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ABSTRACT
Our perception of our surrounding environment is limited by
the constraints of human biology. The field of augmented
perception asks how our sensory capabilities can be usefully
extended through computational means. We argue that spa-
tial awareness can be enhanced by exploiting recent advances
in computer vision which make high-accuracy, real-time ob-
ject detection feasible in everyday settings. We introduce
HindSight, a wearable system that increases spatial awareness
by detecting relevant objects in live 360-degree video and
sonifying their position and class through bone conduction
headphones. HindSight uses a deep neural network to locate
and attribute semantic information to objects surrounding a
user through a head-worn panoramic camera. It then uses
bone conduction headphones, which preserve natural auditory
acuity, to transmit audio notifications for detected objects of
interest. We develop an application using HindSight to warn
cyclists of approaching vehicles outside their field of view.
To evaluate HindSight, we first conduct an exploratory study
with 15 users. We next create a VR platform to simulate re-
alistic traffic scenarios and use it to evaluate HindSight in a
controlled user study with 21 participants. Participants using
HindSight had fewer collisions, increased their space to other
vehicles, experienced reduced cognitive load, and reported a
perceived increase in awareness.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
360-Degree Video; Computer Vision; Sonification;
Augmented Perception

INTRODUCTION
The human visual system has both biological and cognitive
constraints. Our vision spans a usable field of roughly 114
degrees [17], and our anatomy restricts our sharpest, foveal
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Figure 1. HindSight uses a neural network to detect objects from live,
ego-centric 360-degree video, a filter bank to extract relevant ones, and
a application-specific sonification program to convey results to a user.

vision to a field of only 5.2 degrees [47]. Cognitively, as we be-
come absorbed in a task, our “locus of attention” narrows [38];
i.e., we tune out external stimuli, increasing our focus but
possibly drowning out important events such as alarms or en-
vironmental dangers. Interfaces which can redirect a user’s
attention to these overlooked stimuli have the potential to pre-
vent serious accidents. Our research goal is to supplement
these sensory constraints by augmenting spatial awareness for
objects that are outside of a person’s visual field.

Some approaches substitute all information for specific senses–
e.g., by using a head-mounted display to show a LIDAR point
cloud [30] or a live 360-degree video stream [2]. Repurposing
the visual system is potentially powerful, but such systems are
not easily integrated into daily activities because they require
an adaptation period before use and can create hurdles in social
interactions. We seek to develop a system that enhances spatial
awareness by redirecting attention without impeding natural
senses.

We introduce HindSight, a wearable system that increases spa-
tial awareness by detecting relevant objects in live, ego-centric
360-degree video and sonifying their location and properties
through bone conduction headphones. Our approach draws
upon advances in computer vision to identify points of interest
in a user’s surroundings, and work in delivering continuous
feedback for physical tasks to notify the user when necessary
to redirect their attention.



Figure 2. HindSight uses a spherical camera mounted to a bike helmet
to capture a user’s surroundings. Video is streamed to a laptop worn in
a backpack.

HindSight streams 360-degree video from a head-worn camera
to a real-time object detection neural network running on a
laptop worn in a backpack (Figure 2). The system filters output
from the neural network and picks the most relevant objects
for the application. These objects are sonified, conveying
attributes such as their type, location, and velocity. The user
hears this audio through Bluetooth wireless bone conduction
headphones, which transmit vibrations directly through the
skull. The key benefit of using bone conduction is it leaves
the ears unobstructed, enabling retention of normal auditory
acuity.

We develop an application for HindSight: a program to aug-
ment cyclists’ sensory ability by warning users of vehicles
which are approaching in a potentially dangerous way. We cal-
culate potential danger by attributing momentum and direction
data to oncoming vehicles outside the cyclist’s field of view.
The momentum and direction data of vehicles approaching
the cyclist are used to calculate a directional “danger” metric,
which is sonified by modulating beeps using panning (to indi-
cate direction) with tempo and pitch (to indicate danger). We
provide a technical evaluation of our system to measure its
precision and the window of usable time a cyclist has to react
to its output. On average, we find HindSight detects poten-
tially unsafe approaching vehicles 1.89 seconds (σ = 0.40) s
before they would hit the bicycle.

We conduct an exploratory user evaluation with 15 partici-
pants to determine how users perform with our system. When
comparing our system to the control condition, users reported
perceived increases in safety (µ = 4.00,σ = 0.82), time to re-
act (µ = 3.73,σ = 0.57), comfort (µ = 3.47,σ = 0.96), and
awareness (µ = 3.53,σ = 0.96), on a 5-point Likert scale.
Several participants noted our system detected potential dan-
gers they would have otherwise missed: “[HindSight could]
sense the danger from the views that people not normally see”
(P4). Open-ended feedback revealed areas for potential im-

Figure 3. HindSight was designed to be comfortable to wear in everyday
cycling scenarios.

provement: “If it could detect danger slightly (just slightly)
sooner, that would be better” (P14). On a 5-point Likert scale,
users expressed they would use the system during their real
commutes if it was available (µ = 3.87,σ = 0.96).

To safely conduct controlled user evaluations of HindSight,
we create a VR-based simulator which can run scripted traffic
scenarios. We use the simulator to conduct a controlled user
evaluation with 21 participants. We found, with HindSight acti-
vated, participants experienced fewer collisions (2, as opposed
to 7), increased their distance to surrounding vehicles, and had
decreased cognitive load. Participants echoed the results of
the exploratory study, expressing perceived increases in safety
(µ = 4.10, σ = 0.70), reaction time (µ = 4.05, σ = 0.74),
and comfort (µ = 3.67, σ = 0.97).

In summary, we contribute: (1) The HindSight real-time com-
puter vision system for detecting and sonifying objects of
interest in 360-degree body-worn video; (2) an application of
Hindsight for augmenting cyclists’ spatial awareness; (3) a
technical evaluation and exploratory evaluation of this applica-
tion; and (4) a controlled user study within an immersive VR
simulation of the HindSight system.

RELATED WORK
HindSight builds on prior work in three primary areas: devices
that enhance spatial awareness, systems which provide real-
time feedback for physical tasks, and tools for interpreting
360-degree video.

Enhancing Spatial Awareness
Devices which enhance spatial awareness ingest information
from a user’s surroundings, process it into a meaningful repre-
sentation, and output it via visual, audio, or haptic displays.

Augmenting Field of View
We are inspired by systems such as FlyViz, which augments
a user’s field of view by displaying reprojected 360-degree
panoramic video into a Head-Mounted Display (HMD) [2].
FlyViz effectively remaps a user’s surroundings to their visual
field, but requires an adaptation period before it can be used
comfortably. The Skully motorcycle helmet [49] projects a
rear-facing camera feed onto a transparent HMD. LiDARMAN
takes this idea further by projecting a 3D point cloud from



a head-mounted Lidar scanner into an HMD [30]. Closely
related to our work is SpiderVision, which blends front and
rear-facing video feeds into an HMD based on motion detected
behind the user [12]. Rather than use motion to trigger addi-
tional visual input, HindSight identifies objects around a user
and determines if they are important enough to redirect the
user’s attention. HMD-based solutions face multiple hurdles
to real-world use. First, HMDs have limited resolution and
field of view compared to natural human vision. Second, so-
cial acceptability of their continual use is not yet established.
Finally, some users additionally experience virtual reality sick-
ness when using VR headsets and HMDs [31]. In contrast
to this prior work, while we us an HMD as an apparatus in
our user studies, HindSight exclusively uses audio for output
during use.

Assistive Technology
Assistive devices for the visually impaired ingest visual or spa-
tial data and encode this information into a different sensory
output, such as audio or vibrotactile displays.

Systems to aid the visually impaired often employ sonification
techniques to help users create a mental representation of their
surroundings. As early as 1974, Sonar has been used to sonify
obstacles in front of a user as a navigation aid [19]. Depth
and color of objects in a scene can be sonified with rich audio,
such as orchestral instruments, [13]. We draw upon this work
to develop our sonification framework, but focus on objects
outside of the user’s visual field. HindSight is not designed to
replace the visual system, but, rather, augment its capabilities.

Varying degrees of computational intelligence can be used to
extract higher-level information from images, from relying
on remote human assistance to on-device or cloud-based ma-
chine learning tools. VizWiz uses on-demand, crowdsourced
support to answer visual questions for pictures taken from a
smartphone [3]. Computer vision algorithms can help users
discriminate objects [11], locate visual markers [55], and de-
scribe scenes with machine-generated natural language [51].
Depth cameras can be used to create an interactive map of the
user’s surroundings [22] and identify obstacles in real-time,
such as unoccupied chairs and walls [52]. HindSight uses
machine learning based object detection to identify objects
outside of a user’s visual field and alert them when necessary.
The goal of HindSight is not to show all object information,
but only relevant objects which require attention.

Enhancing Awareness in Traffic
Our cycling application builds off related work in increasing
awareness of traffic situations. Projected AR displays have
been used to alert other drivers of a cyclist [18, 5] and dis-
play a “safety envelope” where others may pass the bicycle
[8]. Audio [41, 21] and haptic [10, 1] feedback can increase
driver awareness of other vehicles. Sonification can increase
detectability of approaching vehicles in environments with
background noise [20, 27], especially in the case of quiet
electric vehicles [29, 28]. Diedrichs and Parizet separately
describe design principles for sonifying approaching vehicles,
such as amplitude modulation, pitch, and rhythm [10, 36].
HindSight leverages these design principles to generate audio
to alert the user of oncoming vehicles outside their visual field.

Real-Time Feedback for Physical Tasks
Actions taken in the physical world can entail a sense of risk,
i.e., actions are often irreversible, and may potentially harm
the user if performed incorrectly [23]. HindSight operates in
the physical world, and our cycling application exhibits this
type of risk. We are inspired by digital fabrication devices that
provide real-time feedback to reduce or mitigate risk.

Devices can make users aware of variables that are relevant
to a task but not readily perceivable by a person. Projected
AR visualizations can reveal the otherwise invisible forces in-
side CNC machines [35] or warn users when they are drilling
too far into a surface [43]. Haptic feedback can alert users
to take corrective action when cutting a block of material if
they are approaching the edges of a predetermined model [56].
HindSight draws upon the metaphor of using real-time feed-
back to display variables in the environment and suggest the
user take corrective action. In particular, our cycling applica-
tion provides audio feedback to redirect the user’s attention to
potentially dangerous situations, prompting the user to take
corrective action if necessary.

Exploring and Interpreting 360-degree Video
360-degree video captures information from the camera’s en-
tire surrounding area, which can be explored by users manually
or interpreted with computer vision algorithms. Research sys-
tems have allowed users to annotate prerecorded 360-degree
video [37] or explore streaming video in real-time from a
head-worn camera array [33]. Deep neural networks have also
been used to correct skew in 360-degree video [50]. Computer
vision techniques have been used to recognize the faces of
speakers in 360-degree videos and generate a simulated “multi
camera” output [42]. Pano2Vid generalizes this approach, sim-
ulating human motion of an artificial camera to track areas of
interest in 360-degree video [48]. HindSight utilizes computer
vision techniques to detect objects in 360-degree video and
requires a 360-degree camera to dynamically adjust the ana-
lyzed field of view when head orientation changes from travel
direction, i.e., the user does not look straight ahead.

HindSight uses monocular, optical sensing to detect vehicles.
This is one of several possible techniques that have been used
in the literature [45, 32]. One distinguishing feature of our
approach is that we use a panoramic camera which captures
the relative angle of each pixel, yielding accurate direction
information for detected vehicles.

HindSight DESIGN CONSIDERATIONS
At a high level, HindSight seeks to enhance the spatial aware-
ness of users while preserving their ability to rely on un-
augmented sensory input. Our technique was guided by sev-
eral overarching guidelines:

Do not impede natural sensory input: For safety and social
acceptability, we aim to preserve real-world sensory input.
This precludes uses of opaque HMDs and suggests audio or
haptic displays. However, audio stimuli that block out environ-
mental sound are not appropriate. To satisfy these guidelines,
we rely on delivering audio notifications through bone conduc-
tion headphones, which leave the ear canals unobstructed. It is
possible for users to perform auditory and visual tasks at the



same time [15], so we believe audio to be a proper interface
for a warning system for bicycle users.

Importantly, cyclists may not always be able to rely on natu-
ral audio cues, e.g., in dense traffic or in urban areas where
sound is reflected from multiple facades. In these situations,
HindSight could provide additional, resolvable audio cues.

Provide real-time interpretation: Extracting higher-level
information from a scene can provide more concise, seman-
tically meaningful information to users. We use a computer
vision pipeline to recognize objects in the environment and
only sonify detected objects that are of critical importance.

Be conservative in information delivery: The system should
only engage the user when important and necessary. The level
of display should be proportional to the importance of the
message, i.e., ramp up the level of warning with the level of
danger. Our sound design is further informed the particulari-
ties of bone conduction headphones.

Designing Audio for Bone Conduction
Using bone conduction as our information display poses sev-
eral design challenges over traditional headphones because
audio does not enter the user’s ear canal, but is instead transmit-
ted through the user’s skull through vibrations. The primary
benefit is that bone conduction headphones can be worn safely
in situations where the users must still use their ears as an
important channel for information.

The primary goal of our sound design for our cycling applica-
tion is to provide a clear auditory message to the user of our
system that there is a danger in their vicinity. We design the
audio such that it can transmit three key dimensions of infor-
mation to the user: direction, proximity, and type of danger.
We use Hermann et al.’s sonification framework [15] together
with principles from SAFERIDER [10] to inform our design
decisions, as described below.

Parameterizing Information
Auditory displays fall into the broad categories of alarms,
status indication, data exploration, and entertainment [15].
HindSight is an alarm system, because its primary purpose is
to indicate the presence of a dangerous object. HindSight has
properties of safety auditory displays, which prompt for cor-
rective action, and imminent auditory displays, which alert
when time-critical corrective action is needed [10].

We map our three primary dimensions of information (direc-
tion, proximity, and type of danger) in the following ways:

Direction is mapped to directional audio: We aim to assist
the user in localizing that object by mapping the direction of
the dangerous object to directional audio, so that they can re-
spond to it appropriately. Because of the limited effectiveness
of using binaural audio with bone conduction headphones (de-
scribed below), we use panning to convey spatial information.

Distance to the detected object is mapped to tempo and
pitch: We take inspiration from parking assist and cross traffic
alert systems in automobiles, which emit a sequence of beeps
of increasing tempo as the car is approaching obstacles (or
vice versa). As an object approaches the user, we play its

requisite sound at a faster rate and increase its pitch. This is
chosen to create a sense of urgency in the user as the object
approaches, prompting the need for time-critical corrective
action [10].

Types of objects are mapped to different timbres: Categor-
ical types of data should be represented by changing acoustic
variables like timbre. This makes it easier for users to isolate
different sounds and still resolve the direction of these sources.
The pitches of the sounds we play range between 500Hz and
2000Hz, proportional to an object’s danger level. This range
transmits clearly using our bone conduction headphones, and
the 2000Hz pitch has been recommended for urgent safety
indicators [10].

Only Show Two Objects at Once: Timbre and directional
audio are two of the best ways to help users resolve multiple
simultaneous sound sources [15]. However, we found it is
easy to get overwhelmed with information when more than
two moving objects are represented with audio. Therefore,
we constrain our system to display only up to the two most
dangerous objects to limit the amount of cognitive load placed
on the user.

We also design for several particularities of bone conduction:

Exploit the Boundary between Haptics and Audio: Lower
frequencies render almost haptically on bone conduction head-
phones, providing vibrating sensations at the contact points
with the user’s head. We exploit this property by overlaying
low frequency sounds in our audio to help direct the user’s
attention to the direction of the audio.

Use Panning Instead of Binaural Spatialization: Standard
audio spatialization algorithms do not work well for bone con-
duction, making it difficult for users to resolve the direction
of spatialized audio. This is due to the fact that most audio
spatialization software uses Head-Related Transfer Functions
(HRTF) to determine what audio should go to each ear. HRTFs
are calculated based on a model of the user’s ear and head size,
and assume that audio is entering through the ear canal. In our
application, audio is passed to the ear drum through the skull.
Because humans skulls have different acoustic properties, ex-
isting HRTFs are not appropriate [7].

As a workaround to this limitation, we lower the dimension of
data by instead panning the audio between the left and right
channels of the bone conduction headphones. This provides
reasonable directional feedback (users can still resolve the
general direction of danger) at the cost of not allowing as
many unique angles of direction.

SYSTEM ARCHITECTURE
Our system consists of a 360 degree video camera attached
to a bicycle helmet, connected via USB to a laptop in the
user’s backpack. The laptop is connected to a pair of bone
conduction headphones via bluetooth.

Image Acquisition
We acquire a stream of 1280 x 720 pixel equirectangular im-
ages at 15Hz using a Ricoh Theta S camera and process them
using OpenCV.



Figure 4. Detected objects at intermediate filtering stages of HindSight:
(1) The neural network outputs bounding boxes of detected objects. (2)
Objects are tracked frame-to-frame. (3) Only objects moving nearer to
the user are kept. (4) Only object approaching the user are kept.

The equirectangular image format projects a spherical image
onto a rectangular image by mapping latitude coordinates
of the spherical image directly to x pixel coordinates, and
longitude values directly to y pixel coordinates [46]. A major
downside to this format is that the image distorts near the
poles, but minimizes distortion near the equator.

To obtain the best classification performance, we process each
frame of video before passing it to our object detector. For
our application, the top and bottom 27° of the image generally
contain no useful data (the user’s helmet and the sky) and
are removed. The rest of the image is cut into three parts to
produce nearly square images, which minimizes aspect ratio
distortion and increases performance with our object detector.
These partitions overlap slightly to aid resolving objects which
traverse their boundaries.

Object Detection
We use the YOLOv2 neural network to detect objects because
it provides accurate, low latency predictions [40]. We addition-
ally considered SSD [25], which achieved similar performance,
but with higher latency on our particular hardware.

Using pretrained model weights, YOLOv2 is capable of clas-
sifying 80 labels, several of which are traffic related: e.g.,
car, truck, bus, bicycle, person, stop sign, traffic light. The
output from this step is a list of bounding boxes, labels, and
confidence values. The object detector is generalizable to new
classes of objects through retraining on example images of
desired classes. Classification takes about 50 ms when using
the down sampled input images described earlier.

All classification is done in real time on a laptop carried in the
user’s backpack. The laptop is an Origin EON17-SLX with
an Intel i7-6700K 4.0 GHz processor, 16GB DDR4 RAM,

Figure 5. HindSight only notifies users of objects which are approaching
and outside of their field of view. We approximate the human visual field
to 110◦.

and a GeForce GTX 980 video card with 8GB DDR5 RAM
running Windows 10. Software used are Python 3.6, Tensor-
flow with CUDA extensions enabled, and OpenCV 3.2. The
high-performance GPU of the laptop is critical in order to run
a deep neural network such as YOLOv2 in real time.

Object Tracking
Output from YOLOv2 provides us with no frame to frame co-
herence of objects, i.e., there is no way to tell if any bounding
box in two frames correspond to the same underlying object.
Frame to frame tracking is important because we wish to filter
objects based on their behavior. We developed a simple and
fast algorithm for approximating the most likely bounding
box for a given object between two frames, with acceptable
accuracy. Our algorithm greedily merges weighted object
bounding boxes over a sequence of frames, “remembering”
previous merges.

Object Filtering
Several filters are applied to the set of tracked objects to narrow
down which objects the user might find the most important.
The type of filtering applied depends heavily on the appli-
cation that the system is used for. The following filters are
used for the bicycle in traffic scenario. For each filter, we
manually count objects falsely identified as dangerous over a
21-second training video clip and report the number of these
false positives.

Only Accept Vehicles Outside the User’s Visual Field
Our first filter eliminates objects irrelevant to cycling in traffic
from consideration (e.g., toasters, airplanes, clocks). We also
eliminate any objects that are in the front 110 degrees of the
user’s visual field (slightly less than human peripheral vision).
This is trivially calculated because the camera position tracks
the user’s gaze, as a head-stabilized configuration [4].

Only Display Growing Objects
Objects with bounding boxes decreasing in size over time
can be assumed to be moving away from the user, and likely
pose no danger. We calculate the square root of the area of
each bounding box over a time period of 10 frames (approx.
300 ms) of video and fit a linear function to approximate the
growth of the bounding box. If the slope of this line is positive,
then the area of the box is trending larger, and the object is



coming closer to the user. Any object with a negative area-
growth slope is removed from consideration. The growth filter
reduces the number of false positives from 122 (vehicle filter
only) to 46 in our sample data.

Orientation Filtering
For our application, objects that are approaching the user from
behind pose the most risk, and any object that is moving away
from the user in their direction of travel most likely passed
by them. We thus reject objects which are not traveling in the
direction of the user from behind them. The orientation filter
reduces the number of false positives to 4 in our sample data.

We determine the latitude of an object by considering its center
point and subtract 180 from it to determine its angle from the
rear of the user. We then take the absolute value of this to
determine absolute angle from the rear of the user.

^user = abs(^ob ject −180)

We fit a linear function to these values over a window of 10
video frames, in parallel with the object growth filter (the
orientation filter does not introduce additional delay). If the
slope is positive, the object is most likely moving toward the
user from behind. We filter out any object with a negative
slope from consideration, leaving only objects moving in the
direction that the user is looking. An IMU attached to the
user’s helmet can base this calculation on the direction of travel
as opposed to the direction the user is facing by offsetting the
center point (180°) by the head orientation value.

Removing Additional False Positives
We apply a final filter that requires an object to have made it
through the previous filters for at least 3 frames. This mini-
mizes briefly appearing misclassfied objects, as well as any
object that erroneously passed through the set of filters. The
averaging filter reduces the number of false positives to only 1
(a parked car) in our training video sample.

After all filters are applied, we calculate a danger metric that
is roughly proportional to each object’s momentum. This is
equal to an approximation of the object’s mass times the rate
at which the bounding box is growing.

Di = argmax
x

(Mx,iVx,i)

Where Di is the most dangerous object for frame i, Mx,i is
the approximate mass, and Vx,i is the object’s bounding box
growth rate in frame i.

Audio Output
Output from the filtering process goes into an audio system that
synthesizes and spatializes sounds based on which objects are
considered the most dangerous. Audio is sent over Bluetooth
to AfterShokz Trekz Titanium bone conduction headphones.

Sounds played to the user were authored in FL Studio 12,
a professional digital audio workstation. A virtual loopback
MIDI interface, loopMIDI, was loaded onto the laptop to allow

Figure 6. We calculate the system detection time tdetect using the rela-
tive velocity of the car and bicycle~vcar −~vbike and by finding the average
detection distance ddetect of our system. Margin of safety tmargin is calcu-
lated using treact = 1.6 s from Olson and Sivak [34].

our software to communicate with FL Studio. Custom MIDI
control messages were specified to allow our software to start,
stop, and spatialize various sounds. FL Studio listens for
these messages and controls audio playback accordingly. The
benefits of this approach are the robustness it provides when
trying different user interfaces. Any software that can listen to
MIDI can respond to our system, providing a many ways our
system can connect to various actuators.

TECHNICAL EVALUATION
We perform a technical evaluation to characterize the precision
of our system and the margin of safety it provides to users
with the cycling application. For test data, we run our system
on 8 sample videos from a cyclist’s point of view in traffic
situations. There are two main classes of these videos: 5
of them have a car approaching roughly 15 mph (24 km/h)
relative to the bicycle, the other 3 have vehicles moving the
same speed as the bicycle.

We use a pretrained model for our object detector, which has
been characterized by its creators to have a Mean Average Pre-
cision (mAP) 78.6 [40]. Once objects have been tracked and
filtered, they remain detected by the system with a confidence
of 89.7% per frame over our training data.

We define the “margin of safety” tmargin of our system as the
difference in time between when HindSight detects a poten-
tially dangerous vehicle and a baseline reaction time treact to
avoid accidents in traffic. We compute tmargin by assuming a
constant relative velocity between the bicycle and an approach-
ing vehicle vcar − vbike and determining the average distance
ddetect at which HindSight detects objects (Figure 6).

As intended, the cars moving the same speed as the bicycle
in the 3 videos are not detected by our system because of the
bounding box growth filter. For the remaining 5 videos, we
select the first frame where our system detects a dangerous car
and visually determine how far from the bicycle the detected
car is. To determine the average detection distance ddetect ,
we assume an average car length of 4.7 meters and constant
relative velocity vcar − vbike of 6.7 m/s (15 mph).

On average, the system detects the car 1.89 seconds (σ =
0.40 s) before the car would hit the bicycle. These values were
determined by observing the videos and counting the number



Figure 7. HindSight provides adequate time to react when vehicles ap-
proach the user at or under vcrit = 8.62± 1.24 m/s (green fill, top left),
assuming a baseline reaction time of treact = 1.6 s. The points × are detec-
tion distances measured from system use. The isodistance curve is fitted
from the average of the distances.

of frames from the time that the dangerous object is detected
to the time it would hit the user.

We determine the margin of safety for our system by plotting
detection time values against approximate relative velocity
(Figure 7). Relative velocity is calculated by dividing the
distance the vehicle needs to travel to hit the bicycle by the
amount of time it takes the vehicle to reach that point. An
inverse function is fit to these points to generate an isodistance
curve that represents the average distance our system detects a
dangerous vehicle.

t(v) =−0.65 s+
19.4±2.8 m

v m/s

Assuming a maximum1 baseline reaction time tcrit of 1.6s to
an unexpected roadway obstacle [34], we can determine the
maximum speed vcrit that a car can be moving relative to the
user for our system to provide enough time to react.

vcrit = v(treact) =
19.4±2.8 m
(1.6)+0.65 s

= 8.62±1.2 m/s

Therefore, our system can operate safely in situations where
nearby vehicles are traveling at most 8.62 m/s (19.28 mph,
31.03 km/h) relative to the bicycle. Assuming an average
bicycle speed of 10 mph (16 km/h) means HindSight can
currently handle situations where cars travel around 25 mph, a
common city speed limit, but that it may need earlier detection
to handle speed limits 35 mph (55 km/h) or above.

1Olson and Sivak suggest once drivers are alerted of an upcoming
obstacle beforehand, 95th percentile perception-response time for the
same population drops to about 1.1 seconds

EVALUATION
To evaluate the efficacy and usability of HindSight, we conduct
two studies in Virtual Reality (VR). While the most externally
valid study design would be real-world deployment, using a
prototype system in live traffic situations poses serious safety
concerns. Instead, we use VR to safely approximate the ex-
perience of riding a bicycle in traffic with HindSight, as VR
has been used successfully to simulate other high-risk situa-
tions [44, 6].

First, we conduct an exploratory evaluation of HindSight by
showing participants videos of real traffic situations taken from
a cyclist’s perspective. Video provides realistic imagery of
everyday traffic scenarios, but comes at the cost of participants
having no control over the bicycle’s movement. In the second
study, we perform a controlled user evaluation with a VR
game engine, enabling safe simulation of higher-risk traffic
situations and allowing participants to control the bicycle.

STUDY 1: EXPLORATORY STUDY WITH VIDEO
To determine whether HindSight’s cycling application can
increase users’ awareness of vehicles approaching in a poten-
tially unsafe way, we first conducted an exploratory evaluation.

To safely emulate the experience of riding a bicycle in light
traffic with HindSight, we show participants 360-degree videos
recorded from the point of view of a bicyclist via a head-
mounted VR display. Videos shown were not stereoscopic.
Video data is fed into HindSight to generate sounds from
prerecorded objects during trials.

Videos of live traffic situations were recorded by two re-
searchers in a suburban location with minimal vehicular and
pedestrian traffic. One researcher rode a bicycle with our sys-
tem running and capturing 360-degree video, while the other
drove a car to simulate various traffic situations. A studio-
quality stereo audio recorder was attached to the bicycle to
collect environmental sound with approximate spatial cues.

In the evaluation apparatus (Figure 8), a Unity2 application
plays the 360-degree videos and recorded audio back to an
Oculus DK2 VR display and in-ear headphones. Users can
look around as the video plays using head orientation data
from the DK2’s IMU. This data is also used in calculations for
the HindSight Orientation Filter and for logging metrics for
the user evaluation. Audio cues for objects are played through
Trekz bone conduction headphones which are positioned in
front of the regular headphones on the participants’ skull.

A minor technical difference between using our system live
and in the simulator is that our 360-degree camera is capable of
recording video at 30 Hz, but only capable of streaming video
at 15 Hz. We expect this impact on results to be negligible.

Method
Participants were instructed to sit in a kneeling chair to emulate
riding a bicycle and were fitted with our evaluation apparatus.
Participants were then shown 9 distinct videos. The first,
consistent across all trials, was played twice–without and with
the HindSight system activated–to familiarize participants with
2https://unity3d.com/



Figure 8. Users wear an Oculus DK2 head-mounted display which plays
back 360-degree videos and manipulate a joystick to indicate areas with
potential danger. Bottom left: users see images of the scene through a
“virtual camera”

our experimental apparatus and system. The remaining 8
videos were shown to the participants in random order, and
with HindSight randomly enabled for each. This allowed us
to obtain a fair distribution of results for each video with a
roughly even number of participants trying each video with
and without HindSight . All sessions lasted under 30 minutes,
and each participant successfully completed the evaluation.
One participant’s results were omitted due to a technical error
which caused their data to not be logged.

During each video, participants were instructed to point a
provided joystick towards the area where they considered the
most potential danger was in the scene, if it existed. At the end
of the evaluation, users were asked to fill out an exit survey.
Questions were included open-ended answers and 5-point
Likert scales (1 = “Strongly Disagree”, 5 = “Strongly Agree”).
Likert scale questions were phrased as follows: (Awareness)
The system identified dangerous situations I would NOT have
noticed without it, (Comfort) I felt more comfortable when the
system was activated, compared to when it was not, (Safety) I
felt safer when the system was activated, compared to when
it was not, (Stress) I felt LESS stressed when the system was
activated, compared to when it was not, (Reaction Time) I had
more time to react to situations when the system was activated,
compared to when it was not.

Participants
We recruited 16 participants (11 male, 5 female) using uni-
versity mailing lists, all graduate students with experience
riding a bicycle. 13 participants had ridden a bicycle in traffic,
with most participants reporting only occasionally doing so
(µ = 2.7,σ = 1.4 on a 5-point Likert scale where 1 is "I have
never ridden a bicycle in traffic" and 5 is "I commute on a
bicycle 5+ times per week").

STUDY 1: PRELIMINARY RESULTS AND DISCUSSION

Increased Perceived Awareness, Safety, and Reaction
In the exit survey, participants generally expressed positive re-
actions to using our system (Figure 10). Participants reported
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Figure 9. Participants were split on whether HindSight increased or
decreased their stress level.
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Figure 10. In the exit survey, participants generally gave positive sub-
jective ratings to HindSight on Likert scales asking about awareness,
comfort, safety and reaction time.

a perceived increase in awareness, (µ = 3.53,σ = 0.96), de-
fined as the ability to identify dangerous situations they oth-
erwise would not have noticed. Some participants explicitly
commented on this aspect in open responses: “It identified
passing cars before I could hear them passing by.” (P9);
and “[it did well on] Notifying cyclers of unseen approaching
objects, especially if they did not hear/anticipate it.” Par-
ticipants also reported a perceived increase in time to re-
act (µ = 3.73,σ = 0.57), comfort (µ = 3.47,σ = 0.96), and
safety (µ = 4,σ = 0.82) when using HindSight. Full distribu-
tions are shown in Figure 10.

Bimodal Response on Perceived Stress
Interestingly, we see a bimodal distribution for perceived stress
(Figure 9); for some HindSight increased stress, while for
others it decreased their perception of stress. P8, P9, and
P12 reported that our system generated some false positives,
which may have led to stress: “Too many false positives. False
positives might stress out the user” (P9). On the other hand,
P11 expressed the desire for richer feedback: “the system gave
me a decent view of everything, but I still felt like I wasn’t
getting the full view even when there was no danger.” More
training would let users become more familiar with the system
and could eliminate increased stress for some. As P1 notes,
(“I definitely became more accustomed to the system as time
went on”) and P5 remarks (“My lack of comfort or increased
stress with the system might’ve just been because I’m not used
to it. I recognize that it sometimes alerted me to things sooner
than I would’ve noticed them but it also felt a little distracting.
I would guess that this would get better with time”).



Figure 11. Top two: averaged joystick angle for the “right turn” video
for users using and not using HindSight. Bottom two: averaged head
orientation for the “right turn” video. The red region shows when an
unexpected car appears behind the users. 7 out of 11 participants who
used HindSight reacted to the unexpected passing vehicle, while none of
4 who did not use HindSight reacted.

Quantitative Results are Inconclusive
Quantitative data from joystick and head movement did not
differ significantly between conditions. Using joystick move-
ment as a proxy for when users react to potentially dangerously
approaching cars, we found users who viewed videos without
our system reacted to a potentially unsafely approaching car in
(µ = 1.01 s,σ = 0.48 s), compared to users who used Hind-
Sight (µ = 1.04 s,σ = 0.74 s). The 30 millisecond average
difference corresponds to the duration of a single video frame.

One possible explanation for the inconclusive results is that
the interpretations of “potential danger” was too subjective.
Some users moved the joystick towards parked cars to mark
them as “dangerous”, while others did not.

HindSight May Effectively Redirect Attention

When Users are Distracted
Although our quantitative results were inconclusive across the
set of videos, one datum of interest emerged for a video with a
distractor. Near the end of this clip, the bicycle slows down to
a stop at an intersection as a truck quickly stops and clears the
intersection. In the meantime, a car out of view quickly stops
alongside the bicycle from behind. Without HindSight, 0 out
of 4 turned towards the approaching car from behind, whereas
7 out of 11 participants using HindSight noticed the car, as
determined by head orientation data (Figure 11). This suggests

that our system may be especially effective at redirecting user
attention when they are distracted by other stimuli.

Feedback for Improving HindSight
Participants also offered suggestions for how they would im-
prove HindSight for use during their real commutes. As is,
participants rated the system favorably when asked if they
would use it during their real commutes on a 5-point Likert
scale (µ = 3.87,σ = 0.96). However, comments regarding the
audio output and occurrence of false positives suggest avenues
for further work.

Explore a Broader Space of Audio Cues
Many users remarked they would like to see revised audio cues:

“I’d want to see some more granularity in the alarm response
depending on the seriousness of the danger” (P11), “maybe it
could use a more distinct effect to denote the severity/distance
of the danger” (P5), “It could also be a measure of how fast or
how big the vehicle approaching is” (P2). Our current design
uses beeps which change in tempo and volume. Investing
additional resources in sound experience design could enrich
the experience of using our system.

Reduce Incidences of False Detections
Although we designed our filtering stages to reduce our sys-
tem’s false detections, users felt the remaining false positives
still impacted usability. “I heard some false positives from
parked cars receeding away from the bicycle” (P12), “Some-
times does send misleading beeps (got a few when no car was
immediately approaching)” (P7). Additional signal processing
will be needed to further reduce the number of false positives.
One proposal for future work is to incorporate the trajectory
of approaching objects with a dynamics model.

STUDY 2: EVALUATION IN SIMULATED TRAFFIC
To determine how participants would react to HindSight while
navigating higher-risk traffic situations, we conduct a con-
trolled user evaluation of HindSight in a simulated traffic
environment in VR.

Using a VR-based simulation of various traffic scenarios, as
opposed to viewing videos in a VR headset, has several crit-
ical advantages. First, a simulator gives participants agency
over the bicycle’s movement, enabling them to react to ve-
hicles realistically rather than using a joystick as a proxy to
indicate dangerously approaching vehicles. Using simulation
also enables safe testing of higher-risk scenarios, such as a
difficult-to-avoid collision with an approaching vehicle. In
this section, we describe the implementation and use of a
VR-based simulator, to conduct a controlled user study of
HindSight.

Simulator Design Considerations
For our simulator to be an effective platform to study Hind-
Sight, it must accurately emulate use of HindSight in various
scenarios, being both realistic and comfortable for participants
to use. Its design was guided by the following principles:

Provide sufficient realism and immersion: The simulator
must emulate cycling in traffic realistically for participants’
interaction with HindSight to be representative of real-world



use. This is expected to result in more representative reactions
to other vehicles due to a more realistic sense of risk, e.g.,
because it is safe to simulate a collision between the participant
and an approaching vehicle in VR.

Enable development of repeatable scenarios: The simula-
tor must support the creation, playback, and logging of mul-
tiple scenarios to validate the use of HindSight in a variety
of traffic situations. Each scenario consists of a section of
geographical area, actions for vehicles to take contingent on
the participant’s location, and markers to direct participants
through the course. Scenarios are used to encode traffic situa-
tions with varying levels of distraction and collision risk.

Reduce simulator sickness as much as possible: For some,
use of VR HMDs causes “simulator sickness”, or “cybersick-
ness”, which has symptoms similar to motion sickness [24].
Although the exact causes are not entirely clear [39], several
design principles have been documented to mitigate symptoms,
such as reducing forward movement speed [39], avoiding tasks
which require significant angular rotation [24], and limiting
the duration inside VR [9]. In our simulator, we limit the
forward speed of the bicycle to roughly 10 mph, choose a
straight course through the map to eliminate turns, and set a
target duration of the time in VR to be under 10 minutes.

Apparatus
We choose Grand Theft Auto V (GTA)3 as a platform for
our traffic simulator because of the realism of its driving en-
vironments and its use in autonomous vehicle research [26].
Adapting GTA to a simulator for evaluating HindSight was
a significant engineering challenge: GTA does not natively
support modification (e.g., control of in-game entities) nor
Virtual Reality displays.

Scenario Scripting
Although GTA does not natively support modification, a com-
munity of users has reverse engineered its game engine by
mapping memory addresses to in-game functions. We used
ScriptHook.Net, an API wrapper of these mappings, to create
our simulator. This enables us to control in-game properties
(e.g., where vehicles or pedestrians spawn, if needed) and tie
into game engine event hooks. Another tool developed by the
community is OpenIV, which allows one to modify various
asset files in the game engine. We used OpenIV to change
the speed of the in-game bicycle and vehicles to fixed speeds,
enabling precise control of timing for scenarios.

To test the capabilities of HindSight in various scenarios, we
need the ability to precisely script events that respond to a
user’s actions and location in GTA. To achieve this, we develop
a JSON-based description language for scenarios which can
be parsed by the simulator. These scenario description files
include specifications for the environment (the in-game time
of day, whether or not time should pass, etc.); placement of in-
game entities (where to spawn the player, pickup items, other
vehicles, trigger planes, etc.); and actions to associate with
in-game entities (what routes spawned vehicles should follow,
and at what speeds; events to trigger when the player crosses

3https://www.rockstargames.com/V/

Figure 12. Screenshot of in-game scenario editor: red lines represent
vehicle trajectories, gray planes trigger actions when crossed, and blue
blobs cover obstacles (e.g., parked cars).

a trigger plane, such as calling script functions; etc.). As the
user progresses through scenarios, they cross trigger planes
that intersect their path, spawning vehicles that follow scripted
paths at set speeds. If the user is in the way of the vehicle
as it travels along its path, a collision will occur. To edit
and debug scenarios, we develop an in-game authoring tool
(Figure 12) which allows placing in-game objects, vehicles,
and waypoints; and visualizes this data in-engine.

To analyze the events that occur during our user studies, we
built a system to log in game events, locations of vehicles, and
user inputs to a csv file. All of the data gathered for these log
files were captured from the game engine using ScriptHook.

Using GTA with Virtual Reality
GTA does not natively support VR displays. As a workaround,
we use a program called VorpX4, which captures scenes gener-
ated in DirectX game engines and routes them to a supported
VR headset. Rather than the Oculus DK2 used in the ex-
ploratory evaluation, we use an HTC Vive headset5 for the
simulator because it is recommended for use with VorpX. We
opted not to use VorpX’s 3D reconstruction algorithm because
it significantly reduced the framerate of GTA.

Users control their movement within our simulator using an
Xbox One wireless controller6. There are considerable issues
with remapping user inputs when using the VorpX software.
To mitigate this, we built an input processing module using
AutoHotKey which captures the inputs from the controller
before VorpX and generates a set of outputs that are sent to
the game engine but do not interfere with VorpX’s controller
remapping.

Bridging GTA with HindSight
Due to the modular nature of HindSight, we were able to
easily adapt it to generate output for vehicles in GTA. Part

4https://www.vorpx.com/
5https://www.vive.com/us/product/vive-virtual-reality-system/
6https://www.xbox.com/en-US/xbox-
one/accessories/controllers/xbox-wireless-controller



Figure 13. Participants in the simulator-based study followed an urban
course in GTA along the red line indicated. The course was chosen to
be as straight as possible, minimizing turns to reduce simulator sickness.
The course is divided into four intervals where different scenarios take
place with HindSight toggled on or off.

of the original HindSight system is a Python program that
receives output from the neural network, applying filters and
choosing which objects to sonify. Our simulator outputs data
to this Python program so that it can generate the correct
sound events. In contrast to HindSight, the exact relative
positions of each car in the scenarios are always known. For
our study, we choose to emit each tracked car position to the
HindSight module once it is within our maximum detection
distance, approximately 100 feet (30.5 m).

To hear both the environmental sounds generated by the GTA
game engine and the audio generated by HindSight through
bone conduction headphones, our computer must support si-
multaneous, low-latency audio streams. The default Windows
10 audio driver allows only one device to take control of the
Audio Streaming Input/Ouput (ASIO) interface at a time. GTA
is built in DirectX, and by default will use the only available
ASIO device. HindSight uses professional digital audio work-
station software to generate sounds, which requires an addi-
tional ASIO interface. To overcome this limitation, we use a
dedicated hardware device with its own ASIO driver, a Focus-
Rite Scarlett 18i20 USB audio interface7, to output sounds to
our bone conduction headphones through a Bluetooth audio
adapter.

7https://focusrite.com/usb-audio-interface/scarlett/scarlett-18i20

Method
Participants were first instructed to fill out a short survey de-
scribing their experience with VR and cycling in traffic. A re-
searcher next explained the interface of HindSight and played
example audio cues to the user. Participants were then in-
formed of the general rules of each scenario (described below)
and subsequently fitted with the evaluation apparatus. After
completing the simulation scenarios, participants filled out an
exit survey. All sessions lasted under 25 minutes. 21 partici-
pants successfully completed the evaluation.

Participants were instructed to control the bicycle in simula-
tion as if they were cycling in real traffic, with the following
exceptions:

• If the bicycle touches any car, their character will instantly
“lose a life” and respawn at the beginning of the following
scenario.

• Traffic lights should be disregarded8, and the cyclist may
proceed through every intersection with caution.

• Money bags9 will line the road, indicating the direction
of the course. There is no reward for collecting them (by
cycling over them) nor penalty for missing any.

• Participants were instructed to complete the course quickly
and efficiently, but to always prioritize safety.

Having entered the simulator, we first place users in a training
scenario in a desert location to increase familiarity with Hind-
Sight. Throughout the training scenario, four cars slowly and
safely pass the bicycle on the left, each emitting audio cues
from HindSight. During one instance, another vehicle (distrac-
tor) quickly comes to a stop at an intersection in front of the
bicycle and drives away before it can be reached, posing no
real risk of collision. Participants were allowed to repeat the
training scenario as many times as they like. All participants
completed the training scenario only once.

Following the training scenario, we place users in four sce-
narios in an urban environment (Figure 13). Each participant
completed all scenarios, and participants were alternately as-
signed to conditions where HindSight was activated only for
scenarios 1 and 2, or scenarios 3 and 4, respectively. The
scenarios (Figure 14) are scripted as follows, each designed
to incorporate a level of “danger” (the risk of collision if no
action is taken) and “distraction” (an entity actively redirecting
the participant’s attention from the danger):

1. High Danger, High Distraction. A car aggressively enters
an intersection in front of the bicycle from the right (distrac-
tor; Figure 14.1a) as another vehicle quickly approaches and
passes the bicycle on the left (posing danger; Figure 14.1b).
The participant must slow the bicycle to wait for the aggres-
sive vehicle and steer clear of the approaching vehicle to
avoid a collision.

8Scripthook provides limited control over traffic light entities. As a
workaround, we change all lights to green, which may be noticeable
to the observant participant.
9This is GTA, after all.
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Figure 14. Screenshots of key events for each scenario. Numbers super-
imposed on images correspond to scenario numbers. For each scenario,
letters ‘a’ and ‘b’ correspond to distractors and passing vehicles, respec-
tively.

2. Low Danger, Low Distraction. A car ahead stops at an in-
tersection to wait for the cyclist (Figure 14.2a) while another
car slowly passes the bicycle from the left (Figure 14.2b).
The participant must remain clear of the approaching vehi-
cle (maintaining the course) to avoid a collision.

3. High Danger, Low Distraction. A sports car speeds by
the bicycle on the left (distractor; (Figure 14.3a) while a
parked police car makes a dangerous U-turn in the path of
the bicycle to pursue the sports car (posing danger; Fig-
ure 14.3b). The participant must first avoid the approaching
car (maintaining the course), then slow for the police car, or
swerve to avoid it, in order to avoid a collision.

4. Low Danger, High Distraction. The sports car in scenario
3, having collided with a tree, blocks the right lane along
with the police car (distractor; Figure 14.4a) while another
car slowly passes the bicycle from the left (Figure 14.4b).
The participant must steer to the right and wait for the
passing car to avoid a collision.

The training scenario takes a minimum of 2.5 minutes to com-
plete, and all the remaining scenarios may be completed in a
minimum of 3 minutes.

Scenario
Collisions

(HindSight Off)
Collisions

(HindSight On)
1 3 2
2 0 0
3 3 0
4 1 0

Totals 7 2
Table 1. Participants collided with a vehicle 7 times with HindSight de-
activated, whereas only 2 collided with HindSight activated.

Participants
We recruited 21 participants (14 male, 7 female) using univer-
sity mailing lists, all either undergraduates, graduate students,
or university staff. All participants had experience riding
a bicycle. One additional participant canceled participation
early (after completing the training scenario) due to simulator
sickess, and their data was discarded. 20 participants had rid-
den a bicycle in traffic, with most participants regularly doing
so (µ = 3.57,σ = 1.28 on a 5-point Likert scale where 1 is
“I have never ridden a bicycle in traffic” and 5 is “I regularly
commute on a bicycle”). 19 participants had used a VR head-
set before, with 5 reporting having ever experienced simulator
sickness.

STUDY 2: RESULTS AND DISCUSSION

Users Crashed Fewer Times with HindSight Activated
Across all scenarios, participants collided with vehicles fewer
times with HindSight activated: 7 times with HindSight de-
activated compared to only 2 activated (Table 1). Scenarios 1
and 3 experienced the most collisions, which is to be expected
as they were designed to be the most dangerous. With Mc-
Nemar’s exact test, we find this result is not quite statistically
significant (p = 0.0625).

However, it is worth noting the two participants (P14, P18)
who collided with HindSight activated in scenario 1 each
collided again with HindSight deactivated (both in scenario
3). One possible explanation was that these users did not feel
a convincing sense of risk as they may have on a real bicycle
(i.e., two crashes as such would be unlikely).

HindSight Led to Increased Distances to Vehicles
In addition to reducing collisions, we found participants cy-
cling through scenarios with HindSight activated maintained
greater minimum distances to cars, than in scenarios with Hind-
Sight deactivated (Figure 15). A potential explanation for the
high variance of this result may be due to risk compensation
(i.e., participants may feel more comfortable taking greater
risk with the added output of HindSight) [54]. Nonetheless,
we consider an average increase of minimum distance to be a
positive result.

Impact on Head Movement is Unclear
The temporal relationship between head movement about the
yaw axis and the time when a user is nearest a passing vehi-
cle could indicate early awareness of the vehicle (e.g., if the
participant turns their head to acknowledge the passing car).
This pattern emerges in scenario 1 (Figure 16), where many



Figure 15. Participants with HindSight enabled left more distance be-
tween themselves and other vehicles than with HindSight disabled, on
average, across all scenarios. GTA distance units are roughly equivalent
to feet. Error bars reflect standard deviation.

Figure 16. In scenario 1, participants using HindSight (red lines) tended
to turn their heads to look to the left before their closest distance to car in
the scene (black vertical line). Participants with HindSight deactivated
tended to turn their heads afterwards (blue lines). There was no clear
relationship in any other scenario.

users with HindSight activated turned their heads to the rear
left about 100 frames (approximately 3 seconds) before the
passing vehicle was nearest them, whereas participants with
HindSight deactivated tended to turn their heads afterwards.
There was no clear pattern in other scenarios.

Another important relationship between HindSight and head
movement is the magnitude of head movement in each sce-
nario (Figure 17). We use the total area under the head yaw
curve for each scenario to measure this. We found participants
made slightly fewer head movements in all scenarios with the
exception of scenario 1. A potential effect of HindSight could
be to increase the amount of rotation as users turn their heads
to acknowledge more approaching vehicles, while, in contrast,
it could very well decrease rotation as users become more
accustomed to (or dependent on) HindSight’s output. Iden-
tifying richer metrics and investigating these results through
qualitative study would be an important topic for future work.

Figure 17. With the exception of scenario 1, participants had marginally
reduced head movement with HindSight activated.

HindSight Perceived to Help Avoid Collisions,
Identify Cars, and Identify Dangerous Situations
In the exit survey, 14 participants (66.7%) responded that Hind-
Sight helped them avoid a collision. 19 participants (90.5%)
responded “Yes” to “The system identified cars and obstacles
BEFORE I would have noticed them” and 17 (81%) responded
“Yes” to “The system identified dangerous situations BEFORE
I would have noticed them.” These responses suggest Hind-
Sight effectively increases the perceived environmental aware-
ness of participants.

Reduced Cognitive Load
As part of the exit survey, participants filled out NASA TLX
workload assessments (with the “Physical Demand” question
omitted) for scenarios with and without HindSight activated,
and Raw TLX scores were used to calculate cognitive load [14].
On average, participants’ cognitive workload was lower when
HindSight was activated (µ = 0.42, σ = 0.11) compared to
when it was not (µ = 0.53, σ = 0.12)—a 21% reduction. This
result suggests that, while participants performed better with
HindSight (fewer collisions), they also expended less effort.

Increased Perceived Safety and Reaction Time
Participants generally echoed the positive reactions expressed
in the exploratory evaluation, reporting increased subjective
ratings of safety (µ = 4.10, σ = 0.70), reaction time (µ =
4.05, σ = 0.74), and comfort (µ = 3.67, σ = 0.97) while
using (Figure 18).

Reduced Stress in Most Users
To further understand the bimodal response to stress in the
exploratory study, we separately asked users if HindSight in-
creased and decreased stress (Figure 18). Most users felt
HindSight decreased their stress (µ = 3.43, σ = 0.93), and
few felt HindSight increased their stress (µ = 2.38, σ = 1.12).

We asked participants to elaborate on their response to the
questions about stress. Currently, the beeps increase in fre-
quency and pitch as a vehicle approaches, a possible contrib-
utor to stress: “I also didn’t like how fast the tones clicked
when the vehicles was super close, as it made me too anxious”
(P6). False positives also contribute to stress: “Sometimes I
would hear the beep, but turn and not see a car, which was
freaky” (P19).
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Figure 18. Participants generally gave positive ratings to HindSight on
Likert scales asking about safety, reaction time, and comfort. Most par-
ticipants felt less stress while using HindSight, while few felt increased
stress.

Some participants remarked that using HindSight was stressful,
but completing scenarios without HindSight was even more so:

“The beeps made me feel stressed because it implied a potential
collision, but I felt much more stressed once the beeps were
turned off entirely.” (P14); “I wasn’t sure of how well the
system works, but having the system off was definitely more
stressful” (P5). Other participants describe how the increased
awareness from HindSight reduced stress: “I like knowing
when cars were behind me with the beeps rather than having
to look behind me or listen for engines” (P7); “I was less
stressed as I didn’t need to actively search” (P10); “Having
the system gave me a sense of safety” (P17).

Open-Ended Feedback
We asked participants to provide open-ended comments on
what the system performed well on, what needed to improve,
and what would need to be changed to make it ready for a
real commute. We conducted an open coding phase over the
qualitative responses, and further grouped codes into related
topics [53].

Awareness of Vehicles Approaching from Behind
Many participants commented on the effectiveness of Hind-
Sight increasing their awareness of their surroundings. “It
did a good job making me aware of cars coming from behind”
(P2); “I think the system successfully made me aware of the
cars behind me” (P3); “[HindSight did well on] Noticing the
cars behind well before I did” (P13). P9 goes as far as to say

“This system is really nice in detecting when things were coming
up behind me, so much that I felt more threatened by how the
cars would act in front of me.”

A few participants used the metaphor of an “added sense” to
describe how they felt, speaking to our original design goal
of overcoming sensory limitations. P8 remarks, “the system
helped me feel like I had another sense: it was more difficult
(probably because I’m not used to it), but I felt much more in

tune with my surroundings,” as well as P6 who notes, “It gave
me the extra set of eyes.”

Inferring Vehicle Intent from Audio
Participants expressed differing opinions on the design of
audio cues. P8 notes “the sounds are gentle, non-distracting,
and easily interpretable.” One area of disagreement among
responses was HindSight’s ability to convey the actions of
vehicles behind the user. Some users were easily able to
discern the tracked vehicle’s distance: “the frequency of the
beam made me aware how far is the car toward me” (P3); “it
was pretty spot on for detecting the nearness of cars” (P19);

“The beeps always came in a specific pattern so I was able to
expect exactly when the car would come up to me” (P17).

However, other participants had the opposite experience: “I
did not have a good way of judging how far away the car was”
(P9); “It would be good to get a better sense of how fast and
how close they are, rather than a car is approaching generally”
(P18). Some participants noted a better mapping for the rate of
beeps may be an estimated time to pass: “The beeps didn’t do
a good job of telling me exactly how much time I had before
a car passed me” (P2); “Have the beeps start/end based on
the time a car is away from you, rather than physical distance”
(P10). Exploring this alternative mapping would be a valuable
component of future work.

Localization with Bone Conduction has Variable Results
Several participants commented that distinguishing the direc-
tion of an approaching vehicle was challenging: “I couldn’t
necessarily determine the direction of the cars (which side
of the road)” (P7); “I’m not confident that I would be able
to distinguish between a beep on the left vs a beep on the
right.” (P10). Other participants voiced similar usability hur-
dles (P6, P8, P11, P15, P19). A potential cause for difficulty
in localizing beeps is the linear mapping of the angle of the
approaching vehicle to stereo pan. Future work could con-
sider different mappings (e.g., logarithmic) to accentuate the
direction of a vehicle approaching from far behind. Another
potential cause is the high transmission variability of bone
conduction headphones—their response is strongly affected
by their positioning on the user. Although participants were in-
structed to first adjust the headphones until they could clearly
differentiate beeps coming from the left and right, it is possible
the headphones moved before or during simulation.

Exploring Different Output Modalities
Some participants remarked they preferred the vibration of the
bone conduction headphones to the higher-frequency audio:

“Maybe less beeps, and more vibration” (P18); “the vibrations
of the system helped more than the noise” (P21); “We can try
some other means rather than sound. Maybe just vibrations”
(P13). On the contrary, P6 comments, “The high pitch is good
since it can be heard above ambiance.” Overall, this suggests
an exciting direction for future work may involve comparing
the effectiveness of different output modalities for use with
HindSight.

Handling Output in Heavy Traffic
A few participants expressed concern that continuous beeping
in heavy traffic would be overwhelming: “I can imagine the



system can be constantly beeping if I use it [during rush hour]”
(P20); “for a real commute there are more than just one car on
the road [...] too many sounds many be confusing to the user
and overpowering” (P4). P8 expressed the opposite desire:

“I think I"d rather have the beeps around me all the time!”
HindSight limits its output to sonifying a maximum of two
objects, but added features, such as thresholding for minimum
differential speeds, could be mitigation strategies in future
work. Another solution may be interactivity. P6 suggests, “It
would be nice to have some way for the user to acknowledge
vehicles they have already seen.”

LIMITATIONS
As a prototype system, HindSight has limitations from engi-
neering constraints and the availability of technology.

The resolution of our panoramic camera is relatively low.
Output is at 1280x720 at 15 fps streamed live. A rough cal-
culation shows using a 4K panoramic camera could provide
twice the detection distance of our 720p camera, increasing
users’ limited time to react.

Our system requires a 10 lb laptop to be worn. Our laptop
was chosen as a solution to balance portability and a high-end
GPU. Although it can be comfortably worn in a backpack,
it is not an ideal form factor. Developments in low-power,
small-footprint hardware designed for neural network compu-
tations10 and considering mobile-optimized neural network
architectures [16] will likely address this limitation.

The Orientation Filter can reduce sensitivity to objects
approaching from directly behind. The Orientation Filter
works effectively in practice because cars commonly approach
the bicycle at an offset from the rear. However, objects which
are approaching directly from behind may be detected later
because their tracked x value does not change. Engineering
a dynamics model which estimates the trajectory of directly
approaching objects could resolve this limitation.

Object tracking does not merge bounding boxes. Our
frame to frame tracking algorithm could be improved by
adding a step where we merge bounding boxes if items are
likely the same at seams of image partitions.

CONCLUSION
We introduced HindSight, a wearable system that increases
spatial awareness by detecting relevant objects in live, ego-
centric 360-degree video and sonifying their attributes through
bone conduction headphones. HindSight draws upon advances
in computer vision and work in delivering continuous feedback
for physical tasks to identify points of interest in a user’s
surroundings and notify the user when necessary to redirect
their attention.

Our analysis suggests that at current detection performance,
bicyclists can be notified in time to react to dangers when
vehicles travel up 8.6 m/s faster than the cyclists. This margin
may be sufficient for many, but not all urban cycling situations.
Progress in camera technology and object classification can
further improve on this threshold.

10https://developer.movidius.com/

In our exploratory study, we find HindSight increased users’
reported comfort, awareness, reaction time, and safety. We
also identified potential avenues for future work, such as re-
ducing the recall rate of object detection and designing broader
audio experiences for users.

In our simulator-based user study, we find participants us-
ing HindSight experienced fewer collisions, increased their
distance to other vehicles, and had reduced cognitive load.
Participants expressed increases in reported awareness, safety,
reaction time, and comfort similar to the exploratory study.

While our prototype is somewhat limited by the need to wear
a laptop with a powerful GPU, multiple companies have de-
veloped chips that can run deep neural networks in real time,
which would make a truly portable solution feasible.

Beyond the domain of cycling, we believe that combining an
enhanced awareness of visual periphery with the rich semantic
understanding of objects and scenes from computer vision
techniques has the potential to enable an entire new class
of applications that improve on unaided human capabilities.
Ultimately, we believe HindSight represents a step towards
such systems which can increase our potential by facilitating
human-machine collaboration.
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