
Lambda: An Autograder for Snap!

Michael Ball

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-2
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-2.html

January 16, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The work presented here exists due to the contributions of many people and
grants from the National Science Foundation (grant 1138596), Google, and
edX. Building an autograder would not be possible without BJC,
Snap! and CS10, which have collectively been supported by
hundreds of dedicated students and teachers over the past seven years.

In particular, a huge **Thank You** to the following people who helped
make this possible. Thanks especially to Lauren Mock for always being there,
and for all the advice and help! Everyone has been incredibly supportive over
the past year.

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

λ – An Autograder for Snap!

by Michael Ball

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for the
degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Dan Garcia
Research Advisor

May 13, 2016

(Date)

* * * * * * *

Professor Armando Fox
Second Reader

May 13, 2016

(Date)

1 2

2 3

3 4

4 6

5 7

6 11

7 14

8 19

8.1 19

8.2 24

9 25

10 27

10.1 27

10.2 31

11 35

12 37

13 38

14 40

Table	of	Contents
Abstract

Acknowledgements

List	of	Figures

Introduction

Related	Work

Design	Principles

Interface	Walkthrough

Implementation

The	Web	Application

The	Autograder	Interface

Experimental	Setup

Results

Usage	Analysis

Survey	Analysis

Future	Work

Conclusion

References

Appendix	A:	Source	Code

1

1	Abstract
While	visual	programming	languages	are	hardly	a	new	development,	recent	pushes	for	increased	equity	and	access	to	computer	science
have	led	to	a	renewed	interest	and	use	of	visual	programming	languages.	Autograders	are	a	critical	component	of	both	in-person	and
online	computer	science	courses.	However,	until	this	point,	there	haven't	been	any	autograders	documented	for	general-purpose,	visual
programming	development	environments.	This	is	a	particular	shortcoming	as	introductory	courses	have	scaled	to	larger	numbers	of
students	and	online	environments.	While	there	are	challenges	to	using	autograders,	we	believe	that	the	instant	feedback	capabilities,	as
well	as	potential	time	savings	for	course	staff	will	help	us	teach	a	greater	number	of	students.

Over	the	past	year,	we	have	built	an	autograder,	named	λ	(Lambda),	for	Snap!,	a	visual	blocks-based	programming	language	inspired
by	MIT's	Scratch.	The	primary	motivation	for	developing	the	autograder	was	to	run	a	series	of	Massive	Open	Online	Courses
(MOOCs)	on	edx.org	throughout	the	2015-2016	academic	year.	However,	we	also	wish	to	use	the	autograder	to	better	support	in-
person	computer	science	courses.	In	Spring	2016,	the	Snap!	autograder	was	used	as	a	part	of	UC	Berkeley's	CS10,	The	Beauty	and	Joy
of	Computing,	a	"CS0"	non-majors	course.

This	report	describes	λ,	which	consists	of	a	"backend"	Ruby	on	Rails	webserver	that	allows	us	to	use	the	autograder	in	a	classroom
setting,	through	a	protocol	called	LTI.	The	backend	web	application	contains	a	database	of	questions	and	test	files,	while	the	Snap!
interface	contains	new	features	and	a	view	to	present	the	results	of	the	autograder.	Our	initial	results	show	the	autograder	successfully
being	used	in	CS10,	where	the	autograder	was	used	to	supplement	oral	lab	checkoffs,	and	on	edx.org	where	the	autograder	was	the
primary	method	for	students	to	receive	credit	for	code,	graded	both	for	effort	and	correctness.

2

2	Acknowledgements
The	work	presented	here	exists	due	to	the	contributions	of	many	people	and	grants	from	the	National	Science	Foundation	(grant
1138596),	Google,	and	edX.	Building	an	autograder	would	not	be	possible	without	BJC,	Snap!	and	CS10,	which	have	collectively
been	supported	by	hundreds	of	dedicated	students	and	teachers	over	the	past	seven	years.

In	particular,	a	huge	Thank	You	to	the	following	people	who	helped	make	this	possible.	Thanks	especially	to	Lauren	Mock	for	always
being	there,	and	for	all	the	advice	and	help!	Everyone	has	been	incredibly	supportive	over	the	past	year.

Dan	Garcia	for	being	a	mentor	for	the	past	five	years
Armando	Fox	for	reviewing	this	work
Brian	Harvey	and	Jens	Mönig	for	Snap!
Max	Dougherty,	Tina	Huang,	Yifat	Amir	and	Patrick	O'Halloran	for	their	incredible	work	on	the	autograder
The	CS10	staff	for	testing	unproven	technology	and	for	dealing	with	additional	student	questions!

TAs:	Rachel	Huang,	Adam	Kuphaldt,	Alex	McKinney,	Amruta	Yelamanchili,	Arany	Uthayakumar,	Erik	Dahlquist,	Janna
Golden,	Joseph	Cawthorne,	Lara	McConnaughey,	William	Tang,	Yifat	Amir,	Andy	Schmitt,	Steven	Traversi,	and	Victoria
Shi
Instructors:	Justin	Hsia	and	Gerald	Friedland

	

3

3	List	of	Figures
	

Fig	1	An	example	Snap!	program.

Fig	2	A	typical	example	of	BJC	curriculum	which	includes	graphical	output.

Fig	3	A	typical	example	of	a	CodeStudio	problem	that	gives	students	only	a	few	blocks	to	work	with,	and	has	a	fairly	constrained
solution	space.

Fig	4	The	initial	page	is	a	list	of	questions	to	try.

Fig	5	Administrators	have	additional	functionality.

Fig	6	Creating	a	new	course	is	a	simple	action	which	requires	little	information.

Fig	7	A	dashboard	showing	the	first	two	labs	the	submission	times	for	autograder	requests	for.

Fig	8	The	initial	(edX)	version	which	had	a	heavily	integrated	feedback	button.

Fig	9	Updated	controls	for	the	autograder	showing	a	dropdown	menu.	(The	controls	for	reverting	submissions	are	greyed-out.)

Fig	10	An	example	of	the	feedback	presented	when	everything	is	correct.

Fig	11	An	example	of	feedback	showing	some	failing	cases.

Fig	12	Snap!	can	be	embedded	in	edX	through	JSInput.

Fig	13	When	a	student	clicks	on	the	link,	a	new	tab	will	open	with	the	proper	question	they	are	assigned.	Clicking	the	"Get	Feedback"
button	triggers	a	submission	which	sends	the	grade	back	to	the	LMS.

Fig	14	A	very	basic	LTI	launch	sequence.	Image	from	the	IMS	{{	"ims-img"	|	cite	}}.

Fig	15	Number	of	students	by	number	of	questions	attempted

Fig	16	Lab	11:	submission	times	by	day.

Fig	17	Lab	12:	submission	times	by	day.

Fig	18	Lab	14:	submission	times	by	day.

Fig	19	Number	of	autograder	submissions	by	hour	of	the	day.

Fig	20	Number	of	autograder	submissions	by	day	of	the	week.

Fig	21	Most	students	appear	to	only	submit	once	at	the	end	of	their	work.

Fig	22	Number	of	students	by	number	of	times	submitted	for	each	lab.

Fig	23	Students	are	fairly	evenly	split	between	preferring	online	vs	oral	lab	checkoffs.

Fig	24	Most	students	completed	checkoffs	alone,	and	found	the	feedback	easy	to	interpret.

Fig	25	Most	students	reported	completing	work	before	using	the	autograder

	

4

	

5

4	Introduction
In	recent	years,	the	field	of	computer	science	(CS),	and	the	broader	technology	industry,	have	undergone	significant	changes,	though
not	simply	technical	ones.	Around	the	same	time	that	enrollments	started	booming	[1],	the	National	Science	Foundation	(NSF)	posted
the	original	solicitation	for	Broadening	Participation	in	Computing	[2].	As	a	result	of	the	efforts	to	improve	diversity	in	CS,	curricula
such	as	Exploring	Computer	Science	[3]	(ECS),	and	AP	Computer	Science	Principles	[4]	(AP	CSP)	have	emerged.	Many	curricula
have	started	to	use	visual	programming	languages	(VPLs),	also	known	as	blocks-based	languages,	as	their	primary	tool.	As	great	as
these	environments	can	be,	they	often	lack	resources	and	tools	found	in	more	traditional	environments	(such	as	Python	or	Java).	This
lack	of	infrastructure	can	make	courses	more	difficult	to	teach	and	scale,	particularly	to	entirely	online	environments.

We	aim	to	help	students	learning	programming	by:

Delivering	the	best	resources	to	possible	to	completely	remote	students,	and
Improving	the	capability	and	efficiency	of	in-person	teaching	assistants	(TAs).

One	example	of	missing	resources	is	the	capability	to	automatically	evaluate	code,	and	send	the	results	to	another	process.	Automatic
evaluation	and	distributing	the	results	are	central	components	in	an	autograder.	Without	an	autograder,	it	can	be	difficult	(if	not
prohibitively	expensive)	to	teach	large	online	courses.	During	the	2015-2016	school	year,	we	taught	The	Beauty	and	Joy	of	Computing
[5]	(BJC)	as	a	series	of	four	massive	open	online	courses	(MOOCs)	on	edX	[6].	BJC	is	an	AP	CS	Principles	course	that	uses	Snap!	as
its	primary	language.	Without	an	autograder,	we	did	not	think	that	we	could	fairly	give	credit	to	students	online.	At	Berkeley,	BJC	is
offered	as	CS10,	which	could	use	an	autograder	for	Snap!.

We	developed	λ	as	a	system	for	autograding	Snap!	[7].	λ	is	composed	of	two	main	parts,	the	Ruby	on	Rails	application	server,	and	a
Javascript	application	that	augments	Snap!	with	testing,	analysis	and	logging	capabilities.	While	the	grading	interface	was	developed
for	edX,	we	report	on	its	use	in	the	classroom	and	some	recommendations	for	future	development.	We	also	hope	that	λ	will	be	useful
outside	CS10,	through	the	implementation	of	the	Learning	Tools	Interoperability	(LTI)	protocol	which	should	allow	our	system	to	be
compatible	with	most	Learning	Management	Systems.	We	have	built	additional	features	which	should	allow	flexibility	to	integrate	the
autograder	into	a	variety	of	classroom	environments.	These	features	are	described	in	the	chapter	on	implementation.

4.1	Snap!
Snap!	is	a	blocks-based,	drag-and-drop	programming	language	inspired	by	MIT's	Scratch	[8],	but	adapted	for	university-level	courses
by	including	features	such	as	first-class	lists	and	custom	functions	(blocks).	Snap!	is	implemented	as	a	web	application	in	JavaScript,
which	makes	it	compatible	with	mobile	devices.	Figure	1	shows	a	basic	drawing	script	being	executed.

	

6

Figure	1:	An	example	Snap!	program.

4.2	The	Beauty	and	Joy	of	Computing

The	Beauty	and	Joy	of	Computing	(BJC)	is	an	introduction	to	computing	designed	to	broaden	participation	among	underrepresented
groups.	The	primary	language	used	is	Snap!,	and	many	of	the	exercises	in	the	course	have	visual	outputs.	The	course	covers	functions
and	abstraction,	recursion,	higher	order	functions	(lambdas)	and	many	other	topics.	Many	of	the	examples	and	exercises	in	BJC	have
multiple	correct	paths	to	implementation,	which	can	be	a	challenge	for	autograders	to	handle.

Figure	2:	A	typical	example	of	BJC	curriculum	which	includes	graphical	output.

	

7

4.3	CS10

CS10	[9]	is	UC	Berkeley's	offering	of	BJC.	Currently,	CS10	is	offered	every	semester	to	200-300	students.	Like	many	other
introductory	courses,	CS10	relies	heavily	on	laboratory	sections	as	the	primary	method	for	students	to	learn	to	program.	λ	will	be	used
in	CS10	during	lab	sections	to	give	students	better	feedback	as	they	are	working	and	to	give	credit	for	the	assigned	lab	work.	This	year,
we	were	able	to	trial	the	system	for	three	of	the	14	labs	that	students	completed	in	Snap!.

4.4	Correctness	and	Effort

While	designing	the	autograder,	we	considered	two	primary	types	of	grading:	correctness	and	effort.	Correctness	is	simple:	Does	is
given	block	(or	script)	do	what	the	instructions	say?	Effort	is	more	open-ended,	but	the	goal	is	to	be	able	reward	students	for	trying	to
complete	a	problem,	as	well	as	to	encourage	experimentation	with	Snap!'s	many	features.	In	both	these	cases,	we	would	like	the
autograder	to	be	robust	to	different	correct	solutions,	or	the	many	different	ways	students	can	demonstrate	effort.

	

8

5	Related	Work
In	building	and	designing	an	autograder,	there	is	surprisingly	little	work	published	about	autograders,	and	even	less	so	about	those	for
visual	programming	languages.	While	there	are	many	examples	of	autograders	for	languages	like	Python	and	Java,	there	are	only	two
that	we	are	aware	of	for	blocks-based	languages,	which	are	both	very	recent	developments.

5.1	Code.org	CodeStudio

Code.org's	CodeStudio	[10]	is	an	online	interactive	environment	based	around	the	open-source	Blockly	environment	[11].	CodeStudio
includes	custom	feedback,	but	the	vast	majority	of	the	problems	are	in	a	highly	restrictive	space	where	students	are	given	only	a
limited	set	of	blocks.	While	CodeStudio	is	open	source	[12],	the	autograder	and	feedback	methodologies	are	not	documented.

Figure	3:	A	typical	example	of	a	CodeStudio	problem	that	gives	students	only	a	few	blocks	to	work	with,	and	has	a	fairly	constrained
solution	space.

5.2	ITCH:	Individual	Testing	of	Computer	Homework	for	Scratch
Assignments

ITCH	is	an	autograder	for	Scratch	recently	presented	at	SIGCSE	2016	[13].	However,	ITCH's	method	of	autograding	is	through	an
instructor-initiated	script	which	should	be	run	after	all	assignment	submissions	are	collected.	This	is	a	fairly	common	scenario	for
typical	code	autograders,	but	not	a	model	we	would	use	because	our	goal	is	instant	feedback.	ITCH	takes	a	similar	method	to	our
Snap!	autograder	by	'spoofing'	user	inputs	when	requested,	but	it	shares	many	of	the	same	limitations,	like	a	lack	of	feedback	for
graphical	output.

	

9

	

10

6	Design	Principles
Educational	design	principles	helped	influence	the	design	of	the	autograder	and	the	direction	for	creation	of	exercises.	While	these
design	principles	helped	influence	features	and	the	user	interface	of	the	autograder,	they	are	also	extremely	important	as	a	guideline	for
how	instructors	and	content	authors	should	think	about	writing	exercises	and	implementing	them	in	the	classroom.

6.1	Dual	Modalities

A	central	challenge	faced	when	considering	development	of	the	autograder	was	what	to	prioritize:	Feedback	or	Grading?	While	both
features	are	necessary	for	each	other,	there	is	an	acute	tension	between	a	tool	which	is	primarily	motivated	by	providing	open-ended
feedback,	and	one	that	is	designed	to	provide	grades.	The	goal	of	this	section	is	to	consider	the	best	possible	interface	we	could	give	to
students	to	help	them	improve	their	programming	skills	and	complete	lab	exercises.

A	key	aspect	of	this	tension	is	how	to	handle	the	idea	of	correctness.	In	an	introductory	computer	science	course,	we	are	often	lenient
with	small	differences	in	output	from	a	program.	(For	example,	Snap!	allows	students	to	use	both	traditional	arrays	and	linked	lists,	but
their	visual	output	is	the	same.	If	test	authors	are	not	careful,	it	is	easy	to	mistake	one	type	of	data	as	incorrect	when	it	should	be
accepted.)	While	it	is	often	possible	to	account	for	these	differences	when	writing	test	cases,	it	can	be	significantly	difficult.	We	need
to	make	sure	that	when	these	tools	are	used	for	grading,	they	do	not	cause	students	unnecessary	stress	or	frustration.

6.2	Learner-Centered	Design

Learner-centered	design	(LCD)	is	a	design	principle	adapted	from	user-centered-design	(UCD)	[14]	[Citation	not	found]	[15].	Both
LCD	and	UCD	design	principles	start	by	establishing	attributes	about	the	user's	goals.	For	LCD	there	are	4	main	attributes:

•	Learners	do	not	possess	the	same	domain	expertise	as	users.

•	Learners	are	heterogeneous.

•	Learners	may	not	be	intrinsically	motivated	in	the	same	manner	as	experts.

•	Learners’	understanding	grows	as	they	engage	in	a	new	work	domain.

While	languages	like	Snap!	are	designed	to	be	easier	to	learn,	they	do	not	necessarily	employ	LCD	principles	because	they	are	still
intended	as	a	general-purpose	programming	environment.	We	can	make	sure	our	autograder	takes	into	each	of	these	principles:

Domain	expertise:	Programming	languages	have	to	show	error	messages	that	could	make	sense	in	any	situation.	Unfortunately,	this
means	they	usually	fall	to	the	lowest	common	denominator	type	cases,	and	do	not	provide	any	contextual	information	to	the	use.	In
Snap!,	it	is	not	uncommon	to	see	a	message	that	is	similar	to		Type	Error:	expecting	a	list	but	got	number	.	We	can	improve	upon
these	messages	by	showing	students	hints	which	are	specific	to	the	problem	at	hand.

Heterogeneity:	This	is	one	of	the	harder	aspects	for	the	autograder	to	handle.	Not	everyone	approaches	problems	in	the	same	way.	Our
general	approach	is	to	try	to	be	as	lenient	as	possible	(while	still	ensuring	correctness)	when	writing	test	cases.	We	have	spent	lots	of
time	considering	how	authors	should	handle	different	formats	of	output	so	that	we	try	to	avoid	nit-picky	errors.

Motivation:	We	try	to	motivate	users	by	carefully	choosing	how	we	present	the	tool	and	the	results.	In	class,	and	in	the	text	which
appears	on	screen	we	try	to	downplay	the	idea	of	grades	or	errors	and	instead	focus	on	helping	students	improve.

	

11

Changing	Understanding:	Dynamically	capturing	a	user's	understanding	is	incredibly	difficult	to	do.	At	this	point,	we	are	not	able	to
dynamically	adjust	exercises	or	feedback	presented,	but	we	have	planned	out	possible	methods	for	doing	so.	Currently,	the	best	way
for	us	to	achieve	this	is	to	have	Teaching	Assistants	(TAs)	and	instructors,	who	are	conscious	of	students	needs,	recommend	different
problems	for	students	to	practice	with.

6.3	Knowledge	Integration

Knowledge	integration	(KI)	is	a	framework	for	approaching	how	students	should	synthesize	information	[Citation	not	found]	.	The	KI
framework	has	four	components	to	orangize	ideas:

Adding	Knowledge	involves	bringing	in	new	ideas	that	students	have	not	seen	before.
Eliciting	Ideas	is	the	process	of	critically	examining	ideas	students	already	know.
Distinguishing	Knowledge	asks	students	to	take	multiple	ideas	and	figure	out	how	they	fit	together;	whether	they	are	compatible
or	not.
Reflecting	is	the	process	of	drawing	conclusions	from	what	students	have	learned.

We	used	KI	as	a	basis	for	writing	the	feedback	messages	that	students	are	shown	through	the	autograder.	The	goal	is	to	focus	primarily
on	the	eliciting	knowledge	and	distinguishing	knowledge	components.	We	wanted	to	focus	on	these	two	pieces	because	there	are	many
common	computer	science	problems	which	can	be	viewed	through	this	lens.	Systematically	debugging	code	follows	a	process	of
eliciting	knowledge	when	trying	to	figure	out	why	something	is	broken.	Distinguishing	knowledge	(such	as	the	differences	between
two	kinds	of	loops,	or	recursion	and	iteration)	is	a	natural	process	for	programming.

We	chose	not	to	use	the	adding	knowledge	component	because	we	do	not	currently	have	the	autograder	setup	to	give	good	feedback
when	students	are	doing	exploratory	work	(where	they	would	be	most	likely	to	uncover	new	concepts).	However,	these	types	of
messages	will	likely	appear	in	future	versions.	Similarly,	while	reflecting	is	a	valuable	step,	we	do	not	have	the	capability	to	collect	nor
give	feedback	to	open-ended	reflection	questions.

However,	writing	proper	KI	messages	proved	challenging	in	the	current	setup.	The	initial	version	of	the	autograder	was	designed	more
around	presenting	the	results	of	test	cases,	than	it	was	for	longer	forms	of	feedback.	(This	is	one	area	for	improvement.)	Furthermore,
trying	to	follow	KI	occasionally	led	to	messages	that	did	not	necessarily	fit	within	the	rest	of	the	BJC	curriculum	as	it	was	not	designed
around	the	KI	framework.

6.4	"TA-Centered	Design"
Though	this	is	certainly	lower	on	the	priority	list	than	learner-centered	design,	we	make	a	point	to	describe	TA-centered	design,	and
why	this	matters	for	the	tools	we	build.	Teaching	Assistants	(TAs)	and	instructors,	are	critical	users	of	the	infrastructure	in	courses.
They	need	to	be	able	to	easily	update	and	create	content,	handle	grades	and	so	on.	The	longer	or	more	difficult	these	tasks	are,	the	less
time	TAs	have	to	spend	helping	students	learn.

When	considering	TA-Centered	Design,	a	TA	is	much	more	like	a	typical	user	in	UCD	than	a	learner	in	LCD,	but	there	are	many	ideas
that	should	be	specifically	recognized	for	TAs:

TAs	are	often	lacking	pedagogical	content	knowledge	(PCK).	PCK	is	making	the	distinction	between	knowing	how	to	program,
and	how	to	teach	programming.	TAs	could	use	guidance	in	applying	good	pedagogy.

The	admin	dashboards	built	into	λ	give	TAs	more	insights	than	they	currently	have	about	how	students	are	performing	and
how	often	they	are	completing	the	lab	work.	While	the	dashboards	have	a	ways	to	go	in	functionality,	this	is	an	improvement
and	gives	TAs	a	reason	to	keep	using	the	system.
The	test	case	authoring	interface	should	be	adapted	to	make	it	effortless	to	write	consistent	and	detailed	feedback.

	

12

While	TAs	are	motivated	to	teach	they	are	not	always	motivated	to	complete	the	extra	work	required	of	them,	such	as	grading	or
writing	assignments.

Test	cases	need	to	be	easy	to	write	and	upload.
The	Implementation	chapter	describes	the	problems	with	our	initial	approach	using	edX's	tools.
The	Future	Work	chapter	describes	how	we	can	improve	the	experience	of	writing	autograder	test	files	to	lower	the
barrier.

Often	TAs	are	not	experts	in	the	tools	they	are	required	to	use	to	accomplish	their	teaching	duties,	such	as	LMSs	and	grading
systems	such	as	λ.
TAs,	like	most	users,	have	a	limited	amount	of	time	to	complete	their	work.

Limit	(or	automate)	repetitive	tasks,	especially	ones	that	involve	configuration.
The	ability	to	automatically	upload	grades	for	students	is	a	huge	time	saver	which	allows	TAs	to	focus	on	more	important
tasks,	and	allows	students	to	stop	worrying	about	the	status	of	their	grades.

While	these	three	ideas	may	seem	obvious,	they	are	important	to	recognize	if	our	work	is	to	be	used	beyond	our	initial	test
implementation.	Then,	we	need	to	consider	how	TAs	will	use	λ.	The	success	of	a	new	autograder,	even	if	it	is	beneficial	for	students
requires	TAs	to	be	comfortable	configuring	and	writing	new	autograder	tests.

Ultimately,	we're	are	trying	to	recognize	that	TA's	(or	individual	instructors)	are	already	limited	by	time.	Making	test	cases	as	easy	to
write	as	possible	is	a	necessary	part	of	the	process.

	

13

7	Interface	Walkthrough
λ	is	composed	of	two	parts:	a	webserver	and	a	Snap!	interface	with	autograding	capabilities.	In	the	current	implementation,	only
instructors	need	to	use	the	webserver,	though	in	the	future	there	may	be	functionality	added	for	students.	(See	the	future	work	section.)

7.1	Web	Application

The	basic	web	interface	(figure	4)	presents	a	list	of	problems	to	try.	This	list	is	public,	so	anyone	can	attempt	any	problem,	but
instructors	are	expected	to	embed	specific	questions	with	their	directions.	Users	can	click	on	a	link	to	work	on	a	particular	question.

Figure	4:	The	initial	page	is	a	list	of	questions	to	try.

The	rest	of	the	interface	options	come	after	the	user	has	logged	in	with	an	admin	account	(figure	5).

Figure	5:	Administrators	have	additional	functionality.

These	features	are:

Creating	/	Editing	Questions	-	A	question	contains	a	test	file,	a	points	value,	and	a	starter	file.
Creating	/	Editing	Courses	-	Courses	describe	connections	to	the	LMS.	Each	course	has	a	key	and	some	policy	settings	(figure

	

14

6).
Creating	/	Editing	Admin	Dashboards	-	Admin	dashboards	provide	the	status	of	student	performance.	This	initial	version	is
based	entirely	on	custom	SQL	queries,	but	they	can	be	powerful.	These	dashboards	were	a	significant	benefit	in	doing	analysis	for
this	report	and	were	shared	with	TAs	during	the	course	(figure	7).

Figure	6:	Creating	a	new	course	is	a	simple	action	which	requires	little	information.

Figure	7:	A	dashboard	showing	the	first	two	labs	the	submission	times	for	autograder	requests	for.

7.2	The	Snap!	Interface

The	autograder	augments	the	Snap!	interface	with	a	few	basic	tools.	The	initial	version	of	the	autograder	included	a	button	and
"hamburger"	menu,	that	were	designed	to	appear	integrated	into	Snap!.	However,	the	apparent	seamlessness	was	actually	more
confusing	because	the	controls	never	fit	within	the	rest	of	Snap!.

	

15

Figure	8:	The	initial	(edX)	version	which	had	a	heavily	integrated	feedback	button.

The	updated	version	more	clearly	separates	the	autograder	controls	from	Snap!,	and	gives	us	more	room	to	expand	functionality	in	the
future.	A	problem	title	will	always	be	displayed	in	the	Snap!	interface	(compared	to	outside	the	window	in	the	edX	version),	which
was	a	small	but	important	change	because	the	new	setup	allows	for	displaying	Snap!	in	a	separate	tab	from	the	question	instructions.

Figure	9:	Updated	controls	for	the	autograder	showing	a	dropdown	menu.	(The	controls	for	reverting	submissions	are	greyed-out.)

Both	interfaces	have	the	following	features	for	students:

The	"Get	Feedback"	button	runs	a	set	of	autograder	tests	on	the	code,	which	are	presented	when	tests	are	complete.
The	color	of	the	status	bar	(the	button	in	the	edX	version)	changes	color	based	on	the	question's	state:

Green:	All	tests	are	passing
Orange:	The	student	has	modified	their	code	and	tests	should	be	re-run.
Red:	At	least	one	test	is	failing.

Restore	Best	Submission
Restore	Last	Submission

These	two	features	encourage	students	to	experiment	and	re-write	code	without	any	fear	that	they	might	hurt	their	scores	or
lose	work.	Every	time	the	"Get	Feedback"	button	is	clicked,	a	submission	is	recorded.

Reset
Restores	the	current	Snap!	project	to	the	state	of	the	starter	file.

Help
Displays	a	set	of	tool	tips	over	autograder-specific	elements.

Show	Previous	Results
This	is	a	new	option	which	will	present	the	feedback	of	the	previous	tests	without	re-running	them.	This	allows	students	to
review	mistakes,	and	should	discourage	"autograder-driven	development".

	

16

Figure	10:	An	example	of	the	feedback	presented	when	everything	is	correct.

Figure	11:	An	example	of	feedback	showing	some	failing	cases.

The	two	screenshots	in	Figures	10	and	11	show	two	different	versions	of	the	autograder	presenting	feedback.	Students	see	passing	tests
on	top	in	green	and	failing	tests	on	the	bottom	in	red.	Each	section	has	details	about	the	particular	test	cases,	and	the	bold	headings	can
contain	tips	or	guidance	for	students.

	

17

	

18

8	Implementation
The	λ	web	application	is	built	using	the	Ruby	on	Rails	framework	[16],	and	makes	use	of	many	common	web	technologies.	The	Snap!
interface	is	implemented	purely	in	JavaScript.	The	initial	purpose	of	the	system	is	not	to	be	a	grade	storage	but	to	connect	with	an
existing	gradebook	or	Learning	Management	System	(LMS)	so	that	any	grade	results	will	be	integrated	with	the	rest	of	course	data.
We	chose	this	route	because,	in	our	experience	multiple	sources	of	grades	are	prone	to	errors	and	delays.	By	designing	a	system	which
doesn't	need	to	store	grade	data,	we	can	make	a	lot	of	simplifications	and	focus	on	more	important	features.

8.1	Ruby	on	Rails	Backend

λ	exists	as	modern	"Software	as	a	service"	application.	It's	designed	to	be	hosted	by	a	cloud	services	provider,	using	a	webserver	and	a
separate	database	server.

8.1.1	The	Need	for	a	Web	Application

The	JavaScript	that	powers	the	autograding	works	entirely	client-side,	meaning	as	long	as	you	have	the	test	files,	there's	no	need	for	an
internet	connection.	This	path	was	initially	chosen	for	three	reasons:

Snap!	is	client-side,	and	evaluating	Snap!	projects	on	a	server	would	require	a	significant	amount	of	work.
edX	provides	a	custom	problem	type	called		JSInput		[17]	which	gave	us	a	clear	path	for	integration	with	edX.
Developing	an	autograder	and	a	web	application	required	more	resources	than	were	available.

While	the	entirely	client-side	path	was	a	good	decision,	we	ran	into	a	number	of	issues	by	relying	on		JSInput		and	trying	to	keep	all
features	client-side.

8.1.1.1	Challenges	with		JSInput	

edX's		JSInput		problem	type	provides	a	JavaScript	API	for	sending	scores	to	the	edX	platform.	It	allows	us	to	build	in	a	custom
version	of	Snap!	alongside	the	rest	of	the	content	in	edX.

	

19

Figure	12:	Snap!	can	be	embedded	in	edX	through	JSInput.

However,	we	encountered	several	problems	while	developing	the		JSInput		based	integration:

Developing	code	was	very	slow!	Changes	to	code	required	manually	uploading	a	new	file	to	edX,	which	is	a	multi-step	process.
The	libraries	used	for	JSInput	swallowed	native	JavaScript	errors,	making	debugging	nearly	impossible.
The	edX	interface	has	it's	own	mechanism	for	a	"Check"	button	and	showing	feedback.	Communicating	the	detailed	output	from
the	autograder	didn't	work	very	well,	and	we	ended	up	developing	many	work	arounds	to	get	a	seamless	UI.
There's	no	room	for	storing	or	retrieving	user	metadata.	We	rely	on	features	that	allow	students	to	recall	previous	submissions.
Through		JSInput		the	only	option	for	these	features	were	to	use	the	browser's		LocalStorage		API.	This	API	has	limits,	like	a	max
of	5MB	of	storage,	that	caused	problems	for	some	students.
Furthermore,	without	a	dedicated	database,	every	single	test	file	written	had	lots	of	hard-coded	metadata	that	was	repetitive	and
prone	to	error.
While	edX	provides	user	logs	for	the	entire	course,	we	found	dealing	with	these	logs	to	be	needlessly	complex.	They	are	slow	to
get,	and	the	autograder	results	are	difficult	to	separate	from	the	rest	of	the	course	data.	As	such,	we	haven't	analyzed	the	edX	data
to	the	extent	we'd	like	to.	A	simpler	logging	system	described	below	has	been	immensely	helpful	for	our	analysis.

The	one	benefit	of	these	problems	was	that	it	forced	the	development	of	the	autograder	into	two	components:	A	JS	interface	to	edX,
and	a	"dumb"	client-side	component	that	sits	on	top	of	Snap!.	This	distinction	was	helpful	when	adapting	the	autograder	to	work	with
the	new	web	application.

Perhaps	most	importantly:	the	grading	system	could	only	work	with	edX.	CS10	uses	Canvas	[Citation	not	found]	as	it's	LMS,	and
many	high	schools	use	different	systems.	The	need	to	build	a	custom	solution	for	every	platform	would	be	prohibitively	expensive.
Fortunately,	the	LTI	protocol	provides	a	decent	solution	for	most	of	the	tasks	we'd	like	to	accomplish.

At	the	end	of	the	day,	the	decision	to	build	an	initial	version	tied	to		JSInput		was	a	good	one,	as	it	was	still	probably	faster	than
building	a	full	web	application	at	the	same	time.

8.1.2	Basic	Architecture

	

20

λ	is	a	Ruby	on	Rails	(commonly	abbreviated	as	"RoR")	[16]	web	application	backed	by	a	PostgreSQL	database.	The	database
primarily	contains	a	set	of	questions,	a	submissions	log,	and	a	users	table,	as	well	as	some	additional	metadata.	The	current	version	is
deployed	to	Heroku	at	lambda.cs10.org,	but	it	could	be	deployed	to	any	cloud	provider.

8.1.2.1	Questions	and	Submissions

The	core	functionality	is	primarily	supported	by	two,	fairly	simple,	data	models:		Question	s	and		Submission	s.

A		Question		needs	only	three	attributes:

	title	:	A	human-readable	ID	for	the	question
	points	:	Points	are	used	to	normalize	scores.	(See	the	LTI	section	below.)
	test	file	:	The	test	file	is	a	JavaScript	file	(described	below)	which	includes	the	test	cases	as	well	as	feedback	presented	to	the
student.

Though	they	aren't	currently	used,	future	updates	for	will	make	use	of	the	following	properties:

	content	:	Currently,	it	is	up	to	course	staff	to	provide	context	for	the	questions	which	are	being	graded.	In	the	future,	the	λ	will
display	this	content	alongside	the	Snap!	interface.
	tags	:	Questions	can	contain	tags	which	can	aid	in	searching,	or	trying	to	correlate	student	performance	across	problems.	There
is	also	potential	for	using	tags	to	recommend	problems	to	students	as	a	study	tool.

A		Submission		has	a	few	key	properties:

	test	results		is	a	JSON-formatted	result	from	the	autograder.	It	contains	the	points	given	to	each	test	case	as	well	as	the	specific
results	and	feedback.
	code	submission		is	a	full	export	of	the	Snap!	that	students	wrote.
	user	info		is	a	set	of	data	about	the	submitting	user	which	includes	what	source	they	came	from	(see	the	accounts	section),	and	if
they're	a	part	of	a	course.

Note	that	logging	submissions	is	purely	for	purposes	of	analysis	and	backup.	By	implementing	the	LTI	protocol,	the	LMS	will	contain
all	necessary	data	for	students	to	receive	grades.	However,	if	we	choose	to	adapt	λ	to	include	resources	for	studying	or	question
recommendation,	the	internal	submissions	database	will	become	more	important.

A		Course		is	an	object	which	manages	the	LTI	connection,	and	needs	only	two	values:

	consumer_key		is	a	unique	key	for	each	course.	This	helps	the	application	separate	between	different	LTI	consumers,	primarily	for
purposes	of	analysis.
	consumer_secret		is	a	hash	of	the		consumer_key	.	It's	automatically	generated	by	the	application	when	a	Course	object	is	created.

Note	that	the		Course	s	table	isn't	entirely	necessary.	The	LTI	connection's		key		and		secret		values	could	be	entirely	static	(i.e.	in	an
environment	configuration),	but	such	an	approach	is	prone	to	errors	and	has	security	concerns	as	an	application	is	connected	to
multiple	systems.

8.1.2.2	User	Identities

When	building	a	tool	with	grading	data,	it	was	critically	important	that	we	had	an	easy	and	way	to	identify	students,	and	to	minimize
the	need	for	an	additional	login.

8.1.2.2.1	LTI

	

21

https://lambda.cs10.org

The	IMS	Global	Learning	Consortium	[18]	is	a	standards	body	composed	of	educational	instituions,	intrest	bodies	and	edtech
companies.	IMS	publishes	a	specification	called	LTI	[19]	which	can	briefly	be	described	as	"OAuth	for	educational	applications".	The
LTI	authentication	process	is	actually	based	on	the	OAuth	[Citation	not	found]	protocol,	but	it's	designed	to	be	completely	seamless	for
students.	(Unlike	a	Google	or	Facebook	authorization,	a	student	who	is	already	authenticated	inside	a	LMS	does	not	need	to
specifically	'authorize'	an	application	when	LTI	is	used.)

The	LTI	protocol	defines	two	"categories"	of	applications:	a		Tool	Consumer		(TC)	and	a		Tool	Provider		(TP).	λ	is	a	provider,	while	the
LMS	is	a	typical	consumer,	in	this	case	bCourses	(Berkeley's	instance	of	Instructure	Canvas).	A	typical	user	flow	involves	a	student
visiting	an	assignment	page	(inside	a	LMS)	which	contains	either	an		iframe		element	or	a	special	link.	Currently,	λ	implements
version	1.1	[Citation	not	found]	of	the	LTI	specification,	though	support	for	version	2.0	[Citation	not	found]	is	planned.	LTI	1.1	only
allows	a	tool	provider	to	read	and	send	grades	for	a	currently	logged	in	student,	so	λ	must	work	within	this	limitation.	LTI	2.0	will
potentially	allow	for	more	data	about	courses	to	be	shared	with	students	(such	as	handling	parter	assignments),	but	it	so	far	not	well
supported	among	LMS	vendors.

Figure	13:	When	a	student	clicks	on	the	link,	a	new	tab	will	open	with	the	proper	question	they	are	assigned.	Clicking	the	"Get
Feedback"	button	triggers	a	submission	which	sends	the	grade	back	to	the	LMS.

	

22

Figure	14:	A	very	basic	LTI	launch	sequence.	Image	from	the	IMS	[Citation	not	found].

When	a	user	clicks	the	link	(or	an	embedded		iframe		is	displayed),	a	HTTP		POST		request	is	make	to	the	provider	which	includes
application-level	configuration	data	(including	a		consumer_key		and		consumer_secret).	The	challenge	is	that	the	current	version	of	the
LTI	protocol	requires	that	this		launch_url		be	the	same	for	every	assignment.	(In	this	case	the	URL	is
	https://lambda.cs10.org/lti/sessions	.)	After	completing	the	OAuth	handshake,	the	TP	(our	application)	checks	for	the	presence	of
additional	configuration	info	passed	by	the	TC:

If	a		question_id		is	provided,	then	λ	will	load	the	specific	question.	Currently	LTI	doesn't	provide	a	standard	interface	for	loading
a	specific	resource,	so	if	an	instructor	passes	in	this	value,	students	will	automatically	be	redirected	to	the	proper	question.
A	grade	passback	URL	is	optional.	If	the	application	sees	this	URL,	it	will	post	a	score	back	to	the	TC.	If	the	URL	is	missing,
then	λ	skips	posting	a	score	but	still	saves	the	submission	to	the	local	database.
User	Info:	If	the	instructional	staff	choose	to,	they	can	configure	the	LMS	to	send	"Public"	information	to	λ.	(Public	here	means,
what	FERPA	defines	are	directory	information.	In	the	case	of	UC	Berkeley,	this	includes	the	student's	name,	email,	and	user	ID,
specifically	different	from	their	student	ID.	REF?)	If	the	TC	doesn't	send	public	information,	then	it	will	send	an	obfuscated	hash
to	identify	each	student.	Again,	this	primarily	only	affects	the	analysis	capabilities	provided	to	TAs.

8.1.2.2.2	Need	For	(Regular)	OAuth

Unfortunately,	despite	the	advantages	of	LTI,	we	found	that	traditional	OAuth	was	still	a	necessary	component.	The	primary
motivation	was	the	need	for	site	admins,	and	TAs	who	can	login	without	having	to	go	through	a	LMS.	We're	using	Google	as	an
OAuth	provider	in	addition	to	LTI.	In	the	future,	we	would	also	like	to	connect	the	Snap!	cloud	account	system	through	OAuth,	but
this	is	waiting	on	enhancements	to	the	Snap!	cloud.

This	feature	can	be	useful	for	students	as	well,	once	we	build	out	student	dashboards.	However,	in	order	to	be	effective,	we'll	need	a
way	to	associate	LTI	accounts	with	OAuth	accounts.	Though	not	fully	implemented,	we	will	be	able	to	automatically	associate
accounts	for	students	if	they	share	the	same	email	address.	For	campuses	setup	like	Berkeley,	this	will	the	default	case	for	most
students	since	their	Google	account	and	the	LMS	account	originate	from	the	same	campus	systems.	If	the	emails	don't	automatically
match,	we	should	be	able	to	provide	this	functionality	by	emailing	activation	codes.

8.1.3	Security	Concerns

	

23

Finally,	we	need	to	discuss	a	significant	concern	about	security.	Currently,	the	autograder	test	files	are	implemented	in	plain
JavaScript,	and	are	served	alongside	the	rest	of	the	page	content.	This	means	there's	a	fairly	gaping	hole	allowing	for	Cross-Site-
Scripting	(XSS)	vulnerabilities.	The	current	mitigating	factor	is	that	only	trusted	accounts	with	an	admin	flag	can	upload	test	cases.
This	is	an	acceptable	limitation	for	now,	but	in	the	Future	Work	chapter	we	describe	a	potential	way	around	this	by	allowing	test	cases
to	be	written	in	Snap!,	then	securely	complied	to	JS	on	the	serverside.

8.2	The	Autograder	Interface

The	autograder	components	are	built	in	plain	JavaScript	and	HTML.	Great	care	has	been	taken	to	avoid	modifying	the	Snap!
environment	as	much	as	possible.	The	primary	reason	for	this	is	to	allow	the	autograder	to	be	easily	updated	along	with	new	versions
of	Snap!.

	

24

9	Experimental	Setup
In	the	Spring	2016	semester,	CS10	[9]	used	the	autograder	as	part	of	the	routine	for	lab	checkoffs.	In	total,	the	autograder	was	used	for
three	different	labs,	but	students	were	only	required	to	try	the	autograder	for	one	lab.

9.1	Oral	Lab	Checkoffs

CS10	uses	oral	lab	checkoffs	as	a	means	of	granting	credit	for	a	lab.	The	way	this	typically	works	is	that	students	are	given	one	week
from	the	assigned	lab	date	to	check	in	with	a	TA	or	lab	assistant.	Students	are	checked	off	when	they	successfully	answer	two	or	three
questions	about	the	lab,	and	usually	are	asked	to	present	an	example	of	working	code.

It's	worth	mentioning	that	these	checkoffs	are	designed	more	around	completeness	and	effort	placed	in	the	lab,	rather	than	absolute
correctness.	(Though,	whether	or	not	to	grant	credit	is	up	to	the	individual	TAs.)	Oral	lab	checkoffs	provide	a	good	reason	for	TAs	and
students	to	interact	more	often.	Over	the	past	few	semesters,	the	model	of	lab	checkoffs	has	been	refined	based	on	student	and	TA
feedback,	and	is	designed	to	require	only	minimal	additional	effort	for	the	course	staff	to	manage,	and	for	students	complete.	We're
comparing	the	autograder	against	a	fairly	strict	standard	in	this	scenario,	which	we	hope	illustrates	the	potential.

9.1.1	Challenges	of	Oral	Lab	Checkoffs

Many	of	the	challenges	faced	with	oral	lab	checkoffs	motivate	the	development	of	an	autograder.	Lab	checkoffs	can	take	anywhere
from	2-10	minutes	per	student,	or	per	pair	of	students.	During	a	busy	lab	section,	particularly	close	to	deadlines,	this	time	can	create	a
large	backlog	in	order	to	get	students	checked	off.	While	the	time	discussing	with	individual	students	is	valuable,	the	creation	of	a
queue	can	waste	student's	time	if	they	don't	need	additional	help.	Furthermore,	if	most	of	the	lab	work	can	be	done	at	home,	then	oral
checkoffs	can	be	inflexible	for	students	who	have	a	harder	time	making	it	to	lab,	such	as	those	with	disabilities	or	families.

Finally,	traditional	"clipboard	style"	methods	for	dealing	with	inputting	scores	for	oral	checkoffs	is	a	fairly	complex	and	slow	task,
where	grades	can	get	lost.	To	get	around	this,	we	put	significant	effort	into	a	semi-automated	system	which	allows	TAs	and	lab
assistants	to	input	grades	quickly	and	securely.	Without	such	an	investment,	oral	lab	checkoffs	would	be	much	less	practical.

9.1	Autograder	Checkoffs
In	Spring	2016,	there	were	a	total	of	18	labs,	14	of	which	used	Snap!	[20].	We	had	our	online	autograder	setup	for	3	of	the	later	labs:

Lab	# Lab	Topic Autograder

Lab	11 Recursion	Part	2 Required

Question:	Complete	the	definition	of		merge	sort	

Lab	12 Tic-Tac-Toe Optional

Question:	Complete	the		ttt		solver	block.

Lab	14 Higher	Order	Functions Optional

Question:	Complete	the		is	_	pandigital?		block

Question:	Complete	the		min	value	of	_	over	all	numbers	in	_		block. 	

	

25

Note:	optional	means	that	the	students	could	receive	credit	for	the	lab	checkoff	through	either	the	autograder	or	an	oral	lab	checkoff.
Required	means	that	the	only	the	autograder	was	accepted	for	credit.

9.2	Reasoning
We	chose	this	setup	for	a	variety	of	reasons,	trying	to	balance	a	new	technology	with	the	need	to	test	it	out.

One	lab	was	required	so	that	every	student	would	try	the	autograder	at	least	once	and	could	provide	feedback	about	their
experiences.
Labs	12	and	14	were	optional	because	we	didn't	want	to	penalize	students	if	they	felt	the	autograder	was	more	confusing	or
stressful,	but	we	wanted	to	give	as	many	people	a	chance	to	use	it	as	possible.
Finally,	this	hybrid	model	for	checkoffs	will	likely	be	the	basis	for	future	semesters	of	CS10,	as	more	questions	and	feedback	are
written.

9.3	Challenges	of	Autograder	Checkoffs

Naturally,	even	the	most	advanced	autograder	will	be	no	match	for	a	TA...yet.	We	fully	recognize	(as	do	the	students)	that	an
autograder	cannot	replace	the	detailed,	specialized	and	more	articulate	of	feedback	of	a	TA.	Furthermore,	compared	to	the	current
webpage	for	lab	checkoff	questions	[20],	even	the	easiest-to-use	autograder	will	be	significantly	more	work	than	posting	a	few
sentences	to	a	web	page.

However,	when	deployed	in	the	classroom	with	a	"hybrid"	model	of	both	lab	and	oral	checkoffs	we	think	we	can	alleviate	the	in-class
pressures	of	checkoffs	but	still	give	students	credit	for	the	work	they	are	doing.	By	designing	a	model	that	gives	students	more	choice,
TAs	will	hopefully	be	able	to	give	more	time	to	the	students	that	need	it	most.	This	still	leaves	the	problem	that	an	autograder	is	still
more	work	than	the	status	quo.	We	think	that	this	will	become	less	of	a	problem	overtime	as	a	database	of	questions	is	built	up	and	if
the	analytical	capabilities	prove	to	be	useful	to	teaching	staff.

	

26

10	Results
Over	the	course	of	three	lab	assignments,	we	found	that	students	used	the	autograder	to	complete	labs	outside	of	course	time.	While	we
have	no	basis	for	when	(or	how	often)	students	completed	labs	at	home	without	the	autograder,	this	shows	that	students	are	at	least
receiving	the	benefits	of	feedback	when	a	TA	is	not	present.

Secondly,	when	we	surveyed	students,	they	were	almost	evenly	split	between	preferring	oral	lab	checkoffs	or	the	autograder.	Given	the
lab	setup,	and	the	differing	advantages	for	each	environment,	this	is	what	we	would	hope	for.

Note,	unlike	other	educational	studies,	we	are	not	trying	to	claim	any	learning	gains	from	this	system.

10.1	Usage	&	Statistics
The	first	part	of	our	analysis	will	be	to	look	at	how	often	and	when	students	were	submitting	their	labs.	This	data	was	obtained	from
aggregate	information	in	the	λ	Submissions	database	as	well	as	from	bCourses	to	compare	to	non-autograded	labs.

10.1.1	Basic	Statistics

Total	Number	of	students	in	CS10:	169
Total	Number	of	student	using	the	autograder:	145	(86%)

Lab	# Oral	Checkoffs Autograder	Checkoffs

10 145 N/A

11 34 133

12 57 80

13 132 N/A

14 97 64

15 142 N/A

Note	this	data	has	some	anomalies	due	to	bug	in	the	initial	setup,	and	confusion	among	course	staff:

Lab	11	had	a	bug	posting	scores	through	LTI	for	the	first	day.	Some	TA's	mistakenly	submitted	scores	twice.	There	is	some
overlap	of	those	34	students.
Lab	14	had	a	bug	in	one	exercise	causing	many	students	to	get	checked	off	by	both	methods.

We	can	look	at	the	number	of	times	that	students	tried	the	autograder:

	

27

Questions	Attempted

Figure	15:	Number	of	students	by	number	of	questions	attempted

What	this	shows	us	is	that,	though	students	were	only	required	to	complete	one	lab	using	the	autograder,	nearly	2/3	(93/149)	found	the
autograder	compelling	enough	to	try	a	second	time.	From	talking	to	students	and	staff,	a	portion	of	the	drop	off	in	students	using	the
autograder	may	be	due	to	the	fact	that	the	autograder	doesn't	handle	pairs	of	students.	Given	that	the	later	labs	are	some	of	the	more
difficult,	many	students	may	choose	to	work	in	pairs.

10.1.2	Submission	Times

The	second	thing	to	look	at	is	when	students	are	submitting	their	work.	While	we	certainly	still	want	students	to	attend	lab,	improving
the	"at	home"	experience	for	students	would	be	a	significant	benefit.	Here,	we	see	that	students	are	choosing	to	use	the	autograder	at
home,	with	usage	patterns	that	you	would	expect	from	undergraduates.

These	charts	show	the	overall	submission	times	for	each	of	the	three	labs.	The	red	bar	indicates	the	date	that	the	lab	was	due	for	full
credit.

Date

Figure	16:	Lab	11:	submission	times	by	day.

Date

	

28

Figure	17:	Lab	12:	submission	times	by	day.

Date

Figure	18:	Lab	14:	submission	times	by	day.

These	graphs	don't	reveal	anything	too	surprising.	For	the	most	part,	students	are	using	the	autograder	to	complete	labs	at	the	same
pace	they	normally	would.

We	can	look	at	the	days	of	the	week	as	well	as	the	time	of	day	to	see	when	students	are	working	on	labs.	Normal	lab	times	are	usually
between	9:00-19:00,	though	this	varies	by	the	day	of	the	week.

Hour	of	Day	(24-hours)

Figure	19:	Number	of	autograder	submissions	by	hour	of	the	day.

Day	of	week

Figure	20:	Number	of	autograder	submissions	by	day	of	the	week.

Again,	these	graphs	are	fairly	close	to	what	course	staff	would	expect.	Most	students	are	continuing	to	complete	labs	during	their
scheduled	time,	but	a	significant	number	are	working	at	home.

	

29

10.1.3	Staff	Time	Savings

While	time	savings	are	not	a	primary	motivation	for	this	work,	we	should	consider	the	potential	benefits	that	could	be	saved	be
allowing	students	to	get	checked	off	using	the	autograder.	Anecdotally,	oral	lab	checkoffs	take	between	2	to	10	minutes	to	complete,
with	the	average	time	somewhere	around	3	to	4	minutes.	The	current	usage	patterns	(as	well	as	the	results	in	the	next	section),	suggest
that	we	can	expect	33%-50%	of	students	to	use	the	autograder.

If	we	have	15	labs	which	use	Snap!,	and	150	students	completing	labs,	and	assume	that	a	lab	checkoff	takes	3	minutes:	33%	of
students	the	autograder	would	free	up	approximately	38	hours	of	TA	time.	(This	is	slightly	under	30%	of	the	total	workload	for	a
single	8	hour	per	week	TA	appointment	at	Berkeley.)

However,	if	we	have	15	labs	which	use	Snap!,	and	300	students	completing	labs,	and	assume	that	a	lab	checkoff	takes	4	minutes:	50%
of	students	the	autograder	would	free	up	approximately	150	hours	of	TA	time.	(This	is	110%	of	the	total	workload	for	a	single	8	hour
per	week	TA	appointment	at	Berkeley.)

Naturally,	this	might	lead	one	to	question	the	value	of	oral	lab	checkoffs.	That's	not	the	goal	here	at	all.	Oral	lab	checkoffs	have	been
an	incredible	positive	pedagogical	tool.	While	writing	tests	can	take	some	time,	the	hope	is	that	the	cost	would	aromatize	itself	well
over	many	semesters.

10.1.4	Submission	Patterns

We	can	also	look	at	how	often	students	attempt	each	question.	This	shows	whether	students	are	using	the	autograder	more	as	a
feedback	tool,	as	a	crutch	or	as	simply	a	credit	mechanism.	While	there's	no	clear	exact	number	of	times	a	student	should	use	submit
their	work,	it's	clear	that	we	want	an	overall	'happy-medium'.

Times	Submitted

Figure	21:	Most	students	appear	to	only	submit	once	at	the	end	of	their	work.

The	data	show	that	most	students	appear	to	be	submitting	only	once,	meaning	they're	not	currently	getting	much	benefit	by	the
feedback	presented.	If	there	were	more	feedback	presented,	or	potentially	more	challenging	questions	this	might	change.	Though	not
yet	implemented,	non-graded	feedback	such	as	code	quality	suggestions	might	change	the	way	students	work	to	use	the	autograder.

30

Times	Submitted

Figure	22:	Number	of	students	by	number	of	times	submitted	for	each	lab.

These	results	also	how	a	really	long	tail	for	the	number	of	submissions	by	some	students.	This	is	to	be	expected	with	any	autograder.
However,	from	looking	at	the	data,	and	from	TA	reports	many	of	these	high	submission	numbers	may	be	due	to	the	previously
mentioned	bugs.	(Students	tried	submitting	many	times	simply	hoping	that	the	errors	would	disappear.)

However,	the	difference	in	attempts	for	lab	14	is	pretty	clear.	While	most	students	still	only	submitted	a	few	number	of	times,	there	is	a
much	wider	diversity	in	the	number	of	questions.	The	number	of	blocks	graded	for	lab	14	was	4	compared	to	the	1	or	2	for	labs	11	and
12.

10.2	Survey	Feedback	&	Analysis

Along	with	the	data	we	collected,	we	surveyed	students	at	two	points	to	get	feedback	about	their	use	of	the	autograder.	The	first	survey
occurred	during	the	CS10	midterm,	shortly	after	students	should	have	completed	labs	11	and	12.	The	second	survey	was	given	along
with	the	final	exam,	at	the	end	of	the	semester.

10.2.1	Midterm	Feedback

The	first	question	we	asked	students	was	whether	they	preferred	online	lab	checkoffs	or	oral	lab	checkoffs.

	

31

Figure	23:	Students	are	fairly	evenly	split	between	preferring	online	vs	oral	lab	checkoffs.

When	discussing	with	TAs	this	is	almost	the	exact	opposite	of	the	results	they	initially	expected.	TAs	(and	instructors,	including	from
other	courses)	expected	almost	all	students	to	prefer	using	the	autograder	to	getting	checked	off	orally.	(Ratios	some	staff	suggested
were	75/25,	80/20,	90/10	in	favor	of	an	autograder.	While	no	one	had	exactly	the	same	prediction,	everyone	we	spoke	to	assumed	>=
70%	students	would	prefer	an	autograder.)	This	validates	that	we	have	done	a	pretty	good	job	in	designing	and	tweaking	the	oral	lab
checkoff	system	(which	has	evolved	over	the	past	few	year),	but	also	that	students	like	talking	to	TAs	and	that	students	are	not	simply
trying	to	beat	the	system.	Instructional	staff	had	concerns	about	students	preferences,	because	many	assumed	that	the	autograder	would
be	the	path	of	least	resistance	for	students.	It's	worth	noting,	however	that	part	of	the	bias	towards	in-person	over	online	checkoffs
could	very	likely	be	attributed	to	bugs	in	the	system	early	on,	but	this	is	still	a	promising	result.	(Many	open-ended	feedback	comments
mentioned	bugs	or	glitches	as	a	reason	for	the	feelings	about	the	autograder.)

Here	is	a	sampling	of	comments	students	gave.	Each	of	these	comments	is	representative	of	feelings	of	other	students.

"It	would	save	a	lot	of	time	during	check	off."

"You	get	to	talk	to	an	actual	person!	If	any	questions	remain,	they	can	easily	be	answered!"

"If	I	don't	finish	in	class,	I	am	more	incentivized	to	finish	it	at	home	instead	of	at	next	lab."

“It	worked	for	me,	but	I	guess	doing	manual	lab	check-off	was	better,	in	a	way,	because	you	get	feedback	from	the	TA.”

“A	heads-up	would	have	been	nice,	as	well	as	something	explaining	how	to	use	it,	but	I	like	this	feature	a	lot.	When	it	works
properly,	it	is	very	useful	and	helpful	for	my	learning.”

“I	don't	trust	it.”

“The	autograde	sometimes	has	bugs.	For	example,	if	my	code	is	wrong	but	sometimes	still	reported	the	correct	value,	it	would
mark	me	as	a	pass.”

Many	students	preferred	the	higher	fidelity	of	in	person	question	asking	and	answering.	What’s	interesting	is	that	autograded	checkoffs
wouldn’t	prevent	students	from	getting	their	questions	answered.	Many	students	remarked	about	different	levels	of	stress	which	come
from	automated	systems	or	humans.	While	students	didn’t	elaborate	on	why	they	would	be	more	(or	less)	stressed	with	an	autograder
system,	the	most	probable	answer	is	that	such	a	view	is	really	a	matter	of	personal	preference.	Many	students	do	enjoy	that	(human)
TAs	are	much	more	relaxed	and	comfortable	to	discuss	questions	and	generally	forgiving	of	errors.	In	contrast,	the	autograder
(currently)	can	only	provide	static	responses,	and	is	very	brittle	when	determining	correctness.	However,	some	students	also	noted	that
they’d	prefer	not	to	talk	to	a	TA	"unless	absolutely	necessary"	and	that	they	found	the	automated	format	easier	to	deal	with.	We	think
this	is	yet	another	demonstration	that	a	‘one-size-fits-all’	model	isn't	usually	the	best	approach.

	

32

When	we	asked	for	general	feedback	about	the	tool,	most	of	the	comments	were	that	it	was	confusing	to	use.	This	is	understandable,
because	in	retrospect	there	was	not	enough	documentation	nor	TA	trailing	before	the	autograder	was	launched	in	class.	Fortunately,
this	is	a	fairly	easy	problem	to	address	for	future	semesters.

10.2.2	Final	Survey	Feedback

One	promising	result,	is	that	we	asked	students	for	feedback	on	the	overall	use	of	lab	checkoffs.	While	there	is	(not	surprisingly)	a
large	contingent	of	students	who	dislike	the	lab	checkoffs,	most	of	the	students	in	support	of	checkoffs	specifically	asked	for	more
autograder	questions.

When	asked	for	feedback	specific	to	the	autograder,	students	seemed	more	positive	than	they	did	on	the	midterm	survey.	Of	the
students	who	had	complaints,	"bugs"	and	"glitches"	were	the	biggest	reasons.	However,	as	with	the	midterm	survey,	there	is	a	large
number	of	students	who	are	very	strongly	in	favor	of	the	opportunity	to	talk	to	TAs.

The	final	questions	that	we	asked	mostly	backup	the	data	that	was	collected.

Figure	24:	Most	students	completed	checkoffs	alone,	and	found	the	feedback	easy	to	interpret.

Figure	25:	Most	students	reported	completing	work	before	using	the	autograder

So	far	these	results	confirm	the	data	that's	been	collected.	In	the	future,	this	suggests	TAs	can	introduce	the	autograder	to	students	as
well	as	present	the	motivations	for	how	students	should	think	about	using	it	as	a	study	tool.

	

33

	

34

11	Future	Work
Thus	far,	we	have	shown	the	current	system	has	enough	capability	to	be	used	in	the	classroom.	However,	we	see	a	number	of	areas
where	λ	could	be	expanded.	Additionally,	some	of	the	analysis	has	revealed	the	need	to	more	closely	explore	at	some	specific	research
questions.

11.1	Server-Side

The	server-side	improvements	to	λ	are	numerous,	but	we	wanted	to	highlight	a	few	that	we	think	could	provide	the	biggest	benefit	to
students	and	instructors.

Question	Tags	and	recommendations.
λ's	data	model	already	includes	question-level	tags,	but	they	aren't	currently	used	for	anything.	We	think	it	would	be
immensely	helpful	as	a	study	tool	if	students	could	be	recommended	problems	based	on	related	tags	for	questions	they	have
struggled	with.

Better	(User-Friendly)	Dashboards
Writing	SQL	queries	to	operatre	the	current	dashboards	is	not	a	viable	solution	for	the	future.	When	a	logged	in	as	an
administrator	there	should	be	links	for	each	item	(like	a	course	or	a	question)	for	instructors	to	view	basic	statistics.
Support	drilling	down	to	individual	test	cases	when	analyzing	questions.	A	well	written	autograder	test	covers	many	types	of
mistakes.	TAs	should	get	feedback	about	which	particular	tests	students	are	struggling	with	the	most	so	that	they	can	address
those	concepts	in	class.

Integrated	display	of	question	instructions.
The	current	version	assumes	that	instructors	will	give	students	directions	in	some	place	other	than	the	autograder.	While	this
works	OK,	it	would	be	much	nicer	if	students	could	chose	to	hide	or	show	instructions	on	demand.
This	is	actually	a	feature	regression	from	edX,	where	the	autograder	was	always	embedded	alongside	the	course	content.

11.2	Autograding

Aside	from	continual	bug	fixes,	there	are	four	key	areas	for	improving	the	autograding	capabilities.

1.	 Clearer,	more	explicit	feedback
The	current	output	provided	by	the	autograder	is	focused	mostly	on	the	results	of	individual	test	cases,	by	comparing	the
expected	vs	returned	outputs	of	blocks.	While	test	authors	are	able	to	work	individually	written	feedback	into	thes	test	cases,
the	overall	presentation	isn't	very	clear.	Furthermore,	because	there's	not	much	room	on	the	screen	for	good	feedback,
authors	don't	have	an	incentive	to	write	as	much.

2.	 Snap!	Test	API	improvements
Currently,	it	can	be	fairly	cumbersome	to	write	tests	in	JavaScript.	There	is	a	lot	of	boilerplate	code,	and	cleanly	presenting
images	of	blocks	(instead	of	just	a	text	version)	requires	a	lot	of	effort	for	test	authors.
One	initial	solution	to	this	problem	is	the	migrate	the	current	object-oriented	API	to	a	version	which	is	based	more	around
configuration	than	code.	While	it	couldn't	be	100%	configuration	because	authors	will	need	to	write	custom	test	functions	in
some	cases,	a	format	which	operates	more	like	a	JSON	file	would	be	easier	to	manage.
Snap!	tests	should	be	writable	in	Snap!.	By	using	a	Snap!	feature	called	"codification"	we	are	able	to	compile	Snap!	code	to
JavaScript	(or	any	other	language).	Here	is	an	example	of	a	prototype	Snap!	library	for	writing	tests.	By	compiling	Snap!	to

	

35

JavaScript	we	can	also	improve	the	security	of	tests	that	are	written,	because	the	set	of	functions	available	in	Snap!	is	easier
to	restrict	(and	catch	violations)	than	JavaScript.

3.	 Static	analysis	capabilities
We've	included	some	very	basic	static	analysis	capabilities	in	the	current	version.	However,	they're	tricky	to	use	and	require
a	lot	of	custom	code.	Through	static	analysis	we	should	be	able	to	give	students	targeted	feedback	about	how	to	improve
their	code.
Some	tools	that	would	be	useful	are	parttern	matching	functions	for	code	structure	(like	finding	all		if	(condition)	{return
condition}		type	structures).

4.	 Image-based	autograding
We've	explored	image	based	autograding	for	problems	like	fractals	and	other	turtle	graphics	exercises.	Images	would	be	an
OK	way	to	judge	correctness,	but	they	provide	very	limited	feedback	to	students	about	how	to	improve.
Some	paths	for	improving	the	feedback	from	image-based	autograding	would	be	to	try	to	account	for	specific	errors.	For
example,	you	could	rotate	two	images	until	you	find	the	minimum	difference.	If	a	rotation	makes	two	images	match,	then
you	could	provide	feedback	about	where	such	an	error	might	occur.
Other	more	advanced	algorithms	such	as	RANSAC	could	be	explored.

11.3	Research	Directions

Finally,	now	that	we've	shown	students	are	interested	in	using	an	autograder,	we	should	carry	out	more	targeted	research.

What	types	of	interventions	help	students	learn	or	complete	labs?
Instead	of	simply	presenting	feedback	when	students	fail	a	test,	we	should	have	targeted	interventions	that	ask	questions	or
try	a	different	method	for	solving	the	problem.

Can	we	automatically	generate	better	hints	to	give	to	students?
This	is	a	highly	active	area	of	research,	and	now	that	λ	is	collection	student	data	we	could	be	able	to	use	this	to	improve	the
feedback	for	future	courses.

How	does	the	autograder	affect	motivation	in	early	CS	courses?
Some	students	are	understandably	concerned	about	the	affects	autograder	have	on	their	motivation	to	complete	a	task.	While
there	is	some	existing	work	on	this	topic,	we	believe	there's	room	to	explore	this	in	the	context	of	visual	programming
languages.

	

36

12	Conclusion
We	present	λ,	a	system	for	autograding	Snap!	programs.	The	tool	contains	both	a	novel	front-end	student-centric	autograder	that
presents	immediate	feedback	to	students,	as	well	as	a	backend	database	that	can	serve	as	question	repository.	After	successfully	being
used	on	edX,	we've	shown	that	the	tools	can	be	adopted	in	a	traditional	classroom.	To	accomplish	we	implemented	the	LTI	protocol,
so	that	λ	may	be	used	with	as	many	LMSs	are	possible	with	the	goal	of	reaching	more	students.	Additionally,	we've	seen	the	benefits
of	having	complete	control	of	your	infrastructure.

Our	initial	surveys	have	shown	that	while	many	students	enjoy	using	an	autograder,	we	must	be	careful	not	to	replace	instructional
staff	with	technology.	The	stress	that	many	students	reported	from	the	autograder	suggest	that	there	is	a	lot	more	human	factors
research	that	can	be	done	about	applying	new	technologies	to	the	classroom.	Still,	we	are	confident	that	smart	classroom	policies
which	give	students	choice	will	continue	to	allow	for	the	benefits	of	autograders	without	penalizing	students	who	are	uncomfortable
with	them.	This	does	leave	concern	for	online-only	learning	environments,	but	we	see	even	a	primitive	autograder	as	a	big	step	above
nothing.	Future	interface	enhancements	and	new	features	for	studying	will	hopefully	only	add	to	the	benefits	students	see	while	using
the	autograder.

Despite	some	successes,	we	know	that	there	is	a	long	way	to	go.	We	are	still	only	able	to	grade	a	subset	of	all	possible	problems	we
could	assign	to	students.	There	are	many	active	research	areas	in	techniques	like	automatic	hint	generation	which	we	think	will	prove
useful	in	the	future.	However,	we	also	recognize	that	despite	the	promise,	we	need	to	spend	to	lower	the	barrier	to	entry	for	writing
new	content,	both	in	terms	of	saving	time	and	following	pedagogical	best	practices.	Fortunately,	we	think	there	is	a	clear	path	forward
in	this	area.

Above	all,	we	have	shown	that	it	is	possible	to	build	an	autograder	for	a	visual	programming	environment.	Though	these	tools
developed	out	of	a	need	to	scale	teaching	computer	science,	we	believe	that	have	the	potential	to	greatly	enhance	traditional
classrooms.	As	an	area	of	active	research	we	are	excited	to	see	the	directions	that	autograding	visual	programming	languages	may	take.

37

13	References

1. Undergrad	Computer	Science	Enrollments	Rise	for	Fifth	Straight	Year	—	CRA	Taulbee	Report	-	GovAffairs,
http://cra.org/govaffairs/blog/2013/03/taulbeereport/

2. Cuny,	Janice	and	NSF,	nsf09534	Broadening	Participation	in	Computing	(BPC)	|	NSF	-	National	Science	Foundation,
2009.	https://www.nsf.gov/publications/pub_summ.jsp?WT.z_pims_id=13510&ods_key=nsf09534

3. Exploring	Computer	Science,	http://www.exploringcs.org/

4.
Board,	The	College	and	Diez,	Lien,	AP	Computer	Science	Principles	-	A	New	AP	Course	-	Advances	in
AP®	-	The	College	Board	|	Advances	in	AP,	https://advancesinap.collegeboard.org/stem/computer-science-
principles

5. Harvey,	Brian	and	Garcia,	Daniel	and	Development,	Corporation	Educational,	BJC	-	Beauty	and	Joy	of	Computing,
http://bjc.berkeley.edu/

6. About	Us	|	edX,	https://www.edx.org/about-us

7. Harvey,	Brian	and	Mönig,	Jens,	Snap!	(Build	Your	Own	Blocks)	4.0,	2016.	http://snap.berkeley.edu/

8. Scratch	-	Imagine,	Program,	Share,	https://scratch.mit.edu/

9. UC	Berkeley},	CS10	|	Spring	2016,	http://cs10.org/sp16/

10. {Code.org	Code	Studio,	https://studio.code.org/

11. Fraser,	Niel,	Blockly	|	Google	Developers,	https://developers.google.com/blockly/

12. Code.org,	code-dot-org	Github,	2016.	https://github.com/code-dot-org/code-dot-org/tree/staging/apps

13. Johnson,	David	E.,	ITCH,	Proceedings	of	the	47th	ACM	Technical	Symposium	on	Computing	Science	Education	-
SIGCSE	'16,	ACM	Press,	2016.	http://dl.acm.org/citation.cfm?id=2839509.2844600

14. Soloway,	Elliot	and	Guzdial,	Mark	and	Hay,	Kenneth	E.,	Learner-centered	design:	the	challenge	for	HCI	in	the	21st
century,	ACM,	1994.	http://dl.acm.org/citation.cfm?id=174809.174813

15. Exploring	a	Structured	Definition	for	Learner-Centered	Design,
http://www.umich.edu/~icls/proceedings/pdf/Quintana2.pdf

16. Getting	Started	with	Rails	—	Ruby	on	Rails	Guides,	http://guides.rubyonrails.org/getting_started.html#what-is-rails-
questionmark

17. 4.3.	Custom	JavaScript	Applications	—	Open	edX	Developer's	Guide	documentation,
http://edx.readthedocs.io/projects/edx-developer-guide/en/latest/extending_platform/javascript.html

18. IMS	Global	Learning	Consortium,	https://www.imsglobal.org/

19. Learning	Tools	Interoperability	v1.1	Implementation	Guide	|	IMS	Global	Learning	Consortium,
https://www.imsglobal.org/specs/ltiv1p1/implementation-guide

20. Huang,	Rachel	and	Kuphaldt,	Adam,	Lab	Check-Off	Questions,	2016.	http://cs10.org/sp16/labquestions/

38

http://cra.org/govaffairs/blog/2013/03/taulbeereport/
https://www.nsf.gov/publications/pub{_}summ.jsp?WT.z{_}pims{_}id=13510{\&}ods{_}key=nsf09534
http://www.exploringcs.org/
https://advancesinap.collegeboard.org/stem/computer-science-principles
http://bjc.berkeley.edu/
https://www.edx.org/about-us
http://snap.berkeley.edu/
https://scratch.mit.edu/
http://cs10.org/sp16/
https://studio.code.org/
https://developers.google.com/blockly/
https://github.com/code-dot-org/code-dot-org/tree/staging/apps
http://dl.acm.org/citation.cfm?id=2839509.2844600
http://dl.acm.org/citation.cfm?id=174809.174813
http://www.umich.edu/{~}icls/proceedings/pdf/Quintana2.pdf
http://guides.rubyonrails.org/getting{_}started.html{\#}what-is-rails-questionmark
http://edx.readthedocs.io/projects/edx-developer-guide/en/latest/extending{_}platform/javascript.html
https://www.imsglobal.org/
https://www.imsglobal.org/specs/ltiv1p1/implementation-guide
http://cs10.org/sp16/labquestions/

39

Appendix A:	Obtaining	the	Source	Code

The	code	for	all	projects	in	this	report	is	available	in	various	repositories	on	Github.

cycomachead/lambda	contains	the	main	Rails	web	application.
cycomachead/lambda-evaluator	contains	the	JavaScript	source	that	talks	to	Snap!.
jmoenig/Snap--Build-Your-Own-Blocks	contains	the	source	for	Snap!.
cycomachead/thesis	contains	the	source	for	this	work.
The	CS10	organization	contains	info	about	the	CS10	course.
The	beautjoy	and	bjc-edc	organizations	contains	the	curriculum	used	in	edX	and	CS10.

The	graphs	in	this	report	were	generated	primarily	using	the	blazer	gem	for	Rails,	and	this	report	was	produced	using	the	GitBook
ebook	tool.	You	can	read	it	online.

40

https://github.com/cycomachead/lambda
https://github.com/cycomachead/lambda-evaluator
https://github.com/jmoenig/Snap--Build-Your-Own-Blocks
https://github.com/cycomachead/thesis
https://github.com/cs10
https://github.com/beautjoy
https://github.com/bjc-edc
https://github.com/ankane/blazer
https://gitbook.com
https://cycomachead.gitbook.com/thesis

	Abstract
	Acknowledgements
	List of Figures

