorithm computes a subgradient of f̃ in n2 · TV + Õ(n2)
time.

Proof. This follows directly from Lemma 131 as the gradient of
∑m

i=1 (vi(S
∗
i )− ~cp(S∗i )) −

~cp([n]) is a subgradient of f̃ .

Corollary 133. If ~cp∗ minimizes f̃ , then ~cp∗ + γ · ~c1[n] is an equilibrium price. Here γ is
defined as in Lemma 131 with respect to ~cp∗. Conversely, any Walrasian price ~cpeq is a
minimizer of f̃ .

The proof of the previous corollary is given in the appendix.

Theorem 134. For gross substitutes, we can find an equilibrium price in time mn · TV +
O(mn logm+ n3 log(mnM) · TV + n3 logO(1)(mnM)).

Proof. Corollary 133 says that it is enough to find a minimizer of f̃ . The algorithmic
procedure in Theorem 129 can be used to solve f̃ approximately and then round it to an
optimal solution.

To bound the overall running time, we note that: computing vi(j) and storing them as
n sorted lists takes mn ·TV +O(mn logm) time. By Corollary 132, the separation oracle for
f̃ can be implemented in n2 · TV +O(n2 log(m)) time.

22 Robust Walrasian Prices, Market Coordination and

Walrasian allocations

So far we focused on computing Walrasian prices. Now we turn to the other component of
Walrasian equilibrium, which is to compute the optimal allocation. If we have only access
to an aggregate demand oracle, then computing prices is all that we can hope for, since we
have no per-buyer information (in fact, we don’t even know the number of buyers). If we
have access to a value oracle, computing the optimal allocation is possible.

To convince the reader that this is a non-trivial problem, we show that computing an
optimal allocation from Walrasian prices is at least as hard as solving the Matroid Union
Problem. In the Matroid Union problem we are given m matroids defined over the same
ground set Mi = ([n],Bi) and a promise that there exist basis Bi ∈ Bi such that [n] = ∪iBi.
The goal is to find those bases. Now, consider the following mapping to the problem of
computing an optimal allocation: consider m agents with valuations over a set [n] of items
such that vi = rMi

, i.e. the rank of matroid Mi (matroid rank functions are known to be
gross substitute valuations [181]). The price vector ~c1 is clearly a vector of Walrasian prices.
Finding the optimal allocation, however, involves finding ~cS = (S1, . . . , Sm) maximizing∑

i rMi
(Si).

The previous paragraph hopefully convinced the reader that finding an allocation is not
always a simple task even if we know the prices. One approach to solve this problem is based
on a modification of standard matroid union algorithms.

The second approach, which we discuss here in details, is based on convex programming
and reveals an important structural property of gross substitute valuations that might be of
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independent interest. Incidentally, this also answers an open question of Hsu et al. [122] who
asked what are the conditions for markets to be perfectly coordinated using prices. More
precisely, they showed that under some genericity condition the minimal Walrasian price for
a restricted class of gross substitutes induces an overdemand at most 1 for each item. On the
other hand, our argument in this section says that under the same condition almost every
Walrasian prices for any gross substitutes have no overdemand, i.e. the market is perfectly
coordinated. This follows from the fact that the polytope of Walrasian prices have nonempty
interior and that interior Walrasian price induces no overdemand (see section 6.2).

Next, we review two combinatorial lemmas that will be fundamental for the rest of this
section and the next one:

22.1 Two combinatorial lemmas

One of the most useful (and largely unknown) facts about gross substitutes is the following
analogue to the Unique Matching Theorem for matroids. The version of this theorem for
gross substitutes is due to Murota [199, 200] and it was originally proved in the context of
valuated matroids, which are known to be equivalent to gross substitutes under a certain
transformation. We refer the reader to Lemma 10.1 in [181] for a proof of this lemma
in the language of gross substitute valuations. We also refer to chapter 5 of [201] for a
comprehensive treatment of such exchange properties.

Lemma 135 (Unique Minimum Matching Lemma). Let v : 2[n] → R be a valuation satisfying
gross substitutes, S ⊆ [n], A = {a1, . . . , ak} ⊆ S, B = {b1, . . . , bk} ⊆ [n] − S. Consider
weighted bipartite graph G with left set A, right set B and edge weights wai,bj = v(S)− v(S ∪
bj − ai). If M = {(a1, b1), (a2, b2), . . . , (ak, bk)} is the unique minimum matching in G, then:

v(S)− v(S ∪B − A) =
k∑
j=1

v(S)− v(S ∪ bj − aj)

Lastly, we state a purely combinatorial lemma that is commonly used in conjunction with
the previous lemma. We present a sketch of the proof in the appendix and refer to [201, 181]
for a complete proof.

Lemma 136. Let G = (V,E,w) be a weighted directed graph without negative weight cycles.
Let C be the cycle of minimum number of edges among the cycles with minimum weight. Let
M := {(u1, v1), . . . , (ut, vt)} be a set of non-consecutive edges in this cycle, U = {u1, . . . , ut}
and V = {v1, . . . , vt}. Construct a bipartite graph G′ with left set U , right set V and for
each edge from u ∈ U to v ∈ V in the original graph, add an edge of the same weight to G′.
Under those conditions, M forms a unique minimum matching in G′. The same result holds
for a path P of minimum length among all the minimum weight paths between a pair of fixed
nodes.

22.2 Robust Walrasian Prices and Market Coordination

Hsu et al. [122] raise the following important question: when is it possible to find Walrasian
prices that coordinate the market? A vector of Walrasian prices ~cp is said to coordinate the
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market if each agent has a unique demanded bundle under ~cp and those bundles clear the
market. If this happens, we say that this vector is robust.

Definition 137 (Robust Walrasian Prices). A price vector ~cp is said to be a vector of robust
Walrasian prices for a certain market if D(i,~cp) = {Si} and ~cS = (S1, . . . , Sm) form a
partition of the items.

Notice that by the Second Welfare Theorem (Lemma 104), if the optimal allocation is not
unique, then no vector of Walrasian prices is robust, since each vector of Walrasian prices
support all the allocations. If the optimal allocation is unique, on the other hand, then we
show that a vector of robust Walrasian prices always exists. Moreover, the set of Walrasian
prices forms a full-dimensional convex set in which all interior points are robust.

Theorem 138. If there is a unique partition ~cS = (S1, . . . , Sm) maximizing
∑

i vi(Si), then
there exist a vector ~cp such for all ~cp′ ∈

∏
j[pj−

1
2n
, pj + 1

2n
] are Walrasian. In particular, the

set of Walrasian prices is a full-dimensional convex set and all price vectors in its interior
are robust Walrasian prices.

The proof involves the concept of the exchange graph, which was first introduced by
Murota in [200] and characterizes the set of all Walrasian prices as the dual variables of the
shortest path polytope for a certain graph. Given an optimal allocation ~cS = (S1, . . . , Sm),
the Second Welfare Theorem (Lemma 104) combined with the characterization of gross
substitute functions from Discrete Convex Analysis (Definition 122) tells us that the set of
Walrasian prices can be characterized by:

P =

~cp ∈ Rn

∣∣∣∣∣∣∣
vi(Si) ≥ v(Si − j) + pj, ∀i ∈ [m], j ∈ Si
vi(Si) ≥ v(Si ∪ k)− pk, ∀i ∈ [m], k /∈ Si
vi(Si) ≥ v(Si ∪ k − j)− pk + pj, ∀i ∈ [m], j ∈ Si, k /∈ Si


Which is clearly a convex set defined by O(

∑
i |Si|n) = O(n2) inequalities. A nice

combinatorial interpretation of this polytope is that it corresponds to the set of potentials
in a graph.

To make the construction nicer, augment the items with m dummy items, one for each
buyer. The set of items becomes [n] ∪ [m], and the valuations are extended to the subsets
of [n]∪ [m] in a way that agents completely ignore the dummy items, i.e., for T ⊂ [n]∪ [m],
vi(T ) = vi(T ∩ [n]). Also, augment Si to contain the dummy item for buyer i. Under this
transformation we can simplify the definition of P to:

P =
{
~cp ∈ Rn

∣∣vi(Si) ≥ v(Si ∪ k − j)− pk + pj,∀i ∈ [m], j ∈ Si, k /∈ Si
}

since we can represent adding and removing an item as a swap with a dummy item. Under
this transformation, construct a directed graph with one node for each item in [n]. For each
i ∈ [m], j ∈ Si and k /∈ Si, add an edge (j, k) with weight wj,k = vi(Si)− vi(Si ∪ k − j).

Since the allocation ~cS = (S1, . . . , Sm) is optimal, there exists at least one vector of
Walrasian prices ~cp ∈ P . This guarantees that the exchange graph has no negative cy-
cles, since for any cycle C = {(j1, j2), . . . , (jt, j1)}, we can bound the sum of weights by∑

r wjr,jr+1 ≥
∑

r pjr − pjr+1 = 0, where the inequality follows from the definition of P and
the definition of the weights. Now we argue that the exchange graph can’t contain any cycles
of zero weight:
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Lemma 139. If ~cS is the unique optimal allocation, then the exchange graph has no cycles
of zero weight.

Proof. If there were cycles of zero weight, let C be the cycle of zero weight of minimum length.
Now, let Ci = {(j1, t1), . . . , (ja, ta)} be the edges (j, t) in C with j ∈ Si and (consequently)
t /∈ Si. Now, define S ′i = Si∪{t1, . . . , ta}−{j1, . . . , ja}. Notice that we performed the swaps
prescribed by the cycle, so each moved item was removed from one set and added to another
and as a result, ~cS ′ = (S ′1, . . . , S

′
m) is still a partition of the items. Using Lemmas 136 and

135 we get that:

vi(S
′
i)− vi(Si) =

a∑
r=1

vi(Si ∪ tr − jr)− vi(Si) =
a∑
r=1

wjrtr

therefore: ∑
i

vi(S
′
i)−

∑
i

vi(Si) =
∑
e∈C

we = 0

and so ~cS ′ = (S ′1, . . . , S
′
m) is an alternative optimal allocation, contradicting the uniqueness

of ~cS.

Now we are ready to prove the Theorem 138:

Proof of Theorem 138. Since we know there are no zero weight cycles and all the edge weights
are integral, all cycles have weight at least 1. Now perform the following operation: for each
vertex j ∈ [n] in the directed graph, split it into j1 and j2 with an edge between j1 and j2

with weight − 1
n
. Make all incoming edges to j be incoming to j1 and all outgoing edges from

j to be outgoing from j2. The resulting graph has again no cycles of negative weight, since
the new edges can decrease each cycle by at most 1.

Therefore, it is possible to find a potential in this graph. A potential of a weighted graph
with edge weights wjt is a function φ from the nodes to R such that φ(t) ≤ φ(j) + wjt. It
can be easily computed by running a shortest path algorithm from any fixed source node
and taking the distance from source node to j as φ(j). For the particular case of the graph
constructed, it is useful to take the source as one of the dummy nodes.

After computing a potential from the distance from a dummy node to each node, define
the price of j as pj = φ(j2). By the definition of the potential for each edge (j, t) in the
graph:

pt = φ(t2) ≤ φ(t1)− 1

n
≤ φ(j2) + wjt −

1

n
= pj + wjt −

1

n
.

This means in particular that all inequalities that define P are valid with a slack of 1
n
.

Therefore, changing any price by at most 1
2n

still results in a valid Walrasian equilibrium.
This completes the proof of the first part of the theorem.

Since P contains a cube, then it must be a full-dimensional convex body. Finally, let’s
show that every price vector in the interior of P is a vector of robust Walrasian prices. By
the second welfare theorem (Lemma 104), Si ∈ D(i,~cp) for all ~cp ∈ P . Now, assume that
for some point in the interior, there is S ′i ∈ D(i,~cp), S ′i 6= Si. Then either: (i) There is
j ∈ S ′i − Si. We decrease the price of j by ε so that S ′i becomes strictly better than Si,
i.e. Si /∈ D(i,~cp− ε~c1j), which contradicts the second welfare theorem since ~cp− ε~c1j ∈ P .

143



(ii) There is j ∈ Si − S ′i. We increase the price of j by ε so that S ′i becomes strictly better
than Si, i.e. Si /∈ Di(i,~cp+ ε~c1j), which again contradicts the second welfare theorem since
~cp+ ε~c1j ∈ P .

22.3 Computing Optimal Allocation

Theorem 138 guarantees that if the optimal allocation is unique, then the set of Walrasian
prices has large volume. Since the set of Walrasian prices corresponds to the set of minimizers
of the market potential f(~cp), then there is a large region where zero is the unique subgradient
of f . In such situations, convex optimization algorithms are guaranteed to eventually query
a point that has zero subgradient. The point ~cp queried corresponds to a set of Walrasian
prices and the optimal allocation can be inferred from the subgradient (recall Theorem 112).

Our strategy is to perturb the valuation functions in such a way that the optimal solution
is unique and that it is still a solution of the original problem. It is important for the
reader to notice that this is a different type of perturbation than the one used in previous
sections. While previously we perturbed the objective of the dual program, here we are
effectively perturbing the objective of the primal program. One major difference is that if
we perturb the objective of the dual, we can still compute the subgradient of f̂ in PC using
the aggregate demand oracle. If we perturb the objective of the primal, we no longer can
compute subgradients using the aggregate demand oracle. With value oracles, however, this
is still possible to be done.

To perturb the primal objective function, we use the isolation lemma, a standard tech-
nique to guarantee a unique optimum for combinatorial problems.

Lemma 140 (Isolation Lemma [196]). Let ~cw ∈ [N ]n be a random vector where each co-
ordinate wi is chosen independently and uniformly over [N ]. Then for any arbitrary fam-
ily F ⊆ 2[n], the problem maxS∈F

∑
i∈S wi has a unique optimum with probability at least

1− n/N .

For our application, we would like a unique optimum to the problem of maximizing∑m
i=1 vi(Si) over the partition (S1, . . . , Sm). To achieve this, we first replace vi by ṽi(S) =

Bvi(S) + wi(S) where B is some big number to be determined and wi(j) is set as in the
isolation lemma (with N to be determined as well).

Lemma 141. By setting B = 2nN , N = mnO(1) and sampling wi(j) uniformly from [N ]
for each i ∈ [m] and j ∈ [n], then with probability 1 − 1/nO(1), there is a unique partition
(S1, . . . , Sm) maximizing

∑m
i=1 ṽi(Si), for ṽi(S) = B · vi(S) + wi(S).

Proof. Let (S ′1, . . . , S
′
m) be an optimal solution w.r.t the original problem. We first show

that any suboptimal partition (S1, . . . , Sm) cannot be optimal for the perturbed problem.
Since vi assume integer values, we have

∑m
i=1 vi(S

′
i) ≥

∑m
i=1 vi(Si) + 1. Now:

m∑
i=1

ṽi(S
′
i) ≥ B +

m∑
i=1

ṽi(Si) +
m∑
i=1

wi(Si)−
m∑
i=1

wi(S
′
i) ≥ B +

m∑
i=1

ṽi(Si)− nN >

m∑
i=1

ṽi(Si).

which shows that a suboptimal solution to the original problem cannot be optimal for the
perturbed one.
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Now, consider all partitions (S ′1, . . . , S
′
m) that are optimal for the original problem and

identify each optimal partition with a subsets of [mn] = {(i, j); i ∈ [m], j ∈ [n]} in the natural
way: add (i, j) to the subset if j ∈ S ′i. This family of subsets corresponds to F ⊆ 2[mn] in
the statement of the Isolation Lemma and wi(j) corresponds to ~cw. The result then follows
from applying that lemma.

The strategy to find an optimal allocation is to perturb the valuation functions, then
search for an interior point in the set of minimizers of the market potential function f .
When we find such a point we can obtain a vector of Walrasian prices for the original market
by rounding and the optimal allocation by inspecting the subgradient. To get the desired
running time, we need to apply those ideas to the regularized potential function f̃ (see RC
in Section 21) instead of the original one. To apply this to the regularized potential we need
an extra lemma:

Lemma 142. Let ~cp be an interior point of the set of minimizers of the regularized poten-
tial function f̃ , then the allocation (S∗1 , . . . , S

∗
m) produced by the AllGreedy algorithm in

Lemma 131 is an equilibrium allocation.

Proof. If (S∗1 , . . . , S
∗
m) is a partition over the items, then it is an optimal allocation by part 2

of Lemma 131. To show that it is a partition, observe that since (S∗1 , . . . , S
∗
m) is a maximizer

of
∑

i vi(Si)− ~cp(Si) subject to
∑

i |Si| = n, then we can use it to build a subgradient ~cg of

f̃ such that gj = −1 + |{i; j ∈ S∗i }|. Since ~cp is an interior point of the set of minimizers,
the subgradient must be zero and therefore |{i; j ∈ S∗i }| = 1 for all j.

Theorem 143. For gross substitute valuation, we can find a Walrasian equilibrium, i.e.
allocation and prices, in time O((mn+ n3)TV log(nmM) + n3 logO(1)(mnM)).

Proof. Use Lemma 141 to perturb the valuation functions and obtain ṽi which are still gross
substitutes (since they are the sum of a gross substitute valuation and an additive valuation)
and there is a unique optimal allocation. By Lemma 138, the set of minimizer of the market
potential function f contains a box of width 1/n. Since the set of minimizers of the market
potential f is contained in the set of minimizers of the regularized potential f̃ , then its set
of minimizers also contains a box of width 1/n. We also know that it is contained in the box
[−MmnO(1),MmnO(1)]n since |ṽi(S)| ≤ O(MmnO(1)).

If we apply the algorithm in Theorem 113 with δ = O(1/nO(1)) to optimize the regularized
potential f̃ then we are guaranteed to query a point in the interior of minimizers as otherwise
the algorithm would certify that there is ~ca with

∥∥~ca∥∥
2

= 1 such that max~cp∈P ~ca · ~cp −
min~cp∈P ~ca · ~cp ≤ 1/nO(1), where P is the set of minimizers.

Finally, we can obtain the optimal allocation for the perturbed using Lemma 131, which
is an optimal allocation to the original market according to Lemma 141.

23 Combinatorial approach to Walrasian Equilibrium

for Gross Substitutes

In a sequence of two foundational papers [199, 200], Murota shows that the assignment
problem for valuated matroids, a class of functions introduced by Dress and Wenzel [62] can
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be solved in strongly polynomial time. We show how this algorithm can be used to obtain
an Õ(nm + n3) strongly polynomial time algorithm for problem of computing a Walrasian
equilibrium for gross substitute valuations. Our contribution is two-fold: first we map the
Walrasian equilibrium problem on gross substitute valuations to the assignment problem on
valuated matroids and analyze its running time. The straightforward mapping allows us to
obtain a strongly polynomial time algorithm with running time O(mn3 log(m+n)). We note
that a different way to reduce the Walrasian equilibrium problem to a standard problem in
discrete convex analysis is to map it to the M -convex submodular flow problem as done in
Murota and Tamura [205]. We choose to reduce it to the assignment problem on valuated
matroids since its running time is simpler to analyze.

Inspired by our Õ(mn + n3) algorithm, we revisit Murota’s algorithm and propose two
optimizations that bring the running time down to O((mn + n3) log(m + n)). Murota’s
algorithm works by computing augmenting paths in a structure known as the exchange
graph. First we show that for the Walrasian equilibrium problem, this graph admits a more
succinct representation. Then we propose a data structure to amortize the cost of some
operations across all iterations.

In section 23.1 we define valuated matroids and the assignment problem for valuated
matroids. Then we describe Murota’s algorithm for this problem. We also discuss the
relation between the assignment problem for valuated matroids and the welfare problem for
gross substitutes. The goal of subsection 23.1 is to provide the reader with the historical
context for this result.

The reader interested solely in the welfare problem is welcome to skip to Section 23.2
which can be read independently, without any mention to valuated matroids or the assign-
ment problem. A complete proof is given in that section.

23.1 The assignment problem for valuated matroids

A valuated matroid is an assignment of weights to basis of a matroid respecting some valuated
analogue of the exchange property.

Definition 144 (Valuated matroid). Let B be the set of basis of a matroid M = (V,B). A
valuated matroid is a function ω : B → R∪{±∞} such that for all B,B′ ∈ B and u ∈ B−B′
there exists v ∈ B′ −B such that:

ω(B) + ω(B′) ≤ ω(B ∪ v − u) + ω(B′ ∪ u− v)

Valuated matroids are related to gross substitutes by the following one-to-one correspon-
dence. We refer the reader to Lemma 7.4 in [181] for a proof.

Proposition 145. A valuation function v : 2[n] → R is a gross substitutes valuation function
iff ω :

(
[2n]
n

)
→ R defined by ω(S) = v(S ∩ [n]) is a valuated matroid defined over the basis of

the n-uniform matroid on 2n elements.

Now, we are ready to define the assignment problem for valuated matroids:

Definition 146 (Valuated matroid assignment problem). Given two sets V1, V2, matroids
M1 = (V1,B1) and M2 = (V2,B2) of the same rank, valuated matroids ω1 : B1 → R and
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ω2 : B2 → R and a weighted bipartite graph G = (V1 ∪ V2, E, w), find a matching M from
V1 to V2 maximizing:

w(M) + ω1(M1) + ω2(M2)

where M is a subset of edges of E forming a matching and M1 and M2 are the sets of
endpoints of M in V1 and V2 respectively.

Murota gives two strongly-polynomial time algorithms based on network flows for the
problem above in [200] – the first based on cycle-cancellations and the second based on
flow-augmentations. Although the running time is not formally analyzed in his paper, it
is possible to see that his algorithm (more specifically the algorithm Augmenting algorithm
with potentials in Section 3 of [200]) has running time Õ(R · (|E| + R · (|V1| + |V2|))) for
R = rank(M1) + rank(M2) .

First, we show a simple reduction from the welfare problem for gross substitutes to this
problem. Given m gross substitute valuation functions vi : 2[n] → R, define the following
instance of the valuated matroid assignment problem: define the first matroid as

(
[mn]
n

)
i.e.

the n-uniform matroid on mn elements. Interpret the elements of [mn] as “the allocation of
item j to agent i” for each pair (i, j). Following this interpretation, each S ⊆ [mn] can be
seen as S = ∪mi=1Si where Si are the elements assigned to agent i. This allows us to define
for each S ∈

(
[mn]
n

)
, ω1(S) =

∑
i vi(Si). For the second matroid, let M2 = ([n], 2[n]) and

ω2(S) = 0 for all S. Finally, define the edges of E such that for each j ∈ [n], the j-th element
of [n] are connected to the element (i, j) in [mn] for each i.

One needs to prove that ω1 satisfies the properties defining a valuated matroid, but this
can be done using the transformations described in [181]. We omit this proof since we are
giving a self-contained description of the algorithm in the next section.

In the construction shown below, |V1| = |E| = mn, |V2| = n and rank(M1) = rank(M2) =
n. This leads to an Õ(m · n3) strongly polynomial time algorithm for the welfare problem.

23.2 Gross substitutes welfare problem in Õ(mn+ n3) time

In this section we give a self-contained description of a specialized version of Murota’s algo-
rithm for the gross substitutes welfare problem and show that the running time of Õ(m ·n3)
can be improved to Õ(mn+n3). Murota’s algorithm for the case of generic valuated matroids
can be quite complicated. Since the underlying matroids of our problem are simple (uniform
matroids) and the functions being optimized have additional structure, it is possible to come
up with a simpler algorithm. Our presentation also makes the algorithms accessible to the
reader not familiar with discrete convex analysis and the theory of valuated matroids.

We consider the setting in which a set [n] of items needs to be allocated to m agents
with monotone valuation functions vi : 2[n] → R satisfying the gross substitutes condition.
Consider the intermediary problem of computing the optimal allocation for the first k items
(in some arbitrary order):

max
i
vi(Si) s.t. ∪i Si ⊆ [k] := {1, 2, . . . , k} and Si ∩ Sj = ∅ for i 6= j (Ik)

The central idea of the algorithm is to successively solve (I1), (I2), . . . , (In) using the solution
of (Ik−1) to compute (Ik). We will show how a solution to (Ik) can be computed from a
solution of (Ik−1) via a shortest path computation in a graph with Õ(m+ n2) edges.
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A solution for problem (Ik−1) consists of an allocation S = (S1, . . . , Sm) of items in [k−1]
to agents 1, . . . ,m and a price vector p1, . . . , pk−1 that certifies that the allocation is optimal.
Since optimality for gross substitutes can be certified by checking that no agent wants to
add an item, remove an item or swap an item (Definition 122) then S, p need to satisfy the
following conditions for every agent i and every j /∈ Si and j′ ∈ Si:

vi(Si ∪ j)− pj ≤ vi(Si) (Add)

vi(Si − j′) + pj′ ≤ vi(Si) (Remove)

vi(Si ∪ j − j′)− pj + pj′ ≤ vi(Si) (Swap)

23.2.1 Exchange graph

The first step to solve (Ik) is to build a combinatorial object called the exchange graph using
the solution of (Ik−1), expressed as a pair S, p. We define a weighted directed graph on
V = [k] ∪ {φ1, . . . , φm}. Intuitively, we can think of φi as an “empty spot” in the allocation
of agent i. We add edges as follows:

• (t, j) for all items t and j not acquired by the same agent under S. If i is the agent
holding item t, then the edge represents the change in utility (under price p) for agent
i to swap his item t by j:

wtj = vi(Si)− vi(Si ∪ j − t) + pj − pt

• (φi, j) for all items j /∈ Si. It represents the change in utility for i to add item j:

wφij = vi(Si)− vi(Si ∪ j) + pj

Notice that problem (Ik−1) only defines prices for 1, . . . , k− 1. So for the construction above
to be well defined we need to define pk. We will set pk in a moment, but before that, note
that for all the edges not involving k, w ≥ 0 which follow by the fact that p is a certificate
of optimality for S and therefore conditions Add and Swap hold. Finally, notice that there
are only directed edges from k to other nodes, so pk always appear with positive sign in w.
So, we can set pk large enough such that all edges have non-negative weights, in particular,
set:

pk = max

{
max

i∈[m];t∈Si
[vi(Si ∪ k − t)− vi(Si)+pt], max

i∈[m]
[vi(Si ∪ k)− vi(Si)]

}
23.2.2 Updating prices and allocations via shortest path

After the exchange graph is built, the algorithm is trivial: compute the minimal-length
shortest path from some φi (i.e. among all paths of minimum weight between φi and k, pick
the one with minimum length). Since the edges are non-negative, the shortest path can be
computed in the order of the number of edges using Dijkstra’s algorithm in O(|E| + |V | ·
log |V |) where |E| is the number of edges in the graph and |V | is the number of vertices.
Dijkstra’s algorithm can be easily modified to compute the minimum weight path with
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shortest length using the following idea: if weights are integers, then substitute weights
wij by wij − ε. In the end, round the solution up. Or more formally, run Dijkstra in the
ordered ring (Z2,+, <) with weights (wij, 1) where + is the componentwise sum and < is
the lexicographic order.

Let P be the path output by Dijkstra. Update the allocation by performing the swaps
prescribed by P . In other words, if edge (t, j) ∈ P and t ∈ Si, then we swap t by j in Si.
Also, if edge (φi, j) ∈ P we add j in Si. Formally, let (tr, jr)r=1..a be all the edges in P with
tr ∈ Si or tr = φi. Then we update Si to Si ∪ {j1, . . . , ja} − {t1, . . . , ta}.

The execution of Dijkstra also produces a certificate of optimality of the shortest path in
the form of the minimum distance from some φi to any given node. So, there is a distance
function d such that

d(φi) = 0, d(j) ≤ d(φi) + wφij, d(j) ≤ wtj + d(t)

Moreover, for all edges (t, j) and (φi, j) in the shortest path P , this holds with equality,
i.e.: d(j) = d(φi) + wφij and d(j) = wjt + d(t). Update the price of each item j from pj to
pj − d(j).

23.2.3 Running time analysis

Before we show that each iteration produces an optimal pair of allocation S and prices p for
problem (Ik) we analyze the running time.

The exchange graph for problem (Ik) as previously described has O(mk + k2) edges.
Running Dijkstra’s algorithm on this graph has running time Õ(mk + k2) for (Ik), which
corresponds to Õ(mn2 + n3) time overall.

In order to get the overall running time down to Õ(mn + n3) we need one extra obser-
vation. Since we want to compute the shortest path from any of the φi nodes to k, we can
collapse all φi nodes to a single node φ. Now, for any given node j:

wφj = min
i
wφij = pj + min

i
[vi(Si)− vi(Si ∪ j)]

Now, the graph is reduced to O(k2) edges for problem (Ik). So, Dijkstra can be computed in
Õ(k2). We are only left with the task to compute wφj. Our task is to compute mini[vi(Si)−
vi(Si ∪ j)]. This can be divided in two parts:

1. active agents : the minimum among the agents i for which Si 6= ∅. There are at most
k of those, so we can iterate over all of them and compute the minimum explicitly;

2. inactive agents : the minimum over all agents with Si = ∅. In order to do so we
maintain the following data structure: in the first iteration, i.e. in (I1), we compute
vi({j}) for every i, j (which takes O(mn) time) and keep for each item j a sorted list
Lj in decreasing order of vi(j) for all i.

In the end of each iteration, whenever an inactive agent i becomes active (i.e. we
allocate him an item), we remove them from Lj for all j. This operation takes O(n)
time to go over all lists.
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Now, once we have this structure, we can compute the minimum among the inactive
buyers mini[vi(Si) − vi(Si ∪ j)] = −maxi vi({j}) by looking at the minimum element
of the list Lj. Therefore, even though we need to pay O(mn) time in (I1). In each
subsequent iteration we pay only O(n) to update lists Lj and then we can make query
the value of wφj in constant time.

This leads to a running time of O(mn) in (I1) and Õ(n + k2) in each subsequent iteration,
leading to an overall running time of Õ(mn + n3). We also note that for each edge of the
graph, we query the value oracle once. So the oracle complexity is O(nm+ n3) value oracle
calls.

23.2.4 Correctness

We are left to argue that the solution (S, p) produced by the algorithm is indeed a valid
solution for problem (Ik). This can be done by checking that the price vector p obtained
certifies the optimality of S. The main ingredients for the proof are Lemmas 135 and 136.
We encourage the reader to revisit the statement of those lemmas before reading the proof
of the following theorem.

Theorem 147. Let Ski , p
k
j be the solution of problem (Ik), then for all agent i and all S ′ ⊆ [k],

vi(S
k
i )− pk(Ski ) ≥ vi(S

′)− pk(S ′).

Proof. Let Sk−1
i , pk−1

j be the solution of problem (Ik−1) and let Ski , p
k
j be the solution of

problem (Ik). If d(·) is the distance function returned by Dijkstra in (Ik), then pkj = pk−1
j −

d(j) and we also know that w̃jt = wjt + d(t) − d(j) ≥ 0 and w̃φij = wφij − d(j) ≥ 0 by the
observation in the end of the Section 23.2.2. This implies that for all i, for all j /∈ Sk−1

i and
t ∈ Sk−1

i , it holds that:

w̃tj = vi(S
k−1
i )− vi(Sk−1

i ∪ j − t) + pkj − pkt ≥ 0

w̃φij = vi(S
k−1
i )− vi(Sk−1

i ∪ j) + pkj ≥ 0

This means that properties Add and Swap are satisfied. To see that Remove is also
satisfied for j < k since vi(S

k−1
i ) ≥ vi(S

k−1
i − j) + pk−1

j for all j ∈ Sk−1
i . Since pkj ≤ pk−1

j ,
this condition must continue to hold.

This means that under the price vector pk the bundles Sk−1
i is still the demanded bundle

by agent i (by Definition 122). This means in particular that for all S ′ ⊆ [k]:

vi(S
k−1
i )− pk(Sk−1

i ) ≥ vi(S
′)− pk(S ′)

Now, let (tr, jr)r=1..a be the set of edges in the path P output by Dijkstra where tr ∈ Sk−1
i .

Then Ski = Sk−1
t ∪ {j1, . . . , ja} − {t1, . . . , ta}.

Using Lemma 136, we note that (t1, r1), . . . , (ta, ra) is a unique minimum matching in the
sense of Lemma 135. Therefore:

vi(S
ik − 1i)− vi(Ski ) =

a∑
r=1

vi(S
k−1
i )− vi(Sk−1

i ∪ jr − tr)
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Summing −pk(Sk−1
i ) + pk(Ski ) on both sides, we get:

[vi(S
k−1
i )− pk(Sk−1

i )]− [vi(S
k
i )− pk(Sk−1

i )] =
a∑
r=1

w̃trjr = 0

Therefore:
vi(S

k
i )− pk(Sk−1

i ) = vi(S
k−1
i )− pk(Sk−1

i ) ≥ vi(S
′)− pk(S ′)

as desired.

23.2.5 Descending Auction View

One can reinterpret the procedure above as a descending auction. Initially all items very
large price (say like the price set for pk in the beginning of phase k). Each shortest path
computation produces a distance function d that dictates how each price should decrease.
Indeed, they monotonically decrease until we reach a Walrasian equilibrium.

We note that it is important in this algorithm that we compute in each step both a primal
and a dual solution. Without the dual solution (the price vector), it is still possible to carry
out the shortest path computation, but since the edges in the path can have mixed signs,
Dijkstra’s algorithm is no longer available and one needs to pay an extra factor of n to run
Bellman-Ford’s algorithm.

24 Missing Proofs

Proof of Lemma 104. Let ~cy = (y(1), y(2), . . . , y(m)) be a valid allocation that achieves the
optimal social welfare. Then since x(i) ∈ D(i,~cp), we have

vi(x
(i))− ~cp · x(i) ≥ vi(y

(i))− ~cp · y(i).

Summing up, we get∑
i

(
vi(x

(i))− ~cp · x(i)
)
≥
∑
i

(
vi(y

(i))− ~cp · y(i)
)
.

the crucial observation is that
∑

i ~cp · x(i) =
∑

i ~cp · y(i) =
∑

j pjsj. herefore the inequality
above simplifies to ∑

i

vi(x
(i)) ≥

∑
i

vi(y
(i)),

i.e. the social welfare of ~cx is at least that of ~cy. But since ~cy gives the optimal social welfare,
we must then have equality and ~cx also achieves the optimum.

For the second part, notice that since the last equation holds with equality, then the
previous equations should also hold, therefore:

∑
i vi(x

(i))− ~cp · x(i) =
∑

i vi(y
(i))− ~cp · y(i),

which says that xi is also a favorite bundle of i under price vector ~cp. Therefore, (~cx,~cp)
form a Walrasian equilibrium.
Proof of Lemma 108. If (~cpeq,~cx) is a Walrasian equilibrium it is straightforward to check
that setting ~cp = ~cpeq, ui = maxxi∈[[s]] vi(x) − ~cpeq · x and zi,x = 1 when x = x(i) and zero
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otherwise, we have a primal dual pair of feasible solutions with the same value. Conversely,
if the primal program has an integral solution, the definition of Walrasian equilibrium can
be obtained from the complementarity conditions.

If the primal program has an optimal integral solution ~cx, then for every solution (~cp,~cu)
to the dual program:

∑
i vi(x

(i)) =
∑

i ui + ~cp · ~cs ≥
∑

i vi(x
(i)) + ~cp · xi ≥

∑
i vi(x

(i)) and
therefore all inequalities must hold with equality, so in particular xi ∈ D(vi,~cp), so ~cp is a
vector of Walrasian prices. Conversely, if ~cp is a vector of Walrasian prices then (~cx,~cp) is
Walrasian equilibrium by the Second Welfare Theorem (Lemma 104). Therefore by setting
ui = vi(x

(i))−~cp ·x(i) we obtain a dual feasible solution such that
∑

i ui+~cp ·~cs =
∑

i vi(x
(i))

and therefore (~cp,~cu) is an optimal dual solution.
Proof of Corollary 133. Let ~cpeq and ~cS = (S1, S2, . . . , Sm) be an equilibrium price and
allocation. Consider the following chain of inequalities:∑

i

vi(Si) ≤ f̃(~cp∗) ≤ f̃(~cpeq) ≤ f(~cpeq) =
∑
i

vi(Si)

Where the first inequality follows from the definition of f̃ , the second from the fact that ~cp∗

is a minimizer of f̃ , the third follows from the fact that f̃ ≤ f for all prices ~cp, since f is a
maximization over all Si ⊆ [n] and f̃ is a maximization over all subsets whose cardinality is
exactly [n]. The last inequality follows from the fact that ~cpeq is an equilibrium. This implies
that all inequalities should hold with equality, in particular, since f̃(~cp∗) =

∑
i vi(Si), then

it must be that:

max
S⊆[n]

vi(S)− ~cp∗(S)− γ · |S| = vi(Si)− ~cp∗(Si)− γ · |Si|

In particular, Si ∈ D(i,~cp∗ + γ · ~c1[n]).

The other direction is similar. We have f̃(~cpeq) =
∑

i vi(Si) = f(~cpeq) and for any price
p,

f̃(~cp) = f(~cp+ γ · ~c1[n]) ≥ f(~cpeq) = f̃(~cpeq)

which shows that any Walrasian price ~cpeq minimizes f̃ .
Proof of Lemma 136 (sketch). Assume that the bipartite graph has a different matching
with total weight not larger than the one presented. Then it is possible to construct either
a cycle of weight less than C or a cycle of the same weight with smaller number of edges.

Let M ′ be an alternative matching between U and V of weight at most the weight of M .
If M ′ has smaller weight, replace M by M ′ and C ∪M ′ −M is a collection of cycles with
total weight smaller than the weight of C. Since all cycles have non-negative weight, one of
the cycles must have weight less than C, contradicting the fact that C is a minimum weight
cycle.

Now, if M and M ′ have the same weight, consider the following family of cycles: for each
edge e = (u′, v′) ∈ M ′, construct a cycle Ce composed of edge e and the path from v′ to
u′ in C (in other words, we use e to shortcut C). There is an integer k ≤ t such that the
collection of cycles Ce uses in total: one of each edge from M ′, k − 1 of each edge from M
and k of each edge from C −M . So the average weight is at most the weight of C. Since
the Ce cycles have strictly less edges than C, there should be a cycle with fewer edges than
C and weight at most C, which again contradicts the choice of C.

The argument for paths is analogous.
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Part V

Submodular Function Minimization
via First Order Method
This Part is based on joint works with Deeparnab Chakrabarty, Yin Tat Lee and Aaron
Sidford.

25 Introduction

Submodular functions are set functions that prescribe a value to every subset of a finite
universe U and have the following diminishing returns property: for every pair S ⊆ T ⊆ U ,
and for every element i /∈ T , f(S∪ i)−f(S) ≥ f(T ∪ i)−f(T ). Such functions arise in many
applications. For instance, the utility functions of agents in economics are often assumed
to be submodular, the cut functions in directed graphs or hypergraphs are submodular, the
entropy of a given subset of random variables is submodular, etc. Submodular functions
have been extensively studied for more than five decades [42, 68, 186, 86, 192].

One of the most important problems in this area is submodular function minimization
(SFM, henceforth) which asks to find the set S minimizing f(S). Note that submodular
functions need not be monotone and therefore SFM is non-trivial. In particular, SFM gener-
alizes the minimum cut problem in directed graphs and hypergraphs, and is a fundamental
problem in combinatorial optimization. More recently, SFM has found many applications
in areas such as image segmentation [27, 157, 158] and speech analysis [184, 185]. Owing to
these large scale problems, fast SFM algorithms are highly desirable.

We assume access to an evaluation oracle for the submodular function, and use EO to
denote the time taken per evaluation. An amazing property of submodular functions is
that SFM can be exactly solved with polynomial many queries and in polynomial time.
This was first established via the ellipsoid algorithm [112] in 1981, and the first polynomial
combinatorial algorithms were obtained [49, 129, 232, 134] much later.

The current fastest algorithms for SFM are from previous Part which give O(n2 log nM ·
EO +n3 logO(1) nM) time and O(n3 log2 n ·EO +n4 logO(1) n) time algorithms for SFM. Here
M is the largest absolute value of the integer-valued function. The former running time is a
(weakly) polynomial running time, i.e. it depends polylogarithmically on M, while the latter
is a strongly polynomial running time, i.e. it does not depend on M at all. Although good in
theory, known implementations of the above algorithms are slow in practice [87, 88, 17, 35]. A
different algorithm, the so-called Fujishige-Wolfe algorithm [260, 84], seems to have the best
empirical performance [17, 144, 22] among general purpose SFM algorithms. Recently the
Fujishige-Wolfe algorithm and variants were shown [35, 168] to run in O((n2 · EO + n3)M2)
time, proving them to be pseudopolynomial time algorithms, that is having running time
O(poly(n,EO,M)).

In this Part we also consider approximate SFM. More precisely, for submodular functions
whose values are in the range [−1,+1] (which is without loss of generality by scaling), we want
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to obtain additive approximations13, that is, return a set S with f(S) ≤ opt + ε. Although
approximate SFM has not been explicitly studied before, previous works [180, 17, 35] imply
O(n2EO logO(1)(n/ε))-time and O((n2 · EO + n3)/ε2)-time algorithms. Table 6 summarizes
the above discussion.

Regime Previous Best Running Time Our Result Techniques

Strongly Polynomial O(n3 log2 n · EO + n4 logO(1) n) [180] Cutting Plane + Dimension Collapsing

Weakly Polynomial O(n2 log nM · EO + n3 logO(1) nM)[180] Cutting Plane

Pseudo Polynomial O((n2 · EO + n3)M2)[35, 168] Õ(nM3 · EO) See Section 25.2
ε-Approximate O(n2 · EO/ε2) [35, 168, 17] Õ(n5/3 · EO/ε2) See Section 25.2

Table 6: Running times for minimizing a submodular function defined on a universe of size n

that takes integer values between −M and M (except for ε-approximate algorithms we assume the

submodular function is real-valued with range in [−1, 1]). EO denotes the time to evaluate the

submodular function on a given set.

In particular, the best known dependence on n is quadratic even when the exact algo-
rithms are allowed to be pseudopolynomial, or when the ε-approximation algorithms are
allowed to have a polynomial dependence on ε. This quadratic dependence seems to be a
barrier. For exact SFM, the smallest known non-deterministic proof [68, 49] that certifies
optimality requires Θ(n2) evaluation queries, and even for the approximate case, nothing
better is known (see Appendix 29.4). Furthermore, in this Part we prove that a large class
of algorithms which includes the Fujishige-Wolfe algorithm [260, 84] and the cutting plane
algorithms of Lee et al. [180], as stated need to make Ω(n2) queries. More precisely, these
algorithms do not exploit the full power of submodularity and work even with the weaker
model of having access only to the “subgradients of the Lovasz Extension” (or equivalently,
vertices of the base polyhedron) where each subgradient takes Θ(n) queries. We prove that
any algorithm must make Ω(n) subgradient calls implying the quadratic lower bound for
this class of algorithms. Furthermore, our lower bound holds even for functions with range
{−1, 0, 1}, and so trivially the lower bound also holds for approximate SFM as well. In other
words, our work shows that faster (approximate) algorithms are only possible when one goes
beyond the subgradient model.

25.1 Our Results

In this Part, we describe exact and approximate algorithms for SFM which run in time sub-
quadratic in the dimension n. Our first result is a nearly linear time exact SFM algorithm
for bounded, integer-valued submodular function. More precisely, for any integer valued
submodular function with maximum absolute value M , our algorithm returns the optimum
solution in O(nM3 log n · EO) time. This algorithm may especially be of interest in vari-
ous settings such as market equilibrium computation in economics (e.g. [150]) where M is
typically a small constant and querying the oracle is expensive.

13We also show in Appendix 29.1 how to obtain a multiplicative approximation under a mild condition on
f that has been used widely for various submodular maximization problems. Such a condition is necessary
as multiplicative approximation is equivalent to exact optimization for general SFM instances.
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Moreover, this has a few consequences to the complexity theory of SFM. First, this gives
a better dependence on n for pseudopolynomial time algorithm. Second, this shows that
to get a super-linear lower bound on the query complexity of SFM, one need to consider a
function with super constant function values.14 Third, this completes the following picture
on the complexity of SFM: the best known strongly polynomial time algorithms have query
complexity Õ(n3), the best known (weakly) polynomial time algorithms have query com-
plexity Õ(n2), and our result implies the best pseudopolynomial time algorithm has query
complexity Õ(n). These theoretical consequences were the primary driver of our work and
we hope it may open the door to further improvements in more structured setting; indeed,
our next two results, which build upon this framework, demonstrate that better running times
can be achieved by exploiting different solution concepts (approximation) or problem-specific
structures (sparsity).

Our second result is a subquadratic approximate SFM algorithm. More precisely, we give
an algorithm which in Õ(n5/3EO/ε2) time, returns an ε-additive approximate solution. To
break the quadratic barrier, that arise from the need to compute Ω(n) subgradient each of
which individully we do not know how to compute faster than Ω(n ·EO), we wed continuous
optimization techniques with properties deduced from submodularity and simple data struc-
tures. These allow us to compute and use subgradient updates in a much more economical
fashion. We believe that that the ability to obtain subquadratic approximate algorithms
for approximate submodular minimization is an interesting structural result that could have
further implications.15

Finally, we show how to improve upon these results further if we know that the optimal
solution is sparse. This may be a regime of interest for certain applications where the solution
space is large (e.g. structured predictions have exponentially large candidate sets [223]), and
as far as we are aware, no other algorithm gives sparsity-critical results.

25.2 Overview of Techniques

In a nutshell, all are our algorithms are projected, stochastic subgradient descent algorithms
on the Lovasz extension f̂ of a submodular function with economical subgradient updates.
The latter crucially uses submodularity and serves as the point of departure from previous
black-box continuous optimization based methods. In this section, we give a brief overview
of our techniques.

The Lovasz extension f̂ of a submodular function is a convex relaxation. It is a non-
smooth convex function whose (approximate) minimizers leads to (approximate) SFM. Sub-
gradient descent algorithms maintain a current iterate x(t) and take a step in the negative
direction of a subgradient g(x(t)) at x(t) to get the next iterate x(t+1). In general, the sub-
gradient of a Lovasz extension takes O(n · EO) to compute. As stated above, the Ω(n)
lower bound on the number of iterations needed, implies that if we naively recompute the
subgradients at every iterations, we cannot beat the quadratic barrier. Our main technical

14Conversely, [116, Thm 5.7] shows that we need at least n queries of evaluation oracle to minimize a
submodular function with range in {0, 1, 2}.

15Note that simple graph optimization problems, such as directed minimum s-t cut, is not one of these
(See Appendix 29.3).
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contribution is to exploit submodularity so that g(x(t+1)) can be computed in sublinear time
given x(t) and g(x(t)).

The first implication of submodularity is the observation (also made by [143, 120]) that
`1-norms of the subgradients are bounded by O(M) if the submodular function is in [−M,M ].
When the function is integer-valued, this implies that the subgradients are sparse and have
only O(M) non-zero entries. Therefore, information theoretically, we need only O(M) bits
to get g(x(t+1)) from g(x(t)). However, we need an algorithm to find the positions at which
they differ. To do so, we use submodularity again. We observe that given any point x and
non-negative, k-sparse vector e, the difference vector d := g(x+ e)− g(x) is non-positive at
points corresponding to support of e and non-negative everywhere else. Furthemore, on a
“contiguous set” of coordinates, the sum of these entries in d can be computed in O(EO)
time. Armed with this, we create a binary search tree (BST) type data structure to find the
O(M) non-zero coordinates of d in O(M ·EO log n) time (as opposed to O(n·EO) time). This,
along with standard subgradient descent analysis yields our O(nM3EO log n)-algorithm.

When the submodular function is real-valued between [−1, 1], although the `1-norm is
small the subgradient can have full support. Therefore, we cannot hope to evaluate the
gradient in sublinear time. We resort to stochastic subgradient descent where one moves
along a direction whose expected value is the negative subgradient and whose variance is
bounded. Ideally, we would have liked a fast one-shot random estimation of g(x(t+1)); un-
fortunately we do not know how to do it. What we can do is obtain fast estimates to the
difference vector d mentioned above. As discussed above, the vector d has O(k) “islands” of
non-negative entries peppered with O(k) non-positive entries. We maintain a data-structure
which with O(kEO log n) preprocessing time can evaluate the sums of the entries in these
islands in O(EO log n) time. Given this, we can sample a coordinate j ∈ [n] with probability
proportional to |dj| in a similar time. Thus we get a random estimate of the vector d whose
variance is bounded by a constant.

To get the stochastic subgradient, however, we need to add these difference vectors and
this accumulates the variance. To keep the variance in control, we run the final algorithm
in batches. In each batch, as we progress we take more samples of the d-vector to keep
the variance in check. This unfortunately increases the sparsity (the k parameter), and one
needs to balance the effects of the two. At the end of each batch, we spend O(nEO) time
computing the deterministic subgradient and start the process over. Balancing the number of
iterations and length of batches gives us the Õ(n5/3EOε−2)-time algorithm for ε-approximate
SFM.

25.3 Related Work

Submodularity, and indeed SFM, has a rich body of work and we refer the reader to surveys of
Fujishige [86] and McCormick[192] for a more detailed pre-2006 version. Here we mention a
few subsequent related works which were mostly inspired by applications in machine learning.

Motivated by applications in computer vision [27, 26] which require fast algorithms for
SFM, researchers focused on minimization of decomposable submodular functions which are
expressible as sum of “simple” submodular functions. It is assumed that simple submodular
functions can be minimized fast (either in practice or in theory). Such a study was initiated
by Stobbe and Krause [242] and Kolmogorov [161] who gave faster (than general SFM)

156



algorithms for such functions. More recently, motivated by work of Jegelka et al. [142],
algorithms with linear convergence rates [216, 72] have been obtained. That is, they get
ε-approximate algorithms with dependence on ε being log(1/ε). .

We end our introductory discussion by mentioning the complexity of constrained SFM
where one wishes to minimize over sets satisfying some constraints. In general constrained
SFM is much harder than unconstrained SFM. For instance the minimum cut problem with
cardinality constraints becomes the balanced partitioning problem which is APX-hard. More
generally, Svitkina and Fleischer [244] show that a large class of constrained SFM problems
cannot be approximated to better than Õ(

√
n) factors without making exponentially many

queries. In contrast, Goemans and Soto [104] prove that symmetric submodular functions
can be minimized over a large class of constraints. Inspired by machine learning applications,
Iyer et al. [136, 135] give algorithms for a large class of constrained SFM problems which
have good approximation guarantees if the curvature of the functions are small.

26 Preliminaries

Here we introduce notations and general concepts used throughout this Part.

26.1 General Notation

We let [n]
def
= {1, ..., n} and [0, 1]n

def
= {x ∈ Rn : xi ∈ [0, 1] ∀i ∈ [n]}. Given a permutation

P = (P1, ..., Pn) of [n], let P [j]
def
= {P1, P2, ..., Pj} be the set containing the first j elements

of P . Any point x ∈ Rn defines the permutation Px consistent with x where xP1 ≥ xP2 ≥
... ≥ xPnwith ties broken lexicographically. We denote by 1i ∈ Rn the indicator vector for
coordinate i, i.e. 1i has a 1 in coordinate i and a 0 in all other coordinates. We call a vector
s-sparse if it has at most s non-zero entries.

26.2 Submodular Functions

Throughout this Part f : 2U → R denotes a submodular function on a ground set U . For
notational convenience we assume without loss of generality that U = [n] for some positive
integer n and that f(∅) = 0 (as this can be enforced by subtracting f(∅) from for the value
of all sets while preserving submodularity). Recall that f is submodular if and only if it
obeys the property of diminishing marginal returns: for all S ⊆ T ⊆ [n] and i /∈ T we have

f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T ) .

We let opt
def
= minS⊆[n] f(S) be the minimum value of f . We denote by EO the time it takes

to evaluate f on a set S. More precisely, we assume given a linked list storing a permutation
P of [n], and a position k, we can evaluate f(P [k]) in EO time.
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26.3 The Lovasz Extension

Our results make extensive use of the Lovasz extension, a convex, continuous extension of a
submodular function to the interior of the n-dimensional hypercube, i.e. [0, 1]n.

Definition 148 (Lovasz Extension). Given a submodular function f , the Lovasz extension
of f , denoted as f̂ : [0, 1]n → R, is defined for all x ∈ [0, 1]n by f̂(x) =

∑
j∈[n](f([P [j]) −

f(P [j − 1]))xij where P = Px = (P1, ..., Pn) is the permutation consistent with x.

Note that since f(∅) = 0 this definition is equivalent to

f̂(x) = f(P [n])xPn +
∑

j∈[n−1]

f([P [j])(xPj − xPj+1
) . (26.1)

We make use of the following well known facts regarding submodular functions (see e.g.
[186, 86]).

Theorem 149 (Lovasz Extension Properties). The following are true for all x ∈ [0, 1]n:

• Convexity: The Lovasz extension is convex.

• Consistency: For x ∈ {0, 1}n we have f̂(x) = f(S(x)) where S(x) = {i ∈ S : xi = 1}.
• Minimizers: minx∈[0,1]n f̂(x) = minS⊆[n] f(S).

• Subgradients: The vector g(x) ∈ Rn defined by g(x)Pk
def
= f(P [k])− f(P [k − 1]) is a

subgradient of f̂ at x, where P = Px is the permutation consistent with x. Let us call
this the Lovasz subgradient.

We conclude with a few straightforward computational observations regarding the Lovasz
extension and its subgradients. First note that for x ∈ [0, 1]n we can evaluate f̂(x) or compute
g(x) in time O(nEO + n log n) simply by sorting the coordinates of f and evaluating f at
the n desired sets. Also, note that by (26.1) the Lovasz extension evaluated at x ∈ [0, 1]n is
a non-negative combination of the value of f at n sets. Therefore computing the smallest of
these sets gives a set S ⊆ [n] such that f(S) ≤ f̂(x) and we can clearly compute this, again
in O(nEO + n log n) time. Therefore for any algorithm which approximately minimizes the
Lovasz extension with some (additive) error ε, we can always find a set S achieving the same
error on f by just paying an additive O(nEO + n log n) in the running time.

26.4 Subgradient Descent

Our algorithmic results make extensive use of subgradient descent (or mirror descent) and
their stochastic analogs. Recall that for a convex function h : χ → R, where χ ⊆ Rn is a
compact convex set, a vector g ∈ Rn is a subgradient of h at x ∈ χ if for all y ∈ χ we have

h(y) ≥ h(x) + g>(y − x) .

For such an h we let ∂h(x) denote the set of subgradients of h at x. An algorithm that on
input x outputs g̃(x) ∈ ∂h(x) is a subgradient oracle for h. Similarly, an algorithm that on
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input x outputs a random g̃(x) such that Eg̃(x) ∈ ∂h(x) is a stochastic subgradient oracle
for h.

One of our main algorithmic tools is the well known fact that given a (stochastic) sub-
gradient oracle we can minimize a convex function h. Such algorithms are called (stochastic)
subgradient descent algorithms and fall into a more general framework of algorithms known
as mirror descent. These algorithms are very well studied and there is a rich literature on
the topic. Below we provide one specific form of these algorithms adapted from [29] that
suffices for our purposes.

Theorem 150 (Projected (Stochastic) Subgradient Descent16). Let χ ⊆ Rn denote a com-
pact convex set, h : χ → R be a convex function, g̃ be a (stochastic) subgradient oracle for

which E
∥∥g̃(x)

∥∥2

2
≤ B2 for all x ∈ χ, and R2 def

= supx∈χ
1
2

∥∥x∥∥2

2
. Now consider the iterative

algorithm starting with

x(1) := argminx∈χ
∥∥x∥∥2

2

and for all s we compute

x(s+1) := argminx∈χ
∥∥x− (x(s) − ηg̃(x(s)))

∥∥2

2

Then for η = R
B

√
2
t

we have

Eh

1

t

∑
i∈[t]

x(s)

−min
x∈χ

h(x) ≤ RB

√
2

t
.

We refer to this algorithm as projected stochastic subgradient descent when g̃ is stochastic
and as projected subgradient descent when g̃ is deterministic, though we often omit the term
projected for brevity. Note that when g̃ is deterministic the results are achieved exactly rather
than in expectation.

27 Faster Submodular Function Minimization

In this section we provide faster algorithms for SFM. In particular we provide the first
nearly linear time pseudopolynomial algorithm for SFM and the first subquadratic additive
approximation algorithm for SFM. Furthermore, we show how to obtain even faster running
times when the SFM instance is known to have a sparse solution.

All our algorithms follow the same broad algorithmic framework of using subgradient
descent with a specialized subgradient oracle. Where they differ is in how the structure
of the submodular functions is exploited in implementing these oracles. The remainder of
this section is structured as follows: in Section 27.1 we provide the algorithmic framework
we use for SFM, in Section 27.2, we prove structural properties of submodular functions
that we use to compute subgradients, in Section 27.3, we describe our nearly linear time

16This is Theorem 6.1 from [29] restated where we used the “ball setup” with Φ(x) = 1
2

∥∥x∥∥2

2
so that D = Rn

and DΦ(x, y) = 1
2

∥∥x− y∥∥2

2
. We also used that argminx∈χηg

>x+ 1
2

∥∥x− xt∥∥2

2
= argminxχ

∥∥x− (xt − ηg)
∥∥2

2
.
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pseodopolynomial algorithms, in Section 27.4, we describe our subquadratic additive ap-
proximation algorithm, and in Section 27.5, we show how to improve these results when
SFM has a sparse solution.

We make minimal effort to control logarithmic factors in through this section and note
that some of the factors come from sorting and therefore maybe can be removed depending
on the desired computational model.

27.1 Algorithmic Framework

All our algorithms for SFM follow the same broad algorithmic framework. We consider the
Lovasz extension f̂ : [0, 1]n → R, and perform projected (stochastic) subgradient descent
on f̂ over the convex domain χ = [0, 1]n. While the subgradient oracle construction differs
between algorithms (and additional care is needed to improve when the solution is sparse,
i.e. Section 27.5) the rest of algorithms for Section 27.3 and Section 27.4 are identical.

In the following, Lemma 151, we encapsulate this framework, bounding the performance
of projected (stochastic) subgradient descent for the Lovasz extension, i.e. applying Theo-
rem 150 to f̂ over χ = [0, 1]n. Formally, we abstract away the properties of a subgradient
oracle data structure needed to achieve a fast algorithm. With this lemma in place the
remainder of the work in Section 27.2, Section 27.3, and Section 27.4 is to show how to
efficiently implement the subgradient oracle in the particular setting.

Lemma 151. Suppose that there exists a procedure which maintains (x(i), g̃(i)) satisfying the
invariants: (a) g̃(i) is k-sparse; (b) E[g̃(i)] = g(x(i)) is the Lovasz subgradient at x(i); (c)

E
∥∥g̃(i)

∥∥2

2
≤ B2. Furthermore, suppose given any k-sparse e(i), the procedure can update to

(x(i+1) = x(i) + e(i), g̃(i+1)) in time Tg. Then, for any ε > 0, we can compute a set S with
E[f(S)] ≤ opt + ε in time O(nB2ε−2Tg + nEO + n log n). If invariants (b) and (c) hold
without expectation, then so does our algorithm.

Proof. We invoke Theorem 150 on the convex function f̂ : [0, 1]n → R over the convex
domain χ = [0, 1]n to obtain the iterates where we use the given subgradient oracle. Clearly

x(1) = argminx∈[0,1]n
1

2

∥∥x∥∥2

2
= 0 ∈ Rn

and

R2 = sup
x∈[0,1]n

1

2

∥∥x∥∥2

2
=

1

2

∥∥1
∥∥2

2
=
n

2
.

Consequently, as long as we implement the projection step for T = O(nB2ε−2) steps (each
step requiring Tg time), then Theorem 150 yields

Ef̂

 1

T

∑
i∈[T ]

x(i)

−min
x∈χ

f̂(x) ≤ RB

√
2

T
≤
√
nB2

T
≤ ε .

Furthermore, as we argued in Section 26.3 we can compute S with f(S) ≤ f̂( 1
T

∑
i∈[T ] x

(i))

in the time it takes to compute 1
T

∑
i∈[T ] x

(i) plus additional O(nEO + n log n) time. To
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prove the lemma all that remains is to reason about the complexity of computing the pro-
jection, i.e. x(t+1), given that all the subgradients we compute are s-sparse. However,

since x(t+1) = argminx∈[0,1]n

∥∥x − (x(t) − ηg̃(x(t))
∥∥2

2
decouples coordinate-wise – note that

x(t+1) = median{0 , x(t)− ηg̃(x(t)) , 1}, we subtract ηg̃(x(t)) from x(t) and if any coordinate is
less than 0 we set it to 0 and if any coordinate is larger than 1 we set it to 1. Thus the edit
vector e(i) is of sparsity≤ k. Combining these facts yields the described running time.

27.2 Subgradients of the Lovasz Extension

Here we provide structural results of submodular function that we leverage to compute
subgradients of submodular functions in o(n) time. First, in Lemma 152 we state a result
due to Jegelka and Bilmes [143] (also Hazan and Kale [120]) which puts an upper bound on
the `1 norm of subgradients of the Lovasz extension provided that we have an upper bound
on the maximum absolute value of the function. We provide a short proof for completeness.

Lemma 152 (Subgradient Upper Bound). If |f(S)| ≤M for all S ⊆ [n], then
∥∥g(x)

∥∥
1
≤ 3M

for all x ∈ [0, 1]n and for all subgradients g of the Lovasz extension.

Proof. For notational simplicity suppose without loss of generality (by changing the name
of the coordinates) that P (x) = (1, 2, ..., n), i.e. x1 ≥ x2 ≥ ... ≥ xn. Therefore, for any
i ∈ [n],we have gi = f([i]) − f([i − 1]). Let r1 ≤ r2 ≤ ...,≤ rR denote all the coordinates
such that gri > 0 and let s1 ≤ s2 ≤ ... ≤ sS denote all the coordinates such that gsi < 0.

We begin by bounding the contribution of the positive coordinate, the gri , to the norm

of the gradient,
∥∥g∥∥

1
. For all k ∈ [R] let Rk

def
= {r1, ..., rk} with R0 = ∅. By assumption

we know that that f(R0) = ∅. Furthermore, by submodularity, i.e. diminishing marginal
returns, we know that for all i ∈ [R]

f(Ri)− f(Ri−1) ≥ f([ri])− f([ri − 1]) =: gri = |gri |

Consequently f(RR)− f(R0) =
∑

i∈[R] f(Ri)− f(Ri−1) ≥
∑

i∈[R] |gri |. Since f(R0) = 0 and

f(RR) ≤M by assumption we have that
∑

i∈[k] |gri | ≤M .
Next, we bound the contribution of the negative coordinates, the gsi , similarly. For all

k ∈ [S] let Sk
def
= {s1, ..., sk} with S0 = ∅. By assumption we know that that f(S0) = ∅.

Define V := [n] − S. Note that for all i ∈ [S], the set V ∪ Si−1 is a superset of [si − 1].
Therefore, submodularity gives us for all i ∈ [S],

f(V ∪ Si)− f(V ∪ Si−1) ≤ f([si])− f([si − 1]) = gsi = − |gsi |

Summing over all i, we get f([n]) − f(V ) ≤
∑

i∈[S]− |gsi |. Since f([n]) ≥ −M and

f(V ) ≤M we have that
∑

i∈[S] |gsi | ≤ 2M . Combining these yields that
∥∥g∥∥

1
=
∑

i∈[n] |gi| =∑
i∈[R] |gri |+

∑
i∈[S] |gsi | ≤ 3M .

Next, in Lemma 153 we provide a simple but crucial monotonicity property of the sub-
gradient of f̂ . In particular we show that if we add (or remove) a positive vector from
x ∈ [0, 1]n to obtain y ∈ [0, 1]n then the untouched coordinates of the subgradients all
decrease (or increase).
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Lemma 153 (Subgradient Monotonicity). Let x ∈ [0, 1]n and let d ∈ Rn
≥0 be such that

y = x+ d (resp. y = x− d). Let S denote the non-zero coordinates of d. Then for all i /∈ S
we have g(x)i ≥ g(y)i (resp. g(x)i ≤ g(y)i).

Proof. We only prove the case of y = x+d as the proof of the y = x−d case is analogous. Let
P (x)and P (y) be the permutations consistent with x and y. Note that P (y) can be obtained
from P (x) by moving a subset of elements in S to the left, and the relative ordering of
elements not in S remains the same. Therefore, for any i /∈ S, if r is its rank in P (x), that is,
P

(x)
r = i, and r′is its rank in P (y) , then we must have P (y)[r′] ⊇ P (x)[r]. By submodularity,
g(y)i = f(P (y)[r′])− f(P (y)[r′ − 1]) ≤ f(P (x)[r])− f(P (x)[r − 1])) = g(x)i.

Lastly, we provide Lemma 154 giving a simple formula for the sum of multiple coordinates
in the subgradient.

Lemma 154 (Subgradient Intervals). Let x ∈ [0, 1]n and let P be the permutation consistent
with x. For any positive integers a ≤ b, we have

∑b
i=a g(x)Pi = f(P [b])− f(P [a− 1]).

Proof. This follows immediately from the definition of g(x):
∑b

i=a g(x)Pi =
∑b

i=a(f(P [i])−
f(P [i− 1])) = f(P [b]) +

∑b−1
i=a f(P [i])−

∑b−1
i=a f(P [i])− f(P [a− 1]) .

27.3 Nearly Linear in n, Pseudopolynomial Time Algorithm

Here we provide the first nearly linear time pseudopolynomial algorithm for submodular
function minimization. Throughout this section we assume that our submodular function f
is integer-valued with |f(S)| ≤ M for all S ⊆ [n]. Our goal is to deterministically produce
an exact minimizer of f . The primary result of this section is showing that we can achieve
this in Õ(nM3EO) time:

Theorem 155. Given an integer-valued submodular function f with |f(S)| ≤ M for all
S ⊆ [n] in time O(nM3EO log n) we can compute a minimizer of f .

We prove the theorem by describing (x(i), g̃(x(i))) in Lemma 151. In fact, in this case g̃
will deterministically be the subgradient of the Lovasz extension. In Lemma 156, we prove
that the Lovasz subgradient is O(M)-sparse and so ‖g‖2

2 ≤ O(M2). Thus, Conditions (a),
(b), and (c) are satisfied with B2 = O(M2). The main contribution of this section is Lemma
157, where we show Tg = O(M log n · EO), that is the subgradient can be updated in this
much time. A pseudocode of the full algorithm can be found in Section 29.5.

Lemma 156. For integer-valued f with |f(S)| ≤ M for all S the subgradient g(x) has at
most 3M non-zero entries for all x ∈ [0, 1]n.

Proof. By Lemma 152 we know
∥∥g(x)

∥∥
1
≤ 3M . However, since g(x)Pi = f(P [i])−f(P [i−1])

and since f is integer-valued, we know that either g(x)Pi = 0 or |g(x)Pi| ≥ 1. Consequently,
there are at most 3M values of i for which g(x)i 6= 0.

Lemma 157. With O(n · EO) preprocessing time the following data structure can be main-
tained. Initially, one has input x(0) ∈ [0, 1]n and g(x0). Henceforth, for all i, given g(x(i))
and a k-sparse vector e(i), in O(k log n+ kEO +MEO log n) time one can update g(x(i)) to
the gradient g(x(i+1)) for x(i+1) = x(i) + e(i).
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Proof. The main idea is the following. Suppose e(i) is non-negative (we later show how to
easily reduce to the case where all coordinates in e(i) have the same sign and the non-positive
case is similar) Thus, by Lemma 153, for all coordinates not in support of e(i), the gradient
goes down. Due to Lemma 156, the total number of change is O(M), and since we can
evaluate the sum of gradients on intervals by Lemma 154, a binary search procedure allows
us to find all the gradient changes in O(M log n · EO) time. We now give full details of this
idea.

We store the coordinates of x(i) in a balanced binary search tree (BST) with a node for

each j ∈ [n] keyed by the value of x
(i)
j ; ties are broken consistently, e.g. by using the actual

value of j. We take the order of the nodes j ∈ [n] in the binary search tree to define the
permutation P (i) which we also store explicitly in a link-list, so we can evaluate f(P (i)[k]) in
O(EO) time for any k. Note that each node of the BST corresponds to a subinterval of P (i)

given by the children of that node in the tree. At each node of the BST, we store the sum
of g(x(i))j for all children j of that node, and call it the value of the node. Note by Lemma
154 each individual such sum can be computed with 2 calls to the evaluation oracle. Finally,
in a linked list, we keep all indices j such that g(x(i))j is non-zero and we keep pointers to
them from their corresponding node in the binary search tree. Using the binary search tree
and the linked list, one can clearly output the subgradient. Also, given x(0) , in O(n · EO)
time one can obtain the initialization. What remains is to describe the update procedure.

We may assume that all non-zero entries of e(i) are the same sign; otherwise write e(i) :=
e

(i)
+ + e

(i)
− , and perform two updates. WLOG, lets assume the sign is + (the other case is

analogous). Let S be the indices of e(i) which are non-zero.

First, we change the key for each j ∈ [n] such that x
(i+1)
j 6= x

(i)
j and update the BST. Since

we chose a consistent tie breaking rule for keying, only these elements j ∈ [n] will change
position in the permutation P (i+1). Furthermore, performing this update while maintaining
the subtree labels can be done in O(k log n) time as it is easy to see how to implement binary
search trees that maintain the subtree values even under rebalancing. For the time being,
we retain the old values as is.

For brevity, let g(i) and g(i+1) denote the gradients g(x(i)) and g(x(i+1)), respectively.
Since we assume all non-zero changes in e(i) are positive, by Lemma 153, we know that
g

(i+1)
j ≤ g

(i)
j for all j /∈ S. First, since |S| ≤ k, for all j ∈ S, we go ahead and compute g

(i+1)
j

in O(kEO) time. For each such j we update the value of the nodes from j to the root, by

adding the difference (g
(i+1)
j −g(i)

j ) to each of them. Next, we perform the following operation
top-down start at the root: at each node we compare the current subtree value stored at this
node with what the value actually should be with g(i+1) . Note that since we know P (i+1),
the latter can be computed with 2 evaluation queries. The simple but crucial observation
is that if at any node j these two values match, then we are guaranteed that g

(i+1)
k = g

(i)
k

for all k in the tree rooted at j and we do not need to recurse on the children of this node.
The reason for equality is that for all the children, we must have g

(i+1)
k ≤ g

(i)
k by Lemma

153 , and so if the sum is equal then we must have equality everywhere. Since there are at
most O(M) coordinates change, this takes O(MEO log n) for updating all the changes to
g(i+1) for the binary search tree. During the whole process, whenever a node changes from
non-zero to zero or from zero to non-zero, we can update the linked-list accordingly.

Proof of Theorem 155. We apply Lemma 151 giving the precise requirements of our sub-
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gradient oracle. We know that the subgradients we produce are always O(M) sparse by
Lemma 156 and satisfy B2 = O(M2). Consequently, we can simply instantiate Lemma 157
with k = O(M) to obtain our algorithm. Furthermore, since f is integral we know that so
long as we have a set additive error less than 1, i.e. ε < 1, the set is a minimizer. Conse-
quently, we can minimize in the time given by the cost of adding the cost of Lemma 2, with
the Lemma 156 initialization cost, plus the Lemma 156 cost for T = O(nM2) iterations,
yielding

O
(
n(EO + log n+M3) + n+MEO + (M log n+MEO log n) · nM2

)
= O(nM3EO log n) .

27.4 Subquadratic Additive Approximation Algorithm

Here we provide the first subquadratic additive approximation algorithm for submodu-
lar function minimization. Throughout this section we assume that f is real-valued with
|f(S)| ≤ 1 for all S ⊆ [n]. Our goal is to provide a randomized algorithm that produces a
set S ⊆ [n] such Ef(S) ≤ opt + ε. Our primary result is showing that we can achieve this
in O(n5/3ε−2 log4 n) time:

Theorem 158. Given a submodular function f : 2[n] → R with |f(S)| ≤ 1 for all S ⊆ V ,
and any ε > 0, we we can compute a random set S such that Ef(S) ≤ opt + ε in time
O(n5/3ε−2EO log4 n).

The proof of this theorem has two parts. Note that the difficulty in the real-valued case
is that we can no longer assume the Lovasz gradients are sparse, and so we cannot do naive
updates. Instead, we use the fact that the gradient has small `2 norm to get sparse estimates
of the gradient. This is the first part where we describe a sampling procedure which given
any point x and a k-sparse vector e, returns a good and sparse estimate of the difference
between the Lovasz gradient at x + e and x. The second issue we need to deal with is
that if we naively keep using this estimator, then the error (variance) starts to accumulate.
The second part then shows how to use the sampling procedure in a “batched manner” so
as to keep the total variance under control, restarting the whole procedure with a certain
frequency. A pseudocode of the full algorithm can be found in Section 29.5.

Lemma 159. Suppose a vector x ∈ [0, 1]n is stored in a BST sorted by value. Given a
k-sparse vector e which is either non-negative or non-positive, and an integer ` ≥ 1, there
is a randomized sampling procedure which returns a vector z with the following properties:

(a) E[z] = g(x + e) − g(x), (b) E[
∥∥z − E[z]

∥∥2

2
] = O(1/`), and (c) the number of non-zero

coordinates of z is O(`). The time taken by the procedure is O((k + `) · EO log2 n).

Proof. We assume that each non-zero value of e is positive as the other case is analogous.
Note that x is stored in a BST , and the permutation Px consistent with x is stored in a
doubly linked list. Let S be the set of positive coordinates of e with |S| = k and let y denote
the vector x+ e. We compute Py in O(k log n) time.

Let I1, . . . , I2k ⊆ [n] denote the subsets of the coordinates that correspond to the intervals
which are contiguous in both Px and Py. Note that these are ≤ 2k such intervals, and some
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of them can be empty. We store the pointers to the endpoints of each interval in the BST.
This can be done in O(k log n) time as follows. First compute the coarse intervals which
are contiguous in Px in O(k) time. These intervals will be refined when we obtain Py. In
O(k log n) time, update the BST so that for every node we can figure out which coarse
interval it lies in O(log n) time. This is done by walking up the BST for every end point of
all the k intervals and storing which “side” of the interval they lie in. Given a query node,
we can figure out which interval it lies in by walking up the BST to the root. Finally, for all
nodes in S, when we update the BST in order to obtain Py, using the updated data structure
in O(log n) time figure out which coarse interval it lies in and refine that interval.

For each j ∈ S, we compute dj
def
= g(y)j−g(x)j explicitly. This can be done in O(kEO)time

using Pxand Py.For r ∈ [2k], we define Dr :=
∑

j∈Ir(g(y)j − g(x)j). Since each Ir is a
contiguous interval in both Px and Py, Lemma 154 implies that we can store all Dr in
O(k · EO) time in look-up tables. Note that by monotonicity Lemma 153 each summand
in Dr is of the same sign, and therefore summing the absolute values of Dr’s and dj’s gives∥∥g(y)− g(x)

∥∥
1
. We store this value of the `1 norm.

Now we can state the randomized algorithm which returns the vector z. We start by
sampling either a coordinate j ∈ S with probability proportional to |dj| , or an interval
Ir with probability proportional to |Dr|. If we sample an interval, then iteratively sample
sub-intervals I ′ ⊂ Ir proportional to

∑
j∈I′(g(y)j − g(x)j) till we reach a single coordinate

j /∈ S. Note that any j ∈ [n] is sampled with probability proportional to |g(y)j − g(x)j|.
We now show how to do this iterative sampling in O((EO + log n) log n) time. Given

Ir, we start from the root of the BST and find a node closest to the root which lies in Ir.
More precisely, since for every ancestor of the endpoints of Ir, if it doesn’t belong to the
interval we store which “side” of the tree Ir lies in, one can start from the root and walk
down to get to a node inside Ir. This partitions Irinto two subintervals and we randomly
select I ′proportional to

∑
j∈I′(g(y)j − g(x)j) . Since sub-intervals are contiguous in Py and

Px, this is done in O(EO) time. We then update the information at every ancestor node of
the endpoints of the sampled I ′ in O(log n) time. Since each iteration decreases the height
of the least common ancestor of the endpoints of I ′, in O(log n) iterations (that is the height
of the tree), we will sample a singleton j 6/∈ S.

In summary, we can sample j ∈ [n] with probability proportional to g(y)j − g(x)j in
O((EO + log n) log n) time. If we sample j, we return the (random) vector

z :=
∥∥g(y)− g(x)

∥∥
1
· sign(g(y)j − g(x)j) · 1j

where recall 1j is the vector with 1 in the jth coordinate and zero everywhere else. Note
that given j, computing z takes O(EO+log n) time since we have to evaluate g(y)jand g(x)j.
Recall, we already know the `1norm. Also note by construction, E[z] is precisely the vector
g(y)− g(x). To upper bound the variance, note that

E[
∥∥z − Ez

∥∥2

2
] ≤ E[

∥∥z∥∥2

2
] =

∥∥g(y)− g(x)
∥∥2

1
≤ 9 ·max

S⊆V
|f(S)| ≤ 9

by Lemma 152 and the fact that |f(S)| ≤ 1. Also observe that z is 1-sparse.
Given `, we sample independently ` such random z’s and return their average. The

expectation remains the same, but the variance scales down by `. The sparsity is at most
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`.The total running time is O(k(EO + log n) + `(EO + log n) log n). This completes the proof
of the lemma.

We now complete the proof of Theorem 158.

Proof. (Theorem 158) The algorithm runs in batches (as mentioned before, the pseudocode
is in Section 29.5.) At the beginning of each batch, we have our current vector x(0) as usual
stored in a BST. We also compute the Lovasz gradient g(0) = g(x(0)) spending O(n log nEO)
time. The batch runs for T = Θ(n1/3) steps. At each step t ∈ [T ], we need to specify
an estimate g̃(t) to run the (stochastic) subgradient procedure as discussed in Lemma 151.

For t = 0, since we know g(0) explicitly, we get g̃(0) by returning
∥∥g(0)

∥∥
1
sign(g

(0)
j )1j with

probability proportional to
∣∣∣g(0)
j

∣∣∣. This is a 1-sparse, unbiased estimator of g(0) with O(1)

variance. Define z(0) := g̃(0). Henceforth, for every t ≥ 0, the subgradient descent step
suggests a direction e(t) in which to move whose sparsity is at most the sparsity of g̃(t). We
partition e(t) = e

(t)
+ + e

(t)
− into its positive and negative components. We then apply Lemma

159 twice: once with x = x(t),e = e
(t)
+ , and ` = t, to obtain random vector z

(t)
+ of sparsity

t, and then with x = x(t) + e
(t)
+ , e = e

(t)
− , and ` = t, to obtain the random vector z

(t)
− of

sparsity t. The estimate of the gradient at time t is the sum of these random vectors. That
is, for all t ≥ 1, define g̃(t) :=

∑
s≤t(z

(s)
+ + z

(s)
− ). By the property (b) of Lemma 159 , g̃(t) is

a valid stochastic subgradient and can be fed into the framework of Lemma 151. Note that
for any t ∈ [T ], the sparsity of g̃(t)is O(t2) and so is the sparsity of e(t) suggested by the

stochastic subgradient routine. Thus, the tth step of estimating z
(t)
+ and z

(t)
− requires time

O(t2EO log2 n), implying we can run T steps of the above procedure in O(T 3EO log2 n) time.
Finally, to argue about the number of iterations required to get ε-close, we need to upper

bound E[
∥∥g̃(t)

∥∥2

2
] for every t. Since E[g̃(t)] = g(t), the true subgradient at x(t) and since∥∥g(t)

∥∥2

2
= O(1) by Lemma 152 , it suffices to upper bound E[

∥∥g̃(t) − E[g̃(t)]
∥∥2

2
]. But this

follows since g̃(t) is just a sum of independent z-vectors.

E[
∥∥g̃(t)−E[g̃(t)]

∥∥2

2
] =

∑
s≤t

E[
∥∥z(s)

+ −E[z
(s)
+ ]
∥∥2

2
]+
∑
s≤t

E[
∥∥z(s)
− −E[z

(s)
− ]
∥∥2

2
] = O

(∑
s≤t

1/s

)
= O(log n)

The second-last inequality follows from (c) of Lemma 159. And so, E[
∥∥g̃(t)

∥∥2

2
] = E[

∥∥g̃(t)−
E[g̃(t)]

∥∥2

2
] +
∥∥g(t)

∥∥2

2
= O(log n). Therefore, we can apply the framework in Lemma 151 with

B = O(log n) implying the total number of steps to get ε-approximate is N = O(n log2 nε−2).
Furthermore, since each batch takes time O((n+ T 3)EO log2 n) and there are N/T batches,
we get that the total running time is at most

O

(
nEO log4 nε−2

(
n+ T 3

T

))
= Õ(n5/3ε−2EO)

if T = n1/3. This ends the proof of Theorem 158.
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27.5 Improvements when Minimizer is Sparse

Here we discuss how to improve our running times when the submodular function f is
known to have a sparse solution, that is, the set minimizing f(S) has at most s elements.
Throughout this section we suppose we know s.

Theorem 160. Let f be a submodular function with a s-sparse minimizer. Then if f is
integer valued with |f(S)| ≤ M for all S ⊆ [n] we can compute the minimizer deterministi-
cally in time O((n+ sM3) log n ·EO). Furthermore if f is real-valued with |f(S)| ≤ 1 for all
S ⊆ [n], then there is a randomized algorithm which in time Õ((n+ sn2/3)EOε−2) returns a
set S such that E[f(S)] ≤ opt + ε, for any ε > 0.

Therefore, if we know that the sparsity of the optimum solution is, say polylog(n), then
there is a near linear time approximate algorithm to get constant additive error.

To obtain this running time we leverage the same data structures for maintaining sub-
gradients presented in Section 27.3 and Section 27.4. Instead we show how to specialize the
framework presented in Section 27.1. In particular we simply leverage that rather than min-
imizing the Lovasz extension over [0, 1]n we can minimize over Ss

def
= {x ∈ [0, 1]n |

∑
i∈[n] xi ≤

s}. This preserves the value of the maximum and minimum, but now improves the conver-
gence of projected (stochastic) subgradient descent (because the quantity R becomes s from
n). To show this formally we simply need to show that the projection step does not hurt the
performance of our algorithm asymptotically.

We break the proof of this into three parts. First, in Lemma 161 we compute how to
project onto Ss. Then in Lemma 162 we show how to update our framework. Using these,
we prove Theorem 160.

Lemma 161. For k ≥ 0 and y ∈ Rn let S = {x ∈ [0, 1]n |
∑

i xi ≤ k} and

z = argminx∈S
1

2

∥∥x− y∥∥2

2
.

Then, we have that for all i ∈ [n]

zi = median(0, yi − λ, 1)

where λ is the smallest non-negative number such that
∑

i zi ≤ k.

Proof. By the method of Lagrange multiplier, we know that there is some λ ≥ 0 such that

z = argminx∈[0,1]n
1

2

∥∥x− y∥∥2

2
+ λ

∑
i∈[n]

xi .

Since each variable in this problem is decoupled with each other, we can solve this problem
coordinate-wise and get that for all i ∈ [n]

zi = med(0, yi − λ, 1).

Since
∑

i∈[n] zi decreases as λ increases, we know that λ is the smallest non-negative number

such that
∑

i∈[n] zi ≤ k.
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In particular we provide Lemma 162, an improvement on Lemma 151 in the sparse regime.

Lemma 162. Suppose that for N ≥ sB2ε−2 and any sequence of x(1), .., x(N) such that
x(i+1)− x(i) is k(i)-sparse up to modifications that do not affect the additive distance between
non-zero coordinates with K

def
=
∑

i∈[T ] k
(i) = O(Nk), we can implement a subgradient oracle

for f and x(i), denoted g̃(x(i)), that is k-sparse and obeys E
∥∥g̃∥∥2

2
≤ B2. Then in time

O(n(EO + log n) +Nk log n) we can compute a set S such that Ef(S) ≤ opt + ε (and if the
subgradient oracle is deterministic then the result holds without the expectation).

Proof. The proof is the same as before, just that the size of R improves to s and we need to
deal with this new projection step. However, in the projection step we set all the coordinates
that are less than 0 to 0 and then keep subtracting uniformly (stopping whenever a coordinate
reaches 0) until the maximum coordinate is ≤ 1. We can do this efficiently by simply
maintaining an additive offset and the coordinate values in sorted order. Then we simply
need to know the number of coordinates above some threshold and the maximum and the
minimum non-zero coordinate to determine what to subtract up to the point we make the
minimum non-zero. We can do this in O(log n) time easily. Now we are not counting the
movements that do not set something to 0 so do not change the additive distances between
the non-zero coordinate. Consequently, an iteration may only move many coordinates if it
sets many things to 0, however that is paid for by the movement that created it, so we only
need Nk log n time in total to do all the updates.

We now have everything we need to prove Theorem 160

Proof of Theorem 160. (Sketch) The proof is the same as in Section 27.3 and Section 27.4.
We just use Lemma 162 instead of the previous framework lemma. To invoke the first data
structure we just do the update in batches. The second data structure was already written
for this setting.

28 Lower Bound

It is well known that Ω(n) evaluation oracle calls are needed to minimize a submodular
function. On the other hand, the best way we know of for certifying minimality takes
Θ(n) subgradient oracle calls (or equivalently, vertices of the base polyhedron). A natural
question is whether Θ(n) subgradient oracle calls are in fact needed to minimize a submodular
function. In this section we answer this in the affirmative. Since each gradient oracle needs
n evaluation oracle calls, this gives an Ω(n2) lower bound on the number of evaluations
required for algorithms which only access the function via graident oracles. As mentioned
in the introduction, these include the Fujishige-Wolfe heuristic [260, 84], various version of
conditional gradient or Franke Wolfe [82, 100] , and the new cutting plane methods [180].
Note that there are known lower bounds for subgradient descent that have a somewhat
submodular structure [211] and this suggests that such a lower bound should be possible,
however we are unaware of a previous information theoretic lower bound such as we provide.

To prove our lower bound, we describe a distribution over a collection of hard functions
and show that any algorithm must make Ω(n) subgradient calls in expectation17 and by Yao’s

17One can also prove a high probability version of the same result but for simplicity we don’t do it.
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minimax principle this will give an Ω(n) lower bound on the expected query complexity of
any randomized SFM algorithm. The distribution is the following. Choose R to be a random
set with each element of the universe selected independently with probability 1/2. Given R,
define the function

fR(S) =


−1 if S = R

0 if S 6⊆ R or R 6⊆ S

1 otherwise.

Clearly the minimizer of fR is the set R. Any SFM algorithm is equivalent to an algorithm
for recognizing the set R via subgradient queries to fR. A subgradient g of fR at any point x
corresponds to a permutation P of {1, 2, . . . , n} (the sorted order of x). Recall the notation
P [i] := {P1, P2, . . . , Pi}. The following claim describes the structure of subgradients.

Lemma 163. Let i be the smallest index such that P [i] is not a subset of R and j be the
smallest index such that P [j] is a superset of R. Then g(i) = 1, g(j) = −1, and g(k) = 0
for all k ∈ [n]− i, j.

Proof. To see g(i) = 1, note that A := P [i − 1] is a subset of R. Two cases arise: either
A = R in which case P [i] is a strict superset of R and so fR(A) = −1 and fR(P [i]) = 0
implying g(i) = 1; or A is a strict subset of R in which case P [i] is neither a subset or
a superset, implying fR(A) = 0 and fR(P [i]) = 1. Similarly, to see g[j] = −1, note that
B := P [j − 1] is not a superset of R. Two cases arise: either B is a strict subset of R in
which case P [j] = R and we have fR(B) = 0 and fR(P [j]) = −1; or B is neither a subset
nor a superset in which case P [j] is a strict superset of R and we have fR(B) = 1 and
fR(P [j]) = 0.

For any other k, we have either both P [k] and P [k − 1] are strict subsets of R (if k <
min(i, j)), or both P [k] and P [k− 1] are strict supersets of R (if k > max(i, j)) , or both are
neither superset nor subset. In all three cases, g(k) = 0.

Intuitively, any gradient call gives the following information regarding R: we know ele-
ments in P [i − 1] lie in R, Pi doesn’t lie in R, Pj lies in R, and all Pk for k > j do not lie
in R. Thus we get i + n − j + 1 “bits” of information. If R is random, then the expected
value of this can be shown to be O(1), and so Ω(n) queries are required. We make the above
intuitive argument formal below.

Suppose at some point of time, the algorithm knows a set A ⊆ R and a set B ∩ R = ∅.
The following lemma shows that one may assume wlog that subsequent subgradient calls
are at points x whose corresponding permutation P contains the elements of A as a “prefix”
and elements of B as a “suffix”.

Lemma 164. Suppose we know A ⊆ R and B ∩ R = ∅. Let g be a subgradient and g′ be
obtained from g by moving A and B to the beginning and end of the permutation respectively.
Then one can compute g from g′ without making any more oracle calls.

Proof. Easy by case analysis and Lemma 163. Let P be the permutation corresponding to g.
We show that given g’ and P , we can evaluate g. Let us say we are interested in evaluating
gPk and say Pk = a. Lemma 163 states that this is 1 iff P [k − 1] ⊆ R and P [k] isn’t. Now,
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if P [k − 1] ∩ B 6= ∅, then we know gPk =0. Otherwise, gPk =1 iff P [k − 1] − B ∪ A ⊆ R
and P [k] − B ∪ A is not, since A ⊆ R. Therefore, gPk =1 iff g′a = 1 and P [k − 1] ∩ B = ∅.
Whether gPk = −1or not can be done analogously.

For an algorithm, let h(k) be the expected number of subgradient calls required to min-
imize fR when the universe if of size k (note R is chosen randomly by picking each element
with probability 1/2). For convenience we also define h(k) = 0 for k ≤ 0.

Lemma 165. For k ≥ 1, h(k) ≥ 1 + EX,Y [h(k − X − Y )], where X, Y are independent
geometric random variables, i.e. Pr[X = i] = 1/2i for i ≥ 1.

Proof. By our observation above, a subgradient of f reveals the identities of min{X + Y, k}
elements, where X − 1 = i − 1 and Y − 1 = n − j (i, j as defined in Lemma 163) are the
lengths of the streaks of 0’s at the beginning and end of the subgradient.

Note that X simply follow a geometric distribution because Pr[P [i− 1] ⊆ R,Pi /∈ R] =
1/2i. Similarly, Y also follow the same geometric distribution. In the case of X +Y > k, we
have R as a prefix of the permutation.

Finally, as a subgradient call reveals no information about the intermediate elements in
the permutation, by Lemma 164 we are then effectively left with the same problem of size
k−X−Y . More formally, this is because the value of the subgradient queried is independent
of the identities of the elements Pi+1, . . . , Pj−1.

Theorem 166. h(n) ≥ n/4, i.e. any algorithm for SFM requires at least Ω(n) subgradient
calls.

Proof. We show by induction that h(k) ≥ k/4. By Lemma 165 and the induction hypothesis,

h(k) ≥ 1 + EX,Y [h(k −X − Y )]

≥ 1 + EX,Y [(k −X − Y )/4]

= 1 + k/4− E[X]/4− E[Y ]/4

= k/4

as desired.

Readers may have noticed that the proofs of the preceding two lemmas essentially imply
that h(k) is roughly the expected number of geometric random variables needed to sum up
to k. One can use this property together with some concentration inequality for geometric
random variables to establish a high probability version of our lower bound.
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29 Miscellaneous

29.1 Reduction from Multiplicative to Additive Approximation

Here we show how to obtain a multiplicative approximation for SFM from our Õ(n5/3 ·EO/ε2)
additive-approximate SFM algorithm. Because the minimizer of f is scale- and additive-
invariant, it is necessary to make certain regularity assumptions on f to get a nontrivial
result. This is akin to submodular function maximization where constant factor approxima-
tion is possible only if f is nonnegative everywhere [32, 75]. For SFM, by considering f−opt
we see that finding a multiplicative-approximate solution and an exact solution are equiv-
alent for general f . (Indeed most submodular optimization problems permit multiplicative
approximation only in terms of the range of values.)

Similar to submodular maximization, we assume f to be nonpositive. Then f ′ = f/opt
has range [−1, 0] and has minimum value -1 so our additive-approximate algorithm imme-
diately yields multiplicative approximation. This requires knowing opt (or some constant
factor approximation of). Alternately we can “binary search” to get factor-2 close to opt by
trying different powers of 2. This would lead to a blowup of O(log opt) in the running time.

29.2 Approximate SFM via Fujishige-Wolfe

Here we show how Frank-Wolfe and Wolfe can give ε-additive approximations for SFM.
We know that both algorithms in O(1/δ) iterations can return a point x ∈ Bf , the base
polyhedron associated with f , such that x>x ≤ p>p + δ for all p ∈ Bf . Here we are using
the fact implied by Lemma 152 that the diameter of the base-polytope for functions with
bounded range is bounded (note that vertices of the base polytope correspond to gradients of
the Lovasz extension.) The robust Fujishige Theorem (Theorem 5, [35]) implies that we can
get a set S such that f(S) ≤ opt+2

√
nδ. Setting δ = ε2/4n gives the additive approximation

in O(nε−2) gradient calls.

29.3 Faster Algorithm for Directed Minimum Cut

Here we show how to easily obtain faster approximate submodular minimization algorithms
in the case where our function when the funciton is an explicitly given s-t cut function.
This provides a short illustration of the reasonable fact that when given more structure, our
sumbodular minimization algorithms can be improved.

For the rest of this section, let G = (V,E,w) be a graph with vertices V , directed edges

E ⊆ V ×V , and edge weights w ∈ RE
≥0. Let s, t ∈ V be two special vertices, A

def
= V −{s, t},

and for all S ⊆ A let f(S) be defined as the total weight of the edges in leaving the set S∪{s},
i.e. where the tail of edge is in S ∪ {s} and the head of the edges is in V − (S ∪ {s}). The
function f is a well known submodular function and minimizing it corresponds to computing
the minimum s-t cut, or correspondingly the maximum s-t flow.

Note that clearly, f(S) ≤ W where W =
∑

e∈E we. Furthermore, if we pick S by including
each vertex in A randomly to be in S with probability independently 1

2
then we see that

Ef(S) = 1
2
W . Consequently, 1

2
W ≤ maxS⊆A f(s) ≤ W and if we want to scale f to make it

have values in [−1, 1] we need to devide by something that is W up to a factor of 2.
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Now, note that we can easily extend this problem to a continuous problem over the reals.
Let x+ denote x if x ≥ 0 and 0 otherwise. Furthermore, for all x ∈ RA let y(x) ∈ RV be
given by y(x)i = xi if i ∈ A, y(x)s = 0, y(x)t = 1, and let

g(x)
def
=

∑
(a,b)∈E

wab(y(xb)− y(xa))
+ .

Clearly, minimizing g(x) over [0, 1]A is equivalent to minimizing f(S). Furthermore the
subgradient for g decomposes into subgradients for each edge (a, b) ∈ E each of which is
a vector with 2 non-zero entries and norm at most O(wab). If we picking a random edge
with probability proportional to wab and output its subgradient scaled by W/wab subgradient

this yields a stochastic subgradient oracle g̃(x) with E
∥∥g̃(x)

∥∥2

2
= O(

∑
(a,b)∈E

wab
W

((W/wab) ·
wab)

2) = O(W 2). Consequently, by Theorem 150 setting R2 = O(|V |) we see that we can
compute z with g(z)−minx g(x) ≤ Wε in O(|v|ε−2). Thus, if we scaled g to make it [−1, 1]
valued the time to compute an ε-approximate solution would be O(|V |ε−2).

This shows that an explicit instance of minimum s-t cut does not highlight the efficacy of
the approach in this Part. Instantiating our algorithm naively would give an Õ(|E|·|V |5/3·ε−2)
to achieve additive error ε. Nevertheless, even for such an instance if instead we were simply
given access to the an EO time evaluation oracle for f , and the graph was desne, even in this
instance, without knowing the structure aprior we do not know how to improve upon the
O(EO · |V |5/3ε−2) time bound achieved in this Part (though no serious attempt was made
to do this). In short there may be a gap between explicitly given structured instances of
submodular functions and algorithms that work with general evaluation oracles as focused
on in this Part.

29.4 Certificates for Approximate SFM

The only certificate we know to prove that the optimum value of SFM is ≥ F is to show a
certain vector x lies in the base polyhedron. For example, one proof via Edmond’s Theorem
[68] is by demonstrating x ∈ Bf whose negative entries sum to ≥ F . The only way to do
this is via Carathedeory’s Theorem which requires n vertices of Bf , each of which requires
n function evaluations. For approximate SFM, one thought might to be to use approxi-
mate Caratheodory’s Theorems [19, 194] to describe a nearby point x′. Unfortunately, for
ε-additive SFM approximation, one needs x′and x to be close in `1-norm and approximate
Caratheodory works only for `2-norm and higher. If one uses the `2-norm approximation,
then unfortunately one doesn’t get anything better than quadratic. More precisely, approx-
imate Caratheodory states that one can obtain ||x′ − x||2 ≤ δ with support of x′ being only
O(1/δ2)-sparse. But to get `1 approximations, we need to set δ = ε

√
n leading to linear

sized support for x′. The approximate Caratheodory Theorems are tight [194] for general
polytopes. Whether one can get better theorems for the base polyhedron is an open question.

29.5 Pseudocodes for Our Algorithms

We provide guiding pseudocodes for our two algorithms.
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Algorithm 1 Near Linear Time Exact SFM Algorithm.

Initialization.

• x(1) def
= 0n

• Evaluate g(1) is the Lovasz subgradient at x(1). (Takes O(n · EO) time. Store as
(coordinate, value) pair in set S(1). |S(1)| ≤ 3M. )

• Store x(1) in a balanced Binary search tree. At each node store the value that is the
sum of the gradient coordinates corr. to children in the tree. (Takes O(n) time to
build.)

• Set T
def
= 20nM2. Set η

def
=
√
n

18M
.

For t = 1, 2, . . . , T :

• Define e(t) which is non-zero in coordinates corresponding to S(t): (Takes time |S(t)| ≤
3M .)

– if g
(t)
i > 0, then e

(t)
i = min(x

(t)
i , ηg

(t)
i )

– if g
(t)
i < 0, then e

(t)
i = max(x

(t)
i − 1, ηg

(t)
i )

• Update(x(t), e(t), S(t)) to get (x(t+1), g(t+1), S(t+1)) where g(t+1) is stored as coordi-
nate,value pairs in S(t+1). as described in Lemma 157. (Update takes time O(M log n+
M · EO +M · EO log n))

Obtain the O(n) sets given the order of xT , that is, if P is the permutation corresponding
to xT , then the sets are {P [1], . . . , P [n]}. Return the minimum valued set among them.

173



Algorithm 2 Subquadratic Approximate SFM Algorithm.

Initialization

• Set N
def
= 10n log2 nε−2, T =

⌈
n1/3

⌉
• Initialize x as the all zeros vector and store it in a BST.

For i = 1, 2, . . . N/T :

• x(1) def
=the current x.

• Compute g(1), the gradient to the Lovasz extension given x(1). //This takes O(nEO)
time).

• Sample z(1) by picking j ∈ [n] with probability proportional to
∣∣∣g(1)
j

∣∣∣ and returning

z(1) def
=
∥∥g(1)

∥∥
1
sign(g

(1)
j ) · 1j. //This takes O(nEO) time.

• Set g̃(1) def
= z(1).

• For t = 1, 2, . . . , T :

– Define e(t) as in Algorithm 1 using g̃(t) instead of g(t). //This takes time
O(supp(g̃(t))) which will be O(t2)

– Obtain z(t) using Sample(x(t), e(t), ` = t) where Sample is the randomized pro-
cedure describe in Lemma 159. //This takes O(t2EO log n) time.

– Update g̃(t+1) def
=
∑

s≤t z
(s). //This takes O(t2 log n) time to update the relevant

BSTs.

• Set current x to xT .

Obtain the O(n) sets given the order of the final x, that is, if P is the permutation corre-
sponding to x, then the sets are {P [1], . . . , P [n]}. Return the minimum valued set among
them.
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Part VI

Tight Algorithms for Vertex Cover
with Hard Capacities on Multigraphs
and Hypergraphs
No coauthor for this Part.

30 Introduction

The minimum vertex cover problem is one of the earliest NP-hard problems studied in
combinatorial optimization. In its most basic form, given a graph G = (V,E) we are asked
to find a subset U ⊆ V , called vertex cover, so that every edge e ∈ E intersects U in at
least one of its two endpoints. The objective is to minimize the size of U . Curiously, despite
decades of efforts the best known algorithms for this problem are the 2-approximation which
can either be done by LP relaxation or a simple greedy procedure. The minimum vertex cover
problem lends itself to a natural generalization to f -hyergraphs where an edge e ∈ E can
have as many as f endpoints. It is not a difficult matter to generalize the 2-approximation to
f -approximation for this version. The seminal result of Khot showed that these algorithms
are in fact optimal assuming the Unique Game Conjecture (UGC) [154].

Chuzhoy and Naor [46] initiated the study of vertex cover with hard capacity constraints
(VCHC) where we have a capacity of kv ≥ 0 for each v ∈ V and (a copy of) v can cover
at most kv of its incident edges. The objective is still to minimize the size of the vertex
cover found. They gave a natural LP relaxation for VCHC from which a 3-approximation
is derived via randomized rounding for graphs with no multiple edges. Their analysis is
based on Chebyshev inequality. Subsequently Gandhi et al. [98] improved this to a tight 2-
approximation by using Chernoff in place of Chebyshev with a much more involved analysis.
Both of these algorithms fail to work for multigraphs (graphs possibly with multiple edges) or
hypergraphs essentially because in such cases the random variables in their analyses become
unbounded and standard concentration inequalities do not apply.

Progress had been stagnated until Saha and Khuller gave a min{6f, 65} approximation
for VCHC on hypergraphs [228]. Their idea is to apply randomized rounding for random
variables at different scales to salvage Chernoff. Partly inspired by their result, Cheung, Goe-
mans and Wong (CGW) surprisingly gave simple deterministic rounding algorithms which
achieve significantly better approximation ratios of 2.155 (for graphs) and 2f [40]. Their
method is to formulate the coverage requirement of randomized rounding, used in all previ-
ous works, in terms of another LP and study the property of its extreme point solutions. In
other words, their approach is a 2-stage LP rounding procedure which solves the same LP
relaxation followed by the “coverage requirement LP”.
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30.1 Our contribution

We propose a new simple approach to the problem based on iterative rounding without using
new LPs. Our algorithm achieves the best possible approximation ratio f and essentially
settles its approximability. Our approach is inspired by ideas used in previous works, most
notably CGW which considers an extreme point solution to certain covering LPs. In hind-
sight their method suggested the possibility of a better approximation obtained by iterative
rounding, which often exploits the structure of extreme point solutions. We also show that
when combined with iterative rounding, CGW approach can be extended to give another
f -approximation. Although more contrived, this alternate algorithm may be preferred as
it involves iteratively rounding the solution to so-called covering LPs, which can be solved
faster than general LPs using dedicated algorithms [222].

Authors
approx. ratio

(graphs, hypergraphs)
multigraphs and hypergraphs okay?

Chuzhoy, Naor [46] 3, * no
Gandhi et al. [98] 2, * no

Saha, Khuller [228] 12, min{6f, 65} yes
Cheung, Goemans, Wong [40] 2.155, 2f yes

This work, [146] 2, f yes

30.2 Other related works

Prior to the work of Chuzhoy and Naor [46] which initiated the study of vertex cover with
hard capacity constraints, Guha et al. [114] resolved the problem with soft capacity con-
straints (where a vertex can be used an arbitrary number of times) using a clever primal-dual
algorithm. Notably, their result holds even for the weighted setting whereas the hard ca-
pacity version is as hard as set cover in the weighted case and an approximation ratio of
O(log n) is optimal [46]. Using dependent randomized rounding, another 2-approximation
for the soft capacity version was given by Gandhi et al. [99].

31 Preliminaries

Let G = (V,E) be a multigraph. We write u ∈ e to indicate that u is an endpoint of edge
e ∈ E.

The minimum Vertex Cover problem with Hard Capacity constraints (VCHC) is specified
by (V,E, k,m), where

• G = (V,E) is the input multigraph,

• For each v ∈ V , mv denotes the maximum number of copies of v one can select,

• For each v ∈ V , kv is the number of incident edges (a copy of) v can cover.
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A solution to VCHC consists of (x, y) = ({xv}v∈V , {y(e, v)}e∈E,v∈e). Here xv is the number
of copies of vertex v selected, and the assignment variable y(e, v) ∈ {0, 1} represents whether
edge e is covered by v, for each e ∈ E and v ∈ e. A solution (x, y) is feasible for VCHC if

1. For all v ∈ V : xv ∈ {0, 1, · · · ,mv},

2. For all e ∈ E:
∑

v∈e y(e, v) = 1 (i.e. any edge must be covered by one of its endpoints),

3. For all v ∈ V : |{e : y(e, v) = 1}| ≤ kvxv (i.e. the total number of edges assigned to v
does not exceed its total capacity).

The objective of VCHC is to find a feasible solution (x, y) for VCHC that minimizes
∑

v∈V xv,
the size of the vertex cover. As VCHC generalizes the classical minimum vertex cover problem
which is already NP-hard, we provide efficient algorithms for finding good approximate
solutions. Our approach is based on rounding a fractional solution to the following LP1
relaxation, which has been used extensively in the literature [46, 98, 228, 40].

min
∑
v∈V

xv

s.t.
∑
v∈e

y(e, v) = 1 ∀e ∈ E (31.1a)

y(e, v) ≤ xv ∀e ∈ E, v ∈ e (31.1b)∑
e∈δ(v)

y(e, v) ≤ kvxv ∀v ∈ V (31.1c)

xv ≤ mv ∀v ∈ V (31.1d)

x, y ≥ 0 (31.1e)

Here xu denotes the number of copies of u selected and y(e, v) indicates whether e is covered
by v. The first constraint says that each e ∈ E should be covered by one of its endpoints,
the second ensures that e can be covered by a vertex selected, and the third is the capacity
constraint.

The following lemma shows that, when constructing a feasible solution to VCHC, we
only need the integrality of x, and not of y. This follows easily by the integrality of flows in
networks with integer capacities. We refer readers to [46, 228] for a proof.

Lemma 167 (Chuzhoy and Naor [46], generalized to hypergraphs by Saha and Khuller
[228]). If (x, y) is feasible for LP1, and x is integral, there exists an integral y′ such that
(x, y′) is feasible for LP 31.1, and y′ can be found efficiently by a maximum flow computation.

In light of this lemma, it suffices to identify a feasible integral solution x with a good
approximation guarantee.

32 f-approximation for VCHC on f-hypergraphs

Let (x∗, y∗) be an optimal extreme point solution to LP1, and U = {u ∈ V : x∗u ≥ 1/f}.
A natural idea used in all previous works is round up u ∈ U which involves only a factor f
blowup, and select judiciously a subset of W = {w ∈ V : 0 < x∗w < 1/f}.
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Covering tight edges Our iterative rounding scheme18 is based on the observation that a
tight edge e ∈ δ(u) with y(e, u) = xu ≥ 1/f can be rounded up while respecting the capacity
constraint. This follows from the capacity constraint used in the LP1 where R.H.S. is kuxu.
Therefore we may effectively remove e from the LP by covering e with u and decreasing
ku by 1, and solve the new smaller LP relaxation. A similar argument was used in the
(non-iterative) rounding algorithms in [46, 98].

Nevertheless, one complication arises as any x∗u ≥ 1/f can in principle drop below 1/f
in later iterations of the algorithm and end up not being selected, i.e. xu = 0 in the final
solution. In this case covering e by u is not justified. Here we introduce the constraint
1/f ≤ xu to the rescue. It ensures that any u with x∗u ≥ 1/f will stay above 1/f ever after.

Fixing x∗u = 1/f To further simplify the LP, we observe that any x∗u = 1/f can be
readily rounded up and removed from the LP. In terms of cost this is a good idea as the
approximation ratio incurred is exactly f , meaning that we are not being lossy. Moreover,
it ensures that any edge would always have an endpoint in U (see Lemma 171) which is
important when we bound the approximation ratio by exploiting the structure of the extreme
point solution in the proof of Lemma 172. The idea of examining an extreme point solution
was inspired by [40].

Modified LP relaxation We incorporate these insights into LP2 below. LP2 resembles
the form of LP1 with a few important modifications. The first constraint involves ȳ(e, v)
which is the coverage of v towards e in the final solution. This is a result of fixing x∗u = 1/f
as discussed above. The third constraint has ku−|Tu| in place of ku; here |Tu| is the number
of tight edges covered by u so we simply subtract |Tu| from the capacity ku. The fourth
constraint now sums over only non-tight edges as any tight edges have already benn covered
by its endpoint in U . Finally a new constraint xu ≥ 1/f is introduced to ensure that
x∗u ≥ 1/f cannot drop below 1/f . The last new constraint xw ≤ 1/f is, strictly speaking,
not needed but is included to simplify our exposition.

18See e.g. [171] for the background on iterative rounding which was introduced by Jain [138].

178



min
∑
v∈V \D

xv

s.t.
∑
v∈e\D

y(e, v) = 1−
∑
v∈e∩D

ȳ(e, v) ∀e ∈ E\T (32.1a)

y(e, v) ≤ xv ∀e ∈ E\T, v ∈ e\D (32.1b)∑
e∈δ(u)\T

y(e, u) ≤ (ku − |Tu|)xu ∀u ∈ U> (32.1c)

∑
e∈δ(w)\T

y(e, w) ≤ kwxw ∀w ∈ W (32.1d)

1/f ≤ xu ≤ mu ∀u ∈ U> (32.1e)

0 ≤ xw ≤ 1/f ∀u ∈ W (32.1f)

y ≥ 0 (32.1g)

Algorithm We adopt the following notations:

• U = {u ∈ V : x∗u ≥ 1/f}, W = {w ∈ V : 0 < x∗w < 1/f}, Z = {z ∈ V : x∗z = 0}.

• Further divide U into U> = {u ∈ U : x∗u > 1/f} and U= = {u ∈ U : x∗u = 1/f}.

• T =
⋃
u∈V Tu is a disjoint union of edges e ∈ Tu covered by u ∈ V . We call T the set

of tight edges.

• D ⊆ V is the set of vertex v whose x̄v has been determined.

Our algorithm is based on performing iterative rounding on LP2. It incrementally builds up
a feasible solution (x̄, ȳ) to VCHC for which x̄ is integral.

Algorithm 3 Iterative Rounding Algorithm for VCHC

Solve LP1 for an extreme point solution (x∗, y∗). Initially Tu = ∅ and D = ∅; initialize
U,U>, U=,W, Z based on (x∗, y∗). repeat

for v ∈ Z do
set x̄v = x∗v = 0, ȳ(e, v) = y∗(e, v) = 0 for e ∈ δ(v) D ←− D ∪ {v}

end
if y∗(e, u) = x∗u for some u ∈ U and e ∈ δ(u)\T then

set ȳ(e, u) = 1, ȳ(e, v) = 0 for v ∈ e\{u} Tu ←− Tu ∪ {e}
end
for u ∈ U= do

set x̄u = 1, ȳ(e, u) = y∗(e, u) for e ∈ δ(u)\T D ←− D ∪ {u}
end
Solve updated LP2 for a new extreme point solution (x∗, y∗). Update U,U>, U=,W, Z
based on (x∗, y∗).

until U= = Z = ∅ and y∗(e, u) < x∗u∀u ∈ U, e ∈ δ(u)\T ;
For v /∈ D, set x̄v = dx∗ve and ȳ(e, v) = y∗(e, v) for e ∈ δ(v)\T
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Analysis The algorithm works mostly by design. First we demonstrate feasibility.

Lemma 168. Suppose a vertex u satisfies x∗u ≥ 1/f at some time during the execution of
the algorithm. We must then have x∗u ≥ 1/f after so long as u /∈ D. Moreover, in the final
solution x̄u ≥ 1.

Proof. As soon as x∗u ≥ 1/f , we either have u ∈ U= or u ∈ U>. In the former case, u
is immediately inserted into D (line 13) and x̄u = 1. In the latter case the constraint
xu ≥ 1/f ensures x∗u ≥ 1/f ever after. Eventually we either have u ∈ U= (so x̄u = 1) or
x̄u = dx∗ue ≥ d1/fe ≥ 1.

Lemma 169. The final solution (x̄, ȳ) is feasible with x̄ integral.

Proof. The fact that x̄ is integral simply follows from the description of the algorithm.
We first argue that all edges are covered. For tight edges e ∈ T , we must have set

ȳ(e, u) = 1 for some u ∈ U at some point (line 8) so e is covered by u. For non-tight edges
e /∈ T , when the algorithm terminates we have∑

v∈e\D

ȳ(e, v) =
∑
v∈e\D

y∗(e, v) = 1−
∑
v∈e∩D

ȳ(e, v)

so e is indeed covered.
It remains to argue that the capacity constraint is satisfied. Lines 3-6 and 11-14 are

clearly okay. For Lines 7-10, by Lemma 168 any u ∈ U satisfies x̄u ≥ 1 so we may simply
set ȳ(e, u) = 1 and subtract 1 from the capacity ku in the LP. This is exactly why we have
(ku − |Tu|)xu in the third type of constraints.

Now we bound the approximation ratio. Our argument consists of two ingredients. The
first is to observe that an edge e /∈ T always intersects U as only vertices with xv ≤ 1/f is
put into D. The second, which is much more crucial, exploits the structure of an extreme
point solution to show that there cannot be too many fractional x∗w left at the end of the
while loop.

Lemma 170. In line 15 of the algorithm, the old (x∗, y∗) (from before this line but restricted
to only the variables appearing in updated LP2) is still feasible for updated LP2.

Proof. Clear by inspection.

Lemma 171. When the algorithm terminates, for any e /∈ T we have
∑

v∈e\D x
∗
v ≥

∑
v∈e\D y

∗(e, v) ≥
|e\D|/f .

Proof. Note that vertices are assigned to D in Lines 3-6 and 11-14, where we have x∗v ∈
{0, 1/f} (note that this x∗v is the one from that particular iteration of the algorithm and not
necessarily the final one). Therefore ȳ(e, v) = y∗(e, v) ≤ x∗v ≤ 1/f , which implies∑

v∈e\D

x∗v ≥
∑
v∈e\D

y∗(e, v) = 1−
∑
v∈e∩D

ȳ(e, v) ≥ 1− |e ∩D|/f ≥ |e\D|/f,

where the last inequality follows from |e| ≤ f .
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Now we show that there cannot be too many elements in W by a simple counting argu-
ment based on examining the extreme point.

Lemma 172. When the algorithm terminates, |W | ≤ |U=| where U= := {u ∈ U : x∗u = mu}.

Proof. As an extreme point solution, (x∗, y∗) is obtained by setting some of the constraints
as equalities. We call these constraints, which form an invertible matrix, tight. The proof
is based on examining the structure and number of these tight constraints.

First note that 0 ≤ xw ≤ 1/f and 1/f ≤ xu cannot be tight since U= = Z = ∅. Similarly,
y(e, u) ≤ xu for u ∈ U cannot be tight since no more edges can be added to T . Furthermore,
we disregard any edge e ⊆ D since all of its y(e, v) has been determined.

Observe that by the last lemma each edge e /∈ T (with e\D 6= ∅) must have an x∗v ≥
y∗(e, v) ≥ 1/f . In other words, 1 + |e ∩W | ≤ |e\D|.

Below we count the number of tight constraints of different types. The first, second and
third in the table are self-explanatory.

For the fourth one in the table there is a total of
∑

e/∈T |e ∩W | + |W | such constraints
but we claim that only

∑
e/∈T |e ∩ W | can be tight. This follows from the fact that for

each w ∈ W , setting all of the 1 + |δ(w)\T | corresponding constraints tight would give a
singular system. More precisely, this would give xw = y(e, w) = 0 which renders setting
the constraint

∑
e∈δ(w)\T y(e, w) ≤ kwxw tight unnecessary. In other words, including all of

these constraints would give rise to a singular matrix. Thus the total number is at most∑
w |δ(w)\T | =

∑
e/∈T |e ∩W |.

For the fifth one, by Lemma 171 each edge e /∈ T (with e\D 6= ∅) must satisfy x∗v ≥
y∗(e, v) ≥ 1/f for some v ∈ e. Therefore at least one of the |e ∩ U>| constraints y(e, u) ≥ 0
is not tight.

constraints #tight ones∑
v∈e\D y(e, v) = 1−

∑
v∈e∩D ȳ(e, v) = |E\T |∑

e∈δ(u)\T y(e, u) ≤ (ku − |Tu|)xu ≤ |U>|
xu ≤ mu = |U=|

y(e, w) ≤ xw, y(e, w) ≥ 0 and
∑

e∈δ(w)\T y(e, w) ≤ kwxw (w ∈ W ) ≤
∑

e/∈T |e ∩W |
y(e, u) ≥ 0 (u ∈ U>) ≤

∑
e/∈T |e ∩ U>| − 1

Now the number of tight constraints is at most

|E\T |+ |U>|+ |U=|+
∑
e/∈T

(|e ∩W |+ |e ∩ U>| − 1) = |E\T |+ |U>|+ |U=|+
∑
e/∈T

(|e\D| − 1)

=
∑
e/∈T

|e\D|+ |U>|+ |U=|.

On the other hand, the number of variables is |U>| + |W | +
∑

e/∈T |e\D|. Since there is
an equal number of tight constraints and variables, we have |W | ≤ |U=|.

We are ready to derive our main theorem.

Theorem 173. Our algorithm is a f -approximation.
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Proof. Feasibility follows from Lemmas 169 and 167. We bound the approximation ratio.
By Lemma 170 the old (x∗old, y

∗
old) is still feasible for the updated LP so the objective value

of the new (x∗new, y
∗
new) is no worse:

cost(x∗new, y
∗
new) =

∑
v∈V \Dnew

x∗new,v ≤
∑

v∈V \Dnew

x∗old,v = cost(x∗old, y
∗
old)−

∑
v∈Uold,=∪Z

x∗old,v

which says that the cost |Uold,=| incurred to round up vertex in Uold,= can be charged to∑
v∈Uold,=∪Z x

∗
old,v = |Uold,=|/f with a factor f blowup.

For the last (x∗last, y
∗
last), the cost of rounding up the remaining x̄v = dx∗last,ve is

|W |+
∑
u∈U=

mu +
∑

u∈U\U=

dx∗last,ue ≤ |U=|+
∑
u∈U=

mu +
∑

u∈U\U=

dx∗last,ue

≤ f

∑
u∈U=

mu +
∑

u∈U\U=

x∗last,u


= f · cost(x∗last, y

∗
last),

where we used Lemma 172 and mu ≥ 1, f ≥ 2, x∗last,u ≥ 1/f . This proves the theorem.

32.1 Implementation using only the original LP

It is possible to implement a similar algorithm without appealing to LP2, which essentially
introduces the new constraint xu ≥ 1/f . Without them previous u ∈ U may fall into W and
u may not be selected in the final solution, in which case setting ȳ(e, u) = 1 for y∗(e, u) = x∗u
is not justified as u does not have the capacity to cover e.

The key idea is to continuously move from the old optimum to the new one. More
concretely, consider moving along the line from (x∗old, y

∗
old) to (x∗new, y

∗
new). We stop whenever

x∗v = 1/f at an intermediate point (x∗, y∗), where we perform lines 11-14 by fixing xv = 1
and y(e, u) = y∗(e, u), and solve the updated LP again. If we arrive at (x∗new, y

∗
new) without

stopping, then we perform lines 7-10 by covering any tight edge y∗(e, u) = x∗u ≥ 1/f using
u, i.e. removing e from the LP and decreasing ku by 1; and solve the updated LP again (one
can also eliminate Z which, as with the previous approach, is only introduced to simplify
the exposition). If none of these operations are possible, then we are at an extreme point
where the same proof would show that rounding up the remaining vertices would give a
f -approximation.

Readers can easily make the previous proof work for this new implementation. We refrain
from giving a proof because in the next section, we would give a faster implementation using
this idea on another LP with a full proof.

33 Faster Implementation via Solving Covering LPs

The approach in the previous section essentially redistributes the coverage relation y(e, v)
and cost xv from one iteration to the next. Upon a closer examination, readers may have
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noticed that the constraint y(e, w) ≤ xw for w ∈ W plays a relatively smaller role. One may
wonder if there could a faster implementation without solving LP2 again. We answer this in
the affirmative in this section. This alternate approach performs iterative rounding on LP3,
which is a packing LP and can be solved faster using various specialized algorithms. The
formulation of LP3 has been heavily inspired by a similar construction in [40].

33.1 LP relaxation and algorithm

In this section we use the same notations U,U>, U=,W, Z as before. Our covering LP3 is as
follows:

min
∑
w∈W

xw +
∑
u∈U>

xu

s.t.
∑
w∈W

M(u,w)xw + (ku − |Tu|)xu ≥
∑
w∈W

M(u,w)x∗w +
∑

e∈δ(u)\T

y∗(e, u) ∀u ∈ U>

(33.1a)

0 ≤ xw ≤ 1/f ∀w ∈ W
(33.1b)

1/f ≤ xu ≤ mu ∀u ∈ U>
(33.1c)

where

M(u,w) =
∑

e∈Eu∩δ(w)

y∗(e, w)

x∗w
.

Redistributing coverage At the high level, LP3 is based on doing book-keeping of how
edges δ(u) incident to u ∈ U are covered. It attempts to redistribute the coverage by
maintaining the proportion of capacity used for different y(e, w)’s (for a given w). While an
edge e can have more than one endpoint in U , we simply arbitrarily assign e to one such u
so that Eu is the collection of edges assigned to u.

For w ∈ W we distribute its capacity in the same proportion as before (hence step 4(a)
and the definition of M(u,w); see also Lemma 176). The coverage y(e, u) for e ∈ Eu would
then be the remaining amount not yet covered. However this amount can become negative
if the other endpoints of e in W contribute more than before towards covering e. Similarly,
if they contribute much less now y(e, u) can become larger than xu.

The key idea is to slowly move from an old solution (x∗, y∗) to the new
(x∗new, y

∗
new), and stop whenever any of these desired conditions is about to fail

(step 5). At this point we may simplify the solution by appropriately modifying x, y.
The algorithm is as follows. Readers should recognize the resemblance to the previous

one, except with the notable difference that we need to ensure y(e, u) ≥ 0 in addition to
xu ≥ 1/f and y(e, u) ≤ xu (pardon us for not using the algorithm environment here as it
would clutter the longer description).
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Iterative Rounding Algorithm using Covering LPs

1. Solve LP1 for an extreme point solution (x∗, y∗). Initially Tu = ∅ and D = ∅;
initialize U,U>, U=,W, Z based on (x∗, y∗).

2. For v ∈ Z, set x̄v = x∗v = 0, ȳ(e, v) = y∗(e, v) = 0 for e ∈ δ(v) and D ←− D ∪ {v}.

3. Partition edges into a disjoint union E\T =
⋃
u∈U Eu by assigning e /∈ T to an

arbitrary Eu where u ∈ e ∩ U .

4. Solve updated LP3 for an extreme point solution x∗new and set

(a) y∗new(e, w) = y∗(e,w)
x∗w

x∗new,w for w ∈ W, e ∈ δ(w)\T

(b) y∗new(e, u) = y∗(e, u) +
∑

w∈e∩W (y∗(e, w)− y∗new(e, w)) for u ∈ U, e ∈ Eu
(c) y∗new(e, u) = y∗(e, u) for u ∈ U, e /∈ Eu ∪ T

5. Let xt = (1− t)x∗+ tx∗new and yt = (1− t)y∗+ ty∗new, where t continuously increases
from 0 to 1. Stop whenever:

(a) yt(e, u) = xtu for u ∈ U and e ∈ δ(u)\T . Set ȳ(e, u) = 1, ȳ(e, v) = 0 for v ∈ e\{u}
and Tu ←− Tu ∪ {e}.

(b) xtv = 1/f for some v. Set x̄u = 1, ȳ(e, u) = y∗(e, u) for e ∈ δ(u)\T and
D ←− D ∪ {u}.

(c) yt(e, u) = 0 for u ∈ U and e ∈ δ(u)\T . Set ȳ(e, u) = 0 and e←− e\{u}.

6. Update U,U>, U=,W, Z based on (x∗, y∗)←− (xt, yt).

7. Repeat steps 2-7 until no more updates are possible (reaching x∗new without stop-
ping).

8. For v /∈ D, set x̄v = dx∗ve and ȳ(e, v) = y∗(e, v) for e ∈ δ(v)\T .

First we show that our algorithm is well-defined. Interestingly, this is analogous to
Lemma 171 which is used to establish approximation guarantee instead.

Lemma 174. We have
∑

v∈e\D x
∗
v ≥

∑
v∈e\D y

∗(e, v) ≥ |e\D|/f . In particular, there is
some u ∈ e ∩ U so step 3 of the algorithm is well-defined.

Proof. Note that vertices are assigned to D in steps 2 and 5(b), where we have x∗v ≤ 1/f .
Therefore ȳ(e, v) = y∗(e, v) ≤ x∗v ≤ 1/f , which implies∑

v∈e\D

x∗v ≥
∑
v∈e\D

y∗(e, v) = 1−
∑
v∈e∩D

ȳ(e, v) ≥ 1− |e ∩D|/f ≥ |e\D|/f,

where the last inequality follows from |e| ≤ f .

Now we argue for feasibility. As before, any x∗u ≥ 1/f would stay above 1/f which is
necessary to cover tight edges in step 5(a).
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Lemma 175. Suppose u satisfies x∗u ≥ 1/f at some time during the execution of the algo-
rithm. We must then have x∗u ≥ 1/f after so long as u /∈ D. Moreover, in the final solution
x̄u ≥ 1.

Proof. Any such x∗u cannot drop below 1/f thanks to step 5(b) of the algorithm, and would
be rounded up eventually.

We justify the capacity constraint in the next lemma, which goes hand-in-hand with the
way LP3 is formulated.

Lemma 176. (x∗, y∗), (x∗new, y
∗
new), (xt, yt) satisfy the capacity constraint

∑
e∈δ(w)\T y(e, w) ≤

kwxw for w ∈ W and
∑

e∈δ(u)\T y(e, u) ≤ (ku − |Tu|)xu for u ∈ U .

Proof. We proceed by induction.
For w ∈ W , we have

∑
e∈δ(w)\T y

∗
new(e, w) =

∑
e∈δ(u)\T

y∗(e,w)
x∗w

x∗new,w ≤ kwx
∗
new,w since by

the induction hypothesis we have
∑

e∈δ(w)\T y
∗
new(e, w) ≤ kwx

∗
w. Now (xt, yt) (and therefore

the new (x∗, y∗)) also satisfy the capacity constraint since it is a convex combination of
(x∗, y∗), (x∗new, y

∗
new).

For u ∈ U , we have

∑
e∈δ(u)\T

y∗new(e, u) =
∑
e∈Eu

[
y∗(e, u) +

∑
w∈e∩W

(y∗(e, w)− y∗new(e, w))

]
+

∑
e/∈Eu∪T

y∗(e, u)

=
∑

e∈δ(u)\T

y∗(e, u) +
∑

w∈e∩W

(
y∗(e, w)− y∗(e, w)

x∗w
x∗new,w

)
≤ (ku − |Tu|)x∗new,u

where the last inequality follows from the first constraint of LP3. Hence (x∗new, y
∗
new) satisfies

the capacity constraint for u ∈ U , and so is (xt, yt) since it is a convex combination of
(x∗, y∗), (x∗new, y

∗
new).

Finally, for the new (x∗, y∗) note that Tu may have changed in size but this is okay by
design since (ku − |Tu|)xtu changes exactly by (#new elements in Tu) · xtu.

Lemma 177. The final solution (x̄, ȳ) is feasible with x̄ integral.

Proof. The fact that x̄ is integral simply follows from the description of the algorithm. The
capacity constraints are satisfied by Lemma 176 and the fact that any u ∈ U would be
rounded up to x̄u ≥ 1 eventually (Lemma 175) and therefore can pay for covering the tight
edges Tu.

The other constraints 0 ≤ xv ≤ mv, y ≥ 0 are guaranteed by step 5 of the algorithm
where we stop at (xt, yt) before they can be violated.

Finally we prove the approximation guarantee, which again mostly follows from examin-
ing the structure of an extreme point solution.

Lemma 178. When the algorithm terminates, |W | ≤ |U=| where U= := {u ∈ U : x∗u = mu}.
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Proof. This is very similar to the previous proof. Note that the number of variables is
|W | + |U |. On the other hand, 0 ≤ xw ≤ 1/f and xu ≥ 1/f cannot be tight. The number
of tight constrains xu ≤ mu is |U=| while there can be at most |U | tight first covering
constraints. So |W | ≤ |U=|.

Theorem 179. Our algorithm is a f -approximation.

Proof. This is very similar to Theorem 173. The cost of rounding up intermediate xtv = 1/f
incurs a factor of f . Since (x∗, y∗) is feasible by design and Lemma 176, it remains to show
that the last step incurs a factor of at most f . The same inequality in the proof of Theorem
173 works.

34 Even Faster Implementation for Graphs (f = 2)

For the case of graphs f = 2 we may in fact drop the variables xu from LP3 altogether.
This is exactly the same covering LP used in CGW’s two-stage rounding algorithm. In this
section we show that by performing iterative rounding while moving from old to new optima,
their algorithm actually achieves a 2-approximation for graphs.

In our opinion, this approach nicely explains why the randomized rounding scheme in [98]
would work. The algorithm of [98] gives a 2-approximation for VCHC on simple graphs by
essentially rounding LP2 via a simple randomized rounding and performing some patching
work after. However, a drawback of their work is that the analysis involves many pages of
calculations and gives little insights into why the algorithm would give a 2-approximation.

In a way, their argument is a probabilistic proof that a 2-approximate solution exists for
LP4, and our one-page analysis can be viewed as a simple deterministic proof of that claim.

LP relaxation Instead of LP3, we use the following simpler LP4:

min
∑
w∈W

xw

s.t.
∑
w∈W

M(u,w)xw ≥
∑
w∈W

M(u,w)x∗w ∀u ∈ U (34.1a)

0 ≤ xw ≤ 1 ∀w ∈ W (34.1b)

where

M(u,w) =
∑

e=uw∈E\T

y∗(e, w)

x∗w
.

We first give an overview of the algorithm. The algorithm is mostly a specialization of
the previous one to f = 2 but the constraint xu ≥ 1/2 is now redundant as an edge cannot
have both endpoints in W for graphs. One crucial difference in the algorithm is that we are
rounding up y∗(e, u) whenever y∗(e, u) · (dx∗ue/x∗u) ≥ 1 (rather than just when x∗u = y∗(e, u)).
This is still okay as the final capacity is kudx∗ue so we can blow up the coverage by a factor
of dx∗ue/x∗u.
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As for the analysis, to bound the cost of the extreme point solution it is not enough to
use only a cardinality inequality like |W | ≤ |U=|. Instead we need a finer matching structure
between U and W that was also used by CGW.

Our algorithm is as follows. Unlike before, we never redefine or update U and W .

Iterative Rounding Algorithm using Simpler Covering LPs for Graphs

1. Solve LP1 for x∗, y∗. Let T = ∅.

2. For any u ∈ U and e ∈ δ(u)\T satisfying y∗(e, u) · (dx∗ue/x∗u) ≥ 1, set T ←− T ∪ {e}.

3. Solve updated LP4 for an extreme point optimum x∗new.

4. Consider xt = (1− t)x∗ + tx∗new, where t continuously increases from 0 to 1. Let

yt(e, w) =
y∗(e, w)

x∗w
xtw, yt(e, u) = 1− yt(e, w) ∀e = uw ∈ (U ×W )\T

5. Stop whenever yt(e, u) · (dx∗ue/x∗u) = 1 for some u ∈ U and e ∈ (U × W )\T , set
T ←− T ∪ {e}.

6. Update M(u,w) with (x∗, y∗)←− (xt, yt). Repeat steps 3-6.

7. If t = 1 (i.e. no pair (e, u) satisfies the condition in step 5 for any intermediate t),
output x̄v = dx∗ve with a corresponding y defined by

ȳ(e, u) = y∗(e, u), ȳ(e, v) = y∗(e, v) ∀e /∈ T

ȳ(e, u) = 1, ȳ(e, v) = 0 ∀e = uw ∈ T, u ∈ U,w ∈ W

One difference is that we are rounding up y∗(e, u) whenever y∗(e, u) · (dx∗ue/x∗u) ≥ 1
(rather than just when x∗u = y∗(e, u)). This is still okay as the final capacity is kudx∗ue so we
can blow up the coverage by a factor of dx∗ue/x∗u. Curiously this modification is needed to
handle the case 1 < x∗u ≤ 2 when bounding the approximation ratio.

The feasibility of the algorithm is largely the same as before so we skip the proof (in fact,
it is more like an easier special case). To bound the cost of the extreme point solution, it is
not enough to use only a cardinality inequality like |W | ≤ |U=| (one fact, now one does not
have this but |W | ≤ |U |). Instead we need a finer matching structure between U and W as
given in Lemma 181.

Lemma 180. (x̄, ȳ) is a feasible solution to VCHC.

Proof. Similar to Lemmas 176 and 177.

Lemma 181 (Similar to Theorem 3.2 of [40]). For any extreme point solution x∗ to LP4,
let Wf = {w ∈ W : 0 < x∗w < 1}. Then there exists a matching between Wf and U that fully
matches Wf .
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Proof. Fractional x∗w can only arise from setting |Wf | covering constraints
∑

w∈W M(u,w)xw ≥∑
w∈W M(u,w)x∗w tight. Consider the system of equations Ax = b obtained from setting

these |Wf | constraints tight. Note that A is |Wf | × |Wf | with the rows and columns indexed
by |U | and |Wf | respectively. A is invertible so

detA =
∑

permutation π

(
±
∏
i

ai,π(i)

)
6= 0

which implies that there is a permutation with all ai,π(i) 6= 0. Such a permutation gives our
desired matching since nonzero entries of A corresponds to M(u,w) 6= 0 in which case uw is
an edge.

Theorem 182. (x̄, ȳ) is a 2-approximation.

Proof. The cost of U and xv = 0 clearly incurs a factor 2 blowup only. We need to account
for the cost of selecting Wf . Now that we don’t have |Wf | ≤ |U=|, we cannot naively charge
|Wf | to U=. However, we have a matching between Wf and U and it suffices to show that
for any edge e = uw in the matching,

dx∗ue+ 1 = dx∗ue+ dx∗we ≤ 2(x∗u + x∗w).

Note that we have 1 = y∗(e, u) + y∗(e, w) ≤ x∗u + x∗w and y∗(e, u) · (dx∗ue/x∗u) ≤ 1 (otherwise
step 5 would have applied). We have three cases:

• dx∗ue = 1. Then we are done.

• dx∗ue ≥ 3. Then dx∗ue+ 1 ≤ 2x∗u.

• x∗u + x∗w ≥ 1.5 and x∗u ≤ 2. Then dx∗ue+ 1 ≤ 3 ≤ 2(x∗u + x∗w).

• x∗u + x∗w ≤ 1.5 and 1 < x∗u ≤ 2, which cannot happen since 1 = y∗(e, u) + y∗(e, w) ≤
x∗u/2 + x∗w = x∗u + x∗w − x∗u/2 < 1.5− 1/2 = 1. Contradiction.

In hindsight, CGW came close but failed to obtain a 2-approximation because one does
not have x∗new,u + x∗new,w ≥ 1.

Open Problem

In this Part we have settled the approximability of VCHC. While it is UGC-hard to do
better [154], the current best NP-hardness inapproximability stands at f − 1 [59] and 1.36
for graphs [60]. Is there any hope of proving that it is NP-hard to beat f? In principle it
should be easier than doing it for vertex cover since VCHC is more general.
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Part VII

Network Design for s-t Effective
Resistance
This Part is based on joint works with Pak Hay Chan, Lap Chi Lau, Aaron Schild and Hong
Zhou. My contribution includes formulating the problem and being the main architect behind
an earlier O(log2n) approximation cycle-pushing algorithm which was later improved to a
constant factor approximation by my coauthors Lap Chi Lau and Hong Zhou.

35 Introduction

Network design problems are generally about finding a minimum cost subgraph that satis-
fies certain “connectivity” requirements. The most well studied problem is the survivable
network design problem [103, 2, 105, 139, 96], where the requirement is to have a spec-
ified number ru,v of edge-disjoint paths between every pair of vertices u, v. Other com-
binatorial requirements are also well studied in the literature, including vertex connectiv-
ity [162, 74, 36, 45, 169, 38] and shortest path distances [61, 58]. Some spectral requirements
are also studied, including spectral expansion [160, 5], total effective resistances [102, 214],
and mixing time [25], but in general much less is known about these problems. See Sec-
tion 35.1 for more discussions of previous work.

In this work, we study a basic problem in designing networks with a spectral requirement
– the effective resistance between two vertices.

Definition 183 (The s-t effective resistance network design problem). The input is an
undirected graph G = (V,E) where each edge e has a non-negative cost ce and a non-
negative resistance re, two specified vertices s, t ∈ V , and a cost budget k. The goal is to
find a subgraph H of G that minimizes ReffH(s, t) subject to the constraint that the total
edge cost of H is at most k, where ReffH(s, t) denotes the effective resistance between s and
t in the subgraph H with resistances re on the edges. See Section 36.2 for the definition of
effective resistance and Section 37.1 for a mathematical formulation of the problem.

The s-t effective resistance is an interpolation between s-t shortest path distance and s-t
edge connectivity. Let f ∈ R|E| be a unit s-t flow in an unweighted graph G and define the
`p-energy of f as Ep(f) := (

∑
e |fe|p)1/p. Let Ep(s, t) := minf{Ep(f) | f is a unit s-t flow}

be the minimum `p-energy of a unit s-t flow that the graph G can support. Thomson’s
principle (see Section 36.2) states that ReffG(s, t) = E2

2 (s, t), so that a graph of small s-t
effective resistance can support a unit s-t flow with small `2-energy. Note that the shortest
path distance between s and t is E1(s, t) (as the `1-energy of a flow is just the average path
length and is minimized by a shortest s-t path), and so a graph with small E1(s, t) has a
short path between s and t. Note also that the edge-connectivity between s and t is equal to
the reciprocal of E∞(s, t) (because if there are k edge-disjoint s-t paths, we can set the flow
value on each path to be 1/k), and so a graph with small E∞(s, t) has many edge-disjoint
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s-t paths. As `2 is between `1 and `∞, the objective function Reff(s, t) = E2
2 (s, t) takes both

the s-t shortest path distance and the s-t edge-connectivity into consideration.
A simple property suggests that `2-energy may be even more desirable than `1 and `∞

as a connectivity measure. Conceptually, adding an edge e to G would make s and t more
connected. For `1 and `∞, however, adding e would not yield a better energy if e does
not improve the shortest path and the edge connectivity respectively. In contrast, the `2-
energy would typically improve after adding an edge, and so `2-energy provides a smoother
quantitative measure that better captures our intuition how well s and t are connected in a
network.

Also, the effective resistance has a probabilistic interpretation as the expected commute
time between vertices in a random walk [37] (see Section 36.2), and is used as a distance
function in the study of social networks. Therefore, the effective resistance is a nice and
natural alternative connectivity measure in network design.

Thomson’s principle also states that the electrical flow between s and t is the unique flow
that minimizes the `2-energy. So, designing a network with small s-t effective resistance has
natural applications in designing electrical networks [71, 102, 137]. One natural formulation
is to keep at most k wires in the input electrical network to minimize Reff(s, t), so that the
electrical flow between s and t can still be sent with small energy while we switch off many
wires in the electrical network.

35.1 Our Results

Unlike the classical problems of shortest path and min-cost flow (corresponding to the `1 and
`∞ versions of the problem), we prove that the s-t effective resistance network design problem
is NP-hard, and is APX-hard assuming the small-set expansion conjecture [224, 225].

Theorem 184. The s-t effective resistance network design problem is NP-hard, even when
every edge has the same cost and the same resistance (ce = re = 1 for every edge e).

Theorem 185. Assuming the small-set expansion conjecture, it is NP-hard to approximate
the s-t effective resistance network design problem within a factor of 2 − ε for any ε > 0,
even when every edge has the same cost.

We also obtain some approximation algorithms for the problem. We analyze a natural
convex programming relaxation for the problem (Section 37.1), and use it to design a constant
factor approximation algorithm when every edge has the same cost and the same resistance.

Theorem 186. There is a convex programming based 8-approximation randomized algorithm
for the s-t effective resistance network design problem when ce = 1 and re = 1 for every edge
e.

We note that the convex program has unbounded integrality gap when the costs could be
arbitrary or the resistances could be arbitrary (Section 37.1). When every edge has the same
cost and the same resistance, we derive a nice characterization of the optimal solutions to the
convex program (Lemma 193), and use it to design a randomized path-rounding algorithm
(Section 37.2) based on a flow decomposition of the fractional solution to prove Theorem 186.
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There is a simple example showing that the integrality gap is at least two when ce = re = 1
for all e ∈ E. When the budget k is much larger than the length of a shortest s-t path, we
show how to achieve an approximation ratio close to two with a slightly modified randomized
“short” path rounding algorithm (Section 37.5).

Theorem 187. There is a (2+O(ε))-approximation algorithm for the s-t effective resistance
network design problem, when ce = 1 and re = 1 for every edge e and k ≥ 2dst/ε

10 where dst
is the length of a shortest s-t path.

As our problem is related to electrical network design, it is natural to consider the special
case when the input graph is a series-parallel graph. In this setting, we can use dynamic
programming to design a fully polynomial time approximation scheme for the problem when
the ratio between the maximum and minimum resistance is bounded, and an exact algorithm
when every edge has the same cost.

Theorem 188. There is a dynamic programming based (1 + ε)-approximation algorithm for
the s-t effective resistance network design problem when the input graph is a series-parallel
graph. The running time of the algorithm is O(|E|7U2/ε2) where U = maxe re/mine re is the
ratio between the maximum and minimum resistance. If we assume further that ce = 1 for
all edges e, there is an exact algorithm for the problem with running time O(|E| · k2).

We note that the integrality gap examples in Section 37.1 are actually series-parallel
graphs, and so the dynamic programming algorithms go beyond the limitation of the natural
convex program. We leave it as an open problem whether the general case admits a good
approximation algorithm (possibly by combining these techniques).

We also consider a “dual” problem where the effective resistance is a hard constraint and
the objective is to minimize the cost. We present similar results in Section 37.6.

35.2 Related Work

In the survivable network design problem, we are given an undirected graph and a connec-
tivity requirement ru,v for every pair of vertices, and the goal is to find a minimum cost
subgraph such that there are at least ru,v edge-disjoint paths for all u, v. This problem is
very well-studied and captures many interesting special cases [103, 2, 105, 96]. The best
approximation algorithm for this problem is due to Jain [139], who introduced the technique
of iterative rounding to design a 2-approximation algorithm. His result has been extended
in different directions, including element-connectivity [79, 39], directed graphs [95, 96], and
with degree constraints [170, 73, 94, 172].

Other combinatorial connectivity requirements were also considered. A natural variation
is to require that there are ru,v internally vertex disjoint paths for every pair of vertices u, v.
This problem is much harder to approximate [162, 169], but there are good approximation
algorithms for global connectivity [74, 38] and when the maximum connectivity requirement
is small [36, 45]. Another natural problem is to require that there is a path of length lu,v
between every pair of vertices u, v. This problem is also hard to approximate in general but
there are better approximation algorithms when every edge has the same cost and the same
length [61].
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Spectral connectivity requirements were also studied, including spectral gap [101, 160]
(closely related to graph expansion), total effective resistances [102], and mixing time [25].
Some of the earlier works only proposed convex programming relaxations and heuristic al-
gorithms. Approximation guarantees are only obtained in two recent papers for the more
general experimental design problem. When every edge has the same cost, there is a (1 + ε)-
approximation algorithm for minimizing the total effective resistance when the budget is
at least Ω(|V |/ε) [214], and there is a (1 + ε)-approximation algorithm for maximizing the
spectral gap when the budget is at least Ω(|V |/ε2) [5]. For our problem, the interesting
regime is when k is much smaller than |V |, where the techniques in [5, 214] do not apply.
We have developed a set of new techniques for analyzing and rounding the solutions to the
convex program that will hopefully find applications for solving related problems.

Traditionally, the effective resistance has many useful probabilistic interpretations, such
as the commute time [37], the cover time [190], and the probability of an edge in a random
spanning tree [155]. See Section 36 for more details. Recently, effective resistance has found
surprising applications in solving problems about graph connectivity, including construct-
ing spectral sparsifiers [241] (by using the effective resistance of an edge as the sampling
probability), computing maximum flow [43], finding thin trees [6], and generating random
spanning trees [188, 229].

35.3 Techniques

The main technical contribution is in designing rounding techniques for a convex program-
ming relaxation. There is a natural convex programming relaxation for our problem, by
using the conductance of the edges as variables, and writing the s-t effective resistance as
the objective function and noting that it is convex with respect to the variables (Section 37.1).

When every edge has the same cost and the same resistance, we show that the optimal
solution of this convex program has some nice properties19. Given an optimal fractional
solution x∗ and the unit s-t electrical flow f ∗ supported in x∗, we derive from the KKT
optimality conditions that there is a flow-conductance ratio α > 0 such that f ∗e = αx∗e for
every fractional edge e with 0 < x∗e < 1 and f ∗e ≥ α for every integral edge e with x∗e = 1.
The flow-conductance ratio α is crucial in the rounding algorithm and the analysis.

The rounding techniques in the two recent papers on experimental design [5, 214] con-
sidered each edge/vector as a unit. In [5], a potential function as in spectral sparsification
is used to guide a local search algorithm to swap two edges/vectors at a time to improve
the current solution. In [214], a probability distribution on the edges/vectors is carefully
designed for an independent randomized rounding. These techniques are only known to
work in the case when the solutions form a spanning set so that the “contribution” of each
individual edge/vector is well-defined. This is basically the reason why the results in [5, 214]
only apply when the budget k is at least Ω(n).

Our approach is based on a randomized rounding procedure on s-t paths. Given x∗,
we compute the unit s-t electrical f ∗ supported in x∗, and then decompose f ∗ as a convex
combination of s-t paths. The rounding algorithm has T = 1/α iterations, where we pick a

19We can also show that the fractional edges in the optimal solution form a forest, but this is not included
in the Part as we have not used this property in the rounding algorithm.
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random path Pi from the convex combination in each iteration, and return H := ∪Ti=1Pi as
our solution. One difference from the previous techniques is that each unit in the rounding
algorithm is an s-t path, so in particular s and t are always connected in our solution.
Another difference is that our problem has some extra structure, so that we can compute
the electrical flow f ∗ to guide our rounding procedure, where the variables f ∗e are not in the
convex program. These allow us to obtain a constant factor approximation algorithm for all
budget k ≥ dst (note that when k < dst there is no feasible integral solution).

In the analysis, we prove in Lemma 197 that the expected number of edges in H is at
most k, and in Lemma 198 that the expected effective resistance is ReffH(s, t) ≤ 2Reffx∗(s, t).
To bound the expected effective resistance, we use Thomson’s principle and construct a unit
s-t flow F to show that ReffH(s, t) ≤ EH(F ) ≤ 2Reffx∗(s, t). To construct the unit s-t flow F ,
the idea is to keep the flow-conductance ratio and send α units of flow on each sampled path
Pi (i.e. fe = α and xe = 1). The flow-conductance ratio plays a crucial role in the proofs
of both lemmas. This is because the rounding algorithm is based on the flow variables f ∗e ,
and thus the performance guarantees are in terms of f ∗e , but the ratio α allows us to relate
them back to the variables x∗e in the convex program. Combining the two lemmas give us a
constant factor bicriteria approximation algorithm for the problem. This can be turned into
a true approximation algorithm by scaling down the budget to k/2 and run the bicriteria
approximation algorithm with some additional claims (Section 37.4).

The improvement on the approximation ratio when budget k is large comes from two
observations. The first observation is that if k is much larger than the length of the short-
est s-t path, then the number of independent iterations in the rounding scheme is large
(Lemma 194). The second observation is that we can ignore some s-t paths in the flow
decomposition with many fractional edges without affecting the performance much. Com-
bining these, we can apply a Chernoff-Hoeffding bound to show that the number of edges
is at most (1 + ε)k with high probability. Then, we do not need to scale down the budget
by a factor of 2 and we can prove a stronger bound that the effective resistance is at most
2 +O(ε) times the optimal value.

35.4 Organization

In Section 36, we define the notations used in this Part and also present some background
knowledge about effective resistances. We present the convex programming relaxation and
our two rounding procedures in Section 37, and the dynamic programming algorithm in
Section 38. The NP-hardness and small set expansion-hardness results are provided in
Section 39.

36 Preliminaries

We introduce the notations and definitions for graphs and matrices in Section 36.1, and then
we define electrical flow and effective resistance and state some basic results in Section 36.2.
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36.1 Graphs and Matrices

Let G = (V,E) be an undirected graph with a non-negative edge weight we on each edge
e ∈ E. The number of vertices and the number of edges are denoted by n := |V | and
m := |E|. For a subset of edges F ⊆ E, the total weight of edges in F is denoted by
w(F ) :=

∑
e∈F we. For a subset of vertices S ⊆ V , the set of edges with one endpoint in

S and one endpoint in V − S is denoted by δ(S). For a vertex v, the set of edges incident
on a vertex v is denoted by δ(v) := δ({v}), and the weighted degree of v is denoted by
deg(v) := w(δ(v)). The volume of a set vol(S) :=

∑
v∈S deg(v) is defined as the sum of

the weighted degrees of vertices in S. The conductance of a set φ(S) := w(δ(S))/vol(S) is
defined as the ratio of the total weight on the boundary of S to the total weighted degrees
in S. For two subsets S1, S2 ⊆ V , the set of edges with one endpoint in S1 and one endpoint
in S2 is denoted by E(S1, S2).

In this Part, an undirected graph G = (V,E) with non-negative edge weights w ∈ RE

is interpreted as an electrical network, where each edge e is a resistor with conductance we
(not to be confused with the conductance φ(S) of a set S as defined above), or equivalently
with resistance re := 1/we. The adjacency matrix A ∈ RV×V of the graph is defined as
Au,v = wu,v for all u, v ∈ V . The Laplacian matrix L ∈ RV×V of the graph is defined as
L = D−A where D ∈ RV×V is the diagonal degree matrix with Du,u = deg(u) for all u ∈ V .
For each edge e = uv ∈ E, let be := χu − χv where χu ∈ Rn is the vector with one in the
u-th entry and zero otherwise. The Laplacian matrix can also be written as

L =
∑
e∈E

webeb
T
e .

Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of L with corresponding orthonormal eigenvectors
v1, v2, . . . , vn so that L =

∑n
i=1 λiviv

T
i . It is well-known that the Laplacian matrix is positive

semidefinite and λ1 = 0 with v1 = ~1/
√
n as the corresponding eigenvector, and λ2 > 0 if and

only if G is connected. The pseudo-inverse of the Laplacian matrix L of a connected graph
is defined as

L† =
n∑
i=2

1

λi
viv

T
i ,

which maps every vector x orthogonal to v1 to a vector y such that Ly = x.

36.2 Electrical Flow and Effective Resistance

Before defining s-t electrical flow, we first define the standard unit s-t flow. For each edge
e = uv, we have two variables f(uv) and f(vu) with f(uv) = −f(vu), where f(uv) is positive
if the flow is going from u to v and negative otherwise. A unit s-t flow f satisfies the following
flow conservation constraints:

∑
u∈δ(v)

f(vu) =


1 v = s

−1 v = t

0 otherwise.

Given a unit s-t flow f , we overload the notation and define its undirected flow vector
f : E → R≥0 with fe := |f(uv)| for each edge e = uv. A unit s-t electrical flow is a unit s-t
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flow f that also satisfies the Ohm’s law: There exists a potential vector ϕ ∈ RV such that
for all u, v ∈ V ,

f(uv) = wuv · (ϕ(u)− ϕ(v)).

The effective resistance between s and t is defined as

Reff(s, t) := ϕ(s)− ϕ(t),

which is the potential difference between s and t when one unit of electrical flow is sent from
s to t. The s-t effective resistance can be interpreted as the resistance of the whole graph G
as a big resistor when an electrical flow is sent from s to t.

One can write the effective resistance in terms of the Laplacian matrix. For u, v ∈ V ,
let buv = χu − χv, where χv ∈ Rn is the unit vector with 1 in the v-th entry and 0 in other
entries. Combining the flow conservation constraint and the Ohm’s law, it can be checked
that the potential vector ϕ ∈ RV of a unit s-t electrical flow is a solution to the linear system

L · ϕ = bst.

Note that ϕ = L†bst is a solution, and if G is connected then any solution is given by p+ c ·~1
for c ∈ R. Therefore, we can write

Reff(s, t) = ϕ(s)− ϕ(t) = bTstL
†bst.

The effective resistance can also be characterized by the energy of a flow. The energy of
an s-t flow f is defined as

E(f) :=
∑
e∈E

f 2
e

we
=
∑
e∈E

ref
2
e .

Thomson’s principle [151] states that the unit s-t electrical flow is the unique unit s-t flow
that minimizes the energy. This can be verified by writing down the optimality condition
of the minimization problem. Moreover, this energy is exactly the s-t effective resistance.
To see this, note that the flow value on edge uv in the unit s-t electrical flow satisfies
f(uv) = wuv · (ϕ(u)− ϕ(v)) = wuv · bTuvL†bst and thus

E(f) =
∑
uv∈E

wuv(b
T
uvL

†bst)
2 = bTstL

†

(∑
uv∈E

wuvbuvb
T
uv

)
L†bst = bTstL

†LL†bst = Reff(s, t).

To summarize, we will use the following result from Thomson’s principle.

Fact 189 (Thomson’s principle [151]). Let f ∗ be the unit electrical s-t flow in G. Then

ReffG(s, t) = min
f
{E(f) | f is a unit s-t flow in G} = E(f ∗).

A corollary of Thomson’s principle is the following intuitive result known as the Rayleigh’s
monotonicity principle.

Fact 190 (Rayleigh’s monotonicity principle). The s-t effective resistance cannot increase
if the resistance of an edge is decreased.

We will also use the following result to write a convex programming relaxation of our
problem.

Fact 191 ([102]). The s-t effective resistance is a convex function with respect to the con-
ductance of the edges.
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37 Convex Programming Algorithm for Unit-Cost Unit-

Resistance

In this section, we analyze a convex programming relaxation for our problem. We first
describe the convex program and prove a characterization of the optimal solutions in Sec-
tion 37.1. We then present a randomized rounding algorithm using flow decomposition in
Section 37.2, and show that it is a constant factor bicriteria approximation algorithm in
Section 37.3. Then, we show how to turn the bicriteria approximation algorithm into a
true approximation algorithm in Section 37.4, and how to modify the algorithm slightly to
achieve a better approximation guarantee when the budget k is large in Section 37.5. Finally,
we discuss the dual problem of minimizing the cost while satisfying the effective resistance
constraint in Section 37.6.

37.1 Convex Programming Relaxation

In the convex programming formulation, we introduce a variable xe for each edge e to indicate
whether e is chosen in our subgraph. Let

Lx :=
∑
e∈E

xewebeb
T
e

be the Laplacian matrix of the fractional solution x, and Reffx(s, t) be the s-t effective
resistance of the graph with conductance xewe on edge e ∈ E. The following is a natural
convex programming relaxation for the problem.

min
x∈Rm

Reffx(s, t) = bTstL
†
xbst

subject to
∑
e∈E

cexe ≤ k,

0 ≤ xe ≤ 1, ∀e ∈ E.

(CP)

This is an exact formulation if xe ∈ {0, 1} for all e ∈ E. The objective function is
convex in x by Fact 191. The convex program can be solved in polynomial time by the
ellipsoid method to inverse exponential accuracy or by the techniques described in [5] to
inverse polynomial accuracy, which are both sufficient for the rounding algorithm.

37.1.1 Integrality Gap Examples

We show some limitations of the convex program for general we and ce, which partly justifies
our assumption we = ce = 1 for all e ∈ E. The following figure shows a simple example
where the integrality gap is unbounded if the cost could be arbitrary.

In this graph, the top path has length n−2 where each edge has cost 1/(n−2). The
bottom path has two edges with cost 1. The resistance of each edge is 1, and the budget is
k = 1. The integrality gap of this example is Ω(n). To see this, the integral solution can only
afford the top path, and the effective resistance is n−2. However, the fractional solution can
set xe = 1/2 for each of the two bottom edges, and the effective resistance of this fractional
solution is 4.
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s t

. . .

Figure 37.1: Integrality gap example with arbitrary cost and unit resistance.

The following figure shows another simple example where the integrality gap is unbounded
if the edge costs are the same but the resistances could be arbitrary.

s t

. . .

Figure 37.2: Integrality gap example with arbitrary resistance and unit cost.

In this example, the top path has length n−1 with each edge of resistance 1. The bottom
path has only one edge with resistance R. All edges have cost 1 and the budget k = n−2.
The integral solution can only afford the bottom path, with effective resistance R. The
fractional solution can set xe = (n−2)/(n−1) for each edge in the top path, with effective
resistance O(n). When R� n, the integrality gap could be arbitrarily large.

Even in the unit-cost unit-resistance case, the integrality gap is unbounded if k is smaller
than the s-t shortest path distance. Henceforth, we assume the following in the rest of this
section.

Assumption 192. We assume that ce = we = re = 1 for every edge e ∈ E, and the budget
k is at least the shortest path distance dst between s and t in the input graph.

The integrality gap of the convex program is still at least two with Assumption 192. For
a simple example, consider a graph with two vertex-disjoint s-t paths, each of length k/2+1,
and the budget is k. Then the optimal integral value is k/2 + 1 while the optimal fractional
value is close to k/4, and so the integrality gap gets arbitrarily close to two.

We will show that the integrality gap of the convex program is at most 8 with these
assumptions. Note that just to connect s and t, then k must be at least the s-t shortest path
distance. It is interesting that this small additional assumption could reduce the integrality
gap from unbounded to a constant.

37.1.2 Characterization of Optimal Solutions

In the case when ce = we = re = 1 for all edges e ∈ E, we will prove that the electrical
flow f ∗ supported in the optimal solution x∗ to (CP) satisfies a useful property about the
flow-conductance ratio f ∗e /x

∗
e.

Lemma 193 (Characterization of Optimal Solution). Let G = (V,E) be the input graph
with ce = we = 1 for all edges e ∈ E. Let x∗ : E → R≥0 be an optimal solution to the convex
program (CP). Let EF ⊆ E be the set of fractional edges with 0 < x∗e < 1, and EI ⊆ E be
the set of integral edges with x∗e = 1. Let f ∗ : E → R≥0 be the undirected flow vector of the
unit s-t electrical flow supported in x∗. There exists α > 0 such that

f ∗e = αx∗e ∀e ∈ EF and f ∗e ≥ α ∀e ∈ EI .
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Proof. By removing edges with x∗e = 0, we can assume x∗e > 0 for every e ∈ E. By
removing isolated vertices, we can further assume that the nonzero edges form a connected
graph. So, we can write Reffx∗(s, t) = bTstL

†
x∗bst, where Lx∗ has rank n − 1 and the null

space of Lx∗ is span(~1). Since bst ⊥ ~1, we have Lx∗L
†
x∗bst = bst and L†x∗bst ⊥ ~1, which

implies that L†x∗bst = (Lx∗ + 1
n
J)−1bst where J is the all-ones matrix. Using the fact that

∂A−1 = −A−1(∂A)A−1 (see e.g. [221]), we derive

∇x∗eReffx∗(s, t) = ∇x∗eb
T
st

(
Lx∗ +

1

n
J

)−1

bst = −bTst
(
Lx∗ +

1

n
J

)−1 (
∇x∗eLx∗

)(
Lx∗ +

1

n
J

)−1

bst

= −bTstL
†
x∗

(
∇x∗e

∑
e∈E

x∗ewebeb
T
e

)
L†x∗bst = −bTstL

†
x∗beb

T
e L
†
x∗bst = −(bTstL

†
x∗be)

2,

where we used the assumption that we = 1 for all e ∈ E. With this, we write down the KKT
conditions for the convex program. Let µ be the dual variable for the budget constraint∑

e∈E cex
∗
e ≤ k, and λ+

e and λ−e be the dual variables for the upper bound x∗e ≤ 1 and the
nonnegative constraint x∗e ≥ 0 respectively. The KKT conditions states if x∗ is an optimal
solution to (CP), then there exist λ+, λ− and µ such that∑
e∈E

x∗e ≤ k, 0 ≤ x∗e ≤ 1 ∀e ∈ E, (Primal feasibility)

µ ≥ 0, λ+
e ≥ 0 and λ−e ≥ 0 ∀e ∈ E, (Dual feasibility)

µ ·

(
k −

∑
e∈E

x∗e

)
= 0, λ+

e · (x∗e − 1) = 0 and λ−e · x∗e = 0 ∀e ∈ E, (Complementary slackness)

(bTe L
†
x∗bst)

2 = λ+
e − λ−e + ceµ = λ+

e − λ−e + µ, (Lagrangian optimality)

where we used the assumption that ce = 1 for all e ∈ E. For an integral edge with x∗e = 1,
we have λ−e = 0 by the complementary slackness condition. Since λ+

e ≥ 0, it follows from the
Lagrangian optimality condition that (bTe L

†
x∗bst)

2 ≥ µ. For a fractional edge with 0 < x∗e < 1,
we have λ+

e = λ−e = 0 by the complementary slackness condition, and therefore (bTe L
†
x∗bst)

2 =
µ by the Lagrangian optimality condition. We can assume that µ > 0. Otherwise, µ = 0
implies that the flow on all fractional edges are zero, and so we can delete them from the
graph without affecting the s-t effective resistance, and we have an integral solution.

Let ϕ be a potential vector of the electrical flow f ∗ supported in x∗. For an edge e =
uv ∈ E, (f ∗e

x∗e

)2

= (ϕ(u)− ϕ(v))2 =
(
bTe L

†
x∗bst

)2

,

where the first equality is by Ohm’s law and the assumption that wuv = 1 for all uv ∈ E,
and the second equality uses that Lx∗ϕ = bst as explained in Section 36.2. The lemma then
follows from the above paragraph and writing µ as α2.

The flow-conductance ratio α will be crucial in the rounding algorithm and its analysis.
The following lemma shows an upper bound on α using the budget k and the shortest path
distance dst between s and t.
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Lemma 194. Under the conditions in Assumption 192, it holds that α2 ≤ dst/k ≤ 1.

Proof. Let x∗ be an optimal solution to (CP), and f ∗ be the unit s-t electrical flow supported
in x∗. As k ≥ dst, a shortest path is a feasible solution to (CP), and thus Reffx∗(s, t) ≤ dst.
On the other hand, by Thomson’s principle and Lemma 193,

Reffx∗(s, t) =
∑
e∈E

(f ∗e )2

x∗e
=
∑
e∈EI

(f ∗e )2 +
∑
e∈EF

(f ∗e )2

x∗e
≥
∑
e∈EI

α2 +
∑
e∈EF

α2x∗e = α2
∑
e∈E

x∗e = α2k,

where the last equality holds since we can assume
∑

e∈E x
∗
e = k for the optimal solution x∗

without loss of generality by Rayleigh’s principle (or otherwise we have an integral optimal
solution). The lemma follows by combining the upper bound and the lower bound.

37.2 Randomized Path-Rounding Algorithm

Our rounding algorithm uses the unit electrical flow f ∗ supported in the optimal solution x∗

to construct an integral solution. The algorithm will first decompose the flow f ∗ as a convex
combination of flow paths, and then randomly choose the flow paths and return the union
of the chosen flow paths as our solution.

The following lemma about flow decomposition is by the standard argument to remove
one (fractional) flow path at a time, which holds for any unit directed acyclic s-t flow.

Lemma 195 (Flow Decomposition). Given a unit s-t electrical flow f , there is a polynomial
time algorithm to find a set P of s-t paths with |P| ≤ |E| such that the undirected flow vector
f : E → R≥0 can be written as a convex combination of the characteristic vectors of the paths
in P, i.e.

f =
∑
p∈P

vp · χp and
∑
p∈P

vp = 1 and vp > 0 for each p ∈ P ,

where χp ∈ R|E| is the characteristic vector of the path p with one on each edge e ∈ p and
zero otherwise.

With the flow decomposition, we are ready to present the rounding algorithm.

Randomized Path Rounding Algorithm

1. Let x∗ be an optimal solution to the convex program (CP). Let f ∗ be the unit
s-t electrical flow supported in x∗. Let α be the flow-conductance ratio defined in
Lemma 193.

2. Compute a flow decomposition P of f ∗ as defined in Lemma 195.

3. For i from 1 to T := b1/αc do

• Let Pi be a random path sampled from P where each path p ∈ P is sampled
with probability vp.

4. Return the subgraph H formed by the edge set ∪Ti=1Pi.
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The following lemma shows that the rounding algorithm will always return a non-empty
subgraph.

Lemma 196. Suppose the input instance satisfies the conditions in Assumption 192. Let
x∗ be an optimal solution to (CP) and α > 0 be the flow-conductance ratio as defined in
Lemma 193. Then

1

α
≥ T ≥ 1

2α
> 0.

Proof. Since we assumed that the budget k is at least the length dst of a shortest s-t path,
it follows from Lemma 194 that α ≤ 1. This implies that

1

α
≥ T =

⌊
1

α

⌋
≥ max

{
1,

1

α
− 1

}
=⇒ 1 ≥ Tα ≥ max{α, 1− α} ≥ 1

2
.

37.3 Bicriteria Approximation

The analysis of the approximation guarantee goes as follows. First, we show that the expected
number of edge in the returned subgraph is at most the budget k. Then, we prove that the
expected effective resistance of the returned subgraph is at most two times that of the optimal
fractional solution. Both of these steps use the flow-conductance ratio α crucially. These
combine to show that the randomized path rounding algorithm is a constant factor bicriteria
approximation algorithm.

Let x∗ be an optimal solution to (CP). Let EF and EI be the set of fractional edges and
integral edges in x∗. We assume that each edge e ∈ EI will be included in the subgraph H
returned by the rounding algorithm. We focus on bounding the number of edges in EF that
will be included in H.

Lemma 197 (Expected Budget). Let x∗ be an optimal solution to (CP) when ce = we = 1
for all edges e ∈ E. Let Xe be an indicator variable of whether e is included in the returned
subgraph H by the rounding algorithm, Then,

E

[∑
e∈EF

Xe

]
≤ Tα

∑
e∈EF

x∗e ≤
∑
e∈EF

x∗e.

Proof. Note that an edge e is contained in Pi with probability
∑

p∈P:p3e vp. By the union
bound, an edge e is included in the returned subgraph H by the rounding algorithm with
probability

Pr[(]Xe = 1) ≤
T∑
i=1

∑
p∈P:p3e

vp = T
∑

p∈P:p3e

vp = Tf ∗e ,

where the last equality holds by the property of the flow decomposition P of the electrical
flow f ∗ in Lemma 195.

By Lemma 193, f ∗e = αx∗e for each fractional edge e ∈ EF , and this implies that

Pr[(]Xe = 1) ≤ Tf ∗e = Tαx∗e ∀e ∈ EF .
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Therefore,

E

[∑
e∈EF

Xe

]
=
∑
e∈EF

Pr[(]Xe = 1) ≤ Tα
∑
e∈EF

x∗e =

⌊
1

α

⌋
α
∑
e∈EF

x∗e ≤
∑
e∈EF

x∗e.

The key step is to show that E[ReffH(s, t)] ≤ 2Reffx∗(s, t). To prove this, we construct a
unit s-t flow F and show that E[EH(F )] ≤ 2Reffx∗(s, t), and hence by Thomson’s principle
E[ReffH(s, t)] ≤ E[EH(F )] ≤ 2Reffx∗(s, t). To construct the flow F , the idea is to follow the
ratio α in the fractional solution x∗ and send α units of flow on each path Pi selected.

Lemma 198 (Expected Effective Resistance). Suppose the input instance satisfies the con-
ditions in Assumption 192. Let x∗ be an optimal solution to (CP) and f ∗ be the unit s-t
electrical flow supported in x∗. The expected s-t effective resistance of the subgraph H re-
turned by the rounding algorithm is

E [ReffH(s, t)] ≤
(

1− 1

T
+

1

Tα

)
· Ex∗(f ∗) =

(
1− 1

T
+

1

Tα

)
· Reffx∗(s, t) ≤ 2Reffx∗(s, t).

Proof. Consider the undirected flow vector F : E → R≥0 defined by sending α units of flow
on each path Pi chosen by the rounding algorithm, i.e. the random variable F =

∑T
i=1 α ·χPi

with Fe = α · |{Pi | 1 ≤ i ≤ T, Pi 3 e}| for each edge e ∈ E. We would like to upper bound
the expected energy EH(F ) in order to upper bound ReffH(s, t).

Each Pi is a random s-t path sampled from the flow decomposition P of the undirected
flow vector f ∗ : E → R≥0 of the unit s-t electrical flow supported in x∗, and χPi ∈ Rm is its
characteristic vector with expected value

E[χPi ] =
∑
p∈P

vp · χp = f ∗.

Since each edge in H is of conductance one, the expected energy of F in H is

E [EH(F )] = E

[∑
e∈E

F 2
e

]
= E[〈F, F 〉] = E

[〈
T∑
i=1

α · χPi ,
T∑
j=1

α · χPj

〉]
=

T∑
i=1

T∑
j=1

α2·E[〈χPi , χPj〉].

As each path Pi is sampled independently, for i 6= j,

E[〈χPi , χPj〉] = 〈E[χPi ],E[χPj ]〉 = 〈f ∗, f ∗〉 =
∑
e∈E

(f ∗e )2.

For i = j,

E[〈χPi , χPi〉] =
∑
p∈P

vp〈χp, χp〉 =
∑
p∈P

vp
∑
e∈p

1 =
∑
e∈E

∑
p∈P:p3e

vp =
∑
e∈E

f ∗e ,

where the last equality follows from the property of the flow decomposition in Lemma 195.
Combining these two terms, it follows that

E [EH(F )] = α2T
∑
e∈E

f ∗e + α2T (T − 1)
∑
e∈E

(f ∗e )2.
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Thomson’s principle states that the ReffH(s, t) is upper bounded by the energy of any one
unit s-t flow. Note that F is an s-t flow of Tα units, and Tα > 0 by Lemma 196. Scaling F
to a one unit s-t flow by dividing the flow on each edge by Tα gives an upper bound on

E[ReffH(s, t)] ≤ E [EH(F )]

T 2α2
=

1

T

∑
e∈E

f ∗e +
(

1− 1

T

)∑
e∈E

(f ∗e )2

≤ 1

Tα

∑
e∈E

(f ∗e )2

x∗e
+
(

1− 1

T

)∑
e∈E

(f ∗e )2

x∗e

=

(
1− 1

T
+

1

Tα

)
· Ex∗(f ∗)

=

(
1− 1

T
+

1

Tα

)
· Reffx∗(s, t),

where the second inequality follows from Lemma 193 that f ∗e /x
∗
e ≥ α for every edge e ∈ E

and also x∗e ≤ 1 for every edge e ∈ E, and the last equality is from Thomson’s principle that
Reffx∗(s, t) = Ex∗(f ∗). Finally, notice that 1 − 1/T + 1/(Tα) ≤ 2 as 1/α − 1 ≤ b1/αc = T
.

Combining Lemma 197 and Lemma 198, it follows from a simple application of Markov’s
inequality that there is an outcome of the randomized path-rounding algorithm which uses
at most 2k edges with s-t effective resistance at most 4Reffx∗(s, t). In the following, we
apply Markov’s inequality more carefully to show that the success probability is at least
Ω(α). In the next subsection, we will argue that α can be assumed to be Ω(1/m) and so the
path-rounding algorithm is a randomized polynomial time algorithm.

Theorem 199 (Bicriteria Approximation). Suppose the input instance satisfies the condi-
tions in Assumption 192. Let x∗ be an optimal solution to (CP). Given x∗, the randomized
path rounding algorithm will return a subgraph H with at most 2k edges and ReffH(s, t) ≤
4Reffx∗(s, t) with probability at least Ω(α).

Proof. First, we bound the probability that the subgraph H has more than 2k edges. Let
Xe be an indicator variable of whether the edge e is included in the returned subgraph H.
Recall that EF and EI denote the set of fractional edges and integral edges in x∗ respectively.
We assume pessimistically that all edges in EI will be included in the subgraph H returned
by the rounding algorithm. Then, by Markov’s inequality and Lemma 197,

Pr

(∑
e∈E

Xe > 2k

)
≤ Pr

( ∑
e∈EF

Xe > 2k − |EI |
)
≤

E
[∑

e∈EF Xe

]
2k − |EI |

≤
Tα
∑

e∈EF x
∗
e

2k − |EI |
≤ Tα

2
,

where the last inequality is by
∑

e∈EF x
∗
e ≤ k − |EI |.

Next, we bound the probability that ReffH(s, t) > 4Reffx∗(s, t). By Markov’s inequality
and Lemma 198,

Pr

(
ReffH(s, t) > 4Reffx∗(s, t)

)
≤ 1

4

(
1− 1

T
+

1

Tα

)
=
Tα + 1

4Tα
− 1

4T
≤ Tα + 1

4Tα
− Ω(α),
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where the last inequality is because T = b1/αc ≤ 1/α.
To prove the lemma, it remains to show that

Tα

2
+
Tα + 1

4Tα
≤ 1 ⇐⇒ 2(Tα)2 − 3(Tα) + 1 = (2Tα− 1)(Tα− 1) ≤ 0,

which follows from Lemma 196.

37.4 Constant Factor Approximation

We showed that the randomized path rounding algorithm is a bicriteria approximation al-
gorithm. To achieve a true approximation algorithm, a natural idea is to scale down the
budget from k to k/2 and apply the randomized path rounding algorithm. The following
lemma takes care of the case of k/2 < dst, when the shortest path assumption does not hold
after scaling, by showing that simply returning a shortest s-t path is already a good enough
approximation.

Lemma 200. When the budget k is at least the length dst of a shortest s-t path, any s-t
shortest path is a (k/dst)-approximate solution for the s-t effective resistance network design
problem.

Proof. When k ≥ dst, an s-t shortest path is a feasible solution to the problem with s-t
effective resistance at most dst. To prove the lemma, we will show that Reffx(s, t) ≥ d2

st/k for
any feasible solution x to (CP), and so an s-t shortest path is already a (k/dst)-approximation.

Let Gx be the graph G with fractional conductance xe on each edge e ∈ E. To show a
lower bound on Reffx(s, t), we identify the vertices in Gx to a form a path graph Px as follows:
For each i ≥ 0, let Ui be the set of vertices in G with shortest path distance i to s, where
the shortest path distance is defined where each edge in G is of length one. First, for each
0 ≤ i ≤ dst − 1, we identify the vertices in Ui to a single vertex ui. Then, we identify all the
vertices in ∪i≥dstUi to a single vertex udst . The path graph Px has vertex set {u0, . . . , udst}
and edge set {ab ∈ E | a ∈ Ui and b ∈ Ui+1 for 0 ≤ i ≤ dst − 1}. For each edge e in Px,
its conductance xe in Px is the same as that in Gx. As an electrical network, identifying
two vertices uv is equivalent to adding an edge of resistance zero between u and v. So, it
follows from Rayleigh’s monotonicity principle (Fact 190) that ReffGx(s, t) ≥ ReffPx(u0, udst)
as s ∈ U0 and t ∈ Udst .

As Px is a series-parallel graph, we can compute ReffPx(s, t) directly. For each 1 ≤ i ≤ dst,
let Ei be the set of parallel edges connecting ui−1 and ui in Px, and ci =

∑
e∈Ei xe be the

effective conductance between ui−1 and ui in Px. Then, by Fact 214,

ReffPx(ui−1, ui) =
1

ci
and ReffPx(u0, udst) =

dst∑
i=1

ReffPx(ui−1, ui) =
dst∑
i=1

1

ci
.

Note that
∑dst

i=1 ci =
∑dst

i=1

∑
e∈Ei xe ≤

∑
e∈E xe ≤ k for any feasible solution x. Using

Cauchy-Schwarz inequality,

dst =
dst∑
i=1

√
ci ·

1
√
ci
≤

√√√√ dst∑
i=1

ci ·

√√√√ dst∑
i=1

1

ci
≤
√
k ·
√

ReffPx(u0, udst).
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Therefore, we conclude that ReffGx(s, t) ≥ ReffPx(u0, udst) ≥ d2
st/k.

We are ready to prove our main approximation result.

Theorem 201. Suppose the input instance satisfies the conditions in Assumption 192. There
is a polynomial time 8-approximation algorithm for the s-t effective resistance network design
problem.

Proof. If the budget k ≤ 2dst, then Lemma 200 shows that simply returning an s-t shortest
path would give a 2-approximation. Henceforth, we assume that k ≥ 2dst.

Let opt(k) be the objective value of an optimal solution to the convex program (CP) with
budget k. Let x∗ be an optimal solution to (CP) with budget k and Reffx∗(s, t) = opt(k).
As 1

2
x∗ is a feasible solution to (CP) with budget 1

2
k, by Thomson’s principle,

opt

(
k

2

)
≤ Reff 1

2
x∗(s, t) = bTst

(∑
e∈E

x∗e
2
beb

T
e

)†
bst = 2bTst

(∑
e∈E

x∗ebeb
T
e

)†
bst = 2Reffx∗(s, t) = 2opt(k).

Given the original budget k ≥ 2dst, our algorithm is to find an optimal solution z∗ to
(CP) with budget k/2 ≥ dst, and then use the path-rounding algorithm with input z∗ to
return a subgraph H. By Theorem 199, with probability Ω(α), the subgraph H satisfies

|E(H)| ≤ 2
∑
e∈E

z∗e ≤ 2

(
k

2

)
= k and ReffH(s, t) ≤ 4opt

(
k

2

)
≤ 8opt(k),

and so H is an 8-approximate solution to the s-t effective resistance network design problem.
Finally, we consider the time complexity of the algorithm. The number of iterations in the

path rounding algorithm is O(1/α), and we need to run the path rounding algorithm O(1/α)
times to boost the success probability to a constant. This is a randomized polynomial time
algorithm when α = Ω(1/m).

In the following, we show that when α ≤ 1/(4m), it is easy to obtain a 2-approximate
solution without running the path-rounding algorithm. Let x∗ be an optimal solution to
(CP) with budget k, and f ∗ be the unit s-t electrical flow supported in x∗. Let P be the
flow decomposition of f ∗ as in Lemma 195. We call a path p ∈ P an integral path if every
edge e ∈ p has x∗e = 1; otherwise we call p a fractional path. When α ≤ 1/(4m), we simply
return the union of all integral paths as our solution H. Clearly, H has at most k edges as it
only contains integral edges. Next, we bound ReffH(s, t) by the energy of the flow supported
in the integral paths. By Lemma 193, an edge e with x∗e < 1 has f ∗e = αx∗e < α ≤ 1/(4m).
This implies that each fractional path p has vp ≤ 1/(4m). Since P has at most m paths
(Lemma 195), the total flow in the fractional paths is at most 1/4, and thus the total flow
in the integral paths is at least 3/4. By scaling the flow supported in the integral paths to
a one unit s-t flow, we see that

ReffH(s, t) ≤ Ex
∗(f ∗)

(3/4)2
≤ 2Ex∗(f ∗) = 2Reffx∗(s, t).

To summarize, in all cases including k < 2dst and α ≤ 1/(4m), there is a polynomial time
algorithm to return an 8-approximate solution to the s-t effective resistance network design
problem.
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We have two remarks about improvements of Theorem 201.

Remark 202 (Approximation Ratio). The analysis of the 8-approximation algorithm is not
tight. By a more careful analysis of the expected energy in Lemma 198 and the short path
idea used in the next subsection, we can show that the approximation guarantee of the same
algorithm in Theorem 201 is less than 5. However, the analysis is quite involved and not
very insightful, so we have decided to omit those details and only keep the current analysis.

Remark 203 (Deterministic Algorithm). Using the standard pessimistic estimator technique,
we can derandomize the path-rounding algorithm to obtain a deterministic 8-approximation
algorithm. The analysis is standard and we omit the details that would take a few pages.

37.5 The Large Budget Case

In this subsection, we show how to modify the algorithm in Theorem 201 to achieve a better
approximation ratio when the budget is much larger than the s-t shortest path distance.

The observation is that when k � dst, then α is small by Lemma 194, and so there are
many iterations in the path-rounding algorithm. Since each iteration is independent, we
can use Chernoff-Hoeffding’s bound to prove a stronger bound on the probability that the
number of edges in the returned solution is significantly more than k (outperforms the bound
proved in Lemma 197 using Markov’s inequality). Then, we can show that the expected s-t
effective resistance is close to two times the optimal value by argument similar to the proof
of Lemma 198.

Modified Rounding Algorithm

For our analysis, we slightly modify the path-rounding algorithm to ignore “long” paths in the
flow decomposition, so that we have a worst case bound to apply Chernoff-Hoeffding’s bound.
Unlike the flow decomposition in Lemma 195, the short path flow decomposition definition
is specific to the electrical flow of an optimal solution to (CP). In the following definition, c
is a parameter which will be set to be 1/ε > 1 to achieve a (2 +O(ε))-approximation.

Definition 204 (Short Path Decomposition of Electrical Flow of Optimal Solution). Let x∗

be an optimal solution to the convex program (CP). Let f ∗ be the unit s-t electrical flow
supported in x∗. Let α be the flow-conductance ratio defined in Lemma 193.

Let P∗ be a flow decomposition of f ∗ as defined in Lemma 195. Let x∗F :=
∑

e∈EF x
∗
e be

the total fractional value on the fractional edges EF in the optimal solution x∗.
We call a path p ∈ P∗ a long path if p has at least cαx∗F edges in EF , i.e. |p∩EF | ≥ cαx∗F .

Otherwise we call a path p ∈ P∗ a short path.
Let P := {p ∈ P∗ | p is a short path} be the collection of short paths in P∗. Let

fP :=
∑

p∈P vpχp be the s-t flow defined by the short paths, and vP :=
∑

p∈P vp be the total
flow value of fP .

The modified algorithm is very similar to the randomized path-rounding algorithm in
Section 37.3. The only difference is that we only use the paths in the short path flow
decomposition in Definition 204, and we adjust the sampling probability of a path p to
vp/vP so that the sum is one.
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Randomized Short Path Rounding Algorithm

1. Let x∗ be an optimal solution to the convex program (CP). Let f ∗ be the unit
s-t electrical flow supported in x∗. Let α be the flow-conductance ratio defined in
Lemma 193.

2. Compute a short path flow decomposition P of f ∗ as described in Definition 204.

3. For i from 1 to T = b1/αc do

• Let Pi be a random path sampled from P where each path p ∈ P is sampled
with probability vp/vP .

4. Return the subgraph H formed by the edge set ∪Ti=1Pi.

The following simple lemma shows that the total flow on the long paths is negligible
when c is large, which will be useful in the analysis.

Lemma 205. In the short path flow decomposition in Definition 204, vP ≥ 1− 1
c
.

Proof. Using αx∗e = f ∗e for e ∈ EF from Lemma 193 and the properties of the flow decom-
position P∗ of f ∗ in Lemma 195,

αx∗F =
∑
e∈EF

f ∗e =
∑
p∈P∗

vp · |p ∩ EF | ≥
∑

p∈P∗−P

vp · |p ∩ EF | ≥ cαx∗F
∑

p∈P∗−P

vp = cαx∗F (1− vP),

where the last inequality is by the definition of long paths and the last equality is because
f ∗ is a unit s-t flow.

Analysis of Approximation Guarantee

First, we consider the expected s-t effective resistance of the returned subgraph H. For intu-
ition, we can think of the modified rounding algorithm as applying the rounding algorithm
in the scaled flow fP/vP , and so it should follow from Lemma 198 that

E[ReffH(s, t)] ≤ 2Ex∗
(
fP
vP

)
=

2

v2
P
Ex∗(fP) ≤ 2

v2
P
Ex∗(f ∗) =

2

v2
P

Reffx∗(s, t),

which will be at most (2 +O(ε))Reffx∗(s, t) when c = 1/ε from Lemma 205.
We cannot directly apply Lemma 198 as stated, as the flow fP does not satisfy the flow-

conductance ratio α in Lemma 193, but essentially the same proof will work to get the same
conclusion (but not exactly the same intermediate step).

Lemma 206. Suppose the input instance satisfies the conditions in Assumption 192. Let
x∗ be an optimal solution to (CP) and f ∗ be the unit s-t electrical flow supported in x∗.
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The expected s-t effective resistance of the subgraph H returned by the randomized short path
rounding algorithm is

E [ReffH(s, t)] ≤ 2

v2
P
Ex∗(f ∗) =

2

v2
P

Reffx∗(s, t),

where P is the short path flow decomposition of f ∗ as described in Definition 204.

The main difference of the analysis is to apply the following Hoeffding’s inequality (instead
of Markov’s inequality) to bound the probability that the returned subgraph has significantly
more than k edges.

Fact 207 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables such
that Xi ∈ [0,M ] with probability one. Let X =

∑n
i=1Xi, and µ = E[X], then for any δ > 0,

Pr(X ≥ (1 + δ)µ) ≤ exp

(
−2δ2µ2

nM2

)
.

Lemma 208. Suppose the input instance satisfies the conditions in Assumption 192. Let x∗

be an optimal solution to (CP) and f ∗ be the unit s-t electrical flow supported in x∗. Let H
be the subgraph returned by the randomized short path rounding algorithm given x∗ as input,
and |E(H)| be the number of edges in H. Then, for any δ > 0,

Pr (|E(H)| ≥ (1 + δ)k) ≤ exp

(
−2δ2

c2α

)
,

where c is the parameter in the short path flow decomposition in Definition 204 and α is the
flow-conductance ratio of f ∗ and x∗ as defined in Lemma 193.

Proof. As in Lemma 197, we assume pessimistically that all integral edges EI will be included
in H, and so we focus on the fractional edges EF . Let Xi,e be the indicator variable of
whether the edge e is sampled in the i-th iteration of the short path rounding algorithm, and
Xi,F :=

∑
e∈EF Xi,e be the total number of fractional edges sampled in the i-th iteration. Let

XF be the total number of fractional edges in H. Note that XF ≤
∑T

i=1Xi,F , since if some
fractional edge was sampled multiple times in different iterations, we only count it once in
XF . By linearity of expectation, E[XF ] ≤

∑T
i=1 E[Xi,F ].

Let P∗ be the flow path decomposition of f ∗ in Lemma 195, and P be the short path
flow decomposition of f ∗ as described in Definition 204. For an edge e, recall that (fP)e :=∑

p∈P:p3e vp is the total flow value on e from the short paths in P . As we scaled the probability
of each path by 1/vP in the rounding algorithm, the probability that edge e is sampled in
the i-th iteration is (fP)e/vP . Let f e := f ∗e − (fP)e be the total flow value on e from the long
paths in P∗ − P . The expected value of Xi,F is

E[Xi,F ] =
∑
e∈EF

E[Xi,e] =
∑
e∈EF

(fP)e
vP

=
∑
e∈EF

f ∗e − f e
vP

=
∑
e∈EF

αx∗e − f e
vP

By the definition of the long paths,∑
e∈EF

f e =
∑
e∈EF

∑
p∈P∗−P

vp =
∑

p∈P∗−P

vp · |p ∩ EF | ≥ cαx∗F
∑

p∈P∗−P

vp = cαx∗F (1− vP),
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where we recall that x∗F =
∑

e∈EF x
∗
e. Therefore,

E[Xi,F ] =
∑
e∈EF

αx∗e − f e
vP

≤ αx∗F ·
1− c+ cvP

vP
= αx∗F · (c−

c− 1

vP
) ≤ αx∗F ,

where the last inequality uses that vP ≤ 1 and c > 1. It follows that E[XF ] ≤ Tαx∗F ≤ x∗F .
As each iteration is independent, the random variables Xi,F for 1 ≤ i ≤ T are indepen-

dent. Since we only use short paths, the maximum value of each Xi,F is at most cαx∗F . So,
we can apply Hoeffding’s inequality to show that

Pr (XF ≥ (1 + δ)x∗F ) ≤ exp

(
− 2δ2(x∗F )2

Tc2α2(x∗F )2

)
≤ exp

(
−2δ2

c2α

)
.

Let XI be the total number of integral edges in H. As XI ≤ |EI |, we conclude that

Pr
(
|E(H)| ≥ (1+δ)k

)
= Pr

(
XI+XF ≥ (1+δ)(|EI |+x∗F )

)
≤ Pr

(
XF ≥ (1+δ)x∗F

)
≤ exp

(
−2δ2

c2α

)
.

As in Section 37.3, we can combine Lemma 208 and Lemma 206 to show that the ran-
domized short path rounding algorithm is a bicriteria approximation algorithm.

Theorem 209. Suppose the input instance satisfies the conditions in Assumption 192. Sup-
pose further that k ≥ dst/ε

10, where ε > 0 is an error parameter satisfying ε ≤ η for a small
constant η. Let x∗ be an optimal solution to (CP). Given x∗, the randomized short path
rounding algorithm with c = 1/ε will return a subgraph H with at most (1 + ε)k edges and
ReffH(s, t) ≤ (2 + 10ε) · Reffx∗(s, t) with probability at least ε.

Proof. The additional assumption k ≥ dst/ε
10 implies that α ≤ ε5 by Lemma 194.

Setting c = 1/ε and δ = ε, it follows from Lemma 208 that

Pr(|E(H)| ≥ (1 + ε)k) ≤ exp

(
−2δ2

c2α

)
≤ exp

(
−2

ε

)
< ε,

where the last inequality holds for ε > 0.
Since c = 1/ε, Lemma 205 implies that vP ≥ 1− ε for the short path flow decomposition

in Definition 204. Using Markov’s inequality and Lemma 206, for sufficiently small ε we have

Pr
(

ReffH(s, t) ≥ (2 + 10ε) · Reffx∗(s, t)
)
≤ E [ReffH(s, t)]

(2 + 10ε) · Reffx∗(s, t)

≤ 2

v2
P(2 + 10ε)

≤ 2

(1− ε)2(2 + 10ε)
< 1− 2ε

Therefore, with probability at least ε, the subgraph H returned by the randomized short
path rounding algorithm satisfies both properties.

Using the same arguments as in Section 37.4, we can turn the above bicriteria approxi-
mation algorithm into a true approximation algorithm.
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Theorem 210. Suppose the input instance satisfies the conditions in Assumption 192. Sup-
pose further that k ≥ 2dst/ε

10, where ε > 0 is an error parameter satisfying ε ≤ η for a
small constant η. There is a polynomial time (2 +O(ε))-approximation algorithm for the s-t
effective resistance network design problem.

Proof. As in the proof of Theorem 201, we apply the bicriteria approximation algorithm
in Theorem 209 with input x∗, an optimal solution to (CP) with the scaled-down budget
k/(1+ε), to return a subgraph H. As the new budget k/(1+ε) is still greater than dst/ε

10, by
Theorem 209, with probability at least ε the subgraph H satisfies |E(H)| ≤ (1+ε)k/(1+ε) =
k and

ReffH(s, t) ≤
(
2 +O(ε)

)
· opt

(
k

1 + ε

)
≤
(
2 +O(ε)

)
(1 + ε) · opt(k) ≤

(
2 +O(ε)

)
· opt(k),

where we used the notations and arguments in Theorem 201.
For the time complexity, note that α ≤ ε5 by Lemma 194 and the large budget as-

sumption, and so we can assume that ε5 ≥ α ≥ 1/(4m), as otherwise there is a simple
2-approximation algorithm in the case α ≤ 1/(4m) described in Theorem 201. Therefore,
the success probability can be boosted to a constant in polynomial number of executions of
the bicriteria algorithm in Theorem 209.

37.6 Cost Minimization with s-t Effective Resistance Constraint

In this subsection, we consider a “dual” problem of the s-t effective resistance minimization
problem. In the dual problem, we are given a graph G = (V,E) with a cost ce and a
resistance re on each edge and a target effective resistance R, and the objective is to find a
subgraph H of minimum cost such that ReffH(s, t) ≤ R. The same NP-hardness proof in
Section 39.1 can be used to show that the dual problem is NP-complete even when the edges
of G have unit cost and unit resistance.

Using the same techniques for the s-t effective resistance minimization problem, we can
obtain a constant factor bicriteria approximation algorithm for this problem. As the proofs
are very similar, we will just state the results and highlight the differences. The main
difference is that the convex program has unbounded integrality gap even in the case when
ce = re = 1 for all e ∈ E, and as a consequence we cannot turn the bicriteria approximation
algorithm into a true approximation algorithm as in the s-t effective resistance network
design problem. Using the same technique as in Theorem 201, however, we can return an
8-approximation to the cost without violating the effective resistance constraint, if we are
allowed to buy up to four copies of the same edge (see Theorem 211).

Convex Programming Relaxation

We consider the following natural convex programming relaxation for the dual problem.

min
x∈Rm

∑
e∈E

ce · xe

subject to Reffx(s, t) = bTstL
†
xbst ≤ R,

0 ≤ xe ≤ 1 ∀e ∈ E.

(DCP)
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Integrality Gap Examples

As in the s-t effective resistance network design problem, there are simple examples showing
that the integrality gap of (DCP) is unbounded, when the costs are arbitrary or when the
resistances are arbitrary. So we will make the assumptions that ce = re = 1 for all edges
e ∈ E.

Unlike the s-t effective resistance network design problem, even in the special case when
ce = re = 1 for all edges e ∈ E, the convex program (DCP) still has unbounded integrality
gap. Consider the following example in Figure 37.3, where the top path has length n−1
with each edge of resistance 1, and the bottom path has only one edge with resistance 1.
All edges have cost 1. The target effective resistance is R = (n−1)2/((n−1)2 + ε) for some
constant ε > 0. Since R < 1, to satisfy the effective resistance constraint, any integral
solution must contain both paths and thus has cost n. However, the fractional solution can
set xe = ε/(n−1) for each edge in the top path and set xe = 1 for the bottom edge. It can
be checked that this fractional solution satisfies the constraint, and the total cost is 1+ε.
Therefore, the integrality gap of this example is Ω(n).

s t

. . .

Figure 37.3: Integrality gap example with unit cost and unit resistance.

Optimal Solutions

Although the convex program (DCP) has a large integrality gap, the same rounding tech-
nique can be used to obtain a constant factor bicriteria approximation algorithm under the
assumption that ce = re = 1 for all edges e ∈ E. Exactly the same characterization of
the optimality conditions as in the s-t effective resistance network design problem holds,
such that any optimal solution satisfies the flow-conductance ratio α > 0 as described in
Lemma 193.

Analogous to Lemma 194, we can prove an upper bound on α that

α2 ≤ R

dst
.

Analogous to Lemma 200, we can prove a lower bound on any optimal solution x that

opt :=
∑
e∈E

xe ≥
d2
st

R
.

We can assume that R < dst, as otherwise a shortest s-t path is an optimal solution, and so
we can assume that 0 < α < 1.

210



Rounding Algorithm

The rounding algorithm is exactly the same as in Section 37.3. The same proofs as in
Lemma 197 and Lemma 198 will imply that, with probability Ω(α), the subgraph H returned
by the randomized path rounding algorithm satisfies

|E(H)| ≤ 2
∑
e∈E

x∗e and ReffH(s, t) ≤ 4Reffx∗(s, t),

where x∗ is an optimal solution to (DCP) and so |E(H)| ≤ 2opt. The same lower bound on
α = Ω(1/m) as described in Theorem 201 applies, and so this is a randomized polynomial
time algorithm.

An Alternative Bicriteria Approximation Algorithm

In the s-t effective resistance network design problem, we turn a bicriteria approximation
algorithm into a true approximation algorithm, by scaling down the budget k by a factor of
two and run the bicriteria approximation algorithm. For the proof, we argue that opt(k/2) ≤
2·opt(k) by scaling down an optimal solution x∗ with budget k to a solution x∗/2 with budget
k/2.

In the dual problem, we can also try a similar approach, by scaling down the target
effective resistance R by a factor 4 and run the bicriteria approximation algorithm. However,
we cannot argue that opt(R/4) ≤ 4·opt(R), as an optimal solution x∗ with effective resistance
R may not be able to scale up to 4x∗ with effective resistance R/4 because of the capacity
constraints 0 ≤ xe ≤ 1 for e ∈ E. This approach would work if we are allowed to violate the
capacity constraint by a factor of 4.

Theorem 211. Suppose the input graph G = (V,E) satisfies ce = re = 1 for every edge
e ∈ E. There is a polynomial time algorithm for the dual problem which returns a multi-
subgraph H with |E(H)| ≤ 8opt and ReffH(s, t) ≤ R where there are at most 4 parallel copies
of each edge.

38 Dynamic Programming Algorithms for Series-Parallel

Graphs

In this section, we will present the dynamic programming algorithms for solving the s-t
effective resistance network design problem on series-parallel graphs. We first review the
definitions of series-parallel graphs in Section 38.1. Then, we present the exact algorithm in
Theorem 188 when every edge has the same cost in Section 38.2, and the fully polynomial
time approximation scheme in Theorem 188 in Section 38.3.

38.1 Series-Parallel Graphs

Definition 212 (two-terminal series-parallel graph). A two-terminal series-parallel graph
(SP graph) is a graph with two distinguished vertices (the source vertex s and the target
vertex t) that can be constructed recursively as follows:
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• Base case: A single edge (s, t)

• Compose step: If G1 and G2 are two series parallel graphs with source si and target ti
(i = 1, 2), then we can combine them in two ways:

– Series-composition: We identify t1 with s2 as the same vertex, the source of the
new graph is s1 and the target is t2.

– Parallel-composition: We identify s1 with s2 as the same vertex and t1 with t2 as
the same vertex, the new source is s1 = s2 and the new target is t1 = t2.

Given the sequence of steps of constructing a series-parallel graph G, we can define a tree
T (SP-tree) as follows.

Definition 213 (SP-tree).

• Leaf node: If G is a single edge, then T is a single node containing the edge.

• Recurse step: G is either a series-composition (S) or a parallel-composition (P) of G1

and G2, then T is a S-node (P-node) containing G, and its children are roots of the
SP-trees of G1 and G2.

Figure 38.1: An example of a SP-tree.

For a tree node v in a SP-tree T , let Gv be the subgraph that v represents, sv, tv be the
two terminals of Gv, and vl, vr to be its left and right child if v is an internal node. Note
that the SP-tree is a fully binary tree with 2m−1 nodes.

Given a two-terminal SP graph, the corresponding SP-tree can be computed in O(n+m)
time. The linear time SP-graph recognition algorithm in [251] will give us the construction
sequence of G, and we can build the SP-tree bottom-up.
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38.2 Exact Algorithm for Unit-Cost

The following fact shows that the s-t effective resistance can be computed easily from the
SP-tree.

Fact 214 (Resistance of series-parallel network). Let G be a two-terminal SP graph and each
edge e has a non-negative resistance re. Let T be the corresponding SP-tree. For every tree
node v, we can compute the source-target effective resistance as follows.

Leaf node: ReffGv(sv, tv) = re if v is a leaf node with a single edge e.

S-node: ReffGv(sv, tv) = ReffGvl (svl , tvl) + ReffGvr (svr , tvr).

P-node: ReffGv(sv, tv) =
ReffGvl (svl , tvl) · ReffGvr (svr , tvr)

ReffGvl (svl , tvl) + ReffGvr (svr , tvr)
.

We can design the dynamic programming algorithm by defining the subproblems using
the SP-tree T . For every tree node v and b = 0, 1 . . . k, we define the subproblem

R(v, b) := min
H⊆Gv

{ReffH(sv, tv) |
∑
e∈H

ce ≤ b}.

Since we assume that every edge e has cost ce = 1, there are at most 2mk subproblems,
as the SP-tree has at most 2m nodes and there are at most k possibilities for the cost of a
subgraph.

It follows from the definition that R(vroot, k) would be the optimal s-t effective resistance
for our problem. To compute R(v, b), with Fact 214, we can use the following recurrence
which exhausts all possible distributions of the budget among the two children:

R(v, b) =



∞ if v is a leaf node and b < ce

re if v is a leaf node and b ≥ ce

min
b′=0...b

R(vl, b
′) +R(vr, b− b′) if v is a S-node

min
b′=0...b

R(vl, b
′) ·R(vr, b− b′)

R(vl, b′) +R(vr, b− b′)
if v is a P-node.

As there are O(mk) subproblems and each subproblem can be computed in O(k) time, the
time complexity of this dynamic programming algorithm is O(mk2).

38.3 Fully Polynomial Time Approximation Scheme

In this subsection, we use dynamic programming to design a fully polynomial time approxi-
mation scheme to prove Theorem 188. In the previous subsection, we assume that every edge
has the same cost to obtain an exact algorithm, by having a bounded number of subproblems
in dynamic programming. When the cost could be arbitrary, the number of subproblems
can no longer be bounded by a polynomial. Since the cost constraint must be satisfied, we
do not change the cost of the edges, but instead we discretize the resistance of the edges and
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optimize over the cost, and show that it gives an arbitrarily good approximation when the
discretization is fine enough.

Rescaling: First, by rescaling, we assume that mine re = 1 and maxe re = U in G.
Let m = |E| and L = ε/m2 where ε > 0 is the parameter in the approximation guarantee.
We further rescale the resistance by setting re ← re/L. This rescaling ensures that for any
subgraph of G in which s-t is connected, the s-t effective resistance is upper bounded by
Um/L (when all the edges are in series) and is lower bounded by 1/(mL) (when all the edges
are in parallel).

Subproblems and Recurrence: Let T be the SP-tree of G and let vroot be the root
of T . We define two similar sets of subproblems. For every tree node v and a value R ∈
[1/(mL), Um/L], we define the subproblem

C(v,R) := min
H⊆Gv

{
∑
e∈H

ce | ReffH(sv, tv) ≤ R}.

Similar to the reasoning in the previous subsection, the subproblems satisfy the following
recurrence relation:

C(v,R) =



ce if v is a leaf node with a single edge e and R ≥ re

∞ if v is a leaf node with a single edge e and R < re

min
R1,R2∈[1/(mL),Um/L]

{C(vl, R1) + C(vr, R2) | R1 +R2 ≤ R} if v is a S-node

min
R1,R2∈[1/(mL),Um/L]

{C(vl, R1) + C(vr, R2) | R1R2

R1 +R2

≤ R} if v is a P-node.

Discretized subproblems: We cannot use dynamic programming to solve the above
recurrence relation efficiently as there are unbounded number of subproblems. Instead, we
use dynamic programming to compute the solution of all the “discretized” subproblems using
the same recurrence relation. For every integer R from d1/(mL)e to dUm/Le, we define

C(v,R) :=



ce if v is a leaf node with a single edge e and R ≥ dree
∞ if v is a leaf node with a single edge e and R < dree

min
R1,R2∈{d1/(mL)e...dUm/Le}

{C(vl, R1) + C(vr, R2) | R1 +R2 ≤ R} if v is a S-node

min
R1,R2∈{d1/(mL)e...dUm/Le}

{C(vl, R1) + C(vr, R2) |
⌈

R1R2

R1 +R2

⌉
≤ R} if v is a P-node.

We can think of C(v,R) as the minimum cost required to select a subset of edges such
that the effective resistance between sv and tv is at most R, when the effective resistance is
rounded up to an integer during each step of the computation in the recurrence relation.

Algorithm and Complexity: After computing all C(v,R), the algorithm will return

min{R | C(vroot, R) ≤ k}

as the approximate minimum s-t effective resistance. Given a tree node v, by trying all
possible integral values of R1 and R2, we can compute the values of C(v,R) for each possible
R in O((Um/L)2) time. Therefore, the total running time of computing all C(v,R) is
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O(m) · O((Um/L)2) = O(m7U2/ε2). To output the optimal edge set, we can store the
optimal values of R1, R2 for each pair of (v,R) to reconstruct the edge set.

Correctness and Approximation Guarantee: Since we have not changed the edge
cost, the solution returned by the algorithm will have total cost at most k. It remains to show
that the s-t effective resistance is at most (1 + ε) times the optimal s-t effective resistance.
For every tree node v and every b ∈ [0, k], we define

R(v, b) := min{R | C(v,R) ≤ b, R ∈ [1/(mL), Um/L]}
R(v, b) := min{R | C(v,R) ≤ b, R ∈ {d1/(mL)e, . . . dUm/Le}}.

It follows from the definitions that the optimal s-t effective resistance is R(vroot, k), and the
output of our algorithm will be R(vroot, k). The following lemma establishes the approxima-
tion guarantee.

Lemma 215. For every tree node v and for every b ∈ [0, k], it holds that

R(v, b) ≤
(

1 +
ε|E(Gv)|

m

)
R(v, b).

Proof. We prove the lemma by induction on the tree node of the SP-tree.
Base Case: Suppose v is a leaf node of T and Gv is a graph of a single edge e.

• For b < ce, we have R(v, b) = R(v, b) =∞.

• For b ≥ ce, we have R(v, b) = re and

R(v, b) = dree ≤ re + 1 = re + (
ε

m
)(

1

mL
) ≤ re +

ε

m
re =

(
1 +

ε|E(Gv)|
m

)
R(v, b),

where the second inequality uses that every resistance is at least 1/(mL), and the last
equality uses that |E(Gv)| = 1 and re = R(v, b).

S-node: Suppose v is a S-node. For every b ∈ [0, k], we have

R(v, b) = min
b1,b2|b1+b2=b

{R(vl, b1) +R(vr, b2)}

≤ min
b1,b2|b1+b2=b

{(
1 +

ε|E(Gvl)|
m

)
R(vl, b1) +

(
1 +

ε|E(Gvr)|
m

)
R(vr, b2)

}
≤ min

b1,b2|b1+b2=b

{(
1 +

ε|E(Gv)|
m

)
(R(vl, b1) +R(vr, b2))

}
=

(
1 +

ε|E(Gv)|
m

)
min

b1,b2|b1+b2=b
{(R(vl, b1) +R(vr, b2))}

=

(
1 +

ε|E(Gv)|
m

)
R(v, b),

where the first inequality follows from the induction hypothesis, and the second inequality
follows from the fact that max(|E(Gvl)|, |E(Gvr)|) ≤ |E(Gv)| − 1.
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P-node: Suppose v is a P-node. For every b ∈ [0, B], we have

R(v, b) = min
b1,b2|b1+b2=b

{⌈
1

1/R(vl, b1) + 1/R(vr, b2)

⌉}
≤ min

b1,b2|b1+b2=b

{⌈(
1 +

ε(|E(Gv)| − 1)

m

)
1

1/R(vl, b1) + 1/R(vr, b2)

⌉}
=

⌈(
1 +

ε(|E(Gv)| − 1)

m

)
R(v, b)

⌉
≤
(

1 +
ε(|E(Gv)| − 1)

m

)
R(v, b) + 1

=

(
1 +

ε(|E(Gv)| − 1)

m

)
R(v, b) +

ε

m

1

mL

≤
(

1 +
ε(|E(Gv)| − 1)

m

)
R(v, b) +

ε

m
R(v, b)

=

(
1 +

ε|E(Gv)|
m

)
R(v, b),

where the first inequality follows from the induction hypothesis and the fact that max(|E(Gvl)|, |E(Gvr)|) ≤
|E(Gv)| − 1, and the last inequality holds as the minimum resistance of any subgraph is at
least 1/(mL).

Therefore, the lemma follows by an induction on the SP-tree.

By substituting v = vroot and b = k, we have

R(vroot, k) ≤
(

1 +
mε

m

)
R(vroot, k) = (1 + ε)R(vroot, k),

and this completes the proof of Theorem 188.

39 Hardness Results

In this subsection, we present two hardness results for the s-t effective resistance network
design problem. First, we prove that the problem is NP-hard even if every edge has the same
cost and the same resistance in Section 39.1. Then, we prove that the problem is APX-hard
assuming the small-set expansion conjecture in Section 39.2.

39.1 NP-Hardness for Unit-Cost Unit-Resistance

We will prove Theorem 184 in this subsection. The following is the decision version of the
problem.

Problem 216 (s-t effective resistance network design with unit-cost unit-resistance).

Input: An undirected graph G = (V,E) where each edge e ∈ E has resistance one,
two vertices s, t ∈ V , and two parameters k and R.
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Question: Does there exist a subgraph H of G with at most k edges and ReffH(s, t) ≤
R?

We will show that this problem is NP-complete by a reduction from the 3-Dimensional
Matching (3DM) problem.

Problem 217 (3-Dimensional Matching).

Input: Three disjoint sets of elements X = {x1, . . . , xq}, Y = {y1, . . . , yq} and Z =
{z1, . . . , zq}, a set of triples T ⊆ X × Y × Z where each triple contains exactly one
element in X, Y and Z.

Question: Does there exist a subset of q pairwise disjoint triples in T ?

Reduction: Given an instance of 3DM with {(X, Y, Z), T }, we let τ = |T | and denote
the triples by T = {T1, . . . , Tτ}.

Figure 39.1: An illustration of the construction of the graph G from a 3DM instance.

We construct a graph G = (V,E) as follows.

Vertex Set: The vertex set V of the graph G is the disjoint union of five sets
{s}, {t}, VA, VB, and D. Each vertex in VA corresponds to a triple in T , that is
VA = {T1, . . . , Tτ}. Each vertex in VB corresponds to an element in X ∪ Y ∪ Z, that
is VB = {x1, . . . , xq, y1, . . . , yq, z1, . . . , zq}. Let l = 3τ + 3q. The set D consists of τ · l
“dummy” vertices {di,j | 1 ≤ i ≤ τ, 1 ≤ j ≤ l}. So, there are totally τ+3q+2+τ(3τ+3q)
vertices in G, which is a polynomial in the input size of the 3DM instance.

Edge Set: The edge set E of the graph G is the disjoint union of three edge sets F1,
F2 and P . There are 3τ edges in F1, where there are three edges (T, xa), (T, yb) and
(T, zc) for each triple T = (xa, yb, zc) ∈ T . There are 3q edges in F2, where there is an
edge from each vertex in VB to t. There are τ(l+ 1) edges in P , where there is a path
Pi := (s, di,1, di,2, . . . , di,l, Ti) for each triple Ti ∈ T for 1 ≤ i ≤ τ . So, there are totally
3τ + 3q+ τ(3τ + 3q+ 1) edges in E, which is a polynomial in the input size of the 3DM
instance.
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The proof of the following claim completes the proof of Theorem 184.

Lemma 218. Let k = q(l + 1) + 3τ + 3q and R = (3(l + 1) + 2)/3q. The 3DM instance
has q disjoint triples if and only if the graph G has a subgraph H with at most k edges and
ReffH(s, t) ≤ R.

Proof. One direction is easy. If there are q disjoint triples in the 3DM instance, say {T1, . . . , Tq},
then H will consist of the q paths P1, . . . , Pq, the 3q edges in F1 incident on T1, . . . , Tq, and
all the 3q edges in F2. There are (l + 1)q + 3q + 3q ≤ k edges in H, and ReffH(s, t) =
(l + 1)/q + 1/3q + 1/3q = (3(l + 1) + 2)/3q = R, as in the graph in Figure 39.2.

The other direction is more interesting. If there do not exist q disjoint triples in the
3DM instance, then we need to argue that ReffH(s, t) > R for any H with at most k edges.
First, note that k < (q + 1)(l + 1), and so the budget is not enough for us to buy more
than q paths. As it is useless to buy only a proper subset of a path, we can thus assume
that H consists of q paths and all the edges in F1 and all the edges in F2, a total of exactly
q(l + 1) + 3τ + 3q = k edges. For any such H, we will argue that ReffH(s, t) > R. Without
loss of generality, we assume that H consists of P1, . . . , Pq and all edges in F1 and F2. As
T1, . . . , Tq are not disjoint, there are some vertices in VB that are not neighbors of T1∪. . .∪Tq,
call those vertices U .

We consider the following modifications of H to obtain H ′, and use ReffH′(s, t) to lower
bound ReffH(s, t). For every pair of vertices in VB, we add an edge of zero resistance. For
each edge incident on Tq+1, . . . , Tτ , we decrease its resistance to zero. By the monotonicity
principle, the modifications will not increase the s-t effective resistance, as we either add
edges with zero resistance or decreasing the resistance of existing edges. The modifications
are equivalent to contracting the vertices with zero resistance edges in between, and so H ′

is equivalent to the graph in Figure 39.2. Therefore, we have ReffH(s, t) ≥ ReffH′(s, t) ≥ R.

Figure 39.2: The subgraph H when the 3DM instance has q disjoint triples.

We will prove that one of the inequalities in ReffH(s, t) ≥ ReffH′(s, t) ≥ R must be strict
when U 6= ∅ (Figure 39.3). To argue the strict inequality, we look at the unit s-t electrical
flow f in H and consider two cases.

• If there exists some vertex u ∈ U with no incoming electrical flow, then we can delete
such a vertex without changing ReffH(s, t). But then in the modified graph H ′, the
number of parallel edges to t is strictly smaller than 3q, and therefore ReffH′(s, t) > R.

• If there exists some vertex u ∈ U with some incoming electrical flow, then f(Tju) > 0
for some j ≥ q + 1. Since we have decrease the resistance of such an edge Tju to zero,
the energy of f in H ′ is strictly smaller than the energy of f in H. By Thomson’s
principle, we have ReffH′(s, t) ≤ EH′(f) < EH(f) = ReffH(s, t).
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Figure 39.3: The subgraph H when U is non-empty.

Since the 3DM instance has no q disjoint triples, it follows that U 6= ∅ and thus one of the
above two cases must apply. In either case, we have ReffH(s, t) > R and this completes the
proof of the other direction.

39.2 Improved Hardness Assuming Small-Set Expansion Conjec-
ture

In this subsection, we will prove Theorem 185 that it is NP-hard to approximate the s-t
effective resistance network design problem within a factor smaller than 2. First, we will
state the small-set expansion conjecture and its variant on bipartite graphs, and present
an overview of the proof in Section 39.2.1. Then, we will reduce the bipartite small-set
expansion problem to the s-t effective resistance network design problem in Section 39.2.2,
and then reduce the small-set expansion problem to the bipartite small-set expansion problem
in Section 39.2.3 to complete the proof.

39.2.1 The Small-Set Expansion Conjecture and Proof Overview

The gap small-set expansion problem is formulated by Raghavendra and Steurer [224]. We
use the version that is stated in [225].

Definition 219 (Gap Small-Set Expansion Problem [224, 225]). Given an undirected graph
G = (V,E), two parameters 0 < β < α < 1 and δ > 0, the (α, β)-gap δ-small-set expansion
problem, denoted by SSEδ(α, β), is to distinguish between the following two cases.

• Yes: There exists a subset S ⊆ V with vol(S) = δ|E| and φ(S) ≤ β.

• No: Every subset S ⊆ V with vol(S) = δ|E| has φ(S) ≥ α.

It is conjectured in [224] that the gap small-set expansion problem becomes harder when
δ becomes smaller.

Conjecture 220 (Small-Set Expansion Conjecture [224, 225]). For any ε ∈ (0, 1
2
), there

exists sufficiently small δ > 0 such that SSEδ(1− ε, ε) is NP-hard even for regular graphs.
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It is known that the small-set expansion conjecture implies the Unique Game conjec-
ture [224] and is equivalent to some variant of the Unique Game Conjecture [225].

We will show the SSE-hardness of the s-t effective resistance network design problem
in two steps, and use the small-set expansion problem on regular bipartite graphs as an
intermediate problem.

Proposition 221. For any ε > 0, there is a polynomial time reduction from SSEδ(1− ε, ε)
on d-regular graphs to SSEδ(1− 8ε, ε) on d-regular bipartite graphs.

Proposition 222. Given an instance of SSEδ(α, β) on a d-regular bipartite graph B, there
is a polynomial time algorithm to construct an instance of the s-t effective resistance network
design problem with graph G and cost budget k satisfying the following properties.

• If B is a Yes-instance, then there is a subgraph H of G with cost at most k and

ReffH(s, t) ≤ 2

(1− β)dk
.

• if B is a No-instance, then every subgraph H of G with cost at most k has

ReffH(s, t) ≥ 2

(1− α
2
)dk

.

Theorem 185 will follow immediately from the two propositions.

Theorem 223. For any ε′ > 0, it is NP-hard to approximate the s-t effective resistance
network design problem to within a factor of 2− ε′, assuming that SSEδ(1− ε, ε) is NP-hard
on regular graphs for sufficiently small ε > 0.

Proof. First, given a d-regular instance of SSEδ(1−ε, ε), we apply Proposition 221 to obtain a
d-regular bipartite instance of SSEδ(1−8ε, ε). Then, we apply Proposition 222 with α = 1−8ε
and β = ε and see that the ratio between the s-t effective resistance of the No-case and the
Yes-case is at least

(1− β)dk

(1− α
2
)dk

=
1− ε
1
2

+ 4ε
=

2(1− ε)
1 + 8ε

> 2− ε′,

when ε is sufficiently small.

We will first prove Proposition 222 in Section 39.2.2, and then prove Proposition 221 in
Section 39.2.3.

39.2.2 From Bipartite Small-Set Expansion to s-t Effective Resistance Network
Design

We prove Proposition 222 in this subsection. In the Yes-case of bipartite SSE, we use the
small dense subgraph (from the small low conductance set) to construct a small subgraph
with small s-t effective resistance. In the No-case of bipartite SSE, we argue that every
small subgraph has considerably larger s-t effective resistance.

Construction: Given an SSEδ(α, β) instance with a d-regular bipartite graph B =
(VX , VY ;EB), we construct an instance of the s-t effective resistance network design problem
with graph G = (V,E) as follows. See Figure 39.4 for an illustration.
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Figure 39.4: Reduction from bipartite small set expansion to s-t effective resistance network
design problem.

Vertex Set: The vertex set V of G is simply the disjoint union of {s}, VX , VY , {t}.

Edge Set: The edge set E of G is the disjoint union of three edge sets Es, EB, Et.
The edge set Es has |VX | edges, where there is an edge from s to each vertex v ∈ VX .
The edge set Et has |VY | edges, where there is an edge from each vertex v ∈ VY to t.

Costs and Resistances: Every edge e in EB has ce = 1 and re = 0. Every edge
e ∈ Es ∪ Et has ce = 0 and re = 1.

Budget: The cost budget k is equal to δ|VX ∪ VY |.

s tX Y

Z

|X| edges
...

|Y | edges
...

...

≥ 1
2
(1− β)dk edges

... ...

Figure 39.5: In the Yes-case, the solid edges are included in H and the dashed edges are
deleted.

Yes-case: Suppose B is a Yes-instance of SSEδ(α, β). Since B is regular, there exist
subsets X ⊆ VX and Y ⊆ VY such that |X ∪ Y | = δ|VX ∪ VY | = k and φB(X ∪ Y ) ≤ β. We
construct the subgraph H of G as follows.

Subgraph H: The subgraph H includes all the edges from s to X, all the edges from
X to Y , and all the edges from Y to t. Since edges from X to Y are of cost zero, the
total cost in H is equal to |X|+ |Y | = k.
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The following claim will complete the proof of the first item of Proposition 222.

Lemma 224. ReffH(s, t) ≤ 2/((1− β)dk).

Proof. Since B is a d-regular bipartite graph, we have

d(|X|+ |Y |) = volB(X ∪ Y ) = |δB(X ∪ Y )|+ 2|EB(X, Y )|,

where EB(X, Y ) denotes the set of edges with one endpoint in X and one endpoint in Y .
Since φB(X ∪ Y ) ≤ β, we have |δB(X ∪ Y )| ≤ β · volG(X ∪ Y ) = dβ(|X|+ |Y |). Hence, the
number of edges between X and Y is

|EB(X, Y )| = d(|X|+ |Y |)− |δB(X ∪ Y )|
2

≥ 1

2
(1− β)d(|X|+ |Y |) =

1

2
(1− β)dk.

In terms of s-t effective resistance, H is equivalent to the graph in Figure 39.5, where
Z = (VX\X) ∪ (VY \Y ) is the set of vertices not in X and Y . Since the edges from s to X
and from Y to t have zero resistance and edges between X and Y have resistance one, we
have ReffH(s, t) ≤ 2/((1− β)dk).

No-case: We will prove the second item of Proposition 222 by arguing that every sub-
graph of B with total cost at most k has considerably larger s-t effective resistance. Since all
the edges between VX and VY have zero cost and adding edges never increases s-t effective
resistance (by Rayleigh’s monotonicity principle), we can assume without loss of generality
that any solution H to the s-t effective resistance network design problem takes all edges
between VX and VY and also takes exactly k edges from Es ∪ Et. Consider an arbitrary
subgraph H with the above properties. Let X ⊆ VX be the set of neighbors of s in H and
Y ⊆ VY be the set of neighbors of t in H, with |X| + |Y | = k. Let φ := φB(X ∪ Y ). Note
that φ ≥ α as we are in the No-case where φB(X ∪ Y ) ≥ α for every |X ∪ Y | = k. Using
the same calculation as above, we have

|EB(X, Y )| = 1

2
(1− φB(X ∪ Y ))dk =

1

2
(1− φ)dk.

The subgraph H is shown in Figure 39.6, where Z = (VX\X)∪ (VY \Y ) is the set of vertices
not in X and Y , and the edges within Z are not shown. To lower bound ReffH(s, t), we
modify H to obtain H ′ and argue that ReffH(s, t) ≥ ReffH′(s, t) and then show a lower bound
on ReffH′(s, t).

To obtain H ′ from H, we simply identify the three subsets of vertices X, Y, Z to three
vertices, which is equivalent to adding a clique of zero resistance edges to each of these three
subsets. By Rayleigh’s monotonicity principle, this could only decrease the s-t effective
resistance and so we have ReffH(s, t) ≥ ReffH′(s, t).

In terms of s-t effective resistance, the subgraph H ′ is equivalent to the graph with two
paths between X and Y (with parallel edges): one path P1 of length one with |EB(X, Y )|
parallel edges between X and Y , another path P2 of length two with |EB(X,Z)| parallel
edges between X and Z and |EB(Z, Y )| parallel edges between Z and Y . To lower bound
ReffH′(s, t), we lower bound the resistance of P1 and P2, denoted by r(P1) and r(P2). Note
that

r(P1) =
1

EB(X, Y )
=

2

(1− φ)dk
.
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Figure 39.6: The subgraph H ′ is obtained by identifying the subsets X, Y, Z into single
vertices.

For r(P2), let x = |δB(X,Z)| and y = |δB(Y, Z)|, then

r(P2) =
1

x
+

1

y
=

1

x+ y
· (x+ y)2

xy
=

1

x+ y
·
(
x

y
+
y

x
+ 2

)
≥ 4

x+ y
=

4

φdk
,

where the inequality holds since a + 1/a ≥ 2 for any a > 0, and the last equality holds
because x+ y = |δB(X ∪ Y )| = φdk. Finally, by Fact 214,

ReffH(s, t) ≥ ReffH′(s, t) =
1

1/r(P1) + 1/r(P2)
≥ 1

1
2
(1− φ)dk + 1

4
φdk

=
2

(1− φ/2)dk
≥ 2

(1− α/2)dk
,

where the last inequality is because we are in the No-case. This completes the proof of the
second item of Proposition 222.

Remark 225. In this subsection, we show the hardness of the s-t effective resistance network
design problem, when the edge cost and the edge resistance could be arbitrary. Using a
similar argument as in the proof of Theorem 184, the reduction can be modified to the unit-
cost case if we replace the edges from s to VX and VY to t by sufficiently long paths (so that
the cost of connecting s to a vertex in VX is much larger than the cost of connecting a vertex
in VX to a vertex in VY ). Therefore, the same (2 − ε)-SSE-hardness also holds in the case
when every edge has the same cost.

39.2.3 From Small Set Expansion to Bipartite Small Set Expansion

We prove Proposition 221 in this subsection.
Construction: Given an instance SSEδ(1 − ε, ε) on a d-regular graph G = (V,E), we

construct a d-regular bipartite graph B = (VX , VY ;EB) as follows. For each vertex v in V ,
we create a vertex vX ∈ VX and a vertex vY ∈ VY , so that |VX | = |VY | = |V |. For each edge
uv ∈ E, we add two edges uXvY and uY vX to EB. It is clear from the construction that B
is d-regular.

Correctness: To prove Proposition 221, we will establish the following two claims.

1. Yes-case: If there is a set S ⊆ V with |S| = δ|V | and φG(S) ≤ ε in G, then there
exist X ⊆ VX and Y ⊆ VY with |X|+ |Y | = δ(|VX |+ |VY |) and φB(X ∪ Y ) ≤ ε in B.

2. No-case: If every set S ⊆ V with |S| = δ|V | has φG(S) ≥ 1− ε in G, then every sets
X ⊆ VX and Y ⊆ VY with |X|+ |Y | = δ(|VX |+ |VY |) has φB(X ∪ Y ) ≥ 1− 8ε in B.
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Yes-case: Let S ⊆ V be a subset with |S| = δ|V | and φG(S) ≤ ε in G. Let SX := {vX |
v ∈ S} and SY := {vY | v ∈ S}, with |S| = |SX | = |SY |. By construction, an edge uv ∈ δG(S)
if and only if both uXvY and vXuY are in δB(SX ∪ SY ), ans thus |δB(SX ∪ SY )| = 2|δG(S)|.
Since |SX ∪ SY | = |SX |+ |SY | = 2|S| and B is d-regular, we have

φB(SX ∪ SY ) =
|δB(SX ∪ SY )|
volB(SX ∪ SY )

=
|δB(SX ∪ SY )|
d(|SX |+ |SY |)

=
2|δG(S)|

2d|S|
= φG(S) ≤ ε.

No-case: Consider arbitrary subsets X ⊆ VX and Y ⊆ VY with |X| + |Y | = δ(|VX | +
|VY |) = 2δ|V |. To lower bound φB(X∪Y ), we will upper bound |EB(X, Y )|. We partition X
into groups X1, . . . , Xa where every group except the last group is of size δ|V |/2 and the last
group is of size at most δ|V |/2. We partition Y into groups Y1, . . . , Yb in a similar way. The
following claim uses the small-set expansion property in G to show that there is no small
dense subset in B.

Lemma 226. Suppose G is a No-instance of SSEδ(1 − ε, ε). Then, for any 1 ≤ i ≤ a and
1 ≤ j ≤ b,

|EB(Xi, Yj)| ≤ εδd|V |.

Proof. We first argue that there is no small dense subset in G, and then we will use it to
bound |EB(Xi, Yj)|. Suppose S ⊆ V with |S| = δ|V |. As G is a No-instance, we know that
φG(S) ≥ 1 − ε and thus |δG(S)| ≥ (1 − ε)volG(S) = (1 − ε)d|S|. Since d|S| = volG(S) =
|δG(S)| + 2|EG(S, S)|, it follows that |EG(S, S)| ≤ εd|S|/2 = εδd|V |/2. Note that this also
implies trivially that |EG(Z,Z)| ≤ εδd|V |/2 for any Z with |Z| ≤ δ|V |.

Given Xi and Yj, let Z := {v ∈ G | vX ∈ Xi or vY ∈ Yj}. In words, Z is the set of
vertices in G which have at least one copy in Xi ∪ Yj in B. Since each Xi and Yj is of size
at most δ|V |/2, it follows that |Z| ≤ δ|V |. Also, note that |EB(Xi, Yj)| ≤ 2|EG(Z,Z)|, as
each edge in EB(Xi, Yj) corresponds to one edge in EG(Z,Z) while each edge in EG(Z,Z) is
corresponded to at most two edges in EB(Xi, Yj). Therefore, we can apply the bound in the
previous paragraph to conclude that |E(Xi, Yj)| ≤ 2|EG(Z,Z)| ≤ εδd|V |.

We now use the lemma to bound |EB(X, Y )|. Since |X| + |Y | = 2δ|V |, it follows that
a ≤ 4 and b ≤ 4, and therefore

|EB(X, Y )| ≤
a∑
i=1

b∑
j=1

|EB(Xi, Yj)| ≤ abεδd|V | ≤ 16εδd|V |.

As B is bipartite,

|δB(X ∪ Y )| = volB(X ∪ Y )− 2|EB(X, Y )| ≥ 2δd|V | − 16εδd|V | = 2(1− 8ε)δd|V |.

Therefore, we have

φB(X ∪ Y ) =
|δB(X ∪ Y )|
volB(X ∪ Y )

≥ 2(1− 8ε)δd|V |
2δd|V |

= 1− 8ε.

This completes the proof of Proposition 221. We remark that a more careful argument gives
|EB(X, Y )| ≤ 6εδd|V | and thus φB(X ∪ Y ) ≥ 1− 3ε, but this constant does not matter for
the proof of Theorem 223.
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Concluding Remarks

We have formulated a natural problem and presented some hardness and algorithmic results.
It opens up a number of interesting problems.

1. For the s-t effective resistance network design problem when ce = re = 1 for all
e ∈ E, we conjecture that the integrality gap of the convex program is exactly two. As
mentioned in Remark 202, the analysis of the 8-approximation is not tight, and we can
show that the same algorithm achieves an approximation ratio strictly smaller than 5.
It would be very good to close the gap completely.

2. The general case of arbitrary costs and arbitrary resistances is wide open. It will be
very interesting if there are stronger convex programming relaxations for the problem
(perhaps adding some knapsack constraint as suggested by the dynamic programming
algorithms for series-parallel graphs).

3. As in survivable network design, one could study the general problem when there are
multiple source-sink pairs and each pair has a different effective resistance requirement.
It will be very interesting if it is still possible to achieve a constant factor approximation
in this very general setting.

4. An interesting intermediate problem is to find a minimum cost network so that the
maximum effective resistance over pairs (the resistance diameter) is minimized. This
is an analog of the global connectivity problem in traditional network design.

A more open-ended question is to unify and extend the techniques for network design prob-
lems with spectral requirements.
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[187] László Lovász and Santosh Vempala. Simulated annealing in convex bodies and an

o*(n4) volume algorithm. J. Comput. Syst. Sci., 72(2):392–417, 2006.

[188] Aleksander Madry, Damian Straszak, and Jakub Tarnawski. Fast generation of random
spanning trees and the effective resistance metric. In Proceedings of the twenty-sixth
annual ACM-SIAM symposium on Discrete algorithms, pages 2019–2036. Society for
Industrial and Applied Mathematics, 2015.

[189] Michael W. Mahoney. Randomized algorithms for matrices and data. Foundations and
Trends in Machine Learning, 3(2):123–224, 2011.

[190] Peter Matthews. Covering problems for brownian motion on spheres. The Annals of
Probability, pages 189–199, 1988.

[191] S McCormick. Submodular Function Minimization. 2013.

[192] S. T. McCormick. Submodular function minimization. Chapter 7 in the Handbook of
Discrete Optimization, 2006.

[193] S Thomas and McCormick. Canceling most helpful total submodular cuts for submod-
ular flow. In IPCO, pages 343–353, 1993.

[194] Vahab Mirrokni, Renato Paes Leme, Adrian Vladu, and Sam Chiu-Wai
Wong. Tight bounds for approximate Caratheodory and beyond. arXiv,
http://arxiv.org/abs/1512.08602, December, 2015.

[195] Renato DC Monteiro. First-and second-order methods for semidefinite programming.
Mathematical Programming, 97(1-2):209–244, 2003.

[196] Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as
matrix inversion. In Proceedings of the nineteenth annual ACM symposium on Theory
of computing, pages 345–354. ACM, 1987.

[197] K. Murota. Discrete Convex Analysis. Monographs on Discrete Mathematics and
Applications. Society for Industrial and Applied Mathematics, 2003.

[198] Kazuo Murota. Convexity and Steinitz’s exchange property. Advances in Mathematics,
124(2):272 – 311, 1996.

[199] Kazuo Murota. Valuated matroid intersection i: Optimality criteria. SIAM J. Discrete
Math., 9(4):545–561, 1996.

[200] Kazuo Murota. Valuated matroid intersection ii: Algorithms. SIAM J. Discrete Math.,
9(4):562–576, 1996.

[201] Kazuo Murota. Matrices and matroids for systems analysis, volume 20. Springer, 2000.

239



[202] Kazuo Murota. Discrete convex analysis: A tool for economics and game theory.
Journal of Mechanism and Institution Design, 1(1):151–273, 2016.

[203] Kazuo Murota and Akiyoshi Shioura. M-convex function on generalized polymatroid.
Mathematics of Operations Research, 24(1):pp. 95–105, 1999.

[204] Kazuo Murota, Akiyoshi Shioura, and Zaifu Yang. Computing a walrasian equilibrium
in iterative auctions with multiple differentiated items. In International Symposium
on Algorithms and Computation, pages 468–478. Springer, 2013.

[205] Kazuo Murota and Akihisa Tamura. Application of M-convex submodular flow problem
to mathematical economics. Japan Journal of Industrial and Applied Mathematics,
20(3):257–277, 2003.

[206] Kazuhide Nakata, Katsuki Fujisawa, Mituhiro Fukuda, Masakazu Kojima, and Kazuo
Murota. Exploiting sparsity in semidefinite programming via matrix completion ii:
Implementation and numerical results. Mathematical Programming, 95(2):303–327,
2003.

[207] Arkadi Nemirovski. Efficient methods in convex programming. 1994.

[208] Arkadi Nemirovski. Efficient methods in convex programming. 2005.

[209] D. B. Nemirovsky, A. S., & Yudin. Problem complexity and method efficiency in
optimization. 1983.

[210] Yu Nesterov. Complexity estimates of some cutting plane methods based on the ana-
lytic barrier. Mathematical Programming, 69(1-3):149–176, 1995.

[211] Yu Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, vol-
ume I. 2003.

[212] Yu Nesterov and Arkadi Nemirovskiy. Self-concordant functions and polynomial-time
methods in convex programming. USSR Academy of Sciences, Central Economic &
Mathematic Institute, 1989.

[213] Yu Nesterov and A Nemirovsky. Conic formulation of a convex programming problem
and duality. Optimization Methods and Software, 1(2):95–115, 1992.

[214] Aleksandar Nikolov, Mohit Singh, and Uthaipon Tao Tantipongpipat. Proportional
volume sampling and approximation algorithms for a-optimal design. arXiv preprint
arXiv:1802.08318, 2018.

[215] Noam Nisan and Ilya Segal. The communication requirements of efficient allocations
and supporting prices. J. Economic Theory, 129(1):192–224, 2006.

[216] Robert Nishihara, Stefanie Jegelka, and Michael I. Jordan. On the convergence rate of
decomposable submodular function minimization. Adv. in Neu. Inf. Proc. Sys. (NIPS),
2014.

240



[217] James B Orlin. A faster strongly polynomial time algorithm for submodular function
minimization. Mathematical Programming, 118(2):237–251, 2009.

[218] James B Orlin, John VandeVate, et al. On a” primal” matroid intersection algorithm.
1983.

[219] David C Parkes. i bundle: an efficient ascending price bundle auction. In Proceedings
of the 1st ACM conference on Electronic commerce, pages 148–157. ACM, 1999.

[220] David C Parkes and Lyle H Ungar. An ascending-price generalized Vickrey auction.
manuscript, Harvard University, 2002.

[221] Kaare Brandt Petersen and Michael Syskind Pedersen. The matrix cookbook (version:
November 15, 2012), 2012.

[222] Serge A Plotkin, David B Shmoys, and Éva Tardos. Fast approximation algorithms
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