
Natural Language Understanding for Healthcare Queries

Vivek Raghuram

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-35
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-35.html

May 9, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Natural Language Understanding for Healthcare Queries

by Vivek Raghuram

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley, in partial satisfaction of the requirements for the degree of Master
of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Jerome Feldman
Research Advisor

Date

Professor Nelson Morgan
Second Reader

Date

Abstract

Natural Language Understanding for Healthcare Queries

by

Vivek Raghuram

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Jerome Feldman, Chair

One of the goals of search query understanding is to extract as much useful information about
a query as possible. Natural language understanding (NLU) systems, which are designed to
provide detailed information on domain-constrained user input, are well-suited to this task.
We demonstrate an implementation of the ECG System [10], an application independent
NLU system, towards query understanding on a healthcare wiki. In our implementation
we take into account all the constraints imposed by integrating with an existing wiki main-
tained by The Hesperian Society. In doing so we test the flexibility of the ECG framework,
show the information extracted can be used to improve queries and develop several useful
improvements to the ECG System.

i

Contents

Contents i

1 Introduction 1

2 Background 3
2.1 Embodied Construction Grammar (ECG) 3
2.2 ECG System . 4
2.3 MediaWiki . 6

3 Hesperian Wiki 7
3.1 Hesperian Wiki Version Information . 7
3.2 Upgrading the Wiki . 9

4 The Hesperian Product 10
4.1 User Interface . 10
4.2 Language Side . 14
4.3 Application Side . 25
4.4 Example Queries . 28

5 Related Work 31

6 Conclusion 33
6.1 Contribution and Limitations . 33
6.2 Future Work . 33
6.3 Concluding Thoughts . 34

A Wiki Upgrade Instructions 35

B Selected Queries 39

C Sample ActSpec 43

References 46

ii

Acknowledgments

First, I’d like to thank my research advisor, Professor Jerome Feldman, for all his wisdom
and guidance over the last three years. Thanks to him Ive had the opportunity to engage
with a number of fascinating topics, nurturing my interest in language understanding and
cognitive science. Im grateful for Professor Feldmans instruction and advice which has made
me a better computer scientist. I would also like to thank Professor Nelson Morgan for
his helpful feedback and being on my Masters committee. I’d also like to thank everyone
at ICSI who has helped me with this project over the years. That includes Greta Huang,
Kavi Mehta, Sid Oderberg, Kelly Shen and Sean Trott. I’d like to especially mention, Ethan
Goldberg, without whose contributions this work would not have been possible. Finally, I’d
like to thank my family for their constant encouragement and support.

1

Chapter 1

Introduction

With the abundance of information on the Internet, the primary method of information
retrieval is through a search engine. However, search engines generally operate on surface
characteristics of user queries, with only limited knowledge of the underlying meaning. This
is because natural language is inherently messy. It follows a broad and often inconsistent
set of rules operating at both the level of syntax and semantics which can make interpreting
the meaning of an utterance a challenge for a computer system. This imposes significant
limitations on the capabilities of information retrieval systems (and dialogue systems, Q&A
systems, etc.). We attempt to address this problem by adding a natural language under-
standing component to a search engine in order to understand and rewrite user queries.

The ECG System is a natural language understanding system using embodied construc-
tion grammars (ECG) [3, 11], to identify the structure of utterances and extract their mean-
ing. The analysis of input is based on a specified ECG grammar, which encodes information
through form-meaning pairs with a focus on embodied meaning. The system is designed
to be easily adapted to work with a target application and domain. It has been previously
applied toward robotic control and real-time strategy video gaming [10]. This project applies
the ECG System towards query understanding on a healthcare wiki.

The wiki in question belongs The Hesperian Society, a non-profit organization involved
in the dissemination of healthcare information for situations when a medical professional
is not available. Their original publication, Where There Is No Doctor, expanded into nu-
merous books covering a range of issues from women’s heath, childcare, common infections,
etc. These books in turn were published in a wiki during a previous collaboration with
the International Computer Science Institute (ICSI) [30]. The wiki now gets thousands of
visitors seeking healthcare information that may not be freely available in their countries
or communities. As a result user privacy is an important concern and prevents them from
maintaining identifiable user information. Additionally, legal requirements dictate that al-
though the wikis can maintain a repository of medical information, they cannot be perceived
to be giving medical advice.

The current search engine, while generally capable, is inadequate when dealing with a
specialized domain. By understanding the user queries within this context, we hypothesize

CHAPTER 1. INTRODUCTION 2

we can extract important details about the users and their needs. This information can then
be used to rewrite the user query to improve its performance in the existing search engine.
The Hesperian wiki is particularly well-suited to testing this hypothesis due to the inherently
detailed and specific nature of medical information.

Through building this Hesperian Product 1, we also test the robustness of the ECG
System design. We specifically approach the problem as a system integration challenge with
an existing application, taking into account all the constraints imposed by that application.
To that end, we maintain user privacy and use the search engine to return pages, rather than
returning specific answers, to avoid giving medical advice.

In this work we show how incorporating natural language understanding can be useful
for better understanding queries within a specialized domain. We also demonstrate the
flexibility and extensibility of the ECG System towards addressing a new domain and target
application entirely different from previous ECG products.

The structure of this report is as follows. In chapter 2 we present background on this work,
including more detailed information on ECG and the ECG System. Chapter 3 discusses the
technical details of the Hesperian wiki and the steps undertaken to prepare it for this project.
Chapter 4 covers the various features of the solution, the Hesperian Product. Chapter 5
covers related work. Finally, chapter 6 discusses contributions and limitations, future work
and concludes the report.

1Our code is available at www.github.com/ICSI-Berkeley/ecg hesperian

http://www.github.com/ICSI-berkeley/ecg_hesperian

3

Chapter 2

Background

In this section we describe the necessary background on the ECG System and Mediawiki.
Previous papers have described both the ECG System [10] and Embodied Construction
Grammar (ECG) [13] in considerably more detail. Additionally code and tutorials for ev-
erything we describe are available on our Github Wiki [31]1. The Github Wiki also includes
further background on ECG, code for other ECG products and links to plenty of other pre-
vious work concerning ECG. That said, this section should provide enough background to
understand the remainder of this paper.

2.1 Embodied Construction Grammar (ECG)

Embodied construction grammar is a formalism for representing language usage and meaning
[3, 11]. It is based on both the Neural Theory of Language (NTL) [12] and extensive
cognitive science research. Like other construction grammars, ECG represents linguistic
content through pairings of form and meaning. In the case of ECG, meaning is represented
by embodied schemas that, taken together, form a lattice of embodied semantic knowledge.
Crucially, more abstract schemas are composed of primitive embodied schemas, reflecting
beliefs on how humans construct meaning from conceptual primitives [12]. The individual
schemas are activated by grammatical constructions which bind grammatical constituents
to roles on the schemas. Schemas and constructions taken together constitute a grammar.

Thanks to extensive work done using ECG grammars, we have developed various gram-
mar packages that are assembled into a “core” grammar [31]. The core grammar largely
consists of relatively primitive constructions and schemas that most grammars will need
such as prepositions and containment schemas. Developing a new ECG grammar consists of
importing the appropriate core packages before adding additional constructions and schemas
for the particular domain.

ECG is computationally implemented using a best-fit construction parser called the Ana-
lyzer [4]. The Analyzer takes a fully defined ECG grammar and produces semantic analyses

1github.com/icsi-berkeley/ecg homepage/wiki

https://github.com/icsi-berkeley/ecg_homepage/wiki

CHAPTER 2. BACKGROUND 4

of input utterances.
There are a few important features of ECG that are necessary for understanding parts

of this paper.

1. ECG’s vocabulary for open class words is implemented using a type-token mechanism,
where the grammar contains constructions for a general type and then a separate tokens
file contains entries for the specific tokens of that type. For example, a SymptomType
construction might have numerous tokens such as “cramp” and “period”. These tokens
are defined with different values on their roles (e.g. the patient gender for “period”
will be female). However, importantly, all these different symptoms behave the same
way grammatically and so are represented by the same grammatical construction.

2. ECG contains the CELEX [1] morphology which contains broad coverage for the En-
glish language and is used in conjunction with the tokens to recognize morphological
variations of words in utterances.

3. ECG uses an ontological lattice to classify and constrain units of meaning. For example,
“cramp” might have an ontology entry that is a subtype of “pain” and “symptom”.
Ontological constraints are an important part of ECG analyses.

To aid in development of ECG grammars, we use an integrated development environment
(IDE) called the ECG Workbench [16]. It is built atop the Eclipse Rich Client Platform and
includes both the Analyzer as well as a number of tools to aid in grammar development.
For this project the Analyzer and Workbench were updated to use Java 8 and Eclipse 4.7
Oxygen. Some of the tools available in the Workbench include a Token Editor [34] to easily
add tokens to the grammar and a Sentence Test Runner to quickly attempt parses of a large
number of sentences. Additionally, when the Analyzer parses a sentence, it produces a data
structure called a Semantic Specification or SemSpec. The Workbench provides a convenient
interface to view SemSpecs (Figure 2.1).

2.2 ECG System

The ECG System refers to the full natural language understanding system that utilizes
ECG as the underlying grammar and is made of multiple modular components. The main
components of the system are in the bottom half of Figure 2.2: the Analyzer, Specializer and
Problem Solver. As a generalizable framework, the ECG System is designed to be retargeted
to different application domains [10]. Many of the components of the ECG System have
“core” versions, that are extended using Python’s inheritance feature to produce domain
specific versions.

The Analyzer and Specializer, which are encapsulated in the UI-Agent, encompass the
“Language Side” of the system. The job of the Analyzer is to produce a SemSpec which the
Specializer then crawls to extract task specific information in JSON structures called Action

CHAPTER 2. BACKGROUND 5

Figure 2.1: SemSpec for the noun phrase, ”abdominal pain”

Specifications (ActSpecs). Since the provided grammar fully parameterizes the parsing be-
havior for a particular domain, the Analyzer almost never changes from app to app. The
Specializer only requires minimal changes since most of its behavior is guided by the decla-
ration of ActSpec templates. These templates specify the structure of the ultimate ActSpec
and what information should fill its fields. The UI-Agent mediates communication between
the two pieces and in some applications also takes the user input. Because the UI-Agent

CHAPTER 2. BACKGROUND 6

Figure 2.2: The ECG System diagram. Note that in the Hesperian Product, users do not
provide text/speech directly to the UI-Agent since they interact only with the wiki.

handles input before it reaches the Analyzer, it is also the ideal place for preprocessing to
occur. This is important for section 4.2.

The “Application Side” of the system includes the Problem Solver and the target applica-
tion. The Problem Solver is responsible for reading the ActSpec and executing any logic to go
from the ActSpec to application API calls. Since the intermediary logic varies significantly
by application, the Core Problem Solver contains only minimal predefined structure and
typically requires very different logic depending on the domain. Obviously the application
and its API are entirely domain dependent.

2.3 MediaWiki

Apart from the ECG System, the other major component of the Hesperian Product is a wiki
built using the MediaWiki2 software package [30]. MediaWiki is an open source, extensible,
wiki platform developed by the Wikimedia Foundation and originally used in Wikipedia. We
specifically use version 1.29 for this work.

Out of the box, MediaWiki provides a full-featured wiki with the ability to create new
pages, edit those pages and search for content. The software supports a number of extensions
that can modify the wiki’s behavior as well as add functionality. The extensions can run
both on the server-side and the client-side. In this particular case, the extension we will
discuss modifies the search behavior of the wiki.

2www.mediawiki.org/wiki/MediaWiki

https://www.mediawiki.org/wiki/MediaWiki

7

Chapter 3

Hesperian Wiki

The Hesperian wiki is a healthcare wiki maintained by the Hesperian Society and is the target
application of this Hesperian Product. The wiki, the product of a previous collaboration
with ICSI [30], contains all the information from various books published by the Hesperian
Society. The information is structured according to books, chapters and subsections, just as
it is in the physical books themselves. The search engine searches across all the books. The
Hesperian Society maintains wikis for numerous languages but the focus of our Hesperian
Product is their English wiki. Note that, unlike many wikis, only Hesperian Society staff,
not general visitors, can edit the contents of the wiki.

In order to integrate the ECG System with the Hesperian wiki, we needed to upgrade
the wiki software as well as various important extensions. As of this writing, the publicly
available version of the wiki has been upgrading according to methods described in this
section. In the following two subsections we describe the upgraded version of the wiki and
the process of upgrading the wiki.

3.1 Hesperian Wiki Version Information

The current (upgraded) version of the wiki is MediaWiki 1.29.1 and it runs on an Ubuntu
16.04 LTS server using Apache2. It uses PHP 5.6 and MySQL 5.1. These versions were
chosen to smooth out the upgrade procedure by avoiding upgrading parts other than Medi-
aWiki whenever possible. The version of MediaWiki is the latest version that was available
at the time.

The wiki uses a custom skin to present additional information and modify the page layout.
It also uses a few extensions apart from the core extensions packaged with every MediaWiki
application but most do not have a material impact this project and are omitted. One
extension that is important is the GoogleSiteSearch extension1 version 3.0, which is used to
replace the default MediaWiki search with Google Search. Components of this extension are

1www.mediawiki.org/wiki/Extension:GoogleSiteSearch

https://www.mediawiki.org/wiki/Extension:GoogleSiteSearch

CHAPTER 3. HESPERIAN WIKI 8

Figure 3.1: Left: English Hesperian wiki homepage. Middle: Table of contents for the book,
Where Women Have No Doctor. Right: Page corresponding to chapter about “Common
Problems during Pregnancy”.

CHAPTER 3. HESPERIAN WIKI 9

incorporated into the custom extension we develop for the Hesperian Product. The extension
we develop is discussed in greater detail in Section 4.3.

3.2 Upgrading the Wiki

The original wiki was terribly out of date which would have made developing anything to
work with it extremely difficult. To fix that, we decided to upgrade the version of MediaWiki
along with any other parts of the wiki that needed upgrading in the process. The wiki
originally used MediaWiki 1.17 running on Ubuntu 10.04 LTS. It used PHP 5.3 and MySQL
5.1.

The main problem with upgrading the wiki was the incompatibility between the Hespe-
rian custom skin and new MediaWiki APIs. Changing the skin to be compatible required
a full refactor of the skin to match the new API while retaining the previous look and feel
of the website. Additional changes include upgrading, replacing or simply removing out of
date extensions, updating the database and adding additional languages. The details of the
upgrade procedure are too specific to be discussed here, but a generalized version of the
instructions we produced in the upgrade process are included in Appendix A.

To test the upgrade procedure as well as for later development on the Hesperian Product,
we ran the wiki inside a virtual machine using VMware Fusion 8.5. The wiki was fully
reproduced and ran exactly as expected within the virtual machine.

10

Chapter 4

The Hesperian Product

To discuss the Hesperian Product, we first analyze the user interface of the product to
establish the use cases and motivations considered in the product’s design. Then we consider
the Language Side and Application Side of the system respectively. Finally, we discuss a few
example queries and how they behave in the system. All code for the system, apart from
the source code of the Hesperian wiki itself, is available on our Github1.

To develop the system we held numerous discussions with individuals working for the
Hesperian Society as well as reviewing thousands of queries that were input into its existing
search engine. From these queries we selected a diverse subset (Appendix B) to focus on
for the system in order to illustrate various features. While we attempted to choose queries
that reflect the diversity of input received by the system, they are not representative of the
density of each type of query. For instance, single-word queries make up a significant portion
of all queries, but analyzing multiple such queries is neither informative nor linguistically
interesting. While selecting queries, we did not consider whether they would be practical to
implement.

4.1 User Interface

We began our work by considering how the Hesperian Product would be used. Here we
discuss two types of users, the site visitors and content editors, as well as their respective
workflows. The focus is not the visual design or layout of the user interface but rather the
features.

Site Visitors

Site visitors access the wiki only to learn information. They are only able to access public
pages and they will frequently retrieve information using the search engine. These users
typically are looking for information regarding a specific procedure, disease or symptom and

1www.github.com/ICSI-Berkeley/ecg hesperian

http://www.github.com/ICSI-berkeley/ecg_hesperian

CHAPTER 4. THE HESPERIAN PRODUCT 11

the user may exclude relevant information from their initial query. To them, the search
engine is a fairly standard black box, out of which they expect to get relevant search results.

To that end, the search interface behaves nearly identically to the default search engine in
the wiki. Figures 4.1 and 4.2 shows what this looks like. When the user inputs a query, it is
rewritten without their knowledge to produce a new “ECG query”. Both the original query
and the ECG query are executed in the search engine, and only the top ECG query result
is presented above the user query results. If the system determines it could use clarifying
information, then it will present the user with a single multiple choice clarifying question
which is placed just above the ECG query result. Answering the question refreshes the ECG
result to incorporate the extra information. Within the same session, a user will not be
asked the same clarification question twice.

If the ECG System does not contain certain words in its lexicon, it may ask the user
for synonyms those words (Figure 4.3). Once the user has filled out a synonym for every
unknown word, the system will rerun the query replacing the unknown words with the
synonyms. This can repeat as many times as necessary but should not occur too frequently
because the ECG system attempts to find synonyms automatically before asking the users.

If there are any errors in the process, an error message is clearly displayed in the ECG
result box. Errors can occur either due to connection issues to the ECG System or if the
System cannot understand a query.

Content Editors

These users encompass those who edit the wiki content as well as wiki administrators. Note,
that they are either Hesperian Society staff or volunteers, not general users. They can edit
pages and add content, which may expand the language used on the wiki. They will want
the content they add to be accessible by site visitors and so will want to be able to modify
the relevant parts of the Hesperian Product. However, they may not be system experts and
so modifying the underlying code and grammar would be difficult.

We anticipate one activity that content editors will have to do is add support for new
terminology introduced into the wiki. This can be done using the Token Editor [34] in the
Workbench, which we improve to make it easier to use. If the morphology entry for that
token is missing, then the Token Editor will notify the content editor and she can add an
entry for it using the newly developed Morphology Editor (section 4.2). Content editors can
figure out which tokens to add by comparing the word frequency on the wiki to the words
contained in the ECG System’s lexicon. This is done by running a simple script that crawls
the wiki to count words and then checks those against the lexicon before turning the top N
results. Of course, this script could be turned into an application with a GUI.

The ECG System also keeps track of synonyms users input when certain words are not
understood. If that synonym leads to a valid parse, then the original word is added to a log
along with the probable type and properties taken from the synonym’s token. This log of
token candidates can then be used to help guide the addition of tokens for terms people are
using. Again, this could be turned into an application with a GUI.

CHAPTER 4. THE HESPERIAN PRODUCT 12

Figure 4.1: The result of searching for “severe acute abdominal pain” without providing any
additional information.

CHAPTER 4. THE HESPERIAN PRODUCT 13

Figure 4.2: The result of searching for “severe acute abdominal pain” after clarifying that
the patient’s gender is female.

CHAPTER 4. THE HESPERIAN PRODUCT 14

Figure 4.3: If the system cannot recognize a word, like “procedure”, then it asks for syn-
onyms.

4.2 Language Side

Schemas

As mentioned before, in ECG, schemas are used to represent semantics. Therefore in order
to design the schemas used in the application, we must look at the meanings being conveyed.
In this case, the central concerns of nearly all queries are conditions and treatments. Also,
queries often contain useful information relating to the patient in the form of age or gender.
To that end we design a few specialized, highly interconnected schemas to capture as much
information as possible about these topics (Figure 4.4).

Most of these Hesperian schemas are subcases of a core grammar schema called the RD
schema, short for referent descriptor. It is intended to carry the meaning of noun phrases,
which is appropriate since most search queries are noun phrases [2]. The three top level
schemas are the Condition, Treatment and Patient schemas. The Disease and Symptom
schemas inherit from the Condition schema and the Procedure and Drug schemas inherit
from the Treatment schema.

These schemas are interconnected via their roles and constraints. For example, a Treat-
ment has a role for the related Condition and the patient of both is constrained to be the
same instance of Patient. The other constraints on these schemas are ontological constraints
in order to ensure their values satisfy the desired types. For example, the location of a
Condition must be a bodyPart and a Patient must be a person.

Apart from the RD-based schemas, we also have the HesperianBagSchema and a number
of schemas representing processes, both of which will be discussed in greater detail later.

Types and Tokens

We added several lexical types for the Hesperian Product, largely corresponding to the
various RD-based schemas (e.g. ConditionType, ProcedureType, etc.). All the types have
multiple roles that can be filled while defining tokens. For example, the ProcedureType

CHAPTER 4. THE HESPERIAN PRODUCT 15

schema Condition

subcase of RD

roles

loc: RD

patient: Patient

severity: ScalarModifier

duration: RD

trigger: RD

constraints

patient.ontological-category <-- @person

severity.value <-- @scalarValue

loc.ontological-category <-- @bodyPart

schema Treatment

subcase of RD

roles

patient: Patient

loc: RD

cond: Condition

constraints

patient.ontological-category <-- @person

loc.ontological-category <-- @bodyPart

cond.ontological-category <-- @conditionType

cond.patient <--> patient

Figure 4.4: The Condition and Treatment schemas used in the Hesperian grammar.

includes a role for patient gender, so an “abortion” token can specify that the patient must
be female.

Because of the flexibility of language, the use of words in the queries does not always
align with nice grammar rules. In light of this, some tokens of these types are not usually
considered nouns. For example, the word “pregnant” is frequently used like a noun in queries
even though it is an adjective. Therefore, there is a token of ConditionType for “pregnant”.
ECG has the flexibility to handle these changes but it does require custom morphology
entries.

Classification of Queries

We examined a number of different kinds of queries and, while most do not fit into neat cat-
egories, we will attempt to describe different types of problems shared between the queries.
Members of a class will use many of the same constructions and schemas in their SemSpec.
Queries may belong to multiple classifications based on the problems they involve.

CHAPTER 4. THE HESPERIAN PRODUCT 16

Bag-of-Words Queries: This is the largest class of queries. These queries are simply
lists of terms thrown together in a fairly meaningless order. Occasionally these queries are
separated by “or” or “and”, however, there is still no structure.

Example “blisters fever baby tummy”
While we can infer that the baby is a patient and the blisters and fever are symptoms, the
language does not provide enough structure to extract more meaning. For example, we can-
not conclude that the location of the blisters is on the baby’s tummy. In fact, several related
queries show the user was actually referring to “runny tummy” or diarrhea (Appendix B).

Noun-Noun Compounds: Although these appear similar to bag-of-words queries, taken
together, they give rise to greater meaning.

Example: “abortion pills”, “stomach pain”
In the first example, if the words are taken individually, then it seems like a list of Treat-
ments. However, taken together we realize that the pills are used to perform the abortion.
Similarly, in the second example, we can conclude that the location of the pain is on the
patient’s stomach.

“Prepositional” Phrases: Prepositions are frequently used to explain a relationship be-
tween multiple referents. While the examples below are technically noun phrases when taken
in their entirety, they all involve prepositional phrases.

Example: “injection in vein”, “medicine for cough”
In the first example, we can learn that the location of the injection is the patient’s vein. In
the second example, we can learn that the condition being treated by the medicine is the
patient’s cough.

Questions: Although users are almost always searching for the answer to a question, fully
formed questions represent a relatively small number of queries. That said, most questions
that do appear are one of the wh-types. Alternatively, some are also “can” questions. Ques-
tions can include a question mark but usually do not.

Example: “what is family planning”, “can hookworms affect the scalp?”
Knowing what is being asked for can help determine the type of response to give. The first
example is asking for a description of family planning and the second example wants a yes/no
answer to whether hookworms can affect the scalp. For the most part, this information is not
all that useful in the information retrieval system demonstrated in this project. However, a
more robust or structured information retrieval system could make use of this information.

Actions: This class, generally speaking, can be quite broad. However, the kinds of ac-
tions involved in health related queries are more constrained.

Example: “how to treat malaria”, “how to terminate pregnancy”
In the first example, the “treat” action involves applying a Treatment on the malaria Con-
dition. In the second example, the “terminate” action involves ending the pregnancy Con-

CHAPTER 4. THE HESPERIAN PRODUCT 17

dition, which means the patient is receiving an abortion Treatment.

Analysis of Queries

In this section we describe how each of the classes of query problems is addressed through
the grammar. Bear in mind that there are other issues with queries such as misspellings
and improper grammar. The former is handled by a spell check component described in
Section 4.2. The latter can be handled in part by loosening constraints and allowing more
constructions to unify. However, this cannot be done too much so as to avoid losing all
advantages of using ECG.

Bag of Words

All bag of words queries are handled by the HesperianBag construction. The construction
has a meaning of HesperianBagSchema and is structured like a linked list with the “this”
role set to a noun phrase and the “next” role set to another HesperianBag. Normally, in the
core grammar, in order to be considered a noun phrase, a Kernel needs a determiner or to
be an identifiable type (e.g. proper nouns). Therefore, we need another construction, Unde-
termined Kernel, to cause any Kernel to act like a noun phrase. Because the HesperianBag
construction’s constraints are so minimal, it matches extremely easily. Figure 4.5 shows the
structure of the HesperianBag, HesperianBagSchema, and Undetermined Kernel.

Consider the query “blisters fever baby tummy”. Each word will individually have mean-
ings Symptom, Symptom, Patient and RD respectively. These meanings will be contained
in a linked list of HesperianBagSchemas. More generally, the inclusion of the HesperianBag
and Undetermined Kernel also make the analysis process much less brittle than previous
ECG applications. This is important since the language usage patterns in queries are sig-
nificantly less constrained and the requirements of the application are flexible. Of course, in
an application like robotic control, where precision is critical, this degree of flexibility would
not be built into the grammar [10].

Noun-Noun Compounds

Previous work on the core grammar developed the NounNounCompound construction and
NounNounModifier schema. To handle noun-noun compounds in the Hesperian setting, we
subcase NounNounCompound into a number of new constructions such as LocatedCondi-
tion (Figure 4.6), to handle “stomach pain”, and ProcedureDrug, to handle “abortion pills”.
The appropriate roles within each schema are connected to create the combined meaning.
In LocatedCondition, the location of the pain Symptom is set to the stomach RD. In Pro-
cedureDrug, the drug used to perform the abortion procedure is set to the pills Drug.

CHAPTER 4. THE HESPERIAN PRODUCT 18

schema HesperianBagSchema

roles

this: RD

next: HesperianBagSchema

construction HesperianBag

subcase of RootType

constructional

constituents

np: NP

optional cc: CoordinatingConjunction

optional hb: HesperianBag

form

constraints

np.f before cc.f

cc.f before hb.f

meaning: HesperianBagSchema

constraints

self.m.this <--> np.m

self.m.next <--> hb.m

self.m.this.ontological-category <-- @hesperian

construction Undetermined_Kernel

subcase of NP

constructional

constituents

k: Kernel

constraints

self.features <--> k.features

meaning

constraints

self.m <--> k.m

Figure 4.5: The HesperianBag construction and schema and the Undetermined Kernel con-
struction.

CHAPTER 4. THE HESPERIAN PRODUCT 19

construction Treatment-For-Condition

subcase of NP

constructional

constituents

trmt: NP

for: For-PP

form

constraints

trmt.f before for.f

meaning: Treatment

constraints

self.m <--> trmt.m

trmt.m.ontological-category <-- @treatmentType

self.m.condition <--> for.np.m

for.np.m.ontological-category <-- @conditionType

construction LocatedCondition

subcase of NounNounCompound, NP

meaning: Condition

constraints

self.m <--> head.m

self.m.location <--> mod.m

head.m.ontological-category <-- @conditionType

mod.m.ontological-category <-- @bodyPart

Figure 4.6: The Treatment-For-Condition construction and the LocatedCondition construc-
tion.

“Prepositional” Phrases

The core grammar already contains various constructions to handle prepositional phrases.
Combining these prepositional phrases with another Hesperian noun phrase works very sim-
ilarly to the noun-noun compounds. We have different constructions for handling different
valid noun phrase and prepositional phrase pairs.

In the case of “injection in vein”, the Prep-Locative-Treatment construction connects the
location of the injection Treatment with the meaning of a locative prepositional phrase. For
“medicine for cough”, the Treatment-For-Condition (Figure 4.6) construction connects the
condition of the medicine Treatment to the meaning of a “for” prepositional phrase.

Questions

The core grammar contains nearly all the necessary constructions for questions already. For
wh-questions, the wh-word is treated as a noun phrase. Therefore the SemSpec for the query,

CHAPTER 4. THE HESPERIAN PRODUCT 20

“what is family planning”, looks very similar to that of a declarative statement regarding a
referent called what. Of course, there still are markers to indicate that it is a question.

For “can” questions, there are existing constructions for sentences with auxiliary inver-
sion. In this case, the auxiliary is “can”. The SemSpec for “can hookworms affect the scalp?”
will have hookworms as the participant in the verb phrase, “affect the scalp”. Again, the
SemSpec is marked to indicate that this is a yes/no question.

Actions

Once more, a lot of the structure needed to interpret actions comes from the core grammar.
Numerous general constructions already exist for things like transitive actions or copulas (e.g.
“is”). Many more common actions also did not require any specific implementations because
they are based on relatively primitive schemas. In the query “what is family planning”, the
copula constructions and schemas used come entirely from the core grammar.

However, there are still a number of Hesperian specific actions. For example, the act of
treating involved in “how to treat malaria”, requires a specific TransitiveTreatment construc-
tion with the meaning of TreatmentProcess schema. The specific implementation allows the
appropriate roles to be bound together within TreatmentProcess.

Similarly, the query “how to terminate pregnancy” involves the TransitiveAbortion con-
struction with a meaning of AbortionProcess. The TransitiveAbortion construction is a
subcase of the TransitiveCauseToEnd construction that is specifically for when the thing
being ended is a pregnancy. While it may not always be useful to build constructions that
are this specific, having more robust coverage of abortion-related language would be useful
for this application. Since a large number of queries on the Hesperian Wiki relate to abor-
tion, without such a specific construction, it can be tricky to figure out that such a query is
talking about abortion.

Specializing Queries

The Specializer is responsible for pulling out task relevant information from the SemSpec.
The Hesperian Specializer requires only two changes: handling the RD-based schemas in
a special way and logic to handle the HesperianBagSchema. All other changes are made
directly to the ActSpec templates and are discussed in section 4.3.

Normally, RDs and their subtypes match a template called an objectDescriptor template.
However, since the RDs we use in our grammar are much more specific, we choose to use
more specific descriptor templates. These templates correspond to the RD-based schemas
themselves (e.g. conditionDescriptor, patientDescriptor, etc.) and contain the corresponding
roles. To accommodate this we simply overwrite one function in our Hesperian Specializer
to use the appropriate descriptors.

We use a HesperianBagDescriptor template to mimic the linked-list structure of a Hespe-
rianBag. We add a special control path in the Hesperian Specializer to copy over the linked
list.

CHAPTER 4. THE HESPERIAN PRODUCT 21

schema TreatmentProcess

subcase of Process

roles

treatment: Treatment

patient: Patient

condition: Condition

actionary: @treatmentVerb

constraints

patient <--> treatment.patient

condition <--> treatment.condition

condition.patient <--> patient

schema CauseToEnd

subcase of Process

roles

endedThing

schema AbortionProcess

subcase of CauseToEnd

roles

treatment: Procedure

patient: Patient

condition: Condition

actionary: @end

constraints

patient <--> treatment.patient

condition <--> treatment.condition

condition.patient <--> patient

condition.ontological-category <-- @pregnancy

treatment.ontological-category <-- @abortion

patient.gender <-- @female

endedThing <--> condition

protagonist <--> patient

Figure 4.7: The schemas for TreatmentProcess, CauseToEnd and AbortionProcess.

CHAPTER 4. THE HESPERIAN PRODUCT 22

Core System Improvements

To accommodate challenges presented by this new domain, we made a number of changes to
language side aspects of the system that will ultimately make their way back into the core
version of the system (Figure 2.2). These changes include modifications to the Analyzer,
adding preprocessing steps to the UI-Agent and improving the tools in the Workbench.

Multiword Token Support

One feature that is particularly useful in medical applications is support for multiword tokens.
These are tokens where both words are needed together to give it meaning. For example,
“pink eye” (also written “pinkeye”), would previously have been parsed as being an eye that
is pink in color. However, this should instead refer to the disease. In accommodating this
requirement, we focused simply on two word tokens.

We modified the token matching step in the analyzer. In this step the analyzer splits
the input utterance by spaces and then matches each word to one in its lexicon. Instead of
simply considering the current word, the analyzer now also considers the combination of the
current word and the subsequent word. We allow tokens to include an underscore to indicate
when it is a multiword token. For example, putting the token “pink eye” in the tokens file
would cause the analyzer to match the pair of words, “pink eye”, during its token matching
step.

Spell Checking

When dealing with user input, words can frequently be spelled incorrectly and previously
this caused the System to fail on the input. We fix this by adding spelling correction that
attempts to replace misspelled words with words the system understands. To accomplish
this, we use a Python package, pyenchant2, that provides access to the Enchant3 spelling
library.

In the UI-Agent, before an utterance reaches the Analyzer, every word in the utterance
is checked to see if it is in the English language and is in the Analyzer’s lexicon. If both
conditions are true or only the second condition is true, the word is left as is. If only the
first condition is true, then it is handled by the synonym matching component described in
the next section. If neither condition is true, then the word undergoes spelling correction.

The pyenchant package provides an API to create your own word lists and comes with
a word list for English. If an input word is not in the word list, pyenchant suggests similar
words from the word list. We use pyenchant to create a word list from the Analyzer’s lexicon
and then use the top suggestion from that list to replace the misspelled word. If there
are no suggestions from the Analyzer’s lexicon, then we take the top suggestion from the
English language and pass that suggestion to the synonym matching component. If there

2www.github.com/rfk/pyenchant
3www.abiword.github.io/enchant/

https://github.com/rfk/pyenchant
https://abiword.github.io/enchant/

CHAPTER 4. THE HESPERIAN PRODUCT 23

are no suggestions, then we use the synonym matching fail state logic, described in the next
section.

Synonym Matching

User input may not match any particular word stored in the Analyzer’s lexicon, but there
may be another word with the same meaning in the lexicon. In such cases we try to map from
the unknown word to a word in the lexicon. We do this by first part-of-speech tagging the
sentence using NLTK4. Then the unknown word along with its part-of-speech tag is passed
into WordNet [14] in order to get synonyms. Once a synonym is recovered, the part-of-speech
tag and the grammar’s morphology are used to recover the correct wordform. Finally, the
resulting word is checked to see if it appears in the lexicon. The first synonym to appear in
the Analyzer’s lexicon is used. This is not unlike what is done in [39].

If a word cannot be fixed by spelling correction and synonym matching, then it is added
to a list of failed words. The list of failed words is then returned to the wiki and displayed to
the user in conjunction with a request to either rephrase their query or provide synonyms for
those particular words. If they provide synonyms, then the failed words will be replaced in
the query before running it through the system again. If all the words in the modified query
can be matched to the lexicon, then the failed words are added to a log of candidate tokens.
Along with the failed words, we log the type and role values of the successful replacement
word since they will likely be the same for the failed word. A system administrator can then
use the log to guide the addition of new tokens.

Improved Token Editor and Morphology Editor

To make adding tokens easier for non-experts, we improve the existing Token Editor [34] in
the ECG workbench. The new iteration of the Token Editor now allows users to view and
delete added constraints to a token. Additionally, it checks to see if there is a correspond-
ing morphology entry. If none is present, then the user has the option now of creating a
morphology entry using another tool.

The Morphology Editor allows the user to enter a lemma along with its parent type.
Upon selecting the parent type, the tool then presents the user with a list of valid inflections
for which users can enter word forms. When the user submits, the tool adds a corresponding
entry to the desired morphology file.

A simple web crawler script, implemented using the Scrapy5 framework, allows us to
retrieve frequencies of all words in the wiki. This list is then cross-checked against the
Analyzer’s lexicon to determine which tokens need to be added. A similar procedure can be
implemented for words from a collection of user queries. This would allow a developer or
system administrator to quickly identify and prioritize which tokens to add.

4www.nltk.org
5www.scrapy.org

https://www.nltk.org
https://scrapy.org

CHAPTER 4. THE HESPERIAN PRODUCT 24

Figure 4.8: Top: Token Editor while adding token for “abortion”. Bottom: Morphology
Editor while adding entry for “pink eye”.

CHAPTER 4. THE HESPERIAN PRODUCT 25

{’condition’: [(’pregnancy’, 3)],

’gender’: [(’female’, 3)],

’symptom’: [(’bleeding’, 1)],

’symptom_duration’: [(’1..4.0 weeks’, 1)],

’treatment’: [(’abortion’, 2)]}

Figure 4.9: The information extracted from the query “bleeding for four weeks after an
abortion”

4.3 Application Side

Action Specification Template Design

The Action Specification, or ActSpec, defines the interface between the Specializer and the
Problem Solver. It is entirely defined through templates which declare what information
the Specializer should extract and send to the Problem Solver. The core system already
contains a number of ActSpec templates to facilitate the more general and common elements
of language. While the core templates remain largely unchanged, we add a few templates to
address the unique needs of this application.

As mentioned in Section 4.2, we add several new descriptor templates, inheriting from
the general objectDescriptor, to address the different RD-based schemas. These descriptors
have roles corresponding to their respective schemas. Additionally, we add a hesperian-
BagDescriptor template to copy the linked-list structure of the schemas.

We also add parameter templates for each of the new actions. Again, there is nothing too
surprising here as their roles correspond directly to the relevant roles in the corresponding
schemas.

Query Information Extraction

The job of the Hesperian Problem Solver is primarily to convert an ActSpec into a query.
We separate this process into two steps, information extraction and query rewriting. Our
approach to information extraction mimics the typical Problem Solver design used in previous
ECG products. Every template is handled by a specific function with the function calls
following the structure of the ActSpec.

When a function encounters a fact worth keeping, it is saved to a global dictionary. For
example, if a symptomDescriptor states that the type of a symptom is “pain”, then the
value “pain” will be stored under the key “symptom” in the dictionary. Since a particular
field may be encountered multiple times within an ActSpec, with differing values in different
places (e.g. “blisters fever baby tummy” has two symptoms) the dictionary stores values
for each key as a set, with new values being added to the set. Once all the information is
extracted, it can be saved to the user state as well as used for building a query.

CHAPTER 4. THE HESPERIAN PRODUCT 26

Figure 4.9 shows the information extracted for the query “bleeding for four weeks after
an abortion”. The corresponding ActSpec is in Appendix C. In its current format, the
extracted information loses a lot of information from the ActSpec’s structure. For example,
it is not clear from the extracted information alone that the “abortion” was the trigger for
the “bleeding”. This fact is available in the ActSpec, but we do not save information at that
granularity simply because it is not useful with our current information retrieval system,
Google Search. However, clearly there is a considerable amount of structured information
available that could be used by a sufficiently robust information retrieval system.

Query Rewriting

The limitations imposed by our current information retrieval system play a role in how
queries are rewritten. Specifically, queries are first written purely as bags of words consisting
of every combination of information taken from the ActSpec. These bags are then ranked
based on a score assigned to their parts. Queries are then executed in decreasing order of
score until one returns a result.

The terms used in the constructed queries are combinations of the extracted information
(e.g. Figure 4.9) as well as additional terms known to be useful in the context of the Hesperian
wiki. For instance, although a user may be asking about “symptoms”, the wiki frequently
uses the term “signs” as well, so we add the term “(symptoms—signs)” to the query. In
other cases, we replace the fact with a more relevant term. If the user is female, then results
corresponding to the book “Where Women Have No Doctor” should be prioritized so we use
the “where women have no doctor” instead.

The scores of a query are given by the sum of the scores of their component terms. The
base value of each term is determined based on its key in the extracted information. For
example, “symptom” receives a higher base score than “symptom location”. The base values
used are determined experimentally but are based on the idea that queries revolve around
the conditions and treatments and other information is extra. None of the base values are
negative, so the highest ranked query is always the one with all the terms. Subsequent
queries progressively remove the least valuable terms.

Notice that, in addition to the values in Figure 4.9, the tuples also contain numbers.
These numbers indicate the depth of that fact within the ActSpec. This is a crude metric
for the importance of that piece of information to the query but works decently well in
practice. In the case of Figure 4.9, we know that the patient was previously pregnant, hence
the abortion, but the pregnancy is not particularly relevant to this query. It also is stored
quite deep in the ActSpec (see Appendix C), because it is not immediately related to the
“bleeding” symptom. The depth of the fact weights the value of the corresponding term,
with deeper facts being exponentially worse than shallower ones.

In practice, the first query, which contains all the terms, usually finds a search result.
However, when a result is not found, the scores of the queries are very useful in creating
follow up queries until a result is found. In the case of the query “can hookworms affect the
scalp?”, the system attempts two queries:

CHAPTER 4. THE HESPERIAN PRODUCT 27

hookworm (disease|symptom|sign) scalp affect
hookworm (disease|symptom|sign) affect

For this query the system has extracted the facts that the disease is “hookworm”, the
action is “affect” and the affected entity is the “scalp”. The first query includes all the
information of the original plus an additional term for diseases. However, it does not produce
any results. The second query removes the location “scalp” because it is the least relevant
portion of the query. The result is a page about worms and hookworms. In this case, the
best result does not fully answer the question but it does address as much of the question
as possible.

Hesperian Wiki Extension

The Problem Solver communicates with a custom Mediawiki extension installed into the
Hesperian Wiki. The extension implements the ECG System’s communication protocol,
provides information to the Problem Solver, receives responses from the Problem Solver,
executes queries and displays the information to the user. While this may seem like a
large number of functions, the development and integration process is fairly painless thanks
to Mediawiki’s robust extension support and the ease of implementing the ECG System’s
communication.

Since each component of the ECG system runs as a separate process, it relies on a general
IPC solution called Transport [34] which works by broadcasting messages within a subnet.
We use a component called a Bridge server to connect multiple subnets by copying messages
from one subnet and rebroadcasting them on another subnet. In order for the Mediawiki
extension to communicate with the Problem solver, it simply opens a socket directly to the
Bridge server to send and receive messages.

The extension inserts Javascript into the page to capture the user search query and
execute it in Google as well as send it to the Problem Solver. The Problem Solver returns
the improved queries and also any clarification questions. The Javascript then executes
the improved query as well as renders any clarification questions. If a user responds to a
clarification question, that information is sent to the problem solver, along with the query
and it is run through the system once more before returning improved results.

Clarification Questions

If the system is missing a piece of user information that might be useful, it can ask a
clarification question. This can be used to resolve ambiguous input or to refine results. In its
current form, the clarification questions are only asked when a piece of information is missing
(e.g. gender), without regard to the information’s utility for that particular query. However,
the system could easily be modified to ask the questions under more specific conditions.

Clarification questions are defined by a template specifying the text of the question, the
field being determined and the option values. This produces a multiple choice question for
the user.

CHAPTER 4. THE HESPERIAN PRODUCT 28

For the query “severe acute abdominal pain”, the top result points to a general page
about pain in the belly or gut (Figure 4.1). However, when it is clarified that the patient’s
gender is female, then the improved result deals with “Sudden, Severe Pain in the Abdomen”
for women (Figure 4.2). Clearly these kinds of clarification questions can be useful, and with
an information retrieval system where it is more clear what information would be useful to
narrow the search, it would be possible to better tailor these questions to the situation.

When the system fails to recognize some words in the query, it will ask the user to provide
synonyms (Figure 4.3). When users input alternatives, the query is rerun through the ECG
System using the alternatives in place of the failed words. If the alternatives succeed, the
failed words are recorded as candidate tokens (Section 4.2).

User State

In order to retain information over the course of the interaction, the ECG system maintains
state about the user. This state is associated with the browsing session and the association is
destroyed when the session is over or after a period of inactivity due to the sensitive nature of
medical information. Maintaining user state allows the ECG system to use previously learned
information in future queries and it allows the system administrators to group related search
activity and any associated feedback together.

User information consists of information gleaned from their queries, their feedback and the
pairing between original and improved queries. When a user first enters a query, a session
ID is associated with their browser. This session ID is then associated with a randomly
generated user ID within the ECG System. As they interact with the search engine, the
session ID is used to retrieve the related user ID and store information in a key-value store.
If in the process of improving a query, a piece of information would be useful, then the
Problem Solver will check the user information before generating a clarification question.
This prevents asking for previously provided information during subsequent queries.

The current implementation assumes the information will not change within a session.
If the user ever provides conflicting information, the current implementation overwrites the
previous information. When the user leaves the wiki, their session ID is lost. A new session
ID and user ID will be created the next time they visit the wiki and use the search engine.
While we still retain the information recorded from previous users, we are no longer able to
relate it to a particular session or individual.

4.4 Example Queries

We describe the Hesperian Product by working through several examples taken from query
logs of the previous Hesperian wiki. The list of examples we focus on is available in Appendix
B. Here we discuss a few of these examples in greater detail. In this section we mention several

CHAPTER 4. THE HESPERIAN PRODUCT 29

schemas and constructions that are not included as Figures. While their names are mostly
self-explanatory, they can be viewed in their entirety on our Github repository6.

Consider the query “can hookworms affect the scalp?”. In the Analyzer, this query
is associated with a CauseEffect schema because of its form. The cause is the hookworms
Disease and the affected thing is the scalp RD. In this case, the particular constructions used
do not connect the scalp RD to the hookworms’ Disease location. The SemSpec information
is preserved through the Specializer and ActSpec, and is available to the Problem Solver.
During the query information extraction phase, these facts are extracted: the question is
a “can” question, the disease is hookworms, the scalp entity is involved, and the action is
to affect. The queries presented in Section 4.3 are generated based on these facts. Notice,
that extra terms are added to help the disease match. Since the “scalp” is only a generic
object, it has the lowest priority in the query and is the first term removed, leading to the
second query attempted being successful in returning a result corresponding to a page on
hookworms. This improved query is better because the original query returns no results.

Now consider the query “bleeding for four weeks after an abortion”. This query is repre-
sented by a Symptom schema for “bleeding”. Using the Condiiton-For-Time construction, we
associate the four weeks with the duration of the Symptom. Using the ConditionAfterTreat-
ment construction, we associate the abortion Treatment with the trigger of the Symptom.
This information is encoded in a SymptomDescriptor ActSpec and given to the Problem
Solver. Appendix C shows the ActSpec for this query and Figure 4.9 shows the informa-
tion that is extracted from the query. Despite this extra information, the top result of the
rewritten query and the original query is the same page on what to expect after an abortion.
That said, the wiki does not contain pages that would better address the query.

For the query “alcoholism”, the meaning is a Disease schema. Because there is not much
extra information available, the only fact extracted from the final ActSpec is that the disease
is alcoholism. Like the hookworms example before, we add extra terms to the query to match
the disease, making the improved query “alcoholism (disease|symptom|sign)”. Unfortunately
these hurt the result rather than help. The top result for the original query is a page on
alcohol and drug problems, whereas the top result for the improved query is a page on
common cancers. This is because the page on cancers discusses how alcoholism and disease
can lead to cancer. Usually the extra terms help, but in this case, the words “alcoholism”
and “disease” are not used together frequently in the right context.

For the query “severe acute abdominal pain”, Figures 4.1 and 4.2 show how the results
can vary considerably if we know the user’s gender. Both are still represented in the Language
Side the same way, as a Symptom. However, in the Problem Solver, the gender information
is included by adding a term for the book Where Women Have No Doctor. This leads to the
more specific result. The gender information can come from either a clarification question or
the user state. If the user responds to the clarification question, the query is re-run through
the system, and the clarification information is saved to the user state for future use.

Now consider the query “abortion pills causes severe pain in left abdomen”. This query

6www.github.com/icsi-berkeley/ecg grammars

https://github.com/icsi-berkeley/ecg_grammars

CHAPTER 4. THE HESPERIAN PRODUCT 30

uses a CausalAction schema where the abortion Procedure is the cause and the pain Symptom
is the effect. After passing through the Language Side, this query produces an ActSpec which
contains a number of facts but one particularly interesting one is that the patient gender
is female. Although this information is not explicitly present in the query, we encode it
in the “abortion” token in the grammar; the patient of an abortion must be female. This
fact is used in improving this query but is also recorded to the user state for use later (e.g.
“severe acute abdominal pain”). The final result produced by the improved query is a page
on abortion complications which is better than the page on abdominal pain for the original
query.

Finally, consider the query “procedure for surgical abortion”. Here we intentionally omit
a token for the word “procedure”. Therefore, the system has trouble answering the query,
and in this case does not find any synonyms. Therefore it must ask the user to provide
a synonym (Figure 4.3). If we provide the synonym “operation”, the query “operation for
surgical abortion” will be run through the system. Again we intentionally omit a token
for “operation”. However, this time a synonym, “surgery”, is found. Thus the query that
ultimately goes to the Analyzer is “surgery for surgical abortion”. The final result of the
improved query and the original query is the same, a page about abortion complications.
Alternatively, if we provide a synonym for “procedure” that does actually have a token, such
as “treatment”, then a candidate token entry for “procedure” will be added to a log file using
the values taken from the “treatment” token. The query that passes through the system in
this case is “treatment for surgical abortion”. Again, the result is the same page on abortion
complications.

Altogether, these queries illustrate how the system works and performs. By looking at
these cases, we see what information is available at any given stage and verify the system
works as expected.

31

Chapter 5

Related Work

Much of the broader context for our work comes from the semantic search and query under-
standing literature. Query understanding, as defined by [7], concerns the representation and
intent discovery of a query. Related research directions include query parsing, query rewrit-
ing, exploiting user context and query classification. These typically occur as preprocessing
steps prior to executing a query [26].

A lot of work has been done in the area of semantic annotation of queries in order to
relate query elements to concepts and categories [17, 24, 23]. In [36] they use external
knowledge base signals related to modifiers to better identify the concepts related to entities
and produce better semantic annotations. This is not unlike using ontological constraints in
ECG [32]. [22] specifically discusses a method for semantically tagging noun phrases which
represent a large number of queries. [27] uses a domain-dependent grammar along with an
SVM to rank the resulting parse trees in order to semantically tag queries. Several papers
apply semantic annotation towards the creation of SPARQL queries to get information from
knowledge bases [18, 35, 37]. Additionally, the results of semantic annotation can help
identify user intent [19, 38].

Regarding query modification, [20] introduces the idea of query substitution, where a new
query is generated to replace the user’s original query. They show this can be an effective
way to improve search results. In [39] they show that modifying queries to use synonyms
from WordNet [14] can also lead to better matches to target documents.

Other work establishes the utility of query context. In both [5] and [15] they develop a
model for query classification based in large part on previous search history.

Within this context, our work utilizes the ECG System to tackle many of the problems
related to query understanding withing a specific domain. It is most closely related to work
involving semantic annotation, but due to the nature of ECG, we operate on richer semantic
representations. Also, our approach taken to information retrieval differs from those taken
by most other work due to the facts that we are operating against a purely unstructured
data source and we do not have direct control over Google Search.

Previous applications of the ECG System have focused more on the command and control
of autonomous systems. A considerable amount of research has been done on applying the

CHAPTER 5. RELATED WORK 32

ECG System in the context of human robot interaction [10, 34, 33, 21, 9, 8], using both the
MORSE and ROS packages for controlling the robot. The ECG System has also been used to
control the real-time strategy video game, Starcraft [10]. The application and corresponding
language described in this paper differ considerably from those of previous efforts. Most
notably, language in queries is frequently short and consists mostly of noun phrases [2] or
unstructured collections of words, rather than being fully formed sentences. In addition to
the flexibility in the language, the parameters of the application are also considerably less
precise than in command and control-type applications. Further, the language used here
primarily concerns healthcare topics.

Prior to the development of the ECG System, a significant amount of work was done
in the development of ECG [3, 4, 6, 29, 28]. The contributions of these works underlie the
Language Side of the ECG System.

33

Chapter 6

Conclusion

6.1 Contribution and Limitations

In this work we demonstrate how the ECG System can be retargeted for query understanding
on a healthcare wiki. We show how different modifications and features, useful in this domain,
can be integrated into the system. In doing so we develop several useful improvements to
the core ECG System and to the Hesperian Society’s live wikis. We also show how query
information extracted by the ECG System can be used to get a clearer picture of the user’s
needs and can be used to rewrite the user’s queries. Crucially, this is all done within the
limitations of the existing Hesperian wiki application, demonstrating the ECG System’s
flexibility as an integration-friendly natural language understanding system.

Many of the limitations of this system are the same limitations of other ECG products.
It is inherently domain constrained, so queries that fall outside that domain will likely fail.
Queries within the domain that are not covered by the grammar, will also fail. Also, some
queries that require more world knowledge than can be encoded in the language alone can be
difficult to handle. For instance, a query like “i am not worth anything” would require the
Application Side to infer that the query relates to mental health. Additionally, the current
implementation of the Analyzer frequently takes several seconds to return a result, making
it too slow for a production search engine.

Also, there are significant limitations to our approach to information retrieval. Since, we
ultimately use Google Search, a lot of how the query is actually processed is black-boxed.
Further, by rewriting queries into bags of words we forfeit a lot of the information present
in the ActSpec. In future work we discuss various ways these approaches can be improved.

6.2 Future Work

There are numerous directions for further exploration with this system. Foremost among
them is using a different information retrieval system. Using an alternative search engine
would allow us to avoid black-boxing the retrieval process. On the most basic level, this would

CHAPTER 6. CONCLUSION 34

allow us to directly apply our term weights to the retrieval process. We could also explore
new ways of using the extracted information in the search process. For example, we could
use the information as inputs in a learning to rank algorithm [25] and compare it to a model
without those inputs. Another approach would be to use knowledge extraction techniques
to associate structured information with pages on the wiki, and use those structures to help
rank pages.

We could also apply this approach to query suggestion and substitution. Queries that are
asking for the same thing may get completely different results because they look different to
the search engine. However, once passed through the ECG System, they would look much
more similar. Combining this with user activity logs would allow us to develop a system
that recommends the most effective queries. This approach could also be used to replace a
query with a more effective version.

With regard to the ECG System, further work can be done in a multitude of directions.
Expanding the grammar within this application would test and help refine the packages in
the core grammar. Applying the ECG System to other unrelated domains and applications
would similarly lead to improvements in the core System. Also, the Analyzer, could be
reworked to be made faster by using resources more efficiently or adding parallelism.

6.3 Concluding Thoughts

In this work we demonstrate the utility of natural language understanding to query under-
standing in a specialized domain and also test the flexibility of the ECG System. As natural
language becomes an increasingly important part of human computer interaction, natural
language understanding will play a bigger role in computer applications. Integrating such
capability into query understanding systems, among other areas, is an important step in
providing an accessible user experience. As a result, robust and flexible natural language
understanding systems will be necessary and the design adopted by the ECG System provides
an effective template for such systems.

35

Appendix A

Wiki Upgrade Instructions

These are the instructions we created for upgrading the Hesperian Wiki. As a result some of
the steps are relevant only for the Hesperian Wiki. Wherever possible, we have tried to make
the steps more generally applicable. These instructions assume the existence of a running
version of the wiki that needs to be upgraded and that the skin has already been refactored
for the new wiki version. If a step is optional, it is specifically marked as being OPTIONAL.

1. Download mediawiki 1.29.1 from here and extract it to the desired location. Copy over
LocalSettings.php, the images folder and the skins/common folder from previous
wiki files.

2. Copy over any extensions from the previous wiki into the new wiki only if they are the
latest version and are still compatible.

3. Download the updated versions of any extensions and extract them to /extensions

in the new wiki.

4. Remove dependencies for any extensions that were not transferred over.

5. Copy the refactored skin into the skins folder of the new instance of the wiki. We
assume the skin is named “hhgskin”.

6. Add the following line to LocalSettings.php in order to load the wiki skin.
wfLoadSkin(’hhgskin’);

7. Run the following command in order to update the database for the latest version of
MediaWiki.
php5.6 <path_to_wiki>/maintenance/update.php

8. (OPTIONAL) Rebuild the default search index by running the following command.
php5.6 <path_to_wiki>/maintenance/rebuildtextindex.php

https://www.mediawiki.org/wiki/Download

APPENDIX A. WIKI UPGRADE INSTRUCTIONS 36

9. At this point, visiting the wiki site in a browser should result in a page that resembles
the final wiki. If there are any minor visual issues, make sure to delete browser caches,
purge the MediaWiki cache and possibly restart the machine running the wiki.

10. Copy the GoogleSiteSearch extension into the extensions folder. You can download
the extension from here.

11. In LocalSettings.php place the following lines, replacing ’YOUR_CSE_ID’ with the ID
corresponding to Google Site Search for this wiki. This adds Google Search and disables
the built in search.
wfLoadExtension(’GoogleSiteSearch’);

$wgGoogleSiteSearchCSEID = ’YOUR_CSE_ID’;

$wgGoogleSiteSearchOnly = true;

12. Now got to the configuration for site search on Google and change the Layout to “Full
Width” under “Look and Feel” settings. Customize the colors used for the search
results here too.

13. Customize the title that appears before the search results by changing the values in
ECGSearchInterface/i18n.

14. Now the search results should appear normally but be from Google. When we did this,
we encountered a bug where the search input field was missing. If you encounter this
problem, you can fix it in one of two ways:

a) The HTML for the search box is already present but has a display:none; inline
style. This can be fixed by adding the following Javascript to any script that will
load onto the search page.

$(document).ready(function() {

if ($(’#mw-googlesitesearch-container’).length != 0) {

if ($(’#mw-googlesitesearch-container form.gsc-search-box’).length != 0) {

$(’#mw-googlesitesearch-container form.gsc-search-box’).show();

} else {

$(’#mw-googlesitesearch-container’).on(’DOMNodeInserted’, function() {

$(’#mw-googlesitesearch-container form.gsc-search-box’).show();

});

}

}

});

b) The other option is to create your own search input form. Unlike option (a), this
will cause a full page refresh on every search conducted but it will also be more
customizable. One way of doing this is by adding an extension that is loaded
before GoogleSiteSearch that runs on the SpecialSearchResultsPrepend hook.
It should behave like the following code.

https://stackoverflow.com/questions/25597846/purging-all-pages-in-mediawiki
https://www.mediawiki.org/wiki/Extension:GoogleSiteSearch

APPENDIX A. WIKI UPGRADE INSTRUCTIONS 37

use MediaWiki\Widget\SearchInputWidget;

public static function searchPrepend($specialSearch, $out, $term) {

$out->enableOOUI();

$searchWidget = new SearchInputWidget([

’id’ => ’searchText’,

’name’ => ’search’,

’autofocus’ => trim($term) === ’’,

’value’ => $term,

’dataLocation’ => ’content’,

’infusable’ => true,

]);

$layout = new \OOUI\ActionFieldLayout($searchWidget, new \OOUI\ButtonInputWidget([

’type’ => ’submit’,

’label’ => $specialSearch->msg(’searchbutton’)->text(),

’flags’ => [’progressive’, ’primary’],

]), [

’align’ => ’top’,

]);

$out->addHTML(

Xml::openElement(

’form’,

[

’id’ => ’search’,

’method’ => ’get’,

’action’ => wfScript(),

]

) .

’<div id="mw-search-top-table">’ .

$layout .

’</div>’ .

"<div class=’mw-search-visualclear’></div>" .

’</form>’

);

return true;

}

Alternatively, another option for search is ElasticSearch. Instructions for that installation
are presented here and continue from step 9 above.

1. Install ElasticSearch according to the instructions presented here or according to the
steps below. This guide installs ElasticSearch on the same machine that runs the wiki
but its possible to install it on a different machine.

https://www.elastic.co/guide/en/elasticsearch/reference/current/deb.html

APPENDIX A. WIKI UPGRADE INSTRUCTIONS 38

a) Install apt-transport-https using the following command:
sudo apt-get install apt-transport-https

b) Add elasticsearch to the sources as follows:
echo "deb https://artifacts.elastic.co/packages/5.x/apt stable

main" | sudo tee -a /etc/apt/sources.list.d/elastic-5.x.list

c) Install elasticsearch with the following command:
sudo apt-get update && sudo apt-get install elasticsearch

d) Install the java runtime environment
sudo apt-get install default-jre

e) Start the service with the following command:
sudo systemctl restart elasticsearch.service

f) Wait a few minutes and verify the service is running with the following command:
curl -XGET ’localhost:9200/?pretty’

2. Download the installer for Composer from here and run it to generate a composer.phar
file. It will be needed for installing the Elastica extension.
php5.6 installer

3. Download the Elastica and CirrusSearch extensions from here and place them in the
extensions folder of the wiki. From within the Elastica directory run the following
command:
php5.6 <path_to_phar>/composer.phar install --no-dev

4. Follow the instructions here or below to complete the CirrusSearch setup.

a) Place the following lines in the LocalSettings.php file:
wfLoadExtension(’Elastica’);

require_once("$IP/extensions/CirrusSearch/CirrusSearch.php");

$wgDisableSearchUpdate = true;

b) Run the following script:
php5.6 extensions/CirrusSearch/maintenance/updateSearchIndexConfig.php

c) Remove this line from LocalSettings.php:
$wgDisableSearchUpdate = true;

d) Run the following commands. They could take a while to run.
php5.6 extensions/CirrusSearch/maintenance/forceSearchIndex.php

--skipLinks --indexOnSkip

php5.6 extensions/CirrusSearch/maintenance/forceSearchIndex.php

--skipParse

e) Finally, add the following line to LocalSettings.php:
$wgSearchType = ’CirrusSearch’;

https://getcomposer.org/installer
https://www.mediawiki.org/wiki/Extension:CirrusSearch
https://phabricator.wikimedia.org/diffusion/ECIR/browse/master/README

39

Appendix B

Selected Queries

Below is a table of all the queries we focused on while building the system. These queries
were selected from a much larger set of search logs from the previous Hesperian wiki. The
second column says whether query works in the system. The third column says whether the
result is better, the same or worse given that the query parses. We determine the quality of
the result by manually comparing the top result of both searches and seeing which is more
relevant to the query. The improvement can be judged to be “same” if either both the top
results are the same page or if both the top results are similarly relevant.

Query Parses Improvement

what is a tapeworm? Yes Same
can hookworms affect the scalp? Yes Better
blisters fever baby Yes Better
blisters fever baby or tummy Yes Same
blisters fever baby tummy Yes Same
blisters on to tongue on lips and around mouth fever-
ish runny tummy among 2 years old

No

blisters or tongue or lips or mouth or feverish or
tummy

Yes Same

blisters tongue lips mouth feverish runny tummy Yes Better
blisters tongue lips mouth feverish runny tummy 2
years

No

blisters tongue lips mouth feverish runny tummy 2
years old

No

blisters tongue lips mouth feverish tummy Yes Same
bleeding 4 weeks after abortion Yes Same
bleeding 5 weeks after abortion Yes Same
bleeding after abortion Yes Same
bleeding at a abortion Yes Same

APPENDIX B. SELECTED QUERIES 40

bleeding for four weeks after an abortion Yes Same
bleeding four weeks after abortion Yes Same
bleeding weeks after abortion No
pregnancy missed person spotting lower backache
constipation

No

pregnant and symptoms Yes Better
pregnant missed period spotting 1 day lower backache
constipation

No

pregnant missed period spotting lower backache con-
stipation

No

pregnant not bleeding symptoms No
pregnant or symptoms Yes Better
pregnant period spotting backache constipation Yes Same
pregnant period spotting lower backache constipation No
pregnant period spotting or backache constipation Yes Same
pregnant period spotting or backache or constipation Yes Same
after giving birth how many years should i start giv-
ing birth again

No

after mining birth how many yeast solid i start mining
birth again

No

for how long can we wait to get pregnant after c sec-
tion operation

No

for how long can we wait to have another baby after
c section operation

No

pain in lower part of stomach No
pain in my abdomen after 8 months of abortion Yes Same
pain in right side extending to leg No
pain in the right lower abdomen after an abortion Yes Better
what can i give a 2 year old for diarrhea No
abortion pills causes any pain in lower abdomen after
year

No

abortion pills causes pain in left abdomen Yes Better
abortion pills causes seeds pain in left abdomen Yes Better
abortion pills causes severe pain in left abdomen Yes Better
after take the medicine to destroy the one month
pregnancy

No

can a breast feeding mother use implant method of
family planning

No

can tape worm cause malnutrition for my child and
how do i know its tapeworm

No

APPENDIX B. SELECTED QUERIES 41

which crops are green most successfully in organic
farming

No

which crops are grown most successfully in organic
farming

No

after abortion nausea and sore breast Yes Same
severe acute abdominal pain Yes Same
signs that labor has started No
stomach ulcers that causes vomiting Yes Same
what are bad signs after giving birth with operation No
what confirms that abortion was successful No
what happens when ovulation stops No
which tablet help get abortion No
i am not worth anything No
i don’t feel confident No
light blood clots after an abortion Yes Same
open soars on the out side of child’s vagina No
open sores on the out side of child vagina No
procedure for surgical abortion Yes Same
symptoms of abortion after on month No
what are the name of abortion pills Yes Same
what is family planning Yes Same
when is it safe for a woman who had previously had
a cesarean section

No

when is it safe for a women who had previously had
a cesarean section

No

when is it safe for a women who had previously had
a cesarean section to have a baby

No

when is the right time for someone who already give
birth by operation to get fall pregnant again

No

when is the right time to fall pregnant again if you
are a cesarean person

No

when is the right time to fall pregnant again if you
are a cesarean poison

No

when is the right time to fall pregnant again if you
are cesarean person

No

check if pregnant No
check yourself to see if you are pregnant No
hard breast and pain after abortion Yes Same
how should the bleeding be after an abortion No
how to give injection in vein Yes Same

APPENDIX B. SELECTED QUERIES 42

how to give intravenous injection Yes Same
how to terminate pregnancy Yes Same
how to treat malaria Yes Same
bleeding in urine Yes Same
can i conceive again after an abortion Yes Same
my breast hurts and i have difficulty in urinating No
symptoms of aids Yes Better
what can cause a woman to menstruate for two
months during her pregnancy

Yes Same

cancer in stomach Yes Worse
can you die from an infection after abortion Yes Same
what is endometriosis Yes Better
what are hemorrhoids Yes Worse
can I take valium with penicillin No
How to lower a fever No
medicine for malaria fever Yes Worse
abdominal pain in women Yes Worse
alcoholism Yes Worse
Down’s syndrome No
causes of obesity Yes Same
ampicillin for men Yes Same
what are medicines for gonorrhea Yes Same
medicine to take after abortion No
How to take temperature No
flu symptoms Yes Same
best medicine for cough Yes Same
bleeding after birth Yes Same

43

Appendix C

Sample ActSpec

{
’descriptorType’: ’symptomDescriptor’,
’disease’: {
’objectDescriptor’: {

’descriptorType’: ’diseaseDescriptor’,
’patient’: {
’objectDescriptor’: {

’age’: ’ageGroup’,
’descriptorType’: ’patientDescriptor’,
’gender’: ’genderValues’,
’type’: ’person’

}
},
’type’: ’diseaseType’

}
},
’duration’: {
’objectDescriptor’: {

’descriptorType’: ’objectDescriptor’,
’gender’: ’genderValues’,
’givenness’: ’givennessValues’,
’number’: ’plural’,
’quantity’: {
’amount’: {

’number’: ’singular’,
’schema’: ’QuantitySchema’,
’template’: ’QuantitySchema’,
’value’: 4.0

},
’property’: ’time’,
’schema’: ’Quantity’,
’template’: ’Quantity’,
’units’: ’week’

},
’type’: ’week’

}
},
’gender’: ’genderValues’,
’givenness’: ’givennessValues’,
’location’: {
’objectDescriptor’: {

’descriptorType’: ’objectDescriptor’,

APPENDIX C. SAMPLE ACTSPEC 44

’type’: ’bodyPart2’
}

},
’number’: ’singular’,
’original_query’: ’bleeding for four weeks after an abortion’,
’patient’: {
’objectDescriptor’: {

’age’: ’ageGroup’,
’descriptorType’: ’patientDescriptor’,
’gender’: ’genderValues’,
’type’: ’person’

}
},
’sid’: ’#6b8adb3e-9ee3-4405-b5f9-e27b33c4a2d3’,
’trigger’: {
’objectDescriptor’: {

’condition’: {
’objectDescriptor’: {

’descriptorType’: ’conditionDescriptor’,
’patient’: {

’objectDescriptor’: {
’descriptorType’: ’patientDescriptor’,
’gender’: ’female’,
’type’: ’person’

}
},
’type’: ’pregnancy’

}
},
’descriptorType’: ’treatmentDescriptor’,
’drug’: {
’objectDescriptor’: {

’condition’: {
’objectDescriptor’: {
’descriptorType’: ’conditionDescriptor’,
’patient’: {
’objectDescriptor’: {
’descriptorType’: ’patientDescriptor’,
’gender’: ’female’,
’type’: ’person’

}
},
’type’: ’pregnancy’

}
},
’descriptorType’: ’treatmentDescriptor’,
’patient’: {

’objectDescriptor’: {
’descriptorType’: ’patientDescriptor’,
’gender’: ’female’,
’type’: ’person’

}
},
’type’: ’drugType’

}
},
’gender’: ’genderValues’,
’givenness’: ’typeIdentifiable’,
’location’: {
’objectDescriptor’: {

APPENDIX C. SAMPLE ACTSPEC 45

’descriptorType’: ’objectDescriptor’,
’type’: ’bodyPart2’

}
},
’number’: ’singular’,
’patient’: {
’objectDescriptor’: {

’descriptorType’: ’patientDescriptor’,
’gender’: ’female’,
’type’: ’person’

}
},
’type’: ’abortion’

}
},
’type’: ’bleeding’

}

46

References

[1] R H. Baayen, R Piepenbrock, and L Gulikers. CELEX2 LDC96L14. Philadelphia, 1995.

[2] Cory Barr, Rosie Jones, and Moira Regelson. “The Linguistic Structure of English
Web-Search Queries”. In: Proceedings of the Conference on Empirical Methods in Nat-
ural Language Processing - EMNLP ’08 October (2008), p. 1021. doi: 10 . 3115 /

1613715.1613848. url: http://dl.acm.org/citation.cfm?id=1613848%7B%5C%
%7D5Cnhttp://portal.acm.org/citation.cfm?doid=1613715.1613848.

[3] Benjamin K Bergen and Nancy Chang. “Embodied Construction Grammar in Simulation-
Based Language Understanding”. In: Construction grammars: Cognitive grounding and
theoretical extensions (2005), pp. 147–190. issn: 15481484. doi: 10.1075/cal.3.

08ber.

[4] John Edward Bryant. “Best-Fit Constructional Analysis”. PhD thesis. University of
California at Berkeley, 2008.

[5] Huanhuan Cao et al. “Context-aware query classification”. In: Proceedings of the 32nd
international ACM SIGIR conference on Research and development in information
retrieval - SIGIR ’09 (2009), p. 3. issn: 00100277. doi: 10.1145/1571941.1571945.
url: http://portal.acm.org/citation.cfm?doid=1571941.1571945.

[6] Nancy Chang. “Constructing grammar: A computational model of the emergence of
early constructions”. PhD thesis. University of California, Berkeley, 2008.

[7] W Bruce Croft et al. “Query representation and understanding workshop”. In: ACM SI-
GIR Forum 44.2 (Jan. 2011), p. 48. issn: 01635840. doi: 10.1145/1924475.1924485.
url: http://portal.acm.org/citation.cfm?doid=1924475.1924485.

[8] Steve Doubleday, Sean Trott, and Jerome Feldman. “Processing Natural Language
About Ongoing Actions”. In: (2016), pp. 171–177. arXiv: 1607.06875. url: http:
//arxiv.org/abs/1607.06875.

[9] Manfred Eppe, Sean Trott, and Jerome Feldman. “Exploiting deep semantics and
compositionality of natural language for human-robot-interaction”. In: IEEE Interna-
tional Conference on Intelligent Robots and Systems 2016-November (2016), pp. 731–
738. issn: 21530866. doi: 10.1109/IROS.2016.7759133. arXiv: 1604.06721.

http://dx.doi.org/10.3115/1613715.1613848
http://dx.doi.org/10.3115/1613715.1613848
http://dl.acm.org/citation.cfm?id=1613848%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=1613715.1613848
http://dl.acm.org/citation.cfm?id=1613848%7B%5C%%7D5Cnhttp://portal.acm.org/citation.cfm?doid=1613715.1613848
http://dx.doi.org/10.1075/cal.3.08ber
http://dx.doi.org/10.1075/cal.3.08ber
http://dx.doi.org/10.1145/1571941.1571945
http://portal.acm.org/citation.cfm?doid=1571941.1571945
http://dx.doi.org/10.1145/1924475.1924485
http://portal.acm.org/citation.cfm?doid=1924475.1924485
http://arxiv.org/abs/1607.06875
http://arxiv.org/abs/1607.06875
http://arxiv.org/abs/1607.06875
http://dx.doi.org/10.1109/IROS.2016.7759133
http://arxiv.org/abs/1604.06721

REFERENCES 47

[10] Manfred Eppe et al. “Application-Independent and Integration-Friendly Natural Lan-
guage Understanding”. In: EPiC Series in Computing 41.GCAI 2016. 2nd Global Con-
ference on Artificial Intelligence (2016), pp. 340–352.

[11] Jerome Feldman. “Embodied language, best-fit analysis, and formal compositionality”.
In: Physics of Life Reviews 7 (2010). url: http://dx.doi.org/10.1016/j.plrev.
2010.06.006.

[12] Jerome Feldman. From molecule to metaphor: a neural theory of language. MIT Press,
2006.

[13] Jerome Feldman, John Edward Bryant, and E Dodge. “Embodied Construction Gram-
mar”. In: The Oxfrod Handbook of Computational Linguistics. Oxford University Press,
2009, pp. 38–111. doi: 10.1093/oxfordhb/9780199544004.013.0006.

[14] Christiane Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books, 1998.

[15] Alejandro Figueroa and Guenter Neumann. “Exploiting User Search Sessions for the
Semantic Categorization of Question-like Informational Search Queries”. In: Proceed-
ings of the Sixth International Joint Conference on Natural Language Processing (2013),
pp. 902–906. url: http://aclweb.org/anthology/I13-1115.

[16] Luca Gilardi and Jerome Feldman. “A Brief Introduction to the ECG Workbench and
a First English Grammar”. url: ftp://ftp.icsi.berkeley.edu/pub/ntl/wb/ECG-
HOWTO.pdf.

[17] Rafael Glater, Rodrygo L.T. Santos, and Nivio Ziviani. “Intent-Aware Semantic Query
Annotation”. In: Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval - SIGIR ’17. New York, New York,
USA: ACM Press, 2017, pp. 485–494. isbn: 9781450350228. doi: 10.1145/3077136.
3080825. url: http://dl.acm.org/citation.cfm?doid=3077136.3080825.

[18] Ivan Habernal and Miloslav Konoṕık. “SWSNL: Semantic web search using natural
language”. In: Expert Systems with Applications 40.9 (2013), pp. 3649–3664. issn:
09574174. doi: 10.1016/j.eswa.2012.12.070. url: http://dx.doi.org/10.1016/
j.eswa.2012.12.070.

[19] Jian Hu et al. “Understanding user’s query intent with wikipedia”. In: Proceedings of
the 18th international conference on World wide web - WWW ’09 (2009), p. 471. doi:
10.1145/1526709.1526773. url: http://portal.acm.org/citation.cfm?doid=
1526709.1526773.

[20] Rosie Jones et al. “Generating query substitutions”. In: Proceedings of the 15th inter-
national conference on World Wide Web - WWW ’06. New York, New York, USA:
ACM Press, 2006, p. 387. isbn: 1595933239. doi: 10.1145/1135777.1135835. url:
http://portal.acm.org/citation.cfm?doid=1135777.1135835.

[21] Huda Khayrallah, Sean Trott, and Jerome Feldman. “Natural Language For Human
Robot Interaction”. In: International Conference on Human-Robot Interaction (HRI)
(2015).

http://dx.doi.org/10.1016/j.plrev.2010.06.006
http://dx.doi.org/10.1016/j.plrev.2010.06.006
http://dx.doi.org/10.1093/oxfordhb/9780199544004.013.0006
http://aclweb.org/anthology/I13-1115
ftp://ftp.icsi.berkeley.edu/pub/ntl/wb/ECG-HOWTO.pdf
ftp://ftp.icsi.berkeley.edu/pub/ntl/wb/ECG-HOWTO.pdf
http://dx.doi.org/10.1145/3077136.3080825
http://dx.doi.org/10.1145/3077136.3080825
http://dl.acm.org/citation.cfm?doid=3077136.3080825
http://dx.doi.org/10.1016/j.eswa.2012.12.070
http://dx.doi.org/10.1016/j.eswa.2012.12.070
http://dx.doi.org/10.1016/j.eswa.2012.12.070
http://dx.doi.org/10.1145/1526709.1526773
http://portal.acm.org/citation.cfm?doid=1526709.1526773
http://portal.acm.org/citation.cfm?doid=1526709.1526773
http://dx.doi.org/10.1145/1135777.1135835
http://portal.acm.org/citation.cfm?doid=1135777.1135835

REFERENCES 48

[22] Xiao Li. “Understanding the Semantic Structure of Noun Phrase Queries”. In: the
48th Annual Meeting of the Association for Computational Linguistics July (2010),
pp. 1337–1345.

[23] Xiao Li, Ye-Yi Wang, and Alex Acero. “Extracting structured information from user
queries with semi-supervised conditional random fields”. In: Proceedings of the 32nd
international ACM SIGIR conference on Research and development in information
retrieval - SIGIR ’09 (2009), p. 572. doi: 10.1145/1571941.1572039. url: http:
//portal.acm.org/citation.cfm?doid=1571941.1572039.

[24] Jingjing (MIT) Liu et al. “QUERY UNDERSTANDING ENHANCED BY HIERAR-
CHICAL PARSING STRUCTURES”. In: ASRU (2013), pp. 72–77.

[25] Tie-Yan Liu. “Learning to Rank for Information Retrieval”. In: Foundations and Trends R©
in Information Retrieval 3.3 (2007), pp. 225–331. issn: 1554-0669. doi: 10.1561/

1500000016. arXiv: arXiv:1208.5535v1. url: http://www.nowpublishers.com/
article/Details/INR-016.

[26] Craig Macdonald, Nicola Tonellotto, and Iadh Ounis. “Efficient & Effective Selective
Query Rewriting with Efficiency Predictions”. In: Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval -
SIGIR ’17 (2017), pp. 495–504. doi: 10.1145/3077136.3080827. url: http://dl.
acm.org/citation.cfm?doid=3077136.3080827.

[27] Mehdi Manshadi and Xiao Li. “Semantic tagging of web search queries”. In: ACL ’09
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP:
Volume 2 - Volume 2 August (2009), pp. 861–869. doi: 10.3115/1690219.1690267.
url: http://dl.acm.org/citation.cfm?id=1690267.

[28] Eva H. Mok. “Contextual Bootstrapping for Grammar Learning”. PhD thesis. EECS
Department, University of California, Berkeley, Jan. 2009. url: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2009/EECS-2009-12.html.

[29] Eva H Mok and John Bryant. “A Best-Fit Approach to Productive Omission of Argu-
ments”. In: In proceedings of the Berkeley Linguistics Society (2006).

[30] Srini Narayanan and Matt Gedigian. “The Hesperian Digital Commons: A Multilingual
Primary Health Resource”. In: Proceedings of the CCC Workshop on Computer Science
and Global Development. 2009, pp. 63–64. url: http://archive2.cra.org/ccc/
files/docs/CCC%7B%5C_%7DGD%7B%5C_%7DProceedings.pdf.

[31] Vivek Raghuram and Sean Trott. ECG Homepage. url: https://github.com/icsi-
berkeley/ecg%7B%5C_%7Dhomepage/wiki (visited on 02/05/2018).

[32] V. Raghuram et al. “Semantically-driven coreference resolution with embodied con-
struction grammar”. In: AAAI Spring Symposium - Technical Report SS-17-01 -.Feldman
2010 (2017).

http://dx.doi.org/10.1145/1571941.1572039
http://portal.acm.org/citation.cfm?doid=1571941.1572039
http://portal.acm.org/citation.cfm?doid=1571941.1572039
http://dx.doi.org/10.1561/1500000016
http://dx.doi.org/10.1561/1500000016
http://arxiv.org/abs/arXiv:1208.5535v1
http://www.nowpublishers.com/article/Details/INR-016
http://www.nowpublishers.com/article/Details/INR-016
http://dx.doi.org/10.1145/3077136.3080827
http://dl.acm.org/citation.cfm?doid=3077136.3080827
http://dl.acm.org/citation.cfm?doid=3077136.3080827
http://dx.doi.org/10.3115/1690219.1690267
http://dl.acm.org/citation.cfm?id=1690267
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-12.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-12.html
http://archive2.cra.org/ccc/files/docs/CCC%7B%5C_%7DGD%7B%5C_%7DProceedings.pdf
http://archive2.cra.org/ccc/files/docs/CCC%7B%5C_%7DGD%7B%5C_%7DProceedings.pdf
https://github.com/icsi-berkeley/ecg%7B%5C_%7Dhomepage/wiki
https://github.com/icsi-berkeley/ecg%7B%5C_%7Dhomepage/wiki

REFERENCES 49

[33] Sean Trott, Manfred Eppe, and Jerome Feldman. “Recognizing Intention from Nat-
ural Language : Clarification Dialog and Construction Grammar”. In: Workshop on
Communicating Intentions in Human-Robot Interaction (2016).

[34] Sean Trott et al. “Natural Language Understanding and Communication for Multi-
Agent Systems”. In: AAAI Fall Symposium (2015), pp. 137–141.

[35] Christina Unger et al. “Template-based question answering over RDF data”. In: Pro-
ceedings of the 21st international conference on World Wide Web - WWW ’12 (2012),
p. 639. issn: 10450823. doi: 10.1145/2187836.2187923. arXiv: 1603.07044. url:
http://dl.acm.org/citation.cfm?doid=2187836.2187923.

[36] Zhongyuan Wang et al. “Query understanding through knowledge-based conceptu-
alization”. In: IJCAI International Joint Conference on Artificial Intelligence 2015-
January.Ijcai (2015), pp. 3264–3270. issn: 10450823.

[37] Mohamed Yahya et al. “Natural language questions for the web of data”. In: EMNLP
-CoNLL ’12 July (2012), pp. 379–390. url: http://dl.acm.org/citation.cfm?id=
2390948.2390995.

[38] Shi Zhao and Yan Zhang. “Tailor knowledge graph for query understanding: linking
intent topics by propagation”. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Stroudsburg, PA, USA: Associa-
tion for Computational Linguistics, 2014, pp. 1070–1080. doi: 10.3115/v1/D14-1114.
url: http://aclweb.org/anthology/D14-1114.

[39] Ingrid Zukerman and Bhavani Raskutti. “Lexical Query Paraphrasing for Document
Retrieval”. In: Proceedings of the 19th International Conference on Computational
Linguistics - Volume 1. COLING ’02. Taipei, Taiwan: Association for Computational
Linguistics, 2002, pp. 1–7. doi: 10.3115/1072228.1072389. url: https://doi.org/
10.3115/1072228.1072389.

http://dx.doi.org/10.1145/2187836.2187923
http://arxiv.org/abs/1603.07044
http://dl.acm.org/citation.cfm?doid=2187836.2187923
http://dl.acm.org/citation.cfm?id=2390948.2390995
http://dl.acm.org/citation.cfm?id=2390948.2390995
http://dx.doi.org/10.3115/v1/D14-1114
http://aclweb.org/anthology/D14-1114
http://dx.doi.org/10.3115/1072228.1072389
https://doi.org/10.3115/1072228.1072389
https://doi.org/10.3115/1072228.1072389

	Contents
	Introduction
	Background
	Embodied Construction Grammar (ECG)
	ECG System
	MediaWiki

	Hesperian Wiki
	Hesperian Wiki Version Information
	Upgrading the Wiki

	The Hesperian Product
	User Interface
	Language Side
	Application Side
	Example Queries

	Related Work
	Conclusion
	Contribution and Limitations
	Future Work
	Concluding Thoughts

	Wiki Upgrade Instructions
	Selected Queries
	Sample ActSpec
	References

