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Abstract

Many problems in science and engineering involve the modeling of dy-
namic processes using state-space models (SSMs). Online parameter and
state estimation—computing the posterior probability for both static pa-
rameters and dynamic states, incrementally over time–is crucial for many
applications. Many sequential Monte Carlo algorithms have been pro-
posed for this problem; some apply only to restricted model classes, while
others are computationally expensive. We propose two new algorithms,
namely, the extended parameter filter and the assumed parameter filter,
that try to close the gap between computational efficiency and generality.
We compare our new algorithms with several state-of-the-art solutions on
many benchmark problems. Finally, we discuss our work on joint state and
parameter estimation for physiological models in intensive-care medicine.
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1 Introduction

Many problems in scientific studies and real-world applications involve model-
ing of dynamic processes, which are often modeled by temporal models, namely
state space models (SSMs) [Elmohamed et al., 2007, Arora et al., 2010]. Online
parameter and state estimation –computing the posterior probability for both
(static) parameters and (dynamic) states, incrementally over time– is crucial
for many applications such as simultaneous localization and mapping [Monte-
merlo et al., 2002], object tracking [Ristic et al., 2004] and 3D design sugges-
tion [Ritchie et al., 2015].

Dynamic Bayesian networks are widely used to model the processes under-
lying sequential data such as speech signals, financial time series, genetic se-
quences, and medical or physiological signals [Murphy, 2002]. State estimation
or filtering—computing the posterior distribution over the state of a partially
observable Markov process from a sequence of observations—is one of the most
widely studied problems in control theory, statistics and AI. Exact filtering is
intractable except for certain special cases (linear–Gaussian models and discrete
HMMs), but approximate filtering using the particle filter (a sequential Monte
Carlo method) is feasible in many real-world applications [Gordon et al., 1993,
Arulampalam et al., 2002, Doucet and Johansen, 2011].

In the machine learning context, model parameters may be represented by
static parameter variables that define the transition and sensor model proba-
bilities of the Markov process, but do not themselves change over time. The
posterior parameter distribution (usually) converges to a delta function at the
true value in the limit of infinitely many observations.

Unfortunately, particle filters fail for such models: the algorithm samples
parameter values for each particle at time t= 0, but these remain fixed; over
time, the particle resampling process removes all but one set of values; and these
are highly unlikely to be correct. The degeneracy problem is especially severe
in high-dimensional parameter spaces, whether discrete or continuous. Hence,
although learning requires inference, the most successful inference algorithm for
temporal models is inapplicable.

Kantas et al. [2009, 2015] and Carvalho et al. [2010] describe several al-
gorithms that have been proposed to solve this degeneracy problem, but the
issue remains open because known algorithms either suffer from bias or com-
putational inefficiency. Existing algorithms are either restricted to a particular
class of models, such as the Storvik filter [Storvik, 2002] and the Liu-West fil-
ter [Liu and West, 2001], or very expensive in time complexity, such as particle
MCMC [Andrieu et al., 2010], which utilizes an expensive MCMC kernel over
the parameter space and typically requires a very large number of MCMC iter-
ations to converge.

This thesis is structured as follows: In the following section, we will briefly
discuss background and relevant material in the sequential Monte Carlo liter-
ature. Section 3 introduces the extended parameter filter (EPF) [Erol et al.,
2013a] which generalizes the Storvik filter by introducing a larger model class.
EPF utilizes a polynomial approximation scheme in order to handle arbitrary
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models and performs well compared to many state-of-the-art solutions. Section
4 introduces the assumed parameter filter (APF) [Erol et al., 2017]. Instead of
manual polynomial expansions which might be costly or hard to derive, we resort
to assumed density filtering [Maybeck, 1982, Boyen and Koller, 1998, Opper and
Winther, 1998] by projecting intractable posterior densities into convenient ex-
ponential family densities via KL-divergence minimization. APF streams data
and is a nearly-black-box algorithm: when an appropriate approximate distri-
bution for the parameter is chosen, APF can be applied to any SSM from which
one can sample from and for which one can compute evidence likelihoods. We
emphasize the nearly-black-box property of APF by developing it as an auto-
matic inference engine for a probabilistic programming language. Experiment
results show that APF converges much faster than existing algorithms on a
variety of models.

Section 5 introduces an important application we are interested in which
is model-based probabilistic inference for intensive care medicine. Modern in-
tensive care units (ICUs) utilize a multitude of instrumentation devices to pro-
vide measurements of various important physiological variables and parame-
ters. While data are valuable, understanding the data and acting on them is
what yields the benefits in terms of improved health outcomes. Due to the
uncertainty in our knowledge of the patient’s physiology and the partial and
noisy/artifactual nature of the observations we adopt a probabilistic, model-
based approach. The core of the approach involves calculating a posterior prob-
ability distribution over a set of unobserved state variables, given a stream of
data and a probabilistic model of patient physiology and sensor dynamics. The
probability estimate of the state, which includes various physiological and patho-
physiological variables, provides a diagnosis on which the nurse or the physician
can act. The proposed approach is also capable of detecting artifacts, sensor
failures, drug maladministration and other various problems in the ICU setting.

Here’s a succinct description of our approach. We describe the patient’s
physiology and the sensor dynamics as a probabilistic model using the dynamic
Bayesian network framework. We use existing works on human physiology to
describe how the state of the patient evolves over time and employ a nontrivial
sensor model that is capable of explaining various artifactual readings in the
ICU setting. Then the main task of the ICU monitoring system is estimating
the state of the patient accurately, given a sequence of observations. Due to the
nonlinear, non-Gaussian behavior of our model, exact inference is intractable.
Hence we resort to approximate inference via sequential Monte Carlo (SMC)
methods described in this thesis. We present experimental results on simulated
data for intracranial hemodynamics and real data for blood pressure monitoring.
This work is the result of a collaboration with SFGH BASIC (Brain and Spinal
Injury Center) and UCSF [Erol et al., 2013b, Sivaganesan et al., 2012, Erol
et al., 2015].
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2 Background and Related Material

A state space model (SSM) consists of the parameters Θ, latent states {Xt} and
the observations {Yt}. Let Θ be a parameter space for a partially observable
Markov process {Xt}t≥0 , {Yt}t≥0 as shown in Figure 1 and defined as follows:

X0 ∼ p(x0 |θ) (1)

Xt |xt−1 ∼ p(xt |xt−1, θ) (2)

Yt |xt ∼ p(yt |xt, θ) (3)

Here the state variables Xt are unobserved and the observations Yt are assumed
conditionally independent of other observations given Xt. We assume in this
section that states Xt, observations Yt, and parameters θ are real-valued vectors
in d, m, and p dimensions respectively. Here both the transition and sensor
models are parameterized by θ.
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The Extended Parameter Filter

Abstract

The parameters of temporal models such as
dynamic Bayesian networks may be viewed in
the Bayesian context as static or atemporal
variables that influence the transition proba-
bilities at every time step. Particle filters fail
for models that include such variables, while
methods that use Gibbs sampling of param-
eter variables may incur a per-sample cost
that grows linearly with the length of the ob-
servation sequence. Storvik (2002) devised a
method for incremental computation of ex-
act sufficient statistics that, for some cases,
reduces the per-sample cost to a constant. In
this paper, we demonstrate a connection be-
tween Storvik’s filter and a Kalman filter in
parameter space and establish more general
conditions under which it works. Drawing
on an analogy to the extended Kalman fil-
ter, we develop and analyze, both theoret-
ically and experimentally, a Taylor approx-
imation to the parameter posterior that al-
lows Storvik’s method to be applied to a
broader class of models. Our experiments
on both synthetic examples and real applica-
tions show improvement over existing meth-
ods.

1. Introduction

Dynamic Bayesian networks are widely used to model
the processes underlying sequential data such as
speech signals, financial time series, genetic sequences,
and medical or physiological signals. State estimation
or filtering—computing the posterior distribution over
the state of a partially observable Markov process from
a sequence of observations—is one of the most widely
studied problems in control theory, statistics and AI.
Exact filtering is intractable except for certain special
cases (linear–Gaussian models and discrete HMMs),
but approximate filtering using the particle filter (a se-

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.
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Figure 1. A state-space model with static parameters θ.
X1:T are latent states, and Y1:T observations.

quential Monte Carlo method) is feasible in many real-
world applications (Arulampalam et al., 2002; Doucet
and Johansen, 2008). In the machine learning con-
text, model parameters may be represented by static
parameter variables that define the transition and sen-
sor model probabilities of the Markov process, but do
not themselves change over time (Figure 1). The pos-
terior parameter distribution (usually) converges to a
delta function at the true value in the limit of infinitely
many observations. Unfortunately, particle filters fail
for such models: the algorithm samples parameter val-
ues for each particle at time t= 0, but these remain
fixed; over time, the particle resampling process re-
moves all but one set of values; and these are highly
unlikely to be correct. The degeneracy problem is es-
pecially severe in high-dimensional parameter spaces,
whether discrete or continuous. Hence, although learn-
ing requires inference, the most successful inference al-
gorithm for temporal models is inapplicable.

Kantas et al. (2009); Carvalho et al. (2010) describe
several algorithms that have been proposed to solve
this degeneracy problem, but the issue remains open
because known algorithms either suffer from bias or
computational inefficiency. For example, the “artifi-
cial dynamics” approach (Liu and West, 2001) intro-
duces a stochastic transition model for the parameter
variables, allowing exploration of parameter space, but
this may result in biased estimates. Online EM algo-
rithms (Andrieu et al., 2005) provide only point esti-
mates of static parameters, may converge to local op-
tima, and are biased unless used with the full smooth-
ing distribution. The particle MCMC algorithm (An-

Figure 1: DBN depiction of a state-space model with static parameters θ. X1:T

are latent states and Y1:T are observations.

The filtering density p(xt |y0:t, θ) obeys the following recursion:

p(xt |y0:t, θ) =
p(yt |xt, θ)p(xt |y0:t−1, θ)

p(yt |y0:t−1, θ)

=
p(yt |xt, θ)

p(yt |y0:t−1, θ)

∫
p(xt−1 |y0:t−1, θ)p(xt |xt−1, θ)dxt−1 (4)

where the update steps for p(xt |y0:t−1, θ) and p(yt |y0:t−1, θ) involve the evalu-
ation of integrals that are not in general analytically tractable.

p(xt |y0:t−1, θ) =

∫
p(xt |xt−1, θ)p(xt−1 |y0:t−1, θ)dxt−1 (5)

p(yt|y0:t−1) =

∫
p(xt−1|y0:t−1, θ)p(xt|xt−1, θ)p(yt|xt)dxt−1:t (6)

2.1 Particle Filtering

Sequential Monte Carlo (SMC) is a widely adopted class of methods for infer-
ence on SSMs. Given the observed values Y0:T = y0:T , the posterior distribution
p(x0:t, θ|y0:t) is approximated by a set of K particles, with each particle k de-
noted by Xk

t for 1 ≤ k ≤ K. Xk
t consists of a particular assignment of the state
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Algorithm 1: Sequential importance sampling-resampling (SIR)

Input: N : number of particles;
y0, . . . , yT : observation sequence
Output: x̄1:N

1:T

initialize
{
xi0
}

;
for t = 1, . . . , T do

for i = 1, . . . , N do
sample xit ∼ p(xt |xit−1);
wit ← p(yt |xit);

sample
{

1
N , x̄

i
t

}
←Multinomial

{
wit, x

i
t

}
;{

xit
}
←
{
x̄it
}

;

variables and the parameter denoted by xk0:t and θk. Particles are propagated
forward through the proposal density q(xkt |xkt−1, θ

k) and resampled at each time
step t according to the weights wkt . The canonical example is the sequential im-
portance sampling-resampling algorithm (SIR) (Algorithm 1) which uses the
transition model as the proposal density.

The SIR filter has various appealing properties. It is modular, efficient, and
easy to implement. The filter takes constant time per update, regardless of
time T , and as the number of particles N → ∞, the empirical filtering density
converges to the true marginal posterior density under suitable assumptions
[Crisan and Doucet, 2002].

Particle filters can accommodate unknown parameters by adding parameter
variables into the state vector with an “identity function” transition model. As
noted in Section 1 this approach leads to degeneracy problems—especially for
high-dimensional parameter spaces. Due to the resampling step, which “kills”
the particles with low weights, the Θ-diversity of the particles reduces at every
time step (parameter particles are only sampled once at the beginning of the
inference procedure). Hence, K needs to be sufficiently large to prevent an
early convergence to a degenerate particle set. To ensure that some particle has
initial parameter values with bounded error, the number of particles must grow
exponentially with the dimension of the parameter space.

There have been many solutions proposed throughout the years to cope with
the degeneracy problem via rejuvenating the particle set. In this section we will
focus on the Liu-West filter [Liu and West, 2001], Resample-Move algorithm
[Gilks and Berzuini, 2001], the Storvik filter [Storvik, 2002], and particle Markov
chain Monte Carlo (PMCMC) [Andrieu et al., 2010].

2.2 Liu-West Filter

Liu and West [2001] introduce a stochastic transition model for the parameter
variables, allowing exploration of the parameter space. This so-called artifical
dynamics is designed to preserve the first and second order moments of the
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particle distribution. The parameter particles are jittered at each time step as
follows:

θit = ρθit−1 + (1− ρ)θ̄t−1 +
√

1− ρ2σ(θt−1)N (0, I) (7)

where θ̄t and σ(θt) represent mean and standard deviations of parameter parti-
cles respectively. Liu-West filter is depicted in Algorithm 2.

Algorithm 2: Liu-West Filter (LW)

Input: N : number of particles;
y0, . . . , yT : observation sequence
Output: x̄1:N

1:T

initialize
{
xi0
}

;
for t = 1, . . . , T do

for i = 1, . . . , N do

θit = ρθit−1 + (1− ρ)θ̄t−1 +
√

1− ρ2σ(θt−1)N (0, I);
sample xit ∼ p(xt |xit−1, θ

i);
wit ← p(yt |xit, θi);

sample
{

1
N , x̄

i
t

}
←Multinomial

{
wit, x

i
t

}
;{

xit
}
←
{
x̄it
}

;

The Liu-West filter is simple and fast, however, the amount of bias intro-
duced by the artificial dynamics is hard to quantify and for models with high
dimensional parameter spaces or complex nonlinear dynamics with multimodal
posterior densities, it fails. Furthermore, the kernel parameter ρ needs to be
manually tuned and the filter is not applicable to models with discrete parameter
spaces.

2.3 Resample-Move Algorithm

In order to avoid artificial dynamics or other approximations, an unbiased
method that utilizes MCMC steps to rejuvenate particles is introduced by Gilks
and Berzuini [2001]. To introduce diversity to the population of particles, an
MCMC kernel with invariant density p(x0:t, θ | y0:t) is utilized.(

Xi
0:t, θ

i
t

)
∼ Kt

(
·, · | X̄i

0:t, θ̄
i
t

)
(8)

where by construction the kernel Kt satisfies

p(x′0:t, θ
′ | y0:t) =

∫
p(x0:t, θ | y0:t)Kt

(
x′0:t, θ

′ | xi0:t, θ
i
t

)
d(x0:t, θ).

Utilizing such an MCMC move requires O(t) computation per time step, leading
Gilks and Berzuini to propose a move at a rate proportional to 1/t so as to have
asymptotically constant-time updates. Resample-Move algorithm is unbiased
and accurate, but the design and execution of MCMC kernels pose a serious
problem. The proposal densities to be utilized by MCMC need to be hand tuned
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for reasonable acceptance ratios and it is usually hard to gauge the convergence
of the MCMC samples. Although asymptotically constant-time per update via
1/t rate moves, making an MCMC move when t is large will be prohibitive
as the MCMC kernel will need to operate on thousands of time steps of state
variables.

2.4 Storvik Filter

Similar to Resample-Move algorithm, Storvik [2002], Polson et al. [2008], and
Carvalho et al. [2010] propose a Gibbs move to rejuvenate only the parameter
particles via

Kt

(
x′0:t, θ

′ | xi0:t, θ
i
t

)
= δ(x′0:t)p(θ

′ | x0:t, y0:t). (9)

Sampling from p(θ | x0:t, y0:t) is O(t) per time step and prohibitive for online
applications. Storvik [2002] focuses on models that accept fixed-dimensional
sufficient statistics such that p(θ | x0:t, y0:t) = p(θ | st(x0:t, y0:t)). The important
property of this algorithm is that the parameter value simulated at time t does
not depend on the values simulated previously. This property prevents the
impoverishment of the parameter values in particles. Storvik filter is depicted
in Algorithm 3.

Algorithm 3: Storvik’s filter.

Input: N : number of particles;
y0, . . . , yT : observation sequence
Output: x̄1:N

1:T , θ1:N

initialize
{
xi0
}

;
for t = 1, . . . , T do

for i = 1, . . . , N do
sample θi ∼ p(θ|xi0:t−1, y

i
0:t−1);

sample xit ∼ p(xt|xit−1, θ
i);

wi ← p(yt|xit, θi);
sample

{
1
N , x̄

i
t

}
←Multinomial

{
wit, x

i
t

}
;{

xit
}
←
{
x̄it
}

;

Storvik [2002] shows how to obtain a sufficient statistic in the context of
what he calls the Gaussian system process, a transition model satisfying the
equation

xt = FTt θ + εt, εt ∼ N(0,Q) (10)

where θ is the vector of unknown parameters with a prior of N(θ0,C0) and
Ft = F(xt−1) is a matrix where elements are possibly nonlinear functions of
xt−1. An arbitrary but known observation model is assumed. Then the standard
theory states that θ | x0:t ∼ N(mt,Ct). Thus, mt and Ct constitute a fixed-
dimensional sufficient statistic for θ.
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2.5 Particle MCMC

For joint parameter and state estimation, the “gold standard” approaches are
particle Markov chain Monte Carlo (PMCMC) algorithms [Andrieu et al., 2010],
such as particle independent Metropolis-Hastings (PIMH), particle marginal
Metropolis-Hastings (PMMH), particle Gibbs (PGibbs) [Andrieu et al., 2010]
and particle Gibbs with ancestor resampling (PGAS) [Lindsten et al., 2014].
PMCMC algorithms utilize an MCMC transition kernel over the parameter
space and a classical particle filter for state estimation and likelihood compu-
tation. PMCMC methods are favored due to their theoretical guarantees as an
unbiased estimator as well as their “black-box” property: the only requirement
for PMCMC methods is that one needs to sample from the SSM and compute
likelihood for the evidence, which is in most cases straightforward.

The usual approach to approximate the target density p(x0:T , |y0:T ) is MCMC.
However, it is difficult to design efficient MCMC sampling algorithms for arbi-
trary state-space models. Particle MCMC (PMCMC) is an MCMC technique
which relies on sequential Monte Carlo to build efficient high dimensional pro-
posal distributions. The elegance of PMCMC arises from the fact that it can
use the unbiased SMC estimate for the evidence likelihood p̂θ(y0:T ) to build an
accurate MCMC algorithm. Particle Marginal Metropolis-Hastings (PMMH)
algorithm is depicted in Algorithm 4.

Algorithm 4: Particle Marginal Metropolis-Hastings (PMMH)

Input: K: number of particles;
N : number of MCMC steps;
y0, . . . , yT : observation sequence
Set θ(0) randomly ;
Run an SMC algorithm targeting pθ(0)(x0:T | y0:T ) ;
for n = 1, . . . , N do

Sample a proposal θ′ ∼ q(θ | θ(n− 1)) ;
Run an SMC algorithm targeting pθ′(x0:T | y0:T ) ;
Set θ(n) = θ′ with probability

min
{

1, p̄θ′ (y0:T )p(θ′)q(θ(n−1)|θ′)
p̄θ(n−1)(y0:T )p(θ(n−1))q(θ′|θ(n−1))

}
otherwise reject ;

One significant drawback of PMCMC algorithms is the computational bud-
get. Suppose there are T time steps and we perform N MCMC steps with K
particles. Then the time complexity for PMCMC algorithms is O(NKT ). Note
that for adequate mixing, it is necessary for N to be sufficiently large. For a
real-world application with a large number of time steps and complex dynamics,
the mixing problem becomes critical. Moreover, since PMCMC algorithms re-
quire multiple sweeps over observations, T must be fixed in advance and the full
history of the particles must be stored. This “offline” property of PMCMC al-
gorithms is infeasible for online/streaming applications, such as real-time object
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tracking and signal monitoring, for which constant time per update is required
and storing the whole history is prohibitive.

2.6 Concluding Remarks

Sequential Monte-Carlo (particle filter) based algorithms have been introduced
for real-world applications [Gordon et al., 1993, Arulampalam et al., 2002, Cappé
et al., 2007]. However, classical particle filter algorithms suffer from the path
degeneracy problem, especially for parameters, and leave it a challenge to jointly
estimate parameters and states for SSMs with complex dependencies and non-
linear dynamics. Real-world models can involve both discrete and continuous
variables, arbitrary dependencies and a rich collection of nonlinearities and dis-
tributions. Existing algorithms are either restricted to a particular class of
models, such as the Storvik filter [Storvik, 2002], or biased as in the Liu-West
filter [Liu and West, 2001], or very expensive in time complexity, such as par-
ticle MCMC [Andrieu et al., 2010], which utilizes an expensive MCMC kernel
over the parameter space and typically requires a very large number of MCMC
iterations to converge.

In the upcoming sections we will explore two algorithms, namely, the ex-
tended parameter filter and the assumed parameter filter that try to close the
gap between computational efficiency, accuracy, and applicability to arbitrary
model classes.
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3 The Extended Parameter Filter

Storvik [2002] and Polson et al. [2008] observe that a fixed-dimensional sufficient
statistic (if one exists) for θ can be updated in constant time. Storvik describes
an algorithm for a specific family of linear-in-parameters transition models.

We show that Storvik’s algorithm is a special case of the Kalman filter in
parameter space and identify a more general class of separable systems to which
the same approach can be applied. By analogy with the extended Kalman filter,
we propose a new algorithm, the extended parameter filter (EPF) [Erol et al.,
2013a], that computes a separable approximation to the parameter posterior and
allows a fixed-dimensional (approximate) sufficient statistic to be maintained.
The method is quite general: for example, with a polynomial approximation
scheme such as Taylor expansion any analytic posterior can be handled.

Section 3.1 briefly revisits Storvik filter and in the next section we intro-
duce our notion of separable models. Section 3.3 describes the EPF algorithm,
and Section 3.4 discusses the details of a polynomial approximation scheme for
arbitrary densities, which Section 3.5 then applies to estimate posterior distri-
butions of static parameters. Section 3.6 provides empirical results comparing
the EPF to other algorithms.

3.1 Revisiting Storvik Filter

As discussed in section 2, Storvik [2002] shows how to obtain a sufficient statistic
in the context of what he calls the Gaussian system process, a transition model
satisfying the equation

xt = FTt θ + εt, εt ∼ N(0,Q) (11)

where θ is the vector of unknown parameters with a prior of N(θ0,C0) and
Ft = F(xt−1) is a matrix where elements are possibly nonlinear functions of
xt−1. An arbitrary but known observation model is assumed. Then the standard
theory states that θ | x0:t ∼ N(mt,Ct) where the recursions for the mean and
the covariance matrix are as follows:

Dt = FTt Ct−1Ft + Q

Ct = Ct−1 −Ct−1FtD
−1
t FTt Ct−1

mt = mt−1 + Ct−1FtD
−1
t (xt − FTt mt−1) (12)

Thus, mt and Ct constitute a fixed-dimensional sufficient statistic for θ.
These updates are in fact a special case of Kalman filtering applied to

the parameter space. Matching terms with the standard KF update equa-
tions [Kalman, 1960], we find that the transition matrix for the KF is the identity
matrix, the transition noise covariance matrix is the zero matrix, the observation
matrix for the KF is Ft, and the observation noise covariance matrix is Q. This
correspondence is of course what one would expect, since the true parameter
values are fixed (i.e., an identity transition). The derivation is given in Section
3.8.
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3.2 Separability

In this section, we define a condition under which there exist efficient updates to
parameters. Again, we focus on the state-space model as described in Figure 1
and Equation (3). The model in Equation (3) can also be expressed as

xt = fθ(xt−1) + vt

yt = g(xt) + wt (13)

for some suitable fθ, g, vt, and wt.

Definition 1. A system is separable if the transition function fθ(xt−1) can be
written as fθ(xt−1) = l(xt−1)Th(θ) for some l(·) and h(·) and if the stochastic
i.i.d. noise vt has log-polynomial density.

Theorem 1. For a separable system, there exist fixed-dimensional sufficient
statistics for the Gibbs density, p(θ | x0:T ).

The proof is straightforward by the Fisher–Neyman factorization theorem;
more details are given in Section 3.8.

The Gaussian system process models defined in Equation (11) are separable,
since the transition function FTt θ = (Ft)

T θ, but the property—and therefore
Storvik’s algorithm—applies to a much broader class of systems. Moreover, as
we now show, non-separable systems may in some cases be well-approximated
by separable systems, constructed by polynomial density approximation steps
applied to either the Gibbs distribution p(θ | x0:t) or to the transition model.

3.3 The extended parameter filter

Let us consider the following model.

xt = fθ(xt−1) + vt; vt ∼ N(0,Σ) (14)

where x ∈ Rd,θ ∈ Rp and fθ(·) : Rd → Rd is a vector-valued function parame-
terized by θ. We assume that the transition function fθ may be non-separable.
Our algorithm will create a polynomial approximation to either the transition
function or to the Gibbs distribution, p(θ | x0:t).

To illustrate, let us consider the transition model fθ(xt−1) = sin(θxt−1). It
is apparent that this transition model is non-separable. If we approximate the
transition function with a Taylor series in θ centered around zero

fθ(xt−1) ≈ f̂θ(xt−1) = xt−1θ −
1

3!
x3
t−1θ

3 + . . . (15)

and use f̂ as an approximate transition model, the system will become separable.
Then, Storvik’s filter can be applied in constant time per update. This Taylor
approximation leads to a log-polynomial density of the form of Equation (25).

Our approach is analogous to that of the extended Kalman filter (EKF).
EKF linearizes nonlinear transitions around the current estimates of the mean
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and covariance and uses Kalman filter updates for state estimation [Welch and
Bishop, 1995]. Our proposed algorithm, which we call the extended parameter
filter (EPF), approximates a non-separable system with a separable one, using a
polynomial approximation of some arbitrary order. This separable, approximate
model is well-suited for Storvik’s filter and allows for constant time updates to
the Gibbs density of the parameters.

Although we have described an analogy to the EKF, it is important to note
that the EPF can effectively use higher-order approximations instead of just
first-order linearizations as in EKF. In EKF, higher order approximations lead
to intractable integrals. The prediction integral for EKF

p(xt | y0:t−1) =

∫
p(xt−1 | y0:t−1)p(xt | xt−1)dxt−1

can be calculated for linear Gaussian transitions, in which case the mean and
the covariance matrix are the tracked sufficient statistic. However, in the case
of quadratic transitions (or any higher-order transitions), the above integral is
no longer analytically tractable.

In the case of EPF, the transition model is the identity transition and hence
the prediction step is trivial. The filtering recursion is

p(θ | x0:t) ∝ p(xt | xt−1, θ)p(θ | x0:t−1). (16)

We approximate the transition p(xt | xt−1, θ) with a log-polynomial density p̂
(log-polynomial in θ), so that the Gibbs density, which satisfies the recursions in
equation 16, has a fixed log-polynomial structure at each time step. Due to the
polynomial structure, the approximate Gibbs density can be tracked in terms
of its sufficient statistic (i.e., in terms of the coefficients of the polynomial).
The log-polynomial structure is derived in Section 3.5. Pseudo-code for EPF is
shown in Algorithm 3.

Note that the approximated Gibbs density will be a log-multivariate poly-
nomial density of fixed order (proportional to the order of the polynomial ap-
proximation). Sampling from such a density is not straightforward but can
be done by Monte Carlo sampling. We suggest slice sampling [Neal, 2003] or
the Metropolis-Hastings algorithm [Robert and Casella, 2005] for this purpose.
Although some approximate sampling scheme is necessary, sampling from the
approximated density remains a constant-time operation when the dimension
of p̂ remains constant.

It is also important to note that performing a polynomial approximation
for a p-dimensional parameter space may not be an easy task. However, we
can reduce the computational complexity of such approximations by exploiting
locality properties. For instance, if fθ(·) = hθ1,...,θp−1(·) + gθp(·), where h is
separable and g is non-separable, we only need to approximate g.

In section 3.4, we discuss the validity of the approximation in terms of the
KL-divergence between the true and approximate densities. In section 3.4.1,
we analyze the distance between an arbitrary density and its approximate form
with respect to the order of the polynomial. We show that the distance goes to
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Algorithm 5: Extended Parameter Filter

Result: Approximate the Gibbs density p(θ | x0:t, y0:t) with the
log-polynomial density p̂(θ | x0:t, y0:t)

Output: x̃1 . . . x̃N

initialize
{
xi0
}

and Si0 ← 0;
for t = 1, . . . , T do

for i = 1, . . . , N do
Sit = update(Sit−1, xt−1) ; // update statistics for polynomial

approximation log(p̂(θ|x̄0:t−1, y0:t−1))
sample θi ∼ p̂(θ | x̄i0:t−1, y0:t−1) = p̂(θ | Sit) ;
sample xit ∼ p(xt | x̄it−1, θ

i) ;
wi ← p(yt | xit, θi);

sample
{

1
N , x̄

i
t, S̄

i
t

}
←Multinomial

{
wit, x

i
t, S

i
t

}
;{

xit, S
i
t

}
←
{
x̄it, S̄

i
t

}
;

zero super-exponentially. Section 3.5 analyzes the error for the static parameter
estimation problem and introduces the form of the log-polynomial approxima-
tion.

3.4 Approximating the conditional distribution of param-
eters

In this section, we construct approximate sufficient statistics for arbitrary one–
dimensional state space models. We do so by exploiting log-polynomial approx-
imations to arbitrary probability densities. We prove that such approximations
can be made arbitrarily accurate. Then, we analyze the error introduced by
log-polynomial approximation for the arbitrary one–dimensional model.

3.4.1 Taylor approximation to an arbitrary density

Let us assume a distribution p (known only up to a normalization constant)
expressed in the form p(x) ∝ exp(S(x)), where S(x) is an analytic function on
the support of the distribution. In general we need a Monte Carlo method to
sample from this arbitrary density. In this section, we describe an alternative,
simpler sampling method. We propose that with a polynomial approximation
P (x) (Taylor, Chebyshev etc.) of sufficient order to the function S(x), we may
sample from a distribution p̂ ∝ exp(P (x)) with a simpler (i.e. log-polynomial)
structure. We show that the distance between the distributions p and p̂ reduces
to 0 as the order of the approximation increases.

The following theorem is based on Taylor approximations; however, the the-
orem can be generalized to handle any polynomial approximation scheme. The
proof is given in Section 3.8.
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Figure 2: Approximated PDFs to the order M .

Theorem 2. Let S(x) be a M + 1 times differentiable function with bounded
derivatives, and let P (x) be its M -th order Taylor approximation. Then the KL-
divergence between distributions p and p̂ converges to 0, super-exponentially
as the order of approximation M →∞.

We validate the Taylor approximation approach for the log-density S(x) =
−x2 + 5 sin2(x). Figure 2 shows the result for this case.

3.5 Online approximation of the Gibbs density of the pa-
rameter

In our analysis, we will assume the following model.

xt = fθ(xt−1) + vt, vt ∼ N(0, σ2)

yt = g(xt) + wt, wt ∼ N(0, σ2
o)

The posterior distribution for the static parameter is

p(θ|x0:T ) ∝ p(θ)
T∏
t=1

p(xt|xt−1, θ).

The product term, which requires linear time, is the bottleneck for this compu-
tation. A polynomial approximation to the transition function fθ(·) (the Taylor
approximation around θ = 0) is:

fθ(xt−1) = h(xt−1, θ) =
M∑
i=0

1

i!

dih(xt−1, θ
i)

dθ

∣∣
θ=0︸ ︷︷ ︸

Hi(xt−1)

θi +RM (θ)

=

M∑
i=0

Hi(xt−1)θi +RM (θ) = f̂(θ) +RM (θ)

where RM is the error for the M -dimensional Taylor approximation. We define

coefficients J ixt−1
to satisfy

(∑M
i=0H

i(xt−1)θi
)2

= J2M
xt−1

θ2M + · · ·+ J0
xt−1

θ0.

Let p̂(θ | x0:T ) denote the approximation to p(θ | x0:T ) obtained by using
the polynomial approximation to fθ introduced above.
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Theorem 3. p̂(θ | x0:T ) is in the exponential family with the log-polynomial
density

log p(θ)+ (18)

θ1

...
θM

θM+1

...
θ2M



T

︸ ︷︷ ︸
T (θ)T

.



1
σ2

∑T
k=1 xkH

1(xk−1)− 1
2σ2

∑T
k=1 J

1
xk−1

...
1
σ2

∑T
k=1 xkH

M (xk−1)− 1
2σ2

∑T
k=1 J

M
xk−1

− 1
2σ2

∑T
k=1 J

M+1
xk−1

...

− 1
2σ2

∑T
k=1 J

2M
xk−1


︸ ︷︷ ︸

η(x0,...,xt)

The proof is given in the supplementary material.
This form has finite dimensional sufficient statistics. Standard sampling

from p(θ | x0:t) requires O(t) time, whereas with the polynomial approximation
we can sample from this structured density of fixed dimension in constant time
(given that sufficient statistics were tracked). We can furthermore prove that
sampling from this exponential form approximation is asymptotically correct.

Theorem 4. Let pT (θ | x0:T ) denote the Gibbs distribution and p̂T (θ | x0:T )
its order M exponential family approximation. Assume that parameter θ has
support Sθ and finite variance. Then as M → ∞, T → ∞, the KL divergence
between pT and p̂T goes to zero.

lim
M,T→∞

DKL(pT || p̂T ) = 0

The proof is given in Section 3.8. Note that the analysis above can be
generalized to higher dimensional parameters. The one dimensional case is
discussed for ease of exposition.

In the general case, an order M Taylor expansion for a p dimensional pa-
rameter vector θ will have Mp terms. Then each update of the sufficient statis-
tics will cost O(Mp) per particle, per time step, yielding the total complexity
O(NTMp). However, as noted before, we can often exploit the local structure
of fθ to speed up the update step. Notice that in either case, the update cost
per time step is fixed (independent of T ).

3.6 Experiments

The algorithm is implemented for three specific cases. Note that the models dis-
cussed do not satisfy the Gaussian process model assumption of Storvik [2002].

3.6.1 Single parameter nonlinear model

Consider the following model with sinusoid transition dynamics (SIN):

xt = sin(θxt−1) + vt, vt ∼ N(0, σ2)

yt = xt + wt, wt ∼ N(0, σ2
obs) (19)
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Figure 3: Sinusoidal dynamical model (SIN). Shrinkage of the Gibbs density
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density converges to the true parameter value.
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Figure 4: Sinusoidal dynamical model (SIN). (a) Convergence of the approxi-
mate densities to the Gibbs density p(θ | x0:1024) with respect to the approxi-
mation order M ; (b) KL-divergence DKL(p | p̂) with respect to duration T and
approximation order M .

where σ = 1, σobs = 0.1 and the Gaussian prior for parameter θ is N(0, 0.22).
The observation sequence is generated by sampling from SIN with true param-
eter value θ = 0.7.

Figure 3 shows how the Gibbs density p(θ | x0:t) shrinks with respect to
time, hence verifying identifiability for this model. Notice that as T grows, the
densities concentrate around the true parameter value.

A Taylor approximation around θ = 0 has been applied to the transition
function sin(θxt). Figure 4(a) shows the approximate densities for different
polynomial orders for T = 1024. Notice that as the polynomial order increases,
the approximate densities converge to the true density p(θ | x0:1024).

The KL-divergence DKL(p || p̂) for different polynomial orders (N) and
different data lengths (T) is illustrated in Figure 4(b). The results are consistent
with the theory developed in Section 3.4.1.

The degeneracy of a bootstrap filter with N = 50000 particles can be seen
from figure 5(a). The Liu–West approach with N = 50000 particles is shown in
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(a) Particle filter (SIR)
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(b) Liu–West filter
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Figure 5: Sinusoidal dynamical model (SIN). (a): Particle filter (SIR) with
N = 50000 particles. Note the failure to converge to the true value of parameter
θ (0.7, shown as the blue line). (b): Liu–West filter with N = 50000 particles.
(c): EPF with N = 1000 particles and 7-th order approximation. Note both
SIR and Liu–West do not converge, while the EPF converges quickly even with
orders of magnitude fewer particles.

5(b). The perturbation is θt = ρθt−1 + (1− ρ)θ̄t−1 +
√

1− ρ2 std(θt−1)N(0, 1),
where ρ = 0.9. Notice that even with N = 50000 particles and large per-
turbations, the Liu–West approach converges slowly compared to our method.
Furthermore, for high-dimensional spaces, tuning the perturbation parameter ρ
for Liu–West becomes difficult.

The EPF has been implemented on this model with N = 1000 particles with
a 7-th order Taylor approximation to the posterior. The time complexity is
O(NT ). The mean and the standard deviation of the particles are shown in
figure 5(c).

3.6.2 Cauchy dynamical system

We consider the following model.

xt = axt−1 + Cauchy(0, γ) (20)

yt = xt +N(0, σobs) (21)
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Here Cauchy is the Cauchy distribution centered at 0 and with shape parameter
γ = 1. We use a = 0.7, σobs = 10, where the prior for the AR(1) parameter
is N(0, 0.22). This model represents autoregressive time evolution with heavy-
tailed noise. Such heavy-tailed noises are observed in network traffic data and
click-stream data. The standard Cauchy distribution we use is

fv(v; 0, 1) =
1

π(1 + v2)
= exp

(
− log(π)− log(1 + v2)

)
.

We approximate log(1 + v2) by v2 − v4/2 + v6/3 − v8/4 + . . . (the Taylor ap-
proximation at 0).

Figure 6(a) shows the simulated hidden state and the observations (σobs =
10). Notice that the simulated process differs substantially from a standard
AR(1) process due to the heavy-tailed noise. Storvik’s filter cannot handle this
model since the necessary sufficient statistics do not exist.

Figure 6(b) displays the mean value estimated by a bootstrap filter with N =
50000 particles. As before the bootstrap filter is unable to perform meaningful
inference. Figure 6(c) shows the performance of the Liu–West filter with both
N = 100 and N = 10000 particles. The Liu–West filter does not converge for
N = 100 particles and converges slowly for N = 10000 particles. Figure 6(d)
demonstrates the rapid convergence of the EPF for only N = 100 particles with
10th order approximation. The time complexity is O(NT ).

Our empirical results confirm that the EPF proves useful for models with
heavy-tailed stochastic perturbations.

3.6.3 Smooth Transition AR model

The smooth transition AR (STAR) model is a smooth generalization of the self-
exciting threshold autoregressive (SETAR) model, [van Dijk et al., 2002]. It is
generally expressed in the following form.

xt = (a1xt−1 + a2xt−2 + · · ·+ apxt−p) [1−G(xt−d; γ, c)]

+ (b1xt−1 + b2xt−2 + · · ·+ bpxt−p) [G(xt−d; γ, c)] + εt

where εt is i.i.d. Gaussian with mean zero and variance σ2 andG(·) is a nonlinear
function of xt−d, where d > 0. We will use the logistic function

G(yt−d; γ, c) =
1

1 + exp (−γ(xt−d − c))
(22)

For high γ values, the logistic function converges to the indicator function,
I(xt−d > c), forcing STAR to converge to SETAR (SETAR corresponds to a
switching linear–Gaussian system). We will use p = 1 = d, where a1 = 0.9
and b1 = 0.1 and σ = 1 (corresponding to two different AR(1) processes with
high and low memory). We attempt to estimate parameters γ, c of the logistic
function, which have true values γ = 1 and c = 3. Data (of length T = 1000)
is generated from the model under fixed parameter values and with observation
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(b) Particle filter (SIR)
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Figure 6: Cauchy dynamical system. (a): Example sequences for hidden states
and observations. (b): Particle filter estimate with 50000 particles. (c): Liu–
West filter with 100 and 10000 particles. (d): EPF using only 100 particles and
10th order approximation. Note EPF converges to the actual value of parameter
a (=0.7, in blue line) while SIR does not even with orders of magnitude more
particles, neither does Liu–West with the same number of particles.

model yt = xt + wt, where wt is additive Gaussian noise with mean zero and
standard deviation σobs = 0.1. Figure 7(a) shows the shrinkage of the Gibbs
density p(γ, c | x0:T ), verifying identifiability.

The non-separable logistic term is approximated as

1

1 + exp (−γ(xt−1 − c))

≈ 1

2
− 1

4
γ(c− xt−1) +

1

48
γ3(c− xt−1)3 + . . .

Figure 7(b) displays the failure of the Liu–West filter forN = 50000 particles.
Figure 7(c) shows the mean values for γ, c from EPF for only N = 100 parti-
cles with 9th order Taylor approximation. Sampling from the log-polynomial
approximate density is done through the random-walk Metropolis–Hastings al-
gorithm. For each particle path, at each time step t, the Metropolis–Hastings
sampler is initialized from the parameter values at t− 1. The burn-in period is
set to be 0, so only one MH step is taken per time step (i.e., if a proposed sample
is more likely it is accepted, else it is rejected with a specific probability). The
whole filter has time complexity O(NT ).
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Figure 7: STAR model. (a): Shrinkage of the Gibbs density p(γ, c | x0:t) with
respect to time. (b): Liu–West filter using 50000 particles. (c): EPF using
100 particles and 9th order approximation. Note the EPF’s estimates for both
parameters converge to the actual values quickly even with only 100 particles,
while Liu–West does not converge at all.

3.7 Concluding Remarks

Learning the parameters of temporal probability models remains a significant
open problem for practical applications. We have proposed the extended param-
eter filter (EPF), a novel approximate inference algorithm that combines Gibbs
sampling of parameters with computation of approximate sufficient statistics.
The update time for EPF is independent of the length of the observation se-
quence. Moreover, the algorithm has provable error bounds and handles a wide
variety of models. Our experiments confirm these properties and illustrate dif-
ficult cases on which EPF works well.

One limitation of our algorithm is the complexity of Taylor approximation
for high-dimensional parameter vectors. We noted that, in some cases, the
process can be decomposed into lower-dimensional subproblems. Automating
this step would be beneficial.
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3.8 Supplementary Material

The Storvik filter as a Kalman filter in the parameter space
Let us consider the following model.

xt = Axt−1 + vt, vt ∼ N(0,Q)

yt = Hxt + wt, wt ∼ N(0,R) (23)

We will call the MMSE estimate Kalman filter returns as xt|t = E[xt | y0:t] and
the variance Pt|t = cov(xt | y0:t). Then the update for the conditional mean
estimate is as follows.

xt|t = Axt−1|t−1

+ Pt|t−1H
T (HPt|t−1H

T + R)−1︸ ︷︷ ︸
Kt

(yt −HAxt−1|t−1)

where as for the estimation covariance

Pt|t−1 = APt−1|t−1A
T + Q

Pt|t = (I−KtH)Pt|t−1 (24)

Matching the terms above to the updates in equation 12, one will obtain a lin-
ear model for which the transition matrix is A = I, the observation matrix is
H = Ft, the state noise covariance matrix is Q = 0, and the observation noise
covariance matrix is R = Q.

Proof of Theorem 1

Theorem. For a separable system, there exist fixed-dimensional sufficient statis-
tics for the Gibbs density, p(θ | x0:T ).

Let us assume that x ∈ Rd,θ ∈ Rp and fθ(·) : Rd → Rd is a vector valued
function parameterized by θ. Moreover, due to the assumption of separability
fθ(xt−1) = l(xt−1)Th(θ), where we assume that l(·) : Rd → Rm×d and h(·) :
Rp → Rm and m is an arbitrary constant. The stochastic perturbance will have
the log-polynomial density p(vt) ∝ exp(Λ1vt+vTt Λ2vt+ . . . ) Let us analyze the
case of p(vt) ∝ exp(Λ1vt + vTt Λ2vt), for mathematical simplicity.
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Proof.

log p(θ | x0:T ) ∝ log p(θ) +

T∑
t=1

log p(xt | xt−1, θ)

∝ log p(θ) +

T∑
t=1

Λ1

(
xt − l(xt−1)Th(θ)

)
+

(
xt − l(xt−1)Th(θ)

)T
Λ2

(
xt − l(xt−1)Th(θ)

)
∝ log p(θ) +

(
T∑
t=1

−(Λ1 + 2xTt Λ2)l(xt−1)T

)
︸ ︷︷ ︸

S1

h(θ)

+ hT (θ)

(
T∑
t=1

l(xt−1)Λ2l
T (xt−1)

)
︸ ︷︷ ︸

S2

h(θ) + constants

Therefore, sufficient statistics (S1 ∈ R1×m and S2 ∈ Rm×m) exist. The analysis
can be generalized for higher-order terms in vt in similar fashion.

Proof of Theorem 2

Theorem. Let S(x) be a M + 1 times differentiable function with bounded
derivatives, and let P (x) be its M -th order Taylor approximation. Then the KL-
divergence between distributions p and p̂ converges to 0, super-exponentially
as the order of approximation M →∞.

Proposition 1. Let S(x) be a M + 1 times differentiable function and P (x)
its order M Taylor approximation. Let I = (x − a, x + a) be an open interval
around x. Let R(x) be the remainder function, so that S(x) = P (x) + R(x).
Suppose there exists constant U such that

∀y ∈ I,
∣∣∣f (k+1)(y)

∣∣∣ ≤ U
We may then bound

∀y ∈ I, |R(y)| ≤ U aM+1

(M + 1)!

We define the following terms

ε = U
aM+1

(M + 1)!

Z =

∫
I

exp(S(x))dx

Ẑ =

∫
I

exp(P (x))dx
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Since exp(·) is monotone and increasing and |S(x)− P (x)| ≤ ε, we can derive

tight bounds relating Z and Ẑ.

Z =

∫
I

exp(S(x))dx ≤
∫
I

exp(P (x) + ε)dx

= Ẑ exp(ε)

Z =

∫
I

exp(S(x))dx ≥
∫
I

exp(P (x)− ε)dx

= Ẑ exp(−ε)

Proof.

DKL(p||p̂) =

∫
I

ln

(
p(x)

p̂(x)

)
p(x)dx

=

∫
I

(
S(x)− P (x) + ln(Ẑ)− ln(Z)

)
p(x)dx

≤
∫
I

|S(x)− P (x)| p(x)dx

+

∫
I

∣∣∣ln(Ẑ)− ln(Z)
∣∣∣ p(x)dx

≤ 2ε ∝ aM+1

(M + 1)!
≈ 1√

2π(M + 1)!

(
ae

M + 1

)M+1

where the last approximation follows from Stirling’s approximation. Therefore,
DKL(p||p̂)→ 0 as M →∞.

Proof of Theorem 3

Theorem. p̂(θ | x0:T ) is in the exponential family with the log-polynomial den-
sity

log p(θ)+ (25)

θ1

...
θM

θM+1

...
θ2M



T

︸ ︷︷ ︸
T (θ)T

.



1
σ2

∑T
k=1 xkH

1(xk−1)− 1
2σ2

∑T
k=1 J

1
xk−1

...
1
σ2

∑T
k=1 xkH

M (xk−1)− 1
2σ2

∑T
k=1 J

M
xk−1

− 1
2σ2

∑T
k=1 J

M+1
xk−1

...

− 1
2σ2

∑T
k=1 J

2M
xk−1


︸ ︷︷ ︸

η(x0,...,xt)
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Proof.

log p̂(θ | x0:T ) = log

(
p(θ)

T∏
k=0

p̂(xk|xk−1, θ)

)

= log p(θ) +

T∑
k=0

log p̂(xk | xk−1, θ)

We can calculate the form of log p̂(xk | xk−1, θ) explicitly.

log p̂(xk | xk−1, θ) = logN (f̂(xk−1, θ), σ
2)

= − log(σ
√

2π)− (xk − f̂(xk−1, θ))
2

2σ2

= − log(σ
√

2π)− x2
k − 2xkf̂(xk−1, θ) + f̂(xk−1, θ)

2

2σ2

= − log(σ
√

2π)− x2
k

2σ2
−
∑M
i=0 xkH

i(xk−1)θi

σ2

+

∑2M
i=0 J

i
xk−1

θi

2σ2

Using this expansion, we calculate

log p̂(θ | x0:T ) = log p(θ) +

T∑
k=0

log p̂(xk | xk−1, θ)

= log p(θ)− (T + 1) log(σ
√

2π)

− 1

2σ2

(
T∑
k=0

x2k

)
− T (θ)T η(x0, . . . , xT )

where we expand T (θ)T η(x0, . . . , xT ) as in 3. The form for log p̂(θ | x0:T ) is in
the exponential family.

Proof of Theorem 4

Theorem. Let pT (θ | x0:T ) denote the Gibbs distribution and p̂T (θ | x0:T )
its order M exponential family approximation. Assume that parameter θ has
support Sθ and finite variance. Then as M → ∞, T → ∞, the KL divergence
between pT and p̂T goes to zero.

lim
M,T→∞

DKL(pT || p̂T ) = 0

Proof. Assume that function f has bounded derivatives and bounded support

I. Then the maximum error satisfies
∣∣∣fθ(xk−1)− f̂θ(xk−1)

∣∣∣ ≤ εk. It follows that

f̂θ(xk−1)2 − fθ(xk−1)2 = −ε2k − 2f̂θ(xk−1)εk ≈ −2f̂θ(xk−1)εk.
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Then the KL-divergence between the real posterior and the approximated
posterior satisfies the following formula.

DKL(pT ||p̂T ) (26)

=

∫
Sθ

(
1

σ2

T∑
k=1

εk(xk − f̂θ(xk−1))

)
pT (θ|x0:T )dθ

Moreover, recall that as T → ∞ the posterior shrinks to δ(θ − θ∗) by the as-
sumption of identifiability. Then we can rewrite the KL-divergence as (assuming
Taylor approximation centered around θc)

lim
T→∞

DKL(pT ||p̂T ) (27)

=
1

σ2
lim
T→∞

T∑
k=1

εk

∫
Sθ

(xk − f̂θ(xk−1))pT (θ|x0:T )dθ

=
1

σ2
lim
T→∞

T∑
k=1

εk· (28)(
xk −

M∑
i=0

Hi(xk−1)

∫
Sθ

(θ − θc)ip(θ|x0:T )dθ

)

=
1

σ2
lim
T→∞

T∑
k=1

εk

(
xk −

M∑
i=0

Hi(xk−1)(θ∗ − θc)i
)

If the center of the Taylor approximation θc is the true parameter value θ∗,
we can show that

lim
T→∞

DKL(pT ||p̂T ) =
1

σ2
lim
T→∞

T∑
k=1

εk (xk − fθ∗(xk−1)))

=
1

σ2
lim
T→∞

T∑
k=1

εkvk = 0 (29)

where the final statement follows from law of large numbers. Thus, as T →∞,
the Taylor approximation of any order will converge to the true posterior given
that θc = θ∗. For an arbitrary center value θc,

DKL(pT ||p̂T ) =
1

σ2

T∑
k=1

εk

(
xk −

M∑
i=0

Hi(xk−1)(θ∗ − θc)i
)

(30)

Notice that εk ∝ 1
(M+1)! (by our assumptions that f has bounded derivative

and is supported on interval I) and Hi(·) ∝ 1
M ! . The inner summation will

be bounded since M ! > aM ,∀a ∈ R as M → ∞. Therefore, as M → ∞,
DKL(p||p̂)→ 0.
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4 The Assumed Parameter Filter

In this section, we propose a novel algorithm for the general combined parameter
and state estimation problem in SSMs. Our algorithm, called the Assumed
Parameter Filter (APF) [Erol et al., 2017], is a hybrid of particle filtering for
state variables and assumed density filtering for parameter variables. It projects
the posterior distribution for parameters, p(θ | x0:t, y0:t), into an approximation
distribution and generates samples of parameters in constant-time per update.
APF streams data and is a nearly-black-box algorithm: when an appropriate
approximate distribution for the parameter is chosen, APF can be applied to any
SSM that one can sample from and compute evidence likelihood. We emphasize
the nearly-black-box property of APF by developing it as an automatic inference
engine for a probabilistic programming language. Experiment results show that
APF converges much faster than existing algorithms on a variety of models.

The design principles of APF are to inherit the appealing properties of the
classical particle filter, which is applicable to arbitrary transitions and suitable
for streaming data, while better overcoming the path degeneracy problem for
parameter estimation without an expensive MCMC kernel.

We propose a nearly-black-box algorithm, called the Assumed Parameter
Filter (APF), for online parameter and state estimation. In APF, the posterior
of both states and parameters are jointly represented by K particles. The key
point is that, unlike the bootstrap filter (which keeps a static parameter value in
each particle), APF maintains an extra approximate distribution and samples
from that distribution for the parameter at each time step.

In order to fight against sample impoverishment, for parameter θkt at time
t in particle k, we sample from a distribution qkt (θ) in some parametric family
Q where qkt (θ) is the approximate representation of the true particle posterior
p(θ | xk0:t, y0:t). In the special case where q is a delta function, APF recovers
the bootstrap particle filter (proven in Section 4.11). In order to obtain the
approximating distribution qkt from qkt−1, M additional Monte Carlo samples
are utilized for each particle to perform the moment-matching operations re-
quired for assumed density approximation. The proposed method is illustrated
in Alg. 6.

Following the assumed density filtering framework, we are approximating
p(θ | x0:t, y0:t) in a parametric distribution family Q. In our algorithm this
is expressed through the Update function. The Update function generates the
approximating density q via minimizing the KL-divergence between the target
p and the approximating distribution q.

4.1 Approximating p(θ | x0:t, y0:t)

At each time step with each new incoming data point we approximate the poste-
rior distribution by a tractable and compact distribution from Q. Our approach
is inspired by assumed density filtering (ADF) for state estimation [Maybeck,
1982, Lauritzen, 1992, Boyen and Koller, 1998, Opper and Winther, 1998].

For our application, we are interested in approximately representing p(θ |
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Algorithm 6: Assumed Parameter Filter

Input: y0:T , Q, K, and M , the model (f1, f2, g, h)

Output: Samples
{
xk0:T , θ

k
T

}K
k=1

Initialize
{
xk0 , q

k
0 (θ)

}K
k=1

according to f1, f2 and Q;

for t = 1, . . . , T do
for k = 1, . . . ,K do

sample θkt ∼ qkt−1(θ) ≈ p(θ | xk0:t−1, y0:t−1);

sample xkt ∼ g(xt | xkt−1, θ
k
t ) ;

wkt ← h(yt | xkt , θkt );

qkt (θ)← Update(M,Q; qkt−1(θ), xkt , x
k
t−1, yt);

sample
{

1
N , x̄

k
t , q̄

k
t

}
∼ Multinomial

{
wkt , x

k
t , q

k
t

}
;{

xkt , q
k
t

}
←
{
x̄kt , q̄

k
t

}
;

x0:t, y0:t) in a compact form that belongs to a family of distributions. Due to
the Markovian structure of the SSM, the posterior can be factorized as

p(θ | x0:t, y0:t) ∝
∏t
i=0 si(θ),

si(θ) =

{
p(θ)p(y0 | x0, θ), i = 0

p(xi | xi−1, θ)p(yi | xi, θ), i ≥ 1
.

Let us assume that at time step i − 1 the posterior was approximated by
qi−1 ∈ Q. Then with incorporation of (xi, yi), the posterior p̂ will be

p̂(θ | x0:i, y0:i) =
si(θ)qi−1(θ)∫

θ
si(θ)qi−1(θ)dθ

. (31)

For most models, p̂ will not belong to Q. ADF projects p̂ into Q via minimizing
KL-divergence:

qi(θ) = arg min
q∈Q

D (p̂(θ | x0:i, y0:i) || q(θ)) (32)

For Q in the exponential family, minimizing the KL-divergence reduces to mo-
ment matching [Seeger, 2005]. For qi(θ) ∝ exp

{
γTi m(θ)

}
, where γi is the canon-

ical parameter and m(θ) is the sufficient statistic, we compute moments of the
one-step ahead posterior p̂ and update γi to match.

g(γi) =

∫
m(θ)qi(θ)dθ =

∫
m(θ)p̂(θ)dθ

∝
∫
m(θ)si(θ)qi−1(θ)dθ

where g(·) is the unique and invertible link function. Thus, for the exponential
family, the Update function computes the moment matching integrals to update
the canonical parameters of qi(θ). For the general case, where these integrals
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may not be tractable, we propose approximating them by a Monte Carlo sum
with M samples, sampled from qi−1(θ):

Z ≈ 1
M

∑M
j=1 si(θ

j), g(γi) ≈ 1
MZ

∑M
j=1m(θj)si(θ

j)

where θj ∼ qi−1(θ). In our framework, this approximation is done for all par-
ticle paths xk0:i and the corresponding qki−1, hence leading to O(KM) sampling
operations per time step.

4.2 Asymptotic performance for APF

In a similar spirit to Opper and Winther [1998], we prove that assumed den-
sity filtering framework can successfully converge to the target posterior with
increasing amount of data. For simplicity, we only consider continuous pa-
rameters and use Gaussian as the approximation distribution. We assume an
identifiable model (posterior is asmptotically Gaussian around the true param-
eter) and also assume that in the model, only the transition is parametrized by
the parameter θ while the observation model is known.

Theorem 5. Let (f1, f2, gθ, hθ) be an identifiable Markovian SSM, and let Q
be multivariate Gaussian. The KL divergence between p(θ | x0:t, y0:t) and the
assumed density qt(θ) computed as explained in the previous subsection will con-
verge to zero as t→∞.

lim
t→∞

DKL (p(θ | x0:t, y0:t)||qt(θ)) = 0. (33)

The proof is given in Section 4.11. The theorem states that the error due to
the projection diminishes in the long-sequence limit. Therefore, with K,M →
∞, APF would produce samples from the true posterior distribution p(θ, xt |
y0:t). For finite K, however, the method is susceptible to path degeneracy.

Similar to Storvik [2002], Lopes et al. [2010], we are sampling from p(θ |
xi0:t, y0:t) at each time step to fight against sample impoverishment. It has
been discussed before that these methods suffer from ancestral path degeneracy
[Chopin et al., 2010, Lopes et al., 2010, Poyiadjis et al., 2011]. For any number
of particles and for a large enough n, there exists some m < n such that p(x0:m |
y0:n) is represented by a single unique particle. For dynamic models with long
memory, this will lead to a poor approximation of sufficient statistics, which
in turn will affect the posterior of the parameters. Poyiadjis et al. [2011] have
shown that even under favorable mixing assumptions, the variance of an additive
path functional computed via a particle approximation grows quadratically with
time. To fight against path degeneracy, one may have to resort to fixed-lag
smoothing or smoothing. Olsson et al. [2008] used fixed-lag smoothing to control
the variance of the estimates . Del Moral et al. [2010] proposed an O(K2) per
time step forward smoothing algorithm which leads to variances growing linearly
with t instead of quadratically. Poyiadjis et al. [2011] similarly proposed an
O(K2) algorithm that leads to linearly growing variances . These techniques
can be augmented into the APF framework to overcome the path degeneracy
problem for models with long memory.
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4.3 Special cases: Gaussians, mixtures of Gaussians and
discrete distributions

4.3.1 Gaussian case:

For a multivariate Gaussian Q, explicit recursions can be derived for p̂(θ) ∝
si(θ)qi−1(θ) where qi−1(θ) = N (θ;µi−1,Σi−1). The moment matching recur-
sions are

µi = 1
Z

∫
θsi(θ)qi−1(θ)dθ,

Σi = 1
Z

∫
θθT si(θ)qi−1(θ)dθ − µiµTi .

(34)

where Z =
∫
p̂(θ)dθ =

∫
si(θ)qi−1(θ)dθ. These integrals can be approximated

via Monte Carlo summation as previously described. One alternative is deter-
ministic sampling. Since q is multivariate Gaussian, Gaussian quadrature rules
can be utilized. In the context of expectation-propagation this has been pro-
posed by Zoeter and Heskes [2005]. In the context of Gaussian filtering, similar
quadrature ideas have been applied as well [Huber and Hanebeck, 2008].

For an arbitrary polynomial f(x) of order up to 2M − 1,
∫
f(x)e−x

2

dx
can be calculated exactly via Gauss-Hermite quadrature with M quadrature
points. Hence, the required moment matching integrals in Eq.(34) can be ap-
proximated arbitrarily well by using more quadrature points. The unscented
transform [Julier and Uhlmann, 2004] is one specific Gaussian quadrature rule
that uses M = 2d deterministic samples to approximate an integral involving a
d-dimensional multivariate Gaussian. In our case these samples are: ∀1 ≤ j ≤ d,

θj = µi−1 +
(√

dΣi−1

)
j
, θd+j = µi−1 −

(√
dΣi−1

)
j
.

where (·)j means the jth column of the corresponding matrix. Then, one can
approximately evaluate the moment matching integrals as follows:

Z ≈ 1
2d

∑2d
j=1 si(θ

j), µi ≈ 1
2dZ

∑2d
j=1 θ

jsi(θ
j),

Σi ≈ 1
2dZ

∑2d
j=1 θ

j(θj)T si(θ
j)− µiµTi .

4.3.2 Mixtures of Gaussians:

Weighted sums of Gaussian probability density functions can be used to ap-
proximate another density function arbitrarily closely. Gaussian mixtures have
been used for state estimation since the 1970s [Alspach and Sorenson, 1972].

Let us assume that at time step i − 1 it was possible to represent p(θ |
x0:i−1, y0:i−1) as a mixture of Gaussians with L components.

p(θ | x0:i−1, y0:i−1) =

L∑
m=1

αmi−1N (θ;µmi−1,Σ
m
i−1)

= qi−1(θ)
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Given xi and yi;

p̂(θ | x0:i, y0:i) ∝
L∑

m=1

αmi−1si(θ)N (θ;µmi−1,Σ
m
i−1)

The above form will not be a Gaussian mixture for arbitrary si. We can rewrite
it as:

p̂ ∝
L∑

m=1

αmi−1β
m si(θ)N (θ;µmi−1,Σ

m
i−1)

βm
(35)

where the fraction is to be approximated by a Gaussian via moment matching
and the weights are to be normalized. Here, each βm =

∫
si(θ)N (θ;µmi−1,Σ

m
i−1)dθ

describes how well the m-th mixture component explains the new data. That
is, a mixture component that explains the new data well will get up-weighted
and vice versa. It is important to note that the proposed approximation is not
exactly an ADF update. The problem of finding a mixture of fixed number of
components to minimize the KL divergence to a target distribution is intractable
[Hershey and Olsen, 2007]. The proposed update here is the one that matches
the mean and covariance.

The resulting approximated density would be qi(θ) =
∑K
m=1 α

m
i N (θ;µmi ,Σ

m
i )

where the recursion for updating each term is as follows:

βm =

∫
si(θ)N (θ;µmi−1,Σ

m
i−1)dθ

αmi =
αmi−1β

m∑
` α

`
i−1β

`

µmi =
1

βm

∫
θsi(θ)N (θ;µmi−1,Σ

m
i−1)dθ

Σmi =
1

βm

∫
θθT si(θ)N (θ;µmi−1,Σ

m
i−1)dθ − µmi (µmi )T

Similar to the Gaussian case, the above integrals are generally intractable.
Either a Monte Carlo sum or a Gaussian quadrature rule can be utilized to
approximately update the means and covariances.

4.3.3 Discrete parameter spaces:

Let us consider a d-dimensional parameter space where each parameter can
take at most Nθ values. For discrete parameter spaces, one can always track
p(θ | x0:t, y0:t) exactly with a constant-time update; the constant, however, is
exponential in d [Boyen and Koller, 1998]. Hence, tracking the sufficient statis-
tics becomes computationally intractable with increasing dimensionality. For
discrete parameter spaces we propose projection onto a fully factorized distri-
bution, i.e., qi(θ) =

∏
j qj,i(θj). For this choice, minimizing the KL-divergence

reduces to matching marginals:

Z =
∑
θ si(θ)qi−1(θ)

qj,i(θj) = 1
Z

∑
θ\θj si(θ)qi−1(θ).
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Computing these summations is intractable for high-dimensional models, hence
we propose using Monte Carlo summation. In the experiments, we consider a
simultaneous localization and mapping problem with a discrete map.

4.4 Discussions

4.4.1 Applicability:

APF follows the framework of particle filtering and the only requirement for
updating the approximate distribution is being able to compute the likelihood
of the states conditioned on the sampled parameter. Thus, APF can be ap-
plied to the same category of models as the particle filter. The critical issue
for APF is the choice of the family of approximation distributions Q. Although
Gaussian mixtures can arbitrarily approximate any density, different forms of
Q can significantly improve the practical performance. For example, when the
dimensionality of the parameter space is large, one may want to use a diag-
onal Gaussian distribution for fast convergence; for non-negative parameters,
the gamma distribution may be favored. Note that different Qs yield different
updating formulae. To this perspective, APF is nearly-black-box: a user can
apply APF to arbitrary SSMs just by choosing an appropriate approximating
distribution. In the next section, we further explore the nearly-black-box prop-
erty of APF by adapting it to the backend inference engine of a probabilistic
programming language.

4.4.2 Modularity:

One can utilize a Storvik filter for a subset of parameters with fixed-dimensional
sufficient statistics, and for the rest of the parameters, approximate sufficient
statistics can be generated via the APF framework. This is similar to the
extended Liu-West filter [Rios and Lopes, 2013] where a Storvik filter is used in
conjunction with the artificial dynamics approach.

4.4.3 Complexity:

The time complexity of APF is O(MKT ) over T time steps for K particles with
M extra samples to update the sufficient statistics through the moment match-
ing integrals. Setting K and M adequately is crucial for performance. Small
K prevents APF exploring the state space sufficiently whereas small M leads
to inaccurate sufficient statistics updates which will in turn result in inaccurate
parameter estimation.

Note that the typical complexity of PMCMC algorithms is O(NKT ) where
N denotes the number of MCMC samples. Although in the same order of APF
for time complexity, we find in practice that M is often orders of magnitude
smaller than N for achieving a given level of accuracy. PMCMC algorithms
often requires a large amount of MCMC iterations for mixing properly while
very small M is sufficient for APF to produce accurate parameter estimation,
especially for the Gaussian case as discussed above.
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Moreover, the actual running time for APF is often much smaller than its
theoretical upper bound O(MKT ). Notice that the approximation computation
in APF only requires the local data in a single particle and does not influence
the weight of that particle. Hence, one important optimization specialized for
APF is to resample all the particles prior to the update step and only update
the approximate distribution for those particles that do not disappear after re-
sampling. It is often the case that a small fraction of particles have significantly
large weights. Consequently, in our experiment, the actual running time of
APF is several times faster than the theoretically required time O(MKT ) (see
practical performances of APF in the Experiment section).

Lastly, the space complexity for APF is in the same order as the bootstrap
particle filter, namely O(K). Overall, APF is constant time and memory per
update and hence fits into online/streaming applications.

4.5 Using APF in probabilistic programming

This section shows APF can be integrated into a probabilistic programming lan-
guage (PPL), BLOG [Milch et al., 2005], from which the general research com-
munity can benefit. PPLs aim to allow users to express an arbitrary Bayesian
model via a probabilistic program while the backend engine of PPL automat-
ically performs black-box inference over the model. PPLs largely simplify the
development process of AI applications involving rich domain knowledge and
have led to many successes, such as human-level concept learning [Lake et al.,
2015], global seismic monitoring [Arora, 2012], and 3D scene perception [Kulka-
rni et al., 2015].

We developed a compiled inference engine, the State and Parameter Estima-
tion Compiler (SPEC), utilizing APF under BLOG [Milch et al., 2005] thanks to
its concise syntax [Li and Russell, 2013]: in the BLOG language, state variables
are those indexed by timestep, while all other variables are effectively parame-
ters; thus, by identifying the static and dynamic variables, the SPEC compiler
can automatically work out how to apply APF to the filtering problem. Since
APF is based on the BLOG language, the general compilation process is based
on the Swift compiler for BLOG [Wu et al., 2016]. There are also other com-
piled PPL systems, such as Church [Goodman et al., 2008] and Anglican [Wood
et al., 2014]. However, these systems do not have any language primitives dis-
tinguishing state and parameter. Potentially APF can be also applied to these
systems by adding new syntax for declaring the parameter.

In order to demonstrate the online property of APF, SPEC also includes
some extended syntax to allow streaming applications. The following BLOG
program describes a simple SSM, the SIN model:

X0 ∼ N (0, 1) Θ ∼ N (0, 1)
Xt ∼ N (sin(θxt−1), 1) Yt ∼ N (xt, 0.5

2)
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// parameter 
random Real theta ~ Gaussian(0,1);  
// state X(t) 
random Real X(Timestep t) ~   
// initial value, X(0) 

  if t == @0 then Gaussian(0, 1)  
// transition 

  else Gaussian(sin(theta * X(t - @1)), 1);  
// observed variable Y(t) 
random Real Y(Timestep t)~Gaussian(X(t),0.25); 
// user declared C++ function 
extern Real loadData(Timestep t); 
// observations 
obs Y(t) = loadData(t) for Timestep t; 
// query states and the parameter 
query X(t) for Timestep t;  
query theta; 
 

 
The keyword random declares random variables in the model: those with an

argument of type Timestep are states (dynamic variables, i.e., X(t) and Y(t))
while others are parameters (static variables, i.e., theta). Line 14 states that
Y(t) is observed while line 16 and 17 query the posterior distribution of the
state X(t) at each time step and the parameter theta.

In SPEC, we extend the original syntax of BLOG by (1) introducing a new
keyword extern (Line 12) to import arbitrary customized C++ functions (e.g.,
input functions for streaming data at each time step) and (2) the for-loop style
observation statement (Line 14) and query statement (Line 16, 17). These
changes allow APF to be applied in a completely online fashion.

A user can utilize SPEC to perform inference with APF for both {Xt} and Θ
by simply coding this tiny program without knowing algorithm details. SPEC
automatically analyzes the parameters, selects approximate distributions and
applies APF to this model. By default, we use Gaussian distributions with
Gauss-Hermite quadratures for continuous parameters and factored categorical
distributions for discrete parameters. SPEC is extensible for more approximate
distributions for further development. Moreover, due to the memory efficiency
of APF, many other optimizations from the programming language community
can be applied to further accelerate the practical performance of APF.1

4.6 Experiments

We evaluated APF on three benchmark models: 1. SIN: a nonlinear dynamical
model with a single continuous parameter; 2. SLAM: a simultaneous localization
and Bayesian map learning problem with 20 discrete parameters; 3. BIRD: a 4-
parameter model to track migrating birds with real-world data. We compare the
estimation accuracy of APF, as a function of run time, against the Liu-West
filter (LW) and PMCMC algorithms including particle marginal Metropolis-
Hastings (PMMH), particle Gibbs (PGibbs) and particle Gibbs with ancestor
sampling (PGAS). For implementation, APF and LW are natively supported
by our automatic engine SPEC. PMMH is manually adapted from the code

1The details of the compilation optimizations in SPEC can be found in the supplementary
materials.
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compiled by SPEC. For PGibbs and PGAS, we compare both the code generated
the Anglican compiler [Wood et al., 2014], and our customized implementations.
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Figure 8: Performance plots in SIN, SLAM, BIRD experiments: (a) accuracy
on SIN comparing APF with other black-box algorithms for PPLs (Liu-West,
PMMH from SPEC and PGibbs by Anglican); (b) accuracy on SIN comparing
APF with our customized implementations of PGibbs and PGAS in C++; (c)
density estimation of the posterior distribution of θ by APF, PMMH and PGAS;
(d) the histograms of samples for θ in the multimodal SIN model by APF using
L = 2, 5, 10 mixtures of Gaussians and the almost-true posterior by PMMH;

4.7 Toy nonlinear model (SIN)

We consider the SIN model in the previous section with the true parameter
θ? = 0.5. 5000 data points are generated to ensure a sharp posterior. Notice
that it is not possible to use the Storvik filter [Storvik, 2002] or the particle
learning algorithm [Lopes et al., 2010] for this model as sufficient statistics do
not exist for Θ.

We evaluate the mean squared error over 10 trials between the estimation
results and θ? within a fixed amount of time. For APF and LW, we consider the
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mean of the samples for Θ at the last time step for parameter estimation while
for PMCMC algorithms, we take the average of the last half of the samples and
leave the first half as burn-in. We omit PGAS results by Anglican here since
Anglican takes more than 10 minutes to produce a sample with 100 particles.

For APF, we choose Gaussian as the approximate distribution with M = 7.
For PMMH, we use a local truncated Gaussian as the proposal distribution for
Θ.

Note that for PGAS and PGibbs, we need to sample from Pr[Θ|X1:T , Y1:T ]
while this cannot be efficiently computed in SIN. As a black-box inference sys-
tem, the Anglican compiler avoids this by treating every variable as state vari-
able. In our customized implementations, we use a piecewise linear function to
approximate Pr[Θ|X1:T , Y1:T ]2.

The results for black-box algorithms, including APF, Liu-West filter (sup-
ported by SPEC), PMMH (adapted from the code by SPEC) and PMCMC
algorithms (PGibbs and PGAS in Anglican) are shown in Fig. 8(a). We also
compare APF against out customized implementation of PGibbs and PGAS in
Fig. 8(b). APF produced a result of orders of magnitude smaller error within
a much smaller amount of run time: an estimation for θ with 1.6 ∗ 10−4 square
error with only 1000 particles in 1.5 seconds.

Note that, as mentioned in the discussion section, in theory APF with M = 7
should be 7 times slower than the plain particle filter. But in practice, thanks
to the trick – only updating the approximate distributions for the retained
particles, APF is just 2 times slower.

4.7.1 Density Estimation:

We also show the kernel density estimates of the posterior of θ in Fig. 8(c), where
we ran APF with 104 particles and M = 7 as well as our customized version
of PGibbs and PGAS with 5000 particles for 6 hours (around 5000 MCMC
iterations). For PGibbs and PGAS, we left the first 1000 samples as burn-in.
APF produced a reasonable mode centered exactly at the true parameter value
0.5 using merely 40 seconds while PGibbs and PMMH mixed slowly.

4.7.2 Bimodal Variant:

Consider a multimodal variant of SIN as follows: Xt ∼ N (sin(θ2xt−1), 1), Yt ∼
N (xt, 0.5

2). Due to the θ2 term, p(θ | y0:t) will be bimodal. We generate 200
data points in this case and execute APF with K = 103 particles and M = 7
using mixtures of L = 2, 5, 10 Gaussians as the approximate distribution. To
illustrate the true posterior, we ran PMMH with K = 500 for 20 minutes (much
longer than APF) to ensure it mixes properly.

The histograms of the samples for θ are demonstrated in Fig. 8(d). APF
successfully approximates the multimodal posterior when L = 5, 10 and the

2We discretize [−1, 1] uniformly into 500 intervals. 500 is smaller than the number of
particles used by the PMCMC algorithms, so this process does not influence the total running
time significantly.
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weights are more accurate for L = 10. For L = 2, APF only found a single
mode with a large bias. This suggests that increasing the number of mixture
components used for approximation can help find different modes in the true
posterior in practice.

4.8 Simultaneous localization and mapping (SLAM)

We consider a simultaneous localization and mapping example (SLAM) modified
from [Murphy et al., 1999]. The map is defined as a 1-dimensional grid, where
each cell has a static label (parameter to be estimated) which will be (noisily)
observed by the robot. More formally, the map is a vector of boolean random
variables M(i) ∈ {1, . . . , NO}, where 1 ≤ i ≤ NL. Neither the map nor the
robot’s location Lt ∈ {1, . . . , NL} is observed.

Given the action, move right or left, the robot moves in the direction of action
with a probability of pa and stays at its current location with a probability of
1−pa (i.e., robot’s wheels slip). The prior for the map is a product of individual
cell priors, which are all uniform. The robot observes the label of its current
cell correctly with probability po and incorrectly with probability of 1− po. In
the original example, NL = 8, pa = 0.8, po = 0.9, and 16 actions were taken.
In our experiment, we make the problem more difficult by setting NL = 20 and
deriving a sequence of 41 actions to ensure the posterior converge to a sharp
mode.

We evaluate the KL-divergence between the prediction posterior and the ex-
act true posterior within various time limits. We omit Liu-West filter since is
not applicable for discrete parameters. In APF, we use a Bernoulli distribution
as the approximate distribution for every grid cell. For PMMH, we use a coordi-
nate MCMC kernel: we only sample a single grid at each MCMC iteration. For
PGibbs and PGAS, since it is hard to efficiently sample from Pr[θ|X1:T , Y1:T ],
we only show results by Anglican.

Fig. 9(b) shows that APF approximates the posterior distribution much
more accurately than other methods within a shorter run time. For PGAS by
Anglican, due to its system overhead, the overall run time is significantly longer.

Similar to SIN, although APF performs 20M = 2000 extra samples per time
step in SLAM, in practice, APF is merely 60x slower than the plain particle filter
due to the resampling trick.

4.8.1 Choices of Parameters:

We experiment APF with various settings (number of particles K and number
of samples M) and evaluate the average log KL-divergence over 100 trials. The
results in Fig. 9(a) agree with the theory. As K increases the KL-divergence
decreases whereas after a certain point, not much gain is obtained by increasing
M . When M is large enough, the moment matching integrals are more or less
exactly computed and the error is not due to the Monte Carlo sum but due
to the error induced by the assumed-density projection step, which cannot be
avoided.
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Figure 9: Performance plots in SLAM, BIRD experiments: (a) APF with different
configurations for K and M on SLAM; (b) accuracy on SLAM; (c) accuracy on
BIRD.

4.9 Tracking bird migration (BIRD)

The bird migration problem (BIRD) is originally investigated in [Elmohamed
et al., 2007], which proposes a hidden Markov model to infer bird migration
paths from a large database of observations3.

In the BIRD model, there are 4 continuous parameters with 60 dynamic states
where each time step contains 100 observed variables and more than 104 hidden
variables.

We again measure the mean squared estimation error over 10 trials between
the average of the samples for the parameters and the ground truth within dif-
ferent time limits. For APF, we use a diagonal Gaussian approximation with
M = 15. For PMMH we use a truncated Gaussian proposal with diagonal co-
variance and leave the first half of the samples as burn-in. We did not compare
against PGAS and PGibbs since these algorithms require storing the full his-
tory, which consumes too much memory (60x larger) to run enough particles.
The results illustrated in Fig. 9(c) again show that APF achieves much better
convergence within a much tighter computational budget.

3http://ppaml.galois.com/wiki/wiki/CP2BirdMigration
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4.10 Concluding Remarks

We proposed the assumed parameter filter (APF), an online algorithm for joint
parameter and state estimation in general state-space models, which provably
converges in the long-sequence limit under standard conditons.

It is a “nearly-black-box” algorithm in the sense that its default assumed-
density models can handle a large range of cases, while the algorithm can be
extended easily to new cases by supplying a well-defined set of functions. APF is
not a drop-in replacement for unbiased algorithms with theoretical guarantees,
e.g., PMCMC and SMC2 [Chopin et al., 2013], but an efficient alternative in
practice. Experiments exhibit that APF has better estimation performance
using much less computation time compared to several standard algorithms on
a variety of applications.

4.11 Supplementary Material

Bootstrap particle filter as a subcase of APF
Here we will show that when q is a delta function, APF recovers the bootstrap
particle filter. The Dirac delta function can be considered as the limit of a
Gaussian as the variance goes to zero, δ(θ−µ) = limσ2→0N (θ;µ, σ2). Therefore,
we can view q as an exponential family distribution. Specifically we are dealing
with a Gaussian distribution with unknown mean and known variance (zero-
variance). Then the moment matching integral required for assumed density
filtering reduces to matching the means. If qi−1 = δ(θ − µi−1), then

µi =

∫
θqi(θ)dθ =

∫
θp̂(θ)dθ

=

∫
θsi(θ)δ(θ − µi−1)dθ∫
si(θ)δ(θ − µi−1)dθ

=
µi−1si(µi−1)

si(µi−1)
= µi−1 (36)

where the last equality follows from the sifting property of the Dirac delta func-
tion. The main result here is that for Q Dirac delta, µi = µi−1; that is, APF
Update step does not propose new values. Therefore, our proposed algorithm
recovers the standard bootstrap particle filter.

Proof for Theorem 5

Theorem. Let (f1, f2, gθ, hθ) be an identifiable Markovian SSM, and let Q be
multivariate Gaussian. The KL divergence between p(θ | x0:t, y0:t) and the as-
sumed density qt(θ) computed as explained in the previous subsection will con-
verge to zero as t→∞.

lim
t→∞

DKL (p(θ | x0:t, y0:t)||qt(θ)) = 0. (37)
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In this section4 we will assume an identifiable model where the posterior
distribution approaches normality and concentrates in the neighborhood of the
posterior mode. Suppose θ̂ is the posterior mode and hence the first-order partial
derivatives of log p(θ | x0:T ) vanish at θ̂n. Define

Î = −∂
2 log p(θ | x0:T )

∂θ∂θT

∣∣∣∣
θ=θ̂

(38)

Applying a second-order Taylor approximation around θ̂ to the posterior density
results in

log p(θ | x0:T ) ≈ log p(θ̂ | x0:T )− 1

2
(θ − θ̂)T Î(θ − θ̂) (39)

Hence;

p(θ | x0:T ) ∝ exp

{
−1

2
(θ − θ̂)T Î(θ − θ̂)

}
(40)

which is a p (θ ∈ Rp) dimensional Gaussian density with mean θ̂ and covariance
Î−1. As the posterior becomes highly concentrated in a neighborhood of the
posterior mode, the effect of the prior on the posterior diminishes, which is the
Bernstein-von Mises theorem. Then we can rewrite Equation 40 as

p(θ | x0:T ) ∝ exp

−T2 ∑
ij

(θi − θ̂i)Ĵij(θj − θ̂j)

 (41)

where Ĵij = −∂i∂j 1
T

∑T
t=1 log p(xt | xt−1, θ̂).

The assumed density filter updates for the Gaussian case has been derived
in earlier sections. We will reorganize them in a more convenient form.

µi(t) =

∫
θip(xt | xt−1, θ)qt−1(θ)dθ∫
p(xt | xt−1, θ)qt−1(θ)dθ

Σij(t) =

∫
θiθjp(xt | xt−1, θ)qt−1(θ)dθ∫
p(xt | xt−1, θ)qt−1(θ)dθ

− µi(t)µj(t)

We will use a simple property of centered Gaussian random variables z, E[zf(z)] =
E(f

′
(z)).E(z2) which can be proven by applying integration by parts. Then the

explicit updates can be written as follows:

µi(t) = µi(t− 1) +
∑
j

Σij(t− 1)× ∂j logEu[p(xt | xt−1, µ(t− 1) + u)] (42)

Σij(t) = Σij(t− 1) +
∑
kl

Σik(t− 1)Σlj(t− 1)× ∂k∂l logEu[p(xt | xt−1, µ(t− 1) + u)]

4Our discussion follows Opper and Winther [1998] which considers the asymptotic perfor-
mance of assumed density filtering for independent identically distributed data. We are also
assuming that parameters only affect the hidden states xt for simplifying the analysis.
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where u is a zero-mean Gaussian random vector with covariance Σ(t − 1). We
define Vkl = ∂k∂l logEu[p(xt | xt−1, θ + u)] and assume that for large times we
can replace the difference equation for Σ(t) with a differential equation. Then
we can rewrite Equation 42 as

dΣ

dt
= ΣV Σ (43)

which is solved by
dΣ−1

dt
= −V (44)

Integrating both sides

Σ−1(t)− Σ−1(t0) = −
∫ t

t0

V (τ)dτ (45)

For large t ; we expect the covariance Σ to be small such that logEu[p(xt |
xt−1, µ + u)] = log p(xt | xt−1, µ). Assuming that the online dynamics is close
to θ∗ and dividing both sides of Equation 45 by t and taking the limit t→∞,
we get

lim
t→∞

(Σ−1(t))ij
t

= lim
t→∞

−
∫ t
t0
∂i∂j log p(x′ | x, θ∗)

t
(46)

Further assuming ergodicity (i.e., markov process converging to some stationary
distribution π), we can replace the time average with the probabilistic average.

lim
t→∞

(Σ−1(t))ij
t

= −
∫
π(x)p(x′ | x, θ∗)∂i∂j log p(x2 | x1, θ

∗)dxdx′ (47)

If we define the right hand side as Aij = −
∫
π(x)p(x′ | x, θ∗)∂i∂j log p(x2 |

x1, θ
∗)dxdx′ we have;

lim
t→∞

Σ(t) =
A−1

t
(48)

We will also analyze the asymptotic scaling of the estimation error, defined as
the deviation between θ∗ and µ(t). Assuming that the estimate µ is close to θ∗

and the posterior is sharply concentrated we can neglect the expectation with
respect to u in Equation 42. Defining µi(t) = θ∗i + εi(t), and applying a first
order Taylor approximation around θ∗ we get;

εi(t+ 1)− εi(t) =
∑
`

Σi`∂` logP +
∑
k`

Σi`εk(t)∂k∂l logP (49)

where P ≡ p(x′ | x, θ∗). Taking the expectation with respect to the stationary
distribution (denoted by an overbar) and using the relationship in Equation
48 and replacing the difference equation with a differential equation we get an
equation of motion for the expected error ei = ε̄i.

dei
dt

+
ei
t

=
∑
j

(A−1)ij
t

∂j logP (50)
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As t→∞ right hand side vanishes and hence the error term decays like ei ∝ 1
t .

Revisiting Equation 40, the true posterior covariance matrix is given by
C−1 = T Ĵ . Due to our ergodicity assumption, limt Ĵ = A. Hence the true
posterior density covariance asymptotically converges to A−1/T which is the
same limit as the assumed density filter covariance Σ(t).

KL divergence between two d-dimensional multivariate Gaussians, N (µ1,Σ1)
and N (µ2,Σ2) is given by

1

2

[
log
|Σ2|
|Σ1|

− d+ tr(Σ−1
2 Σ1) + (µ2 − µ1)TΣ−1

2 (µ2 − µ1)

]
(51)

We have shown that limt→∞ C,Σ = A−1/t and µ(t) → θ∗. Due to the iden-
tifiability assumption, the posterior mode is also assumed to converge to the
parameter θ∗. Applying these findings to the earlier KL-divergence formula, we
can see that;

lim
t→∞

DKL(p(θ | x0:t)||qt(θ)) = 0. (52)

For the SIN model discussed in the experiments section the true posterior
p(θ | x0:t) is computed for a grid of parameter values in O(t) time per parameter
value. Assumed density filtering is also applied with Q Gaussian and the true
density (solid) vs. assumed density (dashed) is illustrated in Figure 10. Notice
that, ADF is slightly off at earlier stages, however, does indeed catch up with
the ground truth with more data.
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Figure 10: True posterior p(θ | x0:t) vs assumed density filter estimate qt(θ)
(solid vs dashed line respectively). for the SIN model.

As predicted by Equation 50, the error term converges to zero as shown in
Figure 11(a). Figure 11(b) illustrates the asymptotic behavior of the true pos-
terior covariance C(t) and assumed density covariance Σ(t). Assumed density
filter quickly approximates the covariance.
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Figure 11: SIN model with θ∗ = 0.5

Most importantly, as can be seen from the plot, logC(t) and log Σ(t) is
log(1/t)+constant asymptotically, and this agrees with our derivations in Equa-
tion 48. Figure 11(c) confirms our theoretical result of KL divergence converging
to zero in the long-sequence limit.
Mixture of Gaussians Derivation
Let us assume that at time step i−1 it was possible to represent p(θ | x0:i−1, y0:i−1)
as a mixture of Gaussians with L components.

p(θ | x0:i−1, y0:i−1) =

L∑
m=1

αmi−1N (θ;µmi−1,Σ
m
i−1)

= qi−1(θ)

Given xi and yi;

p̂(θ | x0:i, y0:i) ∝
L∑

m=1

αmi−1si(θ)N (θ;µmi−1,Σ
m
i−1)

The above form will not be a Gaussian mixture for arbitrary si. We can rewrite
it as:

p̂ ∝
L∑

m=1

αmi−1β
m si(θ)N (θ;µmi−1,Σ

m
i−1)

βm
(53)
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where the fraction is to be approximated by a Gaussian via moment matching
and the weights are to be normalized. Here, each βm =

∫
si(θ)N (θ;µmi−1,Σ

m
i−1)dθ

describes how well the m-th mixture component explains the new data. That
is, a mixture component that explains the new data well will get up-weighted and

vice versa. The resulting approximated density would be qi(θ) =
∑K
m=1 α

m
i N (θ;µmi ,Σ

m
i )

where the recursions for updating each term is as follows:

βm =

∫
si(θ)N (θ;µmi−1,Σ

m
i−1)dθ

αmi =
αmi−1β

m∑
` α

`
i−1β

`

µmi =
1

βm

∫
θsi(θ)N (θ;µmi−1,Σ

m
i−1)dθ

Σmi =
1

βm

∫
θθT si(θ)N (θ;µmi−1,Σ

m
i−1)dθ − µmi (µmi )T

Similar to the Gaussian case, the above integrals are generally intractable.
Either a Monte Carlo sum or a Gaussian quadrature rule can be utilized to
approximately update the means and covariances.

Compilation Optimizations in SPEC
In this section, we introduce some optimizations in the implementation of SPEC.
These techniques are mostly standard techniques from programming languages
and adopted by many modern PPL compilers.
Memory Efficiency
Memory Pre-allocation: Memory management is a critical issue for particle
filter algorithms since it is often necessary to launch a large number of particles
in practice. Systems that does not manage the memory well will repeatedly
allocate memory at run time. For example, in BLOG, the inference engine will
allocate memory for new particles and erase the memory belonging to the old
ones after each iteration. This introduces tremendous overhead since memory
allocation is slow.

By contrast, SPEC will analyze the input model and allocate the minimum
static memory for computation: if the user specifies to run K particles, and the
Markov order of the input model is D, SPEC will allocate static memory for
(D + 1) ∗K particles in the target code. When the a new iteration starts, we
utilize a rotational array to re-use the memory of previous particles.

Lightweight Memoization: Notice that adopting an expressive lan-
guage interface (i.e. syntax of BLOG) might lead to time-varying dependencies
between random variables. Similar to the compilation of lazy evaluation in
programming language community, SPEC memoizes the value for each random
variables already sampled. An example compiled code fragment for the SIN is
shown below.

class TParticle { public:
// value of x and y at current timestep

double val_x, val_y;
// flag of whether x/y is sampled

int mark_x, mark_y;
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} particles[K][DEP]; // particle objects
// getter function of y(t)
double get_y(int t) {
// get the corresponding particle

TParticle &part = get_particle(t);
// memoization for y(t)
if(part.mark_y == cur_time) return part.val_y;
part.mark_y = cur_time;

// sample y(t), call getter function of x(t)
part.val_y = sample_normal(sin(get_theta() * get_x(t-1)), 0.5);
return part.val_x;

}

This code fragment demonstrate the basic data structures as well as the
memoization framework in the target code. K denotes the number of particles.
DEP is equal to the Markov order of the model plus 1. In the memoization
framework, SPEC allocates static memory for all the random variables within a
particle data structure and generates a flag for each random variable denoting
whether it has been sampled or not. Each random variable also has its get-
ter function. Whenever accessing to a random variable, we just call its getter
function. In practice, memoization causes negligible overhead.

Memoization also occurs in BLOG. However, every random variable in BLOG
has a string “name”, and a generic hashmap is used for value storage and re-
trieval, which brings a great deal of constant factor at run time.

Other Optimizations: SPEC also avoids dynamic memory allocation
as much as possible for intermediate computation step. For example, consider
a multinomial distribution. When its parameters change, a straightforward
implementation to update the parameters is to re-allocate a chunk of memory
storing all the new parameters and pass in to the object of the multinomial
distribution. However, this dynamic memory allocation operation is also avoided
in SPEC by pre-allocating static memory to store the new parameters.
Computational Efficiency
Pointer References: Resampling step is critical for particle filter algorithms
since it requires a large number of data copying operations. Note that a single
particle might occupy a large amount of memory in real applications. Directly
copying data from the old particles to a new ones induce tremendous overhead.

In SPEC, every particle access to its data via an indirect pointer. As a
result, redundant memory copying operations are avoided by only copying the
pointers referring to the actual particle objects during resampling Note that
each particle might need to store multiple pointers when dealing with models
with Markov order larger than 1. An example compiled code is shown below.

// indirect pointers to the actual particle
TParticles* part_ptrs[K][DEP];
TParticle& get_particle(int t) {// rotational array

return *part_ptr[cur_part][t % DEP]; }

Locality: Besides using pointer references to reduce the amount of moving
data, SPEC also enhances program locality to speed up re-sampling. In the
compiled code, the index of the arrays stores the indirect pointers are carefully
designed to take advantage of memory locality when copying. The fragment of
code used in resampling step is shown below.
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void resample_ptr( int* target,
TParticle* part_ptr[K][DEP], //storage of pointers
TParticle* backup_ptr[K][DEP]) // temporary storage

{ for (int i = 0; i < K; ++i) {
// pos: index of particle to copy data from
int& pos = target_ptr[i];
// move continuous range of data
std::memcpy(backup_ptr[i], part_ptr[pos], sizeof(TParticle*)* DEP); }

std::memcpy(ptr_temp_memo, backup_ptr, sizeof(TParticle*)* DEP * K);
}

In the preceding code fragment, the first dimension of the storage array,
part ptr, corresponds to the particle index. While the second dimension cor-
responds to the current iteration. In this case, when copying the pointers during
resampling step, all the memory are continuously located in the memory space,
which reduces the constant factor at run time.
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5 Model Based Probabilistic Inference for In-
tensive Care Medicine

Due to advances in electronics, modern ICUs are capable of collecting and
archiving ample amounts of clinical data. An ICU patient is continuously mon-
itored by various sensors as asynchronous interventions, tests and additional
measurements are carried out. While data are valuable, understanding and act-
ing upon them is what provides benefits in terms of improved health outcomes
and reduced costs.

A patient in an ICU is continuously monitored by various sensors, while
many interventions, tests, and additional measurements are done asynchronously.
The sensory data are usually displayed in real time, and can, if continuously ob-
served, provide an expert physician with a great deal of insight into a patient’s
condition. In most ICU settings, however, data are reduced to an hourly paper
chart generated by a nurse and reviewed daily by the physician. It seems plau-
sible, therefore, that standards of care might be improved by automated data
analysis and decision support systems.

Current monitoring technology is largely based on data display. The monitor
displays signals from various sensors and provides statistics such as short-term
averages. Some monitors also deploy automated alarms based on either simple
threshold based rules or single-channel analysis. However, false alarm rates of
these monitors often exceed 90%, leading to alarm fatigue Drew et al. [2014],
Chopra and McMahon [2014], Tsien and Fackler [1997].

An ideal system should not only report all pertinent measurements to clini-
cians, but should also summarize information by inferring the states of various
latent physiological and pathophysiological variables [Heldt et al., 2006, Heldt
and Verghese, 2010, Heldt et al., 2013]. We propose a model-based probabilistic
inference framework that can handle artifact-ridden data, variability in patient
physiology and unknown disease states.

We describe the patient’s physiology and the sensor dynamics as a proba-
bilistic model using a dynamic Bayesian network [Erol et al., 2013b, Sivaganesan
et al., 2012, Erol et al., 2015]. We use existing works on human physiology to
describe how the state of the patient evolves over time and employ a nontrivial
sensor model that is capable of explaining various artifactual readings in the
ICU setting. Then, the main task of the ICU monitoring system is estimating
the state of the patient accurately given a sequence of observations. Due to the
nonlinear, non-Gaussian behavior of our model, exact inference is intractable.
Hence, we resort to approximate inference via sequential Monte Carlo (SMC)
methods.

In section 5.1, we describe the model-based probabilistic inference approach
and list motivating reasons for such an approach. Our main interest is the
intracranial hemodynamics of traumatic brain injury (TBI) patients. We briefly
go over the physiology and sensor models and also present some inference results.
We conclude by discussing the required extensions to the proposed models and
the limitations of the current approach.
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5.1 Model-Based Probabilistic Inference

Due to the uncertainty in our knowledge of patient physiology, and the partial,
noisy/artifactual nature of the observations, we adopt a probabilistic, model-
based approach. As mentioned earlier, the core task of the ICU monitoring
system then becomes estimating the state of a patient given a sequence of ob-
servations by computing a posterior probability distribution. Recent trends in
machine learning suggest adopting a purely data-driven, model-free approach.
However, this may not be the best fit for the intensive care domain due to the
following reasons: 1) The data is complex and artifact-ridden. Data may be
missing from some sensors for extended periods and there are many artifactual
readings some persisting over extended periods. 2) There is a disparity between
the number of available signals and the dimensionality of the state space. We
only have access to few measurements whereas the latent state-space is high-
dimensional. 3) Models of the underlying physiology are available and sensor
dynamics can be explained. By being model-free, the available knowledge and
information is not exploited.

5.1.1 Probabilistic Modeling

Most physiological models are typically expressed as determinisitic differen-
tial equations. A classic example is the Guyton model which aims to describe
the whole human circulation system in terms of various interconnected subsys-
tems Guyton et al. [1972]. Deterministic modeling is not a good fit as patient-
specific parametrization is unknown and many pathophysiological states mani-
fest stochastic behavior.

We use two different models: The transition (physiology) model,
p(statest | statest−1, θ), (where statest stands for the physiological states at time
step t and θ for the patient-specific parameters), describes how the state of the
patient evolves with respect to time. The variable statet may include phys-
iological, pathophysiological states, sensor artifacts and failure states, drug
administration and so on. Hence, this approach can be extended to handle
various possible scenarios of interest in an ICU setting. The sensor model,
p(observationst | statest), describes how a patient and sensor state are related
to the observations.

We represent the model using the dynamic Bayesian network (DBN) frame-
work. DBNs are concise descriptions of stochastic differential equations and
they can handle both discrete and continuous variables Murphy [2002].

The core task of ICU monitoring is calculating a posterior probability distri-
bution over states given an observation history, p(statest | observations0:t). Our
model is nonlinear, non-Gaussian, and hybrid (containing discrete and continu-
ous state variables). Therefore to compute the required posterior densities, we
resort to sequential Monte Carlo (SMC) algorithms discussed in this thesis.

Every human has a unique set of parameters. Learning these parameter
values, p(θ | observations0:t), is a crucial part of the proposed framework; failing
to do so will lead to inaccurate state estimates. Therefore, we do joint state and
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parameter estimation in our temporal model as discussed in the earlier sections
of this thesis.

5.2 Application: Intracranial Hemodynamics

Our particular focus is on neurocritical care for traumatic brain injury (TBI),
which is the developed world’s leading cause of morbidity and mortality for in-
dividuals under the age of 45 Werner and Engelhard [2007]. TBI patients may
exhibit a multitude of primary and secondary brain injury pathways, and their
obtunded state adds to the difficulty of clinical assessment. The physiological
mechanism of interest for such patients is the intracranial hemodynamics sys-
tem, for which the key variable is the intracranial pressure (ICP)—the pressure
of the cerebrospinal fluid that surrounds the brain tissue. We are interested in
inferring critical physiological events and states using from ICP data and other
measurements.

For most purposes, available measurements include intracranial pressure
(ICP), arterial blood pressure (ABP), blood oxygen level and in some cases
cerebral blood flow velocity (CBFV). The problem is depicted in Figure 12.
Our goal is calculating the posterior probability on the latent variables given
the observed variables (shaded nodes). We have three main subsystems: 1)

Arterial Blood Pressure Sensor 

Model*

ABP

Intracranial 

Hemodynamics Model

ICP

Artifacts

ICP Sensor Model

Observed ICP

Artifacts

Observed ABP

Figure 12: High-level DBN representation of intracranial hemodynamics

Intracranial hemodynamics model 2) ABP sensor model 3) ICP sensor model.
Our sensor model is capable of explaining major clinical artifacts like blood
draw, zeroing, line clog, and drainage.

Although not shown in Figure 12, transcranial Doppler measurements of
CBFV Steiner and Andrews [2006] may be available as well. Under these
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circumstances, noninvasive estimation of ICP via the proposed model-based
probabilistic approach using noninvasive measurements like ABP and CBFV is
possible. There are recent works in the literature that rely on a model-based
approach to achieve the noninvasive reconstruction goal Kashif et al. [2012],
Kashif [2011].

5.3 Probabilistic Model of Intracranial Hemodynamics

The brain is enclosed inside the rigid skull and bathed by the cerebrospinal fluid
(CSF). The volume of the intracranial compartment consists of three compo-
nents: the brain tissue, cerebral vasculature, and CSF compartments. Since
the intracranial compartment is a closed system, an increase in one component
must lead to a decrease in one or both of the other two. This is known as the
Monro-Kellie doctrine [Mokri, 2001].

Cerebral blood flow is proportional to the so called cerebral perfusion pres-
sure (CPP) which is the gradient between mean arterial pressure and ICP. The
brain demands a continuous and substantial supply of blood flow. In order to
deal with fluctuations in CPP our bodies utilize cerebral autoregulation, which
is the mechanism that regulates the cerebral blood flow to meet the strict con-
straint of brains blood supply needs. For many TBI patients, autoregulation
is no longer intact therefore the blood oxygen supply to the brain is highly de-
pendent on maintaining CPP at reasonable levels. One of the main goals of our
proposed framework is to estimate the unobserved autoregulation state of the
patient via streaming continuous measurements.

Latent true mean ABP value is an exogenous input to the intracranial
hemodynamics model. We are adopting the intracranial dynamics model de-
veloped by Ursino and Lodi [1997], Ursino et al. [1997]. This model has been
extended to include various pathophysiological states such as autoregulation
failure, hematoma, edema, internal bleeding, vasospasm etc. Some results on
state and parameter estimation are presented in Erol et al. [2013b], Sivaganesan
et al. [2012].

Ursino model consists of bunch of nonlinear differential equations that reg-
ulate pressure and flow in the intracranial compartment. We discretize these
differential equations, introduce stochasticity to explain small random perturba-
tions and randomly occurring pathophysiologies and represent the intracranial
dynamics using a dynamic Bayesian network (DBN). A portion of the model is
illustrated in 13.

We have developed differential equations for various sets of physiological
variables. For instance, ICP can be expressed mathematically as follows.

Ṗic =

(
2G1

Cic

)
Pa +

(−2G1

Cic

)
P1 +

(−2G2

Cic

)
P2 +

(
2G2 +Gpv

Cic

)
Pc

+

(−Gpv −Gvs
Cic

)
Pv +

(
Gvs
Cic

)
Pvs +

(
Gf
Cic

)
(Pc − Pic)+ −

(
G0

Cic

)
(Pic − Pvs)+

where C1, C2, Gf , and G0 are static parameters and Pa, P1, P2, Pc, Pv and Pvs
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Figure 13: A portion of the DBN that illustrates the transition for the intracra-
nial pressure ICP (t)

are various pressures inside the intracranial compartment.

Cic =
1

(KE × Pic)

Cvi =
1

Kv(Pv − Pic − Pv1)

KE , Kv and Pv1 are static parameters as well. The complete model has more
than 10 dynamic state variables and more than 25 static parameters.

Figure 13 illustrates the aforementioned differential equation graphically.
Due to the highly interconnected nature of the DBN structure, we will not
illustrate the whole intracranial dynamics structure here.

Our model is capable of explaining various stochastic physiological and
clinical scenarios. We have the capability to simulate pathophysiologies like
hematoma, edema, hypo/hyper-tension, and hyperventilation. Furthermore,
our model can simulate the dynamics of clinical interventions like jugular vein
compression and cerebrospinal fluid (CSF) drainage that is performed frequently
at neurocritical ICUs to assess the patient’s physiological state.

Figure 14, 15, and 16 illustrate pathophysiology simulations and show how
our model can express events like hypotension, hyperventilation, and hematoma
respectively. Simulations agree with medical knowledge and brief explanations
to the underlying mechanism for each scenario are given in the caption.

Figure 17 and 18 depict clinical intervention simulations and show how our
model can express events like CSF drainage and jugular vein compression re-
spectively.

Pathophysiology and clinical intervention variables are described as Bernoulli
processes in our DBN. These variables can switch from normal to abnormal state
with some probability. Given observations, our inference algorithms have the
capability to infer whether pathophysiologies are happening or the nature of
interventions.
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Figure 14: Hypotension: The simulated behavior of intracranial variables
around a 4 min period in which the ABP drops from 100 to 60 mmHg. Top left:
ICP falls and rises with ABP. Top right: CBF stays within a tight range when
autoregulation is intact, but decreases markedly when it is impaired. Bottom
left: CSF absorption drops below formation as the reduction in ICP decreases
its pressure gradient. Bottom right: Proximal arterial radius increases during
hypotension, but only if autoregulation is intact.
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Figure 15: Hyperventilation: CO2 levels decrease. Blood flow is restricted
via autoregulation to keep oxygen levels in range. Top left: Less blood flows in
and hence ICP drops. Top right: CBF decreases to keep O2 and CO2 levels in
check. Bottom right: Proximal artery constricts to limit cerebral blood flow.
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Figure 16: Hematoma: Extraneous volume starts growing hence replacing
other volumes. Top left: Radius increases in order to maintain steady flow
due to increased ICP. Top right: ICP rises as there is an additional volume
source in the intracranial compartment. Bottom left: CSF gets absorbed to
open up space to hematoma. Bottom right: CBF decreases then recovers due
to autoregulation.
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Figure 17: CSF drainage: CSF is drained at a constant rate for a few seconds.
Top left: CPP increases and in order to maintain blood flow proximal artery
constricts. Top right: ICP falls as there is less volume in the compartment.
Bottom left: CSF absorption ceases.

5.3.1 Inference in Intracranial Hemodynamics Model

Minutes’ worth of intracranial pressure data is simulated via our model at 125
Hz. We first investigate inferring autoregulation failure. Autoregulation state
is one of the most important variables for physician to infer for TBI patients.
Usually a physician might resort to an invasive clinical intervention to observe
the reaction and assess accordingly. With particle filtering, we can infer via
leveraging the information buried in high-frequency data. Figure 19 illustrates
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Figure 18: Jugular vein compression: Simulated behavior during jugular
compression. Top left: Venous sinus pressure (VSP) rises as jugular vein is
compressed. Top right: ICP rises as jugular compression prevents venous out-
flow. Bottom left: CSF absorption rate drops below formation rate as rise in
VSP decreases its pressure gradient. Bottom right: CSF volume rises while CSF
formation exceeds absorption.

the inference of autoregulation failure. Within several seconds of latency our
bootstrap filter with 5000 particles infers that a failure has happened. For this
specific experiment we assumed that all parameters were known and set to their
demographic means provided by Ursino et al. [1997].

Figure 19: Green line shows the exact autoregulation behavior. Autoregulation
failure happens around the 15th second whereas the particle filter infers the
failure correctly around the 20th second. Red line is the mean of the particles,
showing approximately the probability of whether autoregulation is intact.

For the following joint state and parameter estimation experiment, we as-
sume all the parameters are known and set to their demographic means except
the intracranial compartment elasticity constant kE and CSF outflow conduc-
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tance G0. The Liu-West filter with 5000 particles lead to reasonable posteriors
that converge to the true parameter values as depicted in Figure 20(a) and
20(b).

(a) kE Inference (b) G0 Inference

Figure 20: State and Parameter Estimation. Blue horizontal line depicts the
true parameter setting. (a)-Particle mean (green) and std (red) for elasticity
constant kE . (b)-Particle mean and std for CSF outflow conductance G0.

5.4 Sensor Model

5.4.1 ABP Sensor Model

As stated by Aleks et al. [2009], blood pressure informs much of medical thinking
and is typically measured continuously in the ICU. The most common way of
determining blood pressure in the ICU is to place a transducer on an arterial
line, a catheter that is inside one of the patients small arteries; this data is then
displayed on a bedside monitor. Due to the high variance of pressure during
the cardiac cycle, we use three measurements: systolic (the maximum reached
during the cardiac cycle), diastolic (the corresponding minimum), and mean
blood pressures [Aleks et al., 2009].

In [Aleks et al., 2009], using the model-based probabilistic inference method-
ology, over 90% of false ABP alarms (threshold-based) were eliminated while
only missing fewer than 1% of the true alarms. The aforementioned work used a
minute-resolution DBN. We reproduced their results and then used this model
to create a second-resolution blood pressure model. As we predicted, the second-
resolution model is able to capture events that the minute-resolution model was
unable to capture. For example, most events that lasted less than 10 seconds are
not detected by the minute-model, but are picked up by the second-resolution
model.

So far, we modeled three major ABP sensor artifacts: zero events, bag events,
and line clogging. Zero events occur when an ICU staff calibrates the instru-
mentation device, effectively zeroing out all the signals. It is seen as a severe
and sudden drop in all of the values due to the transducer reading atmospheric
pressure. Bag events occur when the transducer reads the intravenous (IV) bag
pressure instead of the patient’s blood pressure and is seen as a dramatic spike

57



in the observed values. Finally, line clogs occur when there is a kink or an
obstruction in the line to the transducer. This zeros the variation in pressure,
causing the systolic and diastolic to converge to the mean value.

Figure 21 shows real data from an ICU patient over the span of 100 minutes.
From top to bottom, one can see the observed systolic, mean, and diastolic blood
pressures. Just by looking at data, it is obvious that handling the artifacts and
the missing data is crucial for the success of a real-time decision support system.
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Figure 21: Sample artifactual ABP trace

5.4.2 Model

We developed a one second-resolution model that is capable of generating ar-
tifacts and physiological signals. The DBN representation of the developed
generative model is depicted in Figure 22.

At the top of the DBN are the true pulse, true mean, and systolic fraction
(the ratio of the difference of the diastolic and systolic pressures and the mean).
These values give us the true systolic and diastolic values, the ground truth
values that our algorithm attempts to infer. We simply used a random-walk
type model to describe the evolution of these values. A better cardiovascu-
lar dynamics model will significantly improve the performance of the proposed
approach.

The values near the bottom are the apparent systolic, diastolic, and mean
blood pressure– values that include artifacts and are similar to what the trans-
ducer would be measuring. The observed values just below include some addi-
tional signal noise and represent what would typically be seen on the monitor.

At any given time, a patient can be in a normal, zero, bag, or clog state.
Depending on which state the patient is in, newPot[S,D,M] will reflect the new
potential that each apparent pressure will converge to. A probabilistic decision
is then made on whether patients stays in their current state. Finally, we prop-
agate to the next time step from the current values using our mathematical
models. This can be seen in Figure 22 as the arrows point from time step t to
t+1.
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Figure 22: Dynamic Bayesian network representation of the arterial blood pres-
sure sensor model

Bag Events
One artifact is the bag event, which occurs when the transducer reads the pos-
itive pressure from the IV bag elevated at a height. Figure 23(a) shows what
the event would look like on an ICU monitor.
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Figure 23: (a) Sample blood draw trace; (b) Probabilistic belief on systolic,
mean, diastolic, and bag latent variables

The inference results using a particle filter with N = 20000 particles is
illustrated in Figure 23(b). The three blue lines represent the mean belief of the
diastolic, mean, and systolic ABP values, which do not follow the spike of the
bag event. The lines at the bottom report the beliefs for each event occurring;
in this case, only the bag event registers. The purple shade around the blue
lines describe the uncertainty in our estimates.

It is also interesting to see how the posterior density over the bag pressure
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evolves. The posterior density starts at the prior and gets more and more
ambiguous over time. Once the bag event is inferred, the bag value is quickly
updated and the particle filter is almost certain of the bag pressure value. This
behavior is also theoretically expected.

Zero Events
The second artifact incorporated into our DBN is a zeroing event. As mentioned,
this occurs when the transducer is exposed to atmospheric pressure which is
approximately zero pressure. Figure 24(a) shows an example of such an event.
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Figure 24: (a) Sample zeroing trace; (b) Probabilistic belief on systolic, mean,
diastolic, and zeroing latent variables

This event is similar to a bag event in that the sensor no longer reads patient
data. A working inference algorithm should detect this event and show that
the true diastolic, mean, and systolic values remain in a safe range. Figure
24(b) shows how the inference performs on this event. The blue lines again
represent mean belief values for systolic, diastolic, and mean blood pressures in
our inference model. We can see that the zero event is detected and the values
reflect that. Note that the purple shade gets wider during the event. This is due
to the fact that the inference no longer trusts the current observations and the
beliefs on the ground truth variables get more and more uncertain with time.

Clog Events
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Figure 25: (a) Sample line clog trace; (b) Probabilistic belief on systolic, mean,
diastolic, and line clog latent variables

The last ABP artifact modeled is a line clog, which causes loss of pulse-to-
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pulse pressure. As seen in Figure 25(a), the observed values for systolic and
diastolic blood pressure converge to the mean for the entirety of the event.

The inference results are depicted in Figure 25(b) . The particles are capable
of tracking the clogging artifact as well as interpolating the missing systolic and
diastolic values.

5.4.3 ICP Sensor Model

For the neurocritical care of TBI patients, intracranial pressure (ICP) is the
most important measurement for diagnosis and treatment. Current treatment
procedure keeps the cerebral perfusion pressure (CPP), which is defined as the
gradient between mean arterial pressure (MAP) and ICP, in a safe range in
order to keep the patients brain supplied with oxygen. The simplest treatment
strategy to keep ICP below a certain level is cerebrospinal fluid (CSF) drainage.
CSF is drained when ICP exceeds some set threshold (usually 20 or 25 mmHg).
During the drainage, the ICP sensor reads a random pressure value. A sample
drainage trace is illustrated in Figure 26.
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Figure 26: Probabilistic belief on intracranial pressure during CSF drainage

Unlike blood pressure artifacts, drainage also affects the physiology. During
the drainage, the patient’s true ICP slowly falls due to the volume loss. The
particle filter, after noticing the sharp drop from 22 mmHg to 14 mmHg, im-
mediately detects a drainage event since the intracranial physiology model is
incapable of explaining such an instantaneous change. It is important to no-
tice that the intracranial pressure belief is nicely estimated in a physiologically
reasonable way during the drainage event.

5.5 Concluding Remarks

We described a model-based probabilistic framework capable of representing
highly complex physiological phenomena. Using state-of-the-art statistical learn-
ing algorithms, we are able to do combined state and parameter estimation. The
proposed approach can be used for estimating physiological and pathophysio-
logical states, sensor artifacts and failure states, and drug administration.
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The sensor models are still quite inadequate; various other artifacts still need
to be added in order to handle real-life clinical data. Artifacts we are considering
to add to our DBN in the immediate future are: line flushes, sensor detachment,
patient coughing or thrashing, and a nurse rolling the patient. Although our
preliminary results seem promising, we still need to validate the artifact cleaning
approach on more real data.

The current physiology model we are using is also fairly restrictive as it
doesn’t describe various pathophysiological phenomena. We need to extend the
model provided by Ursino to handle different disease states. Furthermore, we
currently do not have a pharmacokinetics model that can explain the dynamics
after drug administration. Drugs such as mannitol are frequently used in the
clinical care of TBI patients Rangel-Castillo et al. [2008]. We would next want to
extend our generative model to describe the effects of mannitol administration
to infer the onset of drug administration as well as the dosage.

We also still need to validate the performance of the pathophysiological
state estimation by comparing inferential results of our algorithms on real data
against the physician’s diagnosis after a provocative test or intervention.
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6 Conclusion

Many sequential Monte Carlo algorithms have been introduced for joint state
and parameter estimation in the literature, however, the task still remains a
challenge for state space models with complex dependencies and nonlinear dy-
namics. Existing algorithms are either restricted to a particular class of models
or computationally expensive. We proposed two new algorithms, namely, the
extended parameter filter and the assumed parameter filter that try to close the
trade-off gap between computational efficiency, accuracy, and applicability to
arbitrary model classes.

Our first contribution, the extended parameter filter extends the Storvik
filter in a natural way by introducing separability. EPF further utilizes polyno-
mial approximation schemes to handle much broader model classes. Although
theoretically very appealing, the need for manually deriving polynomial approx-
imations constitute a substantial problem for a fully automatic algorithm that
can be utilized in a probabilistic programming language.

Our second contribution, the assumed parameter filter is a nearly-black box
algorithm applicable to arbitrary temporal models. We have developed it as an
automatic inference engine for a probabilistic programming engine. Experiments
show that APF converges much faster than existing algorithms on a variety of
models. APF is a very promising direction for online joint state and parameter
estimation. One avenue for future work is analyzing the theoretical conditions
under which APF can approximate the posterior robustly for arbitrary models.
Automating the choice of approximation densities will also be beneficial for
making inference algorithms and probabilistic programming more accessible to
the non-expert.

Finally, we discussed our work on model-based probabilistic inference for
intensive care medicine. We have shown some results on simulated data for
intracranial hemodynamics model. For sensor artifact clearing, several results
have been shown on real clinical blood pressure data.

In order to make the approach work with real clinical data, one needs to
model, infer, analyze/visualize results, and re-model continually. Probabilistic
programming is invaluable for such a task as it decouples the task of modeling
and inference. In future, by developing stronger and better black-box infer-
ence algorithms for joint state and parameter estimation we should be able to
adequately handle complex models and speed up the research process.

63



References

Norm Aleks, Stuart J Russell, Michael G Madden, Diane Morabito, Kristan
Staudenmayer, Mitchell Cohen, and Geoffrey T Manley. Probabilistic detec-
tion of short events, with application to critical care monitoring. In Advances
in Neural Information Processing Systems, pages 49–56, 2009.

Daniel L Alspach and Harold W Sorenson. Nonlinear Bayesian estimation using
Gaussian sum approximations. Automatic Control, IEEE Transactions on,
17(4):439–448, 1972.

Christophe Andrieu, Arnaud Doucet, and Roman Holenstein. Particle Markov
chain Monte Carlo methods. Journal of the Royal Statistical Society: Series
B, 72(3):269–342, 2010.

Nimar S Arora. Model-based Bayesian Seismic Monitoring. PhD thesis, EECS
Department, University of California, Berkeley, May 2012. URL http://

www2.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-125.html.

Nimar S. Arora, Stuart J. Russell, Paul Kidwell, and Erik B. Sudderth. Global
seismic monitoring as probabilistic inference. In NIPS, pages 73–81, 2010.

Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tuto-
rial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking.
IEEE Transactions on Signal Processing, 50(2):174–188, 2002.

Xavier Boyen and Daphne Koller. Tractable inference for complex stochastic
processes. In UAI, pages 33–42. Morgan Kaufmann Publishers Inc., 1998.
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