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Abstract

Detection limits and fluctuation results in some spiked random matrix models and pooling
of discrete data

by

Ahmed El Alaoui El Abidi

Doctor of Philosophy in Engineering - Electrical Engineering & Computer Sciences

with Designated Emphasis in Communication, Computation and Statistics

University of California, Berkeley

Professor Michael I. Jordan, Chair

In this thesis we examine the fundamental limits of detecting and recovering a weak signal
hidden in a large amount of noise. We will consider two problems. The first one pertains
to principal component analysis, and is about estimating and detecting the presence of a
structured low-rank signal buried inside a large noise matrix. Prominent models of this
problem include the so-called spiked or deformed ensembles from random matrix theory,
which are distributions over matrices of the form “signal + noise.” It is known in these
models that the top eigenpair of the data matrix becomes indicative of the presence of this
signal, or ”spike”, when and only when its strength is above a certain ”spectral” threshold.
A natural question is then whether it is possible to identify the spike, or even tell if it’s really
present in the data below this threshold. In the first part of this thesis, we will completely
characterize the fundamental limits of the detection and estimation of the spike. The analysis
leading to this characterization crucially relies on a recently discovered connection of this
statistical problem with the mean-field theory of spin glasses. This connection provides the
necessary tools to obtain precise control on the behavior of the posterior distribution of the
spike as well as the fluctuations of the associated likelihood ratio process.

The second problem we consider is that of pooling, and is about recovering a discrete
signal, i.e., whose entries only take can a finite number of values, given several observation
that are constrained in a combinatorial way. More precisely, in a manner akin to compressed
sensing, observations of this signal can be obtained in the form of histograms: pooled mea-
surements counting the occurrence of each symbol across subsets of the variables. We ask
what is the minimal number of random measurements of this sort it takes to reconstruct the
signal. In the second part of this thesis, we determine sharp upper and lower bounds on the
minimal number of measurements for the signal to be essentially unique, thus in principle
recoverable from the observed data. We then provide an efficient algorithm to extract it,
and show that this strategy is successful only when the number of measurements is much
larger than this uniqueness threshold.
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Chapter 1

Introduction

The general theme of this thesis is to investigate the fundamental limits of detecting the
presence of a structured signal hidden in a large amount of noise, and when the signal is
indeed present, the extend to which it could be reliably estimated. These questions are
relevant in a modern context of data analysis in which large amounts of data are gathered in
the experimental sciences and industry, and where the Scientist or Engineer wishes to test
increasingly complex hypotheses about what this data might entail, or glean information
about the faintest signal in it, preferably in a time-efficient way. While the amount of data
in one’s possession is large, so is the number of parameters or degrees of freedom one wishes
to control or estimate. Additionally, in the presence of noise or corruptions, it may be very
difficult to extract relevant information, or to even tell if a signal is really there.

We will focus on simple models in which both the signal and the noise that corrupts it
have a certain structure, and for which the above detection and estimation problems admit
sharp characterizations as the dimension of the problem grows unbounded; this is the high-
dimensional, or “big data” regime. The main contribution of this thesis is to develop and
deploy the necessary theoretical tools to prove these sharp characterizations in two different
settings:

1. The first setting is that of principal component analysis (PCA). The goal is roughly as
follows: given a set of data points corrupted with noise and living in a high-dimensional
Euclidean space Rd, to find out whether there exists a distinguished direction in space
along which these data points partially align, or whether these data points are scat-
tered in all directions is a relatively uniform way. Additionally if such a distinguished
direction is present, one would like to identify it to the best possible accuracy. We will
consider specific models of this problem; the so-called spiked or deformed ensemble of
random matrices in which a signal of low rank structure—or the spike—representing
the distinguished direction is drowned in a large noise matrix. We provide an almost
complete characterization of the limits of detecting and estimating this spike in these
models.

2. The second setting is more discrete, and concerns the problem of pooling. Consider a
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discrete high-dimensional signal consisting of categorical variables, i.e., the variables
can only take a finite number of values. (For example, the blood type of a human, or
nucleotides in a string of DNA.) In a manner akin to compressed sensing, observations
of this signal can be obtained in the form of “histograms” or “frequency spectra”—
pooled measurements counting the occurrence of each category or type across subsets of
the variables. In a more concrete way, consider a population of n individuals where each
individual belongs to one category among d. An observer repeatedly selects a subset
of individuals, computes the histogram of their types (i.e., number of occurrences of
each category in that subset), then reveals this histogram along with the individuals
in that subset. This gives rise to the inferential problem of determining the category
of every individual in the population. We provide tight upper and lower bounds on
the minimal number of observations needed for recovery, and ascertain whether this
inferential problem can be solved in an efficient manner.

The two problems discussed above share a common characteristic that is worth noting:
there exists a certain regime of parameters (strength of the noise, number of samples,...) in
which extracting the signal becomes information-theoretically possible, but computationally
challenging. In other words, the data at hand is of sufficiently good quality to at least
partially extract some signal, however, all known efficient algorithms fail to extract it. In
the first problem, one may attempt to test and/or estimate based on the spectrum of the
observed matrix. The performance of these spectral tests/estimators has been throughly
studied in statistics and random matrix theory and is fairly well understood in the most
common situations. We will see that there are situations where it is possible to reliably
estimate the spike while the spectrum captures no information about it. The same situation
occurs in the second problem. We will provide an efficient algorithm that is only able to
recover the signal long after it is information-theoretically identifiable.

1.1 Hypothesis testing and estimation

In this section we put the notions of a test, an estimator and “best” accuracy loosely discussed
above on a formal mathematical ground.

The detection problem

The setting we adopt here is that of binary hypothesis testing (Keener, 2011). Let (Ω,F , ρ)
be a probability space, (X ,B) be a topological space endowed with its Borel σ-algebra B,
and Θ a set of “parameters”. One observes a random variable X : Ω 7→ X whose law is Pθ
where θ ∈ Θ, and would like to distinguish between the following two hypotheses:

H0 : θ = 0 v.s. H1 : θ = θ̄,

for a fixed θ̄ 6= 0. For the concrete random matrix problems we look at in this thesis, the
parameter θ will be real valued and represents the strength of the distinguished direction,
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or spike, of interest. More precisely, one would like to construct a measurable function (or
test) T : X 7→ {0, 1} that returns “0” for H0 and “1” for H1, such that the mis-classification
error

err(T ) := Pθ̄(T (X) = 0) + P0(T (X) = 1) (1.1)

is minimized among all possible tests T .
In order to make (non)asymptotic statistical statements it is useful to consider not only

one such problem, but a sequence of problems indexed by an integer n. This could model
the accumulation of data and/or the growth of the number or dimension of parameters θ. In
this case, and in addition to the above criterion err, one could also consider a more stringent,
asymptotic definition of figure of merit. Namely that a sequence of tests (Tn) must satisfy

lim
n→∞

Pn,θ̄(Tn(Xn) = 0) ∨ Pn,0(Tn(Xn) = 1) = 0. (1.2)

We have made the dependence of Pθ on n explicit. The reader should interpret the above
statement as follows: as the amount of data grows, we would like be more and more confident
in our guess of where the data came from. Throughout, we refer to the question of existence
of a sequence of tests that answers to the requirement (1.2) as the strong detection problem,
and the question of minimizing the criterion (1.1) as weak detection.

Strong detection We would like to understand for what values of θ̄ is strong detection
possible. To fix some intuition, let us think of θ̄ as a continuous real-valued parameter that
represents the strength of the signal we want to detect. A large θ̄ means an easier detection
problem while a small θ̄ means a harder one. We are interested in the smallest value of this
parameter such that strong detection is still possible. To this end, Le Cam (1960) defined the
notion of contiguity between two sequences of probability measures (see, e.g., Van der Vaart,
2000).

Definition 1.1 (Contiguity). Let (Pn) and (Qn) be two sequences of probability measures
defined on the same sequence of measurable spaces (Ωn,Fn). We will say that (Pn) is con-
tiguous to (Qn) if Qn(An) → 0 implies that Pn(An) → 0 as n → ∞ for every sequence of
measurable sets (An), An ∈ Fn. We will say that (Pn) and (Qn) are mutually contiguous if
(Pn) is contiguous to (Qn) and vice versa.

In our case, Pn = Pn,θ̄ and Qn = Pn,0. It is easy to see that contiguity implies impossibility
of strong detection since for instance, if (Pn) is contiguous to (Qn), then Qn(T (Xn) = 1)→ 0
implies that Pn(T (Xn) = 0)→ 1. The most straightforward way to prove contiguity of two
sequences of probability measures is via the second moment method. We briefly sketch the
idea of this method. Assume that Pn is absolutely continuous with respect to Qn for every
n sufficiently large (otherwise contiguity cannot hold). Now define the likelihood ratio or
Radon-Nikodym derivative of Pn with respect to Qn: Ln ≡ dPn/dQn. For any event A ∈ Fn,

Pn(A) =

∫
1A(ω)dPn(ω) =

∫
1A(ω)Ln(ω)dQn(ω)
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≤

√∫
L2
ndQn ·

√∫
1AdQn =

√
EQn [L2

n] ·
√
Qn(A).

where the inequality is by Cauchy-Schwarz. Therefore, it suffices to show that

lim supEQn [L2
n] <∞, (1.3)

in order to show contiguity of (Pn) w.r.t. (Qn). This is a method of choice for proving
impossibility of strong detection in many statistical problems, well beyond what is studied
in this thesis (see for example Addario-Berry et al., 2010; Arias-Castro and Verzelen, 2014;
Ingster and Suslina, 2012; Verzelen and Arias-Castro, 2015). Its major appeal lies in its
simplicity since it only requires to compute the expected square of the likelihood ratio under
the null model Qn. Its drawback on the other hand is that condition (1.3) is in general far
from necessary. Two sequences can very well be (mutually) contiguous while their likelihood
ratio has an infinite second moment. This problem is alleviated, at least partially, by a
conditioning argument: in many cases, the divergence of the second moment in (1.3) can be
attributed to the existence of a rare event Bn whose contribution to the overall expectation
E[L2

n] is comparatively very large so as to make L2
n ill-behaved. Then one can simply condi-

tion away this bad event for a better control of the second moment of a modified likelihood
ratio L̃n = dP̃n/dQn, where P̃n = Pn(·|B̄n). By rarity of Bn, i.e., Pn(Bn) → 0, one is again
able to conclude. However, identifying the right event to condition on can be difficult, and
is a matter of a case-by-case deliberation.

A different approach which we take in this thesis is to understand how the likelihood
ratio Ln is asymptotically distributed, rather than just controlling its second moment. Then
the connection to contiguity is given by Le Cam’s first lemma, which we state here.

Lemma 1.2 (Le Cam’s first lemma). The sequence (Pn) is contiguous to (Qn) if and only
if Ln  V under Qn (possibly along a subsequence) implies that E[V ] = 1.

The symbol “ ” denotes convergence in distribution as n→∞, and the phrase “under
Qn” means that Ln is seen as a random variable on the probability space (Ωn,Fn, Qn). Taken
together, “Ln  V under Qn” means

∫
f(Ln)dQn →

∫
f(V )dρ for every bounded continuous

function f : R 7→ R. (ρ being the fixed background probability measure.) A notable special
case of this lemma is that of asymptotic log-normality, where logLn  N (µ, σ2) under Qn.
In this case, V = eZ , where Z ∼ N (µ, σ2), so E[V ] = 1 if and only if µ = −1

2
σ2. The

above lemma provides an exact characterization of contiguity in terms of the properties of
the asymptotic distributional limit of Ln.

Weak detection. When contiguity holds and testing errors are inevitable, it is natural
to weaken one’s requirements, and ask to test with accuracy better than that of a random
guess1. More precisely, by the classical Neyman-Pearson lemma (Keener, 2011), the optimal

1Strictly speaking, if one only wants to beat random guessing, it is enough to find a sequence of tests
that meets the criterion lim sup errn(Tn) < 1. But we will be interested in tests that minimize errn.
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test minimizing the risk (1.1) is the likelihood ratio test which rejects the null hypothesis
H0 (i.e., returns “1”) if Ln > 1, and its Type-I and Type-II errors are Qn(Ln ≥ 1) and
Pn(Ln < 1) respectively. Once more, if one is able obtain the precise asymptotic distribution
of Ln under Qn (or Pn) then one is able to characterize the performance of the best test,
hence determine the fundamental limits of detection.

The estimation problem

The estimation problem can be phrased as follows: given a random variable X : Ω 7→ X
defined on (Ω,F , ρ) and whose law is Pθ, the goal is to estimate the parameter θ based on
the sample X. Here we further assume that the space of parameters Θ is endowed with a
metric d, and the quality of an estimator θ̂ : X 7→ Θ can be measured in terms of its squared
distance from θ:

E
[
d(θ̂(X), θ)2

]
.

For our purposes, Θ will be the Euclidean space Rp for some p and we will simply take d
to be the `2 distance. Additionally, if we let θ : Ω 7→ Θ be a random variable with “prior”
distribution µ, then we can explicitly determine the best estimator with respect to the above
expected `2 distance: this is just the posterior mean of θ given X:

θ̂(X) = E[θ|X], (1.4)

and the minimal mean squared error (MMSE) is

E
[∥∥θ̂(X)− θ

∥∥2

`2

]
= E

[
‖θ‖2

`2

]
− E

[∥∥E [θ|X]
∥∥2

`2

]
. (1.5)

Observe that a simplistic strategy would be to predict θ by its prior mean E[θ] without

looking at the data X, in which case one incurs an error of E
[∥∥θ − E[θ]

∥∥2

`2

]
= var(θ). Now

given a specific statistical model θ ∼ µ, X ∼ Pθ, we will pay a particular attention to the
following questions:

• What is the value of its MMSE?

• When is it strictly smaller than var(θ)?

• Can the posterior mean be computed exactly or approximated efficiently?

1.2 Spiked models of random matrices

Now we introduce the specific spiked random matrix models to which the above framework
will be applied in the first part of this thesis.

Spiked models are distributions over matrices of the form “signal + noise”. They have
been a mainstay in the statistical literature since their introduction by Johnstone (2001) as
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mathematically rich models for the study of high-dimensional principal component analysis
(PCA). Their introduction has provided the foundations for a rich theory of PCA, in which
the performance of several important tests and estimators is by now well understood (see,
e.g., Amini and Wainwright, 2009; Berthet and Rigollet, 2013; Dobriban, 2017; Johnstone
and Lu, 2009; Ledoit and Wolf, 2002; Nadler, 2008; Paul, 2007).

In the first three chapters of this thesis, we focus on the following two particular models:
The first is the so-called spiked Wigner model where one observes a symmetric N×N matrix
of the form

Y =

√
λ

N
xx> +W , (1.6)

where x is the spike which represents the direction of interest, W is symmetric noise matrix
with entries which we assume Gaussian and independent, up to symmetry. The parameter
λ is the strength of the spike and plays the role of a signal-to-noise ratio.

The second model is an asymmetric, rectangular version of the first, where one observes
a N ×M matrix

Y =

√
λ

N
uv> +W , (1.7)

where u and v correspond to a low rank factor to be recovered and W is again a Gaussian
noise matrix. In particular the model introduced by Johnstone (and generalizations of it)
corresponds to the special case vj ∼ N (0, 1). One can see in this case that the M column
vectors yj ∈ RN , 1 ≤ j ≤M of Y are drawn i.i.d. from a centered normal distribution with
spiked covariance: N (0, I + λ

N
uu>). For this reason, model (1.7) and its close relatives are

usually referred to as spiked covariance models.
The above asymmetric model has more degrees of freedom, namely two independent

factors u and v, and a additional parameter compared to the symmetric model, which is the
aspect ratio M/N of the matrix Y .

In this case, we will assume a high-dimensional setting where both M and N grow to
infinity while their ratio converges to a finit value α. In both models, the low rank factors
are assumed to have independent coordinates drawn from fixed priors on R.

It is known that the spectral norm of the noise matrixW is of order
√
N as its dimensions

grow to infinity (see e.g., Bai and Silverstein, 2010; Tao, 2012). Therefore, scaling the rank-
one component by

√
N puts the magnitudes of the “signal” and “noise” components of the

matrix Y on the same scale, and λ allows to control their relative strengths. As we review
next, the model is in a critical regime where its properties undergo sharp “phase transitions”
as λ crosses some finite thresholds.

In these models,

what are the fundamental limits of detection and estimation of the spike?

More precisely,

• for what values of α, λ is strong/weak detection possible?
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• what is the performance of the likelihood ratio test?

• what is the performance of the posterior mean in estimating the spike?

Before embarking on the analysis of these questions it is reasonable to first look at tests
and estimators that can be easily constructed from the eigenvalues and eigenvectors of Y ,
and understand their performance.

Spectral properties

The spectral properties of these models have been extensively studied, in particular in ran-
dom matrix theory, where they are known as deformed ensembles (Péché, 2014). Landmark
investigations in this area have unveiled the existence of sharp transition phenomena in the
behavior of the spectrum of the data matrix, where for a spike of strength λ above a certain
spectral threshold, the top eigenvalue separates from the remaining eigenvalues which are
packed together in a “bulk” and thus indicates the presence of the spike. However, below this
threshold, the top eigenvalue converges to the edge of the bulk and becomes non-informative
about the presence of the spike.

For instance, if the entries of the spike x in model (1.6) are assumed to have unit variance
then the value of this spectral threshold is λ = 1. Similarly, if u and v are independent with
entries of unit variance in model (1.7), the spectral threshold, known as the BBP threshold,
after Baik, Ben Arous, and Péché (2005) is given by αλ2 = 1. Estimation using the top
eigenvector undergoes the same transition, where it is known to “lose track” of the spike
below the spectral threshold. Moreover, above the spectral threshold, the quality of the
overlap of the first eigenvector of the matrix Y with the spike (x, u or v) is well understood.
For more precise results in this direction, we refer to Benaych-Georges and Nadakuditi (2011,
2012); Capitaine, Donati-Martin, and Féral (2009); Féral and Péché (2007); Péché (2006)
for results on low-rank deformations of Wigner matrices, and Bai and Yao (2008); Baik,
Ben Arous, and Péché (2005); Baik and Silverstein (2006); Johnstone and Lu (2009); Nadler
(2008); Paul (2007) for results on spiked covariance models.

1.3 The posterior distribution and spin glasses

These spectral analyses have provided many insights, but they stop short of characterizing
the fundamental limits of estimating the spike, or detecting its presence from the observation
of a sample matrix. These questions, information-theoretic and statistical in nature, are
more naturally approached by looking the posterior law of spike given Y and the associated
likelihood ratio process.

The fundamental observation that allows to make progress on these questions is that
the posterior distribution of the spike x given Y (taking model (1.6) as an example) is a
high-dimensional probability distribution, exactly of the type that has been studied in the
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statistical physics literature, and later in probability theory under the name of “the mean-
field theory of spin glasses”. This theory deals with the study of disordered systems of
interacting particles: certain systems can be modeled by an energy function that describes
certain rules of local interaction between particles. This gives rise to a (random) probability
distribution of states of the system (a very high-dimensional configuration space) according
to their energy. Let us avoid a further (and almost-certainly inaccurate) general discussion
of what spin glass theory is, and refer to Bolthausen and Bovier (2007) for a review on the
state of the art of this field (up to 2007). We instead discuss one of its most famous objects
of study: the Sherrington-Kirkpatrick (SK) model. Let σ ∈ {−1,+1}N represent the “spin”
of N particles, which is allowed to be “up” or “down”, and that interact in the pairwise
fashion according to the energy function or Hamiltonian:

−H(σ) =
1√
N

∑
i<j

gijσiσj. (1.8)

The numbers gij are the “coupling constants” of the interaction between the particles i
and j. For a positive parameter β, define the following probability distribution on the
N -dimensional hypercube

P (σ) =
e−βH(σ)∑

σ∈{±1}N e
−βH(σ)

. (1.9)

This probability distribution, usually called a Gibbs measure, is already interesting if the
gij’s are deterministic constants. If the latter are all equal to +1 this gives rise to the Curie-
Weiss model. More generally, the coupling constants could represent the adjacency structure
of a graph on N vertices, in which case the model is known as the Ising model. Sherrington
and Kirkpatrick (1975) proposed to make the coupling constants random ±1 or Gaussian
independently to model a disordered, conflicting, or frustrated interaction where a particle
cannot align with one of its neighbors without paying an energy cost for being mis-aligned
with other neighbors. This is gives rise to a random probability distribution whose structure
is multiscale and extremely complex. For instance one characteristic quantity of this model
is its free energy, defined as the logarithm of the denominator in (1.9) (called the partition
function and denoted by Z):

FN(β) = − 1

βN
log

∑
σ∈{±1}N

e−βH(σ). (1.10)

One question of interest if whether this quantity has a limit when N → ∞, while β is
kept fixed. Standard theorems of concentration of measure—in particular, the Tsirelson-
Ibragimov-Sudakov inequality in the case where the “disorder” variables gij are Gaussian,
(see Boucheron, Lugosi, and Massart, 2013)—imply that FN concentrates very tightly about
its expectation, so the above question reduces to the study of the expectation of FN under
the disorder. A precise formula for a limit of this quantity was conjectured by G. Parisi
in the late 70’s (see Mézard, Parisi, Sourlas, et al., 1984). The problem of understanding
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the SK model and confirming Parisi’s conjecture started attracting mathematicians with the
seminal works of Aizenman, Lebowitz, and Ruelle (1987) and Pastur and Shcherbina (1991),
and has since spawned an entire field in probability theory.

What does all this have to do with our problem of detecting the spike in a random matrix
model? We can see that if the entries of the spike x come i.i.d. from a prior distribution Px,
the posterior distribution of x given Y is

dP (x|Y ) =
e−H(x)dP⊗Nx (x)∫
e−H(x)dP⊗Nx (x)

, (1.11)

where

−H(x) =
∑
i≤j

√
λ

N
Yijxjxj −

λ

2N
x2
ix

2
j . (1.12)

There is a clear similarity between the Hamiltonians (1.8) and (1.12). The theory of the
SK model becomes all the more relevant when one further notices that under the null dis-
tribution, the Yij’s are Gaussian. The similarity does not stop here. Denoting by Pλ the
distribution of the matrix Y , the likelihood ratio of Pλ to P0 is the denominator in (1.11):

L(Y ;λ) =
dPλ
dP0

(Y ) =

∫
e−H(x)dP⊗Nx (x). (1.13)

This makes the questions of studying the properties of the likelihood ratio and the posterior
of the spike amenable to analysis using tools originally invented to study the SK model.
Moreover, if Px = 1

2
δ+1 + 1

2
δ−1, then we see that the two problems are the same, possibly up

to trivial additive constants.
This connection seems to have been noticed only recently, notably in the work of Lesieur,

Krzakala, and Zdeborová (2015a,b, 2017) who then proceed based on plausible but non-
rigorous statistical physics arguments to analyze the problem of estimation. Their work has
shortly after been made rigorous in a series of papers (Barbier, Dia, et al., 2016; Deshpande,
Abbé, and Montanari, 2016; Krzakala, Xu, and Zdeborová, 2016; Lelarge and Miolane,
2017; Miolane, 2017), where the error of the Bayes-optimal estimator has been completely
characterized for additive low-rank models with a separable (product) prior on the spike. In
particular, these papers confirm an interesting phenomenon discovered by Lesieur, Krzakala,
and Zdeborová (2015a,b): for certain priors on the spike, estimation becomes possible—
although computationally expensive—below the spectral threshold λ = 1. More precisely, the
posterior mean overlaps with the spike in regions where the top eigenvector is orthogonal to
it. Lesieur, Krzakala, and Zdeborová (2017) provides a full account of these phase transitions
in a myriad of interesting situations, the majority of which still await rigorous treatment.

1.4 Pooling of discrete data

In the second part of this thesis, we consider a problem of “discrete” nature. Imagine a
population of n individuals, each of whom has one among d “types”. This could be their
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blood type, in which case d = 4, their age, income or tax bracket group, etc. This information
is recorded in a database, and the data analyst is allowed to query it by specifying a random
subset of the population, and in response, she observes the histogram (a d-dimensional
vector of counts) of types of the queried individuals. This measurement scheme is inspired
by practical situations where it may only be possible to assay certain summary statistics
of the data involving a moderate of large number of participants. This may be done for
privacy reasons, or it may be inherent to the data collection process. The latter situation
occurs for instance in the analysis of genetic data where, due to experimental constraints,
allele measurements across multiple strands of DNA of different individuals are pooled and
analyzed together (Heo et al., 2001; Sham et al., 2002). The data then consists of a frequency
spectrum, or histogram of alleles.

How many measurements of this sort does it take to reconstruct the types of the entire
population? This problem falls broadly under the umbrella of the theory of compressed
sensing, where one is interested in recovering a signal from a few compressed measure-
ments (Donoho, 2006a). It has been understood from the early stages of the development of
this theory that the structure of the signal, typically sparsity, plays a key role in the sample
complexity, or number of measurements needed for reconstruction (Candés, Romberg, and
Tao, 2006; Candés and Tao, 2005; Donoho, 2006b). In this theory, one classically considers
a signal that is real-valued, and is compressed by taking random linear combinations of its
entries. It is however interesting to move beyond this setting and consider signals that are
discrete, where each entry can take a value from a finite alphabet; this is the setting we
consider in our work. Then one possible model of compression—since the signal no longer
has an additive structure—is to count the occurrence of each symbol in a randomly chosen
subset of the signal’s entries.

The discrete, combinatorial structure of this reconstruction problem makes it a special
kind of a constraint satisfaction problem (CSP). These have been the object of intense study
in recent years in probability theory, computer science, information theory and statistical
physics. For certain families of CSPs, a deep understanding has begun to emerge regarding
the number of solutions as a function of problem size, as well as the algorithmic feasibility
of finding solutions when they exist (see e.g. Coja-Oghlan and Frieze, 2014; Coja-Oghlan,
Haqshenas, and Hetterich, 2016; Coja-Oghlan, Mossel, and Vilenchik, 2009; Coja-Oghlan
and Perkins, 2016; Ding, Sly, and Sun, 2015, 2016; Sly, Sun, and Y. Zhang, 2016). Consider
in particular a planted random constraint satisfaction problem with n variables that take their
values in the discrete set {1, · · · , d}, with d ≥ 2. A number of m clauses is drawn uniformly
at random under the constraint that they are all satisfied by a pre-specified assignment,
which is referred to as the planted solution. In our case, the signal is n-dimensional, d is the
size of the alphabet, and there are m compressed observations (histograms) of the signal,
which represents the planted solution that satisfies all the constraints.

Two questions are of particular importance: (1) how large should m be so that the planted
solution is the unique solution? and (2) given that it is unique, how large should m be so
that it is recoverable by a “tractable” algorithm? Significant progress has been made on these
questions, often initiated by insights from statistical physics and followed by a growing body
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of rigorous mathematical investigation. The emerging picture is that in many planted CSPs,
when n is sufficiently large, all solutions become highly correlated with the planted one when
m > κIT · n, for some “Information-Theoretic” (IT) constant κIT > 0. Furthermore, one of
these highly correlated solutions becomes typically recoverable by a random walk or a Belief
Propagation (BP)-inspired algorithm when m > κBP ·n for some κBP > κIT (Coja-Oghlan and
Frieze, 2014; Coja-Oghlan, Mossel, and Vilenchik, 2009; Krzakala, Mézard, and Zdeborová,
2012; Krzakala and Zdeborová, 2009). Interestingly, it is known in many problems, at least
heuristically, that these algorithms fail when κIT < m/n < κBP, and a tractable algorithm
that succeeds in this regime is still lacking (Achlioptas and Coja-Oghlan, 2008; Coja-Oghlan,
2009; Coja-Oghlan, Haqshenas, and Hetterich, 2016; Zdeborová and Krzakala, 2016). In
other words, there is a non-trivial regime m/n ∈ (κIT, κBP) where an essentially unique
solution exists, but is hard to recover.

1.5 Overview of the results in this thesis

Detection limits in spiked random matrix models

The first three chapters of this thesis (excluding the introduction) are devoted to the study
of the detection and estimation on the spike in the random matrix models (1.6) and (1.7).
In Chapter 2 we consider model (1.6) and show that likelihood ratio (1.13) has Gaussian
fluctuations for all λ < λc where λc is referred to as the reconstruction threshold : for all
λ < λc,

logL(Y ;λ) N
(
±1

4
(− log(1− λ)− λ) ,

1

2
(− log(1− λ)− λ)

)
,

where the plus sign holds under the alternative Y ∼ Pλ and the minus sign under the null
Y ∼ P0. As explained in Section 1.1, this result implies that strong detection is impossible
below λc, and also pins down the exact performance of the likelihood ratio test. Moreover,
we obtain precise formulae for several information-theoretic quantities such as the relative
entropy of the planted model to the null model, their total variation, and so on. On the other
hand, logL grows linearly with N under Pλ when λ > λc, and this implies the possibility of
strong detection in this regime. The reconstruction threshold λc thus has an information-
theoretic character, independent of any spectral properties of the matrix Y . Its definition is
intimately related to the limiting value of the normalized log-likelihood 1

N
logL under Pλ, or

equivalently, the Kullback-Leibler divergence between Pλ and P0. Indeed, it is known that
1
N
EPλ logL converges to a limiting value; to the so-called replica-symmetric formula φRS(λ)

as N →∞. And λc is defined as the smallest upper bound on the interval on which this limit
vanishes. This threshold is generically different from the spectral threshold, and is always
no larger than it.

In Chapter 3 we consider the asymmetric model (1.7) and establish a similar result:

logL(Y ;λ) N
(
±1

4
log(1− αλ2),−1

2
log(1− αλ2)

)
,
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as N,M → ∞ and M/N → α, for all αλ2 < c for a constant c < 1 that depends on the
priors on the entries of u and v. While we have been able to reach the optimal threshold in
the symmetric model (1.6), this task turns out to be more difficult in the asymmetric case.
We also state a conjecture on the maximal region of parameters (α, λ) where asymptotic
normality should hold. Similarly to the symmetric model, this is also the region where the
limit of the normalized log-likelihood ratio under Pλ vanishes, however as we will explain it,
proving this seems to require new ideas.

In Chapter 4 we return to the symmetric model and turn our attention to the estima-
tion problem. The normalized Kullback-Leibler divergence between the planted and null
models is known to converge to the replica-symmetric formula φRS(λ), the properties of
which determine the fundamental limits of estimation in this model. For instance, it is
known that the spike could be estimated with non-trivial accuracy if and only if λ > λc.
However the available proofs of this result and other intimately related ones are quite in-
volved. As a first result, we provide a short and transparent proof of this formula, based
on simple executions of Gaussian interpolations and standard concentration-of-measure ar-
guments. Second, we investigate the next-order asymptotics of this convergence: we prove
that DKL(Pλ,P0)−NφRS(λ) converges to a finite quantity ψRS(λ) for almost all λ, and with
speed 1/

√
N . An explicit expression for this quantity is also given. This formula shows

that the KL divergence between the null and planted distributions has a non-vanishing finite
size correction. This correction becomes most important below the reconstruction threshold
where φRS(λ) = 0, in which case we now know that this KL converges to a constant, instead
of the mere fact that it is of order O(N).

To study the likelihood ratio and the KL divergence in this setting we build on the
technology developed by Aizenman, Guerra, Panchenko, Talagrand, and others, in their
study of the Sherrington-Kirkpatrick spin-glass model. Specifically, we make use of Guerra’s
Gaussian interpolation method and Talagrand’s cavity method. An important role is played
by the so-called Franz-Parisi potential (Franz and Parisi, 1995, 1998): this is the log-partition
function of a subset of configurations having a fixed overlap with the spike.

Decoding from pooled data

In the last two chapters of this thesis, we consider the problem of decoding from pooled data,
which we call the Histogram Query Problem (HQP), previously described. In Chapter 5, we
consider the dense random regime where each query involves a linear number of individuals,
and where the individuals are chosen uniformly at random. Call k = αn the size of each pool,
and m the number of queries. It could be seen by a simple counting argument that less than
m = (1− O(1)) log d

d−1
n

logn
queries is insufficient to reconstruct the types of the population. We

show that m = 2(1 +O(1)) log d
d−1

n
logn

queries or more is on the other hand sufficient. The proof
of this result proceeds by viewing the problem as a planted random constraint satisfaction
problem. We use some sophisticated combinatorics combined with the Laplace method to
compute the exponential rate of decay of the expected number of satisfying assignments to
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this CSP. This quantity is referred to as the annealed free energy in the statistical physics
literature. Its knowledge implies the upper bound. Observe the gap of a factor of two
between these upper and lower bounds. Shortly after our results were made public on the
arXiv, Scarlett and Cevher (2017) proved that our upper bound is actually tight. Meaning
that it is impossible to recover the type of every individual with less than 2(1−O(1)) log d

d−1
n

logn

queries, thus establishing a sharp phase transition for the recovery problem at this number.
In Chapter 6, we consider the algorithmic aspect of the problem and design a practi-

cal algorithm inspired by belief propagation to reconstruct the types of the population. A
heuristic analysis of this algorithm exhibits an interesting gap: the success probability of the
algorithm undergoes a sharp phase transition at a much higher threshold. The algorithm
succeeds at recovering the types of every individual if and only if m > κn, with κ ' 2 log d

d−1
.

This algorithm are heuristically known to be “optimal” in a certain sense, so we expect
other classes of algorithms such as linear programming relaxations and random walk-type
algorithms to fail as well below m = κn. This hints at a possibility of a logarithmic gap
between the information-theoretic and algorithmic thresholds.

1.6 Bibliographic notes

The research leading to the results presented in this thesis is in collaboration with my advisor
M. Jordan and a few other lovely colleagues. The material presented in Chapters 2 and 4 is
a joint work with F. Krzakala and M. Jordan, and appears in the following two papers (El
Alaoui and Krzakala, 2018; El Alaoui, Krzakala, and Jordan, 2017). The material presented
in Chapter 4 is a joint work with M. Jordan and appears in (El Alaoui and Jordan, 2018).
Finally, the material presented in Chapters 5 and 6 is a joint work with A. Ramdas, F.
Krzakala, L. Zdeborová and M. Jordan, and appears in (El Alaoui et al., 2016, 2017).
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Part I

Detection limits in some spiked
random matrix models
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Chapter 2

Detection limits in the spiked Wigner
model

2.1 Introduction

We focus in this chapter on the spiked Wigner model, which is the following symmetric
random matrix model

Y =

√
λ

N
x∗x∗> +W , (2.1)

where Wij = Wji ∼ N (0, 1) and Wii ∼ N (0, 2) are independent for all 1 ≤ i ≤ j ≤ N . The
spike vector x∗ ∈ RN represents the signal to be recovered, or its presence detected.

We assume that the entries x∗i of the spike are i.i.d. from a prior distribution Px on R
having bounded support. The parameter λ ≥ 0 plays the role of the signal-to-noise ratio,
and the scaling by

√
N is such that the signal and noise components of the observed data are

of comparable magnitudes. In this chapter we will be mainly concerned with the detection
problem: upon observing Y , we want to test wether λ > 0 or λ = 0. Meaning, we want to
detect the presence of a non-trivial, privileged direction x∗ in the data matrix Y , without
caring about finding out what this specific direction is. We moreover want to understand
the performance of the best test, i.e., the test that maximizes the probability of a correct
guess. By the classical Neyman-Pearson lemma, this test is simply the likelihood ratio test.
Therefore the problem reduces to (if one puts aside computational considerations) the study
of the behavior of the likelihood ratio of the distributions associated to the two hypotheses of
interest (λ = 0 vs. λ > 0). The main aim of this chapter and the next two is to analyze the
fine-grained behavior of the likelihood ratio of this model, and slight generalizations of it. In
Chapter 4 we turn our attention to the estimation problem where we want to estimate x∗

with non-trivial accuracy. We will see in particular that under the scaling considered here,
estimating x∗ with vanishing error as N → ∞ is not possible, but producing an estimator
that has partial correlation with the spike still is, and we will determine the best correlation
any estimator could achieve in a Bayes-optimal sense. As it turns out, the likelihood ratio is
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still the relevant object to look at in this setting, and several estimation-theoretic quantities
can be derived from it.

As a matter of convenience, we discard the diagonal terms Yii from the observations.
Adding the diagonal back does not pose any additional technical difficulties, and our results
can be straightforwardly extended to this case. We denote by Pλ the joint probability law
of the observations Y = {Yij : 1 ≤ i < j ≤ N} as per (2.1) and define the likelihood ratio or
Radon-Nikodym derivative of Pλ to P0 as

L(·;λ) ≡ dPλ
dP0

. (2.2)

For a fixed Y , a simple computation based on conditioning on x∗ reveals that

L(Y ;λ) =

∫
exp

(√ λ

N

∑
i<j

Yijxixj −
λ

2N

∑
i<j

x2
ix

2
j

)
dP⊗Nx (x). (2.3)

A first step in studying the behavior of L is to identify the region of parameters λ where L
remains of constant order as N → ∞. This will be the region where the testing problem is
most non-trivial since a diverging likelihood ratio indicates that Pλ is easily distinguishable
from P0. This could for example be seen in the following way: define the quantity

FN :=
1

N
EPλ logL(Y ;λ). (2.4)

We see that FN = 1
N
DKL(Pλ,P0), where DKL is the Kullback-Leibler divergence between

probability measures. By the phenomenon of concentration measure (this will made quanti-
tative later) 1

N
logL is unlikely to deviate much from its expectation FN : for any ε > 0,

Pλ
(∣∣ 1

N
logL− FN

∣∣ ≥ ε

)
−→ 0.

Assume now that FN converges to a limit ` as N →∞. Observe that by the non-negativity
of KL (or Jensen’s inequality) ` must be non-negative. On the other hand, one has the same
concentration of 1

N
logL under P0 and moreover, EP0 logL ≤ 0. Therefore if λ is such that

` > 0, one can distinguish Pλ from P0 with asymptotic certainty (as N becomes large) by
computing logL and rejecting the null hypothesis Y ∼ P0 if (for instance) logL ≥ `/2, i.e.,
this test would have vanishing type-I and type-II errors. On the other hand, in the set of λ
where ` = 0 (if it exists), the problem becomes highly non-trivial, since one has to “zoom”
into the behavior of the un-normalized log-LR and examine what happens at a constant
order.

Of course the above discussion is still valid if one flips the roles of Pλ and P0, and
assumes that 1

N
EP0 logL(Y ;λ) admits a limit `′ instead. (The test would then be to check

if 1
N

logL ≤ `′/2.) There is no a-priori reason to privilege Pλ over P0, except that of
convenience: in this matrix model, it is far easier to study L under Pλ.
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At this point, we lay out our plan: we first introduce the limit of FN , which is referred to
as the replica-symmetric formula, and its properties. We will see that the above-discussed
region where this limit vanishes takes to form of an interval (0, λc), where the upper bound
is referred to as the reconstruction threshold. We then move on to study the fluctuations
of logL in this interval. We will prove that in this regime, the log-LR has fluctuations of
constant order, and converges asymptotically to a Gaussian with a mean equal to half the
variance. This allows for instance to show that Pλ and P0 are mutually contiguous below λc.
Contiguity (see Definition 1.1) allows to show that no test is capable of distinguishing Pλ
from P0 with asymptotic certainty below λc, thereby complementing the above discussion and
providing a complete answer to the question of asymptotically certain (we will say “strong”)
detection. The fluctuation result also allows to obtain formulas for the Type-I and Type-II
errors for testing, as well as the total variation distance.

The RS formula and the reconstruction threshold

The RS formula. For r ≥ 0, consider the function

ψ(r) := Ex∗,z log

∫
exp

(√
rzx+ rxx∗ − r

2
x2
)

dPx(x), (2.5)

where z ∼ N (0, 1), and x∗ ∼ Px. This is the KL divergence between the distributions of the
random variables y =

√
rx∗ + z and z. We define the Replica-Symmetric (RS) potential

F (λ, q) := ψ(λq)− λq2

4
, (2.6)

and finally define the RS formula

φRS(λ) := sup
q≥0

F (λ, q). (2.7)

A central result in this context, which was conjectured by Lesieur, Krzakala, and Zdeborová
(2015b), and then proved in a sequence of papers (Barbier, Dia, et al., 2016; Deshpande,
Abbé, and Montanari, 2016; Krzakala, Xu, and Zdeborová, 2016; Lelarge and Miolane, 2016),
is that free energy FN converges to the RS formula for all λ ≥ 0:

FN −→ φRS(λ).

We refer to Lesieur, Krzakala, and Zdeborová (2017) for a derivation of this formula based
on non-rigorous statistical physics arguments. In Chapter 4 we analyze this convergence in
detail. We provide a short proof of the above result, and study the rate of convergence as
well as the next order term.

The values of q that maximize the RS potential and their properties play an important
role in the theory. Lelarge and Miolane (2016) proved that the map q 7→ F (λ, q) has a
unique maximizer q∗ = q∗(λ) for all λ ∈ D where D is the set of points where the function
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λ 7→ φRS(λ) is differentiable. By convexity of φRS (see next section), D = R+ \ countable set.
Moreover, they showed that the map λ ∈ D 7→ q∗(λ) is non-decreasing, and

lim
λ→0
λ∈D

q∗(λ) = EPx
[X]2, and lim

λ→∞
λ∈D

q∗(λ) = EPx
[X2]. (2.8)

One should interpret the value q∗(λ) as the best overlap an estimator θ̂(Y ) based on observing
Y can have with the spike x∗. Indeed, the overlap

∣∣x>x∗∣∣/N between the spike x∗ and a
random draw x from the posterior Pλ(·|Y ) should concentrate in the large N limit about
q∗(λ) (hence the name “replica-symmetry”). A matrix variant of this result (where one
estimates x∗x∗>) was proved in (Lelarge and Miolane, 2016). In Section 4.3, we prove strong
(vector) versions of this result where under mild assumptions, optimal rates of convergence
are given.

The reconstruction threshold. The first limit in (2.8) shows that when the prior Px is
not centered, it is always possible to have a non-trivial overlap with x∗ for any λ > 0. On
the other hand, when the prior has zero mean, and since q∗ is a non-decreasing function of
λ, it is useful to define the critical value of λ below which estimating x∗ becomes impossible:

λc := sup
{
λ > 0 : q∗(λ) = 0

}
. (2.9)

We refer to λc as the critical or reconstruction threshold. The next lemma establishes a
natural bound on λc.

Lemma 2.1. We have
λc ·

(
EPx

[X2]
)2 ≤ 1. (2.10)

Proof. Indeed, assume that Px is centered, and let λ > (E[X2])−2. Since ψ′(0) = 1
2
EPx

[X]2 =
0 and ψ′′(0) = 1

2
(EPx

[X2])2, we see that ∂qF (λ, 0) = 0 and ∂2
qF (λ, 0) = λ

2
(λEPx

[X2]2−1) > 0.
So q = 0 cannot be a maximizer of F (λ, ·). Therefore q∗(λ) > 0 and λ ≥ λc. �

The importance of Lemma 2.1 stems from the fact that the value (EPx
[X2])

−2
is the

spectral threshold previously discussed. Above this value, the first eigenvalue of the matrix
Y leaves the bulk, and is at the edge of the bulk below it (Capitaine, Donati-Martin, and
Féral, 2009; Féral and Péché, 2007; Péché, 2006). This value also marks the limit below which
the first eigenvector of Y captures no information about the spike x∗ (Benaych-Georges
and Nadakuditi, 2011). Inequality (2.10) can be strict or turn into equality depending on
the prior Px. For instance, there is equality if the prior is Gaussian or Rademacher—so
that the first eigenvector overlaps with the spike as soon as estimation becomes possible
at all—and strict inequality in the case of the (sufficiently) sparse Rademacher prior Px =
ρ
2
δ−1/

√
ρ + (1− ρ)δ0 + ρ

2
δ+1/

√
ρ. More precisely, there exists a value

ρ∗ = inf
{
ρ ∈ (0, 1) : ψ′′′(0) < 0

}
≈ 0.092,
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such that λc = 1 for ρ ≥ ρ∗, and λc < 1 for ρ < ρ∗. In the latter case, the spectral
approach to estimating x∗ fails for λ ∈ (λc, 1), and it is believed that no polynomial time
algorithm succeeds in this region (Banks, Moore, Vershynin, et al., 2017; Krzakala, Xu, and
Zdeborová, 2016; Lesieur, Krzakala, and Zdeborová, 2015b). The “physically plausible”
picture one should have in mind here is that (minus) the RS potential q 7→ −F (λ, q) can
be interpreted as an “energy landscape” whose global minimum corresponds to the planted
spike x∗. If λ is small (i.e., λ < λc) this potential has a global minimum at q = 0 which
means that the posterior mean is orthogonal to x∗. As λ increases, the global minimum will
shift to a strictly positive point q∗. If the prior Px is such that λc < 1, q = 0 stays a stable
local minimum for all λ ∈ (λc, 1) while the global minimum is at q∗ > 0. At the heuristic
level, this is the reason of computational hardness of the problem: (iterative) algorithms
are trapped in this locally optimal state, and must climb an energy barrier in order to fall
into the basin of attraction of the global minimum. This latter operation is conjectured to
require exponential time.

2.2 Fluctuations below the reconstruction threshold

In this section we are interested in the fluctuations of the log-LR. It can be seen by a
standard concentration-of-measure argument that for all λ > 0, logL(Y ;λ) concentrates
about its expectation with fluctuations bounded by O(

√
N). While this bound is likely to

be of the right order above λc (this is true for the SK model in high temperature and with
non-zero external field, see Guerra and F. Toninelli, 2002a), it is very pessimistic below λc.
Indeed, we will show that the fluctuations are of constant order with a Gaussian limiting
law in this regime. This phenomenon was noticed early on in the case of the SK model:
Aizenman, Lebowitz, and Ruelle (1987) showed that in the absence of an external field,
the log-partition function of this model has (shifted) Gaussian fluctuations about its easily
computed “annealed average” in high temperature. We will see in Section 2.4 that their
result can be stated as a central limit theorem for logL(Y ;λ) under P0 in the case where
the prior Px is Rademacher. Furthermore, a proof by Talagrand (2011b) of their result
provided us with a road map for proving a similar result for general Px. Let us now state
the fluctuation result along with consequences for hypothesis testing.

Theorem 2.2. Assume the prior Px is centered and of unit variance. For all λ < λc,

logL(Y ;λ) N
(
±1

4
(− log(1− λ)− λ) ,

1

2
(− log(1− λ)− λ)

)
,

where the plus sign holds under the alternative Y ∼ Pλ and the minus sign under the null
Y ∼ P0.

The symbol “ ” denotes convergence in distribution as N →∞.
The sign symmetry between the above two statements is a consequence of Le Cam’s

third lemma (Van der Vaart, 2000), (or more specifically, the Portmanteau lemma). We
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will see this in Section 2.5. This result is along the same line of those of Johnstone and
Onatski (2015); Onatski, Moreira, and Hallin (2013, 2014), who studied the likelihood ratio
of the joint eigenvalue densities under the spiked covariance model with a spherical prior, and
showed its asymptotic normality below the spectral threshold. We also point out that similar
fluctuation results were recently proved by Baik and Lee (2016, 2017a) for a spherical model
where one integrates over the uniform measure on the sphere in the definition of L(Y ;λ).
Their model, due to its integrable nature, is amenable to analysis using tools from random
matrix theory. The authors are thus able to also analyze a “low temperature” regime (absent
from our problem) where the fluctuations are no longer Gaussian but given by the Tracy-
Widom distribution. Their techniques seem to be restricted to the spherical case however.
Closer to our assumptions is the recent work of Banerjee and Ma (2018), (see also Banerjee,
2018) who use a very precisely conditioned second moment argument to show asymptotic
normality of similar log-likelihood ratios. However, this technique (at least in its current
flavor) works up to some value λ0 < λc, and is not expected to be optimal in the SNR
threshold.

Strong and weak detection below λc

Consider the problem of deciding whether an array of observations Y = {Yij : 1 ≤ i < j ≤
N} is likely to have been generated from Pλ for a fixed λ > 0 or from P0. Let us denote
by H0 : Y ∼ P0 the null hypothesis and Hλ : Y ∼ Pλ the alternative hypothesis. Two
formulations of this problem exist: one would like to construct a sequence of measurable
tests T : RN(N−1)/2 7→ {0, 1} that returns “0” for H0 and “1” for Hλ, for which either

lim
N→∞

max
{
Pλ(T (Y ) = 0), P0(T (Y ) = 1)

}
= 0, (2.11)

or less stringently, the total mis-classification error, or risk

err(T ) := Pλ(T (Y ) = 0) + P0(T (Y ) = 1) (2.12)

is minimized among all possible tests T .

Strong detection. Using a second moment argument based on the computation of a
truncated version of EL(Y ;λ)2, Banks, Moore, Vershynin, et al. (2017) and Perry et al.
(2016b) showed that Pλ and P0 are mutually contiguous when λ < λ0, where the latter
quantity equals λc for some priors Px while it is suboptimal for others (e.g., the sparse
Rademacher case, see discussion below). It is easy to see that contiguity implies impossibility
of strong detection since for instance, if P0(T (Y ) = 1) → 0 then Pλ(T (Y ) = 0) → 1. Here
we show that Theorem 2.2 provides a more powerful approach to contiguity:

Corollary 2.3. Assume the prior Px is centered and of unit variance. Then for all λ < λc,
Pλ and P0 are mutually contiguous.
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Proof. This is a consequence of either one of the two statements in Theorem 2.2. Indeed,
considering the fluctuations under the null, if

dPλ
dP0

 U

under P0 along some subsequence and for some random variable U , then by the continuous
mapping theorem we necessarily have

U = expN (−µ, σ2),

where µ = 1
4

(− log(1− λ)− λ) = 1
2
σ2. We have Pr(U > 0) = 1, and since µ = 1

2
σ2, we have

EU = 1. We now conclude using Le Cam’s first lemma in both directions (Lemma 6.4 or
Example 6.5, Van der Vaart, 2000). �

This approach allows one to circumvent second moment computations which are not
guaranteed to be tight in general, and necessitate careful and prior-specific conditioning
that truncates away undesirable events.

We note that in the case of the sparse Rademacher prior Px = ρ
2
δ−1/

√
ρ+(1−ρ)δ0+ ρ

2
δ+1/

√
ρ,

contiguity holds for all λ < 1 as soon as ρ ≥ ρ∗ ≈ 0.092 by the above corollary, thus closing
the gaps in the results of Banks, Moore, Vershynin, et al. (2017) and Perry et al. (2016b).
Indeed, as argued below Lemma 2.1, the reconstruction and spectral thresholds are equal
(λc = 1) for all ρ ≥ ρ∗, and differ (λc < 1) below ρ∗. This implies that strong detection is
impossible for λ < 1 and possible otherwise when ρ ≥ ρ∗, while it becomes impossible only
below λc but possible otherwise when ρ < ρ∗.

Weak detection. We have seen that strong detection is possible if and only if λ > λc. It
is then natural to ask whether weak detection is possible below λc, i.e., is it possible to test
with accuracy better than that of a random guess below the reconstruction threshold? The
answer is yes, and this is another consequence of Theorem 2.2. More precisely, the optimal
test minimizing the risk (2.12) is the likelihood ratio test which rejects the null hypothesis
H0 (i.e., returns “1”) if L(Y ;λ) > 1, and its error is

err∗(λ) = Pλ(L(Y ;λ) ≤ 1) + P0(L(Y ;λ) > 1) = 1−DTV(Pλ,P0). (2.13)

One can readily deduce from Theorem 2.2 the Type-I and Type-II errors of the likelihood
ratio test: for all λ < λc the Type-II error is

Pλ(logL(Y ;λ) ≤ 0) =

∫ 0

−∞

1√
2πσ2

e−(t−µ)2/2σ2

dt+ O(1) =
1

2
erfc

(√
µ

2

)
+ O(1),

and the Type-I error is

P0(logL(Y ;λ) > 0) =

∫ +∞

0

1√
2πσ2

e−(t+µ)2/2σ2

dt+ O(1) =
1

2
erfc

(√
µ

2

)
+ O(1)
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Figure 2.1: Plots of the TV distance and KL divergence between Pλ and P0. See formulas
(2.14) and (2.15).

for all λ < 1. Here, erfc(x) = 2√
π

∫∞
x
e−t

2
dt is the complementary error function. These can

be combined into a formula for err∗(λ) and the total variation distance between Pλ and P0

(see plot in Figure 2.1):

Corollary 2.4. For all λ < λc, we have

lim
N→∞

err∗(λ) = 1− lim
N→∞

DTV(Pλ,P0) = erfc

(√
µ(λ)

2

)
. (2.14)

Moreover, the proof of Theorem 2.2 allows to obtain a formula for the KL divergence
between Pλ and P0 below the reconstruction threshold λc (see plot in Figure 2.1):

Corollary 2.5. Assume the prior Px is centered and of unit variance. Then for all λ < λc,

lim
N→∞

DKL(Pλ,P0) =
1

4
(− log (1− λ)− λ) . (2.15)

Note that the above formulas are only valid up to λc. In the case λc < 1, TV and KL
both witness an abrupt discontinuity at λc to 1 and ∞ respectively. When λc = 1, then the
behavior is more smooth with an asymptote at 1.

2.3 Replicas, overlaps, Gibbs measures and Nishimori

A crucial component of proving our main results is understanding the convergence of the
overlap x>x∗/N , where x is drawn from Pλ(·|Y ), to its limit q∗(λ). By Bayes’ rule, we see
that

dPλ(x|Y ) =
e−H(x)dP⊗Nx (x)∫
e−H(x)dP⊗Nx (x)

, (2.16)
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where H is the Hamiltonian

−H(x) :=
∑
i<j

√
λ

N
Yijxixj −

λ

2N
x2
ix

2
j . (2.17)

Of course, when Y ∼ Pλ, we can write

−H(x) =
∑
i<j

√
λ

N
Wijxixj +

λ

N
xix
∗
ixjx

∗
j −

λ

2N
x2
ix

2
j .

From the formulas (2.3) and (5.7), it is straightforward to see that

FN =
1

N
EPλ log

∫
e−H(x)dP⊗Nx (x),

This provides another way of interpreting FN as the expected log-partition function (or
normalizing constant) of the posterior Pλ(·|Y ). For an integer n ≥ 1 and f : (RN)n+1 7→ R,
we define the Gibbs average of f w.r.t. H as

〈
f(x(1), · · · ,x(n),x∗)

〉
:=

∫
f(x(1), · · · ,x(n),x∗)

∏n
l=1 e

−H(x(l))dP⊗Nx (x(l))( ∫
e−H(x)dP⊗Nx (x)

)n . (2.18)

This is nothing else that the average of f with respect to Pλ(·|Y )⊗n. The variables x(l), l =
1 · · · , n are called replicas, and are interpreted as random variables independently drawn from
the posterior. When n = 1 we simply write f(x,x∗) instead of f(x(1),x∗). Throughout the
rest of this chapter, we use the following notation: for l, l′ = 1, · · · , n, ∗, we let

Rl,l′ := x(l) · x(l′) =
1

N

N∑
i=1

x
(l)
i x

(l′)
i .

The Nishimori property under Pλ
The fact that the Gibbs measure 〈·〉 is a posterior distribution (4.2) has far-reaching conse-
quences. A crucial implication is that the n+1-tuples (x(1), · · · ,x(n+1)) and (x(1), · · · ,x(n),x∗)
have the same law under EPλ〈·〉. To see this, let’s perform the following experiment:

1. Construct x∗ ∈ RN by independently drawing its coordinates from Px.

2. Construct Y as Yij =
√

λ
N
x∗ix

∗
j + Wij, where Wij ∼ N (0, 1) are all independent for

i < j. (Therefore, Y is distributed according to Pλ.)

3. Draw n+ 1 independent random vectors (x(l))n+1
l=1 from Pλ(x ∈ ·|Y ).
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By the tower property of expectations, the following equality of joint laws holds(
Y ,x(1), · · · ,x(n),x(n+1)

) d
=
(
Y ,x(1), · · · ,x(n),x∗

)
. (2.19)

This in particular implies that under the alternative Pλ, the overlaps R1,∗ between a replica
and the spike has the same distribution as the overlap R1,2 between two replicas. This is a
very important property of the planted (spiked) model, which is usually named after Nishi-
mori (2001). It is however worth noting that Nishimori deduced this property from very
different considerations of gauge symmetry of the SK model with ±1 spins and an appro-
priately parameterized external field. (We refer to Chapter 4 in his book, or Korada and
Macris (2009) for more background on this point of view.) He probably did not have in
mind the interpretation of FN as the log-normalizing constant of the posterior distribution
of a spike in a random matrix model, from which the above property is a straightforward
consequence. Property (2.19) substantially simplifies important technical arguments that
are otherwise very difficult to conduct under the null. A recurring example in our context is
the following: to prove the convergence of the overlap between two replicas, E〈R2

1,2〉 → 0, it
suffices to prove E〈R2

1,∗〉 → 0 since the two quantities are equal. The latter turns out to be
a much easier task.

Overlap decay implies super-concentration

Let us now explain how the behavior of the overlaps is related to the fluctuations of logL.
For concreteness we consider the null model as an example. Let Y ∼ P0, i.e., Yij ∼ N (0, 1)
all independent for i < j. The log-likelihood ratio, seen as a function of Y , is a differentiable
function, and

d

dYij
logL(Y ; β) =

√
β

N
〈xixj〉.

By the Gaussian Poincaré inequality, we can bound the variance by the norm of the gradient
as

E
[
(logL− E logL)2

]
≤ E

[
‖∇ logL‖2

`2

]
≤ λ

2
N E〈R2

1,2〉.

(Here E refers to EP0 .) The last inequality follows from the fact 〈xixj〉2 = 〈x(1)
i x

(1)
j x

(2)
i x

(2)
j 〉.

Since Px has bounded support, R2
1,2 is bounded almost surely, and we deduce that the

variance is O(N). Observe now that if the quantity E〈R2
1,2〉 decays, then the much stronger

result var(logL) = O(N) holds. This behavior of unusually small variance is often referred
to as “super-concentration.” We refer to Chatterjee (2014) for more on this topic. In our
case, not only does E〈R2

1,2〉 decay when λ < λc is sufficiently small, but it does so at a rate
of 1/N so that N E〈R2

1,2〉 converges to a finite limit, and var(logL) is constant. This is a
first reason why Theorem 2.2 should be expected: if anything, the fluctuations must be of
constant order.
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2.4 The Aizenman-Lebowitz-Ruelle CLT

We assume in this subsection that Px = 1
2
δ−1 + 1

2
δ+1 and let Y ∼ P0, i.e, Yij ∼ N (0, 1)

i.i.d. We then see that the likelihood ratio L is related to the partition function of the
Sherrington–Kirkpatrick model via a trivial relation:

logL(Y ;λ) = log

∫
exp

(√ λ

N

∑
i<j

Yijxixj −
λ

2N

∑
i<j

x2
ix

2
j

)
dP⊗Nx (x)

= log
∑

σ∈{±1}N
exp

( β√
N

∑
i<j

Yijσiσj

)
−N log 2− β2(N − 1)

4

=: logZN(β)−N log 2− β2(N − 1)

4
,

where we have let β =
√
λ. ZN(β) is the partition function of the SK model at inverse

temperature β > 0. It is easy to compute the expectation of ZN(β):

logEZN(β) = N log 2 +
β2(N − 1)

4
,

so that E logL(Y ;λ) is the gap between the free energy of the SK model and its annealed
version. The question of determining the values of the inverse temperature for which this
gap is zero (or constant), i.e., at what temperatures is the free energy given by the annealed
computation? is a central question in statistical physics. Aizenman, Lebowitz, and Ruelle
(1987) (ALR) proved that in the high-temperature regime β < 1, log(ZN(β)/EZN(β))
converges in distribution the normal law

N
(

1

4
(log(1− β2) + β2),−1

2
(log(1− β2) + β2)

)
.

In our notation this simply means

logL(Y ;λ) N (−µ, σ2)

under P0 where µ = 1
2
σ2 = 1

4
(− log(1− λ)− λ). The proof of ALR is combinatorial. It uses

the so-called cluster expansion technique which expands the partition function

ZN(β) =
∑

σ∈{±1}N

∏
i<j

exp
( β√

N
Yijσiσj

)
,

using the fact
∀α ∈ R, exp(ασiσj) = cosh(α) + σiσj sinh(α), (2.20)

to write

ZN(β) = 2N
∏
i<j

cosh
( β√

N
Yij

)
·
∑
G

∏
(i,j)∈G

tanh
( β√

N
Yij

)
,
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where the sum is over all simple closed graphs G on the vertex set {1, · · · , N}. (A graph
is simple if no edge is repeated. It is closed if every vertex has even degree.) A very
careful argument then shows that for β < 1, the above sum is almost exclusively due to the
contribution of graphs G which are closed paths (where every vertex is of degree two), and
these are responsible for the Gaussian fluctuations of logZN(β).

Fact (2.20) is true only when the spins σi take the values ±1. It is therefore hard to
extend the ALR proof to other types of priors. Alternative proofs were subsequently found
by adopting different perspectives on the problem. See, e.g., (Comets and Neveu, 1995) who
use connections with stochastic calculus, and Guerra and F. Toninelli (2002a) who use the
interpolation and cavity methods. A more recent proof also based on the cavity method
is provided by Talagrand in his second book (Talagrand, 2011b, Section 11.4). His method
provides an explicit (and optimal) rate of convergence of the moments of the random variable
in question to those of the Gaussian. In what follows we use Talagrand’s approach to prove a
similar central limit theorem for an arbitrary bounded prior Px. In this more general setting,
the high temperature region of the model is given by the condition λ < λc.

2.5 Proof of the main result

In this section we prove Theorem 2.2. It suffices to prove the fluctuations under one of the
hypotheses. Fluctuations under the remaining one comes for free as a consequence of Le
Cam’s third lemma (or more specifically, the Portmanteau theorem Van der Vaart, 2000,
Theorem 6.6). We choose to treat the planted case Y ∼ Pλ. The reason is that it is
easier to deal with the planted model. This is ultimately due to the (generalized) Nishimori
property (2.19). Let us first present this argument.

Equivalence of fluctuations under planted and null models

We explain how the fluctuation result under Pλ implies the corresponding fluctuation result
under P0. This is a consequence of the Portmanteau characterization of convergence in
distribution. The argument can be made in the other direction as well. Assume that

logL(Y ;λ) N (µ, σ2),

for Y ∼ Pλ, where µ = 1
2
σ2. By the Portmanteau theorem (Van der Vaart, 2000, Lemma

2.2), this is equivalent to the assertion

lim inf EPλ [f(logL)] ≥ E [f(Z)] , (2.21)

where Z ∼ N (µ, σ2) for all nonnegative continuous functions f : R 7→ R+. On the other
hand, by a change of measure (and absolute continuity of P0 w.r.t Pλ), we have that for such
an f ,

EP0 [f(logL)] = EPλ

[
dP0

dPλ
f(logL)

]
= EPλ

[
e− logLf(logL)

]
.
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The function g : x 7→ e−xf(x) is still nonnegative continuous, so by (2.21), we have

lim inf EP0 [f(logL)] ≥ E
[
e−Zf(Z)

]
. (2.22)

Since µ = 1
2
σ2,

E
[
e−Zf(Z)

]
=

∫
f(x)e−xe−(x−µ)2/2σ2 dx√

2πσ2

=

∫
f(x)e−(x+µ)2/2σ2 dx√

2πσ2
= E [f(Z ′)] ,

where Z ′ ∼ N (−µ, σ2). Since (2.22) is valid for every nonnegative continuous f , the result

logL(Y ;λ) N (−µ, σ2)

under P0 follows.

Fluctuations under Pλ: a planted version of the ALR CLT

In this section we prove a slightly stronger result than convergence in distribution. We prove
the convergence of all moments with an explicit rate of O(N−1/2). Let λ < λc, and Y ∼ Pλ.
We define the random variable

X(λ) = logL(Y )− µ(λ),

where

µ(λ) =
1

4
(− log(1− λ)− λ), and b(λ) = σ2(λ) = 2µ(λ).

We will prove that the integer moments of X(λ) converge to those of the Gaussian with
variance b(λ). This is a sufficient condition for convergence in distribution to hold, since the
Gaussian is uniquely determined by its moments (see section 3.3.5, Durrett, 2010).

Theorem 2.6. For all λ < λc and integers k, there exists a constant K(λ, k) ≥ 0 such that∣∣EPλ
[
X(λ)k

]
−m(k)b(λ)k/2

∣∣ ≤ K(λ, k)√
N

,

where m(k) = E[gk] is the k-th moment of the standard Gaussian g ∼ N (0, 1).

This theorem mirrors Theorem 11.4.1 in (Talagrand, 2011b), and our approach is inspired
by his. We define the function

f(λ) := EPλ
[
X(λ)k

]
.

Lemma 2.7. For all λ < λc,

f ′(λ) =
k

4
E
[(
N〈R2

1,2〉 − 〈x2
N〉2
)
X(λ)k−1

]
− kµ′(λ)E

[
X(λ)k−1

]
+
k(k − 1)

4
E
[(
N〈R2

1,2〉 − 〈x2
N〉2
)
X(λ)k−2

]
(2.23)
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Proof. By simple differentiation and regrouping of terms, we obtain

f ′(λ) = −k
4
E
[(
N〈R2

1,2〉 − 〈x2
N〉2
)
X(λ)k−1

]
+
k

2
E
[(
N〈R2

1,∗〉 − 〈x2
Nx
∗2
N 〉
)
X(λ)k−1

]
− kµ′(λ)E

[
X(λ)k−1

]
+
k(k − 1)

4
E
[(
N〈R2

1,2〉 − 〈x2
N〉2
)
X(λ)k−2

]
. (2.24)

Since we are under the planted model Pλ and X(λ) only depends on Y , we can use the
generalized Nishimori property (2.19) to deduce that

E
[(
N〈R2

1,∗〉 − 〈x2
Nx
∗2
N 〉
)
X(λ)k−1

]
= E

[(
N〈R2

1,2〉 − 〈x2
N〉2
)
X(λ)k−1

]
,

and this concludes the proof. �

The derivative involves averages of the form

E
[(
N〈R2

1,2〉 − 〈x2
N〉2
)
X(λ)k

]
,

In the first line of (2.24), we see that the planted term l = ∗ has a pre-factor twice as big the
that of the replica term l = 2. This is the reason the mean of the limiting Gaussian is µ and
not −µ in the planted case. A crucial step in the argument is to show that X(λ)k and its
pre-factor in the above expression are asymptotically uncorrelated, so that one can split the
expectation of the product into the product of the expectations. More precisely, one should
expect the quantities N〈R2

1,2〉 and 〈x2
N〉2 to tightly concentrate about some deterministic

values when λ < λc, in such way that the above expectation is a multiple of E[X(λ)k]. This
is what is usually referred to as replica-symmetry in the statistical physics literature.

Proposition 2.8. For all λ < λc and integers k ≥ 1, we have

E
[(
N〈R2

1,2〉 − 〈x2
N〉2
)
X(λ)k

]
=

λ

1− λ
E
[
X(λ)k

]
+ δ,

where |δ| ≤ K(k, λ)/
√
N .

From here, we can prove the convergence of the moments of logL by integrating the
differential equation given in Lemma 2.7.

Proof of Theorem 2.6. Plugging the result of Proposition 2.8 into Lemma 2.7 yields

f ′(λ) = k

(
1

4

λ

1− λ
− µ′(λ)

)
E
[
X(λ)k−1

]
+
k(k − 1)

4

λ

1− λ
E
[
X(λ)k−2

]
+ δ.

Notice that with our choice of the function µ, the first term on the right-hand side vanishes.
(Setting this term to zero provides another way of discovering the function µ.) Now we let
b(λ) = 2µ(λ). We have for all λ and all k ≥ 1

d

dλ
E
[
X(λ)k

]
=
k(k − 1)

2
b′(λ)E

[
X(λ)k−2

]
+ δ. (2.25)
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By induction, and since X(0) = 0, we see that for all k ≥ 1

E
[
X(λ)k

]
= m(k)b(λ)k/2 +O

(
K(k, λ)√

N

)
,

where m(k) = (k − 1)m(k − 2) and m(0) = 1. The last recursion defines the sequence of
Gaussian moments. �

Now it remains to prove Proposition 2.8. This will require the deployment of a number
of ideas from the theory of mean-field spin glasses.

Sketch of proof of Proposition 2.8

The idea is to show self-consistency relations among the quantities of interest. Namely, we
will prove that for all λ < 1,

N E
[
〈R2

1,2〉X(λ)k
]

=
1

1− λ
E
[
〈x2

N〉2X(λ)k
]

+ δ, (2.26)

and
E
[
〈x2

N〉2X(λ)k
]

= E
[
X(λ)k

]
+ δ, (2.27)

where in both cases
|δ| ≤ K(k, λ)N

(
E
〈
R4

1,2

〉)3/4
.

Next, we need to prove the convergence of fourth moment of the overlap R1,2 under E〈·〉 at
an optimal rate of O(1/N2):

Theorem 2.9. For all λ < λc, there exist a constant K = K(λ) <∞ such that

E〈R4
1,2〉 ≤

K

N2
.

This will allow us to conclude that |δ| ≤ K(k, λ)/
√
N . It is interesting to note that

while the self-consistent (or cavity) equations (2.26) and (2.27) hold for all λ < 1, overlap
convergence is only true up to λc.

2.6 Proof of asymptotic decoupling

In this section we prove Proposition 2.8. As explained earlier, the argument is in two stages.
We first prove that

N E
[
〈R2

1,2〉X(λ)k
]

=
1

1− λ
E
[
〈x2

N〉2X(λ)k
]

+ δ,

and then
E
[
〈x2

N〉2X(λ)k
]

= E
[
X(λ)k

]
+ δ,

where in both cases |δ| ≤ K(k, λ)/
√
N .
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Preliminary bounds

We make repeated use of interpolation arguments in our proofs. We state here a few elemen-
tary lemmas we will invoke several times. We denote the overlaps between replicas where
the last variable xN is deleted by a superscript “-”:

R−l,l′ =
1

N

N−1∑
i=1

x
(l)
i x

(l′)
i .

Let {Ht : t ∈ [0, 1]} be a family of interpolating Hamiltonians. We let 〈·〉t denote the
corresponding Gibbs average, similarly to (4.15). Following Talagrand’s notation, we write

νt(f) := E〈f〉t,

for a generic function f of n replicas x(l), l = 1, · · · , n. And abbreviate ν1 by ν. The main
tool we use is the following interpolation that isolates the last variable xN from the rest of
the system:

−Ht(x) :=
∑

1≤i<j≤N−1

√
λ

N
Wijxixj +

λ

N
xix
∗
ixjx

∗
j −

λ

2N
x2
ix

2
j (2.28)

+
N−1∑
i=1

√
λt

N
WiNxixN +

λt

N
xix
∗
ixNx

∗
N −

λt

2N
x2
ix

2
N .

At t = 1 we have Ht = H, and at t = 0 the variable xN decouples from the rest of the
variables.

Lemma 2.10. let f be a function of n replicas x(l), l = 1, · · · , n and x∗. Then

ν ′t(f) =
λ

2

∑
1≤l 6=l′≤n

νt(R
−
l,l′y

(l)y(l′)f)− λn
n∑
l=1

νt(R
−
l,n+1y

(l)y(n+1)f)

+ λn
n∑
l=1

νt(R
−
l,∗y

(l)y∗f)− λnνs(R−n+1,∗y
(n+1)y∗f)

+ λ
n(n+ 1)

2
νt(R

−
n+1,n+2y

(n+1)y(n+2)f),

where we have written y = xN .

Proof. The computation relies on Gaussian integration by parts. See Talagrand (2011a,
Lemma 1.6.3) for the details of a similar computation. �

Lemma 2.11. If f is a bounded non-negative function, then for all t ∈ [0, 1],

νt(f) ≤ K(λ, n)ν(f).
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Proof. Since the variables and the overlaps are all bounded, using Lemma 4.18 we have for
all t ∈ [0, 1]

|ν ′t(f)| ≤ K(λ, n)νt(f).

Then we conclude using Grönwall’s lemma. �

Executing the cavity method

In its essence, the cavity method amounts to isolating one variable from the system and
analyzing the influence of the rest of the variables on it. It was initially introduced as an an-
alytic tool, alternative to the replica method, to solve certain models of spin glasses (Mézard,
Parisi, and Virasoro, 1990), and has since been tremendously successful in predicting the
behavior of many mean-field models. The underlying principle is known as the leave-one-
out method in statistics. In our setting, this principle is materialized in the form of an
interpolation method that separates the last variable from the rest. Let

Y (t) := log

∫
e−Ht(x)dP⊗Nx (x)− µ(λ),

where Ht is defined in (2.28). We have Y (1) = X(λ). We consider the quantity

E
[(
N〈R2

1,l〉 − 〈(x
(1)
N x

(2)
N )2〉

)
X(λ)k

]
.

By symmetry between sites, the above is equal to

N E
[〈
x

(1)
N x

(2)
N R−1,2

〉
X(λ)k

]
.

Now we consider the function

ϕ(t) := N E
[〈
x

(1)
N x

(2)
N R−1,2

〉
t
Y (t)k

]
.

Our strategy is approximate ϕ(t) by ϕ(0) + ϕ′(0). The approach is very similar to the one
used to prove optimal rates of convergence of the overlaps. Notice that since the last variables
decouple from the rest of the system at t = 0, we have

ϕ(0) = N E
[
〈x(1)

N x
(2)
N 〉0

]
· E
[〈
R−1,2

〉
0
Y (0)k

]
= N EPx

[X]2 · E
[〈
R−1,2

〉
0
Y (0)k

]
= 0.

The expressions of the derivatives are a bit cumbersome so we do not display them, but we
will describe their main features. The derivative ϕ′(t) will be a sum of different terms, all of
the form

λNc(k)E
[〈
R−1,2R

−
a,bx

(1)
N x

(2)
N x

(a)
N x

(b)
N

〉
t
Y (t)n

]
, (2.29)
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where n ∈ {k − 2, k − 1, k} and (a, b) ∈ {(1, 2), (1, 3), (3, 4), (1, ∗), (3, ∗)}, and c(k) is a
polynomial of degree ≤ 2 in k. We see that at t = 0, if the above expression involves a
variable xN of degree 1 then this term vanishes. Therefore the only remaining term is the
one where (a, b) = (1, 2). One can verify that c(k) = 1 for this term. Therefore

ϕ′(0) = λN E
[
〈x(1)

N

2
x

(2)
N

2
〉0
]
· E
[
〈(R−1,2)2〉0Y (0)k

]
= λN EPx

[
X2
]2 · E [〈(R−1,2)2〉0Y (0)k

]
= λN E

[
〈(R−1,2)2〉0Y (0)k

]
. (2.30)

Now we turn to ϕ′′(t). Taking another derivative generates monomials of degree three in
the overlaps and the last variable, so ϕ′′(t) is a sum of terms of the form

λ2Nc′(k)E
[〈
R−1,2R

−
a,bR

−
c,dx

(1)
N x

(2)
N x

(a)
N x

(b)
N x

(c)
N x

(d)
N

〉
t
Y (t)n

]
, (2.31)

where c′(k) is a polynomial of degree ≤ 3 in k, and n ∈ {k − 3, k − 2, k − 1, k}. Our goal
is to bound the second derivative independently of t, so that we are able to use the Taylor
approximation

|ϕ(1)− ϕ(0)− ϕ′(0)| ≤ sup
0≤t≤1

|ϕ′′(t)| . (2.32)

Since prior Px has bounded support, Hölder’s inequality implies that (2.31) is bounded by

NK(k, λ)E
[〈∣∣R−1,2R−a,bR−c,d∣∣〉pt ]1/p

E [|Y (t)|nq]1/q

≤ NK(k, λ)E
[〈
|R−1,2|3p

〉
t

]1/p

E [|Y (t)|nq]1/q ,

where 1/p + 1/q = 1. The last bound follows from Jensen’s inequality (since p ≥ 1) and
another application of Hölder’s inequality. We let p = 4/3 and q = 4. Using Lemma 4.19
and the convergence of the fourth moment, Theorem 2.9, we have

E
〈
(R−1,2)4

〉
t
≤ K(λ)E

〈
(R−1,2)4

〉
≤ K(λ)

N2
.

We use the following lemma to bound the moments of Y (t):

Lemma 2.12. For all λ < λc and integers k, there exists a constant K(k, λ) ≥ 0 such that
for all t ∈ [0, 1]

E
[
Y (t)2k

]
≤ K(k, λ).

Proof. Taking a derivative w.r.t. time, we have

d

dt
E
[
Y (t)k

]
=− λk

2
E
[〈
x

(1)
N x

(2)
N R−1,2

〉
t
Y (t)k−1

]
+ λk E

[〈
x

(1)
N x∗NR

−
1,∗

〉
t
Y (t)k−1

]
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+
λk(k − 1)

2
E
[〈
x

(1)
N x

(2)
N R−1,2

〉
t
Y (t)k−2

]
.

By Hölder’s inequality and boundedness of the variables and overlaps,∣∣∣∣ d

dt
E
[
Y (t)k

]∣∣∣∣ ≤ K(k, λ)
(
E
[
|Y (t)|k

]1−1/k
+ E

[
|Y (t)|k

]1−2/k
)
.

The first term is generated by the terms involving Y (t)k−1 in the derivative, and the second
term comes from the one involving Y (t)k−2. Since k is even, we drop the absolute values on
the right-hand side. Next, use the fact xa ≤ 1 + x for all x ≥ 0 and 0 ≤ a ≤ 1, then we use
Grönwall’s lemma to conclude. �

Therefore by the above estimates we have

sup
0≤t≤1

|ϕ′′(t)| ≤ K(k, λ)√
N

. (2.33)

Now, our next goal is to prove∣∣ϕ′(0)− λN E
[
〈R2

1,2〉X(λ)k
]∣∣ ≤ K(k, λ)√

N
. (2.34)

We consider the function
ψ(t) := λN E

[〈
(R−1,2)2

〉
t
Y (t)k

]
.

Observe that (2.30) tells us ψ(0) = ϕ′(0). On the other hand,∣∣ψ(1)− λN E
[
〈R2

1,2〉X(λ)k
]∣∣ ≤ 2λE

[〈∣∣∣R−1,2x(1)
N x

(2)
N

∣∣∣〉 |X(λ)|k
]

+
λ

N
E
[〈

(x
(1)
N x

(2)
N )2

〉
|X(λ)|k

]
.

Using Lemma 2.12 and Hölder’s inequality, the first term is bounded by

K(k, λ)(E〈(R−1,2)2〉)1/2 ≤ K(k, λ)/
√
N,

and the second term is bounded by K(k, λ)/N . So it suffices to show that

sup
0≤t≤1

|ψ′(t)| ≤ K(k, λ)√
N

.

Similarly to ϕ, the derivative of ψ is a sum of terms of the form

λ2Nc(k)E
[〈

(R−1,2)2R−a,bx
(a)
N x

(b)
N

〉
t
Y (t)n

]
.
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It is clear that the same method used to bound ϕ′′ (the generic term of which is (2.31)) also
works in this case, so we obtain the desired bound on ψ′. Finally, using (2.32), (2.33) and
(2.34), we obtain

N E
[
〈R2

1,2〉X(λ)k
]
− E

[〈
(x

(1)
N x

(2)
N )2

〉
X(λ)k

]
= λN E

[
〈R2

1,2〉X(λ)k
]

+ δ,

where |δ| ≤ K(k, λ)/
√
N . This is equivalent to (2.26) and closes the first stage of the

argument. Now we need to show that

E
[〈

(x
(1)
N x

(2)
N )2

〉
X(λ)k

]
= E

[
X(λ)k

]
+ δ.

We similarly consider the function

ψ(t) = E
[〈

(x
(1)
N x

(2)
N )2

〉
t
Y (t)k

]
.

We have

ψ(0) = E
[〈

(x
(1)
N x

(2)
N )2

〉
0

]
· E
[
Y (0)k

]
= EPx

[X2]2 · E
[
Y (0)k

]
= E

[
Y (0)k

]
.

The derivative of ψ is a sum of term of the form

λc(k)E
[〈

(x
(1)
N x

(2)
N )2R−a,bx

(a)
N x

(b)
N

〉
t
Y (t)n

]
.

By our earlier argument, |ψ′(t)| ≤ K(k, λ)/
√
N for all t. We similarly argue that

∣∣ d
dt
E[Y (t)k]

∣∣ ≤
K(k, λ)/

√
N for all t, so that ∣∣ψ(1)− E

[
Y (1)k

]∣∣ ≤ K(k, λ)√
N

.

This yields (2.27) and thus concludes the proof.

2.7 Overlap convergence

In this section we prove Theorem 2.9 on the convergence of the overlaps to 0 under Pλ, and
below λc. At a high level, we will first prove that the overlap R1,2 converges in probability
to zero under E〈·〉: for all ε > 0,

E〈1{|R1,2| ≥ ε}〉 ≤ Ke−cN .

This will be achieved via an interpolation bound at fixed overlap, combined with a concentration-
of-measure argument. Next, this crude bound is boosted to a statement of convergence of
the second moment:

E〈R2
1,2〉 ≤

K

N
,
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which is in turn boosted to a statement of convergence of the fourth moment:

E〈R4
1,2〉 ≤

K

N2
.

The apparent recursive nature of this argument is a feature of the cavity method: one can
control higher order quantities once one knows how to control low order ones.

Notice that all the statements above are about overlaps between two replicas. By the
Nishimori property, everything could be equivalently stated in terms of the overlap of one
replica with the spike x∗. This is important since we only know how to control R1,∗ in the
arguments to come.

Interpolation bound at fixed overlap

We find it iseful to introduce the so-called Franz-Parisi (FP) potential (Franz and Parisi,
1995, 1998). For x∗ ∈ RN fixed, m ∈ R \ {0} and ε > 0 define the set

A =

{
R1,∗ ∈ [m,m+ ε) if m > 0,

R1,∗ ∈ (m− ε,m] if m < 0.

Now define the FP potential as

Φε(m,x
∗) :=

1

N
EW log

∫
1{x ∈ A}e−H(x)dP⊗Nx (x), (2.35)

where the expectation is only over the Gaussian disorder W . This is the free energy of
a subsystem of configurations having an overlap close to a fixed value m with the planted
signal x∗. It is clear that Φε(m;x∗) ≤ 1

N
EW logL(Y , λ), where Y is the upper triangular

part of the matrix
√

λ
N
x∗x∗>+W . We will prove that when |m| > 0, then there is a sizable

gap between Φε(m;x∗) and 1
N
EW logL(Y , λ). This estimate is a main ingredient is our

proof of overlap concentration.
For r ≥ 0 and s ∈ R, we let

ψ̂(r, s) := Ez log

∫
exp

(√
rzx+ sx− r

2
x2
)

dPx(x). (2.36)

and

ψ(r, s) := Ex∗ ψ̂(r, sx∗)

= Ex∗,z log

∫
exp

(√
rzx+ sxx∗ − r

2
x2
)

dPx(x). (2.37)

We see that ψ(r, r) = ψ(r), but unlike ψ, the function ψ does not have an interpretation as
the KL between two distributions. The next lemma states a key property of this function
that will be useful later on:
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Lemma 2.13. For all r ≥ 0, ψ(r,−r) ≤ ψ(r, r).

Proof. This is a special case of the more general Lemma 4.15, proved in Chapter 4. �

Aditionally, for x∗ ∈ RN fixed, we define the function

F̂ (λ,m, q) :=
1

N

N∑
i=1

ψ̂(λq, λmx∗i )−
λ

2
m2 +

λ

4
q2.

Recall that Ex∗ F̂ (λ, q, q) is the RS potential F (λ, q) from (2.6).

Proposition 2.14. Fix m ∈ R, ε > 0 and λ ≥ 0. There exist constants K = K(λ) > 0 such
that

Φε(m;x∗) ≤ F̂
(
λ, |m|,m

)
+
λε2

2
+
K

N
.

Proof. To obtain a bound on Φε(m;x∗) we use the interpolation method with Hamiltonian

−Ht(x) :=
∑
i<j

√
tλ

N
Wijxixj +

tλ

N
xix
∗
ixjx

∗
j −

tλ

2N
x2
ix

2
j

+
N∑
i=1

√
(1− t)λ|m|zixi + (1− t)λmxix∗i −

(1− t)λ|m|
2

x2
i .

by varying t ∈ [0, 1]. The r.v.’s W, z are all i.i.d. standard Gaussians independent of every-
thing else. We define

ϕ(t) :=
1

N
EW ,z log

∫
1{x ∈ A}e−Ht(x)dP⊗Nx (x).

We compute the derivative w.r.t. t, and use Gaussian integration by prts to obtain

ϕ′(t) =− λ

4
E
〈
(R1,2 − |m|)2

〉
t
+
λt

4
|m|2 +

λ

4N2

N∑
i=1

E
〈
x

(1)
i

2
x

(2)
i

2
〉
t

+
λ

2
E
〈
(R1,∗ −m)2

〉
t
− λ

2
m2 − λ

2N2

N∑
i=1

E
〈
xi

2x∗i
2
〉
t
,

where 〈·〉t is the Gibbs average w.r.t. the Hamiltonian −Ht(x) + log 1{x ∈ A}. A few things
now happen. Notice that the planted term (first term in the second line) is trivially smaller
than λε2/2 due to the overlap restriction. Moreover, the last terms in both lines are of order
1/N since the variables xi are bounded. The first term in the first line, which involves the
overlap between two replicas, is more challenging. What makes this term difficult to control
is that the Gibbs measure 〈·〉t no longer satisfies the Nishimori property due to the overlap
restriction, so the overlap between two replicas no longer has the same distribution as the
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overlap of one replica with the planted spike. Fortunately, this term is always non-positive
so we can ignore it altogether and obtain an upper bound:

ϕ′(t) ≤ −λ
4
m2 +

λε2

2
+
λK

N
.

Integrating over t, we get

Φε(m;x∗) ≤ ϕ(0)− λ

4
m2 +

λε2

2
+
λK

N
.

Finally, by dropping the indicator, we have

ϕ(0) =
1

N
Ez log

∫
1{x ∈ A}e−H0(x)dP⊗Nx (x)

≤ 1

N
Ez log

∫
e−H0(x)dP⊗Nx (x)

=
1

N

N∑
i=1

Ez log

∫
exp

(√
λ|m|zxi + λmxx∗i −

λ|m|
2

x2

)
dPx(x)

=
1

N

N∑
i=1

ψ̂(λ|m|, λmx∗i ).

�

Convergence in probability of the overlaps

A consequence of the above proposition is the convergence in probability of the overlaps:

Proposition 2.15. For all λ < λc and ε > 0, there exist constants K = K(λ, ε) ≥ 0, c =
c(λ, ε, Px) ≥ 0 such that

E 〈1 {|R1,∗| ≥ ε}〉 ≤ Ke−cN .

To prove the above proposition, we first show that the partition function of the model en-
joys sub-Gaussian concentration in logarithmic scale. This is an elementary consequence of
two classical concentration-of-measure results: concentration of Lipschitz functions of Gaus-
sian random variables, and concentration of convex Lipschitz function of bounded random
variables.

Lemma 2.16. Fix x∗ ∈ RN and let A be a Borel subset of RN . Define the random variable

Z :=

∫
A

e−H(x)dP⊗Nx (x),

where the randomness comes from the Gaussian disorder W . There exist a constant K > 0
depending on λ and Px such that for all u ≥ 0,

Pr (|logZ − E logZ| ≥ Nu) ≤ 2e−Nu
2/K .
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Proof. We notice that the mapW 7→ 1
N

logZ is Lipschitz with constant K
√

λ
N

for every x∗ ∈
RN . Then we invoke the Borell-Tsirelson-Ibragimov-Sudakov inequality of concentration of
Lipschitz functions of Gaussian r.v.’s. See Boucheron, Lugosi, and Massart (2013). �

Lemma 2.17. Define the random variable

f :=
1

N
EW log

∫
e−H(x)dP⊗Nx (x),

where the randomness comes from the planted vector x∗. There exist a constant K > 0
depending on λ and Px such that for all u ≥ 0,

Pr (|f− E f| ≥ u) ≤ 2e−Nu
2/K .

Proof. We notice that the map x∗ 7→ f is Lipschitz with constant K λ√
N

and convex. More-
over, the coordinates x∗i are bounded. We then invoke Talagrand’s inequality on the concen-
tration convex Lipschitz functions of bounded r.v.’s. See Boucheron, Lugosi, and Massart
(2013). �

Lemma 2.18. There exist a constant K > 0 depending on λ,m and Px such that for all
u ≥ 0,

Pr

(∣∣∣∣∣
N∑
i=1

ψ̂(λ|m|, λmx∗i )− ψ(λ|m|, λm)

∣∣∣∣∣ ≥ Nu

)
≤ 2e−Nu

2/K .

Proof. Since
∣∣∣∂sψ̂(r, sx∗)

∣∣∣ ≤ K2,
∣∣∣∂rψ̂(r, sx∗)

∣∣∣ ≤ K2/2 and ψ̂(0, 0) = 0, where K is a bound

on the radius of the support of Px, we
∣∣∣ψ̂(r, sx∗)

∣∣∣ ≤ K2(r/2 + s). The claim now follows

from Hoeffding’s inequality. �

Proof of Proposition 2.15. For ε, ε′ > 0, we can write the decomposition

E 〈1 {|R1,∗| ≥ ε}〉 =
∑
l≥0

E
〈
1
{
R1,∗ − ε ∈ [lε′, (l + 1)ε′)

}〉
+
∑
l≥0

E
〈
1
{
−R1,∗ − ε ∈ [lε′, (l + 1)ε′)

}〉
,

where the integer index l ranges over a finite set of size ≤ K/ε′ since the prior Px has bounded
support. We will only treat the first sum in the above expression since the argument extends
trivially to the second sum. Let A =

{
R1,∗ − ε ∈ [lε′, (l + 1)ε′)

}
and write

E 〈1{x ∈ A}〉 = Ex∗ EW

[∫
A
e−H(x)dP⊗Nx (x)∫
e−H(x)dP⊗Nx (x)

]
. (2.38)
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In virtue of Lemma 2.16 the two quantities in the above fraction enjoy sub-Gaussian con-
centration in logarithmic scale over the Gaussian disorder. For any given l and u ≥ 0, we
simultaneously have

1

N
log

∫
e−H(x)dP⊗Nx (x) ≥ 1

N
EW log

∫
e−H(x)dP⊗Nx (x)− u.

and

1

N
log

∫
A

e−Ht(x)dP⊗Nx (x) ≤ 1

N
EW log

∫
A

e−Ht(x)dP⊗Nx (x) + u

= Φε′(ε+ lε′;x∗) + u,

with probability at least 1− 2e−Nu
2/K . On the complement of this event, we simply bound

the fraction in (2.38) by 1. Combining the above bounds we obtain

E 〈1{x ∈ A}〉 ≤ 2e−Nu
2/K + Ex∗

[
eN(∆+2u)

]
,

where

∆ = Φε′(m;x∗)− 1

N
EW log

∫
e−H(x)dP⊗Nx (x),

with m = ε+ lε′. By Proposition 2.14, Φε′ is upper-bounded by a quantity that concentrates
over the randomness of x∗. We use Lemma 2.17 and Lemma 2.18 in the same way we used
Lemma 2.16: for u′ ≥ 0, we simultaneously have

Φε′(m;x∗) ≤ F (λ, |m|,m) +
λε2

2
+
λK

N
+ u′,

and
1

N
EW log

∫
e−H(x)dP⊗Nx (x) ≥ FN − u′

with probability at least 1− 4e−Nu
′2/K , where

FN = EW ,x∗ log

∫
e−HdP⊗N = EPλ logL(Y ;λ).

Moreover, by Lemma 2.13, we have F (λ, |m|,m) ≤ F (λ, |m|, |m|) ≡ F (λ,m). Therefore

Ex∗
[
eN∆

]
≤ exp (N(F (λ, |m|)− FN + 2u′)) + 4e−Nu

′2/K .

The second term is obtained on the complement low probability event and noting that ∆ ≤ 0.
Now we know that FN ' supq F (λ, q). More precisely, we use a result of Krzakala, Xu,

and Zdeborová (2016) stating that

FN ≥ sup
q≥0

F (λ, q)− K

N
= φRS(λ)− K

N
.
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(In Chapter 4, we give a relatively short proof of the fact FN → supq F (λ, q), including the
above bound.)

When λ < λc, q = 0 is the unique maximizer of the RS potential. Therefore F (λ, |m|)−
FN < −c(ε) < 0 for all |m| > ε. We therefore obtain

E 〈1{x ∈ A}〉 ≤ 2e−Nu
2/K + 4e−Nu

′2/K+2Nu + eN(−c(ε)+2u+2u′).

Finally, adjusting the parameters u, u′ yields the desired result (e.g., u′ = c(ε)/3 and u =
c(ε)2/36 ∧ c(ε)/9). �

Convergence of the second moment

In this subsection we prove the convergence of the second moment of the overlaps: E〈R2
1,∗〉 ≤

K
N

. The following lemma will be useful.

Lemma 2.19. For all t ∈ [0, 1], and all τ1, τ2 > 0 such that 1/τ1 + 1/τ2 = 1,

|νt(f)− ν0(f)| ≤ K(λ, n)ν
(∣∣R−1,∗∣∣τ1)1/τ1 · ν (|f |τ2)1/τ2 (2.39)

|νt(f)− ν0(f)− ν ′0(f)| ≤ K(λ, n)ν
(∣∣R−1,∗∣∣τ1)1/τ1 · ν (|f |τ2)1/τ2 . (2.40)

Proof. We use Taylor’s approximations

|νt(f)− ν0(f)| ≤ sup
0≤s≤1

|ν ′s(f)| ,

|νs(f)− ν0(f)− ν ′0(f)| ≤ sup
0≤s≤1

|ν ′′s (f)| ,

then Lemma 4.18 and the triangle inequality to bound the right hand sides, then Hölder’s
inequality to bound each term in the derivative, and then we apply Lemma 4.19. (To compute
the second derivative, one need to use Lemma 4.18 recursively.) �

By symmetry between sites, we have

E〈R2
1,∗〉 = E〈xNx∗NR1,∗〉 =

1

N
E〈(xNx∗N)2〉+ E〈xNx∗NR−1,∗〉.

By the first bound (4.32) of Lemma 4.20 with τ1 = 1, τ2 =∞, we have

ν((xNx
∗
N)2) = ν0((xNx

∗
N)2) + δ = EPx

[X2]2 + δ = 1 + δ,

with |δ| ≤ K(λ)ν(|R−1,∗|). On the other hand, by the second bound (4.33) with τ1 = 1,
τ2 =∞, we get

ν(R−1,∗xNx
∗
N) = ν ′0(R−1,∗xNx

∗
N) + δ.
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This is because ν0(R−1,∗xNx
∗
N) = 0, since last variable xN decouples from the remaining N−1

variables under the measure ν0. Now, we use Lemma 4.18 with n = 1, to evaluate the above
derivative at t = 0. We still write y(l) = x

(l)
N .

ν ′0(R−1,∗xNx
∗
N) = −λν0(y(1)y(2)y(1)y∗R−1,∗R

−
1,2) + λν0(y(1)y∗y(1)y∗R−2

1,∗)

− λν0(y(2)y∗y(1)y∗R−1,∗R
−
2,∗) + λν0(y(2)y(3)y(1)y∗R−1,∗R

−
2,3)

= λν0(R−2
1,∗).

In the above, the only term that survived is the second one since all variables y appearing
in it are squared. We now use Lemma 4.20 to argue that ν0(R−2

1,∗) ' ν1(R−2
1,∗). We apply the

estimate (4.32) with t = 1, τ1 = 3 and τ2 = 3/2 to obtain

ν0(R−2
1,∗) = ν(R−2

1,∗) + δ

with |δ| ≤ K(λ)ν(|R−1,∗|3). Moreover,

ν(R−2
1,∗) = ν((R1,∗ −

1

N
yy∗)2) = ν(R2

1,∗)−
2

N
ν(yy∗R1,∗) +

1

N2
ν((yy∗)2).

The third term is of order 1/N2, and the second term is bounded by 1
N
ν(|R1,∗|). Therefore

ν0((R−1,∗)
2) = ν(R2

1,∗) + δ′,

with

|δ′| ≤ K(λ)

(
1

N
ν(|R−1,∗|) + ν(|R−1,∗|3) +

1

N2

)
.

Putting things together, we have proved that

ν(R2
1,∗) =

1

N
+ λν(R2

1,∗) + δ, (2.41)

where

|δ| ≤ K(λ)

(
1

N
ν(|R−1,∗|) + ν(|R−1,∗|3) +

1

N2

)
. (2.42)

Now we need to control the error term δ. By elementary manipulations,

ν(|R−1,∗|) ≤ ν(|R1,∗|) +
K

N
,

and

ν(|R−1,∗|3) ≤ ν(|R1,∗|3) +
K

N
ν(R2

1,∗) +
K

N2
ν(|R1,∗|) +

K

N3
.

Therefore, from (4.39) we have

|δ| ≤ K

(
ν(|R1,∗|3) +

1

N
ν(R2

1,∗) +
1

N
ν(|R1,∗|) +

1

N2

)
. (2.43)
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At this point, the apriori knowledge that R1,∗ is small with high probability is useful. It
implies that ν(|R1,∗|) � 1 and ν(|R1,∗|3) � ν(R2

1,∗). With Proposition 2.15 we have for
ε > 0

ν(|R1,∗|) ≤ ε+K(ε)e−c(ε)N ,

and
ν(|R1,∗|3) ≤ εν(R2

1,∗) +K(ε)e−c(ε)N .

Combining the above two bounds with (4.42), and then injecting in (2.41), we get

ν(R2
1,∗) ≤

1

N
+ (λ+

K

N
+Kε)ν(R2

1,∗) +
K

N2
+Ke−cN .

We choose ε small enough and N large enough that K(ε+ 1
N

) < 1− λ. We obtain

ν
(
R2

1,∗
)
≤ K

N
+

K

N2
+Ke−cN .

Convergence of the fourth moment

In this subsection we prove the convergence of the fourth moment: E〈R4
1,∗〉 ≤ K

N2 . We
adopt the same technique based on the cavity method, with the extra knowledge that the
second moment converges. Many parts of the argument are exactly the same so we will only
highlight the main novelties in the proof. Let By symmetry between sites,

ν(R4
1,∗) = ν

(
R3

1,∗xNx
∗
N

)
= ν((R−1,∗)

3xNx
∗
N) +

3

N
ν((R−1,∗)

2(xNx
∗
N)2) +

3

N2
ν(R−1,∗(xNx

∗
N)3) +

1

N3
ν((xNx

∗
N)4).

The quadratic term is bounded as

ν((R−1,∗)
2(xNx

∗
N)2) ≤ Kν((R−1,∗)

2) ≤ K

N
.

The last inequality is using our extra knowledge about the convergence of the second moment.
The last two terms are also bounded by K/N2 and K/N3 respectively. Now we must deal
with the cubic term, and here, we apply the exact same technique used to deal with the term
ν(R−1,∗xNx

∗
N) in the previous proof. The argument applies verbatim and we obtain

ν(R4
1,∗) ≤

K

N2
+ λν(R4

1,∗) +Kν(|R−1,∗|5) +Kν(|R−1,∗|3)

Using Proposition 2.15, we have for ε > 0,

ν(|R1,∗|5) ≤ εν(R4
1,∗) +K(ε)e−c(ε)N ,

ν(|R1,∗|3) ≤ εν(R2
1,∗) +K(ε)e−c(ε)N .

Now, we finish the argument in the same way, by choosing ε sufficiently small. This concludes
the proof of Theorem 2.9.
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Chapter 3

Detection limits in the spiked
rectangular model

In this chapter we consider an asymmetric version of the model previously discussed. Con-
cretely we consider the observation of an N ×M matrix of the form

Y =

√
β

N
uv> +W , (3.1)

where u and v are unknown factors and W is a matrix with i.i.d. noise entries. We will
assume as before that the noise is standard Gaussian. The parameter β represents the
strength of the spike. Notice that the model has a new degree of freedom that was not
present before: the aspect ratio of the matrix Y . We assume a high-dimensional setting
where M/N → α. When the factors are independent, model (3.1) can be viewed as a linear
model with additive noise and scalar random design:

yj = βvju+wj,

with 1 ≤ j ≤M , β =
√
β/N . Assuming vj has zero mean and unit variance, this is a model

of spiked covariance: the mean of the empirical covariance matrix Σ̂ = 1
M

∑M
j=1 yjy

>
j is a

rank-one perturbation of the identity: IN + β
N
uu>.

As before, we want to test whether β > 0 or β = 0, so we will look at the behavior of
the likelihood ratio.

3.1 Background and related work

The introduction of a particular spiked covariance model by Johnstone (2001)—one corre-
sponding to the special case vj ∼ N (0, 1)—has provided the foundations for a rich theory of
Principal Component Analysis (PCA), in which the performance of several important tests
and estimators is by now well understood (see, e.g., Amini and Wainwright, 2009; Berthet
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and Rigollet, 2013; Dobriban, 2017; Johnstone and Lu, 2009; Ledoit and Wolf, 2002; Nadler,
2008; Paul, 2007). Parallel developments in random matrix theory have unveiled the exis-
tence of sharp transition phenomena in the behavior of the spectrum of the data matrix,
where for a spike of strength above a certain spectral threshold, the top eigenvalue separates
from the remaining eigenvalues which are packed together in a “bulk” and thus indicates the
presence of the spike; below this threshold, the top eigenvalue converges to the edge of the
bulk. See Benaych-Georges and Nadakuditi (2011, 2012); Capitaine, Donati-Martin, and
Féral (2009); Féral and Péché (2007); Péché (2006) for results on low-rank deformations of
Wigner matrices, and Bai and Yao (2008, 2012); Baik, Ben Arous, and Péché (2005); Baik
and Silverstein (2006) for results on spiked covariance models. More recently, an intense
research effort has been undertaken to pin down the fundamental limits for both estimating
and detecting the spike.

In a series of papers (Barbier, Dia, et al., 2016; Deshpande, Abbé, and Montanari, 2016;
Korada and Macris, 2009; Krzakala, Xu, and Zdeborová, 2016; Lelarge and Miolane, 2017;
Miolane, 2017), the error of the Bayes-optimal estimator has been completely characterized
for additive low-rank models with a separable (product) prior on the spike. In particu-
lar, these papers confirm an interesting phenomenon discovered by Lesieur, Krzakala, and
Zdeborová (2015a,b), based on plausible but non-rigorous arguments: for certain priors
on the spike, estimation becomes possible—although computationally expensive—below the
spectral threshold β = 1. More precisely, the posterior mean overlaps with the spike in
regions where the top eigenvector is orthogonal to it. Lesieur, Krzakala, and Zdeborová
(2017) provides a full account of these phase transitions in a myriad of interesting situations,
the majority of which still await rigorous treatment. As for the testing problem, Onatski,
Moreira, and Hallin (2013, 2014) and Johnstone and Onatski (2015) considered the spiked
covariance model for a uniformly distributed unit norm spike, and studied the asymptotics
of the likelihood ratio (LR) of a spiked alternative against a spherical null. They showed
that the log-LR is asymptotically Gaussian below the spectral threshold αβ2 = 1 (which in
this setting is known as the BBP threshold, after Baik, Ben Arous, and Péché, 2005), while
it is divergent above it.

However their proof is intrinsically tied to the assumption of a spherical prior. Indeed,
by rotational symmetry of the model, the LR depends only on the spectrum, the joint
distribution of which is available in closed form. A representation of the LR in terms of a
contour integral is then possible (in the single spike case), which can then be analyzed via the
method of steepest descent. In a similar but unrelated effort, Baik and Lee (2016, 2017a,b)
studied the fluctuations of the free energy of spherical, symmetric and bipartite versions of the
Sherrington–Kirkpatrick (SK) model. This free energy coincides with the log-LR associated
with the model (3.1) for a choice of parameters. The sphericity assumption is again key to
their analysis, and both approaches require the execution of very delicate asymptotics and
appeal to advanced results from random matrix theory.
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3.2 Fluctuations below the BBP threshold

We consider the case of separable priors: we assume that the entries of u and v are inde-
pendent and identically distributed from base priors Pu and Pv, respectively, both having
bounded support (boundedness is required for technical reasons. This unfortunately rules
out the case where one factor is Gaussian.) We prove fluctuation results for the log-LR in
this setting with entirely different methods than used for spherical priors. In particular, our
proof is more probabilistic and operates through general principles. The tools we use come
from the mathematical theory of spin glasses (see Talagrand, 2011a,b).

We assume that the priors Pu and Pv have zero mean, unit variance, and (as in the
previous chapter) supports bounded in radius by Ku and Kv respectively. Let Pβ be the
probability distribution of the matrix Y as per (3.1). Define L(·; β) to be the likelihood
ratio, or Radon-Nikodym derivative of Pβ with respect to P0:

L(·; β) ≡ dPβ
dP0

.

For a fixed Y ∈ RN×M , by conditioning on u and v, we can write

L(Y ; β) =

∫
exp

(∑
i,j

√
β

N
Yijuivj −

β

2N
u2
i v

2
j

)
dP⊗Nu (u)dP⊗Mv (v).

The main result of this chapter is the following asymptotic distributional result.

Theorem 3.1. Let α, β ≥ 0 such that K4
uK

4
vαβ

2 < 1. Then in the limit N → ∞ and
M/N → α,

logL(Y ; β) N
(
±1

4
log
(
1− αβ2

)
,−1

2
log
(
1− αβ2

))
,

where “ ” denotes convergence in distribution. The sign of the mean is + under the null
Y ∼ P0 and − under the alternative Y ∼ Pβ.

We see that the region of parameters (α, β) we are able to cover with our proof method is
optimal when (and only when) Pu and Pv are both symmetric Rademacher. This is in charp
contrast with the symmetric case where we’ve been able to prove Gaussian fluctuations up to
the optimal threshold λc for abritrary priors. This is intrinsically due to the bipartite nature
of the problem, for which certain positivity arguments are not available. In Section 3.6
we formulate a conjecture on the maximal region in which the log-LR has asymptotically
Gaussian fluctuations. This region is of course below the BBP threshold, but does not extend
up to it in general.

A consequence of either one of the above statements and Le Cam’s first lemma (Van
der Vaart, 2000, Lemma 6.4) is the mutual contiguity (see Definition 1.1) between the null
and the spiked alternative:
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Corollary 3.2. For K4
uK

4
vαβ

2 < 1, the families of distributions P0 and Pβ (indexed by
M,N) are mutually contiguous in the limit N →∞, M/N → α.

Contiguity implies impossibility of strong detection: there exists no test that, upon
observing a random matrix Y with the promise that it is sampled either from P0 or Pβ,
can tell which is the case with asymptotic certainty in this regime. We also mention that
contiguity can be proved through the second-moment method and its conditional variants,
as was done by Banks, Moore, Vershynin, et al. (2017); Montanari, Reichman, and Zeitouni
(2015); Perry et al. (2016a) for closely related models. However, identifying the right event
on which to condition in order to tame the second moment of L is a matter of a case-
by-case deliberation. Study of the fluctuations of the log-LR appears to provide a more
systematic route: the logarithm has a smoothing effect that kills the wild (but rare) events
that otherwise dominate in the second moment. This being said, our result is optimal only
in one special case:

When Pu and Pv are symmetric Rademacher, Ku = Kv = 1, and Theorem 3.1 covers the
entire (α, β) region where such fluctuations hold. Indeed, for αβ2 > 1, one can distinguish Pβ
from P0 by looking at the top eigenvalue of the empirical covariance matrix Y Y > (Benaych-
Georges and Nadakuditi, 2012). So the conclusion of Theorem 3.1 cannot hold in light of
the above contiguity argument. Beyond this special case, our result is not expected to be
optimal.

Limits of weak detection Since contiguity implies that testing errors are inevitable, it
is natural to aim for tests T : RN×M 7→ {0, 1} that minimize the sum of the Type-I and
Type-II errors:

err(T ) = P0 (T (Y ) = 1) + Pβ (T (Y ) = 0) .

By the Neyman-Pearson lemma, the test minimizing the above error is the likelihood ratio
test that rejects the null iff L(Y ; β) > 1. The optimal error is thus

err∗M,N(β) = P0 (logL(Y ; β) > 0) + Pβ (logL(Y ; β) ≤ 0) = 1−DTV(Pβ,P0).

The symmetry of the means under the null and the alternative in Theorem 3.1 implies that
the above Type-I and Type-II errors are equal, and that the total error has a limit:

Corollary 3.3. For α, β ≥ 0 such that K4
uK

4
vαβ

2 < 1,

lim
N→∞
M/N→α

err∗M,N(β) = 1− lim
N→∞
M/N→α

DTV(Pβ,P0) = erfc

(
1

4

√
− log (1− αβ2)

)
,

where erfc(x) = 2√
π

∫∞
x
e−t

2
dt is the complementary error function.

Furthermore, our proof of Theorem 3.1 allows us obtain the convergence of the mean (ac-
tually, all moments of logL) under Pβ, which corresponds to the Kullback-Liebler divergence
of Pβ to P0:
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Proposition 3.4. For all α, β ≥ 0 such that K4
uK

4
vαβ

2 < 1,

lim
N→∞
M/N→α

DKL(Pβ,P0) = −1

4
log
(
1− αβ2

)
.

3.3 Replicas, overlaps, Gibbs measures and Nishimori

To embark on the argument, we introduce similar notation and terminology as in Chapter 2.
Let H : RN+M → R be the (random) function, which we refer to as a Hamiltonian, defined
as

−H(u,v) =
∑
i,j

√
β

N
Yijuivj −

β

2N
u2
i v

2
j , (3.2)

where Y = (Yij) comes from Pβ or P0. Letting ρ denote the product measure P⊗Nu ⊗ P⊗Mv ,
we have

L(Y ; β) =

∫
e−H(u,v)dρ(u,v).

Let us define the Gibbs average of a function f : (RN+M)n 7→ R of n replica pairs (u(l),v(l))nl=1

with respect to the Hamiltonian H as

〈f〉 =

∫
f
∏n

l=1 e
−H(u(l),v(l))dρ(u(l),v(l))(∫

e−H(u,v)dρ(u,v)
)n . (3.3)

This is the mean of f with respect to the posterior distribution of (u,v) given Y : Pβ(·|Y )⊗n.
We interpret the replicas as random and independent draws from this posterior. When
Y ∼ Pβ we also allow f to depend on the spike pair (u∗,v∗). For two different replicas
(u(l),v(l)) and (u(l′),v(l′)) (l′ is allowed to take the value ∗) we denote the overlaps of the u

and v parts, both normalized by N , as

Ru
l,l′ =

1

N

N∑
i=1

u
(l)
i u

(l′)
i and Rv

l,l′ =
1

N

M∑
j=1

v
(l)
j v

(l′)
j .

The Nishimori property under Pβ
The Nishimori property is deduced in the same way as in the symmetric case, this time we
have two latent factors to consider:

1. Construct u∗ ∈ RN and v∗ ∈ RM by independently drawing their coordinates from Pu

and Pv respectively.

2. Construct Y =
√

β
N
u∗v∗> + W , where Wij ∼ N (0, 1) are all independent. (Y is

distributed according to Pβ.)
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3. Draw n+ 1 independent random vector pairs, (u(l),v(l))n+1
l=1 , from Pβ((u,v) ∈ ·|Y ).

By the tower property of expectations, the following equality of joint laws holds(
Y , (u(1),v(1)), · · · , (u(n+1),v(n+1))

) d
=
(
Y , (u(1),v(1)), · · · , (u(n),v(n)), (u∗,v∗)

)
. (3.4)

This in particular implies that under Pβ, the overlaps (Ru
1,∗, R

v
1,∗) between replica and spike

pairs have the same distribution as the overlaps (Ru
1,2, R

v
1,2) between two replica pairs.

For the same reasons as in the symmetric case, overlap decay implies super-concentration.
Indeed, we see that for Y ∼ P0, the Gaussian Poincaré inequality similarly implies

E
[
(logL− E logL)2

]
≤ E

[
‖∇ logL‖2

`2

]
= βN E〈Ru

1,2R
v
1,2〉.

We deduce that the variance is O(N) since our priors have bounded support and M/N =
O(1).

3.4 Proof of the main result

In this section we prove Theorem 3.1. As we’ve seen in Chapter 2, it suffices to treat the
planted case Y ∼ Pβ. In this model, we are able to achieve control on the overlaps and show
their concentration under the alternative in a wider region of parameters (α, β) than under
the null.

This time, instead of showing the convergence of the moments (which could be done in
pretty much the same way), we will show the convergence of the characteristic function of
logL to that of a Gaussian. Let µ = −1

4
log(1 − αβ2), σ2 = −1

2
log(1 − αβ2), and let φ be

the characteristic function of the Gaussian distribution N (µ, σ2): for s ∈ R and i2 = −1,
let φ(s) = exp{isµ − σ2

2
s2}. The following is a more quantitative convergence result that

implies Theroem 3.1.

Theorem 3.5. Let s ∈ R and α, β ≥ 0. There exists K = K(s, α, β,Ku, Kv) <∞ such that
for M,N sufficiently large and M = αN + O(

√
N), the following holds. If αβ2K4

uK
4
v < 1,

then ∣∣EPβ
[
eis logL(Y ;β)

]
− φ(s)

∣∣ ≤ K√
N
.

Our approach is to show that the function

φN(β) = EPβ
[
eis logL(Y ;β)

]
(for s ∈ R fixed) is an approximate solution to a differential equation whose solution is the
characteristic function of the Gaussian.

Lemma 3.6. For all β ≥ 0, it holds that

d

dβ
φN(β) =

is− s2

2
N E

[〈
Ru

1,2R
v
1,2

〉
eis logL

]
. (3.5)
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Proof. Since Y ∼ Pβ, we can rewrite the Hamiltonian (3.2) as

−H(u,v) =
∑
i,j

√
β

N
Yijuivj −

β

2N
u2
i v

2
j ,

=
∑
i,j

√
β

N
Wijuivj +

β

N
uivju

∗
i v
∗
j −

β

2N
u2
i v

2
j .

We take a derivative with respect to β:

d

dβ
φN(β) = isE

[〈
−dH

dβ

〉
eis logL

]
= is

∑
i,j

(
1

2
√
βN

E
[
Wij 〈uivj〉 eis logL

]
− 1

2N
E
[〈
u2
i v

2
j

〉
eis logL

])
+ is

1

N

∑
i,j

E
[〈
uivju

∗
i v
∗
j

〉
eis logL

]
.

The last term is equal to isN E[〈Ru
1,∗R

v
1,∗〉eis logL]. As for the first term, since Wij

ind.∼ N (0, 1),
we use Gaussian integration by parts to obtain

E
[
Wij 〈uivj〉 eis logL

]
= E

[
d

dWij

(
〈uivj〉 eis logL

)]
=

√
β

N

(
E
[〈
u2
i v

2
j

〉
eis logL

]
− E

[
〈uivj〉2 eis logL

]
+ isE

[
〈uivj〉2 eis logL

])
.

Regrouping terms, we get

d

dβ
φN(β) = −isN

2
E
[〈
Ru

1,2R
v
1,2

〉
eis logL

]
+ isN E

[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
(3.6)

+ (is)2N

2
E
[〈
Ru

1,2R
v
1,2

〉
eis logL

]
.

The first and third terms in (3.6) contain overlaps between two replicas while the middle
term contains an overlap between one replica and the spike vectors. By the Nishimori
property (3.4), we can replace the spike by a second replica in the overlaps appearing in the
middle term, and this finishes the proof. �

A heuristic argument Let us now heuristically consider what should happen. A rigorous
argument will be presented shortly. If the quantity N〈Ru

1,2R
v
1,2〉 concentrates very strongly

about some deterministic value θ = θ(α, β), we would expect that the Gibbs averages in (3.5)
would behave approximately independently from logL, and we would obtain the following
differential equation

d

dβ
φN(β) ' 1

2

(
is− s2

)
θφN(β).
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Since φN(0) = 1, one obtains φN(β) ' exp{1
2
(is − s2)

∫ β
0
θdβ′} by integrating over β, and

the result would follow. The concentration assumption we used is commonly referred to as
replica-symmetry or the replica-symmetric ansatz in the statistical physics literature. Most
of the difficulty of the proof lies in showing rigorously that replica symmetry indeed holds.

Sign symmetry between Pβ and P0 One can execute the same argument under the null
model. Since there is no planted term in the Hamiltonian, the analogue of (3.6) one obtains
does not contain the middle term. Hence the differential equation one obtains is

d

dβ
φN(β) ' 1

2

(
−is− s2

)
θφN(β).

This is one way to interpret the sign symmetry of the means of the limiting Gaussians under
the null and the alternative: the interaction of one replica with the planted spike under the
planted model accounts for twice the contribution of the interaction between two independent
replicas, and this flips the sign of the mean.

We now replace the above heuristic with a rigorous statement. Recall that Y ∼ Pβ.

Proposition 3.7. For s ∈ R and α, β ≥ 0 such that αβ2K4
uK

4
v < 1, there exist a constant

K = K(s, α, β,Ku, Kv) <∞ such that

N E
[〈
Ru

1,2R
v
1,2

〉
eis logL

]
=

αβ

1− αβ2
E
[
eis logL

]
+ δ,

where |δ| ≤ K/
√
N . Moreover, K, seen as a function of β, is bounded on any interval [0, β′]

when αβ′2K4
uK

4
v < 1.

Taking s = 0, we see that θ = αβ
1−αβ2 . Proposition 3.7 vindicates replica symmetry, and

its proof occupies the majority of the rest of the manuscript.

Proof of Theorem 3.5. Plugging the results of Proposition 3.7 in the derivative computed in
Lemma 3.6, we obtain

d

dβ
φN(β) =

(
is− s2

2

αβ

1− αβ2

)
φN(β) + δ,

where |δ| ≤ K√
N

max{|s|, s2}, and K is the constant from Proposition 3.7. Integrating w.r.t.
β we obtain

|φN(β)− φ(s)| ≤ K ′√
N
,

where K ′ depends on α, β, s and Ku, Kv, and K ′ <∞ as long as αβ2K4
uK

4
v < 1. �

Let us prove in passing the convergence of the KL divergence between the null and
alternative.
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Proof of Proposition 3.4. Similarly to the computation of the derivative of φN , we can obtain

d

dβ
EPβ logL(Y ; β) = −N

2
E
〈
Ru

1,2R
v
1,2

〉
+N E

〈
Ru

1,∗R
v
1,∗
〉

=
N

2
E
〈
Ru

1,2R
v
1,2

〉
,

where we used the Nishimori property. By Proposition 3.7 with s = 0, this derivative is
K/
√
N away from 1

2
αβ

1−αβ2 . Integration and boundedness of K finishes the proof. �

3.5 Overlap convergence

The question of overlap convergence is purely a spin glass problem. We will use the machinery
developed by Talagrand to solve it. In particular, a crucial use is made of the cavity method
and Guerra’s interpolation scheme. In this section, we present the main underlying ideas.
The arguments are conceptually the same as the ones used for the symmetric case, with
slight further technical complications. We delay their full execution to a later section. We
refer to Talagrand (2007) for a leisurely high-level introduction to these ideas.

Sketch of proof of Proposition 3.7

The basic idea is to show that the quantities of interest approximately obey a self-consistent
(or self-bounding) property, the error terms of which can be controlled. This approach will
be used at different stages of the proof. We will show that

N E
[〈
Ru

1,2R
v
1,2

〉
eis logL

]
= αβ E

[
eis logL

]
+ αβ2N E

[〈
Ru

1,2R
v
1,2

〉
eis logL

]
+ δ,

where δ is the error term. This will be achieved in two steps. We first prove

N E
[〈
Ru

1,2R
v
1,2

〉
eis logL

]
= Nβ E

[〈
(Rv

1,2)2
〉
eis logL

]
+ δ, (3.7)

via a cavity on N , i.e., by isolating the effect of the last variable uN on the rest of the
variables. We then show

N E
[〈

(Rv
1,2)2

〉
eis logL

]
=
M

N
E
[
eis logL

]
+Mβ E

[〈
Ru

1,2R
v
1,2

〉
eis logL

]
+ δ, (3.8)

via a cavity on M , i.e., isolating the effect of vM . In the arguments leading to (3.7) and (3.8),
we accumulate error terms that are proportional to the third moments of the overlaps:

δ . N E
〈
|Ru

1,2|3
〉

+N E
〈
|Rv

1,2|3
〉
, (3.9)

where we hide constants depending on α and β. These cavity equations impose only a mild
restriction on the parameters so that our bounds go in the right direction, namely that
αβ2 < 1. This is about to change. We prove that δ = O(1/

√
N) with methods that impose

the stronger restrictions on (α, β) that ultimately appear in the final result.
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Convergence in the planted model: from crude estimates to
optimal rates

We prove overlap convergence under the alternative. Let Y ∼ Pβ.

Proposition 3.8. For all α, β ≥ 0 such that K4
uK

4
vαβ

2 < 1, there exists K = K(α, β) <∞
such that

E
〈
(Ru

1,2)4
〉
∨ E

〈
(Rv

1,2)4
〉
≤ K

N2
.

The proof proceeds as follows. We use the cavity method to show the following self-
consistency equations:

E
〈
(Ru

1,2)4
〉

= αβ2 E
〈
(Ru

1,2)4
〉

+Mu + δu, (3.10)

E
〈
(Rv

1,2)4
〉

= αβ2 E
〈
(Rv

1,2)4
〉

+Mv + δv, (3.11)

where |Mu|, |Mv| are bounded by sums of expectations of monomials of degree five in the
overlaps Ru and Rv:

|Mu| .
∑
a,b,c,d

E
〈∣∣(Ru

1,2)3Ru
a,bR

u
c,d

∣∣〉+ E
〈∣∣(Ru

1,2)3Rv
a,bR

v
c,d

∣∣〉 ,
|Mv| .

∑
a,b,c,d

E
〈∣∣(Rv

1,2)3Rv
a,bR

v
c,d

∣∣〉+ E
〈∣∣(Rv

1,2)3Ru
a,bR

u
c,d

∣∣〉 ,
where the sum is over a finite number of combinations (a, b, c, d), and

δu .
1

N
E
〈
(Ru

1,2)2
〉

+O
( 1

N2

)
, δv .

1

N
E
〈
(Rv

1,2)2
〉

+O
( 1

N2

)
.

These results hold for all α, β ≥ 0. From here, further progress is unlikely unless one has
a priori knowledge that the overlaps are unlikely to be large, so that the fifth-order terms
do not overwhelm the main terms. More precisely, suppose that we are able to prove the
following crude bound on the overlaps: for ε > 0, there is K = K(ε, α, β) > 0 such that

E
〈
1
{∣∣Ru

1,2

∣∣ ≥ ε
}〉
∨ E

〈
1
{∣∣Rv

1,2

∣∣ ≥ ε
}〉
≤ Ke−N/K . (3.12)

Then the fifth-order terms can be controlled by fourth-order terms as follows:

E
〈∣∣(Ru

1,2)3Rv
a,bR

v
c,d

∣∣〉 ≤ εE
〈∣∣(Ru

1,2)3Rv
a,b

∣∣〉+K6
uK

4
vKe

−N/K

≤ εM +Ke−N/K ,

where M = E〈(Ru
1,2)4〉∨E〈(Rv

1,2)4〉, and the last step is by Hölder’s inequality. This way, Mu

and Mv are controlled. Now it remains to control δu and δv. We could re-execute the cavity
argument on the second moment instead of the fourth, and this would allow us to obtain
E〈(Ru

1,2)2〉 ∨ E〈(Rv
1,2)2〉 ≤ K/N . We instead use a shorter argument based on an elegant
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quadratic replica coupling technique of Guerra and F. Toninelli (2002b) to prove this. This
is presented in Section 3.9. Plugging these estimates into (3.10) and (3.11), we obtain

E
〈
(Ru

1,2)4
〉
≤ αβ2 E

〈
(Ru

1,2)4
〉

+KεM + δ′,

E
〈
(Rv

1,2)4
〉
≤ αβ2 E

〈
(Rv

1,2)4
〉

+KεM + δ′,

where δ′ ≤ K/N2 +Ke−N/K , and this implies the desired result for ε sufficiently small.
The a priori bound (3.12) is proved via an interpolation argument at fixed overlap,

combined with concentration of measure, and is presented in Section 3.9. These arguments
impose a restriction on the parameters (α, β) that shows up in the final result. Finally,
Proposition 3.8 allow us to conclude (via Jensen’s inequality) that the error term δ displayed
in (3.9) is bounded by K/

√
N .

3.6 A conjecture

The limiting factor in our approach to prove LR fluctuations is the need for precise non-
asymptotic control of moments of the overlaps Ru

1,2 and Rv
1,2 under the expected Gibbs

measure E〈·〉. We were able to reach this level of control only in a restricted regime. This is
due to the failure of our approach to prove the crude estimate (3.12) in a larger region. In this
section, we formulate a conjecture on the largest region where these fluctuations and overlap
decay should occur. In one sentence, this should be the entire annealed or paramagnetic
region of the model, as dictated by the vanishing of its replica-symmetric (RS) formula. We
shall now be more precise.

Let z ∼ N (0, 1), u∗ ∼ Pu and v∗ ∼ Pv all independent. Define

ψu(r) := Eu∗,z log

∫
exp

(√
rzu+ ruu∗ − r

2
u2
)

dPu(u),

ψv(r) := Ev∗,z log

∫
exp

(√
rzv + rvv∗ − r

2
v2
)

dPv(v).

Moreover, define the RS potential as

F (α, β, qu, qv) := ψu(βqv) + αψv(βqu)−
βquqv

2
.

and finally define the RS formula as

φRS(α, β) := sup
qv≥0

inf
qu≥0

F (α, β, qu, qv).

It was argued by Lesieur, Krzakala, and Zdeborová (2015a) based on the plausibility of
the replica-symmetric ansatz, and then proved by Miolane (2017), that in the limit N →
∞,M/N → α, 1

N
EPβ logL(Y ; β) → φRS(α, β) for all α, β ≥ 0. (See also Barbier, Krzakala,
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et al., 2017, for results in a more general setup.) Of course, by change of measure and Jensen’s
inequality,

EPβ logL(Y ; β) = EP0 L(Y ; β) logL(Y ; β) ≥ 0,

for all M,N ; therefore φRS is always nonnegative. Let

Γ = {(α, β) ∈ R+ : φRS(α, β) = 0} .

It is not hard to prove the following lemma by analyzing the stability of (0, 0) as a
stationary point of the RS potential:

Lemma 3.9. Γ ⊆ {(α, β) ∈ R+ : αβ2 ≤ 1}.

This lemma tells us (unsurprisingly) that Γ is entirely below the BBP threshold. The
inclusion may or may not be strict depending on the priors Pu and Pv. For instance, there
is equality of the above sets if Pu and Pv are symmetric Rademacher and/or Gaussian re-
spectively. One case of strict inclusion is when Pv is Gaussian N (0, 1) and Pu is a sparse
Rademacher prior, ρ

2
δ1/
√
ρ + (1− ρ)δ0 + ρ

2
δ−1/

√
ρ, for sufficiently small ρ (e.g., ρ = .04). This

is a canonical model for sparse principal component analysis. In this case, there is a region
of parameters below the BBP threshold where the posterior mean E[u∗|Y ] (= 〈u〉 in our
notation) has a non-trivial overlap with the spike u∗, while the top eigenvector of the em-
pirical covariance matrix Y Y > is orthogonal to it. Estimation becomes impossible only in
the region Γ, so the following conjecture is highly plausible:

Conjecture 1. Let Γ′ be the interior of Γ. For all (α, β) ∈ Γ′,

logL(Y , β) N
(
±1

4
log(1− αβ2),−1

2
log(1− αβ2)

)
,

where the plus sign holds under the null P0 and the minus sign under the alternative Pβ.

Our conjecture is formulated only in the interior of Γ; this is not a superfluous condition
since diverging behavior may appear at the boundary. Moreover, this conjecture is about
the maximal region in which such fluctuations can take place. This is not difficult to show.
By (sub-Gaussian) concentration of the normalized likelihood ratio, we have for ε > 0

Pβ
( 1

N
logL(Y ; β)− φRS(α, β) ≤ −ε

)
−→ 0,

where K = K(α, β) <∞. This already shows that logL must grow with N under the alter-
native if φRS > 0. As for the behavior under the null, the same sub-Gaussian concentration
holds, although the expectation is not known (see Question 1):

P0

( 1

N
logL(Y ; β)− 1

N
EP0 logL(Y ; β) ≥ ε

)
−→ 0.
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We do know that the above expectation is non-positive, by Jensen’s inequality. Therefore if
(α, β) are such that φRS > 0, one can distinguish Pβ from P0 with asymptotic certainty by
testing whether 1

N
logL(Y ; β) is above or below (say) 1

2
φRS(α, β). This implies that Pβ and

P0 are not contiguous outside Γ. This—short of proving that logL grows in the negative
direction with N—shows that the fluctuations cannot be of the above form under the null,
since this would contradict Le Cam’s first lemma.

The difficulty we encountered in our attempts to prove the above conjecture is a loss of
control over the overlaps Ru

1,2 and Rv
1,2 near the boundary of the set Γ. The interpolation

bound at fixed overlap (between a replica and the spike) we used under the alternative Pβ
is vacuous beyond the region αβ2 < (KuKv)

−4. It is possible that the latter bound could be
marginally improved by more careful analysis, but this is unlikely to yield the optimal result
since no information about φRS is used in the proof. One can imagine refining this technique
by constraining two replicas and using an interpolation with broken replica-symmetry, in
the spirit of the “2D” Guerra-Talagrand bound (Guerra, 2003; Talagrand, 2011b). Although
this strategy is successful in the symmetric model where u = v it is not at all obvious why
such an interpolation bound should be true in the bipartite case: in the analysis, certain
terms that are hard to control have a sign in the symmetric case, hence they can be dropped
to obtain a bound. This is no longer true (or at least not obviously so) in the bipartite case.

Another interesting question concerns the LR asymptotics under the null, outside Γ.
While under the alternative Pβ, the normalized log-likelihood ratio converges to the RS
formula φRS for all (α, β), no such simple formula is expected to hold under the null. Even
the existence of a limit seems to be unknown.

Question 1. Does 1
N
EP0 logL(Y ; β) have a limit for all (α, β)? If so, what is its value?

We refer to Barra, Galluzzi, et al. (2014); Barra, Genovese, and Guerra (2011) and Auffin-
ger and Chen (2014) for some progress on the replica-symmetric phase, and Panchenko (2015)
for progress on the related problem of the “multispecies” SK model at all temperatures.

3.7 Notation and useful lemmas

We make repeated use of interpolation arguments in our proofs. In this section, we state
a few elementary lemmas we subsequently invoke several times. We denote the overlaps
between replicas when the last variables are deleted by a superscript “− ” :

Ru−
l,l′ =

1

N

N−1∑
i=1

u
(l)
i u

(l′)
i and Rv−

l,l′ =
1

N

M−1∑
j=1

v
(l)
j v

(l′)
j .

If {Ht : t ∈ [0, 1]} is a generic family of random Hamiltonians, we let 〈·〉t be the corresponding
Gibbs average, and νt(f) = E 〈f〉t, where the expectation is over the randomness of Ht. We
will often write ν for ν1.
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In our executions of the cavity method, we use interpolations that isolate one last variable
(either uN or vM) from the rest of the system. Taking the first case an example, we consider

−Ht(u,v) =
N−1∑
i=1

M∑
j=1

√
β

N
Wijuivj +

β

N
uiu
∗
i vjv

∗
j −

β

2N
u2
i v

2
j

+
M∑
j=1

√
βt

N
WNjuNvj +

βt

N
uNu

∗
Nvjv

∗
j −

βt

2N
u2
Nv

2
j .

Lemma 3.10. Let f be a function of n replicas (u(l),v(l))1≤l≤n. Then

d

dt
νt(f) =

β

2

∑
1≤l 6=l′≤n

νt(R
v
l,l′u

(l)u(l′)f)− β

2
n

n∑
l=1

νt(R
v
l,n+1u

(l)u(n+1)f)

+ βn
n∑
l=1

νt(R
v
l,∗u

(l)u∗f)− βnνt(Rv
n+1,∗u

(n+1)u∗f)

+ β
n(n+ 1)

2
νt(R

v
n+1,n+2u

(n+1)u(n+2)f).

Proof. This is a simple computation based on Gaussian integration by parts, similarly to
Lemma 3.5. �

The next lemma allows us to control interpolated averages by averages at time 1.

Lemma 3.11. Let f be a nonnegative function of n replicas (u(l),v(l))1≤l≤n. Then for all
t ∈ [0, 1]

νt(f) ≤ K(n, α, β)ν(f).

Proof. This is a consequence of Lemma 3.10, boundedness of the variables ui and vj, and
Grönwall’s lemma. �

It is clear that Lemma 3.11 also holds if we switch the roles of u and v and extract vM
instead (so that νt is defined accordingly).

3.8 Proof of Proposition 3.7

We make use of two interpolation arguments; the first one extracts the last variable uN from
the system, and the second one extracts vM . This allows to establish the self-consistency
equations (3.7) and (3.8). We will assume decay of the forth moments of the overlaps, i.e.,
we assume Proposition 3.8 (which we prove in Section 3.9), and this allows us the prove that
the error terms emerging from the cavity method converge to zero. Recall that the Nishimori
property implies

E
[〈
Ru

1,2R
v
1,2

〉
eis logL

]
= E

[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
.

As it turns out, it is more convenient to work with the right-hand side.
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Cavity on N

By symmetry of the u variables, we have

E
[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
= E

[〈
u

(1)
N u∗NR

v
1,∗

〉
eis logL

]
.

Now we consider the interpolating Hamiltonian

−Ht(u,v) =
N−1∑
i=1

M∑
j=1

√
β

N
Wijuivj +

β

N
uiu
∗
i vjv

∗
j −

β

2N
u2
i v

2
j

+
M∑
j=1

√
βt

N
WNjuNvj +

βt

N
uNu

∗
Nvjv

∗
j −

βt

2N
u2
Nv

2
j ,

and let 〈·〉t be the associated Gibbs average. We let

X(t) = exp
(
is log

∫
e−Ht(u,v)dρ(u,v)

)
,

and
ϕ(t) = N E

[〈
u

(1)
N u∗NR

v
1,∗

〉
t
X(t)

]
.

Observe that ϕ(1) is the quantity we seek to analyze. We will use the following error bound
on Taylor’s expansion:

|ϕ(1)− ϕ(0)− ϕ′(0)| ≤ sup
0≤t≤1

|ϕ′′(t)|,

to approximate ϕ(1) by ϕ(0) + ϕ′(0). Since Pu is centered, we have ϕ(0) = 0. With a
computation similar to the one leading to Lemma 3.6, the time derivative ϕ′(t) is a sum of
terms of the form

Nβ E
[〈
u

(1)
N u∗Nu

(a)
N u

(b)
N R

v
1,∗R

v
a,b

〉
t
X(t)

]
,

for (a, b) ∈ {(1, ∗), (2, ∗), (1, 2), (2, 3)}. At t = 0 all terms vanish expect when (a, b) = (1, ∗)
and we get

ϕ′(0) = Nβ E
[〈

(Rv
1,∗)

2
〉

0
X(0)

]
.

Now we wish to replace the time index t = 0 in the above quantity by the time index t = 1.
Similarly to ϕ, the derivative of the function t 7→ Nβ E[〈(Rv

1,∗)
2〉tX(t)], is a sum of terms of

the form
Nβ2 E

[〈
u

(a)
N u

(b)
N (Rv

1,∗)
2Rv

a,b

〉
t
X(t)

]
.

By boundedness of the u variables and Hölder’s inequality, this is bounded by

Nβ2K4
u E
[〈∣∣(Rv

1,∗)
2Rv

a,b

∣∣〉
t

]
≤ Nβ2K4

u E
[〈
|Rv

1,∗|3
〉
t

]
≤ Nβ2K4

uK E
[〈
|Rv

1,∗|3
〉]
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≤ Kβ2

√
N
,

where the second bound is by Lemma 3.11, and the last bound is a consequence of Proposi-
tion 3.8 (and Jensen’s inequality). Therefore∣∣ϕ′(0)−Nβ E

[〈
(Rv

1,∗)
2
〉
X(1)

]∣∣ ≤ K√
N
.

Similarly, we control the second derivative ϕ′′. This can be written as a finite sum of terms
of the form

Nβ2 E
[〈
u

(1)
N u∗Nu

(a)
N u

(b)
N u

(c)
N u

(d)
N Rv

1,∗R
v
a,bR

v
c,d

〉
t
X(t)

]
,

which are bounded in the same way by

Nβ2K6
u E
[〈∣∣Rv

1,∗R
v
a,bR

v
c,d

∣∣〉
t

]
≤ β2K6

u

K√
N
.

Therefore |ϕ′′| ≤ K/
√
N . We end up with

N E
[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
= Nβ E

[〈
(Rv

1,∗)
2
〉
eis logL

]
+ δ, (3.13)

where |δ| ≤ K/
√
N whenever (α, β) satisfy the conditions of Proposition 3.8.

Cavity on M

By symmetry of the v variables,

N E
[〈

(Rv
1,∗)

2
〉
eis logL

]
= M E

[〈
v

(1)
M v∗MR

v
1,∗

〉
eis logL

]
=
M

N
E
[〈

(v
(1)
M v∗M)2

〉
eis logL

]
+M E

[〈
v

(1)
M v∗MR

v−
1,∗

〉
eis logL

]
.

Now we execute the same argument as above with the roles of u and v flipped to prove that

E
[〈

(v
(1)
M v∗M)2

〉
eis logL

]
= E

[
eis logL

]
+ δ,

and
M E

[〈
v

(1)
M v∗MR

v−
1,∗

〉
eis logL

]
= Mβ E

[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
+ δ,

where |δ| ≤ K(M/N3/2 ∨ 1/
√
N). Here we use the interpolating Hamiltonian

−Ht(u,v) =
M−1∑
j=1

N∑
i=1

√
β

N
Wijuivj +

β

N
uiu
∗
i vjv

∗
j −

β

2N
u2
i v

2
j
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+
N∑
i=1

√
βt

N
WiMuivM +

βt

N
uiu
∗
i vMv

∗
M −

βt

2N
u2
i v

2
M ,

and similarly define the random variable X(t) = exp
(
is log

∫
e−Ht(u,v)dρ(u,v)

)
. After exe-

cuting the argument, we obtain

N E
[〈

(Rv
1,∗)

2
〉
eis logL

]
=
M

N
E
[
eis logL

]
+Mβ E

[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
+ δ. (3.14)

From (3.13) and (3.14), we obtain

N E
[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
=
M

N
β E

[
eis logL

]
+Mβ2 E

[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
+ δ,

where |δ| ≤ K(M/N3/2 ∨ 1/
√
N). For M = αN +O(

√
N), we arrive at

N E
[〈
Ru

1,∗R
v
1,∗
〉
eis logL

]
=

αβ

1− αβ2
E
[
eis logL

]
+ δ,

with |δ| ≤ K/
√
N , and this finishes the proof.

3.9 Proof of Proposition 3.8

This section is about overlap convergence in the planted model. As explained in the main
text, the proof is in several steps. We first present a proof of convergence of the second
moment of the overlaps that does not rely on the cavity method, but on a quadratic replica
coupling scheme of Guerra and F. Toninelli (2002b). Then we present the interpolation
argument as a fixed overlap that will allow us to prove the crude convergence bound (3.12).
Finally we execute a round of the cavity method to prove convergence of the fourth moment.

Convergence of the second moment

Proposition 3.12. For all α, β such that K4
uK

4
vαβ

2 < 1, there exists K = K(α, β) < ∞
such that

E
〈
(Ru

1,∗)
2
〉
∨ E

〈
(Rv

1,∗)
2
〉
≤ K

N2
.

Of course, by the Nishimori property, this is also a statement about the overlaps between
two independent replicas.

Proof. Let σu and σv be the sub-Gaussian parameters of Pu and Pv respectively. We since
Pu and Pv have unit variance, we have 1 ≤ σ2

u ≤ K2
u and similarly for Pv.

We start with the u-overlap. Let us define the function

Φu(λ) =
1

N
E log

∫
exp

(
−H(u,v) +

λ

2
N(Ru

1,∗)
2

)
dρ(u,v).
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The outer expectation is on Y ∼ Pβ (or equivalently on u∗, v∗ and W independently). A
simple inspection shows that the above function is convex and increasing in λ, and

Φ′u(0) =
1

2
E
〈
(Ru

1,∗)
2
〉
.

The convexity then implies for all λ ≥ 0,

λ

2
E
〈
(Ru

1,∗)
2
〉
≤ Φu(λ)− Φu(0).

Of course Φu(0) = 1
N
EPβ logL(Y ; β) ≥ 0 by Jensen’s inequality, so it remains to upper

bound Φu(λ). To this end we consider the interpolation

Φu(λ, t) =
1

N
E log

∫
exp

(
−Ht(u,v) +

λ

2
N(Ru

1,∗)
2

)
dρ(u,v),

where

−Ht(u,v) =
∑
i,j

√
βt

N
Wijuivj +

β

N
uiu
∗
i vjv

∗
j −

βt

2N
u2
i v

2
j .

Notice that the planted (middle) term in the Hamiltonian is left unaltered. The time deriva-
tive is

∂tΦu(λ, t) = −β
2
E
〈
(Ru

1,2)2
〉
λ,t
≤ 0,

where 〈·〉λ,t is the Gibbs average w.r.t −Ht(u,v) + λ
2
N(Ru

1,∗)
2. Therefore

Φu(λ) ≤ Φu(λ, 0) =
1

N
E log

∫
exp

(
βNRu

1,∗R
v
1,∗ +

λ

2
N(Ru

1,∗)
2

)
dρ(u,v)

≤ 1

N
E log

∫
exp

(
αβ2σ2

v v̂ + λ

2
N(Ru

1,∗)
2

)
dP⊗Nu (u),

where we have used the sub-Gaussianity of Pv, and let v̂ = 1
M

∑M
j=1 v

∗2
j . (Here, we have

abused notation and let α = M
N

. This will not cause any problems.) Next we introduce an
independent r.v. g ∼ N (0, 1), exchange integrals by Fubini’s theorem, and continue:

1

N
E logEg

[∫
exp

(√
(αβ2σ2

v v̂ + λ)NRu
1,∗g
)

dP⊗Nu (u)

]
≤ 1

N
E logEg

[
exp

(
αβ2σ2

v v̂ + λ

2
σ2
uûg

2

)]
,

where we use the sub-Gaussianity of Pu, and let û = 1
N

∑N
i=1 u

∗2
i . We bound û and v̂ by K2

u

and K2
v respectively and integrate on g to obtain the upper bound

Φu(λ) ≤ − 1

2N
log
(
1− (αβ2σ2

vK
2
v + λ)σ2

uK
2
u

)
,
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valid as long as (αβ2σ2
vK

2
v + λ)σ2

uK
2
u < 1. Letting λ = (1 − αβ2σ2

vK
2
vσ

2
uK

2
u)/(2σ2

uK
2
u) > 0,

we obtain

E
〈
(Ru

1,∗)
2
〉
≤ K(α, β)

N
,

with K(α, β) = 2σ2
uK

2
u log((1−αβ2σ2

vK
2
v σ

2
uK

2
u )/2)

(1−αβ2σ2
vK

2
v σ

2
uK

2
u )

.

We use the exact same argument for the v-overlaps. We define Φv(λ) in the same way
by replacing the quadratic term λ

2
N(Ru

1,∗)
2 by λ

2
N(Rv

1,∗)
2 and obtain

Φv(λ) ≤ − 1

2N
log
(
1− (β2σ2

uK
2
u + λ)ασ2

vK
2
v

)
.

We choose λ = (1 − αβ2σ2
vK

2
vσ

2
uK

2
u)/(2ασ2

vK
2
v) and use the same convexity argument to

obtain

E
〈
(Rv

1,∗)
2
〉
≤ K ′(α, β)

N
,

with K ′(α, β) = 2ασ2
vK

2
v log((1−αβ2σ2

vK
2
v σ

2
uK

2
u )/2)

(1−αβ2σ2
vK

2
v σ

2
uK

2
u )

. �

Interpolation bound at fixed overlap

In this section we present and prove an interpolation bound on the free energy of a subpop-
ulation of configurations having a fixed overlap with the planted spike (u∗,v∗). This is a
key step in proving the crude bound (3.12).

Proposition 3.13. Fix u∗ ∈ RN ,v∗ ∈ RM with ‖u∗‖2
`2
/N ≤ K2

u and ‖v∗‖2
`2
/M ≤ K2

v . Let

α = M
N

and ∆ = αβ2σ2
uσ

2
vK

2
uK

2
v − 1. For m ∈ R \ {0}, ε ≥ 0, let Au be the event

Au =

{
Ru

1,∗ ∈ [m,m+ ε) if m > 0,

Ru
1,∗ ∈ (m− ε,m] if m < 0.

Define Av similarly. We have

1

N
E log

∫
1(Au)e

−H(u,v)dρ(u,v) ≤ ∆

2σ2
uK

2
u

m2 + αβK2
vε, (3.15)

and
1

N
E log

∫
1(Av)e

−H(u,v)dρ(u,v) ≤ ∆

2ασ2
vK

2
v

m2 + βK2
uε. (3.16)

The expectation E is over the Gaussian disorder W .

These are version of the Franz-Parisi potential discussed in Chapter 2.
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Proof. We only prove (3.15). The bound (3.16) follows by flipping the roles of u and v. We
consider the interpolating Hamiltonian

−Ht(u,v) =
∑
i,j

√
βt

N
Wijuivj +

βt

N
uiu
∗
i vjv

∗
j −

βt

2N
u2
i v

2
j +

M∑
j=1

(1− t)βmvjv∗j ,

and let

ϕ(t) =
1

N
E log

∫
1{Ru

1,∗ ∈ [m,m+ ε)}e−Ht(u,v)dρ(u,v).

We have

ϕ′(t) = −β
2
E
〈
Ru

1,2R
v
1,2

〉
t
+ β E

〈
Ru

1,∗R
v
1,∗
〉
t
− βmE

〈
Rv

1,∗
〉
t
.

The first term in the above expression is ≤ 0, and since the overlap Ru
1,∗ is constrained to be

close to m we have
∣∣∣E 〈(Ru

1,∗ −m)Rv
1,∗
〉
t

∣∣∣ ≤ αK2
vε. So ϕ′(t) ≤ αK2

vε. Moreover, the variables

u and v decouple at t = 0 and one can write

ϕ(1) ≤ 1

N
log Pr (Au) +

1

N

M∑
j=1

logEv
[
eβmvv

∗
j
]

+K2
vε.

By sub-Gaussianity of the prior Pv we have Ev
[
eβmvv

∗
j
]
≤ eβ

2σ2
vm

2v∗2j /2. On the other hand,
for a fixed parameter γ of the same sign as m, we have

1

N
log Pr (Au) ≤ −γm+

1

N

N∑
i=1

logEu[eγuu
∗
i ] ≤ −γm+

1

2N

N∑
i=1

u∗2i σ
2
uγ

2.

The last inequality uses sub-Gaussianity of Pu. We minimize this quadratic w.r.t γ and
obtain

ϕ(1) ≤ − m2

2σ2
uû

+
M

2N
β2σ2

v v̂m
2 + αK2

vε,

where û = 1
N

∑N
i=1 u

∗2
i and v̂ = 1

M

∑M
j=1 v

∗2
j . We upper bound the latter two numbers by K2

u

and K2
v respectively. �

Overlap concentration (proof of (3.12))

Here we prove convergence of the overlaps to zero in probability. We first state a useful and
standard result of concentration of measure.

Lemma 3.14. Let Y =
√

β
N
u∗v∗>+W , where the planted vectors u∗ and v∗ are fixed, and

Wij ∼ N (0, 1). For a Borel set A ⊂ RM+N , let

Z =

∫
A

e−H(u,v)dρ(u,v).
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We have for every t ≥ 0,

Pr (|logZ − E logZ| ≥ Nt) ≤ 2e
− Nt2

2βK2
uK

2
v .

(Here Pr and E are conditional on u∗ and v∗.)

Proof. We simply observe that the functionW 7→ logZ is Lipschitz with constant
√
NβαK2

uK
2
v .

The result follows from concentration of Lipschitz functions of Gaussian r.v.’s (this is the
Borell-Tsirelson-Ibragimov-Sudakov inequality; see Boucheron, Lugosi, and Massart, 2013,
Theorem 5.6). �

Proposition 3.15. Let α, β such that αβ2σ2
uσ

2
vK

2
uK

2
v < 1, and ε > 0. There exist constants

c = c(ε, α, β,Ku, Kv) > 0 and K = K(Ku, Kv) > 0 such that

E
〈
1{|Ru

1,∗| ≥ ε}
〉
∨ E

〈
1{|Rv

1,∗| ≥ ε}
〉
≤ K

ε2
e−cN .

Proof. We only prove the assertion for the u-overlap since the argument is strictly the same
for the v-overlap.

For ε, ε′ > 0, we can write the decomposition

E
〈
1{
∣∣Ru

1,∗
∣∣ ≥ ε′}

〉
=
∑
l≥0

E
〈
1{Ru

1,∗ − ε′ ∈ [lε, (l + 1)ε)}
〉

+
∑
l≥0

E
〈
1{−Ru

1,∗ + ε′ ∈ [lε, (l + 1)ε)}
〉
,

where the integer index l ranges over a finite set of size ≤ K/ε. We only treat the generic
term in the first sum; the second sum can be handled similarly. Fix m > 0, ε > 0. We have

E
〈
1{Ru

1,∗ ∈ [m,m+ ε)}
〉

= E

[∫
1{Ru

1,∗ ∈ [m,m+ ε)}e−H(u,v)dρ(u,v)∫
e−H(u,v)dρ(u,v)

]
. (3.17)

Let

A =
1

N
EW log

∫
1{Ru

1,∗ ∈ [m,m+ ε)}e−H(u,v)dρ(u,v),

and

B =
1

N
EW log

∫
e−H(u,v)dρ(u,v).

By concentration over the Gaussian disorder, Lemma 3.14, for any u ≥ 0, we simultaneously
have

1

N
log

∫
1{Ru

1,∗ ∈ [m,m+ ε)}e−H(u,v)dρ(u,v)− A ≤ u,

and
1

N
log

∫
e−H(u,v)dρ(u,v)−B ≥ −u,
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with probability at least 1 − 4e−Nu
2/(2βK2

uK
2
v ). On the complement event we simply upper

bound the fraction (3.17) by 1. Therefore, we have

E
〈
1{Ru

1,∗ ∈ [m,m+ ε)}
〉
≤ Eu∗,v∗

[
eN(A−B+2u)

]
+ 4e−Nu

2/(2βK2
uK

2
v ).

By Proposition 3.13 we have A ≤ ∆
2σ2

uK
2
u
m2 + αβK2

vε deterministically over u∗ and v∗. Now

it remains to control Eu∗,v∗
[
e−NB

]
.

Lemma 3.16. We have Eu∗,v∗
[
e−NB

]
≤ 2e−N Eu∗,v∗ [B].

Moreover, observe that

Eu∗,v∗ [B] =
1

N
E log

∫
e−H(u,v)dρ(u,v)

=
1

N
EPβ logL(Y ; β)

=
1

N
EP0 L(Y ; β) logL(Y ; β) ≥ 0.

Positivity is obtained by Jensen’s inequality and convexity of x 7→ x log x. In view of the
above, Lemma 3.16 means that the random variable B is “essentially” positive. Therefore,

E
〈
1{Ru

1,∗ ∈ [m,m+ ε)}
〉
≤ 2eN(δ+2u) + 4e−Nu

2/(2βK2
uK

2
v ),

where δ = ∆
2σ2

uK
2
u
m2 + αβK2

vε. We let u = −δ/3 ≥ 0, and m = ε′ + lε. Since ∆ < 0,

∆m2 ≤ ∆ε′2. Now we let ε = − ∆
4αβσ2

uK
2
uK

2
v
ε′2 so that δ ≤ 3∆

4σ2
uK

2
u
ε′2 < 0. �

Proof of Lemma 3.16. We abbreviate Eu∗,v∗ by E. We have

E
[
eN(E[B]−B)

]
=

∫ +∞

−∞
et Pr (N(E[B]−B) ≥ t) dt ≤ 1 +

∫ +∞

0

et Pr (N(E[B]−B) ≥ t) dt.

Now we bound the lower tail probability. The r.v. B, seen as a function of the vector
[u∗|v∗] ∈ RN+M is jointly convex (the Hessian can be easily shown to be positive semi-

definite), and Lipschitz with constant βKuKv

√
αK2

u +α2K2
v

N
with respect to the `2 norm. Under

the above conditions, a bound on the lower tail of deviation of B is available; this is (one
side of) Talagrand’s inequality (see Boucheron, Lugosi, and Massart, 2013, Theorem 7.12).
Therefore, we have for all t ≥ 0

Pr (B − E[B] ≤ −t) ≤ e−Nt
2/2K2

,

where K2 = αβ2K2
uK

2
v(K2

u + αK2
v). Thus,

E
[
eN(E[B]−B)

]
≤ 1 +

∫ +∞

0

ete−t
2/(2NK2)dt
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= 1 +K
√
NeNK

2/2

∫ +∞

K
√
N

e−t
2/2dt

≤ 2.

The last inequality is a restatement of the fact Pr(g ≥ t) ≤ e−t
2/2

√
2πt

where g ∼ N (0, 1). �

Convergence of the fourth moment

In this section we prove that for all α, β such that αβ2σ2
uσ

2
vK

2
uK

2
v < 1, we have

E
〈
(Ru

1,2)4
〉
∨ E

〈
(Rv

1,2)4
〉
≤ K(α, β)

N2
.

We proceed as follows. Let

M = max
{
E
〈
(Ru

1,2)4
〉
,E
〈
(Rv

1,2)4
〉}
.

We prove that for ε > 0, the following self-boundedness properties hold:

E
〈
(Ru

1,2)4
〉
≤ αβ2 E

〈
(Ru

1,2)4
〉

+KεM + δ, (3.18)

E
〈
(Rv

1,2)4
〉
≤ αβ2 E

〈
(Rv

1,2)4
〉

+KεM + δ, (3.19)

where δ ≤ K/N2 + K/ε2e−c(ε)N . This implies the desired result by letting ε be sufficiently
small (e.g., ε = (1 − αβ2)/2). We prove (3.18) and (3.19) using the cavity method, i.e. by
isolating the effect of the last variables uN and vM , one at a time. We prove (3.18) in full
detail, then briefly highlight how (3.19) is obtained in a similar way.

By symmetry between the u variables, we have

E
〈
(Ru

1,∗)
4
〉

= E
〈
u

(1)
N u∗N(Ru

1,∗)
3
〉

= E
〈
u

(1)
N u∗N

(
Ru−

1,∗ +
1

N
u

(1)
N u∗N

)3
〉
.

Expanding the term
(
Ru−

1,∗ + 1
N
u

(1)
N u∗N

)3
we obtain

E
〈
(Ru

1,∗)
4
〉
≤ E

〈
u

(1)
N u∗N(Ru−

1,∗)
3
〉

+
K4

u

N
E
〈
(Ru−

1,∗)
2
〉

+
K6

u

N2
E
〈∣∣Ru−

1,∗
∣∣〉+

K8
u

N3
. (3.20)

We have already proved convergence of the second moment (Proposition 3.12), hence E〈(Ru−
1,∗)

2〉 ≤
K/N and E〈|Ru−

1,∗|〉 ≤ K/
√
N . Now we need to control the leading term involving (Ru−

1,∗)
3.

The next proposition shows that this quantity can be related back to (Ru
1,∗)

4, plus additional
higher-order terms. This is is achieved through the cavity method.
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Proposition 3.17. For α, β ≥ 0, there exists a constant K = K(α, β,Ku, Kv) > 0 such that

E
〈
u

(1)
N u∗N(Ru−

1,∗)
3
〉

= β E
〈
(Ru

1,∗)
3Rv

1,∗
〉

+ δ1, (3.21)

where
|δ1| ≤ K

∑
a,b,c,d

E
〈∣∣(Ru−

1,∗)
3Rv

a,bR
v
c,d

∣∣〉 .
Moreover,

E
〈
(Ru

1,∗)
3Rv

1,∗
〉

= αβ E
〈
(Ru

1,∗)
4
〉

+ δ2, (3.22)

where
|δ2| ≤ K

∑
a,b,c,d

E
〈∣∣(Ru

1,∗)
3Ru

a,bR
u
c,d

∣∣〉 .
From Proposition 3.17 we deduce

E
〈
u

(1)
N u∗N(Ru−

1,∗)
3
〉

= αβ2 E
〈
(Ru

1,∗)
4
〉

+ δ,

where δ = δ1 + δ2. Plugging into (3.20), we obtain

E
〈
(Ru

1,∗)
4
〉
≤ αβ2 E

〈
(Ru

1,∗)
4
〉

+
K

N2
+ δ.

Now we need to control the error term δ, which involves monomials of degree 5 in the
overlaps Ru and Rv. This is where the a priori bound on the convergence of the overlaps,
Proposition 4.12, is useful. Since the overlaps are bounded, we can write for any ε > 0,

E
〈∣∣(Ru

1,∗)
3Rv

a,bR
v
c,d

∣∣〉 ≤ εE
〈∣∣(Ru

1,∗)
3Rv

a,b

∣∣〉+K6
uK

4
v E
〈
1{
∣∣Rv

c,d

∣∣ ≥ ε}
〉

= εE
〈∣∣(Ru

1,∗)
3Rv

a,b

∣∣〉+K6
uK

4
v E
〈
1{
∣∣Rv

1,∗
∣∣ ≥ ε}

〉
,

where the last line is a consequence of the Nishimori property. Now we use Hölder’s inequality
on the first term:

E
〈∣∣(Ru

1,∗)
3Rv

a,b

∣∣〉 ≤ (E 〈∣∣(Ru
1,∗)

4
∣∣〉)3/4 (E 〈∣∣(Rv

a,b

∣∣)4
〉)1/4

=
(
E
〈∣∣(Ru

1,∗)
4
∣∣〉)3/4 (E 〈∣∣(Rv

1,∗
∣∣)4
〉)1/4

≤M.

Using Proposition 4.12, we have E〈1{|Rv
1,∗| ≥ ε}〉 ≤ Ke−cN/ε2. Therefore,

|δ1| ≤ KεM +
K

ε2
e−cN .

It is clear that we can use the same argument to bound δ2, so we end up with

E
〈
(Ru

1,∗)
4
〉
≤ αβ2 E

〈
(Ru

1,∗)
4
〉

+
K

N2
+KεM +

K

ε2
e−cN ,
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thereby proving (3.18). To prove (3.19) we use the same approach. We write

E
〈
(Rv

1,∗)
4
〉

=
M

N
E
〈
v

(1)
M v∗M(Rv

1,∗)
3
〉

= αE
〈
v

(1)
M v∗M

(
Rv−

1,∗ +
1

N
v

(1)
M v∗M

)3
〉
.

Then use an equivalent of Proposition 3.17 in this case, which is obtained by flipping the
role of the u and v variables:

E
〈
v

(1)
N v∗N(Rv−

1,∗)
3
〉

= β E
〈
(Rv

1,∗)
3Ru

1,∗
〉

+ δ1,

and
E
〈
(Rv

1,∗)
3Ru

1,∗
〉

= β E
〈
(Rv

1,∗)
4
〉

+ δ2,

where δ1 and δ2 are similarly bounded by expectations of monomials of degree 5 in the
overlaps Ru and Rv. These two quantities are then bounded in exactly the same way.

Proof of Proposition 3.17. The proof uses two interpolations; the first one decouples the
variable uN from the rest of the system and allows to obtain (3.21), and the second one
decouples the variable vM and allows to obtain (3.22). We start with the former.

Proof of (3.21). Consider the interpolating Hamiltonian

−Ht(u,v) =
N−1∑
i=1

M∑
j=1

√
β

N
Wijuivj +

β

N
uiu
∗
i vjv

∗
j −

β

2N
u2
i v

2
j

+
M∑
j=1

√
βt

N
WNjuNvj +

βt

N
uNu

∗
Nvjv

∗
j −

βt

2N
u2
Nv

2
j ,

and let 〈·〉t be the associated Gibbs average and νt(·) = E〈·〉t. The idea is to approximate

ν1(f) where f ≡ u
(1)
N u∗N(Ru−

1,∗)
3 by ν0(f)+ν ′0(f). Of course one then has to control the second

derivative, as dictated by Taylor’s approximation

|ν1(f)− ν0(f)− ν ′0(f)| ≤ sup
0≤t≤1

|ν ′′t (f)| . (3.23)

We see that at time t = 0, the variables uN and u∗N decouple the Hamiltonian, so

ν0(u
(1)
N u∗N(Ru−

1,∗)
3) = E[uN ]E[u∗N ]ν0((Ru−

1,∗)
3) = 0. (3.24)

On the other hand, by applying Lemma 3.10 with n = 1, we see that ν ′0(u
(1)
N u∗N(Ru−

1,∗)
3) is a

sum of a few terms of the form

ν0

(
u

(1)
N u∗Nu

(a)
N u

(b)
N (Ru−

1,∗)
3Rv

a,b

)
.
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Since Pu has zero mean, all terms in which a variable u
(a)
N (for any a) appears with degree 1

vanish. We are thus left with one term where a = 1, b = ∗, and we get

ν ′0(u
(1)
N u∗N(Ru−

1,∗)
3) = β E[(u

(1)
N )2]E[(u∗N)2]ν0((Ru−

1,∗)
3Rv

1,∗) = βν0((Ru−
1,∗)

3Rv
1,∗). (3.25)

Moreover, we see that ν0((Ru−
1,∗)

3Rv
1,∗) = ν0((Ru

1,∗)
3Rv

1,∗) since the last variable uN has no
contribution under ν0. Now we are tempted to replace the average at time t = 0 by an
average at time t = 1 in the last quantity. We use Lemmas 3.10 and 3.11 to justify this.
Indeed these lemmas and boundedness of the variables uN imply∣∣ν0((Ru

1,∗)
3Rv

1,∗)− ν1((Ru
1,∗)

3Rv
1,∗)
∣∣ ≤ K(α, β)

∑
a,b

ν(
∣∣(Ru

1,∗)
3Rv

1,∗R
v
a,b)
∣∣), (3.26)

where (a, b) ∈ {(1, 2), (1, ∗), (2, ∗), (2, 3)}. Now we control the second derivative supt ν
′′
t (·).

In view of Lemma 3.10, we see that taking two derivative of νt(u
(1)
N u∗N(Ru−

1,∗)
3) creates terms

of the form
νt

(
u

(1)
N u∗Nu

(a)
N u

(b)
N u

(c)
N u

(d)
N (Ru−

1,∗)
3Rv

a,bR
v
c,d

)
,

with a larger (but finite) set of combinations (a, b, c, d). We use Lemma 3.11 to replace νt
by ν1 and use boundedness of variables uN to obtain the bound∣∣∣∣ sup

0≤t≤1
ν ′′t

(
u

(1)
N u∗N(Ru−

1,∗)
3)
)∣∣∣∣ ≤ K(α, β)

∑
a,b,c,d

ν
(∣∣∣(Ru−

1,∗)
3Rv

a,bR
v
c,d

∣∣∣). (3.27)

Now putting the bounds and estimates (3.23), (3.24), (3.25), (3.26), and (3.27), we obtain
the desired bound (3.21):∣∣∣ν(u(1)

N u∗N(Ru−
1,∗)

3
)
− βν((Ru

1,∗)
3Rv

1,∗)
∣∣∣ ≤ K(α, β)

∑
a,b,c,d

ν
(∣∣∣(Ru−

1,∗)
3Rv

a,bR
v
c,d

∣∣∣).
Proof of (3.22). By symmetry of the v variables we have

E
〈
(Ru

1,∗)
3Rv

1,∗
〉

=
M

N
E
〈

(Ru
1,∗)

3v
(1)
M v∗M

〉
.

Now we apply the same machinery. Consider the interpolating Hamiltonian

−Ht(u,v) =
M−1∑
j=1

N∑
i=1

√
β

N
Wijuivj +

β

N
uiu
∗
i vjv

∗
j −

β

2N
u2
i v

2
j

+
N∑
i=1

√
βt

N
WiMuivM +

βt

N
uiu
∗
i vMv

∗
M −

βt

2N
u2
i v

2
M ,
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and let 〈·〉t be the associated Gibbs average and νt(·) = E〈·〉t. The exact same argument
goes through with the roles of u and v flipped. For instance, when one takes time derivatives,
terms of the form v

(a)
M v

(b)
M Ru

a,b arise from the Hamiltonian, and one sees that

ν ′0
(
(Ru

1,∗)
3v

(1)
M v∗M

)
= βν0

(
(Ru

1,∗)
4
)
.

Thus we similarly obtain∣∣∣ν((Ru
1,∗)

3v
(1)
M v∗M

)
− βν

(
(Ru

1,∗)
4
)∣∣∣ ≤ K(α, β)

∑
a,b,c,d

ν
(∣∣∣(Ru

1,∗)
3Ru

a,bR
u
c,d

∣∣∣).
�

3.10 A supplement: Lata la’s argument

In this section we present a proof of convergence of the overlaps under the null model P0.
As alluded to earlier, the region (α, β) where this convergence is obtained is much smaller
than under the alternative. The argument, discovered (but not published) by R. Lata la, is
nevertheless worth presenting as it is short and quite natural. This can also be applied to
the symmetric model of Chapter 2, but in this case the argument is the same as for the SK
model, and we refer to Talagrand (2011a) for its execution.

Overlap convergence under the null

Under the null model, we prove overlap convergence by bounding their moment generating
function. Let Y ∼ P0.

Proposition 3.18. For all α, β ≥ 0 such that 16K4
uβ < 1 and 16K4

vαβ < 1, there exists
K = K(α, β) <∞ such that

E
〈
(Ru

1,2)4
〉
∨ E

〈
(Rv

1,2)4
〉
≤ K

N2
.

Proof. Consider a family of interpolating Hamiltonians

−Ht(u,v) =
∑
i,j

√
βt

N
Yijuivj −

βt

2N
u2
i v

2
j ,

for t ∈ [0, 1]. Let 〈·〉t be the associated Gibbs average, and let νt(·) = E〈·〉t. Let C1,2 =
|Ru

1,2| ∨ |Rv
1,2|, and for γ ≥ 0 consider the function

ψ(t, γ) = νt(e
γNC2

1,2).

We will relate the value of ψ at time 1 to its behavior at time 0, which is easier to control.
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Lemma 3.19. For all γ ≥ 0, we have∣∣∣ d

dt
ψ(t, γ)

∣∣∣ ≤ 8βNνt

(
C2

1,2e
γNC2

1,2

)
.

Consequently, the function t 7→ ψ(t, γ − 8βt) is non-increasing for all γ ≥ 8β. Indeed,

d

dt
ψ(t, γ − 8βt) = ∂xψ(t, γ − 8βt)− 8β∂yψ(t, γ − 8βt)

= ∂xψ(t, γ − 8βt)− 8βNνt

(
C2

1,2e
γNC2

1,2

)
≤ 0.

where the last line follows from Lemma 3.19. Therefore ψ(1, γ − 8β) ≤ ψ(0, γ), i.e.,

E
〈
e(γ−8β)NC2

1,2
〉
≤ E

〈
eγNC

2
1,2
〉

0
=

∫
eγNC

2
1,2dρ(u(1),v(1))dρ(u(2),v(2)).

Lemma 3.20. For all γ ≥ 0, we have E
〈
eγNC

2
1,2
〉

0
≤ K1(γ)K2(γ), where K1(γ) = (1 −

2γK4
u)−1/2, and K2(γ) = (1− 2γM

N
K4

v)−1/2.

From here we deduce that for all γ ≥ 0

γ2

2
N2 E

〈
C4

1,2

〉
≤ E

〈
eγNC

2
1,2

〉
≤ K1(γ + 8β)K2(γ + 8β).

We finish the proof by letting γ = 1−16βK4
u

4K4
u
∨ 1−16αβK4

v

4αK4
v

. �

It remains to prove Lemma 3.19 and Lemma 3.20.

Proof of Lemma 3.19. A short calculation shows that

d

dt
ψ(t, γ) = βNνt

(
(Ru

1,2R
v
1,2 − 2Ru

1,3R
v
1,3 − 2Ru

2,3R
v
2,3)eγNC

2
1,2

)
+ 3βNνt

(
Ru

3,4R
v
3,4e

γNC2
1,2

)
.

By the triangle inequality and the upper bound
∣∣Ru

a,bR
v
a,b

∣∣ ≤ C2
a,b, we obtain∣∣∣∣ d

dt
ψ(t, γ)

∣∣∣∣ = βNνt

(
(C2

1,2 + 2C2
1,3 + 2C2

2,3 + 3C2
3,4)eγNC

2
1,2

)
.

Let us examine a generic term of the form

νt

(
C2
a,be

γNC2
c,d

)
,

for a, b, c, d ∈ {1, 2, 3, 4}. By expanding the Taylor series of the exponential, and monotone
convergence, we have

νt

(
C2
a,be

γNC2
c,d

)
=
∞∑
k=0

(γN)k

k!
νt
(
C2
a,bC

2k
c,d

)
.
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We use Hölder’s inequality on the inner terms with p = k + 1 and 1/p+ 1/q = 1 to obtain

νt
(
C2
a,bC

2k
c,d

)
≤ νt

(
C2p
a,b

)1/p · νt
(
C2kq
c,d

)1/q

= νt

(
C

2(k+1)
a,b

)
.

Now we sum the series and finally obtain a “symmetrization” bound

νt

(
C2
a,be

γNC2
c,d

)
≤ νt

(
C2
a,be

γNC2
a,b

)
.

The conclusion then follows. �

Proof of Lemma 3.20. We have

E
〈
eγNC

2
1,2
〉

0
=

∫
eγNC

2
1,2dP⊗Nu (u(1))dP⊗Nu (u(2))dP⊗Mv (v(1))dP⊗Mv (v(2)).

Since C2
1,2 ≤ (Ru

1,2)2 + (Rv
1,2)2, we only need to control each overlap separately. We introduce

an independent Gaussian r.v. g and write∫
eγN(Ru

1,2)2

dP⊗Nu (u(1))dP⊗Nu (u(2)) = Eg
∫
e
√

2γNgRu
1,2dP⊗Nu (u(1))dP⊗Nu (u(2)).

Sub-Gaussianity of Pu (with parameter σu) implies that the above is bounded by

Eg
∫
e
γ
N
g
∑N
i=1 u

(2)2
i σ2

u dP⊗Nu (u(2)) ≤ Eg
[
eγgσ

2
uK

2
u

]
≤ Eg

[
eγgK

4
u

]
=
(
1− 2γK4

u

)−1/2
=: K1(γ).

By the same argument, we have∫
eγN(Rv

1,2)2

dP⊗Mv (v(1))dP⊗Mv (v(2)) ≤
(

1− 2γ
M

N
K4

v

)−1/2

=: K2(γ).

Therefore
E
〈
eγNC

2
1,2
〉

0
≤ K1(γ)K2(γ).

�
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Chapter 4

The replica-symmetric formula and its
finite-size corrections

In this chapter we return to the case of the symmetric model, i.e., the spiked Wigner model,

Y =

√
λ

N
x∗x∗> +W , (4.1)

where Wij = Wji ∼ N (0, 1) and Wii ∼ N (0, 2) are independent for all 1 ≤ i ≤ j ≤ N . The
entries of x∗ are drawn i.i.d. from a (Borel) prior Px on R with bounded support, so that
the scaling in the above model puts the problem in a high-noise regime where only partial
recovery of the spike is possible.

While the previous two chapters dealt with the question of detection of the spike, in
this chapter we pay attention to the estimation problem: for what values of the SNR λ
is it possible to estimate the spike x∗ with non-trivial accuracy? We recall that spectral
methods, or more precisely, estimation using the top eigenvector of Y , are known to succeed
above a spectral threshold and fail below (Benaych-Georges and Nadakuditi, 2011). Since
the posterior mean is the estimator with minimal mean squared error, this question boils
down to the study of the posterior distribution of x∗ given Y , which by Bayes’ rule, can be
written as

dPλ(x|Y ) =
e−H(x)dP⊗Nx (x)∫
e−H(x)dP⊗Nx (x)

, (4.2)

where H is the Hamiltonian

−H(x) :=
∑
i<j

√
λ

N
Yijxixj −

λ

2N
x2
ix

2
j (4.3)

=
∑
i<j

√
λ

N
Wijxixj +

λ

N
xixjx

∗
ix
∗
j −

λ

2N
x2
ix

2
j .
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The free energy of the model is defined as the expected log-partition function (i.e., normal-
izing constant) of the posterior Pλ(·|Y ):

FN =
1

N
EPλ log

∫
e−H(x)dP⊗Nx (x), (4.4)

Recall that this is equal to 1
N
EPλ logL(Y ;λ) with the notation of Chapter 2. It was initially

argued via heuristic replica and cavity computations (Lesieur, Krzakala, and Zdeborová,
2015b, 2017) that FN converges to a limit φRS(λ), which is referred to as the replica-symmetric
formula, defined as follows: For r ∈ R+, let

ψ(r) := Ex∗,z log

∫
exp

(√
rzx+ rxx∗ − r

2
x2
)

dPx(x),

where z ∼ N (0, 1), and x∗ ∼ Px. Now define the RS potential

F (λ, q) := ψ(λq)− λq2

4
,

and the RS formula
φRS(λ) := sup

q≥0
F (λ, q).

This formula, variational in nature, encodes in principle a full characterization of the limits of
estimating the spike with non-trivial accuracy. Indeed, and as we will see, various formulae
for other information-theoretic quantities can be deduced from it, including the mutual
information between x∗ and Y , the minimal mean squared error of estimating x∗ based on
Y , and the overlap |x>x∗|/N of a draw x from the posterior Pλ(·|Y ) with the spike x∗.
Most of these claims have subsequently been proved rigorously in a series of papers (Barbier,
Dia, et al., 2016; Deshpande, Abbé, and Montanari, 2016; Deshpande and Montanari, 2014;
Krzakala, Xu, and Zdeborová, 2016; Lelarge and Miolane, 2016) under various assumptions
on the prior.

Theorem 4.1 (Barbier, Dia, et al. (2016); Deshpande, Abbé, and Montanari (2016); Korada
and Macris (2009); Krzakala, Xu, and Zdeborová (2016); Lelarge and Miolane (2016)). For
all λ ≥ 0,

lim
N→∞

FN = φRS(λ).

The above statement contains precious statistical information. It can be written in at
least two other equivalent ways, in terms of the mutual information between x∗ and Y :

lim
N→∞

1

N
I(Y ,x∗) =

λ

4

(
EPx

[X2]
)2 − φRS(λ),

or in terms of the Kullback-Liebler divergence between Pλ and P0:

lim
N→∞

1

N
DKL(Pλ,P0) = φRS(λ).
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Furthermore, the point q∗(λ) achieving the maximum in the RS formula (which can be
shown to be unique and finite for almost every λ) can be interpreted as the best overlap any

estimator θ̂(Y ) can have with the spike x∗. Indeed, we will show that the overlap of a draw
x from the posterior Pλ(·|Y ) with x∗ concentrates about q∗(λ).

Our main goal in this chapter is to gain a fine understanding of the asymptotic behavior
of the log-likelihood ratio logL(Y ;λ) as N becomes large. We first provide an almost ele-
mentary proof of Theorem 4.1, based on simple Gaussian interpolations and straightforward
applications of concentration of measure arguments. Second, we determine the finite-size cor-
rection of FN to its limit φRS(λ): we prove under mild conditions on Px that N(FN −φRS(λ))
converges to a limit ψRS(λ) with rate O(1/

√
N). Besides providing an explicit rate of con-

vergence of FN to its limit, this result translates into a formula for the Kullback-Leibler
divergence DKL valid for (almost) all λ ≥ 0. We will see that while DKL(Pλ,P0) is extensive
in the size of the system above the reconstruction threshold λc defined in Chapter 2, it bru-
tally ceases to be so as we cross λc, to converge to a constant value in accordance with the
formula of Proposition 2.5.

Comment on the existing proofs of Theorem 4.1

The proof of the lower bound lim inf FN ≥ φRS(λ) relies on an application of Guerra’s in-
terpolation method, and is fairly short and transparent Krzakala, Xu, and Zdeborová (2016).
Available proofs of the converse bound lim supFN ≤ φRS(λ) (and overlap concentration) are
on the other hand highly involved. Barbier, Dia, et al. (2016) and Deshpande, Abbé, and
Montanari (2016) adopt an algorithmic approach: they analyze an Approximate Message
Passing (AMP) procedure and show that the produced estimator asymptotically achieves
an overlap of q∗(λ) with the spike. Thus the posterior mean, being the optimal estimator,
must also achieve the same overlap. This allows to prove overlap convergence and thus show
the converse bound. A difficulty one has to overcome with this method is that AMP (and
supposedly any other algorithm) may fail to achieve the optimal overlap in the presence
of first-order phase transitions, which trap the algorithm in a bad local optimum of the
RS potential. Spatial coupling, an idea from coding theory, is used in Barbier, Dia, et al.
(2016) to overcome this problem. Lelarge and Miolane (2016) on the other hand use the
Aizenman-Sims-Starr scheme (Aizenman, Sims, and Starr, 2003), a relative of the cavity
method developed within spin-glass theory, to prove the upper bound. Barbier and Macris
(2017) prove the upper bound via a adaptive version of the interpolation method that pro-
ceeds via a sequence of intermediate interpolation steps. All the current approaches (perhaps
to a lesser extent for (Barbier and Macris, 2017)) require the execution of long and technical
arguments.

In this chapter, we show that the upper bound in Theorem 2.7 admits a fairly simple
proof based on the same interpolation idea that yielded the lower bound, combined with an
application of the Laplace method and concentration of measure. The main idea is to use the
Franz-Parisi potential (i.e., a version of the free energy (5.7) of a subsystem of configurations
x having a fixed overlap with the spike x∗). We then proceed by applying the Guerra bound
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and optimize over this free parameter to obtain an upper bound in the form of a saddle (max-
min) formula. A small extra effort is needed to show that the latter is another representation
of the RS formula. Our proof thus hinges on a upper bound on this potential, which is may
be of independent interest. We first start by presenting the proof of the lower bound, which
is a starting point for our argument. As in Chapter 2, we present the proof in the case where
we omit the diagonal terms of Y . This is only done to keep the displays concise; recovering
the general case is straightforward since the diagonal has vanishing contribution. Finally,
we mention that the method can be easily generalized to all spiked tensor models of even
order Richard and Montanari (2014), thus recovering the main results of Lesieur, Miolane,
et al. (2017).

4.1 A short proof of the RS formula

We use the interpolation method of Guerra (2001), which is already used in the previous
two chapters as a device supporting the cavity method. The idea now is to construct a
continuous interpolation path between the Hamiltonian H and a simpler Hamiltonian that
decouples all the variables, and analyze the incremental change in the free energy along the
path. We present two versions of this method.

Let t ∈ [0, 1] and consider an interpolating Hamiltonian

−Ht(x) :=
∑
i<j

√
tλ

N
Wijxixj +

tλ

N
xix
∗
ixjx

∗
j −

tλ

2N
x2
ix

2
j (4.5)

+
N∑
i=1

√
(1− t)rzixi + (1− t)rxix∗i −

(1− t)r
2

x2
i ,

where the zi’s are i.i.d. standard Gaussian r.v.’s independent of everything else. For f :
(RN)n+1 7→ R, we define the Gibbs average of f as

〈
f(x(1), · · · ,x(n),x∗)

〉
t

:=

∫
f(x(1), · · · ,x(n),x∗)

∏n
l=1 e

−Ht(x(l))dP⊗Nx (x(l))∫ ∏n
l=1 e

−Ht(x(l))dP⊗Nx (x(l))
. (4.6)

This is the average of f with respect to the posterior distribution of n copies x(1), · · · ,x(n)

of x∗ given the augmented set of observations{
Yij =

√
tλ
N
x∗ix

∗
j +Wij, 1 ≤ i ≤ j ≤ N,

yi =
√

(1− t)rx∗i + zi, 1 ≤ i ≤ N.
(4.7)

The variables x(l), l = 1 · · · , n are called replicas, and are interpreted as random variables
independently drawn from the posterior. When n = 1 we simply write f(x,x∗) instead
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of f(x(1),x∗). We shall denote the overlaps between two replicas as follows: for l, l′ =
1, · · · , n, ∗, we let

Rl,l′ := x(l) · x(l′) =
1

N

N∑
i=1

x
(l)
i x

(l′)
i .

The lower bound

Reproducing the argument of Krzakala, Xu, and Zdeborová (2016), we prove that

FN ≥ φRS(λ)−O
( 1

N

)
.

We let r = λq in the definition of Ht and let

ϕ(t) :=
1

N
E log

∫
e−Ht(x)dP⊗Nx (x).

A short calculation based on Gaussian integration by parts shows that

ϕ′(t) =− λ

4
E
〈
(R1,2 − q)2

〉
t
+
λ

4
q2 +

λ

4N2

N∑
i=1

E
〈
x

(1)
i

2
x

(2)
i

2
〉
t

+
λ

2
E
〈
(R1,∗ − q)2

〉
t
− λ

2
q2 − λ

2N2

N∑
i=1

E
〈
xi

2x∗i
2
〉
t
,

By the Nishimori property (2.19), the expressions involving the pairs (x,x∗) on the one hand
and (x(1),x(2)) on the other in the brackets are equal. We then obtain

ϕ′(t) =
λ

4
E
〈
(R1,∗ − q)2

〉
t
− λ

4
q2 − λ

4N
E
〈
xN

2x∗N
2
〉
t
.

Observe that the last term is O(1/N) since the variables xN are bounded. Moreover, the
first term is always non-negative so we obtain

ϕ′(t) ≥ −λ
4
q2 − K

N
.

Since ϕ(1) = FN and ϕ(0) = ψ(λq), integrating over t, we obtain for all q ≥ 0

FN ≥ F (λ, q)− K

N
,

and this yields the lower bound.
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The upper bound

We prove the converse bound

FN ≤ φRS(λ) +O
( logN√

N

)
.

Recall the Franz-Parisi potential (Franz and Parisi, 1995, 1998) from Chapter 2. For x∗ ∈ RN

fixed, m ∈ R and ε > 0 we define

Φε(m,x
∗) :=

1

N
E log

∫
1{R1,∗ ∈ [m,m+ ε)}e−H(x)dP⊗Nx (x),

where the expectation is over W . This is the free energy of a subsystem of configura-
tions having an overlap close to a fixed value m with a planted signal x∗. It is clear that
Ex∗ Φε(m,x

∗) ≤ FN . We will argue via the Laplace method and concentration of measure
that supm∈R Ex∗ Φε(m,x

∗) ≈ FN , then use Guerra’s interpolation to upper bound Φε(m,x
∗)

(notice that this method yielded a lower bound on FN due to the Nishimori property). Let
us define a bit of more notation. For r ∈ R+, s ∈ R, let

ψ̂(r, s) := Ez log

∫
exp

(√
rzx+ sx− r

2
x2
)

dPx(x),

where z ∼ N (0, 1), and ψ(r, s) = Ex∗ ψ̂(r, sx∗) where x∗ ∼ Px. Moreover, let

F̂ (λ,m, q,x∗) :=
1

N

N∑
i=1

ψ̂(λq, λmx∗i )−
λm2

2
+
λq2

4
,

and similarly define F (λ,m, q) = Ex∗ F̂ (λ,m, q,x∗) = ψ(λq, λm)− λm2

2
+ λq2

4
.

Proposition 4.2. There exist K > 0 such that for all ε > 0, we have

FN ≤ Ex∗
[

max
l∈Z,|l|≤K/ε

Φε(lε,x
∗)
]

+
log(K/ε)√

N
.

Now we upper bound Φε in terms of F̂ :

Proposition 4.3 (Interpolation upper bound). There exist K > 0 depending on λ ≥ 0 such
that for all m ∈ R and ε > 0 we have

Φε(m,x
∗) ≤ inf

q≥0
F̂ (λ,m, q,x∗) +

λ

2
ε2 +

K

N
.

Remark: This simple upper bound on the Franz-Parisi potential—which may be of
independent interest—can be straightforwardly generalized to spiked tensor models of even
order. Indeed, as will be apparent from the proof in the present matrix case, a crucial step
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in obtaining the inequality is the positivity of a certain hard-to-control remainder1 term.
Tensor models of even order enjoy a convexity property that ensures the positivity of this
remainder.

From Propositions 4.2 and 4.11, an upper bound on FN in the form of a saddle formula
begins to emerge. For a fixed m ∈ R let q̄ = q̄(λ,m) be any minimizer of q 7→ F (λ,m, q) on
R+. (By differentiating F , we can check that q̄ is bounded uniformly in m.) Then we have

FN ≤ Ex∗
[

max
m=lε
|l|≤K/ε

F̂ (λ,m, q̄(λ,m),x∗)
]

+
λ

2
ε2 +

log(K/ε)√
N

. (4.8)

At this point we need to push the expectation inside the supremum. This will be done using
a concentration argument.

Lemma 4.4. There exists K > 0 such that for all λ ≥ 0, m ∈ R, q ≥ 0 and t ≥ 0,

Pr
x∗

(∣∣∣F̂ (λ,m, q,x∗)− F (λ,m, q)
∣∣∣ ≥ t

)
≤ 2e

− Nt2

λ2K(|m|+q)2 .

It is a routine computation to deduce from Lemma 4.4 (and boundedness of both m and
q) that the expected supremum is bounded by the supremum of the expectation plus a small
entropy term (the full details of a similar argument are given in the proof of Proposition 4.2):

E sup
m=lε
|l|≤K/ε

F̂ (λ,m, q̄(λ,m),x∗) ≤ sup
m=lε
|l|≤K/ε

F (λ,m, q̄(λ,m)) +
K log(K/ε)√

N
.

Since q̄ is a minimizer of F , it follows from (4.8) that

FN ≤ sup
m∈R

inf
q≥0

F (λ,m, q) +
λ

2
ε2 +

K log(K/ε)√
N

. (4.9)

We now let ε = N−1/4, and conclude by noticing that the above saddle formula is another
expression for φRS:

Proposition 4.5.
φRS(λ) = sup

m∈R
inf
q≥0

F (λ,m, q).

1We note that the adaptive interpolation method of Barbier and Macris Barbier and Macris (2017) is
able to bypass this issue of positivity of the remainder term along the interpolation path, as long as this
interpolation “stays on the Nishimori line”, i.e., the partition function must correspond to an inference
problem for every t (this is however not true in the case of the FP potential.) They are thus able to compute
the free entropy of (asymmetric) spiked tensor models of odd order. See Barbier, Krzakala, et al. (2017);
Barbier, Macris, and Miolane (2017).
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Proof. One inequality follows from (4.9) and the lower bound FN ≥ φRS(λ)− oN(1). For the
converse inequality, we notice that for all m ∈ R

inf
q≥0

F (λ,m, q) ≤ F (λ,m, |m|) = ψ(λ|m|, λm)− λ

4
|m|2.

Now we use Lemma 2.13 which says that the function ψ is largest when its second arguments
is positive: for all r ≥ 0, ψ(r,−r) ≤ ψ(r, r). This implies

inf
q≥0

F (λ,m, q) ≤ F (λ, |m|)− λ

4
|m|2.

Taking the supremum over m yields the converse bound. �

Proof of Proposition 4.2. Let ε > 0. Since the prior Px has bounded support, we can grid
the set of the overlap values R1,∗ by 2K/ε many intervals of size ε for some K > 0. This
allows the following discretization, where l runs over the finite range {−K/ε, · · · , K/ε− 1}:

FN =
1

N
E log

∑
l

∫
1{R1,∗ ∈ [lε, (l + 1)ε)}e−H(x)dP⊗Nx (x)

≤ 1

N
E log

2K

ε
max
l

∫
1{R1,∗ ∈ [lε, (l + 1)ε)}e−H(x)dP⊗Nx (x)

=
1

N
Emax

l
log

∫
1{R1,∗ ∈ [lε, (l + 1)ε)}e−H(x)dP⊗Nx (x) +

log(2K/ε)

N
. (4.10)

In the above, E is w.r.t. both W and x∗. We use concentration of measure to push the
expectation over W to the left of the maximum. Let

Zl :=

∫
1{R1,∗ ∈ [lε, (l + 1)ε)}e−H(x)dP⊗Nx (x).

We show that each term Xl = 1
N

logZl concentrates about its expectation (in the randomness
of W ). Let E′ denote the expectation w.r.t. W .

Lemma 4.6. There exists a constant K > 0 such that for all γ ≥ 0 and all l,

E′ eγ(Xl−E′[Xl]) ≤ Kγ√
N
eKγ

2/N .

Therefore, the expectation of the maximum concentrates as well:

E′max
l

(Xl − E′[Xl]) ≤
1

γ
logE′ exp

(
γmax

l
(Xl − E′[Xl])

)
=

1

γ
logE′max

l
eγ(Xl−E′[Xl])
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≤ 1

γ
logE′

∑
l

eγ(Xl−E′[Xl])

≤ 1

γ
log

(
2K

ε

γK√
N
eγ

2K/N

)
=

log(2K/ε)

γ
+

1

γ
log

γK√
N

+
γK

N
.

We set γ =
√
N and obtain

E′max
l

(Xl − E′[Xl]) ≤
log(K/ε)√

N
.

Therefore, plugging the above estimates into (4.10), we obtain

FN ≤ Ex∗ max
l

E′Xl +
log(K/ε)√

N
+

log(K/ε)

N

≤ Ex∗ max
l

Φε(lε,x
∗) + 2

log(K/ε)√
N

.

�
Proof of Proposition 4.11. Let t ∈ [0, 1] and consider a slightly modified interpolating
Hamiltonian that has two parameters r = λq ≥ 0 and s = λm ∈ R:

−Ht(x) :=
∑
i<j

√
tλ

N
Wijxixj +

tλ

N
xix
∗
ixjx

∗
j −

tλ

2N
x2
ix

2
j (4.11)

+
N∑
i=1

√
(1− t)rzixi + (1− t)sxix∗i −

(1− t)r
2

x2
i ,

where the zi’s are i.i.d. standard Gaussian r.v.’s independent of everything else. Let

ϕ(t) :=
1

N
E log

∫
1{R1,∗ ∈ [m,m+ ε)}e−Ht(x)dP⊗Nx (x),

where E is over the Gaussian disorder W and z (x∗ is fixed). Let 〈·〉t be the corresponding
Gibbs average, similarly to (4.15). By differentiation and Gaussian integration by parts,

ϕ′(t) =− λ

4
E
〈
(R1,2 − q)2

〉
t
+
λ

4
q2 +

λ

4N2

N∑
i=1

E
〈

(x
(1)
i x

(2)
i )2

〉
t

+
λ

2
E
〈
(R1,∗ −m)2

〉
t
− λ

2
m2 − λ

2N2

N∑
i=1

E
〈
(xix

∗
i )

2
〉
t
,



CHAPTER 4. THE REPLICA-SYMMETRIC FORMULA AND ITS FINITE-SIZE
CORRECTIONS 81

Notice that by the overlap restriction, E 〈(R1,∗ −m)2〉t ≤ ε2. Moreover, the last terms in the
first and second lines in the above are of order 1/N since the variables xi are bounded. Next,
since E 〈(R1,2 − q)2〉t has non-negative sign, we can ignore it and obtain an upper bound:

ϕ′(t) ≤ −λ
2
m2 +

λ

4
q2 +

λ

2
ε2 +

K

N
.

Integrating over t, we obtain

Φε(m,x
∗) ≤ −λ

2
m2 +

λ

4
q2 +

λ

2
ε2 + ϕ(0) +

K

N
.

Now we use a trivial upper bound on ϕ(0):

ϕ(0) =
1

N
E log

∫
1{R1,∗ ∈ [m,m+ ε)}e−H0(x)dP⊗Nx (x)

≤ 1

N
E log

∫
e−H0(x)dP⊗Nx (x)

=
1

N

N∑
i=1

ψ̂(λq, λmx∗i ).

Hence,

Φε(m,x
∗) ≤ F̂ (λ,m, q,x∗) +

λ

2
ε2 +

K

N
.

�

Proof of lemma 4.4. The random part of F̂ (λ,m, q̄,x∗) is the average of i.i.d. terms

ψ̂(λq, λmx∗i ). Since
∣∣∣∂sψ̂(r, sx∗)

∣∣∣ ≤ K2,
∣∣∣∂rψ̂(r, sx∗)

∣∣∣ ≤ K2/2 and ψ̂(0, 0) = 0, where K

is a bound on the support of Px, we have
∣∣∣ψ̂(r, sx∗)

∣∣∣ ≤ K2(r/2 + |s|). For bounded r and s,

the claim follows from concentration of the average of i.i.d. bounded r.v.’s. �

Proof of Lemma 4.6. We notice that Xl seen as a function of W is Lipschitz with constant

K
√

λ
N

. By Gaussian concentration of Lipschitz functions, there exist a constantK depending

only on λ such that for all t ≥ 0,

Pr (Xl − E′Xl ≥ t) ≤ e−Nt
2/K .

Then we conclude by means of the identity

E′ eγ(Xl−E′[Xl]) = γ

∫ +∞

−∞
Pr(Xl − E′[Xl] ≥ t) eγtdt,

and integrate the tail. �
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4.2 Finite size corrections to the RS formula

In this section we determine the finite-size correction of FN to its limit φRS(λ), i.e., the
constant-order term in the asymptotic expansion of EPλ logL(Y ;λ) in N , for large N . Recall
from Chapter 2 that uniqueness of q∗ (the maximizer of the RS potential F ) only needs
first differentiability of the RS formula. In contrast, the results we are about to present
hold under a slightly stronger condition: we will need a second derivative to exist. In
the physics parlance, our results do not hold at values of λ at which a particular kind of
first-order phase transitions occur, namely, those in which the order parameter q∗ is not
differentiable. The presence of these transitions depends on the prior Px. For the Gaussian
and Rademacher prior, there are no such transitions, while for the sparse Rademacher prior
Px = ρ

2
δ−1/

√
ρ+(1−ρ)δ0 + ρ

2
δ+1/

√
ρ, there is one first-order transition where q∗

′
is not defined

for every ρ < ρ∗ ≈ 0.092. (See Chapter 2.) Thus we define the set

A =
{
λ > 0 : φRS is twice differentiable at λ.

}
.

Since φRS is the point-wise limit of a sequence (FN) of convex functions, it is also convex.
Then by Alexandrov’s theorem (Aleskandrov, 1939), the set A is of full Lebesgue measure
in R+. Moreover, we can see that (0, λc) ⊂ A, since if λ ∈ A ∩ (0, λc), we have q∗(λ) = 0,
therefore φRS(λ) = 0. By continuity, φRS vanishes on the entire interval (0, λc). Our first
main result is to establish the existence of a function λ 7→ ψRS(λ) defined on A such that
either below λc or above it when the prior Px is not symmetric about the origin, we have

N(FN − φRS(λ)) −→ ψRS(λ).

An explicit formula for ψRS will be given. But first we need to introduce some notation. Let
λ ∈ A and consider the quantities

a(0) = E
[
〈x2〉2r

]
− q∗2(λ), a(1) = E

[
〈x2〉r〈x〉2r

]
− q∗2(λ), a(2) = E

[
〈x〉4r

]
− q∗2(λ),

(4.12)

where

〈·〉r =

∫
· exp

(√
rzx+ rxx∗ − r

2
x2
)

dPx(x)∫
exp

(√
rzx+ rxx∗ − r

2
x2
)

dPx(x)
,

with r = λq∗(λ) and the expectation operator E is w.r.t. x∗ ∼ Px and z ∼ N (0, 1). The
Gibbs measure 〈·〉r can be interpreted as the posterior distribution of x∗ given the observation
y =
√
rx∗ + z. (More on this point of view in Section 4.3.) Now let

µ1(λ) = λ(a(0)− 2a(1) + a(2)),

µ2(λ) = λ(a(0)− 3a(1) + 2a(2)),
(4.13)

and finally define

ψRS(λ) :=
1

4

(
log(1− µ1)− 2 log(1− µ2) + λ

4a(1)− 3a(2)

1− µ1

− λa(0)

)
. (4.14)
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We will prove (Lemma 4.21) that µ2 ≤ µ1 < 1 for all λ ∈ A so that this function is well
defined on A.

Theorem 4.7. For λ ∈ A, if either λ < λc, or λ > λc and the prior Px is not symmetric
about the origin, then

N
(
FN − φRS(λ)

)
= ψRS(λ) +O

( 1√
N

)
,

or equivalently, DKL(Pλ,P0) = NφRS(λ) + ψRS(λ) +O(1/
√
N).

The theorem asserts that either below the reconstruction threshold, or above it when the
prior Px is not symmetric, the free energy FN has a finite-size correction of order 1/N to its
limit φRS and a subsequent term of order N−3/2 in the expansion. In the case λ > λc with
symmetric prior, the problem is invariant under a sign flip of the spike, so the overlap x>x∗/N
has a symmetric distribution, and hence concentrates equiprobably about two distinct values
±q∗(λ). Our techniques do not survive this symmetry, and resolving this case seems to require
a new approach.

We see that DKL(Pλ,P0) is an extensive quantity in N whenever φRS(λ) > 0, or equiva-
lently, λ > λc. On the other hand, this KL is of constant order below λc:

Centered prior. Let us consider the case where the prior Px has zero mean, and unit vari-
ance (the latter can be assumed without loss of generality by rescaling λ), so that Lemma 2.1
reads λc ≤ 1. If λ < λc, we have q∗(λ) = 0, φRS(λ) = 0, and one can check that in this case

a(0) = (EPx
[X2])2 = 1, a(1) = EPx

[X2]EPx
[X]2 = 0, a(2) = EPx

[X]4 = 0.

Therefore, expression (4.14) simplifies to

ψRS(λ) =
1

4
(− log (1− λ)− λ) ,

and Theorem 4.7 reduces the formula of Proposition 2.5.

More information on ψRS. Expression (4.14) looks mysterious at first sight. Let us
briefly explain its origin. A slightly less processed expression for ψRS is the following

ψRS(λ) =
1

4

∫ 1

0

(
− µ1

1− tµ1

+
2µ2

1− tµ2

+ λ
4a(1)− 3a(2)

(1− tµ1)2

)
dt− λ

4
a(0),

after which (4.14) follows by simple integration. The integrand in the above expression is
obtained, as we will show, as the first entry z(0) of the solution z = [z(0), z(1), z(2)]> of the
3× 3 linear system

(I − tA)z = a,
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where a = [a(0), a(1), a(2)]> and A is the “cavity” matrix

A := λ ·

a(0) −2a(1) a(2)
a(1) a(0)− a(1)− 2a(2) −2a(1) + 3a(2)
a(2) 4a(1)− 6a(2) a(0)− 6a(1) + 6a(2)

 .
The above matrix happens to have two eigenvalues which are exactly µ1 and µ2. The matrix
A and the above linear system will emerge naturally as a result of the cavity method. On the
other hand, the integral over the time parameter t is along Guerra’s interpolation path (see
also Guerra and F. Toninelli, 2002c), and the integrand can be interpreted as the asymptotic
variance in a central limit theorem satisfied by the overlap between two replicas under the
law induced by a certain interpolating Gibbs measure. A definition of these notions with the
corresponding results can be found in Sections 4.3 and 4.4. The full execution of the cavity
method is relegated to Section 4.5.

4.3 Overlap convergence: optimal rates

We recall a couple of definitions from previous chapters and sections. The posterior of x∗

given Y is

dPλ(x|Y ) =
e−H(x)dP⊗Nx (x)∫
e−H(x)dP⊗Nx (x)

,

where H is the Hamiltonian

−H(x) :=
∑
i<j

√
λ

N
Yijxixj −

λ

2N
x2
ix

2
j

=
∑
i<j

√
λ

N
Wijxixj +

λ

N
xix
∗
ixjx

∗
j −

λ

2N
x2
ix

2
j .

For an integer n ≥ 1 and f : (RN)n+1 7→ R, we define the Gibbs average of f w.r.t. H as

〈
f(x(1), · · · ,x(n),x∗)

〉
:=

∫
f(x(1), · · · ,x(n),x∗)

∏n
l=1 e

−H(x(l))dP⊗Nx (x(l))∫ ∏n
l=1 e

−H(x(l))dP⊗Nx (x(l))
. (4.15)

Recall also the definition of the overlap between replicas: for l, l′ = 1, · · · , n, ∗, we let

Rl,l′ := x(l) · x(l′) =
1

N

N∑
i=1

x
(l)
i x

(l′)
i .

In this section we show the convergence of the first four moments of the overlap at optimal
rates under some conditions: if either the prior Px is not symmetric about the origin or
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the Hamiltonian H is “perturbed” in the following sense. Let t ∈ [0, 1] and consider the
interpolating Hamiltonian

−Ht(x) := − tλ

2N

∑
i<j

x2
ix

2
j +

√
tλ

N

∑
i<j

Wijxixj +
tλ

N

∑
i<j

xix
∗
ixjx

∗
j (4.16)

− (1− t)r
2

N∑
i=1

x2
i +

√
(1− t)r

N∑
i=1

zixi + (1− t)r
N∑
i=1

xix
∗
i ,

where the zi’s are i.i.d. standard Gaussian r.v.’s independent of everything else, and r =
λq∗(λ). We similarly define the Gibbs average 〈·〉t as in (4.15) where H is replaced by Ht.
We now state a fundamental property satisfied by both 〈·〉 and 〈·〉t.

The Nishimori property. As explained in Chapter 2, the fact that the Gibbs mea-
sure 〈·〉 is a posterior distribution (4.2) has important consequences. The n + 1-tuples
(x(1), · · · ,x(n+1)) and (x(1), · · · ,x(n),x∗) have the same law under E〈·〉. Moreover, this
property is preserved under the interpolating Gibbs measure 〈·〉t for all t ∈ [0, 1]. Indeed,
the interpolation is constructed in such a way that 〈·〉t is the posterior distribution of the
signal x∗ given the augmented set of observations{

Yij =
√

tλ
N
x∗ix

∗
j +Wij, 1 ≤ i < j ≤ N,

yi =
√

(1− t)rx∗i + zi, 1 ≤ i ≤ N,
(4.17)

where one receives side information about x∗ from a scalar Gaussian channel, r = λq∗(λ),
and the signal-to-noise ratios of the two channels are altered in a time dependent way. Now
we state our concentration result.

Theorem 4.8. For all λ ∈ A and all t ∈ [0, 1], there exist constants K(λ) ≥ 0 and c(t) ≥ 0
such that

E
〈
(R1,∗ − q∗)4〉

t
≤ K(λ)

( 1

N2
+ e−c(t)N

)
. (4.18)

Moreover, c(t) > 0 on [0, 1), and if either λ < λc or Px is not symmetric about the origin,
then c(t) ≥ c0 for some constant c0 = c0(λ) > 0. Otherwise, c(t) ∼ c0(1− t)2 as t→ 1.

If Px is symmetric about the origin then the distribution of R1,∗ under E〈·〉 is also sym-
metric, so E〈R1,∗〉 = 0. If moreover q∗(λ) > 0 (i.e., λ > λc) then (4.18) becomes trivial at
t = 1 since both sides are constant. On the other hand, if either t < 1 or Px is asymmetric,
the sign symmetry of the spike is broken. This forces the overlap to be positive and hence
concentrate about q∗(λ). Finally, if λ < λc, q

∗(λ) = 0 and the sign symmetry becomes irrel-
evant since the overlap converges to zero regardless. Let us mention that in the symmetric
unperturbed case (t = 1), we expect a variant of (4.18) to hold where R1,∗ is replaced by its
absolute value in the statement, and the upper bound would be K/N2. Unfortunately, our
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methods do not allow us to prove such a statement, but we are able to prove a weaker result
(see Lemma 4.12): for all ε > 0,

E
〈
1
{∣∣|R1,∗| − q∗

∣∣ ≥ ε
} 〉
−→ 0. (4.19)

Although this a minor technical point, we also point out that the estimate c(t) ∼ c0(1− t)2

in the statement is suboptimal. A heuristic argument allows us to get c(t) ∼ c0(1 − t) as
t→ 1, but we are currently unable to rigorously justify it.

MMSE. The bound (4.18) can be used to deduce the optimal error of estimating x∗ based
on the observations (4.17). The posterior mean 〈x〉t is the estimator with Minimal Mean

Squared Error (MMSE) among all estimators θ̂(Y ,y) ∈ RN , and the MMSE is

1

N

N∑
i=1

E
[
(x∗i − 〈xi〉t)2

]
= EPx

[X2]− 2

N

N∑
i=1

E〈xix∗i 〉t +
1

N

N∑
i=1

E〈xi〉2t

= EPx
[X2]− E〈R1,∗〉t.

The last line follows from the Nishimori property, since E〈x〉2t = E〈x(1)x(2)〉t = E〈xx∗〉t.
Theorem 4.8 implies in particular (under the conditions of its validity) that E〈R1,∗〉t → q∗(λ),
yielding the value of the MMSE. It is in particular possible to estimate the spike x∗ from
the observations (4.17) with non-trivial accuracy if and only if λ > λc. Note that at t = 1
(no side information) the result still holds below λc or when the prior is not symmetric.
Otherwise, as mentioned before, the problem is invariant under a sign flip of x∗ so one has
to change the measure of performance. Beside the result (4.19), we are unable to say much
in this situation.

Asymptotic variance. By Jensen’s inequality we deduce from (4.18) the convergence of
the second moment:

E
〈
(R1,∗ − q∗)2〉

t
≤ K(λ)

( 1

N
+ e−c(t)N

)
. (4.20)

To establish our finite-size correction result (Theorem 4.7) we need to prove a result stronger
than (4.20), namely that N ·E

〈
(R1,∗ − q∗)2〉

t
converges to a limit. For t ∈ [0, 1] and λ ∈ A,

we let

∆RS(λ; t) :=
1

λ

(
− µ1

1− tµ1

+
2µ2

1− tµ2

+ λ
4a(1)− 3a(2)

(1− tµ1)2

)
, (4.21)

where µ1 and µ2 are defined in (4.13).

Theorem 4.9. For all λ ∈ A and all t ∈ [0, 1], there exist constants K(λ) ≥ 0 and c(t) ≥ 0
such that ∣∣N · E 〈(R1,∗ − q∗)2〉

t
−∆RS(λ; t)

∣∣ ≤ K(λ)

(
1√
N

+Ne−c(t)N
)
.

Moreover, c(t) > 0 on [0, 1), and if either λ < λc or Px is not symmetric about the origin,
then c(t) ≥ c0 for some constant c0 = c0(λ) > 0. Otherwise, c(t) ∼ c0(1− t)2 as t→ 1.
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The proofs of Theorems 4.8 and 4.9 rely on the cavity method, and will be presented in
Section 4.5. Finally, the techniques we use could be easily extended to prove convergence of
all the moments at optimal rates: for all integers k,

E
〈

(R1,∗ − q∗)2k
〉
t
≤ K(k)

Nk
+K(k)e−c(k,t)N ,

but we will not need this stronger statement.

4.4 The interpolation method

In this section we apply once more the interpolation method of Guerra (2001) to prove
Theorem 4.7. This time we keep track of the lower order terms.

The Guerra interpolation

Our interpolating Hamiltonian is Ht from (4.16) with r = λq for some q ≥ 0. Now we
consider the interpolating free energy

ϕ(t) :=
1

N
E log

∫
e−Ht(x)dP⊗Nx (x). (4.22)

We see that ϕ(1) = FN and ϕ(0) = ψ(λq). This function is moreover differentiable in t, and
by differentiation, we have

ϕ′(t) =
1

N
E
〈
−dHt(x)

dt

〉
t

=
1

N
E

〈
− λ

2N

∑
i<j

x2
ix

2
j +

1

2

√
λ

tN

∑
i<j

Wijxixj +
λ

N

∑
i<j

xix
∗
ixjx

∗
j

〉
t

+
1

N
E

〈
λq

2

N∑
i=1

x2
i −

1

2

√
λq

1− t

N∑
i=1

zixi − λq
N∑
i=1

xix
∗
i

〉
t

.

Now we use Gaussian integration by parts to eliminate the variables Wij and zi. The details
of this computation are explained extensively in many sources. See (Krzakala, Xu, and
Zdeborová, 2016; Lelarge and Miolane, 2016; Talagrand, 2011a). We get

ϕ′(t) = − λ

2N2
E

〈∑
i<j

x
(1)
i x

(1)
j x

(2)
i x

(2)
j

〉
t

+
λ

N2
E

〈∑
i<j

xix
∗
ixjx

∗
j

〉
t

+
λq

2N
E

〈
N∑
i=1

x
(1)
i x

(2)
i

〉
t

− λq

N
E

〈
N∑
i=1

xix
∗
i

〉
t

.
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Completing the squares yields

ϕ′(t) = −λ
4
E
〈
(x(1) · x(2) − q)2

〉
t
+
λ

4
q2 +

λ

4N2

N∑
i=1

E
〈
x

(1)
i

2
x

(2)
i

2
〉
t

(4.23)

+
λ

2
E
〈
(x · x∗ − q)2

〉
t
− λ

2
q2 − λ

2N2

N∑
i=1

E
〈
xi

2x∗i
2
〉
t
.

The first line in the above expression involves overlaps between two independent replicas,
while the second one involves overlaps between one replica and the planted solution. Using
the Nishimori property, the derivative of ϕ can be written as

ϕ′(t) =
λ

4
E
〈
(R1,∗ − q)2

〉
t
− λ

4
q2 − λ

4N
E
〈
xN

2x∗N
2
〉
t
. (4.24)

The last term follows by symmetry between sites. Now, integrating over t, the difference
between the free energy and the RS potential F (λ, q) can be written in the form of a sum
rule:

FN − F (λ, q) =
λ

4

∫ 1

0

(
E
〈
(R1,∗ − q)2

〉
t
− 1

N
E
〈
xN

2x∗N
2
〉
t

)
dt. (4.25)

We see from (4.25) that FN converges to F (λ, q) if and only if the overlapR1,∗ concentrates
about q. This happens only for a value of q that maximizes the RS potential F (λ, ·). Using
Theorem 4.8 one can already prove the 1/N optimal rate below λc or above it when the prior
is not symmetric. Indeed since c(t) is lower-bounded by a positive constant in this case, the

bound (4.20) yields
∫ 1

0
E〈(R1,∗− q∗)2〉tdt ≤ K(λ)/N . Also, the second integrand in (4.25) is

bounded by K/N for some constant K ≥ 0, so we have for all λ ∈ A, FN = φRS(λ)+O(1/N).
If λ > λc and the prior is symmetric then we are only able to prove a rate of 1/

√
N due to

the fact c(t) ∼ c0(1− t)2 as t→ 1. The 1/N rate would follow immediately in this case if one
is able to improve the latter estimate to c(t) ∼ c0(1− t). To go further, we use Theorem 4.9,
and the additional fact that E〈xN 2x∗N

2〉t has a limit:

Lemma 4.10. For all λ ∈ A and for all t ∈ [0, 1), there exist constants K(λ) ≥ 0 and
c(t) ≥ 0 such that ∣∣E 〈xN 2x∗N

2
〉
t
− a(0)

∣∣ ≤ K(λ)

(
1√
N

+ e−c(t)N
)
.

Moreover, c(t) > 0 on [0, 1), and if either λ < λc or Px is not symmetric about the origin,
then c(t) ≥ c0 for some constant c0 = c0(λ) > 0. Otherwise, c(t) ∼ c0(1− t)2 as t→ 1.

The proof of Lemma 4.10 relies on the cavity method, and will be presented in the
Section 4.5. Now we are ready to prove Theorem 4.7.

Proof of Theorem 4.7. By formula (4.25) with the choice q = q∗(λ), we have∣∣∣∣N(FN − φRS(λ))− λ

4

(∫ 1

0

∆RS(λ; t)dt− a(0)
)∣∣∣∣ ≤ λ

4

∫ 1

0

∣∣N E
〈
(R1,∗ − q∗)2〉

t
−∆RS(λ; t)

∣∣ dt
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+
λ

4

∫ 1

0

∣∣E 〈xN 2x∗N
2
〉
t
− a(0)

∣∣ dt.
By Theorem 4.9 and Lemma 4.10, the integrands on the right-hand side are bounded by
K/
√
N + KNe−c(t)N where c(t) > c0 > 0 for all t in the cases λ < λc or Px not symmetric

about the origin, so the convergence follows. The function ψRS(λ) is the second term in the
left-hand side. Formula (4.14) follows by integration. �

The main estimate: energy gap at suboptimal overlap

Recall the interpolating Hamiltonian Ht from (4.16) with r = λq∗(λ). Let us now consider
a version of the Franz-Parisi potential defined on Ht. For x∗ ∈ RN fixed, m ∈ R \ {0} and
ε > 0 define the set

A =

{
R1,∗ ∈ [m,m+ ε) if m > 0,

R1,∗ ∈ (m− ε,m] if m < 0.

Now define the FP potential as

Φε(m, t) :=
1

N
EW log

∫
1{x ∈ A}e−Ht(x)dP⊗Nx (x),

where the expectation is only over the Gaussian disorder W . The dependence of Φε on x∗

is kept implicit. We will adopt the same approach as the ine used in Chapter 2: An upper
bound on the FP potential is a main ingredient is our proof of overlap concentration. To
prove this we will need the auxiliary function

φRS(λ; t) = sup
q≥0

{
ψ(λq)− tλq2

4

}
.

One can show that the above formula is the limit of ϕ(t) as N → ∞, by either using the
approach of Section 4.1, or with the argument of Lelarge and Miolane (2016). For our
purpose we will only need the inequality

ϕ(t) ≥ φRS(λ; t)− Kλt

N
, (4.26)

which can be proved using the interpolation method presented in the previous section and
dropping the non-negative term E〈(R1,∗−q∗)2〉 from the expression analogous to (4.24) in this
case. Now it suffices to compare Φε(m; t) to φRS(λ; t). The result is given in Proposition 4.14,
and we finish this subsection by Proposition 4.12 showing convergence in probability of the
overlaps as a straightforward consequence.

Let us recall some notation from Chapter 2. For r ≥ 0 and s ∈ R, we let

ψ̂(r, s) := Ez log

∫
exp

(√
rzx+ sx− r

2
x2
)

dPx(x).
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and

ψ(r, s) := Ex∗ ψ̂(r, sx∗)

= Ex∗,z log

∫
exp

(√
rzx+ sxx∗ − r

2
x2
)

dPx(x).

We now state a useful interpolation bound on Φε(m; t). This is a simpler version of the
Guerra-Talagrand 1RSB interpolation bound at fixed overlap, a key invention that ultimately
paved the way towards a proof of the Parisi formula (Guerra, 2003; Talagrand, 2006). In
some sense, since we are dealing with a planted model, we only need a replica-symmetric
version of this bound.

Proposition 4.11. Fix x∗ ∈ RN , m ∈ R, ε > 0, t ∈ [0, 1] and λ ≥ 0. Let r = (1− t)λq∗ +
tλ|m|, r̄ = (1− t)λq∗ + tλm. There exist a constant K = K(Px) > 0 such that

Φε(m; t) ≤ inf
h∈R

{ 1

N

N∑
i=1

ψ̂
(
r, (r̄ + h)x∗i

)
− hm

}
− tλm2

4
+
λtε2

2
+
λK

N
.

Proof. This is proved in exactly the same way as Proposition 2.14. The interpolation we
consider here is

−Ht,s(x) :=
∑
i<j

−tsλ
2N

x2
ix

2
j +

√
tsλ

N
Wijxixj +

tsλ

N
xix
∗
ixjx

∗
j

+
N∑
i=1

−(1− t)λq∗

2
x2
i +

√
(1− t)λq∗zixi + (1− t)λq∗xix∗i

+
N∑
i=1

−(1− s)tλ|m|
2

x2
i +

√
(1− s)tλ|m|z′ixi + (1− s)tλmxix∗i ,

where t is fixed and s ∈ [0, 1] is varying. The r.v.’s W, z, z′ are all i.i.d. standard Gaussians
independent of everything else. We define

ϕ(t, s) :=
1

N
EW ,z,z′ log

∫
1{x ∈ A}e−Ht,s(x)dP⊗Nx (x).

We compute the derivative w.r.t. s. The same algebraic manipulations conducted in the
computation of ϕ′ up to (4.23) apply here, and we get

∂sϕ(t, s) =− λt

4
E
〈
(x(1) · x(2) − |m|)2

〉
t,s

+
λt

4
|m|2 +

λt

4N2

N∑
i=1

E
〈
x

(1)
i

2
x

(2)
i

2
〉
t,s

+
λt

2
E
〈
(x · x∗ −m)2

〉
t,s
− λt

2
m2 − λt

2N2

N∑
i=1

E
〈
xi

2x∗i
2
〉
t,s
,
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where 〈·〉t,s is the Gibbs average w.r.t. the Hamiltonian −Ht,s(x) + log 1{x ∈ A}. The
planted term is trivially smaller than tλε2/2 due to the overlap restriction. Moreover, the
last terms in both lines are of order 1/N since the variables xi are bounded. The first term
in the first line, which involves the overlap between two replicas, is always non-positive so
we can ignore it and obtain an upper bound:

∂sϕ(t, s) ≤ −λt
4
m2 +

λtε2

2
+
λK

N
.

Integrating over s, we get

Φε(m; t) ≤ ϕ(t, 0)− λt

4
m2 +

λtε2

2
+
λK

N
.

Finally, for h of the same sign as m, we have

ϕ(t, 0) =
1

N
E log

∫
1{x ∈ A}e−Ht,0(x)dP⊗Nx (x)

≤ −hm+
1

N
E log

∫
1{x ∈ A}e−Ht,0(x)+hNR1,∗dP⊗Nx (x)

= −hm+
1

N

N∑
i=1

ψ̂(r, (r̄ + h)x∗i ),

where the last line follows by dropping the indicator from the integral. �

A consequence of the above bound is the convergence in probability of the overlaps:

Proposition 4.12. For all λ ∈ A, all ε > 0 and all t ∈ [0, 1], there exist constants K =
K(λ, ε) ≥ 0, c = c(λ, ε, t, Px) ≥ 0 such that

E
〈
1
{∣∣R1,∗ − q∗(λ)

∣∣ ≥ ε
}〉

t
≤ Ke−cN .

The map t 7→ c(t) has the following properties:

• If t < 1 then c(t) > 0.

• If either λ < λc or Px is not symmetric about the origin then inft∈[0,1] c(t) > 0.

• Conversely, if λ > λc and Px is symmetric about the origin then c(t) ∼ c0(1 − t)2 as
t→ 1, for some c0 = c0(λ, ε, Px) > 0.

Moreover, if λ > λc, Px is symmetric and t = 1 then one still has

E
〈
1
{∣∣|R1,∗| − q∗(λ)

∣∣ ≥ ε
}〉
≤ Ke−cN ,

with c = c(λ, ε, Px) > 0.
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Proof of Proposition 4.12

The proof is similar to that of Proposition 2.15, with additional technical complications when
λ > λc. For ε, ε′ > 0, t ∈ [0, 1), we can write the decomposition

E 〈1 {|R1,∗ − q∗(λ)| ≥ ε}〉t =
∑
l≥0

E
〈
1
{
R1,∗ − q∗ − ε ∈ [lε′, (l + 1)ε′)

}〉
t

+
∑
l≥0

E
〈
1
{
−R1,∗ + q∗ − ε ∈ [lε′, (l + 1)ε′)

}〉
t
,

where the integer index l ranges over a finite set of size ≤ K/ε′ since the prior Px has bounded
support. We will only treat the first sum in the above expression since the argument extends
trivially to the second sum. Let A =

{
R1,∗ − q∗ − ε ∈ [lε′, (l + 1)ε′)

}
and write

E 〈1(A)〉t = Ex∗ EW ,z

[∫
A
e−Ht(x)dP⊗Nx (x)∫
e−Ht(x)dP⊗Nx (x)

]
. (4.27)

By concentration over the Gaussian disorder W , z (Lemma 2.16), for any given l and u ≥ 0,
we simultaneously have

1

N
log

∫
e−Ht(x)dP⊗Nx (x) ≥ 1

N
EW ,z log

∫
e−Ht(x)dP⊗Nx (x)− u

and

1

N
log

∫
1{x ∈ A}e−Ht(x)dP⊗Nx (x) ≤ 1

N
EW ,z log

∫
A

e−Ht(x)dP⊗Nx (x) + u

= Φε′(q
∗ + ε+ lε′; t) + u,

with probability at least 1 − 4e−Nu
2/K . On the complement of this event event, we simply

bound the fraction in (4.27) by 1. Combining the above bounds we have

E 〈1(A)〉t ≤ 2e−Nu
2/K + Ex∗

[
eN(∆+2u)

]
, (4.28)

where

∆ = Φε′(m; t)− 1

N
EW ,z log

∫
A

e−Ht(x)dP⊗Nx (x) (≤ 0),

with m = q∗ + ε+ lε′. Proposition 4.11 implies that

∆ ≤ inf
h∈R

{ 1

N

N∑
i=1

ψ̂(r, (r̄ + h)x∗i )− hm
}
− λtm2

4

− 1

N
EW ,z log

∫
A

e−Ht(x) +
λtε2

2
+
λK

N
.
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Concentration over the randomness of x∗ (Lemmas 2.17 and 2.18) implies that for u′ ≥ 0,
we have

∆ ≤ inf
h∈R

{
ψ̄(r, r̄ + h)− hm

}
− λtm2

4
− ϕ(t) + 2u′ +

λε2

2
+
λK

N

≤ inf
h∈R

{
ψ̄(r, r̄ + h)− hm

}
− λtm2

4
− φRS(λ; t) + 2u′ +

λε2

2
+
λK

N
.

with probability at least 1− 4e−Nu
′2/K , where the last inequality come from (4.26).

Lemma 4.13. There exists K = K(Px) > 0 such that

inf
h∈R

{
ψ̄(r, r̄ + h)− hm

}
≤ ψ̄(r, r̄)− 1

2K2

(
m− ∂sψ̄(r, r̄)

)2
.

Therefore, with probability at least 1− 4e−Nu
′2/K , we have

∆ ≤ δφ+ 2u′ +
λε2

2
+
λK

N
, (4.29)

with

δφ = ψ̄(r, r̄)− λtm2

4
− φRS(λ; t)− 1

2K2

(
m− ∂sψ̄(r, r̄)

)2
. (4.30)

Now, the crucial observation is that δφ is strictly negative when m is far from q∗:

Proposition 4.14. For all λ ∈ A, all ε > 0 and all t ∈ [0, 1], there exist constants c =
c(λ, ε, t, Px) ≥ 0 such that

∀m ∈ R |m− q∗(λ)| ≥ ε =⇒ δφ ≤ −c.

Moreover, if t < 1 then c > 0. If either λ < λc or Px is not symmetric about the origin
inft∈[0,1] c(t) > 0. Lastly, if λ > λc and Px is symmetric, then c(t) ∼ c0(1− t) as t → 1, for
some c0 = c0(λ, ε, Px) > 0.

We can now finish the general using the above Proposition. Since m = q∗ + ε + lε′,
|m − q∗| ≥ ε, and by Proposition 4.14, and (4.29) we have ∆ ≤ −c + 2u′ + λε2

2
+ λK

N
with

probability at least 1− 4e−Nu
′2/K ; otherwise ∆ ≤ 0. Plugging this into (4.28), we obtain

E 〈1(A)〉t ≤ 2e−Nu
2/K + 4e−Nu

′2/K+2Nu + 2eN(−c+2u+2u′+λε2/2)+λK .

We now adjust the parameters ε, u, u′, so that the right-hand side is exponentially small in
N : E 〈1(A)〉t ≤ Ke−cN . Finally, if Px is symmetric and t = 1, then it suffices to consider
non-negative values of m in the above argument to prove the corresponding statement. �

To prove Propopsition 4.14, we will need to following useful lemma:
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Lemma 4.15. For all r ≥ 0, it holds that

• The function s 7→ ψ(r, s) is strictly convex, hence strongly convex on any compact.

• There exist a constant c = c(r, Px) ≥ 0 such that ψ(r,−r) ≤ ψ(r, r) − c. If r > 0
then c > 0 unless the prior Px is symmetric about the origin (in which case ψ(r,−r) =
ψ(r, r)).

• The map r 7→ c(r, Px) is increasing on R+.

Proof of Propopsition 4.14. The bound we seek to prove will come from different sources,
depending on whether t is small or not and whether m positive and negative. Recall that
r = (1− t)λq∗ + tλ|m| and r̄ = (1− t)λq∗ + tλm.

Large t. Assume t ≥ t0 to be determined later. For m ≥ 0, ψ̄(r, r̄) = ψ̄(r, r) = ψ(r). Since
ψ is a convex function we have

ψ(r)− tλm2

4
≤ (1− t)ψ(λq∗) + tψ(λm)− tλm2

4
= (1− t)ψ(λq∗) + tF (λ,m). (4.31)

Since q∗(λ) is the unique maximizer of m 7→ F (λ,m), |m − q∗| ≥ ε > 0 implies that
F (λ,m) ≤ F (λ, q∗)− c(ε) for some c(ε) > 0. This in turn implies

δφ ≤ (1− t)ψ(λq∗) + t
(
ψ(λq∗)− λq∗2

4
− c(ε)

)
− φRS(λ; t)

= ψ(λq∗)− tλq∗2

4
− φRS(λ; t)− tc(ε)

≤ −t0c(ε).

The conclusion is reached for m ≥ 0. Now we would like to prove the same bound for
negative overlaps. Assume that m < 0. Although m is far from q∗, the issue is that it could
still be close to −q∗. This case will need special care.

If λ < λc then q∗(λ) = 0, and by Proposition 4.15 we have ψ(−tλm, tλm) − tλm2

4
≤

ψ(−tλm)− tλm2

4
≤ t0F (λ,−m), and we finish the argument as in the case of positive overlap.

Now we deal with the case λ > λc ,i.e., q∗ > 0.

• Suppose |m+ q∗| ≥ ε. We let α = (1−t)q∗
(1−t)q∗−tm .

ψ(r, r̄) = ψ(r, αr − (1− α)r)

≤ αψ(r, r) + (1− α)ψ(r,−r)
≤ ψ(r)

where the last two lines follow from Proposition 4.15. Since |m+ q∗| ≥ ε we finish once
again as in the positive overlap case, starting from line (4.31).
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• Suppose |m+ q∗| ≤ ε. Then 1−α ≥ t0
q∗−ε
q∗+ε

and |r− λq∗| ≤ λε. If Px is asymmetric we
use the bounds of Proposition 4.15:

ψ(r, r̄) ≤ αψ(r, r) + (1− α)ψ(r,−r)
≤ ψ(r)− (1− α)c(r)

≤ ψ(r)− t0
q∗ − ε
q∗ + ε

c(λ(q∗ − ε)).

The last line follows since r 7→ c(r) is increasing. Then we finish the argument as
in (4.31).

Small t. Assume now that t ≤ t0. In this situation, we draw the gap from the term
(m − ∂sψ̄(r, r̄))2 (so far unused) in (4.30). The functions ψ̄(r, ·) and ψ̄(·, ·) = ψ(·) have
bounded second derivatives so

max
{ ∣∣∂sψ̄(r, r̄)− ∂sψ̄(r, r)

∣∣ ,
∣∣∂sψ̄(r, r)− ∂sψ̄(q∗, q∗)

∣∣ } ≤ Kλt0.

Moreover,
(m− q∗)2 ≤ 2(m− ∂sψ̄(r, r̄))2 + 2(q∗ − ∂sψ̄(r, r̄))2.

Since ∂sψ̄(q∗, q∗) = q∗ we have

(m− ∂sψ̄(r, r̄))2 ≥ 1

2
(m− q∗)2 −Kλ2t20 ≥

ε2

2
−Kλ2t20,

and here we choose t0 to be accordingly small, and we finish the argument.
Note that the assumption that Px is not symmetric about the origin is used only in the

case where the (negative) overlap m is close to −q∗. Consequently, the gap is independent
of t in all cases. Alternatively, without this asymmetry assumption (and when q∗ > 0), we
see that there is no hope of a gap independent of t since the potential Ex∗ Φε′(m; t) is closer
and closer to being even as t → 1. But we can still obtain a gap that depends on t(1 − t)
via a strong convexity argument.

The function s 7→ ψ(r, s) is strongly convex on any interval, and for all r ≥ 0. Therefore,

for m ≥ 0 recalling r = (1 − t)λq∗ − tλm and α = (1−t)q∗
(1−t)q∗−tm , there exists a constant c > 0

depending only on λ and Px (this constant is a bound on r) such that

ψ(r, r̄) = ψ(r, αr − (1− α)r)

≤ αψ(r, r) + (1− α)ψ(r,−r)− c

2
α(1− α)(2r)2

= αψ(r, r) + (1− α)ψ(r,−r)− 2ct(1− t)λ2q∗|m|
≤ ψ(r, r)− 2ct(1− t)λ2q∗(q∗ − ε),

where the last bounds follows from ψ(r,−r) ≤ ψ(r, r) and |m + q∗| ≤ ε (recall that this is
the only case where such an argument is needed). �
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Proof of Lemma 4.13. This is a consequence of a classical symmetrization argument.
If we define 〈·〉 as the Gibbs average associated to the random Hamiltonian x 7→

√
rzx +

r̄xx∗ − rx2/2, we have

ψ(r, r̄ + h) = ψ(r, r̄) + Ez,x∗ log
〈
ehxx

∗〉
.

Now, for fixed h, x∗ and z, we have by Jensen’s inequality〈
ehx

∗(x−〈x〉)〉 ≤ 〈ehx∗(x−x′)〉 ,
where x′ is an indepdenent copy of x (i.e. distributed according to 〈·〉). Since the random
variable x− x′ is symmetric, its odd moments vanish, and we have〈

ehx
∗(x−x′)

〉
=
∑
k≥0

(hx∗)k

k!

〈
(x− x′)k

〉
=
∑
k≥0

(hx∗)2k

(2k)!

〈
(x− x′)2k

〉
.

Since |x| ≤ K a.s. |x− x′| ≤ K ′ = 2K, and (2k)! ≥ 2kk!, it follows that

〈ehx∗(x−x′)〉 ≤
∑
k≥0

(hx∗)2k

2kk!
K ′2k

= eh
2x∗2K′2/2.

From the above we obtain

Ez,x∗ log
〈
ehxx

∗〉 ≤ hE〈xx∗〉+
1

2
h2 E[x∗2]K ′2 ≤ hE〈xx∗〉+

1

2
h2K ′′2.

Now,

min
h
{ψ(r, r̄ + h)− hm} ≤ ψ(r, r̄) + min

h
{h(E〈xx∗〉 −m) + h2K ′′2/2}

= ψ(r, r̄)− 1

2K ′′2
(E〈xx∗〉 −m)2.

�
Now we prove Lemma 4.15. A straightforward calculation reveals that

∂

∂s
ψ(r, s) = E [〈xx∗〉] , and

∂2

∂s2
ψ(r, s) = E

[
x∗2(〈x2〉 − 〈x〉2)

]
> 0,

so that s 7→ ∂
∂s
ψ(r, s) is Lipschitz and strongly convex on any interval, and for all r ≥ 0.

Let ν = Px, and let µ be the symmetric part of Px, i.e., µ(A) = (Px(A) + Px(−A))/2
for all Borel A ⊆ R. We observe that ν is absolutely continuous with respect to µ, so that
the Radon-Nikodym derivative dν

dµ
is a well-defined measurable function from R to R+ that

integrates to one.
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Proposition 4.16. For all r ≥ 0, we have

ψ(r, r)− ψ(r,−r) ≥ 2E

[〈
dν

dµ
(x)− 1

〉2

µ,r

]
,

where 〈·〉µ,r is the average w.r.t. to the Gibbs measure corresponding to the Gaussian channel
y =
√
rx∗ + z, x∗ ∼ µ and z ∼ N (0, 1). Moreover, if r > 0, the right-hand side of the above

inequality is zero if and only if µ = ν, i.e., the prior Px is symmetric.

Finally, the last statement is given here.

Lemma 4.17. The map r 7→ E
[〈

dν
dµ

(x)− 1
〉2

µ,r

]
is increasing on R+.

Proof. This is a matter of showing that the derivative of the above function is non-negative.
By standard manipulations (Gaussian integration by parts, Nishimori property), the deriva-
tive can be written as

E

[〈
x

(
dν

dµ
(x)− 1

)〉2

µ,r

]
.

�

Proof of Proposition 4.16. The argument relies on a smooth interpolation method be-
tween the two measures µ and ν. Let t ∈ [0, 1] and let ρt = (1− t)µ+ tν. Further, let r, s ≥ 0
be fixed, and

ψ(r, s; t) := Ez
∫ (

log

∫
exp

(√
rzx+ sxx∗ − r

2
x2
)

dρt(x)

)
dρt(x

∗),

where z ∼ N (0, 1). Now let

φ(t) = ψ(r, r; t)− ψ(r,−r; t).

We have φ(1) = ψ(r, r)−ψ(r,−r) on the one hand, and since µ is a symmetric distribution,
φ(0) = 0 on the other. We will show that φ is a convex increasing function on the interval

[0, 1], strictly so if µ 6= ν, and that φ′(0) = 0. Then we deduce that φ(1) ≥ φ′′(0)
2

, allowing
us to conclude. First, we have

d

dt
ψ(r, r; t) = Ez

∫
log

∫
e
√
rzx+rxx∗− r

2
x2

dρt(x) d(ν − µ)(x∗)

+ Ez
∫ ∫

e
√
rzx+rxx∗− r

2
x2

d(ν − µ)(x)∫
e
√
rzx+rxx∗− r

2
x2

dρt(x)
dρt(x

∗),

and

d2

dt2
ψ(r, r; t) = 2Ez

∫ ∫
e
√
rzx+rxx∗− r

2
x2

d(ν − µ)(x)∫
e
√
rzx+rxx∗− r

2
x2

dρt(x)
d(ν − µ)(x∗)
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− 2Ez
∫ (∫

e
√
rzx+rxx∗− r

2
x2

d(ν − µ)(x)∫
e
√
rzx+rxx∗− r

2
x2

dρt(x)

)2

dρt(x
∗).

Similar expressions holds for ψ(r,−r; t) where x∗ is replaced by −x∗ inside the exponentials.
We see from the expression of the first derivative at t = 0 that ψ(r, r; 0)′ = ψ(r,−r; 0)′. This
is because ρ0 = µ is symmetric about the origin, so a sign change (of x for the first term, and
x∗ for the second term in the expression) does not affect the value of the integrals. Hence
φ′(0) = 0. Now, we focus on the second derivative. Observe that since µ is the symmetric
part of ν, ν − µ is anti-symmetric. This implies that the first term in the expression of the
second derivative changes sign under a sign change in x∗, and keeps the same modulus. As
for the second term, a sign change in x∗ induces integration against dρt(−x∗). Hence we can
write the difference (ψ(r, r; t)− ψ(r,−r; t))′′ as

d2

dt2
φ(t) = 4Ez

∫ ∫
e
√
rzx+rxx∗− r

2
x2

d(ν − µ)(x)∫
e
√
rzx+rxx∗− r

2
x2

dρt(x)
d(ν − µ)(x∗)

− 2Ez
∫ (∫

e
√
rzx+rxx∗− r

2
x2

d(ν − µ)(x)∫
e
√
rzx+rxx∗− r

2
x2

dρt(x)

)2

(dρt(x
∗)− dρt(−x∗)).

For any Borel A, we have ρt(A) − ρt(−A) = (1 − t)(µ(A) − µ(−A)) + t(ν(A) − ν(−A)) =
2t(ν − µ)(A). Therefore the second term in the above expression becomes

−4tEz
∫ (∫

e
√
rzx+rxx∗− r

2
x2

d(ν − µ)(x)∫
e
√
rzx+rxx∗− r

2
x2

dρt(x)

)2

d(ν − µ)(x∗).

Since both µ and ν are absolutely continuous with respect to ρt for all 0 ≤ t < 1 we write

d2

dt2
φ(t) = 4Ez,x∗

〈
d(ν − µ)

dρt
(x)

d(ν − µ)

dρt
(x∗)

〉
− 4tEz,x∗

〈
d(ν − µ)

dρt
(x)

〉2

,

where the Gibbs average is with respect to the posterior of x given z, x∗ under the Gaussian
channel y =

√
rx∗ + z, and the expectation is under x∗ ∼ ρt and z ∼ N (0, 1). By the

Nishimori property, we simplify the above expression to

d2

dt2
φ(t) = 4(1− t)E

[〈
d(ν − µ)

dρt
(x)

〉2
]
,

where the expression is valid for all 0 ≤ t < 1. From here we see that the function φ is
convex on [0, 1] (where we have closed the right end of the interval by continuity). Since
φ(0) = φ′(0) = 0, φ is also increasing on [0, 1]. Therefore we have

φ(1) ≥ 1

2
φ′′(0) = 2E

[〈
dν

dµ
(x)− 1

〉2

µ,r

]
.
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Now it remains to show that if ψ(r, r) = ψ(r,−r) for some r > 0 then µ = ν. By the
lower bound we have shown, equality of ψ(r, r) and ψ(r,−r) would imply〈

dν

dµ
(x)

〉
µ,r

=

∫
e
√
rzx+rxx∗− r

2
x2

dν(x)∫
e
√
rzx+rxx∗− r

2
x2

dµ(x)
= 1

for (Lebesgue-)almost all z and Px-almost all x∗. We make the change of variable z 7→√
r(z − x∗) and complete the squares, then the above is equivalent to∫

e−
r
2

(x−z)2

dν(x) =

∫
e−

r
2

(x−z)2

dµ(x)

for almost all z. The above expressions are convolutions of the measures ν and µ against the
Gaussian kernel. By taking the Fourier transform on both sides and using Fubini’s theorem,
we get equality of the characteristic functions of µ and ν: for all ξ ∈ R,∫

eiξxdν(x) =

∫
eiξxdµ(x).

This is because the Fourier transform of the Gaussian (another Gaussian) vanishes nowhere
on the real line, thus it can be simplified on both sides. This of course implies that ν = µ,
and concludes our proof. �

4.5 The cavity method

Now that we have established the convergence in probability of R1,∗ to q∗(λ) under E〈·〉t
in Lemma 4.12, we use the cavity method to prove the convergence of the moments of the
overlap.

Our proofs of Theorems 4.8 and 4.9 are interlaced. The skeleton of the argument is as
follows:

1. We first prove convergence of the second moment: E 〈(R1,∗ − q∗)2〉t ≤ O(1/N+e−c(t)N).

2. We then deduce from 1. the convergence of the fourth moment via an inductive argu-
ment: E 〈(R1,∗ − q∗)4〉t ≤ O(1/N2 + e−c(t)N). This finishes the proof of Theorem 4.8.

3. Using 2., we revisit our proof of 1., and refine the estimates in order to obtain the
sharper result N ·E 〈(R1,∗ − q∗)2〉t → ∆RS(λ; t). This finishes the proof of Theorem 4.9.

We will start by defining our interpolating Hamiltonian and state some preliminary bounds
and properties. Then we will move on to the execution of the cavity computations.
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Preliminary bounds

In this section the parameter t ∈ [0, 1] is fixed and treated as a constant. We consider the
Hamiltonian

−H−t (x) :=
∑

i<j≤N−1

− λt

2N
x2
ix

2
j +

√
λt

N
Wijxixj +

λt

N
xix
∗
ixjx

∗
j

+
N−1∑
i=1

−(1− t)r
2

x2
i +

√
(1− t)rzixi + (1− t)rxix∗i ,

where we have striped away the contribution of the variable xN from Ht (equ. (4.16)). This
contribution is considered separately: for t′ ∈ [0, 1], we let

−ht′(x) :=
N−1∑
i=1

− λt
′

2N
x2
ix

2
N +

√
λt′

N
WiNxixN +

λt′

N
xix
∗
ixNx

∗
N

− (1− t′)r
2

x2
N +

√
(1− t′)rzNxN + (1− t′)rxNx∗N .

We let r = λq∗(λ) and let our interpolation, with the time parameter s ∈ [0, 1], be

Ht,s(x) := H−t (x) + hts(x).

At s = 1 we have Ht,s = Ht, and at s = 0 the variable xN decouples from the rest of the
variables. For an integer n ≥ 1 and f : (RN)n+1 7→ R, we define

〈
f(x(1), · · · ,x(n),x∗)

〉
t,s

:=

∫
f(x(1), · · · ,x(n),x∗)

∏n
l=1 e

−Ht,s(x(l))dP⊗Nx (x(l))∫ ∏n
l=1 e

−Ht,s(x(l))dP⊗Nx (x(l))
,

similarly to (4.15). Following Talagrand’s notation, we write

R−l,l′ =
1

N

N−1∑
i=1

x
(l)
i x

(l′)
i , and νs(f) = E〈f〉t,s.

In our last notation, we have only emphasized the dependence of the average on s; the
parameter t will henceforth remain fixed. Moreover, we write ν(f) for ν1(f). The following
three lemmas are variants of Lemma 1.6.3, Lemma 1.6.4 and Proposition 1.8.1 respectively
in (Talagrand, 2011a).

Lemma 4.18. For all n ≥ 1,

d

ds
νs(f) =

λt

2

∑
1≤l 6=l′≤n

νs((R
−
l,l′ − q)y

(l)y(l′)f)− λtn
n∑
l=1

νs(R
−
l,n+1 − q)y

(l)y(n+1)f)
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+ λtn
n∑
l=1

νs((R
−
l,∗ − q)y

(l)y∗f)− λtnνs((R−n+1,∗ − q)y(n+1)y∗f)

+ λt
n(n+ 1)

2
νs((R

−
n+1,n+2 − q)y(n+1)y(n+2)f),

where we have written y = xN .

Proof. The computation relies on Gaussian integration by parts. See Talagrand (2011a,
Lemma 1.6.3) for the details of a similar computation. �

Lemma 4.19. If f is a bounded non-negative function, then for all s ∈ [0, 1],

νs(f) ≤ K(λ, n)ν(f).

Proof. Since the variables and the overlaps are all bounded, and t ≤ 1, using Lemma 4.18
we have for all s ∈ [0, 1]

|ν ′s(f)| ≤ K(λ, n)νs(f).

Then we conclude using Grönwall’s lemma. �

Lemma 4.20. For all s ∈ [0, 1], and all τ1, τ2 > 0 such that 1/τ1 + 1/τ2 = 1,

|νs(f)− ν0(f)| ≤ K(λ, n)ν
(∣∣R−1,∗ − q∣∣τ1)1/τ1 · ν (|f |τ2)1/τ2 (4.32)

|νs(f)− ν0(f)− ν ′0(f)| ≤ K(λ, n)ν
(∣∣R−1,∗ − q∣∣τ1)1/τ1 · ν (|f |τ2)1/τ2 . (4.33)

Proof. We use Taylor’s approximations

|νs(f)− ν0(f)| ≤ sup
0≤s≤1

|ν ′s(f)| ,

|νs(f)− ν0(f)− ν ′0(f)| ≤ sup
0≤s≤1

|ν ′′s (f)| ,

then Lemma 4.18 and the triangle inequality to bound the right hand sides, then Hölder’s
inequality to bound each term in the derivative, and then we apply Lemma 4.19. (To compute
the second derivative, one need to use Lemma 4.18 recursively.) �

The cavity matrix

Recall the parameters a(0), a(1) and a(2) from (4.12):

a(0) = E
[
〈x2〉2r

]
− q∗2(λ), a(1) = E

[
〈x2〉r〈x〉2r

]
− q∗2(λ), a(2) = E

[
〈x〉4r

]
− q∗2(λ),

where r = λq∗(λ). Now let

A := λ ·

a(0) −2a(1) a(2)
a(1) a(0)− a(1)− 2a(2) −2a(1) + 3a(2)
a(2) 4a(1)− 6a(2) a(0)− 6a(1) + 6a(2)

 · (4.34)
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One can easily check that the transpose of this matrix has two eigenvalues µ1 and µ2 with
expressions

µ1(λ) = λ(a(0)− 2a(1) + a(2)),

µ2(λ) = λ(a(0)− 3a(1) + 2a(2)),
(4.35)

and associated eigenvectors (1,−2, 1) and (2,−3, 2), and of multiplicities two and one re-
spectively. (The first eigenvalue appears in a 2 × 2 Jordan block.) We will need to control
the largest eigenvalue of A>. This matrix is the “planted” analogue of the one displayed
in (Talagrand, 2011a, equ. (1.234)) for the SK model. By Cauchy-Schwarz, µ1 − µ2 =
λ(a(1) − a(2)) ≥ 0. As will be clear from the next subsection, the cavity computations we
are about present are only informative when µ1 < 1. Interestingly, this is true for all values
of λ where the RS formula φRS has two derivatives:

Lemma 4.21. For all λ ∈ A, µ1(λ) < 1.

Proof. First, if λ < λc, then q∗(λ) = 0, and µ1(λ) = λ(EPx
[X2])2. By Lemma 2.1, µ1(λ) < 1.

Now we assume λ ∈ A ∩ (λc,+∞). Recall

ψ(r) = Ex∗,z log

∫
exp

(√
rzx+ rxx∗ − r

2
x2
)

dPx(x),

and the RS potential

F (λ, q) = ψ(λq)− λq2

4
.

It is a straightforward exercise to compute the first and the second derivatives of ψ using
Gaussian integration by parts and the Nishimori property:

ψ′(r) =
1

2
E〈xx∗〉r,

ψ′′(r) =
1

2

(
E〈x2x∗2〉r − 2E〈x(1)2

x(2)x∗〉r + E〈x(1)x(2)x(3)x∗〉r
)
.

With the choice r = λq∗(λ), we see that µ1(λ) = 2λψ′′(r). Now we observe that

∂2F

∂q2
(λ, q) =

λ

2
(2λψ′′(λq)− 1).

Since q∗(λ) is a maximizer of the smooth function F (λ, ·), and lies in the interior of its
domain (q∗(λ) > 0 for λ > λc), then it must be a first-order stationary point: ∂F

∂q
(λ, q∗) = 0.

Hence ∂2F
∂q2 (λ, q∗) ≤ 0, i.e., µ1(λ) ≤ 1 for all λ > λc. Now we claim that the inequality must

be strict for λ ∈ A. Indeed, Lelarge and Miolane (2016, Proposition 15) show that whenever
φRS is differentiable at λ, then the maximizer of F (λ, ·) is unique and

φ′RS(λ) =
q∗2(λ)

4
.
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Therefore, twice differentiability of φRS implies first differentiability of λ 7→ q∗(λ) whenever
q∗(λ) > 0 (i.e., λ > λc). Now we take advantage of first-order optimality: ∂F

∂q
(λ, q∗) = 0 is

the same as

ψ′(λq∗(λ)) =
q∗(λ)

2
.

The above can be seen as an equality of functions (of λ) defined almost everywhere. Taking
one derivative yields

q∗(λ)ψ′′(λq∗(λ)) =
1

2

(
1− 2λψ′′(λq∗(λ))

)
q∗
′
(λ).

Since q∗(λ) and ψ′′(λq∗(λ)) are both positive, the right-hand side cannot vanish. This con-
cludes the proof. �

Cavity computations for the second moment

In this subsection we prove the convergence of the second moment of the overlaps:

ν((R1,∗ − q∗)2) ≤ K

N
+Ke−c(t)N ,

with c(t) ∼ c0(1 − t)2 as t → 1 when λ > λc and Px is symmetric about the origin,
and uniformly lower-bounded by a positive constant otherwise. To lighten the notation in
the calculations to come, q∗(λ) will be denoted simply by q, and we recall the notation
ν(·) = E〈·〉t,1. Let

A = ν
(
(R1,∗ − q)2

)
, B = ν ((R1,∗ − q)(R2,∗ − q)) , C = ν ((R1,∗ − q)(R2,3 − q)) .

By symmetry between sites,

A = ν ((R1,∗ − q)(xNx∗N − q)) =
1

N
ν (xNx

∗
N(xNx

∗
N − q)) + ν((R−1,∗ − q)(xNx∗N − q)).

By the first bound (4.32) of Lemma 4.20 with τ1 = 1, τ2 =∞, we get

ν(xNx
∗
N(xNx

∗
N − q)) = ν0(xNx

∗
N(xNx

∗
N − q)) + δ = a(0) + δ,

with |δ| ≤ K(λ)ν(|R−1,∗ − q|). On the other hand, by the second bound (4.33) with τ1 = 1,
τ2 =∞, we get

ν((R−1,∗ − q)(xNx∗N − q)) = ν ′0((R−1,∗ − q)(xNx∗N − q)) + δ.

This is because ν0((R−1,∗ − q)(xNx
∗
N − q)) = 0, since last variable xN decouples from the

remaining N − 1 variables under the measure ν0. Now, we use Lemma 4.18 with n = 1, to
evaluate the above derivative at t = 0. We still write y(l) = x

(l)
N .

ν ′0((R−1,∗ − q)(xNx∗N − q)) = −λtν0(y(1)y(2)(y(1)y∗ − q)(R−1,∗ − q)(R−1,2 − q))
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+ λtν0(y(1)y∗(y(1)y∗ − q)(R−1,∗ − q)2)

− λtν0(y(2)y∗(y(1)y∗ − q)(R−1,∗ − q)(R−2,∗ − q))
+ λtν0(y(2)y(3)(y(1)y∗ − q)(R−1,∗ − q)(R−2,3 − q)).

We extract the average on the y-variables from the rest of the expression as pre-factors, so
that the above is equal to

− λta(1)ν0((R−1,∗ − q)(R−1,2 − q)) + λta(0)ν0((R−1,∗ − q)2)

− λta(1)ν0((R−1,∗ − q)(R−2,∗ − q)) + λta(2)ν0((R−1,∗ − q)(R−2,3 − q)).

We notice that by the Nishimori property that

ν0((R−1,∗ − q)(R−1,2 − q)) = ν0((R−1,∗ − q)(R−2,∗ − q)).

Now we observe that ν ′0((R−1,∗−q)(xNx∗N−q)) is a linear combination of terms that resemble,
but are not quite equal to A, B and C. We are nevertheless tempted to make the substitution
since we expect them to be close. We use Lemma 4.20 to justify this. Taking ν0((R−1,∗− q)2)
as an example, we apply the estimate (4.32) with t = 1, τ1 = 3 and τ2 = 3/2. We get

ν0((R−1,∗ − q)2) = ν((R−1,∗ − q)2) + δ

with |δ| ≤ K(λ)ν(|R−1,∗ − q|3). Moreover,

ν((R−1,∗− q)2) = ν((R1,∗−
1

N
yy∗− q)2) = ν((R1,∗− q)2)− 2

N
ν(yy∗(R1,∗− q)) +

1

N2
ν(y2y∗2).

The third term is of order 1/N2, and the second term is bounded by 1
N
ν0(|R1,∗ − q|). There-

fore
ν0((R−1,∗ − q)2) = ν((R1,∗ − q)2) + δ′,

with

|δ′| ≤ K(λ)

(
1

N
ν(|R−1,∗ − q|) + ν(|R−1,∗ − q|3) +

1

N2

)
.

This argument applies equally to the remaining terms ν0((R−1,∗− q)(R−2,∗− q)) and ν0((R−1,∗−
q)(R−2,3 − q)). We then end up with the identity

A =
a(0)

N
+ λ′a(0)A− 2λ′a(1)B + λ′a(2)C + δ(0), (4.36)

where λ′ = tλ, and |δ(0)| is bounded by the same quantity as |δ′|.
Next, we apply the same reasoning to B and C as well, (e.g., Lemma 4.18 needs to

applied with n = 2 for B and n = 3 for C) we get

B =
a(1)

N
+ λ′a(1)A+ λ′(a(0)− a(1)− 2a(2))B + λ′(−2a(1) + 3a(2))C + δ(1), (4.37)
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C =
a(2)

N
+ λ′a(2)A+ λ′(4a(1)− 6a(2))B + λ′(a(0)− 6a(1) + 6a(2))C + δ(2), (4.38)

where for i = 0, 1, 2,

|δ(i)| ≤ K(λ)

(
1

N
ν(|R−1,∗ − q|) + ν(|R−1,∗ − q|3) +

1

N2

)
. (4.39)

We have ended up with a linear system in the quantities A, B and C. Let z = [A,B,C]>

and δ = [δ(0), δ(1), δ(2)]>. Then the equations (4.36), (4.37) and (4.38) can be written as

z =
1

N
a+ tAz + δ, (4.40)

where a = [a(0), a(1), a(2)]>, and the matrix A are defined in (4.34). The above system
implies useful bounds on the coefficients of the vector z only if the largest eigenvalue of the
matrix tA is smaller than 1. This is insured by Lemma 4.21 when λ ∈ A (independently of
t). Now we can invert the linear system and extract z:

z =
1

N
(I − tA)−1a+ (I − tA)−1δ. (4.41)

Now we need to control the entries of δ. By elementary manipulations,

ν(|R−1,∗ − q|) ≤ ν(|R1,∗ − q|) +
K

N
,

and

ν(|R−1,∗ − q|3) ≤ ν(|R1,∗ − q|3) +
K

N
ν((R1,∗ − q)2) +

K

N2
ν(|R1,∗ − q|) +

K

N3
.

Therefore, from (4.39) we have for all i = 0, 1, 2,

|δ(i)| ≤ K

(
ν(|R1,∗ − q|3) +

1

N
ν((R1,∗ − q)2) +

1

N
ν(|R1,∗ − q|) +

1

N2

)
. (4.42)

Now we will argue that ν(|R1,∗−q|)� 1 and ν(|R1,∗−q|3)� ν((R1,∗−q)2). With Lemma 4.12
we have for ε > 0

ν(|R1,∗ − q|) ≤ ε+K(ε)e−cN ,

and
ν(|R1,∗ − q|3) ≤ εν((R1,∗ − q)2) +K(ε)e−cN .

Combining the above two bounds with (4.42), and then injecting in (4.41), we get

ν((R1,∗ − q)2) = z(0) ≤ ‖z‖`2 ≤
∥∥∥∥ 1

N
(I − tA)−1a

∥∥∥∥
`2

+
∥∥(I − tA)−1

∥∥
op
‖δ‖`2

≤
‖c‖`2
N

+K(ε+
1

N
)ν((R1,∗ − q)2) +K(ε)e−cN .
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The symbols ‖·‖`2 and ‖ · ‖op refer to the `2 norm of a vector and the matrix operator norm
respectively. Here, c = (I − tA)−1a. Note that the matrix inverses are bounded even
as t → 1 since µ1 < 1 for λ ∈ A. We choose ε small enough and N large enough that
K(ε+ 1

N
) < 1. We therefore get

ν
(
(R1,∗ − q)2

)
≤ K(λ)

N
+K(λ)e−c(t)N .

Cavity computations for the fourth moment

In this subsection we prove the convergence of the fourth moment:

ν((R1,∗ − q∗)4) ≤ K

N2
+Ke−c(t)N ,

where c(t) is of the same type as before. We adopt the same technique based on the cavity
method, with the extra knowledge that the second moment converges. Many parts of the
argument are exactly the same so we will only highlight the main novelties in the proof. Let

A = ν
(
(R1,∗ − q)4

)
, B = ν

(
(R1,∗ − q)3(R2,∗ − q)

)
, C = ν

(
(R1,∗ − q)3(R2,3 − q)

)
.

By symmetry between sites,

A = ν
(
(R1,∗ − q)3(xNx

∗
N − q)

)
= ν((R−1,∗ − q)3(xNx

∗
N − q)) +

3

N
ν((R−1,∗ − q)2xNx

∗
N(xNx

∗
N − q))

+
3

N2
ν((R−1,∗ − q)xN 2x∗N

2(xNx
∗
N − q)) +

1

N3
ν(xN

3x∗N
3(xNx

∗
N − q)).

The quadratic term is bounded as

ν((R−1,∗ − q)2xNx
∗
N(xNx

∗
N − q)) ≤ Kν((R−1,∗ − q)2) ≤ K

N
+Ke−cN .

The last inequality is using our extra knowledge about the convergence of the second moment.
The last two terms are also bounded by K/N2 and K/N3 respectively. Now we must deal
with the cubic term, and here, we apply the exact same technique used to deal with the
term ν((R−1,∗− q)(xNx∗N − q)) in the previous proof. The argument goes verbatim. Then we
equally treat the terms B and C. We end up with a similar linear system relating A, B and
C:

z =
1

N2
d+ tAz + δ,

where z = [A,B,C]>. The differences with the earlier linear system (4.40) are in the vector
of coefficients d (that could be determined from the recursions) and the error terms δ(i),
which are now bounded as

|δ(i)| ≤ Kν(|R−1,∗ − q|5) +K
3∑
l=1

1

N3−l ν(|R−1,∗ − q|l).
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Crucially, the matrix A remains the same. Using Lemma 4.12, we have for ε > 0,

ν(|R1,∗ − q|5) ≤ εν((R1,∗ − q)4) +K(ε)e−cN ,

ν(|R1,∗ − q|3) ≤ εν((R1,∗ − q)2) +K(ε)e−cN .

With the bound we already have on ν((R1,∗− q)2), we finish the argument in the same way,
by choosing ε sufficiently small. This concludes the proof of Theorem 4.8.

Sharper results: the asymptotic variance

Finally, given the convergence of the fourth moment, we can refine the convergence result
of the second moment. Indeed we are now able to compute the limit of N · ν((R1,∗ − q)2).
Using Jensen’s inequality on the second and fourth moment, we have

ν(|R1,∗ − q|) ≤
K√
N

+Ke−c(t)N , and ν(|R1,∗ − q|3) ≤ K

N3/2
+Ke−c

′(t)N .

Looking back at (4.42), we can now assert that

|δ(i)| ≤ K

N3/2
+Ke−c(t)N .

We plug this new knowledge in (4.41), and obtain∥∥Nz − (I − tA)−1a
∥∥
`2
≤ N

∥∥(I − tA)−1
∥∥

op
‖δ‖`2 ≤ K

( 1√
N

+Ne−c(t)N
)
.

The last line follows since supt ‖(I − tA)−1‖op ≤ K(λ) for λ ∈ A. We have just proved that

ν((R1,∗ − q)2) =
c(0)

N
+K(λ)

( 1

N3/2
+ e−c(t)N

)
,

ν((R1,∗ − q)(R2,∗ − q)) =
c(1)

N
+K(λ)

( 1

N3/2
+ e−c(t)N

)
,

ν((R1,∗ − q)(R2,3 − q)) =
c(2)

N
+K(λ)

( 1

N3/2
+ e−c(t)N

)
,

where c = (I−tA)−1a. One can solve this linear system explicitly and obtain the expression
of the coordinates of c:

c(0) =
1

λt

(
−1 +

2

1− tµ2

+
2

1− tµ1

+
−3 + 3λta(0)− 2λta(1)

(1− tµ1)2

)
,

c(1) =
1

λt

(
−3 + 3λta(0)− 2λta(1)

(1− tµ1)2
+

3

1− tµ2

)
,

c(2) =
4λta(1)2 + (1− λta(0)− 5λta(1))a(2) + 2λta(2)2

(1− tµ1)2(1− tµ2)
.

The expression of the first coordinate defines ∆RS(λ; t), equ.(4.21). This concludes the proof
of Theorem 4.9.
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Proof of Lemma 4.10

Let f(x, x∗) = x2x∗2. We have ν0(f) = a(0). We use the first assertion of Lemma 4.20 with
τ1 = 1 and τ2 =∞ to get

|ν(f)− ν0(f)| ≤ K(λ)ν(|R−1,∗ − q∗|) ≤
K√
N

+Ke−c(t)N ,

where the last bound follows from Theorem 4.8 and Jensen’s inequality.
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Part II

Decoding a discrete signal from
pooled data
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Chapter 5

Decoding from pooled Data: sharp
information-theoretic bounds

The theory of compressed sensing (Donoho, 2006a), where one is interested in recovering a
signal from a few compressed measurements of it has grown into a rich field of investigation
and found many applications. From the inception of this theory, it has been understood
that the structure of the signal, typically sparsity, plays a key role in the sample complexity,
or number of measurements needed for reconstruction (Candés, Romberg, and Tao, 2006;
Candés and Tao, 2005; Donoho, 2006b). Here one usually considers a signal that is real-
valued, and is compressed by taking random linear combinations of its entries. It is however
interesting to move beyond this setting and consider signals that are discrete, where each
entry can take a value from a finite alphabet. Then one possible model of compression—since
the signal no longer has an additive structure—is to count the occurrence of each symbol in
a randomly chosen subset of the signal’s entries. Therefore, the measurements we consider
are histograms of pooled subsets of the signal. This model is motivated by applications such
as pooling of genetic data, on which we expand later on.

The discrete, combinatorial structure of this reconstruction problem makes it a special
kind of a constraint satisfaction problem (CSP). These have been the object of intense study
in recent years in probability theory, computer science, information theory and statistical
physics. For certain families of CSPs, a deep understanding has begun to emerge regarding
the number of solutions as a function of problem size, as well as the algorithmic feasibility
of finding solutions when they exist (see e.g. Coja-Oghlan and Frieze, 2014; Coja-Oghlan,
Haqshenas, and Hetterich, 2016; Coja-Oghlan, Mossel, and Vilenchik, 2009; Coja-Oghlan
and Perkins, 2016; Ding, Sly, and Sun, 2015, 2016; Sly, Sun, and Y. Zhang, 2016)). Consider
in particular a planted random constraint satisfaction problem with n variables that take their
values in the discrete set {1, · · · , d}, with d ≥ 2. A number of m clauses is drawn uniformly
at random under the constraint that they are all satisfied by a pre-specified assignment,
which is referred to as the planted solution. In our case, the signal is n-dimensional, d is the
size of the alphabet, and there are m compressed observations (histograms) of the signal,
which represents the planted solution that satisfies all the constraints.
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Two questions are of particular importance: (1) how large should m be so that the planted
solution is the unique solution? and (2) given that it is unique, how large should m be so
that it is recoverable by a “tractable” algorithm? Significant progress has been made on these
questions, often initiated by insights from statistical physics and followed by a growing body
of rigorous mathematical investigation. The emerging picture is that in many planted CSPs,
when n is sufficiently large, all solutions become highly correlated with the planted one when
m > κIT · n, for some “Information-Theoretic” (IT) constant κIT > 0. Furthermore, one of
these highly correlated solutions becomes typically recoverable by a random walk or a Belief
Propagation (BP)-inspired algorithm when m > κBP ·n for some κBP > κIT (Coja-Oghlan and
Frieze, 2014; Coja-Oghlan, Mossel, and Vilenchik, 2009; Krzakala, Mézard, and Zdeborová,
2012; Krzakala and Zdeborová, 2009). Interestingly, it is known in many problems, at least
heuristically, that these algorithms fail when κIT < m/n < κBP, and a tractable algorithm
that succeeds in this regime is still lacking (Achlioptas and Coja-Oghlan, 2008; Coja-Oghlan,
2009; Coja-Oghlan, Haqshenas, and Hetterich, 2016; Zdeborová and Krzakala, 2016). In
other words, there is a non-trivial regime m/n ∈ (κIT, κBP) where an essentially unique
solution exists, but is hard to recover.

For the random CSP we consider in this chapter and the next, which we call the Histogram
Query Problem (HQP), we undertake a detailed information-theoretic analysis which shows
that the planted solution becomes unique at as soon as m > γ∗n/ log n with high probability
as n → ∞ for an explicit constant γ∗ = γ∗(d) > 0. In the next chapter, we consider
the algorithmic aspect of the problem and provide a BP-based algorithm that recovers the
planted assignment if m ≥ κ∗ · n for a specific threshold κ∗ and fails otherwise. This leaves
a logarithmic gap between the information-theoretic threshold and the point at which our
algorithm succeeds.

5.1 Problem and motivation

The setting Let {ha}1≤a≤m be a collection of d-dimensional arrays with non-negative
integer entries. For an assignment τ : {1, · · · , n} 7→ {1, · · · , d} of the n variables, and given
a realization of m random subsets Sa ⊂ {1, · · · , n}, the constraints of the HQP are given by
ha = ha(τ) for all 1 ≤ a ≤ m with

ha(τ) :=
(∣∣τ−1(1) ∩ Sa

∣∣ , · · · , ∣∣τ−1(d) ∩ Sa
∣∣) ∈ Zd+.

We let τ ∗ : {1, · · · , n} 7→ {1, · · · , d} be a planted assignment; i.e., we set ha := ha(τ
∗) for

all a for some realization of the sets {Sa}, and consider the problem of recovering the map
τ ∗ given the observation of the arrays {ha}1≤a≤m.

This problem can be viewed informally as that of decoding a discrete high-dimensional
signal consisting of categorical variables from a set of measurements formed by pooling to-
gether the variables belonging to a subset of the signal. It is useful to think of the n variables
as each describing the type or category of an individual in a population of size n, where each
individual has exactly one type among d. For instance the categories may represent blood
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types or some other discrete feature such as ethnicity or age group. Then, the observation
ha is the histogram of types of a subpopulation Sa. We let π = 1

n

(∣∣τ ∗−1(1)
∣∣ , · · · , ∣∣τ ∗−1(d)

∣∣)
denote the vector of proportions of assigned values; i.e., the empirical distribution of cate-
gories.

We consider here a model in which each variable participates in a given constraint inde-
pendently and with probability α ∈ (0, 1). Thus, the sets {Sa}1≤a≤m are independent draws
of a random set S where Pr(i ∈ S) = α independently for each i ∈ {1, . . . , n}. We are thus
in the “dense regime” where E[|S|] = αn; i.e., the number of variables participating in each
constraint (the degree of each factor in the CSP) is linear in n.

Motivation This model is inspired by practical problems in which a data analyst can only
assay certain summary statistics involving a moderate or large number of participants. This
may be done for privacy reasons, or it may be inherent in the data-collection process (see
e.g. (Heo et al., 2001; Sham et al., 2002)). For example, in DNA assays, the pooling of
allele measurements across multiple strands of DNA is necessary given the impracticality of
separately analyzing individual strands. Thus the data consists of a frequency spectrum of
alleles; a “histogram” in our language. In the privacy-related situation, one may take the
viewpoint of an attacker whose goal is to gain a granular knowledge of the database from
coarse measurements, or that of a guard who wishes to prevent this scenario from happening.
It is then natural to ask how many histogram queries it takes to exactly determine the
category of each individual.

Related problems Note that the case d = 2 of HQP can be seen as a compressed sensing
problem with a binary sensing matrix and binary signal. While the bulk of the literature in
the field of compressed sensing is devoted to the case in which both the signal of interest
and the sensing matrix are real-valued, the binary case has also been considered, notably
in relation to Code Division Multiple Access (CDMA) (Tanaka, 2002; Zigangirov, 2004),
and Group Testing (Du and Hwang, 2006; Mézard and C. Toninelli, 2011): in the latter,
one observes the logical “OR” of subsets of the entries of the signal. In the case of cate-
gorical variables with d ≥ 3 categories, it is natural to consider measurements consisting of
histograms of the categories in the pooled sub-population. In the literature on compressed
sensing one commonly considers the setting where the sensing matrices have i.i.d. entries
with finite second moment, and the signal has an arbitrary empirical distribution of its
entries. It has been established that, under the scaling m = κn, whereas the success of
message-passing algorithms requires κ > κBP (Bayati, Lelarge, and Montanari, 2015), the
information-theoretic threshold is κIT = 0 in the discrete signal case (Donoho, Javanmard,
and Montanari, 2013; Wu and Verdú, 2009), indicating that uniqueness of the solution hap-
pens at a finer scale m = o(n). Here we consider the HQP with arbitrary d, for which the
exact scaling for investigating uniqueness is m = γ n

logn
with finite γ > 0, and provide tight

bounds on the information-theoretic threshold.
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Prior work on HQP The study of this problem for generic values of d was initiated
in (Wang et al., 2016) in the two settings where the sets {Sa} are deterministic and random.
They showed in both these cases with a simple counting argument that under the condition
that π is the uniform distribution, if m < log d

d−1
n

logn
then the set of collected histograms does

not uniquely determine the planted assignment τ ∗ (with high probability in the random
case). On the other hand, for the deterministic setting, they provided a querying strategy
that recovers τ ∗ provided that m > c0

n
logn

, where c0 is an absolute constant independent of

d. For the random setting and under the condition that the sets Sa are of average size n/2,
they proved via a first moment bound that m > c1

n
logn

with c1 also constant and independent
of d, suffices to uniquely determine τ ∗, although no algorithm was proposed in this setting.

In the above results, there is a gap that is both information-theoretic and algorithmic
depending on the dimension d between the upper and lower bounds. Intuitively, the upper
bounds should also depend on d since the decoding problem becomes easier (or at least, it is
no harder) for large d, for the simple reason that if it is possible to determine the categories
of the population for d = 2, then one can proceed by dichotomy for larger d by merging the d
groups into two super-groups, identifying which individuals belong to each of the two super-
groups, and then recurse. We attempt to fill the information-theoretic gap in the random
setting by providing tighter upper and lower bounds on the number of queries m necessary
and sufficient to uniquely determine the planted assignment τ ∗ with high probability, which
depend on the dimension d and π along with explicit constants. In the next chapter, we
consider the algorithmic aspect of the problem and provide a Belief Propagation-based al-
gorithm that recovers the planted assignment if m ≥ κ∗(π, d) · n for a specific threshold
κ∗(π, d) and fails otherwise, indicating the putative existence of a statistical-computational
gap in the random setting.

5.2 The uniqueness threshold

Let ∆d−1 be the d − 1-dimensional simplex and H(x) = −
∑d

r=1 xr log xr for x ∈ ∆d−1 be
the Shannon entropy function. We write τ ∼ π to indicate that τ is a random assignment
drawn from the uniform distribution over maps τ : {1, · · · , n} 7→ {1, · · · , d} such that
1
n

(|τ−1(1)| , · · · , |τ−1(d)|) = π.

Theorem 5.1. For n ≥ 2 integer, m = γ n
logn

, γ > 0, α ∈ (0, 1), and π ∈ ∆d−1 with
entries bounded away from 0 and 1. Let E be the event that τ ∗ is not the unique satisfying
assignment to HQP:

E = {∃τ ∈ {1, · · · , d}n : τ 6= τ ∗, ha(τ) = ha(τ
∗) ∀a ∈ {1, · · · ,m}} .

(i) If

γ < γlow :=
H(π)

d− 1
,
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then
lim
n→∞

Eτ∗∼π Pr (E) = 1.

(ii) On the other hand, let π[·] be the vector of order statistics of π: π[1] ≥ π[2] ≥ · · · ≥ π[d].

For 1 ≤ k ≤ d − 1, let π(k) ∈ ∆k−1 be defined as π
(k)
1 =

∑d−k+1
r=1 π[r] and π

(k)
l = π[d−k+l] for

all 2 ≤ l ≤ k (if k ≥ 2). If

γ > γup := 2 max
1≤k≤d−1

H(π)−H(π(k))

d− k
,

then
lim
n→∞

Eτ∗∼π Pr (E) = 0.

Remarks and special cases:

• For d = 2, γup = 2H(π) = 2γlow.

• If π = (1
d
, · · · , 1

d
), or more generally, if π is such that k = 1 maximizes the expression

defining γup then γup = 2H(π)
d−1

= 2γlow.

• The resulting bounds do not depend on α as long as it is fixed and bounded away
from 0 and 1. Its contribution in the problem is sub-dominant and vanishes as n→∞
under the scaling considered here.

• The number k in the expression of γup can be interpreted as the number of connected
components of a graph on d vertices that depends on the overlap structure of the two
assignments τ and τ ∗, and induces “maximum confusion” between them. This will
become clear in latter sections.

After this result appeared on the preprint server arXiv in Nov. 2016, Scarlett and Cevher
(2017) showed that the upper bound (ii) is actually tight, in the sense that one can now
replace γlow by γup in the statement of the lower bound (i). Consequently, the uniqueness of
the planted assignment τ ∗ undergoes a sharp phase transition exactly at γ = γup. Their result
combined with ours show that HQP has a rather unusual feature; namely, it is an example of
a planted CSP where a plain first moment method identifies the exact satisfiability threshold
with no conditioning needed.

The proof of the above Theorem occupies the rest of this chapter.

Main ideas of the proof

Our main contribution is the second part of Theorem 5.1, which establishes an upper bound
on the uniqueness threshold of the random CSP with histogram constraints HQP. The proof
uses the first moment method to upper bound the probability of existence of a non-planted
solution. Since we are in a planted model, the analysis of the first moment ends up bearing
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many similarities with a second moment computation in a purely random (non-planted)
model. Although second moment computations often require approximations, for the HQP
it turns out that we are able to compute the exact annealed free energy of the model in the
thermodynamic limit. That is, letting Z be the number of solutions of the CSP, we show
that the limit

F(γ) := lim
n→∞

1

n
logE [Z − 1]

exists and we compute its value exactly. Then the value of the threshold γup is obtained by
locating the first point at which F becomes negative:

γup = inf {γ > 0 : F(γ) < 0} .

Together with the fact that F is a monotone function, which will become clear once F is
computed, it is clear that for any γ > γup, E[Z − 1] decays exponentially with n when the
latter is sufficiently large.

This general strategy has been successfully pursued for a range of CSPs, such as K-SAT,
NAE-SAT, and Independent Set, most of which are Boolean. For larger domain sizes, in
order to carry out the second moment method one needs fine control of the overlap structure
between the planted and a candidate solution. This control is at the core of the difficulty that
arises in any second moment computation. To obtain such control, researchers have often
imposed additional assumptions, at a cost of a weakening of the resulting bounds. For ex-
ample, existing proofs for Graph Coloring and similar problems assume certain balancedness
conditions (the overlap matrix needs to be close to doubly stochastic.) without which the an-
nealed free energy cannot be computed (Achlioptas and Moore, 2004; Achlioptas and Naor,
2005; Banks, Moore, Neeman, et al., 2016; Bapst et al., 2016; Coja-Oghlan, Efthymiou, and
Hetterich, 2016); this yields results that fall somewhat short of the bounds that the second
moment method could achieve in principle (Dani, Moore, and Olson, 2012). In the present
problem, due its rich combinatorial structure, we are able to obtain unconditional control of
the overlap structure, for any domain size d, and compute the exact annealed free energy.

Concretely, computing the function F requires tight control of the “collision probability”
of two non-equal assignments τ1 and τ2. This is the probability that the random histograms
h(τ1) = (|τ1

−1(1) ∩ S| , · · · , |τ1
−1(d) ∩ S|) and h(τ2) = (|τ2

−1(1) ∩ S| , · · · , |τ2
−1(d) ∩ S|)

generated from a random draw of a pool S coincide. The collision probability roughly
measures the correlation strength between the two assignments. Specifically, we will be in-
terested in the collision probabilities of the pairs (τ ∗, τ) where τ ∗ is the planted assignment
and τ is any candidate assignment. Its decay reveals how long an assignment τ “survives”
as a satisfying assignment to HQP as n → ∞. The study of these collision probabilities
requires the evaluation of certain Gaussian integrals over the space of Eulerian flows of a
weighted graph on d vertices that is defined based on the overlap structure of τ and τ ∗. We
prove a family of identities that relate these integrals to some combinatorial polynomials in
the weights of the graph: the spanning tree and spanning forest polynomials. We believe
that these identities are of independent interest beyond the problem presently studied. Once
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these collision probabilities are controlled, the computation of F(γ) per se requires the anal-
ysis of a certain sequence of optimization problems. We show that the sequence of maximum
values converges to a finite limit that yields the value of the annealed free energy.

On the other hand, the proof of the first part of Theorem 5.1 is straightforward—it is an
extension of a standard counting argument used in (P. Zhang et al., 2013) and (Wang et al.,
2016). The argument goes as follows: ifm is too small then the number of possible histograms
one could potentially observe is exponentially smaller than the number of assignments of n
variables that agree with π. Therefore when the planted assignment τ ∗ is drawn at random,
there will exist at least one τ 6= τ ∗ that satisfies the constraints of the CSP with overwhelming
probability. We begin with this argument in the next section and then turn to the more
challenging computation of the upper bound.

5.3 Proof of the main result

In this section we prove Theorem 5.1.

Notation We denote vectors in Rd in bold lower case letters, e.g., x, and matrices in Rd×d

will be written in bold lower case underlined letters, e.g., x. We denote the coordinates
of such vectors and matrices as xr and xrs respectively. Matrices that act either as linear
operators on the space Rd×d or that are functions of elements in this space are written in
bold upper case letters, e.g., Mx and L(x), for x ∈ Rd×d. These choices will be clear from
the context. We may write x/y to indicate coordinate-wise division. Additionally, for two
d× d matrices a, b ∈ Rd×d, a� b ∈ Rd×d is their Hadamard product. We let 1 ∈ Rd be the
all-ones vector.

The first part of Theorem 5.1: the lower bound

Let m = γ n
logn

with γ > 0. The number of potential histograms one could possibly observe

in a single query with pool size |S| = k is f(k, d) :=
(
d+k−1
d−1

)
≤ (k + 1)d−1. Since the queries

are independent, the number of collections of histograms {ha}1≤a≤m one could potentially
observe in m queries is

∏m
a=1 f(|Sa|, d). On the other hand, the number of possible assign-

ments τ : {1, · · · , n} 7→ {1, · · · , d} satisfying the constraint π = 1
n

(∣∣τ ∗−1(1)
∣∣ , · · · , ∣∣τ ∗−1(d)

∣∣)
is
(
n
nπ

)
=
(

n
nπ1,··· ,nπd

)
≥ C(π)n−(d−1)/2 exp(H(π)n), for some constant C(π) > 0 depending

on π.
Now, the probability that τ ∗ is the unique satisfying assignment of the CSP with con-

straints given by the random histograms {ha(τ ∗)}1≤a≤m, averaged over the random choice
of τ ∗ ∼ π, is

Eτ∗∼π E{Sa}
[
1{∀τ ∈ {1, · · · , d}n : ha(τ) = ha(τ

∗) ∀a ∈ {1, · · · ,m} =⇒ τ = τ ∗}
]

≤
(
n

nπ

)−1

· ES [f(|S|, d)]m
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≤
(
n

nπ

)−1

· ES
[
(|S|+ 1)d−1

]m
≤ C(π) n(d−1)/2 · exp

(
−H(π)n

)
· (n+ 1)m(d−1)

≤ C(π) n(d−1)/2 · exp
(

(γ(d− 1)−H(π))n
)
.

If γ < γlow the last quantity tends to 0 as n → ∞. This concludes the proof of the first
assertion of the theorem.

The second part of Theorem 5.1 : the upper bound

We use a first moment method to show that when γ is greater than γup, the only assignment
satisfying HQP is τ ∗ with high probability. Let Z be the number of satisfying assignments
to HQP:

Z :=
∣∣{τ ∈ {1, · · · , d}n : ha(τ) = ha(τ

∗) ∀a ∈ {1, · · · ,m}}
∣∣. (5.1)

The planted assignment τ ∗ is obviously a solution, so we always have Z ≥ 1. Recall the
definition of the annealed free energy

F(γ) := lim
n→∞

1

n
logE [Z − 1] . (5.2)

Also, recall that for 1 ≤ k ≤ d − 1, π(k) ∈ ∆k−1 be defined as π
(k)
1 =

∑d−k+1
r=1 π[r] and

π
(k)
l = π[d−k+l] for all 2 ≤ l ≤ k (if k ≥ 2).

Theorem 5.2. Let m = γ n
logn

with γ > 0. The limit (5.2) exists for all γ > 0 and its value
is

F(γ) = max
1≤k≤d−1

{
H(π)−H(π(k))− γ

2
(d− k)

}
. (5.3)

We can deduce from Theorem 5.2 the smallest value of γ past which F(γ) becomes
negative. In particular, we see that F is a decreasing function of γ that crosses the horizontal
axis at

γup = 2 max
1≤k≤d−1

H(π)−H(π(k))

d− k
.

From this result it is easy to prove the second assertion of Theorem 5.1. By averaging over
τ ∗ and applying Markov’s inequality, we have:

Eτ∗∼π Pr (∃τ ∈ {1, · · · , d}n : τ 6= τ ∗,ha(τ) = ha(τ
∗) ∀a ∈ {1, · · · ,m})

= Eτ∗∼π Pr (Z ≥ 2) ≤ E[Z − 1].

For γ > γup, it is clear that F(γ) < 0. Let 0 < ε < |F(γ)| /2; then there is an integer
n0(ε) ≥ 0 such that for all n ≥ n0(ε),

Eτ∗∼π Pr (∃τ ∈ {1, · · · , d}n : τ 6= τ ∗,ha(τ) = ha(τ
∗) ∀a ∈ {1, · · · ,m}) ≤ expn (F(γ) + ε),
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≤ expn F(γ)/2,

−−−→
n→∞

0.

Now it remains to prove Theorem 5.2, and this represents the main technical thrust of our
approach.

Collisions, overlaps, and the first moment

Preliminaries We begin by presenting the main quantities to be analyzed in our applica-
tion of the first moment method. We have

Eτ∗∼π E{Sa}[Z − 1] = Eτ∗∼π

 ∑
τ∈{1,··· ,d}n

τ 6=τ∗

Pr (ha(τ) = ha(τ
∗) ∀a ∈ {1, · · · ,m})


= (dn − 1) Pr

τ,τ∗,{Sa}
(ha(τ) = ha(τ

∗) ∀a ∈ {1, · · · ,m}) ,

where τ ∗ ∼ π, τ ∼ Unif({1, · · · , d}n\{τ ∗}). By conditional independence,

Pr
τ,τ∗,{Sa}

(ha(τ) = ha(τ
∗) ∀a ∈ {1, · · · ,m}) = Eτ,τ∗

[
Pr
{Sa}

(ha(τ) = ha(τ
∗) ∀a ∈ {1, · · · ,m})

]
= Eτ,τ∗

[
Pr
S

(h(τ) = h(τ ∗))m
]
.

Next, we write the collision probability, PrS (h(τ) = h(τ ∗)), for fixed τ and τ ∗ in a con-
venient form. Let us first define the overlap matrix, µ(τ, τ ∗) = (µrs)1≤r,s≤d ∈ Zd×d+ , of τ and
τ ∗, by

µrs =
∣∣τ−1(r) ∩ τ ∗−1(s)

∣∣ for all r, s = 1, · · · , d. (5.4)

Remark that h(τ) = h(τ ∗) if and only if |S ∩ τ−1(r)| =
∣∣S ∩ τ ∗−1(r)

∣∣ for all r ∈ {1, · · · , d}.
Since the collection of sets {τ−1(r)}1≤r≤d forms a partition of {1, · · · , n}, and similarly with
τ ∗, the event {h(τ) = h(τ ∗)} is the same as{

d∑
s=1

∣∣S ∩ τ−1(r) ∩ τ ∗−1(s)
∣∣ =

d∑
s=1

∣∣S ∩ τ−1(s) ∩ τ ∗−1(r)
∣∣ , ∀r ∈ {1, · · · , d}} .

Therefore, the probability that two assignments τ and τ ∗ collide on a random pool S—
meaning that their histograms formed on the pool S coincide—is

Pr
S

(h(τ) = h(τ ∗)) =
∑
ν

(
d∏

r,s=1

(
µrs
νrs

)
ανrs(1− α)µrs−νrs

)
1

{
d∑
s=1

νrs =
d∑
s=1

νsr , ∀r ∈ [d]

}
,

(5.5)
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where the outer sum is over all arrays of integer numbers ν = (νrs)1≤r,s≤d such that 0 ≤
νrs ≤ µrs for all r, s. We see from the above expression that the collision probability of τ
and τ ∗ only depends on the overlap matrix µ(τ, τ ∗). We henceforth denote the probability
in equation (5.5) by q(µ), where we dropped the dependency on τ and τ ∗. Remark that
τ = τ ∗ if and only if their overlap matrix µ is diagonal. Thus, we can rewrite the expected
number of solutions as

E[Z − 1] =

(
n

nπ

)−1

·
∑
µ

(
n

µ

)
q(µ)m 1

{
d∑
r=1

µrs = nπs, s ∈ {1, · · · , d}

}
, (5.6)

where the sum is over all non-diagonal arrays µ = (µrs)1≤r,s≤d with non-negative integer
entries that sum to n, and

(
n
µ

)
= n!∏

r,s µrs!
.

The rest of the proof From here, the proof of Theorem 5.2 roughly breaks into three
parts:

(i) One needs to have tight asymptotic control on the collision probability q(µ) when
any subset of the entries of µ becomes large. This will be achieved via the Laplace method
(see, e.g., (De Bruijn, 1970)). The outcome of this analysis is an asymptotic estimate that
exhibits two different speeds of decay, polynomial or exponential, depending on the “bal-
ancedness” of µ as its entries become large. This notion of balancedness, namely that µ
must have equal row- and column-sums1, is specific to the histogram setting and departs
from the usual “double stochasticity” that arises in other more classical problems such as
Graph Coloring, and Community Detection under the stochastic block model (Achlioptas
and Moore, 2004; Achlioptas and Naor, 2005; Banks, Moore, Neeman, et al., 2016; Bapst
et al., 2016; Coja-Oghlan, Efthymiou, and Hetterich, 2016). As we will explain in the next
section, configurations (τ, τ ∗) with an unbalanced overlap matrix have an exponentially de-
caying collision probability, i.e., they exhibit weak correlation, and disappear very early on
as n → ∞ under the scaling m = γ n

logn
. On the other hand, those configurations with

balanced overlap exhibit a slow decay of correlation: their collision probability decays only
polynomially, and these are the last surviving configurations in expression (5.6) as n→∞.

(ii) Understanding the above-mentioned polynomial decay of q(µ) requires the evaluation
of a multivariate Gaussian integral (which is a product of the above analysis) over the space
of constraints of the array ν in (5.5); the latter being the space of Eulerian flows on the
graph on d vertices whose edges are weighted by the (large) entries of µ. We show that this
integral, properly normalized, evaluates to the inverse square root of the spanning tree (or
forest) polynomial of this graph. This identity seems to be new, to the best of our knowledge,
and may be of independent interest. We therefore provide two very different proofs of it,
each highlighting different combinatorial aspects.

(iii) Lastly, armed with these estimates, we show the existence of, and compute the
exact value of, the annealed free energy of the model in the thermodynamic limit, thereby

1These are exactly the constraints on ν showing up in (5.5).
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completing the proof of Theorem 5.2. This last part requires the analysis of a certain
optimization problem involving an entropy term and an “energy” term accounting for the
correlations discussed above. Here we can exactly characterize the maximizing configurations
for large n, and this allows the computation of the value of F(γ). We note once more that
this situation contrasts with the more traditional case of Graph Coloring, where we lack a
rigorous understanding of the maximizing configurations of the second moment, except when
certain additional constraints are imposed on their overlap matrix.

5.4 Bounding the collision probabilities

Here we provide tight asymptotic bounds on the collision probabilities q(µ) defined in (5.5).
Consider the following subspace of Rd×d, which will play a key role in the analysis:

F :=

{
x ∈ Rd×d :

d∑
s=1

xrs =
d∑
s=1

xsr , ∀r ∈ {1, · · · , d}

}
. (5.7)

This is a linear subspace of dimension (d− 1)2 + d in Rd×d. For p, q ∈ (0, 1), let D(p ‖ q) =
p log(p/q) + (1− p) log((1− p)/(1− q)) be the Kullback-Leibler divergence. Let G = (V,E)
be an undirected graph on d vertices where we allow up to two parallel edges between each
pair of vertices, i.e., V = {1, · · · , d}, and E ⊆ {(r, s) : r, s ∈ V, r 6= s}. For ν,µ ∈ Rd×d

+ ,
x ∈ [0, 1]d×d let

ϕµ(x) :=
∑

(r,s)∈E

µrsD(xrs ‖ α). (5.8)

and recalling that � represents the Hadamard product, we let

ϑ(ν,µ) := min
x∈[0,1]d×d

MG(x�µ,ν)∈F

∑
(r,s)∈E

µrsD(xrs ‖ α), (5.9)

where for two d× d matrices a, b, MG(a, b) is the d× d matrix with entries ars if (r, s) ∈ E
and brs otherwise. By strong duality (see, e.g., (Boyd and Vandenberghe, 2004; Rockafellar,
1970)), the function (5.9) can be written in the more transparent form

ϑ(ν,µ) = sup
λ∈Rd

 ∑
(r,s)/∈E

νrs(λr − λs) +
∑

(r,s)∈E

µrs log

(
eλr−λs

α + (1− α)eλr−λs

) ,

= φ∗µ(ν1− νᵀ1),

where φ∗µ is the Legendre-Fenchel transform of the (convex) function

φµ(λ) := −
∑

(r,s)∈E

µrs log

(
eλr−λs

α + (1− α)eλr−λs

)
.
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We may note that since φ∗µ is convex on Rd, ϑ is a continuous function of its first argument.
Before we state our bounds on the collision probability, we recall the following concept from
algebraic graph theory. Define the spanning tree polynomial of G as

TG(z) :=
1

nst(G)

∑
T

∏
(r,s)∈T

zrs,

for z ∈ Rd×d
+ , where the sum is over all spanning trees of G, and nst(G) is the number of

spanning trees of G. In cases where G is not connected, we define the following polynomial

PG :=

ncc(G)∏
l=1

TGl ,

where Gl is the lth connected component of G, and we denote by ncc(G) the number of
connected components of G. This polynomial may be interpreted as the generating poly-
nomial of spanning forests of G having exactly ncc(G) trees. The polynomials TG and PG
are multi-affine, homogenous of degree d − 1 for TG (when G is connected) and d − ncc(G)
for PG, and do not depend on the diagonal entries {zrr : 1 ≤ r ≤ d}. Furthermore, letting
zrs = 1 for all r 6= s, we have PG(z) = TG(z) = 1. We now provide tight asymptotic bounds
on the collision probability q(µ) when a subset E of the entries of µ become large.

Theorem 5.3. Let G = (V,E) with V = {1, · · · , d}, E = {(r, s) ∈ V 2 : r 6= s}, and
ε ∈ (0, 1). There exist two constants 0 < cu < cl depending on ε, d and α such that for all n
sufficiently large, and all µ ∈ {0, · · · , n}d×d with µrs ≥ εn if and only if (r, s) ∈ E, we have

cl
e−ϑl(µ)

PG(µ)1/2
≤ q(µ) ≤ cu

e−ϑu(µ)

PG(µ)1/2
.

with
ϑu(µ) = inf

ν
{ϑ(ν,µ) : 0 ≤ νrs ≤ µrs ∀(r, s) /∈ E},

and
ϑl(µ) = sup

ν
{ϑ(ν,µ) : 0 ≤ νrs ≤ µrs ∀(r, s) /∈ E}.

Let us now expand on the above result and derive some special cases and corollaries.
First, we see that the collision probabilities can decay at two different speeds—polynomial
or exponential—in the entries of the overlap matrix µ, depending on whether ϑu(µ) (and/or
ϑl(µ)) is zero or strictly negative. Second, the apparent gap in the exponential decay of q(µ)
in the above characterization is artificial; one can make ϑu and ϑl equal by taking µrs = 0
for all (r, s) /∈ E. Alternatively, they could be made arbitrarily close to each other under
an appropriate limit: Assume for simplicity that µrs = nwrs > 0 for all (r, s) ∈ E for some
w ∈ [0, 1]d×d. We have

ϑ(ν,µ) = nϑ(ν/n,w).
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For (r, s) /∈ E, we have µrs < εn, therefore

ϑu(µ)/n ≤ inf
x
{ϑ(x,w) : 0 ≤ xrs ≤ ε ∀(r, s) /∈ E} −→

ε→0
ϑ(0,w).

The last step is justified by the continuity of ϑ(·,w). The same argument holds for vl(µ).
Denoting the limiting function under this operation as ϑ(w), we obtain:

ϑ(w) = sup
λ∈Rd

∑
(r,s)∈E

wrs log

(
eλr−λs

α + (1− α)eλr−λs

)
= min
x∈[0,1]d×d

w�x∈F

ϕw(x).

The function ϑ can be seen as the exponential rate of decay of q(µ). The reason ϑu and
ϑl cannot (in general) be replaced by ϑ in Theorem 5.3 is that all control on the constants
cu and cl is lost when ε → 0. Next, we identify the cases where this exponential decay is
non-vacuous.

Lemma 5.4. Let α ∈ (0, 1), and µ ∈ Rd×d
+ . We have

(i) ϑ(µ) = 0 if and only if µ ∈ F ,

(ii) ϑu(µ) = 0 if and only if MG(αµ,ν) ∈ F for some ν ∈ Rd×d
+ such that 0 ≤ νrs ≤ µrs

for all (r, s) /∈ E.

Now we specialize Theorem 5.3 to the case where the entries of the overlap matrix are
either zero or grow proportionally to n. From Theorem 5.3 and Lemma 5.4, we deduce a key
corollary on the convergence of the properly rescaled logarithm of the collision probabilities.

Corollary 5.5. Given a graph G = (V,E), let w ∈ [0, 1]d×d be such that wrs > 0 if and only
if (r, s) ∈ E. If w ∈ F then

lim
n→∞

log q(nw)

log n
= −d− ncc(G)

2
.

Otherwise if w /∈ F , then

lim
n→∞

log q(nw)

n
= −ϑ(w).

We see that the assignments τ such that µ(τ, τ ∗) ∈ F exhibit a much stronger correlation
to τ ∗ than those for which this overlap matrix does not belong to F , and will hence survive
much longer as n→∞.

Proof of Lemma 5.4. Let µ,ν ∈ Rd×d
+ with µ 6= 0. Let α ∈ (0, 1), and let G = (V,E)

denote a graph on d vertices. The function ϕµ defined in (5.8) is strictly convex on the
support of µ, i.e., on the subspace induced by the non-zero coordinates of µ, so it admits a
unique minimizer on the closed convex set {x ∈ [0, 1]d×d : MG(x∗�µ,ν) ∈ F} intersected
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with that subspace. Let x∗ be this minimizer. By differentiating the associated Lagrangian,
the entries of x∗ admit the expressions

x∗rs =
α

α + (1− α)eλr−λs
,

for all (r, s) ∈ E (recall that µrs > 0 for all such (r, s)), and where the vector λ ∈ Rd is the
unique solution up to global shifts of the system of equations: ∀r ∈ {1, · · · , d}∑

s:(r,s)∈E

αµrs
α + (1− α)eλr−λs

+
∑

s:(r,s)/∈E

νrs =
∑

s:(r,s)∈E

αµsr
α + (1− α)eλs−λr

+
∑

s:(r,s)/∈E

νsr. (5.10)

The claims of the lemma follow directly from the system of equations (5.10) and the fact
that the non-negative function ϕµ vanishes if and only if x∗rs = α for all (r, s) ∈ E: to show
(i), we take ν = 0. It is clear from the equations that µ ∈ F if and only if λ = c1, c ∈ R, is
a solution to the above equations; and this is equivalent to x∗rs = α whenever µrs > 0. This
is in turn equivalent to ϑ(µ) = ϕµ(x∗) = 0. The same strategy is employed to show (ii),
in conjunction with the continuity of the function ν 7→ ϑ(ν,µ) over a compact domain (the
infimum defining ϑu is attained). �

Proof of Corollary 5.5. Fix G = (V,E), let w ∈ (0, 1)d×d with wrs > 0 if and only
if (r, s) ∈ E, and let n be an integer. For simplicity, assume that for nw is an array of
integer entries. The non-integer part introduces easily manageable error terms. Applying
Theorem 5.3 with ε = min(r,s)∈E wrs, we have for n large

clPG(nw)−1/2 exp−ϑl(nw) ≤ q(nw) ≤ cuPG(nw)−1/2 exp−ϑu(nw).

Moreover, since wrs = 0 for (r, s) /∈ E, we have

ϑu(nw) = ϑl(nw) = nϑ(w).

On the other hand, by homogeneity of the polynomial PG, PG(nw) = nd−ncc(G)PG(w). Ap-
plying Lemma 5.4 yields the desired result: If w ∈ F then

lim
n→∞

log q(nw)

log n
= −d− ncc(G)

2
.

Otherwise,

lim
n→∞

log q(nw)

n
= −ϑ(w).

�
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A Gaussian integral

One important step in proving Theorem 5.3 (specifically for obtaining the polynomial decay
part of q(µ)) is the following identity relating the Gaussian integral on a linear space F(G)
defined based on a graph G to the spanning tree/forest polynomial of G. We denote by Kd

the complete graph on d vertices where every pair of distinct vertices is connected by two
parallel edges.

Proposition 5.6. Let G = (V,E) be a graph on d vertices, where self-loops and up to two
parallel edges are allowed: V = {1, · · · , d}, E ⊆ V × V . Further, let

F(G) =
{
x ∈ F : xrs = 0 for (r, s) /∈ E

}
.

For any array of positive real numbers (wrs)(r,s)∈E, we have∫
F(G)

e−
∑
rs x

2
rs/2wrs dx =

(
(2π)dim(F(G))

∏
r,swrs

PG(w)

)1/2

.

In the case where G is the complete graph Kd, F(G) = F , dim(F) = (d − 1)2 + d, and
PG = TG = (2d−1dd−2)−1

∑
T

∏
(r,s)∈T wrs where the sum is over all spanning trees of Kd. The

pre-factor in the last expression comes from Cayley’s formula for the number of spanning
trees of the complete graph. We will show that it suffices to prove Proposition 5.6 in the
case where G = Kd in order to establish it for any graph G. We were not able to locate this
identity in the literature. To illuminate the combinatorial mechanisms behind it, we provide
what appear to be two very different proofs of it. A first “direct” and purely combinatorial
proof views F(G) as the space of Eulerian flows of the graph G. A second, slightly indirect
proof which is mainly analytic, and relates the above Gaussian integral to the characteristic
polynomial of the Laplacian matrix of G then invokes the Principal Minors Matrix Tree
theorem (see, e.g., (Chaiken, 1982)).

5.5 Computing the annealed free energy

In this section we establish the existence of F(γ), and compute its value for all γ > 0. For
1 ≤ k ≤ d let Dk denote the set of binary matrices X ∈ {0, 1}k×d such that each column
of X contains exactly one non-zero entry and each row contains at least one non-zero entry.
The elements of Dk represent partitions of the set {1, · · · , d} into k non-empty subsets.

Proposition 5.7. Let m = γ n
logn

with γ > 0 fixed for all n ≥ 2. We have

F(γ) = max
1≤k≤d−1

{
H(π)− min

X∈Dk
H(Xπ)− γ

2
(d− k)

}
.

Moreover, the inner minimization problem in the above expression can be solved explicitly:
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Lemma 5.8. Let π[·] be a permutation of the vector π such that π[1] ≥ π[2] ≥ · · · ≥ π[d]. And

for 1 ≤ k ≤ d − 1, let π(k) ∈ ∆k−1 defined as π
(k)
1 =

∑d−k+1
r=1 π[r] and π

(k)
l = π[d−k+l] for all

2 ≤ l ≤ k (if k ≥ 2). Then
min
X∈Dk

H(Xπ) = H(π(k)).

Theorem 5.2 follows from Proposition 5.7 and Lemma 5.8. We begin with the proof of the
latter and devote the next subsection to the lengthier proof of the former.

Proof of Lemma 5.8. We start with an arbitrary partition of π into k groups, and define
a sequence of operations on the set of k-partitions of π that strictly decreases H(Xπ) at
each step, and, irrespective of the starting point, always converges to π(k). Starting with an
arbitrary k-partition, write down the groups from left to right in decreasing order of total
weight of each group. Initially, every group is marked incomplete. Then we perform the
following operations:

1. Start with the rightmost incomplete group.

2. If it has more than one element, transfer the largest element to the leftmost group. This
strictly decreases the entropy, since the heaviest group gets heavier and the lightest
group gets lighter. Repeat this step until the rightmost group has exactly one element,
and then move to the next step.

3. Consider this (now singleton) group. If there is no element to its left that is lighter
than it, mark the group as complete. Else, swap this element with the lightest element
to its left, and then mark it complete. Then go back to step 1.

�

Proof of Proposition 5.7

Let m = γ n
logn

. Recall from equation (5.6) that

E[Z − 1] =

(
n

nπ

)−1

·
∑
µ

(
n

µ

)
q(µ)m 1 {µᵀ1 = nπ} ,

where the sum is over all arrays µ ∈ Zd×d+ such that 1ᵀµ1 = n, 1 ≤
∑

r 6=s µrs. Since the
sum defining E[Z−1] is larger than its maximum term and smaller than the maximum term
times (n+ 1)d

2
, we only need to understand the convergence of the sequence

Fn :=
1

n
log

 max
µ∈{0,··· ,n}d×d

non-diagonal

(
n

µ

)
q(µ)m 1 {µᵀ1 = nπ}
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= max

{
1

n
log

(
n

µ

)
+ γ

log q(µ)

log n
: µ ∈ {0, · · · , n}d×d,

∑
r 6=s

µrs ≥ 1,µᵀ1 = nπ

}
.

If this sequence converges, we would have

F(γ) = −H(π) + lim
n→∞

Fn, (5.11)

since 1
n

log
(
n
nπ

)
→ H(π) by Stirling’s formula. Next, we show that the above limit indeed

exists. Let

ψn(w) :=
1

n
log

(
n

nw

)
+ γ

log q(nw)

log n
. (5.12)

By Corollary 5.5, the function

ψ(w) :=

{
H(w)− γ

2
(d− ncc(w)) if w ∈ F ,

−∞ otherwise,
(5.13)

is the point-wise limit of the sequence of functions {ψn}n≥2 on ∆d×d−1. Next, we use the
following lemma which states that any non-diagonal sequence of maximizers {µ(n)}n of ψn
is such that

∑
r 6=s µ

(n)
rs grows proportionally to n.

Lemma 5.9. For all n ≥ 2, let

µ(n) ∈ arg max

{
ψn(µ/n) : µ ∈ {0, · · · , n}d×d, 1 ≤

∑
r 6=s

µrs ≤ n, µᵀ1 = nπ

}
.

It holds that

lim inf
n→∞

∑
r 6=s µ

(n)
rs

n
> 0.

By Lemma 5.9, which we prove at the end of the current argument, we can safely restrict
the set of candidate maximizers to those µ such that

∑
r 6=s µrs ≥ c0n for some fixed but

small c0 > 0. From here, and by a change of variables µ = nw, mere point-wise convergence
suffices to interchange lim inf and sup:

lim inf
n→∞

Fn ≥ lim inf
n→∞

sup

{
ψn(w) : w ∈ {i/n : 0 ≤ i ≤ n}d×d, c0 ≤

∑
r 6=s

wrs ≤ 1, wᵀ1 = π

}

≥ sup

{
ψ(w) : w ∈ [0, 1]d×d ∩ F , c0 ≤

∑
r 6=s

wrs ≤ 1, wᵀ1 = π

}
. (5.14)

Now we present a matching upper bound for lim supFn. For ε > 0, letGn = ({1, · · · , d}, En)

be defined such that (r, s) ∈ En if and only if w
(n)
rs ≥ ε. Let (Gl)

k
l=1 denote the connected
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components of the graph Gn, k = ncc(Gn). Also, for w an array for positive entries, let
nccε(w) denote the number of connected components of the graph G(w, ε) = (V,E(w, ε)),
V = {1, · · · , d}, E(w, ε) = {(r, s) : r 6= s, wrs > ε}, and let

ϑε(w) := inf
x
{ϑ(x,w) : 0 ≤ xrs ≤ ε ∀(r, s) /∈ E(w, ε)}.

We will also write ncc(w) for ncc0(w). Let w(n) = µ(n)/n for all n ≥ 2, where µ(n) is defined
in Lemma 5.9. By Theorem 5.3, we have for n sufficiently large

q(nw(n)) ≤ cu(ε, d, α)PGn(nw(n))−1/2 exp−ϑε(nw(n)).

Since w
(n)
rs ≥ ε of all the edges (r, s) of Gε

n,
∏

l TGl(w
(n)) is bounded below by εd independently

of n. Therefore, for n sufficiently large,

ψn(w(n)) =
1

n
log

(
n

nw(n)

)
+ γ

log q(nw(n))

log n

≤ 1

n
log

(
n

nw(n)

)
− γ

2
(d− nccε(w(n)))− γn

log n
ϑε(w(n))

+O
(

log cu(ε, d, α) + d log(1/ε)

log n

)
≤ sup

{
H(w)− γ

2
(d− nccε(w))− γn

log n
ϑε(w) :

w ∈ [0, 1]d×d, c0 ≤
∑
r 6=s

wrs ≤ 1, wᵀ1 = π

}
+O

(
log cu(ε, d, α) + d log(1/ε)

log n

)
,

where the last inequality is obtained by Stirling’s formula and taking a supremum over all
w. By Lemma 5.4, ϑε(w) = 0 if and only if MG(αw,x) ∈ F for some x ∈ [0, 1]d×d such that
0 ≤ xrs ≤ ε for all (r, s) /∈ E, G = (V,E) being the graph whose edges are (r, s) : wrs ≥ ε.
This constrains the supremum to be achieved in the space of such w for n sufficiently large.
Moreover, this condition implies in particular that

‖w1−wᵀ1‖`∞ ≤ 2dα−1ε,

where ‖ · ‖`∞ is the `∞ norm of a vector in Rd. Consequently, this yields the following upper
bound as n→∞,

lim sup
n→∞

Fn ≤ sup

{
H(w)− γ

2
(d− nccε(w)) :

w ∈ [0, 1]d×d, ‖w1−wᵀ1‖`∞ ≤ 2dα−1ε,
c0 ≤

∑
r 6=swrs ≤ 1, wᵀ1 = π

}
,

(5.15)
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for all ε > 0. Next, we argue that as ε → 0, the right-hand side of the above inequality
converges to

sup

{
H(w)− γ

2
(d− ncc(w)) : w ∈ [0, 1]d×d ∩ F , c0 ≤

∑
r 6=s

wrs ≤ 1, wᵀ1 = π

}
,

thereby establishing the existence of the limit limFn along with its precise value. Since the
function ε → nccε(w) is non-decreasing for any fixed w, the limit of the right-hand side
of (5.15) as ε→ 0 exists by monotone convergence. The limit can be decomposed as

lim
ε→0

sup

{
H(w)− γ

2
(d− nccε(w)) :

w ∈ [0, 1]d×d, ‖w1−wᵀ1‖`∞ ≤ 2dα−1ε,
c0 ≤

∑
r 6=swrs ≤ 1, wᵀ1 = π

}
= max

1≤k≤d
max
{Vl}kl=1

lim
ε→0

sup
{
H(w)− γ

2
(d− k) : such that (5.16) holds

}
,


w ∈ [0, 1]d×d, ‖w1−wᵀ1‖`∞ ≤ 2dα−1ε,

wrs ≤ ε ∀(r, s) ∈ Vl × Vl′ , l 6= l′,
Gl(w) is connected, ∀l, c0 ≤

∑
r 6=swrs ≤ 1, wᵀ1 = π,

(5.16)

where {Vl}kl=1 ranges over a partitions of the set {1, · · · , d} with k non-empty subsets, and
Gl(w) = (Vl, {(r, s) ∈ Vl × Vl : wrs > ε}) for all 1 ≤ l ≤ k. Letting ε < c0, the
range of the outer-most maximum becomes 1 ≤ k ≤ d − 1. By concavity of the entropy,
the constraint that the graphs Gl(w) must be connected can be safely removed from the
maximization problem without changing its maximum value since it will be automatically
satisfied. Thus, the inner-most optimization problem is that of a continuous function on a
closed and bounded domain that shrinks with ε. Its value is therefore a continuous function
of ε. Hence, by sending ε to 0, in conjunction with the lower bound (5.14), we conclude that

lim
n→∞

Fn = sup

{
ψ(w) : w ∈ [0, 1]d×d, c0 ≤

∑
r 6=s

wrs ≤ 1, w1 = wᵀ1 = π

}
. (5.17)

As a final step, we make the above expression a bit more explicit. As argued previously,
the supremum in (5.17) can be decomposed such that one first takes the maximum of ψ(w)
over all w such that wrs = 0 for all (r, s) ∈ Vl×Vl′ , l 6= l′ where {Vl}1≤l≤k is a fixed partition
of {1, · · · , d} into non-empty subsets, then maximize over all such partitions, then over all
1 ≤ k ≤ d− 1. The first optimization problem has a value

sup
{
H(w)− γ

2
(d− k) : w ∈ [0, 1]d×d, wrs = 0, (r, s) ∈ Vl × Vl′ , l 6= l′, w1 = wᵀ1 = π

}
,

where the constraint c0 ≤
∑

r 6=swrs ≤ 1 is not active for c0 small enough, hence can be

removed. Letw be in the above constraint set. ThenH(w) = −
∑k

l=1

∑
(r,s)∈Vl×Vl wrs logwrs,

and this is maximized at

w∗rs =

{
(πrπs)/

∑
r′∈Vl πr′ if (r, s) ∈ Vl × Vl, l ∈ {1, · · · , k},

0 otherwise,
(5.18)
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with maximum value

H(w∗) = 2H(π) +
k∑
l=1

(∑
r∈Vl

πr

)
log

(∑
r∈Vl

πr

)
, (5.19)

= 2H(π)−H(Xπ),

where X ∈ {0, 1}k×d, Xl,r = 1 if and only if r ∈ Vl. Note that Dk is the set of all such
matrices (each one corresponding to a partition {Vl} of {1, · · · , d}). Finally, by maximizing
over all possible partitions, and using (5.11) we get

F(γ) = max
1≤k≤d−1

{
H(π)− min

X∈Dk
H(Xπ)− γ

2
(d− k)

}
.

This completes the proof of Proposition 5.7, except for the proof Lemma 5.9, which we
provide below.

Proof of Lemma 5.9. Let

µ(n) ∈ arg max

{
ψn(µ/n) : µ ∈ {0, · · · , n}d×d, 1 ≤

∑
r 6=s

µrs, µ
ᵀ1 = nπ

}
.

We show that
lim inf
n→∞

n−1
∑
r 6=s

µ(n)
rs > 0.

Let us first show that
(log n)3

n

∑
r 6=s

µ(n)
rs −→∞,

and then remove the logarithmic factor. We proceed by contradiction, by showing that if
the above statement is not true, then the expected number of non-planted solutions E[Z−1]
vanishes as n → ∞ for any γ > 0, which contradicts our lower bound of Theorem 5.1. We
have

E [Z − 1] ≤
(
n

nπ

)−1

· (n+ 1)d
2 ·
(

n

µ(n)

)
· qγn/ logn

max ,

with qmax = max
{
q(µ) : 1 ≤

∑
r 6=s µrs

}
< 1. Moreover,

(
n

µ(n)

)
=

(
n

nπ

) d∏
r=1

(nπr)!∏
s 6=r µsr!(nπr −

∑
s 6=r µsr)!

≤
(
n

nπ

) d∏
r=1

(nπr)
∑
s 6=r µsr .

If
∑

r 6=s µ
(n)
rs ≤ Cn/(log n)3 for some constant C > 0, then

E [Z − 1] ≤ (n+ 1)d
2 · nCn/(logn)3 · qγn/ logn

max −→
n→∞

0,
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for all γ > 0, and this contradicts the fact that below γlow there are exponentially many
distinct satisfying assignments.

Now let us assume that (logn)3

n

∑
r 6=s µ

(n)
rs →∞ but lim inf n−1

∑
r 6=s µ

(n)
rs = 0. We proceed

by contradiction once more, and construct a sequence of points that have a higher objective
value than µ(n). Instead of working with convergent subsequences, we may as well assume
that {µ(n)} is convergent. Let

En =

{
(r, s) : r 6= s, µ(n)

rs > ε
∑
r 6=s

µ(n)
rs

}
,

and

E∞ =

{
(r, s) : r 6= s, lim inf

n→∞

µ
(n)
rs∑

r 6=s µ
(n)
rs

> 0

}
,

for all n and some ε > 0 sufficiently small. Let kn = ncc(Gn) be the number of connected
components of the graph Gn = ({1, · · · , d}, En), and similarly, let k∞ = ncc(G∞) with G∞ =
({1, · · · , d}, E∞). Observe that E∞ and En are both non-empty sets, hence k∞, kn ≤ d − 1
for all n.

Now we consider an arbitrary partition of the set of vertices {1, · · · , d} into k∞ subsets
{Vl}1≤l≤k∞ , and let G be the graph on d vertices with edge set ∪k∞l=1Vl × Vl; i.e., G is the
union of k∞ complete connected components. Finally, let v(n) := nw for all n, with

wrs =

{
(πrπs)/

∑
r′∈Vl πr′ if (r, s) ∈ Vl × Vl, l ∈ {1, · · · , k∞},

0 otherwise,

Recall that this construction provides one of the candidate maximizers of the annealed free
energy (see (5.18)). Observe that v(n) satisfies all the constraints satisfied by µ(n), and
additionally, v(n) ∈ F . Therefore, by Corollary 5.5, we have

ψn(v(n)/n) = H(w)− γ

2
(d− k∞) + on(1).

Recall that the function ψn is defined in (5.12). On the other hand, to study the asymptotics

of ψn(µ(n)/n), we apply Theorem 5.3 with n replaced by
∑

r 6=s µ
(n)
rs (which grows to infinity),

and we get

ψn(µ(n)/n) ≤ H(π)− γ

2
(d− kn)

(
1− 3

log log n

log n

)
− ϑu(µ

(n))

log n
+ on(1).

The term in the right-hand side follows from Stirling’s formula and the fact that µ
(n)
rs /n→ 0

for all r 6= s. The second term follows from the fact that

PGn(µ(n)) ≥

(
ε
∑
r 6=s

µ(n)
rs

)d−kn

�
(

n

(log n)3

)d−kn
.
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Next, we argue based on these estimates that ψn(v(n)/n) > ψn(µ(n)/n) for all n large
enough. First, the term involving ϑu in the upper bound on ψn(µ(n)/n) can be dropped
since it is always non-negative. By direct computation (we already showed this in (5.19)),
we have

H(w)−H(π) = H(π)−H(p),

with p ∈ ∆k∞−1 with pl =
∑

r∈Vl πr for all 1 ≤ l ≤ k∞. We show that the right-hand side of
this equality is strictly positive:

H(π)−H(p) = −
d∑
r=1

πr log πr +
k∞∑
l=1

(∑
r∈Vl

πr

)
log

(∑
r∈Vl

πr

)

= −
k∞∑
l=1

∑
r∈Vl

πr log

(
πr
pl

)

= −
k∞∑
l=1

pl
∑
r∈Vl

πr
pl

log

(
πr
pl

)

≥ −
k∞∑
l=1

pl log

(∑
r∈Vl π

2
r

p2
l

)
,

≥ 0.

We used Jensen’s inequality on the concave function x 7→ log x, and the fact that
∑

r∈Vl π
2
r ≤

pl
∑

r∈Vl πr = p2
l for all l. Moreover, since all coordinates of π are strictly positive, equality

holds if and only if πr = pl for all l and r ∈ Vl which implies that the partition must be
trivial; i.e., k∞ = d. Recall that this does not happen since E∞ is non-empty.

On the other hand, by setting ε sufficiently small (smaller than all the limits in the
definition of E∞), any edge in E∞ will eventually (and permanently from then on) be in En.
Therefore the number of connected components of Gn does not exceed that of G∞: kn ≤ k∞
for n sufficiently large. We conclude that ψn(v(n)/n) > ψn(µ(n)/n) for all n large enough.
Therefore µ(n) is not always a maximizer of ψn, and this leads to a contradiction. �

5.6 Proof of Theorem 5.3

Our proof is based on the method of Laplace from asymptotic analysis: when the entries
of µ are large, the sum defining q(µ) is dominated by its largest term corrected by a sub-
exponential term which is represented by a Gaussian integral (see, e.g., (De Bruijn, 1970) for
the univariate case). Since we are in a multivariate situation, the asymptotics of q depend
on which subset of the entries of µ are large. Our approach is inspired by (Achlioptas and
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Naor, 2005). We recall that for µ ∈ Zd×d+ ,

q(µ) =
∑

ν∈Zd×d+ ∩F
0≤νrs≤µrs

(
d∏

r,s=1

(
µrs
νrs

)
ανrs(1− α)µrs−νrs

)
.

Let G = (V,E) with V = {1, · · · , d} and E = {(r, s) ∈ V 2 : r 6= s}. The graph G will be
used to store information about which entries of µ are going to infinity linearly in n, and
which entries are not. We can split the sum defining q into a double sum, one involving the
large terms (A in subsequent notation), and the rest:

q(µ) =
∑

0≤ν′rs≤µrs
(r,s)/∈E

∏
(r,s)/∈E

(
µrs
ν ′rs

)
αν
′
rs(1− α)µrs−ν

′
rsA(ν ′,µ),

with

A(ν ′,µ) =
∑

0≤νrs≤µrs
(r,s)∈E

∏
(r,s)∈E

(
µrs
νrs

)
ανrs(1− α)µrs−νrs1 {MG(ν,ν ′) ∈ F} ,

where for two d× d matrices a, b, MG(a, b) is the d× d matrix with entries ars if (r, s) ∈ E
and brs otherwise. The quantity A will be approximated using the Laplace method. Recall
from the expressions (5.8) and (5.9) that

ϕµ(x) =
∑

(r,s)∈E

µrsD(xrs ‖ α),

and
ϑ(ν,µ) = min

x∈[0,1]d×d

MG(x�µ,ν)∈F

ϕµ(x).

Let x∗(ν,µ) be the optimal solution of the above optimization problem.
Before stating our asymptotic approximation result for A, we state an important lemma

on the boundedness of the entries of x∗(ν,µ), where the bounds depend only on ε and α.

Lemma 5.10. Let G be fixed as above, α ∈ (0, 1) and ε ∈ (0, 1). There exist two constants
0 < cl ≤ cu < 1 depending only on d, α and ε such that the following is true: For all integers
n ≥ 1, and µ ∈ {0, · · · , n}d×d such that µrs ≥ εn iff (r, s) ∈ E. For all ν ′ ∈ {0, · · · , n}Ē
such that 0 ≤ ν ′rs ≤ µrs for all (r, s) /∈ E, we have

cl ≤ min
(r,s)∈E

x∗rs ≤ max
(r,s)∈E

x∗rs ≤ cu.

Therefore, the entries of x∗ can effectively be treated as constants throughout the rest of
the proof. Now we state our asymptotic estimate for A.
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Proposition 5.11. Let G be fixed as above, and ε > 0. For all n sufficiently large, all µ ∈
{0, · · · , n}d×d with µrs ≥ εn iff (r, s) ∈ E, and all ν ′ ∈ {0, · · · , n}Ē such that 0 ≤ ν ′rs ≤ µrs
for all (r, s) /∈ E, we have

A(ν ′,µ) �G,d,ε,α
e−ϑ(ν′,µ)

PG(µ)1/2
.

Here, the symbol “ �G,d,ε,α ” means that the ratio is upper- and lower-bounded by constants
depending only on G, d, ε and α.

By the above proposition, we have

q(µ) �G,d,ε,α
∑
ν∈ZĒ+

0≤νrs≤µrs

 ∏
(r,s)/∈E

(
µrs
νrs

)
ανrs(1− α)µrs−νrs

 e−ϑ(ν,µ)

PG(µ)1/2
.

The estimate above (ignoring the term PG(µ)) can be interpreted as the expected value
of the function e−ϑ(ν,µ) under the law of the random variable ν where each entry νrs for
(r, s) /∈ E is independently binomial with parameters α and µrs. From here, the bounds
claimed in Theorem 5.3 follow immediately.

Proof of Proposition 5.11. We will show that

A(ν ′,µ) �G,d,ε,α e−ϑ(ν′,µ)
∏

(r,s)∈E

µ−1/2
rs

∫
F(G)

e−
∑

(r,s)∈E z
2
rs/2µrs dz.

Then the result follows by applying Proposition 5.6 to evaluate the Gaussian integral. We
proceed by showing the upper and lower bounds separately.

The upper bound For ν ′ ∈ ZĒ+,µ ∈ Zd×d+ fixed and some parameter C(µ) > 0 to be
adjusted, let

Ω =

ν ∈ ZE+ : MG(ν,ν ′) ∈ F , 0 ≤ νrs ≤ µrs,
∑

(r,s)∈E

(νrs − x∗rsµrs)2

x∗rs(1− x∗rs)µrs
≤ C(µ)2

 .

For ν ∈ ZE+, we let x ∈ [0, 1]E defined by xrs = νrs/µrs for all (r, s) ∈ E. We upper
bound the binomial coefficients

(
µrs
νrs

)
based on whether ν is in Ω or not:

• If ν ∈ Ω we use the upper bound
(
µrs
νrs

)
≤ (2πµrsxrs(1− xrs))−1/2 expµrsH(xrs).

• Otherwise, we use the upper bound
(
µrs
νrs

)
≤ 3
√
µrs expµrsH(xrs).
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Here, H(xrs) = −xrs log xrs − (1 − xrs) log(1 − xrs). Thus, the summand in A(ν ′,µ) is
bounded by∏
(r,s)∈E

(2πµrsxrs(1− xrs))−1/2 expµrsD(xrs ‖ α) =
∏

(r,s)∈E

(2πµrsxrs(1− xrs))−1/2 exp(−ϕµ(x))

if ν ∈ Ω, and ∏
(r,s)∈E

3µ1/2
rs exp(−ϕµ(x))

if not. The function ϕµ is smooth, and we have dϕµ
dxrs

(x) = µrs log
(
xrs(1−α)
α(1−xrs)

)
, and d2ϕµ

dx2
rs

(x) =
µrs

xrs(1−xrs) ≥ 0. Therefore, by convexity,

ϕµ(x) ≥ ϕµ(x∗) +
1

2

d∑
(r,s)∈E

µrs
x∗rs(1− x∗rs)

(xrs − x∗rs)2.

Let

`µ(ν) =
∑

(r,s)∈E

(νrs − µrsx∗rs)2

x∗rs(1− x∗rs)µrs
. (5.20)

Based on Lemma 5.10, all the entries of x∗ will be treated as constants. If ν ∈ Ω then
(νrs−µrsx∗rs)2

x∗rs(1−x∗rs)µrs
≤ `µ(ν) ≤ C(µ)2, and

νrs ∈
[
µrsx

∗
rs ± C(µ)

√
x∗rs(1− x∗rs)µrs

]
.

Now let us assume that C(µ) = o(µ
1/2
rs ) for all (r, s) ∈ E. Then we have

νrs
µrs

(1− νrs
µrs

) ≥ x∗rs(1− x∗rs)− on(1).

If ν /∈ Ω then `(ν) ≥ C(µ)2, therefore A is bounded by ∏
(r,s)∈E

(2πµrsx
∗
rs(1− x∗rs))−1/2

∑
ν∈Ω

e−`µ(ν)/2 +
∏

(r,s)∈E

3µ1/2
rs

∑
ν /∈Ω

0≤νrs≤µrs

e−C(µ)2/2

·exp(−ϕµ(x∗)).

(5.21)

The second term in the sum above is bounded by cd
2
(
∏

(r,s)∈E µ
3/2
rs )e−C(µ)2/2 for some constant

c > 0. Taking C(µ)2 = 5 log
∏

(r,s)∈E µrs, this term is cd
2 ∏

(r,s)∈E µ
−1
rs = O(n−|E|). Moreover,

for all (r, s) ∈ E, µrs > εn, therefore

C(µ)2 ≤ 4d2 log n� µrs;
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this choice satisfies the condition C(µ) = o(µ
1/2
rs ) for (r, s) ∈ E. On the other hand, let

S(µ) =
∑
ν∈ZE

1{MG(ν,ν ′) ∈ F} exp(−`µ(ν)/2), (5.22)

with `µ defined in (5.20). We ignored the dependence of S on ν ′ in the notation on purpose:
this dependence is inessential. The first sum in (5.21) is upper bounded by S(µ). Therefore

A(ν ′,µ) ≤ cu
∏

(r,s)∈E

µ−1/2
rs (S(µ) + εn) e−ϑ(ν′,µ), (5.23)

for some cu depending on ε and d, and εn → 0 as n→∞. We now turn our attention to the
lower bound, deferring the analysis of the Gaussian sum S(µ) to a subsequent paragraph.

The lower bound We have

A(ν ′,µ) ≥
∑
ν∈Ω

 ∏
(r,s)∈E

(
µrs
νrs

)
ανrs(1− α)µrs−νrs

 .

Using
(
µrs
νrs

)
≥ (8πνrs(1− νrs/µrs))−1/2eH(νrs/µrs) for all (r, s) ∈ E, we get

A(ν ′,µ) ≥
∑
ν∈Ω

 ∏
(r,s)∈E

8πνrs(1−
νrs
µrs

)

−1/2

· exp (−ϕµ (ν/µ)) .

For ν ∈ Ω, we have νrs
µrs

(1− νrs
µrs

) ≤ x∗rs(1− x∗rs) + on(1) for all r, s, and since ϕµ is a smooth
function, a Taylor expansion yields

ϕµ(ν/µ) = ϕµ(x∗) +
1

2

∑
(r,s)∈E

(νrs − x∗rsµrs)2

x∗rs(1− x∗rs)µrs
+ on(1).

Therefore,

A(ν ′,µ) ≥ cle
−ϕµ(x∗)

∏
(r,s)∈E

µ−1/2
r,s ·

∑
ν∈Ω

exp

(
−1

2

∑
rs

(νrs − x∗rsµrs)2

x∗rs(1− x∗rs)µrs

)
= cle

−ϑ(ν′,µ)
∏

(r,s)∈E

µ−1/2
r,s · (S(µ)− εn) ,

where cl = cl(ε, d), S(µ) is defined in (5.22) and

εn :=
∏

(r,s)∈E

(µrs + 1)e−C(µ)2/2 +
∑
ν∈ZE+

νrs≥µrs+1

exp−`µ(ν)/2 +
∑
ν∈ZE−

exp−`µ(ν)/2.
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We take C(µ)2 = 4 log
∏

(r,s)∈E µrs. This makes the first term in εn bounded by
∏

r,s µ
−1
rs =

O(n−|E|). On the other hand, the remaining tail sums are easily bounded by the tail proba-
bility function of a normal random variable (i.e., the error function):∑

ν∈ZE+
νrs≥µrs+1

exp−`µ(ν)/2 ≤
∏

(r,s)∈E

µ1/2
rs erfc

(√
x∗rs

1− x∗rs
µrs

)
,

∑
ν∈ZE−

exp−`µ(ν)/2 ≤
∏

(r,s)∈E

µ1/2
rs erfc

(√
1− x∗rs
x∗rs

µrs −
1√

x∗rs(1− x∗rs)µrs

)
,

with erfc(x) =
∫∞
x
e−t

2/2dt. Since erfc(x) ≤ e−x
2/2/x for all x > 0, these two terms decay in

a sub-Gaussian way in n.

Bounding the Gaussian sum. Here we approximate S by a continuous Gaussian integral.
We prove that

S(µ) �
∫
F(G)

exp

− ∑
(r,s)∈E

µ−1
rs

2x∗rs(1− x∗rs)
z2
rs

 dz,

where the symbol “ � ” hides constants depending on G, ε, d and α as n → ∞. For
ν ∈ F(G) an array of integer numbers such that 0 ≤ νrs ≤ µrs, let T (ν) = ν + C ∩ F(G)
where C = [−1/2, 1/2]E. The sum is understood in the Minkowski sense. T (ν) is a “tile” of
side 1 centered around ν. Two crucial facts are (i) : T (ν) and T (ν ′) are of disjoint interiors
when ν 6= ν ′ and (ii) : T (ν) ⊂ F(G). Now for a fixed ν, let z ∈ T (ν). For r, s ∈ E, we

have νrs − 1/2 ≤ zrs ≤ νrs + 1/2 and νrs−1/2
µrs

− x∗rs ≤ zrs
µrs
− x∗rs ≤

νrs+1/2
µrs

− x∗rs. Thus(
zrs
µrs
− x∗rs

)2

≤ max

{(
νrs − 1/2

µrs
− x∗rs

)2

,

(
νrs + 1/2

µrs
− x∗rs

)2
}
.

Using the fact max{(x− 1/2)2, (x+ 1/2)2} ≤ 2x2 + 1 for all x ∈ R, we get

exp

− ∑
(r,s)∈E

µ−1
rs

4x∗rs(1− x∗rs)
(
2 (νrs − µrsx∗rs)

2 + 1
)

≤ exp

− ∑
(r,s)∈E

µ−1
rs

4x∗rs(1− x∗rs)
(zrs − µrsx∗rs)

2

 .

By integrating both sides of the above inequality on T (ν) in the variable z, and summing
over all ν with integer entries such that MG(ν,ν ′) ∈ F , we get

vol(C ∩ F(G))e
−

∑
(r,s)∈E

µ−1
rs

4x∗rs(1−x∗rs) S(µ)
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≤
∑
ν∈ZE

MG(ν,ν′)∈F

∫
T (ν)

exp

− ∑
(r,s)∈E

µ−1
rs (zrs − µrsx∗rs)

2

4x∗rs(1− x∗rs)

 dz,

=
∑
ν∈ZE

MG(ν,ν′)∈F

∫
T (ν−x∗�µ)

exp

− ∑
(r,s)∈E

µ−1
rs

4x∗rs(1− x∗rs)
z2
rs

 dz,

where vol is the volume according to the dim(F(G))-dimensional Lebesgue measure. Since
MG(x∗ � µ,ν ′) ∈ F , we have ν − x∗ � µ ∈ F for all ν we are summing over. Moreover,
since the tiles T (ν) are of mutually disjoint interiors, and given that their union is in F(G),
the left-hand side is upper bounded by (there is actually equality)

∫
F(G)

exp

− ∑
(r,s)∈E

µ−1
rs

4x∗rs(1− x∗rs)
z2
rs

 dz.

Here, to get sharper constants, one could apply a theorem by Vaaler (Vaaler, 1979) which
states that the volume of any linear subspace intersected with the cube C is at least 1; i.e.,
vol(C ∩ F(G)) ≥ 1. This yields

S(µ) ≤ e
∑

(r,s)∈E
µ−1
rs

4x∗rs(1−x∗rs) ·
∫
F(G)

exp

− ∑
(r,s)∈E

µ−1
rs

4x∗rs(1− x∗rs)
z2
rs

 dz.

As for the reverse inequality, slightly more care is needed in constructing the approxi-
mation. For a given ν, let Ω+ = {(r, s) : νrs ≥ x∗rsµrs + 1/2} and Ω− = {(r, s) : νrs ≤
x∗rsµrs − 1/2}. For z ∈ T (ν), we have (zrs − x∗rsµrs)2 ≥ (νrs − x∗rsµrs − 1/2)2 if (r, s) ∈ Ω+

and (zrs − x∗rsµrs)2 ≥ (νrs − x∗rsµrs + 1/2)2 if (r, s) ∈ Ω−. Otherwise, for (r, s) /∈ Ω+ ∪ Ω−,
we have |νrs − x∗rsµrs| < 1/2 and |(zrs − x∗rsµrs)2 − (νrs − x∗rsµrs)2| < 1/2(1 + 1/2) = 3/4.
Therefore∑

(r,s)∈Ω+

(νrs − x∗rsµrs + 1/2)2

µrsx∗rs(1− x∗rs)
+

∑
(r,s)∈Ω−

(νrs − x∗rsµrs − 1/2)2

µrsx∗rs(1− x∗rs)
+

∑
(r,s)/∈Ω+∪Ω−

(νrs − x∗rsµrs)2

µrsx∗rs(1− x∗rs)

≤
∑

(r,s)∈E

(zrs − x∗rsµrs)2

µrsx∗rs(1− x∗rs)
+
∑

(r,s)∈E

3µ−1
rs

4x∗rs(1− x∗rs)
.

On the other hand, (νrs − x∗rsµrs)
2 ≤ (νrs − x∗rsµrs + 1/2)2 when (r, s) ∈ Ω+ and (νrs −

x∗rsµrs)
2 ≤ (νrs − x∗rsµrs − 1/2)2 when (r, s) ∈ Ω−. After integrating on T (ν) and summing

over all ν ∈ ZE such that ν − x∗ � µ ∈ F , we obtain

vol(C ∩ F(G))S(µ) ≥e−
∑

(r,s)∈E
3µ−1
rs

8x∗rs(1−x∗rs)
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·
∑
ν∈ZE

ν−x∗�µ∈F

∫
T (ν−x∗�µ)

exp

− ∑
(r,s)∈E

µ−1
rs

2x∗rs(1− x∗rs)
z2
rs

 dz,

and the last sum is equal to

∑
ν∈(ZE+x∗�µ)∩F(G)

∫
T (ν)

exp

− ∑
(r,s)∈E

µ−1
rs

2x∗rs(1− x∗rs)
z2
rs

 dz

=

∫
F(G)

exp

− ∑
(r,s)∈E

µ−1
rs

2x∗rs(1− x∗rs)
z2
rs

 dz.

Finally,

S(µ) ≥ c(G, d)e
−

∑
(r,s)∈E

3µ−1
rs

2x∗rs(1−x∗rs) ·
∫
F(G)

exp

− ∑
(r,s)∈E

µ−1
rs

2x∗rs(1− x∗rs)
z2
rs

 dz.

�

Proof of Lemma 5.10. Recall that x∗ is the unique minimizer of the function

ϕµ =
∑

(r,s)∈E

µrsD(xrs ‖ α)

on [0, 1]d×d subject to MG(x∗ � µ,ν) ∈ F . Recall also that the entries of x∗ admit the
expressions

x∗rs =
α

α + (1− α)eλ∗r−λ∗s
,

for all (r, s) ∈ E. The vector λ∗ ∈ Rd is the unique solution up to global shifts to the dual
optimization problem (strong duality holds here (Boyd and Vandenberghe, 2004; Rockafellar,
1970))

sup
λ∈Rd

 ∑
(r,s)/∈E

νrs(λr − λs) +
∑

(r,s)∈E

µrs log

(
eλr−λs

α + (1− α)eλr−λs

) . (5.24)

Our claim reduces to the boundedness of the differences |λ∗r − λ∗s| for all (r, s) ∈ E indepen-
dently of n,µ,ν and r, s. We will shortly prove the following inequality∑

(r,s)∈E

µrs(λ
∗
r − λ∗s)2 ≤ κ(α)

∑
(r,s)∈E

µrs, (5.25)
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where κ(α) = 1
α2 + 1

(1−α)2 . Assuming the above is true, by the Cauchy-Schwarz inequality,
we would have

∑
(r,s)∈E

|λ∗r − λ∗s| ≤

 ∑
(r,s)∈E

µ−1
rs

1/2κ(α)
∑

(r,s)∈E

µrs

1/2

≤ d2(κ(α)/ε)1/2,

since εn ≤ µrs ≤ n for all (r, s) ∈ E. We would then be done. Now, the inequality (5.25)
follows from convexity considerations. We let φ be the function being maximized in (5.24).
By concavity of φ, we have

φ(λ∗)− φ(0) ≤ λ∗ᵀ∇φ(0) +
1

2
λ∗ᵀ∇2φ(0)λ∗. (5.26)

The gradient and the Hessian of φ are

[∇φ(λ)]r =
∑

s:(r,s)∈E

αµrs
α + (1− α)eλr−λs

− αµsr
α + (1− α)eλs−λr

+
∑

s:(r,s)/∈E

νrs−νsr, r ∈ {1, · · · , d},

∇2φ(λ) = −α(1− α)
∑

(r,s)∈E

wrs(λ)(er − es)(er − es)ᵀ,

with

wrs(λ) =
µrse

λr−λs

(α + (1− α)eλr−λs)2
+

µsre
λs−λr

(α + (1− α)eλs−λr)2
,

and e1, · · · , ed being the standard unit vectors in Rd. The concavity inequality (5.26) be-
comes

φ(λ∗) ≤ α
∑

(r,s)∈E

µrs(λ
∗
r − λ∗s) +

∑
(r,s)/∈E

νrs(λ
∗
r − λ∗s)− α(1− α)

∑
(r,s)∈E

µrs(λ
∗
r − λ∗s)2.

Substituting in the expression of φ(λ∗), the term
∑

(r,s)/∈E νrs(λ
∗
r − λ∗s) cancels out on both

sides and we get∑
(r,s)∈E

µrs log

(
eλ
∗
r−λ∗s

α + (1− α)eλ∗r−λ∗s

)
≤ α

∑
(r,s)∈E

µrs(λ
∗
r − λ∗s)− α(1− α)

∑
(r,s)∈E

µrs(λ
∗
r − λ∗s)2,

which can be written as∑
(r,s)∈E

µrs
(
α(1− α)(λ∗r − λ∗s)2 + (1− α)(λ∗r − λ∗s)− log

(
α + (1− α)eλ

∗
r−λ∗s

))
≤ 0. (5.27)

Now we approximate the logarithm by the positive part: log(α+(1−α)ex) ≤ x+ = max{0, x}
for all x ∈ R and α ∈ (0, 1), so that we almost get a quadratic polynomial inequality. We
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make this a genuine quadratic inequality by applying the additional approximation that for
all x ∈ R and α ∈ (0, 1):

α(1− α)x2 + (1− α)x− x+ ≥
α(1− α)

2
x2 − 1− α

2α
− α

2(1− α)
.

This is easy to check by verifying that the discriminants of the resulting quadratics (one for
x ≥ 0 and one for x < 0) are negative. Now, inequality (5.27) implies

α(1− α)

2

∑
(r,s)∈E

µrs(λ
∗
r − λ∗s)2 ≤

(
1− α

2α
+

α

2(1− α)

) ∑
(r,s)∈E

µrs.

In other words, ∑
(r,s)∈E

µrs(λ
∗
r − λ∗s)2 ≤ κ(α)

∑
(r,s)∈E

µrs.

�

5.7 Two proofs of Proposition 5.6

We first reduce the proof to the case where G = Kd by a limiting argument. Let G =
(V,E) be a graph on d vertices. If G is not connected then the constraints defining the
space F(G) decouple across the connected components of G and so does the integrand
exp−1

2

∑
(r,s)∈E x

2
rs/wrs, therefore the Gaussian integral factors across the connected com-

ponents of G. Hence, we may assume that G is connected. Now, if∫
F
e−

1
2

∑
rs x

2
rs/wrs dx = (2π)((d−1)2+d)/2

(∏
r,swrs

T (w)

)1/2

,

for all w ∈ Rd×d
+ where T = TKd , then taking a limit wrs → 0 for all (r, s) /∈ E, we get

1(∏
(r,s)/∈E wrs

)1/2

∫
F
e−

1
2

∑
rs x

2
rs/wrs dx −→ c(G)

∫
F(G)

e−
1
2

∑
(r,s)∈E x

2
rs/wrs dx,

where c(G) > 0 is a constant that only depends on G. On the other hand

T (w) −→ nst(G)

2d−1dd−2
TG(w).

Therefore

c(G)

∫
F(G)

e−
1
2

∑
(r,s)∈E x

2
rs/wrs dx = (2π)((d−1)2+d)/2

(
2d−1dd−2

nst(G)

∏
(r,s)∈E wrs

TG(w)

)1/2

.
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Now we set wrs = 1 for all (r, s) ∈ E to clear out the constants. Since
∫
F(G)

e−
1
2

∑
(r,s)∈E x

2
rs dx =

(2π)dim(F(G))/2, we get∫
F(G)

e−
1
2

∑
(r,s)∈E x

2
rs/wrs dx = (2π)dim(F(G))/2

(∏
(r,s)∈E wrs

TG(w)

)1/2

.

Now it remains to prove the proposition for the complete graph.

A combinatorial proof

We proceed by adopting a combinatorial view on the structure of the space F . This will
lead us to consider a very special basis of F in which the computations become tractable.
(Background on the concepts used in this construction can be found in (Biggs, 1997).) We
first orient Kd in such a way that every pair of distinct vertices is connected by two parallel
edges pointing in opposite directions. There are d(d−1) (oriented) edges in total. Then, the
subgraphs whose edges are weighted by an array x ∈ F are called Eulerian: the total weight
of the incoming edges is equal to that of the outgoing edges on each vertex. An important
property of Eulerian graphs is that they can be decomposed into a superposition of cycles.
In particular, fix a spanning tree T ∗ of Kd (the tree uses only one edge, if any, between each
pair of vertices, and ignores their orientation). Every edge e /∈ T ∗ can be identified with the
oriented cycle Ce in the graph which consists of the oriented edge e and the unique path
between the endpoints of e in the tree T ∗ (where the direction of the edges on the path
are flipped if necessary). Let χe ∈ {0,±1}d(d−1) be the indicator vector of the cycle Ce

2.
Since a cycle is Eulerian, the vector χe—when folded into a d × d matrix—belongs to F .
Furthermore, the family {χe : e /∈ T ∗} is linearly independent since a cycle Ce contains at
least one edge—namely e—that is not contained in any other cycle Ce′ , e

′ 6= e. There are
exactly d(d − 1) − (d − 1) = (d − 1)2 off-tree edges in Kd, and this number coincides with
the dimension of F . Therefore B = {χe : e /∈ T ∗} is a basis of F , that we henceforth call
a fundamental cycle basis of F .

Let P ∈ {0,±1}(d−1)2×d(d−1) be the matrix where the rows are indexed by the off-tree
edges of the graph, and whose eth row is equal to χe. The matrix P can be regarded as
the cycle-edge incidence matrix of the graph Kd: an entry (e, e′) is non-zero if and only if
e′ ∈ Ce.

Let M ∈ Rd(d−1)×d(d−1) be the diagonal matrix with entries wrs, r 6= s on the diagonal.
Then by a change of variables∫

F
e−

∑
rs x

2
rs/2wrsdx = Det(PP ᵀ)1/2

∫
R(d−1)2

e−z
ᵀ(PM−1P ᵀ)z/2dz

= (2π)(d−1)2/2 Det(PP ᵀ)1/2Det(PM−1P ᵀ)−1/2.

2Each non-zero entry in the vector corresponds to an edge present in the cycle, and the non-zero value
is +1 if the cycle flows along the orientation of that edge, and −1 if the flow is in the opposite direction. In
particular, the eth coordinate of χe is always +1.
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Now it remains to show that Det(PM−1P ᵀ) =
∑

T

∏
(r,s)/∈T w

−1
rs where the sum is over

all spanning trees of Kd. This will finish the proof since we would then have Det(PP ᵀ) =
nst(Kd) = 2d−1dd−2 by Cayley’s formula on the number of spanning trees in the complete
graph.

We expand the determinant using the Cauchy-Binet formula. Let D = M−1/2, and let
E be the set of edges in Kd. For a matrix A of size n×m, I ⊆ {1, · · · , n}, J ⊆ {1, · · · ,m},
we denote by A[I, J ] the matrix of size |I| × |J | whose rows and columns are indexed by I
and J respectively. If I = {1, · · · , n}, then we write A[ : , J ], and likewise for the column
indices. Then, we have

Det(PM−1P ᵀ) =
∑
S⊆E

|S|=(d−1)2

Det(PD[ : , S ])2. (5.28)

Now we use the following key lemma that we prove later.

Lemma 5.12. Assuming the diagonal entries of the (diagonal) matrix D are positive, the
matrix PD[ : , S ] is singular if and only if the graph spanned by the complement S = E\S
of S in Kd contains a cycle.

Since there are exactly (d − 1) edges left unchosen by S, this lemma implies that they
must form a spanning tree in order for the corresponding term to contribute to the sum in
identity (5.28). Hence

Det(PM−1P ᵀ) =
∑

T : spanning tree

Det(PD[ : , T ])2.

Fix a spanning tree T of Kd. Observe that if T = T ∗ then the edges that generate the
cycles in the fundamental cycle basis B are exactly the ones that are selected in T . In other
words, each row and each column of PD[ : , T ] contain exactly one non-zero entry, (i.e.,

P [ : , T ] is a permutation matrix), hence Det(PD[ : , T ]) = ±
∏

(r,s)/∈T w
−1/2
rs . If

T 6= T ∗ then we split the set of edges in T into those that belong to T ∗ and those that
do not. Each column in PD[ : , T ] corresponding to an edge in T ∩ T ∗ contains only
one non-zero entry (since this edge is contained in only one cycle in B). Therefore all such
edges (columns) along with the corresponding cycles (rows of the non-zero entry) can be
successively eliminated from the determinant, yielding

Det(PD[ : , T ]) = ±

 ∏
(r,s)∈T̄∩T̄ ∗

w−1/2
rs

 ·Det (PD[ T ∩ T ∗ , T ∩ T ∗ ]
)
. (5.29)

Notice that this operation has drastically reduced the size of the problem; the common size
k of the sets T ∩T ∗ and T ∩T ∗ is anywhere between 0 and d− 1 at most. Now we will show
that

Det
(
PD[ T ∩ T ∗ , T ∩ T ∗ ]

)
= ±

∏
(r,s)∈T̄∩T ∗

w−1/2
rs ,
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using a peeling argument slightly more delicate than the one previously applied. Observe
that PD[ T ∩ T ∗ , T ∩ T ∗ ] is the k × k cycle-edge incidence matrix with k edges T ∩ T ∗
indexing the rows and k edges in T ∩ T ∗ indexing the columns, such that a row indexed by
e indicates the edges e′ ∈ T ∩ T ∗ that participate in the cycle Ce.

So far, the spanning tree T ∗ was arbitrary. To continue, we choose T ∗ to be the star tree
rooted at vertex 1 (see Figure 5.1, left). This choice simplifies the combinatorial argument to
come, because the fundamental cycle basis B is now composed of triangles rooted at vertex
1. Crucially, this is where the assumption G = Kd is needed; to ensure the existence of a star
spanning tree. Figure 5.1 (right) illustrates the remaining edges after the first elimination
procedure.

1

2 3 4 d− 2d− 1 d

T ∗

Kd−1

1

2 3 4 d− 2d− 1 d

T ∩ T ∗

T ∗

T

Figure 5.1: Left: the graph Kd where the star tree T ∗ is highlighted in red. Right: remaining
edges in red and blue after the first elimination procedure (violet edges were removed).

Since T is a tree, by Lemma 9, each row and column of the matrix PD[ T ∩T ∗ , T ∩T ∗ ]
contains at least one non-zero entry. Furthermore, T ∗ being the star graph, each cycle
Ce ∈ B is a triangle rooted at vertex 1, thus each row of the above matrix contains at most
two non-zero entries. This is simply because one of the three edges that compose the triangle
Ce—namely e—is not selected by the set T ∩T ∗ that indexes the columns of the matrix. See
Figure 5.1, right (any blue edge has at most two adjacent red edges).

Furthermore, if all the rows contain exactly two non-zero entries then by the pigeonhole
principle (since |T ∩ T ∗| = |T ∩ T ∗|), there will exist three edges in T ∩ T ∗ that form a
cycle C (see Figure 5.2, left). However, we assumed that T is a tree so this cannot happen.
Therefore there must exist at least one row in the matrix with exactly one non-zero entry
(i.e., there must exist an edge e ∈ T ∩ T ∗ such that Ce = {e, e1, e2} ∈ B with e1 ∈ T ∩ T ∗
and e2 ∈ T ∩ T ∗). See Figure 5.2.

Hence, we can eliminate this row and its corresponding column from the determinant.
This corresponds to eliminating (dashing) the edges e and e1 in the right figure above.
Applying this argument iteratively allows us to peel all the edges and the cycles they belong
to (see Figure 5.3), so that we obtain

Det
(
PD[ T ∩ T ∗ , T ∩ T ∗ ]

)
= ±

∏
(r,s)∈T̄∩T ∗

w−1/2
rs .

This completes the proof.
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C e

e1

e2

Figure 5.2: Left: an impossible situation where there remains a cycle C where no edge
was eliminated in the first step. Right: a logical situation where there exist a fundamental
cycle Ce = (e, e1, e2) with one edge in T ∗ only, one edge in T only, and one edge in their
intersection.

T ∩ T ∗
T ∩ T ∗

Figure 5.3: An illustration of the peeling process. “Wedges” with one edge in T only and
the other in T ∗ only are eliminated successively until no edges remain. Violet edges were
eliminated in the first step.

Proof of Lemma 5.12. Since we assumed the entries of the diagonal matrix D are strictly
positive, we assume without loss of generality thatD is the identity matrix. Assume now that
the complement of S contains a cycle whose indicator vector is ξ ∈ {0,±1}d(d−1). Since B is
a fundamental cycle basis, there exists x ∈ R(d−1)2\{0} such that ξ =

∑
e/∈T ∗ xeχe = P ᵀx.

Since S selects no edges in the cycle indicated by ξ, it is clear that xᵀP [ : , S ] = 0,
and this settles one direction. As for the other direction, let x ∈ R(d−1)2\{0} lie in the null
space of (P [ : , S ])ᵀ. The vector P ᵀx indicates the weights of a Eulerian subgraph in
Kd (this vector belong to F when written in the form of a d × d matrix). The condition
(P [ : , S ])ᵀx = 0 implies that this Eulerian subgraph involves no edges from S. In
particular, any cycle from this subgraph (there always exists one) is in the complement of
E. This completes the proof. �
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An analytic proof

This proof contrasts with the previous purely combinatorial approach in that it is mainly
analytic. The approach relies on an interpolation argument that involves expressing the
Gaussian integral over F as the limit of another parameterized Gaussian integral, when the
parameter tends to zero. This latter integral can on the other hand be written in closed form,
by relating it to the characteristic polynomial of a Laplacian matrix. Then the Principal
Minors Matrix-Tree Theorem is invoked to finish the argument. This final step is the only
place where combinatorics appear. (This proof approach was suggested to us by Andrea
Sportiello.) Incidentally, this proof can be carried out with an arbitrary graph G; there is
no need to reduce to the complete case. For δ > 0 let

I(δ) =
1

(2πδ2)(d−1)/2

∫
Rd×d

e−
1
2

∑
rs x

2
rs/wrs e−

1
2δ2
‖(x−xᵀ)1‖2`2 dx.

The additional Gaussian term in I(δ) gradually concentrates the mass of the integral on F
as δ becomes small, and we have the following limiting statement:

Lemma 5.13. We have

lim
δ→0

I(δ) = cd

∫
F
e−

1
2

∑
rs x

2
rs/2wrs dx,

with

cd =
1

(2π)(d−1)/2

∫
F⊥

e−2‖z1‖2`2 dz = (2d)−(d−1)/2.

On the other hand, a straightforward computation allows us to write I(δ) in closed form:

Lemma 5.14. Let G = (V,E) be a weighted graph with V = {1, · · · , d}, E = {(r, s) ∈
V × V, r 6= s} where the edges are weighted by the array w ∈ Rd×d

+ . Let L(w) ∈ Rd×d be the
Laplacian matrix of G. For all δ > 0, it holds that

I(δ) = (2π)((d−1)2+d)/2

(∏
r,s

wrs

)1/2
δ

Det (δ2I +L(w))1/2
.

Now, by the Principal Minors Matrix-Tree Theorem (see, e.g., (Chaiken, 1982)), the
characteristic polynomial of the Laplacian matrix of a graph admits the following expansion

Det (xI +L(w)) =
∑
F

x|roots(F )|
∏

(r,s)∈F

wrs,

where the sum is over all rooted spanning forests F of the graph. We finish the argument
by taking a limit in δ:

δ2(d−1)Det
(
I + δ−2L(w)

)
= δ−2Det

(
δ2I +L(w)

)
−−−→
δ→0

d
∑
T

∏
(r,s)∈T

wrs = (2d)d−1T (w),
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since the above limit singles out the rooted spanning forests with exactly one root—i.e.,
rooted spanning trees—from the characteristic polynomial, and there are d ways of choosing
the root of a spanning tree. This exactly leads to the desired identity∫

F
e−

1
2

∑
rs x

2
rs/2wrs dx = (2π)((d−1)2+d)/2

(∏
r,swrs

T (w)

)1/2

.

Proof of Lemma 5.13. We decompose Rd×d into the direct sum F ⊕ F⊥. It is easy
to see that F⊥ = {z = λ1ᵀ − 1λᵀ, λ ∈ Rd} which is a (d − 1)-dimensional space. For
x ∈ Rd×d, let y ∈ Rd×d be its orthogonal projection on F , and z = x − y. Therefore
(x− xᵀ)1 = (z − zᵀ)1 = 2z1 = 2(dλ− (1ᵀλ)1). For δ > 0, we have

I(δ) =
1

(2πδ2)(d−1)/2

∫
F×F⊥

e−
1
2

∑
r,s(yrs+zrs)

2/wrs e−
2
δ2
‖z1‖2`2 dydz.

We make the change of variables z′ = z/δ:

I(δ) =
1

(2π)(d−1)/2

∫
F×F⊥

e−
1
2

∑
r,s(yrs+δz

′
rs)

2/wrs e−2‖z′1‖2`2 dydz′.

By dominated convergence,

lim
δ→0

I(δ) =
1

(2π)(d−1)/2

∫
F×F⊥

e−
1
2

∑
r,s y

2
rs/wrs e−2‖z1‖2`2 dydz

=
1

(2π)(d−1)/2

∫
F
e−

1
2

∑
r,s y

2
rs/wrsdy

∫
F⊥

e−2‖z1‖2`2 dz.

Moreover,∫
F⊥

e−2‖z1‖2`2 dz = (2d)(d−1)/2

∫
{λ∈Rd,1ᵀλ=0}

e−2d2‖λ‖2`2 dλ = (2π)(d−1)/2(2d)−(d−1)/2,

where the pre-factor in the first equality comes from the fact that ‖z‖2
F = 2d ‖λ‖2

`2
for

z = λ1ᵀ − 1λᵀ, λ ∈ Rd, 1ᵀλ = 0. �

Proof of Lemma 5.14. Let δ > 0. We linearize the quadratic term ‖(x− xᵀ)1‖2
`2

in
I(δ) by writing the corresponding Gaussian as the Fourier transform of another Gaussian:
∀x ∈ Rd×d,

e−
1

2δ2
‖(x−xᵀ)1‖2`2 =

1

(2π)d/2

∫
Rd
e−iδ

−1yᵀ(x−xᵀ)1− 1
2
‖y‖2`2 dy,

where i2 = −1. Then

I(δ) =
1

(2πδ2)(d−1)/2

1

(2π)d/2

∫
Rd×d

∫
Rd
e−

1
2

∑
rs x

2
rs/wrs e−iδ

−1yᵀ(x−xᵀ)1− 1
2
‖y‖2`2 dxdy.
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We complete the square involving xrs in the exponentiated expression:

−1

2

∑
r,s

x2
rs/wrs− iδ−1yᵀ(x−xᵀ)1 = −1

2

∑
r,s

1

wrs

((
xrs + i

wrs
δ

(yr − ys)
)2

+
w2
rs

δ2
(yr − ys)2

)
.

Then by Fubini’s theorem,

I(δ) =
1

(2πδ2)(d−1)/2

1

(2π)d/2

∫
Rd
e−

1
2
‖y‖2`2−

1
2

∑
rs

wrs
δ2

(yr−ys)2

∫
Rd×d
e−

1
2

∑
rs

1
wrs

(xrs+iwrs
δ

(yr−ys))
2

dxdy.

The inner integral evaluates to
(∏

r,s 2πwrs

)1/2

. Hence

I(δ) =
(2π)(d−1)2/2

δd−1

(∏
r,s

wrs

)1/2 ∫
Rd
e−

1
2
‖y‖2`2−

1
2

∑
r,s

wrs
δ2

(yr−ys)2

dy

=
(2π)((d−1)2+d)/2

δd−1

(∏
r,s

wrs

)1/2

Det
(
I + δ−2L(w)

)−1/2
,

where L(w) ∈ Rd×d is the Laplacian matrix of the weighted graph G. �

5.8 Discussion

Our main result, Theorem 5.1, leaves a gap of essentially a factor of two between γlow and
γup. This is a limitation of the methods employed. In particular, it is plausible that the
upper bound is loose due to a possible lack of concentration of the random variable Z about
its mean, and this translates to the possibility of existence of a non-trivial interval inside
[γlow, γup] where Z is typically close to 1 while its expectation is exponentially large. This
is a standard issue in the use of the first (or second) moment method encountered in many
random CSPs. Surprisingly enough—and as mentioned below 5.1—this is not the case in
HQP, as it was shown by Scarlett and Cevher (2017), after a preliminary version of this
result was made public, that γup is the sharp threshold. Therefore the first moment method
does identify the phase transition in this problem.

Beyond our setting, the “sparse” regime where the sets Sa are of constant size k (exactly or
on average) could also be of interest. Here, the relevant scaling is one where m is proportional

to n. The lower bound argument could be easily extended and yields a bound of H(π)
(d−1) log k

.
As for the upper bound, one could in principle follow the same first moment strategy, but
our analysis breaks in a quite serious fashion, in that none of our asymptotic estimates hold
true in this regime.
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Chapter 6

Decoding from pooled Data: phase
transitions of massage-passing

We recall the setting of the Histogram Query Problem: let τ ∗ : {1, · · · , n} 7→ {1, · · · , d}
be an assignment of n variables to d categories. We denote the queried subpopulations by
Sa ⊂ {1, · · · , n}, 1 ≤ a ≤ m. Given m subsets Sa, the histogram of categories of the pooled
subpopulation Sa is denoted by ha ∈ Zd+, i.e., for all 1 ≤ a ≤ m,

ha :=
(∣∣τ ∗−1(1) ∩ Sa

∣∣ , · · · , ∣∣τ ∗−1(d) ∩ Sa
∣∣) . (6.1)

We let π = 1
n

(∣∣τ ∗−1(1)
∣∣ , · · · , ∣∣τ ∗−1(d)

∣∣) denote the vector of proportions of assigned values;
i.e., the empirical distribution of categories. We place ourselves in a random dense regime
in which the sets {Sa}1≤a≤m are independent draws of a random set S where Pr(i ∈ S) = α
independently for each i ∈ {1, . . . , n}, for some fixed α ∈ (0, 1). Meaning, at each query, the
size of the pool is proportional to the size of the population: E[|S|] = αn.

Here we adopt a linear-algebraic formulation which will be more convenient for the pre-
sentation of the algorithm. We can represent the map τ ∗, which we refer to as the planted
solution, as a set of vectors x∗i = eτ∗(i) ∈ Rd, for 1 ≤ i ≤ n. Let A ∈ Rm×n represent
the sensing matrix: Aai = 1{i ∈ Sa}, for all 1 ≤ i ≤ n, 1 ≤ a ≤ m. The histogram
equations (6.1) can be written in the form of a linear system of m equations:

ha =
n∑
i=1

Aaix
∗
i , a ∈ {1, · · · ,m}. (6.2)

Our goal can thus be rephrased as that of inverting the linear system (6.2). Note that the
problem becomes trivial if m = n, since the square random matrix A will be invertible with
high probability. However, as we have seen in the previous chapter, a detailed information-
theoretic analysis of the problem shows that the planted solution is uniquely determined by
the above linear system for m = γ n

logn
, γ > 0. In this chapter we study the algorithmic

problem in the regime m = κn, κ < 1.
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We note that in the deterministic setting, where one is allowed to design the sensing
matrix A, i.e. choose the pools Sa at each query, Wang et al. (2016) provided a querying
strategy that recovers τ ∗ provided thatm > c1

n
logn

, where c1 is an absolute constant. Ignoring
the dependence on d, this almost matches the information-theoretic limit. The random
setting has not been treated so far.

We present an Approximate Message Passing (AMP) algorithm for the random dense
setting, where each query involves a random subset of individuals of size proportional to
n. We characterize the exact asymptotic behavior of the algorithm in the limit of large
number of individuals n and a proportionally large number of queries m, i.e. m/n → κ.
This is done by heuristically deriving the corresponding State Evolution (SE) equations
corresponding to the AMP algorithm. Then, a rigorous analysis of the SE dynamics reveals
a rich and interesting behavior; namely the existence of phase transition phenomena in the
parameters κ, d,π of the problem, due to which the behavior of AMP changes radically, from
exact recovery to very weak correlation with the planted solution. We exactly locate these
phase transitions in simple situations, such as the binary case d = 2, the symmetric case
π = (1

d
, · · · , 1

d
), and the general case under the condition that the SE iteration is initialized

from a special point. The latter exhibits an intriguing phenomenon: the existence of not one,
but an entire sequence of thresholds in the parameter κ that rules the behavior of the SE
dynamics. These thresholds correspond to sharp changes in the structure of the covariance
matrix of the estimates output by AMP. We expect this phenomenon to be generic beyond
the special initialization case studied here. Beyond the precise characterization of the phase
transition thresholds in these special cases, we initiate the study of State Evolution in a
multivariate setting by proving the convergence of the full-dimensional SE iteration, when
initialized from a “far enough” point, to a fixed point, and show further properties of the
iterate sequence.

6.1 Approximate message passing and state evolution

In this section we present the Approximate Message Passing (AMP) algorithm and the
corresponding State Evolution (SE) equations.

The AMP algorithm

The AMP algorithm of Donoho, Maleki, and Montanari (2009), known as the TAP equations,
after Thouless, Anderson, and Palmer (1977), can be derived from Belief Propagation (BP)
on the factor graph modeling the recovery problem. The latter is a bipartite graph of
n+m vertices. The variables {xi : 1 ≤ i ≤ n} constitute one side of the bipartition, and the
observations {ha : 1 ≤ a ≤ m} constitute the other side. The adjacency structure is encoded
in the sensing matrix A. Endowing each edge (i, a) with two messages mi→a,ma→i ∈
∆d−1, ∆d−1 being the probability simplex, one can write the self-consistency equations for
the messages at each node by enforcing the histogram constraints at each observation (or
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check) node while treating the incoming messages as probabilistically independent in the
marginalization operation. The iterative version of these self-consistency equations is the
BP algorithm. BP is further simplified to AMP by exploiting the fact that the factor graph
is random and dense, i.e. one only needs to track the average of the messages incoming to
each node. This reduces the number of passed messages from m×n to m+n. For the present
d-variate problem, the algorithm we present is a special case of Hybrid-GAMP of Rangan
et al. (2012). We let h̄a = (ha − αnπ)/

√
n and A = (A − α1m1ᵀn)/

√
n be the centered

and rescaled data, and assume that the parameters α and π are known to the algorithm.
The AMP algorithm reads as follows: At iteration t = 1, 2, . . . , we update the check nodes
a = 1, · · · ,m as

ωta =
∑
j∈∂a

Aajx̂
t
j − V t

a

(
V t−1
a

)−1
(h̄a − ωt−1

a ),

V t
a =

∑
j∈∂a

A2
ajB

t
j,

and then update the variable nodes i = 1, · · · , n as

zti = x̂ti + Σt
i ·
∑
b∈∂i

Abi
(
V t
b

)−1
(h̄b − ωtb),

Σt
i =

(∑
b∈∂i

A2
bi

(
V t
b

)−1
)−1

,

x̂t+1
i = η(zti ,Σ

t
i),

Bt+1
i = Diag(x̂t+1

i )− x̂t+1
i · x̂t+1ᵀ

i ,

with

η(z,Σ) :=
d∑
r=1

πrer
e−

1
2

(z−er)ᵀΣ−1(z−er)

Z(z,Σ)
∈ Rd, (6.3)

where Z(z,Σ) =
∑d

r=1 πre
− 1

2
(z−er)ᵀΣ−1(z−er) is a normalization factor so that the entries of η

sum to one. The map η plays the role of a “thresholding function” with a matrix parameter
Σ that is adaptively tuned by the algorithm. One should compare this situation to the case
of sparse estimation (Donoho, Maleki, and Montanari, 2009) where the soft thresholding
function is used. Here, the form taken by η is adapted to the structure of the signal we
seek to recover. The variables ωa and Va represent estimates of the histogram ha and their
variances. The variables zi and Σi are estimators of the planted solution x∗i and their
variances before thresholding, while x̂i ∈ ∆d−1 and Bi are the posterior estimates of x∗i and
its variance, i.e., after thresholding. The algorithm can be initialized in a “non-informative”
way by setting x̂0

i = π,B0
i = Diag(π)−ππᵀ for all i = 1, . . . , n, and ω−1

a = 0 and V −1
a = I

for all a = 1, · · · ,m for example.s We defer the details of the derivation to Section 6.5.
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State evolution

State Evolution (SE) (Bayati, Lelarge, and Montanari, 2012; Donoho, Maleki, and Monta-
nari, 2009), a version of the cavity method of statistical physics (Mézard, Parisi, and Virasoro,
1990), allows us to exactly characterize the asymptotic behavior of AMP at each time step
t, by tracking the evolution in time of the relevant order parameters of the algorithm. More
precisely, let

Mt,n :=
1

n

n∑
i=1

x̂tix
∗ᵀ
i , and Qt,n :=

1

n

n∑
i=1

x̂tix̂
tᵀ
i .

The matrix Mt,n tracks the average alignment of the estimates with the true solution, and
Qt,n their average covariance structure. The SE equations relate the values of these order
parameters at t+1 to those at time t in the limit n→∞, m/n→ κ. We letMt andQt denote
the respective limits of Mt,n and Qt,n, which we assume exist in this “replica-symmetric”
regime, and let D = Diag(π). The SE equations read

Mt+1 =
d∑
r=1

πr Eg
[
η(er +X

1
2
t g, κ

−1Rt)
]
· eᵀr ,

Qt+1 =
d∑
r=1

πr Eg
[
η(er +X

1
2
t g, κ

−1Rt) · η(er +X
1
2
t g, κ

−1Rt)
ᵀ
]
,

Xt = κ−1(D −Mt −M ᵀ
t +Qt),

Rt = Diag(Qt1)−Qt,

with g ∼ N (0, I). The matrix κXt is the covariance matrix of the error of the estimates
output by AMP at time t, and Rt can be interpreted as the average covariance matrix of the
estimates themselves. Note that the parameter α has disappeared from the characterization
by the SE equations, just as in the information theoretic study.

The full derivation of these equations can be found in Section 6.6. The main hypothesis
behind the derivation, which we do not rigorously verify, is that the variables zti are asymp-
totically Gaussian, centered about x∗i and with covariance Xt: the measure 1

n

∑n
i=1 δzti−x∗i

converges weakly to N (0,Xt). We refer to Bayati, Lelarge, and Montanari (2012); Bayati
and Montanari (2011) for rigorous results, the assumptions of which do not apply to this
setting. It is an interesting problem to prove the exactness of the SE equations in this setting.

Simplification of SE

Here we simplify the system of SE equations above to a single iteration. This crucially relies
on the following Proposition:

Proposition 6.1. If M0 = Q0, then for all t we have
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(i) Mt = Qt. In particular, Mt is a symmetric PSD matrix, and Mt1 = π.

(ii) Rt = κXt = D −Mt.

The proof of the above proposition is deferred to Section 6.4. We pause to make a few
remarks. The assumption of Proposition 6.1 could be enforced for example by setting the
initial estimates of AMP as x̂0

i = π for all i. This yields M0 = Q0 = ππᵀ, and hence
X0 = κ−1(D−ππᵀ). The statements in this proposition can be seen as “dynamic” versions
of the Nishimori property discussed in the first three chapters (see Zdeborová and Krzakala,
2016). They simplify the SE equations to a single iteration on Xt. To succinctly present
this simplification, for r ∈ {1, · · · , d}, and X � 0, we let

ηr(X) := η(er +X
1
2g,X) ∈ ∆d−1.

Then, the SE equations can be seen to boil down to the single equation

Xt+1 = κ−1f(Xt), (6.4)

where, recalling that g ∼ N (0, I), we define

f(X) := D −
d∑
r=1

πr Eg
[
ηr(X)ηr(X)ᵀ

]
(6.5)

= D −
d∑
r=1

πr Eg [ηr(X)] · eᵀr , (6.6)

=
d∑
r=1

πr Eg [(er − ηr(X)) · (er − ηr(X))ᵀ] , (6.7)

where equations (6.5) and (6.6) correspond to substituting the value of Qt and Mt into
statement (ii) of the above proposition, while the last equality (6.7) is just a consequence of
the first two, (6.5) and (6.6). Furthermore, via elementary algebra, the coordinates of the
vector ηr(X) can written as

(ηr(X))s =

πs exp

(
−gᵀX− 1

2 (er − es)− 1
2

∥∥∥X− 1
2 (er − es)

∥∥∥2

`2

)
Zr(X)

, (6.8)

with

Zr(X) :=
d∑
s=1

πs exp

(
−gᵀX−

1
2 (er − es)−

1

2

∥∥∥X− 1
2 (er − es)

∥∥∥2

`2

)
.
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The mean squared & 0-1 errors

We can measure the performance of AMP by the mean squared error of the estimates {x̂ti}ni=1:

MSEt,n =
1

n

n∑
i=1

∥∥x̂ti − x∗i∥∥2

`2
.

Since x̂ti ∈ ∆d−1, an alternative measure of performance would be the expected 0-1 distance
between a random category drawn from the multinomial x̂i and the true category x∗i , then
averaged over i = 1, · · · , n. This error would be written as

1

n

n∑
i=1

d∑
r=1

x̂tir(1− eᵀrx∗i ) = 1− 1

n

n∑
i=1

x̂tᵀi x
∗
i

= 1− trace(Mt,n) = trace (D −Mt,n) .

On the other hand, the MSE in the large n limit reads

MSEt := lim
n→∞

MSEt,n = trace (Qt −Mt −M ᵀ
t +D) ,

= trace (D −Mt) ,

so the two notions of error coincide in the limit. Note that the MSE at each step t can be
deduced from SE iterate at time t: MSEt = κ trace(Xt).

6.2 Analysis of the state evolution dynamics

In this section we present our main results on the convergence of the SE iteration (6.4) to
a fixed point, and the location of the phase transition thresholds in three special cases. We
start by analyzing the SE map f and present some important generic results.

Analysis of the SE map f

From expression (6.7), we see that the map f sends the positive semi-definite (PSD) cone
Sd×d+ to itself. As written, f is only defined for invertible matrices X, but it could be
extended by continuity to singular matrices: if er − es is in the null space of X, we declare
that exp(−1

2
‖X− 1

2 (er − es)‖2) = 0. This convention is consistent with the limiting value

of a sequence
{

exp(−1
2
‖X−

1
2

n (er − es)‖2)
}
n≥0

where
{
Xn

}
n≥0

is a sequence of invertible
matrices approaching X. This also has an interpretation based on an analogy with electrical
circuits, which we discuss shortly. This extension will be also denoted by f . It is continuous
over the Sd×d+ , and we have f(0) = 0. Now, we state an important property of f , namely
that it is monotone:
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Proposition 6.2. The map f is order-preserving on Sd×d+ ; i.e., for all X,Y � 0, if X � Y
then f(X) � f(Y ).

The proof of this Proposition is conceptually simple but technical, and is thus deferred to
Section 6.4. Next, we adopt a combinatorial view of the structure of the SE dynamics. This
will help us identity subspaces of Sd×d+ that are left invariant by f . Note that the definition of

f involves X−
1
2 acting on span(1)⊥. Additionally, it is easy to verify that for all X ∈ Sd×d+ ,

f(X)1 = 0, and f(X)rs ≤ 0 for all r 6= s. Therefore, without loss of generality, we can
restrict the study of the state evolution iteration to the set

A :=
{
X ∈ Sd×d+ , X1 = 0, Xrs ≤ 0 ∀(r, s) s.t. r 6= s

}
,

since it is invariant under the dynamics. The set A can be seen as the set of Laplacian
matrices of weighted graphs on d vertices (every edge (r, s) is weighted by −Xrs for X ∈ A).
Hence f can be seen as a transformation on weighted graphs. This transformation enjoys
the following invariance property:

Proposition 6.3. For all X ∈ A, f preserves the connected component structure of the
graph represented by X; i.e, two distinct connected components of the graph whose Laplacian
matrix is X remain distinct when transformed by f .

Proof. The proof relies on the concept of effective resistance. One can view a graph of
LaplacianX ∈ A as a network of resistors with resistances 1/(−Xrs). The effective resistance
of an edge (r, s) is the resistance of the entire network when one unit of current is injected
at r and collected at s (or vice-versa). Its expression is a simple consequence of Kirchhoff’s

law, and is equal to Rrs :=
∥∥X−1/2(er − es)

∥∥2

`2
(see e.g. Spielman, n.d.). It is clear that the

effective resistance of an edge is finite if and only if both its endpoints belong to the same
connected component of the graph, otherwise Rrs = +∞, and (ηr(X))s = 0. This causes f
to “factor” across connected components, and thus acts on them independently. �

Next, let us look at the limit of f(tX) for large t. For X ∈ A invertible on span(1)⊥,
we have limt→∞ f(tX) = D − ππᵀ, since ηr(tX) → π almost surely. More generally, if X
represents a graph with {Vk}1≤k≤K connected components, (ηr(tX))s 6= 0 only if r, s are in
the same component. Hence, ηr(tX) → Pkπ

1ᵀPkπ
, where Pk is the orthogonal projector onto

the span of the coordinates in Vk where r ∈ Vk, and we have

lim
t→∞

f(tX) = D −
K∑
k=1

Pkππ
ᵀPk

1ᵀPkπ
=: LK . (6.9)

By Propositions 6.2 and 6.3 and the limit calculation (6.9), we deduce that for any parti-
tion {Vk}1≤k≤K of {1, · · · , d}, and all Laplacian matrices X � 0 of graphs with connected
components V1, · · · , VK , we have

f(X) � LK . (6.10)
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Indeed, since X � tX for all t ≥ 1, we have f(X) � f(tX) by monotonicity of f . Letting
t → ∞ settles the claim. In particular, with K = 1, L1 = D − ππᵀ, and for all X ∈ A
representing a connected graph (i.e. rank(X) = d− 1), we have f(X) � D − ππᵀ. We are
now ready to state the main result of this subsection.

Theorem 6.4. Let {Vk}1≤k≤K be a partition of {1, · · · , d}, and LK defined as in (6.9). Let
X0 ∈ A with connected components V1, · · · , VK, and such that X0 � κ−1LK. If the SE
iteration (6.4) is initialized from X0, then the sequence {Xt}t≥0 is decreasing in the PSD
order, i.e., Xt �Xt−1 for all t ≥ 1, and converges to a fixed point X∗, i.e., X∗ = κ−1f(X∗).

Proof. Let X0 satisfy the conditions of the Theorem. Using X0 � κ−1LK and observa-
tion (6.10), we have X1 = κ−1f(X0) � X0. By monotonicity of f , we deduce that the
SE iterates form a monotone sequence: Xt+1 � Xt for all t ≥ 0. Since Xt � 0 for all t,
then this sequence must have a limit1 X∗ � 0. By continuity of f , this limit must satisfy
X∗ = κ−1f(X∗). �

We expect that for κ large enough, X∗ = 0, meaning that limMt = D and limMSEt = 0.
This situation corresponds to perfect recovery of the planted solution {x∗i }ni=1 by AMP. We
can easily show that this is the case for

κ > κ∗ := sup
X∈A

λmax(f(X))

λmax(X)
. (6.11)

Indeed,

λmax(Xt+1) = κ−1λmax(f(Xt)) ≤
κ∗

κ
λmax(Xt).

If κ > κ∗ then the SE iterates converge to 0 for every initial point. It is currently unclear
to us whether this condition is also necessary. Instead, we consider three special cases and
exactly locate the phase transitions thresholds.

The binary case

In this section we treat the case d = 2, which is akin to a noiseless version of the CDMA
problem (Guo and Verdú, 2005) or the problem of compressed sensing with binary prior. In
this case, the SE iteration becomes one-dimensional. Indeed, we have A = {xuuᵀ, x ≥ 0},
with u = (1,−1)ᵀ. And since this space is invariant under f , the latter can be parameterized
by one scalar function x 7→ ϕ(x), defined by

f(xuuᵀ) = ϕ(x)uuᵀ, ∀x ≥ 0.

1One can see this by observing that {zᵀXtz}t≥0 is a non-negative monotonically decreasing sequence
for all z ∈ Rd; hence it must have a (non-negative) limit. Then, via the identity yᵀXtz = 1

2 ((y+z)ᵀXt(y+
z)− (y − z)ᵀXt(y − z)), one deduces that {yᵀXtz}t≥0 has a limit for all y, z ∈ Rd. These limits define a
bi-linear operator which is (y, z) 7→ yᵀX∗z.
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Next, we compute ϕ. For X = xuuᵀ, we have X−
1
2u = 1√

2x
u. Then, letting π = (p, 1−p)ᵀ,

using (6.6) we have

ϕ(x) = f(xuuᵀ)1,1 = p− pEg
[

p

p+ (1− p)e−gᵀu/
√

2x−1/2x

]
,

= Eg
[

p(1− p)
1− p+ pegᵀu/

√
2x+1/2x

]
,

= Eg
[

p(1− p)
1− p+ peg/

√
x+1/2x

]
. (6.12)

Letting Xt = atuu
ᵀ, for all t ≥ 0, the SE reduces to

at+1 = κ−1ϕ(at). (6.13)

The function ϕ is continuous, increasing on R+, and bounded (since ϕ(∞) = p(1− p) <∞).
Moreover, ϕ(0) = 0. Therefore, the sequence (6.13) converges to zero for all initial conditions
a0 > 0 if and only if κ−1ϕ(x) < x for all x > 0, i.e.

κ > κ∗binary(p) := sup
x>0

Eg
[

p(1− p)x2

1− p+ p exp (gx+ x2/2)

]
.

By a change of variables g + x/2→ g, one can also write this threshold as

κ∗binary(p) = sup
x>0

Eg

[
p(1− p)x2e−x

2/8

pegx/2 + (1− p)e−gx/2

]
. (6.14)

If κ < κ∗binary(p), then a new stable fixed point a∗ > 0 appears and the sequence {at}t≥0

converges to it for all initial conditions a0 ≥ a∗, and the asymptotic MSE of the AMP
algorithm is limt→∞MSEt = a∗ trace(uuᵀ) = 2a∗.

Figure 6.1 demonstrates the accuracy of the above theoretical predictions — the predicted
MSE by State Evolution matches the empirical MSE of AMP on a random instance with
n = 2000, across the whole range of p and κ.

The symmetric case

In this section we treat the symmetric case where all types have equal proportions: π =
(1
d
, · · · , 1

d
), and analyze the SE dynamics. In this situation, the half-line {x(D−ππᵀ) , x ≥

0} is stable under the application of the map f , and the dynamics becomes one-dimensional
if initialized on this half-line.

Lemma 6.5. Assume π = (1
d
, · · · , 1

d
). For all x > 0, we have

f

(
x(I − 1

d
11ᵀ)

)
= ϕ(x)

(
I − 1

d
11ᵀ
)
,
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Figure 6.1: MSE of AMP on a random instance with n = 2000 in the binary case (left),
and predicted MSE by State Evolution (right) as a function of p = π1 and κ. The blue
region corresponds to exact recovery. The boundary of this region is traced by the curve
p 7→ κ∗binary(p) in equation (6.14).

with

ϕ(x) = Eg

[
exp(g2/

√
x)

exp(g1/
√
x+ 1/x) +

∑d
r=2 exp(gr/

√
x)

]
.

Proof. Let P = (I − 1
d
11ᵀ), and X = xP with x > 0. The matrix P is the orthogonal

projector on span(1)⊥. Therefore, we have

X−1/2(er − es) = (er − es)/
√
x.

Therefore for all r 6= s,

f(X)rs = −1

d
Eg

[
exp (−gᵀ(er − es)/

√
x− 1/x)

1 +
∑

l 6=r exp (−gᵀ(er − el)/
√
x− 1/x)

]
.

By permutation-invariance of the Gaussian distribution, we see that f(X) is constant on
its off-diagonal entries, hence on its diagonal entries as well since f(X)1 = 0. Writing
f(X) = α

d
I − β

d
(11ᵀ − I), we have (α + β) = dβ. Hence, f(X) = β(I − 1

d
11ᵀ) with

β = Eg

[
exp (−gᵀ(e1 − e2)/

√
x− 1/x)

1 +
∑

l 6=r exp (−gᵀ(e1 − el)/
√
x− 1/x)

]
,

= Eg

[
exp(g2/

√
x)

exp(g1/
√
x+ 1/x) +

∑d
r=2 exp(gr/

√
x)

]
,

as claimed. �
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Therefore, if the SE iteration is initialized on this half-line: X0 = a0(I − 1
d
11ᵀ), with

a0 > 0, then Xt = at(I − 1
d
11ᵀ) for all t, with

at+1 = κ−1ϕ(at).

Just as in the binary case, the function ϕ is continuous, increasing and bounded with ϕ(0) =
0. Hence, we have convergence to zero for all initial condition a0 > 0 if and only if κ−1ϕ(x) <
x for all x > 0, i.e.

κ > κ∗sym(d) := sup
x>0

Eg

[
x2 exp (g2x)

exp (g1x+ x2) +
∑d

r=2 exp (grx)

]
. (6.15)

Otherwise, it converges to a non-zero value a∗ for all initial conditions a0 > a∗, and the
asymptotic MSE of the AMP algorithm is a∗ trace(I − 1

d
11ᵀ) = (d− 1)a∗. Using the change

of variables g1 + x→ g1, one can also write this threshold as

κ∗sym(d) = sup
x>0

Eg

[
x2e−x

2/2 exp((g1 + g2)x)∑d
r=1 exp(grx)

]
.

It is not straightforward to read off the magnitude of κ∗sym(d) from the above expression. We
provide a table of approximate values for several small values of d:

d 2 3 4 5 6 7 8 9 10
κ∗sym .47 .39 .34 .30 .27 .24 .22 .21 .20

For larger d, an asymptotic expression for this threshold may be desirable. We prove the
following in Section 6.4:

Proposition 6.6. There exist two constants 0 < cl < cu such that when d is large enough,

cl
log d

d
≤ κ∗sym(d) ≤ cu

log d

d
,

Furthermore, one can take cl = 1− od(1), and cu = 2 + od(1).

The general case initialized with a matching

Here we consider the SE iteration in arbitrary dimension and with arbitrary proportions
of types π, but we initialize the dynamics from a special point X0 that corresponds to a
matching of the vertices {1, · · · , d}: each edge present in the matching corresponds to its own
connected component. This case reveals an interesting behavior which we suspect is generic
regardless of the initialization: the existence of a sequence of thresholds κ∗1, κ

∗
2, · · · ruling the

behavior of the SE dynamics. Let M = {(i1, i2), (i3, i4), · · · , (iK−1, iK)} be a matching on
the set of vertices {1, · · · , d} (not all vertices are necessarily part of the matching), and let
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X0 be its Laplacian matrix, where edges are weighted by arbitrary positive numbers. By
Proposition 6.3, f “factors” across connected components, thus each edge in the matching
will follow its own dynamics independently of the other edges. The edges not initially
present in the matching remain inactive forever. For (r, s) ∈ M, we have (Xt)rr = (Xt)ss =
−(Xt)rs = −(Xt)sr, and

X
− 1

2
t (er − es) =

1√
2(Xt)rr

(er − es),

and therefore, using expression (6.6) and letting x = (Xt)rr,

f(Xt)rr = πr − Eg [(ηr(Xt))r] ,

= πr Eg
[

πs

πre(gr−gs)/
√

2x+1/2x + πs

]
,

= πr Eg
[

πs
πreg/

√
x+1/2x + πs

]
.

Therefore, the SE iteration reduces to

(Xt+1)rr = κ−1 Eg

[
πrπs

πre
g/
√

(Xt)rr+1/2(Xt)rr + πs

]
,

for all vertices (r, s) ∈ M. Note that this iteration is essentially the same as the one in the
binary case (6.12)-(6.13), where p becomes πr and 1 − p becomes πs. For each (r, s) ∈ M,
the above iteration converges to the fixed point zero for every initial point if and only if

κ > κ∗rs := sup
x>0

Eg

[
πrπsx

2e−x
2/8

πregx/2 + πse−gx/2

]
. (6.16)

Here, we symmetrized the expression just as in the binary case (6.14). Arranging these
thresholds as κ∗1 > κ∗2 > · · · from largest to smallest we see that the fixed point of the SE
iteration gains one non-zero edge at each κ∗i as κ decreases from some large value to zero.
Equivalently, X∗ gains a rank one component corresponding to the connected component
constituted by that edge. It is an interesting problem to determine the behavior of the SE
iteration and locate these thresholds, if they exist, beyond this simple matching case.

6.3 Summary of results

We presented an algorithm for decoding categorical variables of a signal from randomly
pooled observations of it, and characterized its performance it terms of a state evolution
equation. The analysis of this evolution revealed phase transition phenomena in the pa-
rameters of the problem that happen in the linear regime m/n → κ. These algorithmic
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results, combined with information-theoretic ones leave a large region in parameter space
(γ n

logn
< m < κn) where the signal is identifiable but AMP fails at recovering it, hinting at a

possible computational hardness in this structured signal recovery problem. This could have
interesting applications in privacy-related considerations. Further, we proved the conver-
gence of the SE dynamics to a fixed point. The analysis of the properties of this fixed point
as a function of the parameters κ,π in the general case, together with rigorous proof of the
exactness of the state evolution equations for this problem are interesting open problems.

6.4 Technical proofs

Proof of Proposition 6.1

We proceed by induction. Now assume that Mt−1 = Qt−1 and that Rt−1 = κXt−1. We
prove that Rt = κXt and then that Mt is symmetric and Mt = Qt.

The first step is to show that Qt1 = π. By assumption, Xt−1 = κ−1(D − Qt−1) =
κ−1Rt−1. Let us define,

ηrs := ηr(X)s =
πs exp

(
−gᵀX−1/2(er − es)− 1

2

∥∥X−1/2(er − es)
∥∥2

`2

)
Zr(X)

. (6.17)

The sth coordinate of Qt1 is

(Qt1)s =
d∑
r=1

πr Eg
[(
η(er +X

1/2
t g, κ−1Rt)

)
s

]
=

d∑
r=1

πr Eg [ηrs] .

Moreover, letting δrs = X
−1/2
t−1 (er − es), we have

Eg [ηrs] =

∫
πs exp(−1

2
‖g + δrs‖2

`2
)∑d

l=1 πl exp(−1
2
‖g + δrl‖2

`2
)

e−
1
2
‖g‖2`2

(2π)d/2
dg,

(i)
=

∫
exp(−1

2
‖g‖2

`2
)∑d

l=1 πl exp(−1
2
‖g + δrl‖2

`2
)

πse
− 1

2
‖g−δrs‖2`2

(2π)d/2
dg,

=

∫
πs exp(−1

2
‖g + δsr‖2

`2
)∑d

l=1 πl exp(−1
2
‖g + δsl‖2

`2
)

e−
1
2
‖g‖2`2

(2π)d/2
dg.

The only non-trivial equality is (i) and it was obtained through a simple change of variable
g + δrs → g. Therefore,

(Qt1)s = πs

d∑
r=1

Eg

[
πr exp(−1

2
‖g + δsr‖2

`2
)∑d

l=1 πl exp(−1
2
‖g + δsl‖2

`2
)

]
= πs.
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In addition, the above argument also shows that Mt is symmetric since, for r, s ∈ {1, · · · , d},

(Mt)rs = πs Eg[ηsr].

Now we have that Rt = D −Qt, and by symmetry of Mt, Xt = κ−1(D − 2Mt +Qt).
To complete the proof, it remains to show that Mt = Qt. For r, s ∈ {1, · · · , d} we have

(Qt)rs =
d∑
l=1

πl Eg [ηlrηls] .

Once again, we make the change of variable g + δlr → g:

(Qt)rs = πrπs

d∑
l=1

πl

∫
exp(−1

2
‖g‖2

`2
) exp(−1

2
‖g + δrs‖2

`2
)(∑d

l′=1 πl′ exp(−1
2
‖g + δrl′‖2

`2
)
)2

e−
1
2
‖g−δlr‖2`2

(2π)d/2
dg,

= πrπs Eg

[
exp(−1

2
‖g + δrs‖2

`2
)∑d

r′=1 πr′ exp(−1
2
‖g + δrl′‖2

`2
)

]
,

= (Mt)sr .

Proof of Proposition 6.2

The map f is differentiable at every X � 0 invertible on span(1)⊥. Let 0 � X � Y , and
W : [0, 1]→ Sd×d+ defined by W (t) = (1− t)X + tY . We will show that d

dt
f(W (t)) � 0 for

all t ∈ [0, 1] and conclude with the fundamental theorem of calculus

f(Y )− f(X) =

∫ 1

0

d

dt
f(W (t))dt.

We start by computing the derivative of each entry of f(W (t)). Let r, s ∈ {1, . . . , d}. We
have

d

dt
f(W (t))rs = − d

dt
πr E [(ηr(W (t)))s] .

To prepare for further calculations, let us write

A(t) := W (t)−1/2 d

dt

(
W (t)−1/2

)
,

and

B(t) :=
d

dt

(
W (t)−1

)
= −W (t)−1 · d

dt
W (t) ·W (t)−1.

We observe by the chain rule of differentiation that

A(t) +A(t)ᵀ = B(t). (6.18)
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This identity will be used several times. Now we start computing the derivative. Let

Drs : = πs
d

dt
exp

(
−gᵀW (t)−1/2(er − es)−

1

2

∥∥W (t)−1/2(er − es)
∥∥2

`2

)
= πs

(
−gᵀ d

dt

(
W (t)−1/2

)
(er − es)−

1

2
(er − es)ᵀB(t)(er − es)

)
× exp

(
−gᵀW (t)−1/2(er − es)−

1

2

∥∥W (t)−1/2(er − es)
∥∥2

`2

)
.

Then,

d

dt
ηr(W (t))s =

Drs

Zr(W (t))
− ηr(W (t))s ×

d∑
l=1

Drl

Zr(W (t))
. (6.19)

Now, by differentiating under the expectation sign, we are lead to process expressions of the
form

Eg
[

Drs

Zr(W (t))

]
and Eg

[
ηr(W (t))s

Drl

Zr(W (t))

]
.

Here, the Gaussian integration by parts formula

Eg [gh(g)] = Eg [h′(g)]

for all univariate differentiable functions h with moderate growth (say polynomial) at infinity,
will be used multiple times. Recalling

ηrs = ηr(W (t))s =
πs exp

(
−gᵀW (t)−1/2(er − es)− 1

2

∥∥W (t)−1/2(er − es)
∥∥2

`2

)
Zr(W (t))

,

from (6.17), we have

Eg
[
gᵀ

d

dt

(
W (t)−1/2

)
(er − es) ηrs

]
= Eg

[
(∇gηrs)ᵀ

d

dt

(
W (t)−1/2

)
(er − es)

]
= −(er − es)ᵀA(t)(er − es) Eg [ηrs]

+
d∑
l=1

(er − el)ᵀA(t)(er − es) Eg [ηrsηrl] ,

and similarly,

Eg
[
gᵀ

d

dt

(
W (t)−1/2

)
(er − el) ηrsηrl

]
= −

(
(er − el)ᵀA(t)(er − el)

+ (er − es)ᵀA(t)(er − el)
)
Eg [ηrsηrl]
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+ 2
d∑

r′=1

(er − er′)ᵀA(t)(er − el)Eg [ηrsηrlηrr′ ] .

Therefore,

Eg
[

Drs

Zr(W (t))

]
= (er − es)ᵀA(t)(er − es)Eg [ηrs]−

1

2
(er − es)ᵀB(t)(er − es)Eg [ηrs]

−
d∑
l=1

(er − el)ᵀA(t)(er − es) Eg [ηrsηrl] .

Since A(t) + A(t)ᵀ = B(t) (identity (6.18)), the first two terms in the above expression
cancel each other, and we are left with

Eg
[

Drs

Zr(W (t))

]
= −

d∑
l=1

(er − el)ᵀA(t)(er − es) Eg [ηrsηrl] .

On the other hand, using the identity (6.18) again,

Eg
[
ηr(W (t))s

Drl

Zr(W (t))

]
=
(
(er − el)ᵀA(t)(er − el) + (er − es)ᵀA(t)(er − el)

)
Eg [ηrsηrl]

− 1

2
(er − el)ᵀB(t)(er − el)Eg [ηrsηrl]

− 2
d∑

r′=1

(er − er′)ᵀA(t)(er − el)Eg [ηrsηrlηrr′ ]

= (er − es)ᵀA(t)(er − el)Eg [ηrsηrl]

− 2
d∑

r′=1

(er − er′)ᵀA(t)(er − el)Eg [ηrsηrlηrr′ ] .

Now, using the above two formulas, and recalling (6.19), we have

d

dt
E [ηr(W (t))s] = −

d∑
l=1

(er − el)ᵀA(t)(er − es)Eg [ηrsηrl]

−
d∑
l=1

(er − es)ᵀA(t)(er − el)Eg [ηrsηrl]

+ 2
d∑
l=1

d∑
r′=1

(er − er′)ᵀA(t)(er − el)Eg [ηrsηrlηrr′ ] .

Using identity (6.18), the sum of the first two terms in the above expression is

−
d∑
l=1

(er − es)ᵀB(t)(er − el)Eg [ηrsηrl] ,
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= −
d∑

l,r′=1

(er − es)ᵀB(t)(er − el)Eg [ηrsηrlηrr′ ] ,

where we used the fact
∑

r′ ηrr′ = 1 in the last expression. Similarly, the third term is equal
to

d∑
l,r′=1

(er − er′)ᵀB(t)(er − el)Eg [ηrsηrlηrr′ ] .

Therefore we obtain

d

dt
E [ηr(W (t))s] =

d∑
l,r′=1

(er − er′)ᵀB(t)(es − el)Eg [ηrsηrlηrr′ ] .

The expression we just obtained does not appear to be symmetric in the indices (r, s), but
it does become symmetric when multiplied by πr, thanks to the following identity:

Lemma 6.7. Recall the definition of ηrs from (6.17). For all r, s, l ∈ {1, · · · , d} we have

πr Eg [ηrsηrl] =
d∑

l′=1

πl′ Eg [ηl′rηl′sηl′l] .

Using the above, we get

d

dt
f(W (t))rs = −πr

d

dt
E [ηr(W (t))s] ,

= −
d∑

l,l′,r′=1

πl′(er − er′)ᵀB(t)(es − el)Eg [ηl′rηl′sηl′lηl′r′ ] ,

= −
d∑

l′=1

πl′ Eg [ηl′rηl′s · (er − ηl′)ᵀB(t)(es − ηl′)] .

This implies that for all z ∈ Rd

zᵀ
d

dt
f(W (t))z =

d∑
r,s=1

d

dt
f(W (t))rszrzs,

= −
d∑

l′=1

πl′ Eg [(z � ηl′ − (zᵀηl′)ηl′)
ᵀB(t)(z � ηl′ − (zᵀηl′)ηl′)] ,

where � denote the entry-wise product of two vectors. Since B(t) = −W (t)−1 · d
dt
W (t) ·

W (t)−1 and d
dt
W (t) = Y −X � 0, we see that

zᵀ
d

dt
f(W (t))z =

d∑
l′=1

πl′ Eg
[∥∥∥(Y −X)

1
2W (t)−1 (z � ηl′ − (zᵀηl′)ηl′)

∥∥∥2

`2

]
≥ 0,
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hence concluding the general argument. It now remains to prove Lemma 6.7.

Proof of Lemma 6.7. The proof relies on a simple change of variables in the expectation.
Using (6.17), and letting δrs = W (t)−1/2(er − es) for all r, s, we have

Eg [ηl′rηl′sηl′l] = πrπsπl Eg

e−gᵀ(δl′r+δl′s+δl′l)−
1
2
‖δl′r‖

2
`2
− 1

2
‖δl′s‖

2
`2
− 1

2
‖δl′l‖

2
`2(∑d

r′=1 πr′e
−gᵀδl′r′−

1
2
‖δl′r′‖

2
`2

)3


= πrπsπl Eg

e− 1
2
‖g+δl′r‖

2
`2
− 1

2
‖g+δl′s‖

2
`2
− 1

2
‖g+δl′l‖

2
`2(∑d

r′=1 πr′e
− 1

2
‖g+δl′r′‖

2
`2

)3


= πrπsπl

∫
Rd

e−
1
2
‖g+δl′r‖

2
`2
− 1

2
‖g+δl′s‖

2
`2
− 1

2
‖g+δl′l‖

2
`2(∑d

r′=1 πr′e
− 1

2
‖g+δl′r′‖

2
`2

)3

e−
1
2
‖g‖2`2

(2π)d/2
dg.

We make the change of variables g + δl′r → g. The term ‖g + δl′r‖2
`2

becomes ‖g‖2
`2

,

‖g + δl′s‖2
`2

becomes ‖g + δrs‖2
`2

, ‖g + δl′l‖2
`2

becomes ‖g + δrl‖2
`2

, ‖g‖2
`2

becomes ‖g + δrl′‖2
`2

,

and ‖g + δl′r′‖2
`2

becomes ‖g + δrr′‖2
`2

in the denominator. The first term will assume the
role of the Gaussian density, and we rewrite the above as an expectation under the Gaussian
distribution:

πrπsπl Eg

e− 1
2
‖g+δrs‖2`2−

1
2
‖g+δrl‖2`2−

1
2
‖g+δrl′‖

2
`2(∑d

r′=1 πr′e
− 1

2
‖g+δrr′‖

2
`2

)3

 .
If the above expression is multiplied by πl′ and summed over all l′, the third term in the
numerator cancels with one power of the denominator, and the result is

πrπsπl Eg

 e−
1
2
‖g+δrs‖2`2−

1
2
‖g+δrl‖2`2(∑d

r′=1 πr′e
− 1

2
‖g+δrr′‖

2
`2

)2

 = πr Eg [ηrsηrl] .

�

Proof of Proposition 6.6

For x > 0, we let

φd(x) := Eg

[
x2
∑d

r=2 e
gr
√

log(d−1)x

eg1

√
log(d−1)x · (d− 1)x2 +

∑d
r=2 e

gr
√

log(d−1)x

]
.

By symmetry in the variables gr, r ≥ 2, we can see that

φd

(
x√

log(d− 1)

)
=

d− 1

log(d− 1)
Eg

[
x2 exp(g2x)

exp(g1x+ x2) +
∑d

r=2 exp(grx)

]
.
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Our claim reduces to exhibiting upper and lower bounds on supx>0 φd(x) which are asymp-
totically independent of d. We start with the upper bound. Since, the function x → x

1+x
is

concave on R+, we have by Jensen’s inequality,

φd(x) ≤ Eg1

 x2
∑d

r=2 Egr:r≥2

[
egr
√

log(d−1)x
]

eg1

√
log(d−1)x · (d− 1)x2 +

∑d
r=2 Egr:r≥2

[
egr
√

log(d−1)x
]
 ,

= Eg1

[
x2(d− 1)1+x2/2

eg1

√
log(d−1)x · (d− 1)x2 + (d− 1)1+x2/2

]
.

We split the analysis into two cases: x ≤
√

2 + ε, x >
√

2 + ε for some ε > 0. We see that
φd(x) ≤ x2 for all x > 0. If x ≤

√
2 + ε, then φd(x) ≤ (

√
2 + ε)2. For the remaining case,

let α = α(ε) > 0 such that x2/2 − αx − 1 > 0 for all x >
√

2 + ε. One can find such an
α as the solution to the equation α +

√
α2 + 2 =

√
2 + ε. Next, we let E be the event that

g1 ≤ 1−x2/2+αx
x

√
log(d− 1), and write

φd(x) ≤ Eg1

[
x2

(d− 1)x2/2−1 · eg1

√
log(d−1)x + 1

∣∣∣∣Ē
]

Pr(Ē)

+ Eg1

[
x2

(d− 1)x2/2−1 · eg1

√
log(d−1)x + 1

∣∣∣∣E
]

Pr(E),

Under Ē , we have −x2/2 + 1 − g1x
√

log(d− 1) ≤ −αx, and the first term in the above
expression is upper bounded by

x2(d− 1)−αx.

On the other hand, we upper bound the conditional expectation in the second term by x2,
and use the fact that Pr(E) ≤ (d− 1)−(1−x2/2+αx)2/(2x2). We obtain the upper bound

φd(x) ≤ x2
(

(d− 1)−αx + (d− 1)−(1−x2/2+αx)2/(2x2)
)
,

which decays to 0 as d→∞ uniformly in x ≥
√

2 + ε. This proves that

sup
x>0

φd(x) ≤ (
√

2 + ε)2

for all d sufficiently large.
Now we turn our attention on the lower bound. Since the function x→ x

1+x
is increasing,

we have

φd(x) ≥ Eg

[
x2emaxr≥2 gr

√
log(d−1)x

eg1

√
log(d−1)x · (d− 1)x2 + emaxr≥2 gr

√
log(d−1)x

]
.
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The maximum of finitely many Gaussians concentrates in a sub-Gaussian way: for all t ≥ 0,

Pr

(
max
r≥2

gr − E[max
r≥2

gr] ≤ −t
)
≤ e−t

2/2.

We write E[maxr≥2 gr] = cd
√

log(d− 1); it is known that cd =
√

2(1 − od(1)). Letting

t = εcd
√

log(d− 1) for some ε > 0, we have

φd(x) ≥ Eg1

[
x2(d− 1)(1−ε)cdx

eg1

√
log(d−1)x · (d− 1)x2 + (d− 1)(1−ε)cdx

]
·
(

1− (d− 1)−ε
2c2d/2

)
.

We plug the value x = (1− ε)cd in the right hand side, and deduce

sup
x>0

φd(x) ≥ Eg1

[
(1− ε)2c2

d

eg1(1−ε)cd
√

log(d−1) + 1

]
·
(

1− (d− 1)−ε
2c2d/2

)
.

We see that the above converges to the value (1− ε)2 as d→∞.

6.5 Deriving the approximate message passing

equations

We divide the derivation of the AMP equations into two parts. First, we write down the
Belief Propagation (BP) equations, and simplify them to the “relaxed” BP equations. Then,
we show how to transform the relaxed BP equations into the AMP iteration.

From Belief Propagation (BP) to Relaxed BP

The factor graph G of our model consists of a bipartite graph with the variables {xi, 1 ≤ i ≤
n} on one side of the bipartition and the measurements {ha, 1 ≤ a ≤ m} on the other side.
A measurement (or check) node ha is connected to k = αn variables nodes in expectation
chosen uniformly at random (i.e. those such that Aai = 1) from all the variable nodes.

We rescale the elements of the sensing matrix A such that Aai has expectation 0 and
variance α(1−α)

n
. This can be done by subtracting the vector αnπ from each observation ha

and dividing everything by
√
n. Hence, we let

ha := (ha − αnπ)/
√
n,

and
A = (A− α1m1ᵀn)/

√
n.

The linear system ha =
∑n

j=1Aajx
∗
j is equivalent to h̄a =

∑n
j=1 Aajx

∗
j .
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We now write the messages of the Belief Propagation algorithm. Let ~E be the set
of directed edges of the factor graph with all possible directions, i.e., each edge (i, a) is

endowed with both directions i→ a and a→ i. Note that | ~E| = 2km. The message passing

procedure consists of iterating a map BP :
(
∆d−1

) ~E → (
∆d−1

) ~E
from some initial guess

until (possible) convergence. For convenience, for all r ∈ {1, · · · , d}, any set of messages

m = {mi→a , ma→i : Aai = 1} ∈
(
∆d−1

) ~E
on G, and any directed edge a→ i, we denote

the rth coordinate of the d-dimensional message ma→i by ma→i(er) instead of (ma→i)r, and
similarly for the coordinates of ma→i. With this notation in hand, the map BP is defined
as follows: We consider a prior distribution on the messages that agrees with the category
proportions in the planted solution τ ∗, i.e., for every i and r,

P (xi = er) = πr

This is our “uninformative” prior: under lack of any further information, the algorithm
predicts that xi = er with probability πr for all i and r. Then for all x ∈ {e1, · · · , ed},

BP(m)i→a(x) :=
1

Zi→a(m)
P (x)

∏
b∈∂i\a

mb→i(x), (6.20)

BP(m)a→i(x) :=
1

Za→i(m)

∑
xj∈{e1,··· ,ed}

j∈∂a\i

1

{
h̄a = Aaix+

∑
j 6=i

Aajxj

} ∏
j∈∂a\i

mj→a(xj), (6.21)

with Zi→a(m) and Za→i(m) are the normalizing factors such that
∑d

r=1 BP(m)i→a(er) =∑d
r=1 BP(m)a→i(er) = 1. If G was a tree, the map BP would compute the exact posterior

distribution of the category assignments {xi : 1 ≤ i ≤ n} given the observations {ha : 1 ≤
a ≤ m}. In our case this will only be true when m/n is large enough.

We see that the second equation above has a sum involving dk−1 terms, which makes the
execution of the BP algorithm intractable. We derive a set of relaxed Belief Propagation
messages from the above that only require linear-algebraic computations of size polynomial
in n and m. Later, we further simplify these equations by leveraging the fact that our factor
graph is random and dense, to finally arrive at the Approximate Message Passing iteration.

We now proceed by replacing the indicator in (6.21) by a Gaussian with small variance
σ > 0, which we then linearize by writing it as the Fourier transform of the standard Gaussian
measure (this is also known as the Hubbard-Stratonovich transformation):

BPσ(m)a→i(x) :=
1

Za→i(m)

∑
xj∈{e1,··· ,ed}

j∈∂a\i

exp

(
−
∥∥∥∥h̄a − n∑

j=1

Aajxj

∥∥∥∥2

`2

/
2σ2

) ∏
j∈∂a\i

mj→a(xj),

∝
∑

xj∈{e1,··· ,ed}
j∈∂a\i

∫
Rd

exp

(
iσ−1gᵀ

(
h̄a −

n∑
j=1

Aajxj

)) ∏
j∈∂a\i

mj→a(xj)γd(dg),
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where we let γd refer to the standard d-dimensional Gaussian measure.

∝
∫
Rd

exp

(
iσ−1gᵀ

(
h̄a − Aaix

))
×
∏
j∈∂a\i

[ ∑
xj∈{e1,··· ,ed}

exp
(
− iσ−1Aajg

ᵀxj
)
mj→a(xj)

]
γd(dg).

Now, observe that the exponentials in the sum above involve the terms Aaj which are of
order 1/

√
n. By expanding the Taylor series of the exponential, one can show

∑
xj∈{e1,··· ,ed}

exp(−iσ−1Aajg
ᵀxj) mj→a(xj) =

d∑
r=1

exp(−iσ−1Aajg
ᵀer) mj→a(er)

= exp

(
− iσ−1Aajg

ᵀmj→a −
1

2
σ−2A2

ajg
ᵀBj→ag

)
+O(1/n3/2),

where
Bj→a = Diag(mj→a)−mj→am

ᵀ
j→a. (6.22)

Plugging the above expression into the message, we get

BPσ(m)a→i(x) ≈ 1

Za→i(m)

∫
Rd

exp

(
iσ−1gᵀ

(
h̄a − Aaix

))
×
∏
j∈∂a\i

exp

(
− iσ−1Aajg

ᵀmj→a −
1

2
σ−2A2

ajg
ᵀBj→ag

)
γd(dg),

=
1

Za→i(m)

∫
Rd

exp

(
iσ−1gᵀ

(
h̄a − Aaix

)
−
∑
j∈∂a\i

iσ−1Aajg
ᵀmj→a −

1

2

∑
j∈∂a\i

σ−2A2
ajg
ᵀBj→ag

)
γd(dg).

We denote the “average” message and variance that appear in the formula above by

ωa→i :=
∑
j∈∂a\i

Aajmj→a, (6.23)

Va→i :=
∑
j∈∂a\i

A2
ajBj→a. (6.24)

The exponentiated term in the integrand, when combined with the contribution of the Gaus-
sian density, becomes

iσ−1gᵀ
(
h̄a − Aaix− ωa→i

)
− 1

2
σ−2gᵀVa→ig −

1

2
‖g‖2

`2
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= iσ−1gᵀ
(
h̄a − Aaix− ωa→i

)
− 1

2
gᵀ(σ−2Va→i + I)g.

Now, computing the integral yields

BPσ(m)a→i(x) ∝ exp

(
− 1

2σ2

∥∥∥(σ−2Va→i + I)−
1
2

(
h̄a − Aaix− ωa→i

)∥∥∥2

`2

)
,

and letting σ → 0 yields

BP(m)a→i(x) ∝ exp

(
−1

2

∥∥∥V − 1
2

a→i
(
h̄a − Aaix− ωa→i

)∥∥∥2

`2

)
.

On the other hand, by injecting the above formula into the messages from-variable-to-check
node (6.20), the latter can be written as

BP(m)i→a(x) ∝ P (x) exp

 ∑
b∈∂i\a

−1

2

∥∥∥V −1/2
b→i (h̄b − Abix− ωb→i)

∥∥∥2

`2

 ,

∝ P (x) exp

−1

2
xᵀ

 ∑
b∈∂i\a

A2
biV

−1
b→i

x+ xᵀ

 ∑
b∈∂i\a

AbiV
−1
b→i(h̄b − ωb→i)

 ,

∝ P (x) exp(−(x− zi→a)ᵀΣ−1
i→a(x− zi→a)/2), (6.25)

where we denoted the average message and variance by

zi→a = Σi→a
∑
b∈∂i\a

AbiV
−1
b→i(h̄b − ωb→i), (6.26)

Σ−1
i→a :=

∑
b∈∂i\a

A2
biV

−1
b→i. (6.27)

The combination of the equations (6.22-6.27) forms the set of Relaxed Belief Propagation
(RBP) equations:

mi→a = η(zi→a,Σi→a),

Bi→a = Diag(mi→a)−mi→am
ᵀ
i→a,

zi→a = Σi→a
∑
b∈∂i\a

AbiV
−1
b→i(h̄b − ωb→i),

Σ−1
i→a =

∑
b∈∂i\a

A2
biV

−1
b→i,

ωa→i =
∑
j∈∂a\i

Aajmj→a,

Va→i =
∑
j∈∂a\i

A2
ajBj→a,

(6.28)
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with

η(z,Σ) :=
1

Z(z,Σ)

d∑
r=1

πrer exp

(
−1

2
(er − z)ᵀΣ−1(er − z)

)
, (6.29)

where Z(z,Σ) is the normalization constant so that 1ᵀη(z,Σ) = 1. The complexity of the
iterative version of these equations is of order at most O(d3nm) which is essentially quadratic
in n. Next, we further reduce the complexity of the iteration to O(d3(n + m)) by showing
that it suffices to track the average of the incoming messages at each node. This is due to
the fact that the factor graph is dense and its edges are independent.

From Relaxed BP to AMP

Let us now derive the equations of the (more efficient) AMP algorithm. We will define
a notion of “total messages” mi,Bi, zi, Σi, ωa, Va and relate them to one another. The
expressions (6.23), (6.24), (6.26), and (6.27) defining ωa→i, Va→i, zi→a and Σi→a respectively
involve sums over all the neighbors of the node sending the message except the node receiving
the message. We first define ωa, Va and Σi by adding this last term:

ωta :=
∑
j∈∂a

Aajm
t
j→a = ωta→i + Aaim

t
i→a,

V t
a :=

∑
j∈∂a

A2
ajB

t
j→a = V t

a→i + A2
aiB

t
i→a,(

Σt
i

)−1
:=
∑
b∈∂i

A2
bi

(
V t
b

)−1
.

where we introduced a time index t to track the iteration count. Now we attempt to find a
notion of total message zti for zti→a such that the obtained set of equations becomes self con-
sistent. Once zti is found, then we define mt+1

i and Bt+1
i as η(zti ,Σ

t
i) and Diag(η(zti ,Σ

t
i))−

η(zti ,Σ
t
i)η(zti ,Σ

t
i)
ᵀ, respectively. Since Σt

i→a −Σt
i = O(1/n) and V t

a→i − V t
a = O(1/n), we

have using (6.26)

zti→a = Σt
i→a ·

∑
b∈∂i\a

Abi
(
V t
b→i
)−1

(h̄b − ωtb→i),

' Σt
i ·
∑
b∈∂i\a

Abi
(
V t
b

)−1
(h̄b − ωtb→i).

Substituting the expression ωta→i = ωta − Aaimt
i→a in the above, we get

zti→a = Σt
i ·
∑
b∈∂i\a

Abi
(
V t
b

)−1
(h̄b − ωtb) + Σt

i ·
∑
b∈∂i\a

A2
bi

(
V t
b

)−1
mt

i→b

' Σt
i ·
∑
b∈∂i

Abi
(
V t
b

)−1
(h̄b − ωtb) + Σt

i ·
∑
b∈∂i

A2
bi

(
V t
b

)−1
mt

i→b,
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where we also allowed the above sums to run over all neighbors of i since the additional
terms are of order 1/

√
n compared to the entire sum which is of order 1. Now we make the

assumption that the messages mt
i→b are approximately equal for all b ∈ ∂i to a common

value mt
i, up to error 1/

√
n. This assumption is justified by the fact that the graph is dense

with equally strong edge weights, so the messages outgoing from every node are equal, up
to first order. This simplifies the second term:

Σt
i ·
∑
b∈∂i

A2
bi

(
V t
b

)−1
mt

i→b ' Σt
i ·
∑
b∈∂i

A2
bi

(
V t
b

)−1
mt

i = mt
i.

Based on these approximations, we define

zti := Σt
i ·
∑
b∈∂i

Abi
(
V t
b

)−1
(h̄b − ωtb) +mt

i.

Now we treat ωta. Recall ωta =
∑

j∈∂aAajm
t
j→a, and mt

j→a = η(zt−1
j→a,Σ

t−1
j→a). We write

zt−1
j→a = Σt−1

j→a ·
∑
b∈∂j

Abj
(
V t−1
b→j
)−1

(h̄b − ωt−1
b→j)−Σt−1

j→a · Aaj
(
V t−1
a→j
)−1

(h̄a − ωt−1
a→j),

' zt−1
j −Σt−1

j→a · Aaj
(
V t−1
a

)−1
(h̄a − ωt−1

a ).

The second term is negligible compared to the first one, so we develop a first order Taylor
approximation of the function η in the second term, and obtain

ωta =
∑
j∈∂a

Aajη(zt−1
j→a,Σ

t−1
j→a),

'
∑
j∈∂a

Aaj

(
η(zt−1

j ,Σt−1
j )− dη

dz
(zt−1

j→a,Σ
t−1
j→a) ·Σt−1

j→a · Aaj(V t−1
a )−1(h̄a − ωt−1

a )

)
,

=
∑
j∈∂a

Aajm
t
j −

(∑
j∈∂a

A2
aj

dη

dz
(zt−1

j→a,Σ
t−1
j→a) ·Σt−1

j→a

)
(V t−1

a )−1(h̄a − ωt−1
a ).

Based on the expression (6.29) of η, one can easily check that

dη

dz
(z,Σ) = (Diag(η(z,Σ))− η(z,Σ)η(z,Σ)ᵀ) ·Σ−1,

hence ∑
j∈∂a

A2
aj

dη

dz
(zt−1

j→a,Σ
t−1
j→a) ·Σt−1

j→a =
∑
j∈∂a

A2
ajB

t
j→a = V t

a .
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We therefore end up with the following approximate message passing procedure:

mt+1
i = η(zti ,Σ

t
i),

Bt+1
i = Diag(η(zti ,Σ

t
i))− η(zti ,Σ

t
i)η(zti ,Σ

t
i)
ᵀ,

Σt
i =

(∑
b∈∂i

A2
bi

(
V t
b

)−1

)−1

,

zti = mt
i + Σt

i ·
∑
b∈∂i

Abi
(
V t
b

)−1
(h̄b − ωtb),

ωta =
∑
j∈∂a

Aajm
t
j − V t

a

(
V t−1
a

)−1
(h̄a − ωt−1

a ),

V t
a =

∑
j∈∂a

A2
ajB

t
j.

This is rearranged to the AMP algorithm displayed in Section 6.1, with the notation x̂ti
replacing mt

i.

6.6 State evolution equations

We derive the state evolution equations from the Relaxed Belief Propagation (RBP) equa-
tions (6.28). Let Mt = 1

n

∑n
i=1m

t
ix
∗ᵀ
i and Qt = 1

n

∑n
i=1m

t
im

tᵀ
i . As we argued in the

previous section, we can redefine Mt and Qt by substituting mt
i by mt

i→a at the cost of
an asymptotically vanishing error. In this section, we drop the time indices to lighten the
notation. We expect the variance parameters Va→i in RBP to be concentrated about a
constant:

E[Va→i] '
∑
j 6=i

E[A2
aj]Bj→a =

1

n
α(1− α)

∑
j 6=i

Bj→a = α(1− α)R,

with R := 1
n

∑
jBj→a. A calculation of the second moment of Va→i reveals that it is equal

to the expectation of Va→i plus a lower order term. Therefore we can safely assume that the
quantities Va→i are essentially constant and equal to α(1− α)R. Next, we deal with Σi→a.
By assuming approximate independence of Abi and Vb→i, we get

E
[
Σ−1
i→a
]

=
∑
b 6=a

E
[
A2
bi

]
E
[
V −1
b→i
]

=
1

n
α(1− α)

∑
b6=a

R−1

α(1− α)
' κR−1.

We then make the approximation Σ−1
i→a ' E[Σ−1

i→a], i.e. Σi→a ' κ−1R. Next, we turn our
attention to zi→a:

zi→a = Σi→a ·
∑
b6=a

AbiV
−1
b→i(h̄b − ωb→i)
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' 1

κα(1− α)

∑
b 6=a

Abi(h̄b − ωb→i).

Now using ωb→i =
∑

j 6=iAbjmj→b and h̄b =
∑n

j=1Abjx
∗
j , we get

zi→a '
1

κα(1− α)

∑
b 6=a

Abi

(∑
j 6=i

Abj(x
∗
j −mj→a) + Abix

∗
i

)
.

The inner sum in the above expression involves n weakly independent terms, so we expect
a central limit theorem to hold. Therefore the only relevant quantities are the expectation
and the variance of z: E[zi→a] = x∗i , and

E[(zi→a − x∗i )(zi→a − x∗i )ᵀ] =
1

(κα(1− α))2

∑
b6=a

∑
j 6=i

∑
b′ 6=a

∑
j′ 6=i

E[AbiAb′i]E[AbjAbj′ ]

× (x∗j −mj→a)(x
∗
j −mj→a)

ᵀ

=
1

(κα(1− α))2

∑
b6=a

∑
j 6=i

(α(1− α))2

n2
(x∗j −mj→a)(x

∗
j −mj→a)

ᵀ

= κ−2m

n

1

m

∑
b 6=a

1

n

∑
j 6=i

(x∗j −mj→a)(x
∗
j −mj→a)

ᵀ

' κ−1(D −M −M ᵀ +Q),

with D = 1
n

∑n
i=1 x

∗
ix
∗ᵀ
i = Diag(π). Hence, we define

X := κ−1(D −M −M ᵀ +Q).

Therefore we have made the assumption that zi→a ∼ N (x∗i ,X). Next, we assume that the
zi→a are “independent enough” that a law of large numbers holds in limit n→∞, m/n→ κ:

1

n

∑
i:x∗i=er

mi→a =
1

n

∑
i:x∗i=er

η(zi→a,Σi→a) ' πr Eg
[
η(er +X

1
2g, κ−1R)

]
,

and
1

n

∑
i:x∗i=er

mi→am
ᵀ
i→a ' πr Eg

[
η(er +X

1
2g, κ−1R) · η(er +X

1
2g, κ−1R)ᵀ

]
,

for all r ∈ {1, · · · , d}, with g ∼ N (0, I). Plugging the above into M and Q yields

M =
1

n

n∑
i=1

η(x∗i +X
1
2g, κ−1R)x∗ᵀi ,

'
d∑
r=1

πr Eg
[
η(er +X

1
2g, κ−1R)

]
eᵀr ,
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Q =
1

n

n∑
i=1

η(x∗i +X
1
2g, κ−1R) · η(x∗i +X

1
2g, κ−1R)ᵀ,

'
d∑
r=1

πr Eg
[
η(er +X

1
2g, κ−1R) · η(er +X

1
2g, κ−1R)ᵀ

]
.

Finally, it remains to find an expression for R. Recall Bi→a = Diag(mi→a)−mi→am
ᵀ
i→a.

Averaging over i and using the assumed concentration of the messages mi→a yields

R =
1

n

n∑
i=1

Bi→a ' Diag

(
d∑
r=1

πr Eg
[
η(er +X

1
2g, κ−1R)

])
−Q,

= Diag(Q1)−Q.

To sum up, we get a system of self-consistent equations in Mt, Qt, Xt and Rt:

Mt+1 =
d∑
r=1

πr Eg
[
η(er +X

1
2
t g, κ

−1Rt)
]
· eᵀr ,

Qt+1 =
d∑
r=1

πr Eg
[
η(er +X

1
2
t g, κ

−1Rt) · η(er +X
1
2
t g, κ

−1Rt)
ᵀ
]
,

Xt = κ−1(D −Mt −M ᵀ
t +Qt),

Rt = Diag(Qt1)−Qt.

This set of equations constitute the state evolution equations.
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