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Abstract— Imitation learning is an effective approach for
autonomous systems to acquire control policies when an explicit
reward function is unavailable, using supervision provided as
demonstrations from an expert, typically a human operator.
However, standard imitation learning methods assume that the
agent receives examples of observation-action tuples that could
be provided, for instance, to a supervised learning algorithm.
This stands in contrast to how humans and animals imitate:
we observe another person performing some behavior and then
figure out which actions will realize that behavior, compensating
for changes in viewpoint, surroundings, object positions and
types, and other factors. We term this kind of imitation learning
“imitation-from-observation,” and propose an imitation learning
method based on video prediction with context translation
and deep reinforcement learning. This lifts the assumption
in imitation learning that the demonstration should consist
of observations in the same environment configuration, and
enables a variety of interesting applications, including learning
robotic skills that involve tool use simply by observing videos of
human tool use. Our experimental results show the effectiveness
of our approach in learning a wide range of real-world robotic
tasks modeled after common household chores from videos of
a human demonstrator, including sweeping, ladling almonds,
pushing objects as well as a number of tasks in simulation.

I. INTRODUCTION

Learning can enable autonomous agents, such as robots, to
acquire complex behavioral skills that are suitable for a variety
of unstructured environments. In order for autonomous agents
to learn such skills, they must be supplied with a supervision
signal that indicates the goal of the desired behavior. This
supervision typically comes from one of two sources: a reward
function in reinforcement learning that specifies which states
and actions are desirable, or expert demonstrations in imitation
learning that provide examples of successful behaviors. Both
modalities have been combined with high-capacity models
such as deep neural networks to enable learning of complex
skills with raw sensory observations [1], [2], [3], [4]. One
major advantage of reinforcement learning is that the agent
can acquire a skill through trial and error with only a high-
level description of the goal provided through the reward
function. However, reward functions can be difficult to specify
by hand, particularly when the success of the task can only
be determined from complex observations such as camera
images [5].

* These authors contributed equally to this work.

Fig. 1: Imitation from Observation using Context-Aware Translation.
We collect a number of videos of expert demonstrations from a
human demonstrator, and use them to train a context translation
model. At learning time, the robot sees the context of the task it
needs to perform. Then, the model predicts what an expert would
do in the robot context. This predicted sequence is used to define
a cost function for reinforcement learning thus enabling imitation
from observation. The task shown here is illustrative of a wide range
of tasks that we evaluate.

Imitation learning bypasses this issue by using examples of
successful behavior. Popular approaches to imitation learning
include direct imitation learning via behavioral cloning [4]
and reward function learning through inverse reinforcement
learning [6]. Both settings typically assume that an agent
receives examples that consist of sequences of observation-
action tuples, and try to learn either a function that maps
observations to actions from these example sequences or a
reward function to explain this behavior while generalizing
to new scenarios. However, this notion of imitation is quite
different from the kind of imitation carried out by humans
and animals: when we learn new skills from observing
other people, we do not receive egocentric observations
and ground truth actions. The observations are obtained
from an alternate viewpoint and the actions are not known.
Furthermore, humans are not only capable of learning from
live observations of demonstrated behavior, but also from



video recordings of behavior provided in settings considerably
different than their own. Can we design imitation learning
methods that can succeed in such situations? A solution to this
problem would be of considerable practical value in robotics,
since the resulting imitation learning algorithm could directly
make use of natural videos of people performing the desired
behaviors obtained, for instance, from the Internet.

We term this problem imitation-from-observation. The
goal in imitation-from-observation is to learn policies only
from a sequence of observations (which can be extremely
high dimensional such as camera images) of the desired
behavior, with each sequence obtained under differences in
context. Differences in context might include changes in the
environment, changes in the objects being manipulated, and
changes in viewpoint, while observations might consist of
sequences of images. We define this problem formally in
Section III.

Our imitation-from-observation algorithm is based on
learning a context translation model that can convert a
demonstration from one context (e.g., a third person viewpoint
and a human demonstrator) to another context (e.g., a first
person viewpoint and a robot). By training a model to perform
this conversion, we acquire a feature representation that is
suitable for tracking demonstrated behavior. We then use
deep reinforcement learning to optimize for the actions
that optimally track the translated demonstration in the
target context. As we illustrate in our experiments, this
method is significantly more robust than prior approaches
that learn invariant feature spaces [7], perform adversarial
imitation learning [8], or directly track pre-trained visual
features [9]. Our translation method is able to provide useful
perceptual reward functions, and performs well on a number
of simulated and real manipulation tasks, including tasks
that require a robot to emulate human tool use. Videos
can be found on https://sites.google.com/site/
imitationfromobservation/

II. RELATED WORK

Imitation learning is usually thought of as the problem
of learning an expert policy that generalizes to unseen
states, given a number of expert state-action demonstration
trajectories [10], [11]. Imitation learning has enabled the
successful performance of tasks in a number of complex
domains such as helicopter flight through apprenticeship
learning [12], learning how to put a ball in a cup and
playing table tennis [13], performing human-like reaching
motions [14] among others. These methods have been very
effective however typically require demonstrations provided
through teleoperation or kinesthetic teaching, unlike our
work which aims to learn from observed videos of other
agents performing the task. Looking at the imitation learning
literature from a more methodological standpoint, imitation
learning algorithms can largely be divided into two classes
of approaches: behavioral cloning and inverse reinforcement
learning.

Behavioral cloning casts the problem of imitation learning
as supervised learning, where the policy is learned from

state(or observation)-action tuples provided by the expert.
In imitation-from-observation, the expert does not provide
actions, and only provides observations of the state in a
different context, so direct behavioral cloning cannot be used.
Inverse reinforcement learning (IRL) methods instead learn
a reward function from the expert demonstrations [6], [15],
[16], [17]. This reward function can then be used to recover a
policy by running standard reinforcement learning [18], [19],
though some more recent IRL methods alternate between steps
of forward and inverse RL [20], [21], [22], [8]. While IRL
methods can in principle learn from observations, in practice
using them directly on high-dimensional observations such
as images has proven difficult.

Aside from handling high-dimensional observations such as
raw images, our method is also designed to handle differences
in context. Context refers to changes in the observation
function between different demonstrations and between the
demonstrations and the learner. These may include changes
in viewpoint, object positions, surroundings, etc. Along
similar lines, [7] directly address learning under domain
shift. However, this method has a number of restrictive
requirements, including access to expert and non-expert
policies, directly optimizing for invariance between only two
contexts (whereas in practice demonstrations may come from
several different contexts), and performs poorly on the more
complex manipulation tasks that we consider, as illustrated
in Section VI. [9] proposes to address differences in context
by using pretrained visual features, but does not provide for
any mechanism for context translation, as we do in our work,
relying instead on the inherent invariance of visual features
for learning. Follow-up work proposes to further increase
the invariance of the visual features through multi-viewpoint
training [23]. [24] propose to learn robotic skills from first
person videos of humans by using explicit hand detection
and a carefully engineered vision pipeline. In contrast, our
approach is trained end-to-end, and does not require any prior
visual features, detectors, or vision systems. [25] proposed to
use demonstrations as input to policies by training on paired
examples of state sequences, however our method operates
on raw observations and does not require any actions in
the demonstrations, while this prior method operates only
on low-dimensional state variables and does not deal with
context shift like our method.

Our technical approach is related to work in visual domain
adaptation and image translation. Several works have pro-
posed pixel level domain adaptation [26], [27], [28], as well
as translation of visual style between domains [29], by using
generative adversarial networks (GANs). The applications
of these methods have been in computer vision, rather
than robotic control. Our focus is instead on translating
demonstrations from one context to another, conditioned on
the first observation in the target context, so as to enable an
agent to physically perform the task. Although we do not use
GANs, these prior methods are complementary to ours, and
incorporating a GAN loss could improve the performance of
our method further.

In our work we consider tasks like sweeping, pushing,
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ladling(similar to pouring) and striking. Several prior methods
have looked at performing tasks like these although typically
with significantly different methods. Tasks involving cleaning
with a brush, similar to our sweeping tasks was studied
in [30] but is done using a low cost tool attachment and
kinesthetic programming by demonstration. Besides [9], tasks
involving pouring were also studied in [31] using a simple
PID controller with a specified objective volume rather than
inferring the objective from demonstrations. Similar flavors
of tasks were also considered in [32], [33], but we leave
those specific tasks to future work. Other work [34] also
considers tasks of pushing objects on a table-top but uses
predictive models on point-cloud data and uses a significantly
different intuitive physics model with depth data.

III. PROBLEM FORMULATION AND OVERVIEW

In the imitation-from-observation setting that we consider
in this work, an agent observes demonstrations of a task in a
variety of contexts, and must then execute the demonstrated
behavior in its own context. We use the term context to refer
to properties of the environment and agent that can vary across
demonstrations, which may include the viewpoint, the back-
ground, the positions and identities of objects in the environ-
ment, and so forth. The demonstrations {D1, D2, ....Dn} =
{[o10, o11, .....o1T ], [o20, o21, .....o2T ], ...., [on0 , on1 , .....onT ]} consist
of observations ot that are produced by a partially observed
Markov process governed by an observation distribution
p(ot|st,!), dynamics p(st+1|st, at,!), and the expert’s pol-
icy p(at|st,!), with each demonstration being produced
in a different context !. Here, st represents the unknown
Markovian state, at represents the action (which is not
observed in the demonstrations), and ! represents the context.
We assume that ! is sampled independently from p(!) for
each demonstration, and that the imitation learner has some
fixed !l from the same distribution. Throughout the technical
section, we use oit to refer to the observation at time t from
a context !i.

While a practical real-world imitation-from-observation
application might also have to contend with systematic
domain shift where, e.g., the learner’s embodiment differs
systematically from that of the demonstrator, and therefore the
learner’s context ! cannot be treated as a sample from p(!),
we leave this challenge to prior work, and instead focus on
the basic problem of imitation-from-observation. This means
that the context can vary between the demonstrations and the
learner, but the learner’s context still comes from the same
distribution. We elaborate on the practical implications of
this assumption in Section VI, and discuss how it might be
lifted in future work.

Any algorithm for imitation-from-observation must contend
with two challenges: first, it must be able to determine what
information from the observations to track in its own context
!l, which may differ from those of the demonstrations, and
second, it must be able to determine which actions will allow
it to track the demonstrated observations. Reinforcement
learning (RL) offers a tool for addressing the latter problem:
we can use some measure of distance to the demonstration

as a reward function, and learn a policy that takes actions
to minimize this distance. But which distance to use? If the
observations correspond, for example, to raw image pixels, a
Euclidean distance measure may not give a well-shaped objec-
tive: roughly matching pixel intensities does not necessarily
correspond to a semantically meaningful execution of the task,
unless the match is almost perfect. Fortunately, the solution
to the first problem – context mismatch – naturally lends
us a solution to the problem of choosing a distance metric.
In order to address context mismatch, we can train a model
that explicitly translates demonstrations from one context into
another, by using the different demonstrations as training data.
The internal representation learned by such a model provides
a much more well-structured space for evaluating distances
between observations, since proper context translation requires
understanding the underlying factors of variation in the scene.
As we empirically illustrate in our experiments, we can
use squared Euclidean distances between features of the
context translation model as a reward function to learn the
demonstrated task, while using the model itself to translate
these features from the demonstration context to the learner’s
context. We first describe the translation model, and then
show how it can be used to create a reward function for RL.

IV. LEARNING TO TRANSLATE BETWEEN CONTEXTS

Since each demonstration Dk is generated from an un-
known context !k, the learner cannot directly track these
demonstrations in its own context !l. However, since we
have demonstrations from multiple unknown but different
contexts, we can learn a context translation model on these
demonstrations without any explicit knowledge of the context
variables themselves. We only assume that the first frame ok0
of a demonstration in a particular context !k can be used to
implicitly extract information about the context !k.

Our translation model is trained on pairs of demonstrations
Di = [oi0, o

i
1..., o

i
T ] and Dj = [oj0, o

j
1..., o

j
T ], where Di comes

from a context !i (the source context) and Dj comes from
a context !j (the target context). The model must learn to
output the observations in Dj conditioned on Di and the first
observation oj0 in the target context !j . Thus, the model looks
at a single observation from a target context, and predicts
what future observations in that context will look like by
translating a demonstration from a source context. Once
trained, this model can be provided with any demonstration
Dk to translate it into the learner’s context !l for tracking,
as discussed in the next section.

The model (Fig 2), assumes that the demonstrations Di

and Dj are aligned in time, though this assumption could be
relaxed in future work by using iterative time alignment [35].
The goal is to learn the overall translation function M(oit, o

j
0)

such that its output M(oit, o
j
0) = (ôjt )trans closely matches ojt

for all t and each pair of training demonstrations Di and Dj .
That is, the model translates observations from Di into the
context !j , conditioned on the first observation oj0 in Dj .

The model consists of four components: a source observa-
tion encoder Enc1(oit) and a target initial observation encoder
Enc2(oj0) that encode the observations into source and target



Fig. 2: Context translation model: The source observation oit
is translated to give the prediction of the observation in the
target context (ôjt)trans, given the context image oj0 from the target
context. The convolutional encoders are Enc1 and Enc2, while the
deconvolutional decoder Dec decodes features back into observations.
Colors indicate tied weights.

features, referred to as z1 and z2, a translator z3 = T (z1, z2)
that translates the features z1 into features for the context
of z2, which are denoted z3, and finally a target context
decoder Dec(z3), which decodes these features into ôjt . We
will use F (oit, o

j
0) = z3 to denote the feature extractor that

generates the features z3 from an input observation and a
context image. The encoders Enc1 and Enc2 can have either
different weights or tied weights depending on the diversity
of the demonstration scenes. To deal with the complexities of
pixel-level reconstruction, we include skip connections from
Enc2 to Dec. The model is supervised with a squared error
loss Ltrans = k(ôjt )trans � ojtk22 on the output ojt and trained
end-to-end.

However, we need the features z3 to carry useful infor-
mation, in order to provide an informative distance metric
between demonstrations for feature tracking. To ensure that
the translated features z3 form a representation that is
internally consistent with the encoded image features z1,
we jointly train the translation model encoder Enc1 and
decoder Dec as an autoencoder, with a reconstruction loss
Lrec = kDec(Enc1(ojt ))�ojtk22. We simultaneously regularize
the feature representation of this autoencoder to align it with
the features z3, using the loss Lalign = kz3 � Enc1(ojt )k22.
This forces the encoder Enc1 and decoder Dec to adopt a
consistent feature representation, so that the observation from
the target context ojt is encoded into features that are similar
to the translated features z3. The training objective for the
entire model is then given by the combined loss function
L =

P
(i,j)(Ltrans+�1Lrec+�2Lalign), with Di and Dj being

a pair of expert demonstrations chosen randomly from the
training set, and �1 and �2 being hyperparameters. If we don’t
regularize the encoded features of learning trajectories and
translated features of experts to lie in the same feature space,
the reward function described in Section V-A is not effective
since we are tracking features which have no reason to be in
the same space. Examples of translated demonstrations are

shown in Section VI and the project website.

V. LEARNING POLICIES VIA CONTEXT TRANSLATION

The model described in the previous section can translate
observations and features from the demonstration context into
the learner’s context !l. However, in order for the learning
agent to actually perform the demonstrated behavior, it must
be able to acquire the actions that track the translated features.
We can choose between a number of deep reinforcement
learning algorithms to learn to output actions that track
the translated demonstrations given the reward function we
describe below.

A. Reward Functions for Feature Tracking

The first component of the feature tracking reward function
is a penalty for deviations from the translated features. At each
time step, the translation function F (which gives us z3) can
be used to translate each of the demonstration observations
oit into the learner’s context !l. The reward function then
corresponds to minimizing the squared Euclidean distance
between the encoding of the current observation to all of these
translated demonstration features, which is approximately
tracking their average, resulting in

R̂feat(o
l
t) = �kEnc1(olt)�

1

n

nX

i

F (oit, o
l
0)k22,

where Enc1(olt) computes the features of the learner’s obser-
vation at time step t, given by olt, and F (oit, o

j
0) computes

translated features of experts.
Unfortunately, feature tracking by itself may be insufficient

to successfully imitate complex behaviors. The reason for
this is that the distribution of observations fed into Enc1
during policy learning may not match the distribution from
the demonstrations that are seen during training: although
a successful policy will closely track the translated policy,
a poor initial policy might produce observations that are
very different. In these cases, the encoder Enc1 must contend
with out-of-distribution samples, which may not be encoded
properly. In fact, the model will be biased toward predicting
features that are closer to the expert, since it only saw expert
data during training. To address this, we also introduce a
weak image tracking reward. This reward directly penalizes
the policy for experiencing observations that differ from the
translated observations, using the full observation translation
model M :

R̂img(o
l
t) = �kolt �

1

n

nX

i

M(oit, o
l
0)k22

The final reward is then the weighted combination R̂(olt) =
R̂feat(olt)+wrecR̂img(olt), where wrec is a small constant (tuned
as a hyperparameter in our implementation).

B. Reinforcement Learning Algorithms for Feature Tracking

With the reward described in Section V-A, we perform
reinforcement learning in order to learn control policies in
our learning environment. Our method can be used with any



reinforcement learning algorithm. We use trust region policy
optimization (TRPO) [36] for our simulated experiments
but not for real world experiments because of it’s high
sample complexity. For the real-world robotic experiments,
we use the trajectory-centric RL method used for local policy
optimization in guided policy search (GPS) [3], which is
based on fitting locally linear dynamics and performing LQR-
based updates. We compute image features z3, and include
these as part of the state. The cost function for GPS is then
a squared Euclidean distance in state space, and we omit the
image tracking cost described in Section V-A. For simulated
striking and real robot pushing, this cost function is also
weighted by a quadratic ramp function weighting squared
Euclidean distances at later time steps higher than initial
ones.

Fig. 3: Four simulated tasks, from left to right: reaching (goal is to
reach the red circle), pushing (goal is to push the white can to the
red goal), sweeping (goal is to sweep grey balls into the pan), and
striking (goal is to strike the white ball to the red goal).

VI. EXPERIMENTS

Our experiments aim to evaluate whether our context
translation model can enable imitation-from-observation, and
how well representative prior methods perform on this type
of imitation learning task. The specific questions that we
aim to answer are: (1) Can our context translation model
handle raw image observations, changes in viewpoint, and
changes in the appearance and positions of objects between
contexts? (2) How well do prior imitation learning methods
perform in the presence of such variation, in comparison to
our approach? (3) How well does our method perform on
real-world images, and can it enable a real-world robotic
system to learn manipulation skills? All results, including
illustrative videos, video translations and further experiment
details can be found on: https://sites.google.com/
site/imitationfromobservation/

In order to provide detailed comparisons with alternative
prior methods for imitation learning, we set up four simulated
manipulation tasks using the MuJoCo simulator [37]. To
provide expert demonstrations, we hand-specified a reward
function for each task and used a prior policy optimization
algorithm [36] to train an expert policy. We collected video
demonstrations of rollouts from the final expert policy acting
in a number of randomly generated contexts.

The tasks are illustrated in Fig. 3. The first task requires a
robotic arm to reach varying goal positions indicated by a
red disk, in the presence of variation in color and appearance.
The second task requires pushing a white cylinder onto a red
coaster, both with varying position, in the presence of varied
distractor objects. The third task requires the simulated robot

to sweep five grey balls into a dustpan, under variation in
viewpoint. The fourth task involves using a 4 DoF arm to
strike a white ball toward a red target which varies in position.
The project website illustrates the variability in appearance
and object positioning in the tasks, and also presents example
translations of individual demonstration sequences.

A. Network Architecture and Training

For encoders Enc1 and Enc2 in simulation we perform
four 5⇥ 5 stride-2 convolutions with filter sizes 64, 128, 256,
and 512 followed by two fully-connected layers of size 1024.
We use LeakyReLU activations with leak 0.2 for all layers.
The translation module T (z1, z2) consists of one hidden layer
of size 1024 with input as the concatenation of z1 and z2.
For the decoder Dec in simulation we use a fully connected
layer from the input to four fractionally-strided convolutions
with filter sizes 256, 128, 64, 3 and stride 1

2 . We have skip
connections from every layer in the context encoder Enc2 to
its corresponding layer in the decoder Dec by concatenation
along the filter dimension. For real world images, the encoders
perform 4 convolutions with filter sizes 32, 16, 16, 8 and
strides 1, 2, 1, 2 respectively. All fully connected layers and
feature layers are size 100 instead of 1024. The decoder uses
fractionally-strided convolutions with filter sizes 16, 16, 32, 3
with strides 1

2 , 1, 1
2 , 1 respectively. For the real world model

only, we apply dropout for every fully connected layer with
probability 0.5, and we tie the weights of Enc1 and Enc2.

We train using the ADAM optimizer with learning rate
10�4. We train using 3000 videos for reach, 4500 videos for
simulated push, 894 videos for sweep, 3500 videos for strike,
135 videos for real push, 85 videos for real sweep with paper,
100 videos for real sweep with almonds, and 60 videos for
ladling almonds. We downsample videos to 36⇥ 64 pixels
for simulated sweeping and 48⇥ 48 for all other videos.

B. Comparative Evaluation of Context Translation

Results for the comparative evaluation of our approach are
presented in Fig 4. Performance is evaluated in terms of the
final distance of the target object to the goal during testing.
In the reaching task, this is the distance of the robot’s hand
from the goal, in the pushing task, this is the distance of the
cylinder from the goal, in the sweeping task, this corresponds
to the mean distance of the balls from the inside of the
dustpan, and in the striking task this is the final distance of
the ball from the goal position. All distances are normalized
by dividing by the initial distance at the start of the task,
and success is measured as a thresholding of the normalized
distance. We evaluate each task on 10 randomly generated
environment conditions, each time performing 100 iterations
of reinforcement learning with 12,500 samples per iteration.

Our comparisons include our method with TRPO for
policy learning, an oracle that trains a policy with TRPO
on the ground truth reward function in simulation, which
represents an upper bound on performance, and three prior
imitation learning methods. The first prior method learns
a reward using pre-trained visual features, similar to the
work of [9]. In this method, features from an Inception-v3
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Fig. 4: Comparisons with prior methods on the reaching, pushing, sweeping, and striking tasks. The results show that our method
successfully learned each task, while the prior methods struggled to perform the reaching, pushing and striking tasks, and only the
pretrained visual features approach was able to make a reasonable improvement on the sweeping task. Third person imitation learning [7]
and generative adversarial imitation [8] learning are both at 0% success rate on the graph.

network trained on ImageNet classification [38] are used to
encode the goal image from the demonstration, and the reward
function corresponds to the distance to these features averaged
over all the training demonstrations. We experimented with
several different feature layers from the Inception-v3 network
and chose the one that performed best. The second prior
method, third person imitation learning (TPIL), is an IRL
algorithm that explicitly compensates for domain shift using
an adversarial loss [7], and the third is an adversarial IRL-
like algorithm called generative adversarial imitation learning
(GAIL) [8], using a convolutional model to process images
as suggested by [39]. Among these, only TPIL explicitly
addresses changes in domain or context.

The results, shown in Fig 4, indicate that our method
was able to successfully learn each of the tasks when the
demonstrations were provided from random contexts. Notably,
none of the prior methods were actually successful on
the reaching, pushing or striking tasks, and struggled to
perform the sweeping task. This indicates that imitation-
from-observation in the presence of context differences is an
exceedingly challenging problem.

C. Ablation Study

To evaluate the importance of different loss functions while
training our translation model, and the different components
for the reward function while performing imitation, we
performed ablations by removing these components one by
one during model training or policy learning. To understand
the importance of the translation cost, we remove cost Ltrans,
to understand whether features z3 need to be properly aligned
we remove model losses Lrec and Lalign. In Fig 6 we see that

Fig. 6: Ablations on model losses and reward functions for
the simulated reaching and pushing tasks. Our method with all
components does consistently the best across tasks. Note: for the
Push Simulation task, we did not perform ablations "without Ltrans",
"without Lrec", and "without Lrec,Lalign"

the removal of each of these losses significantly hurts the
performance of subsequent imitation. On removing the feature
tracking loss R̂feat or the image tracking loss R̂image we see
that overall performance across tasks is worse.

D. Natural Images and Real-World Robotic Manipulation

To evaluate whether our method is able to scale to
real-world images and robots, we focus on manipulation
tasks involving tool use, where object positions and camera
viewpoints differ between contexts. All demonstrations were
provided by a human, while the learned skills were performed
by a robot. Since our method assumes that the contexts of the
demonstrations and the learner are sampled from the same
distribution, the human and the robot both used the same
tool to perform the tasks, avoiding any systematic domain
shift that might result from differences in the appearance of
the human or robot arm. To this end, we apply a cropping of
each video around task-relevant areas of each demonstration.

Source Video Context Image Translated Video

Fig. 5: Translations from a video in the holdout set to a new context for the reaching task (top) and paper sweeping task (bottom).
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Fig. 7: Top Row: Demonstrations by a human demonstrator showing the robot how to perform the pushing, sweeping and ladling almonds
task in the real world. Bottom Row: Execution of the robot successfully performing the pushing, sweeping and ladling almonds tasks.

Investigating domain shift is left for future work, and could
be done, for example, using domain adaptation [40]. In the
present experiments, we assume that the demonstration and
test contexts come from the same distribution, which is
a reasonable assumption in settings such as tool use and
navigation, or tasks where the focus is on the objects in the
scene rather than the arm or end-effector.

Fig. 8: Plot depicting success rate for our method versus other
baselines on the real world tasks with the Sawyer robot. Success
metrics differ per task as described in Section VI-D. As is seen
clearly, our method consistently performs well on all the real world
tasks, and outperforms the baseline methods.

1) Pushing: In the first task, the goal is to push a cylinder
to a marked goal position. The success metric is defined as
whether the final distance between the cylinder and goal is
within a predefined threshold. We evaluate our method in the
setting where real-world demonstrations are provided by a
human and imitation is done by a robot in the real world.

We evaluated how our method can be used to learn a
pushing behavior with a real-world robotic manipulator, using
a 7-DoF Sawyer robot. Since the TRPO algorithm is too data
intensive to learn on real-world physical systems, we use
GPS for policy learning (Section V-B).

For comparison, we also test GPS with a reward that in-
volves tracking pre-trained visual features from the Inception-
v3 network (Section VI-B), as well as a baseline reward
function that attempts to reach a fixed set of joint angles,
specified through kinesthetic demonstration. Note that our
method itself does not use any kinesthetic demonstrations,
only video demonstrations provided by the human. In order
to include the high-dimensional visual features in the state
for guided policy search, we apply PCA to reduce their
dimensionality from 221952 to 100, while our method uses
all 100 dimensions of z3 as part of the state. We found that our
method could successfully learn the skill using demonstrations

from different viewpoints, and outperforms the pre-trained
features and kinesthetic baseline, as shown in Fig 8.

2) Sweeping: The pushing task illustrates the basic capa-
bility of our method to learn skills involving manipulation of
rigid objects. However, one major advantage of learning visual
reward functions from demonstration is the ability to acquire
representations that can be used to manipulate scenes that
are harder to represent analytically, such as granular media.
In this next experiment, we study how well our method can
learn two variants of a sweeping task: in the first, the robot
must sweep crumpled paper into a dustpan, and in the second
it must sweep a pile of almonds. We used almonds in place
of dirt or fluids to avoid damaging the robot. Quantitative
results are summarized in Fig 8.

On the easier crumpled paper task, both our method and the
kinesthetic teaching approach works well, but the reward that
uses pre-trained visual features is insufficient to accomplish
the task. On the almond sweeping task (Fig 7), our method
achieves a higher success rate than the alternative approaches.
The success metric is defined as the average percentage of
almonds or paper pieces that end up inside the dustpan.

3) Ladling Almonds: Our last task combines granular
media (almonds) and a more dynamic behavior. In this task,
the robot must ladle almonds into a cooking pan (Fig 7).
This requires keeping the ladle upright until over the pan, and
then dumping them into the pan by turning the wrist. The
success metric is the average fraction of almonds that were
ladled into the pan. Learning from only raw videos of the
task being performed by a human in different contexts, our
method achieved a success rate of 66% , while the alternative
approaches generally could not perform this task. An insight
into why the joint angles approach wouldn’t work on this
task is that the spoon has to remain upright until just the right
position over the pan after which it should rotate and pour
into the pan. The joint angle baseline can simply interpolate
between the final turned spoon position and the initial position
and pour the almonds in the wrong location. Quantitative
results and comparisons are summarized in Fig 8.

VII. DISCUSSION AND FUTURE WORK

We investigated how imitation-from-observation can be
performed by learning to translate demonstration observation
sequences between different contexts, such as differences in
viewpoint. After translating observations into a target context,
we can track these observations with RL, allowing the learner



to reproduce the observed behavior. The translation model is
trained by translating between the different contexts observed
in the training set, and generalizes to the unseen context of
the learner. Our experiments show that our method can be
used to perform a variety of manipulation skills, and can
be used for real-world robotic control on a diverse range of
tasks patterned after common household chores.

Although our method performs well on real-world tasks
and several tasks in simulation, it has a number of limitations.
First, it requires a substantial number of demonstrations to
learn the translation model. Training an end-to-end model
from scratch for each task may be inefficient in practice,
and combining our method with higher level representations
proposed in prior work would likely lead to more efficient
training [9], [23]. Second, we require observations of demon-
strations from multiple contexts in order to learn to translate
between them. In practice, the number of available contexts
may be scarce. Future work would explore how multiple
tasks can be combined into a single model, where different
tasks might come from different contexts. Finally, it would
be exciting to explore explicit handling of domain shift in
future work, so as to handle large differences in embodiment
and learn skills directly from videos of human demonstrators
obtained, for example, from the Internet.
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