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Abstract

Population Coding in Retinal Ganglion Cells

by

Reza Abbasi Asl

Master of Science in Electrical Engineering and Computer Sciences,

University of California, Berkeley

Professor Bin Yu, Chair

Several theories of early sensory processing suggest that it whitens sensory stimuli.

Here, we test three key predictions of the whitening theory using recordings from

152 ganglion cells in salamander retina responding to natural movies. We confirm

the previous finding that firing rates of ganglion cells are less correlated compared

to the pixels in naturalistic stimulus, although significant correlations remain. We

show that while the power spectrum of ganglion cells decays less steeply than that of

natural scenes, it is not completely flattened. Finally, retinal ganglion cells reduce

the dimensionality of the photoreceptor signal, as evidenced by their significantly

lower numbers. Whitening theory predicts that only the top principal components of

the visual stimulus should be transmitted. By comparing the right singular vectors

of stimulus and firing rate covariance matrices, we find evidence that supports this

prediction.
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Chapter 1

Introduction and problem setup

E�cient coding theories have been extremely influential in understanding early

sensory processing in general [3, 4] and, visual processing in the retina in particular

[16, 9, 2, 1, 17, 8, 6]. Many e�cient coding theories predict that the retina should

whiten sensory stimuli [7]. For instance, whitening is optimal from the predictive

coding theory perspective, which postulates that only the unpredicted part of a sig-

nal should be transmitted. An optimal linear predictive coding filter is a whitening

filter, and when applied to the retina this theory predicts that the receptive fields

of retinal ganglion cells whiten visual stimuli [16, 9]. Redundancy reduction theory

proposes that redundant information transmission at the retinal output should be

minimized by decorrelated firing of ganglion cells [2]. Information theory, too, fa-

vors whitening. A linear filter that maximizes mutual information between noisy

inputs and noisy outputs is a whitening filter [17, 8, 10]. An influential take on this

line of thinking proposes that redundant information transmission at the retinal

output should be avoided [4] by decorrelating the visual stimulus [2]. Experimental

tests have so far been limited to one central prediction of these theories, that reti-

nal ganglion cell outputs should be decorrelated at high-contrast. It was found that

retinal ganglion cells are indeed decorrelated compared to strong spatial correlations

of natural scenes [13], but significant redundancy remains [15]. Finally, whitening

was proposed by another normative theory [11], whose starting point was e�cient

dimensionality reduction through similarity matching [12].

Here, using electrophysiological recordings from 152 ganglion cells in salamander
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retina responding to natural movies, we test three key predictions of the whiten-

ing theory. 1) Retinal ganglion cells should be uncorrelated. We confirm previous

tests of this prediction finding that retinal ganglion cells are indeed decorrelated

compared to strong spatial correlations of natural scenes [13], but significant redun-

dancy remains [15]. 2) Output power spectrum should be flat. Whereas we observe

flattening of the ouput compared to the input, it is not completely flat. 3) If the

number of channels are reduced from the input to the output, the top input principal

components are transmitted.

We start by detailing the dataset we used for this work. Then, we present our

results, which test the three predictions. Our results show that perfect whitening is

not the whole story, consistent with findings of [15, 13].
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Chapter 2

Experimental results

2.1 Dataset and notation

The dataset was collected by Michael Berry’s laboratory at Princeton University.

It consists of recorded responses from 152 larval tiger salamander retinal ganglion

cells to a 7-minute natural movie stimulus. The stimulus consists of gray scale movie

of leaves and branches blowing in the wind (figure 2.1-A) and is projected onto the

array from a CRT monitor at 60 Hz. The frame size of the stimulus is 512 ⇥ 512.

Details of recording procedure, including the spike-sorting algorithm, are described

in [14].

In this thesis, X and Y denote the stimulus and the firing rate matrices respec-

tively. X is a n ⇥ T matrix, where n is the total number of pixels in each frame

(reshaped to form a vector) and T is the number of time samples. In our setting,

for computational purposes, stimulus frames are down-sampled to n = 128⇥ 128 =

16, 384 and the 7-minute movie shown at 60 Hz corresponds to T = 25, 200. More-

over, Y is the k ⇥ T firing rate matrix, where k = 152 is the number of ganglion

cells that data is recorded from. The firing rates are reported based on spike counts

in sliding 80 ms time windows. Both X and Y are centered in time.
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2.2 Retinal ganglion cells outputs are not

perfectly uncorrelated

We start by testing whether output of ganglion cells are indeed decorrelated.

This question was to a large extent answered by previous studies [15, 13], and here

we confirm their findings.

Our goal is to study the correlation between firing rates of ganglion cells as a

function of distance between their receptive field center, therefore, it is necessary

to first estimate the receptive field of each cell. We use regularized spike-triggered

average also known as regularized reverse correlation technique [5] to estimate the

spatial receptive field of each cell. In this technique, firing rate matrix is assumed

to be a linear function of stimulus matrix, Y = RX. Here, R is the k⇥ n receptive

field matrix for ganglion cells. R can be estimated using ridge regression which has

the following closed form:

R = YX
T (XX

T + ↵I)�1.

Here, ↵ is regularization parameter which we chose with 10-fold cross validation

and I is identity matrix. Examples of the estimated On and O↵ receptive fields are

shown in figure 2.1-B. The center of receptive field for each cell is simply identified

as the location with maximum (for On cells) or minimum (for O↵ cells) value of

estimated receptive field.

Figure 2.1-C shows the Pearson correlation coe�cient (CC) of firing rates for

all ganglion cell-type pairs as a function of the distance between their receptive

field centers. This is depicted for On-On, O↵-O↵, and On-O↵ pairs. To show the

trend of each group, the median correlation coe�cient in a distance window of 1

pixel is also shown. We compare this correlation with the spatial correlation in the

stimulus. Consistent with Pitkow and Meister’s results [13], firing rates of ganglion

cells are less correlated than the pixels in naturalistic stimulus. However, significant

correlations remain, questioning the validity of the whitening theory (see also [15]).
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Figure 2.1: Output of ganglion cells are decorrelated compared to natural scenes.
A. A sample frame from stimulus. B. Estimated receptive field for an On and an
O↵ ganglion cell. C. Pearson correlation coe�cient of firing rates for all ganglion
cell-type pairs as a function of the distance between their receptive field centers.
The curves corresponds to median correlation coe�cient in a distance window of 1
pixel. Similar correlation coe�cient and curve are shown for stimulus.
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2.3 Power spectrum of retinal ganglion cell

firing rate

Next we test whether the power spectrum of ganglion cells is flattened. In

Figure 2.2-A, we show the eigenvalues of the ganglion cell firing rate covariance

matrix, normalized by the highest eigenvalue. We also show similar plot for the

visual stimuli covariance matrix for comparison. We observe a decay in the power

spectrum of the firing rates.

To compare the rate of power spectrum decay, we plot the sorted eigenvalues

of the firing rate covariance matrix against top 152 eigenvalues of natural stimuli

covariance matrix, Figure 2.2-B, and observe that a line can be fitted to this plot with

slope 1.09, suggesting again that the decay is similar (A perfectly equalized output

spectrum would lead to a slope of 0). This analysis assumed that in the scatter

plot of Figure 2.2-B, the correct correspondence between stimulus and firing-rate

covariance eigenvalues is in order of their magnitude. It is possible that due to

noise, we misestimate the rank-order of eigenvalues. We explore this possibility in

more detail below.

2.4 Retinal output transmits dynamics in the

principal subspace of visual scenes

Finally we test whether retinal ganglion cell outputs represent a projection of

natural scenes to their principal subspace. To be mathematically precise, we want

to test if

Y = ODPX,

where P is a k⇥n matrix with k < n, rows of P are the principal eigenvectors of the

stimulus covariance matrix, D is a diagonal, nonnegative, k⇥k matrix, which could

be rescaling power in each component for e.g. whitening, and O is an arbitrary

k-dimensional orthogonal matrix. Since we do not know OD, we do not have a

direct prediction for what Y should be.
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Figure 2.2: Power spectrum of ganglion cells are not flattened. A. Eigenvalues of
stimulus and ganglion cells firing rate covariance matrices. Eigenvalues are nor-
malized by the largest eigenvalue and are shown in log scale. The index is also
normalized by the largest value. A line can be fitted on each plot with slope -4.7
and -5.3, respectively. B. Scatter plot of top 152 eigenvalue pairs. A line can be
fitted to this plot with slope 1.09.

However, a prediction can be made for the right-singular vectors of Y. Suppose

a singular-value decomposition (SVD) for X = UX⇤XV
T
X , where singular values are
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ordered in decreasing order. Then,

Y = ODPUX⇤XV
T
X .

But, rows of P are the first k columns of UX , and hence

⇤Y := DPUX⇤X

is a k⇥N diagonal matrix. Then, Y = R⇤YV
T
X is an SVD, and we can claim that

the top k right singular vectors of X and Y (columns of VX) should match.

Of course the match will not be perfect due to noise, which may e↵ect our

analysis in two ways. First, our estimate of the ordering of singular vectors will be

imperfect. Second, the singular vector estimates will be imperfect.

Therefore, we came up with the following procedure. We calculate the SVD of

X = UX⇤XV
T
X and Y = UY⇤YV

T
Y from data. We match right singular vectors of

X and Y, columns of VX and VY , using CC as a similarity measure between these

vectors. We compute CC for all possible pairs of input-output singular vectors and

rank each pair based on this similarity measure.

To address the delay of neural response to stimulus, CC is computed for several

time shifts between stimuli and firing rates and the peak value is considered as the

similarity. Fig. 2.3-A (red curve) shows the CC between the pair of singular vectors

with the highest peak value. There is a considerable correlation between the two

vectors, when compared to peak CC values for randomly permuted data (see also

below).

Finally we use a greedy sorting procedure to identify top pairs. We select the

pair with the highest rank as the first pick. This pair corresponds to certain index

of input and output singular vectors. We then remove all the other pairs coming

from these indexes and repeat a similar process for the remaining pairs. Fig. 2.3-B

shows the heatmap of similarity measures for sorted pairs. The diagonal structure

implies that there is an approximate one-to-one mapping between the top sorted

singular vectors.

To test the significance of our matching between singular values, we provide

a reference by breaking the temporal relationship between stimuli and firing rates

and redoing the similarity analysis. We randomly permute columns in Y (neural
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Figure 2.3: Input-output singular vector pair identification. A. Red curve shows
correlation coe�cient between the input-output right singular vector pair with the
highest peak value among other pairs. Other curves show correlation coe�cients
between right singular vectors for 100 repeats of randomly time-permuted data (see
text for more details). In this plot, the output singular vector is shifted by -30
to +30 time samples. B. Heatmap of peak correlation coe�cients for all of the
possible input-output pairs. The singular vectors of input and output belonging to
the top 50 matches are ordered di↵erently to maximize the matched pair correlation
coe�cients. For details of the sorting procedure see text. C. Same as B for randomly
permuted data. D. Red: Histogram of correlation coe�cients for 152 identified pairs
from original data. Blue: Histogram of highest peak correlation coe�cient for 100
randomly permuted trials. A Gaussian function can be fitted on this histogram.
The threshold is set to be three standard deviation from mean of these 100 points.
This leads to the selection of 31 pairs with significant peak correlation coe�cient.
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Figure 2.4: A. Scatterplot of top selected eigenvalues and fitted linear function. The
slope of the fitted line is 0.08. B. Probability of selecting each right singular vector
by the selection process (see text for more details) for stimulus matrix. Singular
vectors are ordered by values of the corresponding singular values (high-to-low). C.
Same as B for ganglion cell firing rate matrix.
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response matrix) while we keep X (stimulus matrix) the same. This dataset is called

the randomly permuted data in this thesis. We redo the similarity analysis for 100

trials of this random permutation. Fig. 2.3-A shows 100 CC curves with the highest

peak for each of these randomly permuted data. The red curve which corresponds

to the original data has higher peak CC compared to other curves. Fig. 2.3-C

shows the heatmap of peak CC values for one repeat of randomly permuted data.

Comparing this figure to fig. 2.3-B, we observe that correlations in the original data

are higher compared to the randomly permuted case.

To identify pairs with significantly higher peak CC in original data, it is necessary

to find a threshold CC based on randomly permuted data. Figure 2.3-D shows the

process to find this threshold. We first take the highest peak CC from 100 randomly

permuted trials. Then, the threshold is set to be three standard deviations from

mean of these 100 points. This leads to the selection of 31 pairs with significant peak

CC. Out of these 31 input-output pairs, 12 was among the top 31 input singular

values and 20 was among the top 31 output singular values.

To summarize our findings in this section up until now, 1) we found that there is

a significant correlation between some pairs of stimulus and firing rate right singular

vectors, 2) we can use these correlations to come up with a one-to-one mapping be-

tween the singular vectors, and 3) the one-to-one mapping we obtained suggests that

the top principal components of the input is represented at the output, consistent

with whitening theory.

After identifying the top input-output pairs of singular vectors, which also gives

a mapping between covariance matrix eigenvalues, we go back to the question we

asked in the previous section: does the power spectrum of retinal ganglion cells decay

less steeply that the power spectrum of natural scenes? In Fig. 2.4-A, we show the

scatterplot of the normalized covariance eigenvalues with our new matching and the

fitted linear function. This should be compared to Figure 2.2-B. We found that the

slope is lower in this case, 0.08, suggesting a flattening e↵ect at the output.

To test the validity of our results, we perform further analyses. We estimate the

probability of a singular vector being selected by our selection process (described

above). First, we divide out the data into 20 non-overlapping segments and repeat

the pair identification process for these subsets of data. The probability of selecting
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each singular value is estimated by dividing the total number of selection for that

singular value by 20. To provide a reference, we randomly permute columns in each

of the neural response subset matrices while keeping stimulus subset matrix the

same and re-estimate the probabilities. Figure 2.4-B and 2.4-C show the probability

of selection for top 150 right singular vectors of the stimulus and firing rate matrices,

respectively. We find that the top singular vectors, both for stimuli and firing rates,

have a significantly higher than chance level probability of selection. These figures

suggest that top right singular vectors of the stimulus matrix are highly expected to

have a significant CC with the top right singular values of the ganglion cell firing rate

matrix. This observation is consistent with the theory that ganglion cell activity

represents a projection of visual stimulus onto its principal subspace.
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Chapter 3

Conclusion

In this thesis, we put three key predictions of whitening theory to test. We

found that 1) retinal ganglion cells outputs are not perfectly uncorrelated (also

see[15, 13]), 2) the power spectrum of ganglion cell firing is not completely flat, but

rather slopes downwards and 3) there are significant correlations between top right

singular vectors of visual stimuli and retinal ganglion cell firing rates, suggesting

that retinal output transmits dynamics in the principal subspace of visual scenes.

Overall, our findings suggest that whitening alone cannot fully explain response

properties of retinal ganglion cells.
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