
Learning Image-Conditioned Dynamics Models for Control
of Under-actuated Legged Millirobots

Anusha Nagabandi

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-43
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-43.html

May 10, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This report includes contributions from graduate student Gregory Kahn,
undergraduate students Guangzhao
Yang and Thomas Asmar, and professors Sergey Levine and Ronald S.
Fearing. We would like to thank
Carlos Casarez for extensive in-lab training of VelociRoACH construction,
constant mechanical support,
general expertise with these systems, and many insightful discussions. This
work is supported by the National
Science Foundation under the National Robotics Initiative, Award CMMI-
1427096.

1

Learning Image-Conditioned Dynamics Models
for Control of Under-actuated Legged Millirobots

by Anusha Nagabandi

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of California at

Berkeley, in partial satisfaction of the requirements for the degree of Master of Science, Plan II.

Committee:

Professor Ronald S. Fearing

Research Co-Advisor

(Date)

Professor Sergey Levine

Research Co-Advisor

(Date)

1

Abstract

Millirobots are a promising robotic platform for many applications due to their small size and low manufac-

turing costs. Legged millirobots, in particular, can provide increased mobility in complex environments and

improved scaling of obstacles. However, controlling these small, highly dynamic, and underactuated legged

systems is difficult. Hand-engineered controllers can sometimes control these legged millirobots, but they

have difficulties with dynamic maneuvers and complex terrains. We present an approach for controlling a

real-world legged millirobot that is based on learned neural network models. Using less than 17 minutes of

data, our method can learn a predictive model of the robot’s dynamics that can enable effective gaits to be

synthesized on the fly for following user-specified waypoints on a given terrain. Furthermore, by leveraging

expressive, high-capacity neural network models, our approach allows for these predictions to be directly

conditioned on camera images, endowing the robot with the ability to predict how different terrains might

affect its dynamics. This enables sample-efficient and effective learning for locomotion of a dynamic legged

millirobot on various terrains, including gravel, turf, carpet, and styrofoam. Experiment videos can be found

at https://sites.google.com/view/imageconddyn 1

1This report includes contributions from graduate student Gregory Kahn, undergraduate students Guangzhao Yang and
Thomas Asmar, and professors Sergey Levine and Ronald S. Fearing.

https://sites.google.com/view/imageconddyn

2

Contents

Contents 2

1 Introduction 3

2 Related Work 5

3 Model-Based Learning Method for Locomotion Control 8
3.1 Learning System Dynamics . 8
3.2 Model-Based Control Using Learned Dynamics . 9
3.3 Image-Conditioned Dynamics Model . 10

4 Results 12
4.1 VelociRoACH Platform . 12
4.2 Details of Our Approach . 13
4.3 Comparing to Differential Drive . 14
4.4 Improving Performance with More Data . 15
4.5 Learning Environmental Information . 16
4.6 Image-Conditioned Dynamics Models . 16

5 Discussion 18

6 Acknowledgements 19

Bibliography 20

Appendices 24

A Differential Drive Baseline 24

B Choice of Action Abstraction 26

C Images of Terrain 28

D Telemetry Data 29

3

Chapter 1

Introduction

Legged millirobots are an effective platform for applications, such as exploration, mapping, and search

and rescue, because their small size and mobility allows them to navigate through complex, confined, and

hard-to-reach environments that are often inaccessible to aerial vehicles and untraversable by wheeled robots.

Millirobots also provide additional benefits in the form of low power consumption and low manufacturing

costs, which enables scaling them to large teams that can accomplish more complex tasks. This superior

mobility, accessibility, and scalability makes legged millirobots some of the most mission-capable small robots

available. However, the same properties that enable these systems to traverse complex environments are

precisely what make them difficult to control.

Modeling the hybrid dynamics of under-actuated legged millirobots from first principles is exceedingly

difficult due to complicated ground contact physics that arise while moving dynamically on complex terrains.

Furthermore, cheap and rapid manufacturing techniques cause each of these robots to exhibit varying dynamics.

Due to these modeling challenges, many locomotion strategies for such systems are hand-engineered and

heuristic. These manually designed controllers impose simplifying assumptions, which not only constrain the

overall capabilities of these platforms, but also impose a heavy burden on the engineer. Additionally, and

perhaps most importantly, they preclude the opportunity for adapting and improving over time.

In this work, we explore how learning can be used to automatically acquire locomotion strategies in

diverse environments for small, low-cost, and highly dynamic legged robots. Choosing an appropriate learning

algorithm requires consideration of a number of factors. First, the learned model needs to be expressive enough

to cope with the highly dynamic and nonlinear nature of legged millirobots, as well as with high-dimensional

sensory observations such as images. Second, the algorithm must allow the robot to learn quickly from

modest amounts of data, so as to make it a practical algorithm for real-world application. Third, the learned

general-purpose models must be able to be deployed on a wide range of navigational tasks in a diverse set of

environments, with minimal human supervision.

The primary contribution of our work is an approach for controlling dynamic legged millirobots that

learns an expressive and high-dimensional image-conditioned neural network dynamics model, which is then

4

Figure 1.1: VelociRoACH: the small, mobile, highly dynamic, and bio-inspired hexapedal millirobot used in this work, shown
with a camera mounted for terrain imaging.

combined with a model predictive controller (MPC) to follow arbitrary paths. Our sample efficient learning-

based approach uses less than 17 minutes of real-world data to learn to follow desired paths in a desired

environment, and we empirically show that it outperforms a conventional differential drive control strategy

for highly dynamic maneuvers. Our method also enables adaptation to diverse terrains by conditioning its

dynamics predictions on its own observed images, allowing it to predict how terrain features such as gravel or

turf will alter the system’s response. To the best of our knowledge, we believe this work is the first to leverage

and build upon recent advances in learning to achieve a high-performing and sample efficient approach for

controlling dynamic legged millirobots.

5

Chapter 2

Related Work

Controlling Legged Millirobots: Extensive prior work on controlling legged robots includes larger legged

robots such as Anymal [1], ASIMO [2], and Big Dog [3]. These systems can achieve successful locomotion,

but they have multiple degrees of freedom per leg and a relatively slow stride frequency that allows for more

sophisticated control strategies of planned foot placement [4, 5, 6, 7]. Other prior work includes systems such

as RHex [8], where each leg has an independent actuator and can thus execute stable alternating tripod gaits

to achieve desired motion. Unlike these systems, however, we are interested in dynamic legged millirobots

that are underactuated; these descriptors imply that we cannot move each leg independently, that we have

neither the ability nor time to plan specific foot placement, and that we cannot strive for static or quasi-static

gaits where stability and well-behaved dynamics can be expected. This realm of steering methods for dynamic

running of underactuated legged millirobots includes various methods [9, 10], such as actively changing leg

kinematics [11, 12], modulating leg impedance [13], and executing roll oscillation modulated turning [14].

However, these approaches achieve open-loop turning gaits, while we desire a closed-loop approach to precise

path execution. Other traditional methods for both control and modeling of legged systems make simplifying

assumptions, such as approximating a system as a spring loaded inverted pendulum (SLIP) model [15, 16] or

approximating a system’s behavior with a differential drive control strategy. Although these approaches do

succeed in certain regimes [17], they fail when high speeds or irregular environments lead to more complicated

dynamics. In contrast, our neural network learning-based approach can cope with complex dynamics, while

also incorporating high-dimensional environmental information in the form of images.

Gait Optimization: Instead of building on simplifying model assumptions to design controllers, prior

work has also explored various methods of automatic gait optimization [18, 19]. These methods include

stochastic gradient descent [20], genetic algorithms [21], and Bayesian optimization [22, 23, 24] to reduce

the time-consuming design process of manually finding robust parameters. For instance, [20] optimized a

control policy for bipedal walking online in less than 20 minutes on a simplified system with 6 joints, and [19]

learned model-free sensory feedback controllers to supplement specified open-loop gaits. While these methods

are sample efficient and can be applied to real systems, they have not yet been shown to work for high

6

dimensional systems or more complex systems, such as fast robots operating in highly dynamic regimes on

irregular surfaces with challenging contact dynamics.

Model-free Policy Learning: Rather than optimizing gaits, prior work in model-free reinforcement

learning algorithms has demonstrated the ability to instead learn these behaviors from scratch. Work in

this area, including Q-learning [25, 26], actor-critic methods [27, 28], and policy gradients [29], has learned

complex skills in high-dimensional state spaces, including skills for simulated robotic locomotion tasks.

However, the high sample complexity of such purely model-free algorithms makes them difficult to use for

learning in the real world, where sample collection is limited by time and other physical constraints. To our

knowledge, no prior method has attempted model-free deep reinforcement learning of locomotion skills in the

real-world, but Gu et al. [30] learn reaching skills with a robotic arm using several hours of experience. Unlike

these approaches, our model-based learning method uses only minutes of experience to achieve generalizable

real-world locomotion skills that were not explicitly seen during training, and it further exemplifies the

benefits in sample complexity that arise from incorporating models with learning-based approaches.

Model Learning: Although the sample efficiency of model-based learning is appealing, and although

data-driven approaches can eliminate the need to impose restrictive assumptions or approximations, the

challenge lies in the difficulty of learning a good model. Relatively simple function approximators such as time-

varying linear models have been used to model dynamics of systems [31, 32], including our VelociRoACH [33]

platform. However, these models have not yet been shown to possess enough representational power (i.e.,

accuracy) to generalize to complex locomotion tasks. Prior work has also investigated learning probabilistic

dynamics models [34, 35], including Gaussian process models for simulated legged robots [36]. However, to

the best of our knowledge, no prior work has learned Gaussian process models for real-time control of dynamic

real-world legged robots from raw data. Also, while these approaches can be sample efficient, it is intractable

to scale them to higher dimensions, as needed especially when incorporating rich sensory inputs such as image

observations. In contrast, our method employs expressive neural network dynamics models, which easily scale

to high dimensional inputs. Other modeling approaches have leveraged smaller neural networks for dynamics

modeling, but they impose strict and potentially restrictive structure to their formulation, such as designing

separate modules to represent the various segments of a stride [37], approximating actuators as muscles and

tuning these parameters [38], or calculating equations of motion and learning error terms on top of these

specific models [39]. Instead, we demonstrate a sample efficient, expressive, and high-dimensional neural

network dynamics model that is free to learn without the imposition of an approximated hand-specified

structure.

Environment Adaptation: The dynamics of a robot depend not only on its own configuration, but

also on its environment. Prior methods generally categorize the problem of adapting to diverse terrains

into two stages: first, the terrain is recognized by a classifier trained with human-specified labels (or, less

often, using unsupervised learning methods [40]), and second, the gait is adapted to the terrain. This general

approach has been used for autonomous vehicles [41, 40], larger legged robots [5, 6, 7, 38, 42], and for legged

millirobots [43, 44]. In contrast, our method does not require any human labels at run time, and it adapts

7

to terrains based entirely on autonomous exploration: the dynamics model is simply conditioned on image

observations of the terrain, and it automatically learns to recognize the visual cues of terrain features that

affect the robot’s dynamics.

This work: While our prior work evaluated model-based reinforcement learning with neural network

models [45], to our knowledge, the present work is the first to extend these model-based learning techniques to

real-world robotic locomotion on various terrains. Furthermore, we present a novel extension of this approach

that conditions the dynamics predictions on image observations and allows for adaptation to various terrain

types.

8

Chapter 3

Model-Based Learning Method for Locomotion

Control

In this work, we propose an automated method of acquiring locomotion strategies for small, low-cost, dynamic

legged millirobots. In this section, we describe a method for learning a neural network dynamics model [45]

(Sec. 3.1), using the model as part of a model predictive controller (Sec. 3.2), and extending the model into

an image-conditioned model using features from a pre-trained convolutional neural network. Fig. 3.1 provides

an overview of our method.

Figure 3.1: Our image-conditioned model-based learning method for locomotion control: A closed-loop MPC controller uses
predictions from the learned dynamics model to perform action selection.

3.1 Learning System Dynamics

We require a parameterization of the dynamics model that can cope with high-dimensional state and action

spaces, and the complex dynamics of legged millirobots. We therefore represent the dynamics function

f̂θ(st,at) as a multilayer neural network, parameterized by θ. This function outputs the predicted change in

9

state that occurs as a result of executing action at from state st, over the time step duration of ∆t. Thus, the

predicted next state is given by: ŝt+1 = st + f̂θ(st,at). While choosing too small of a ∆t leads to too small of

a state difference to allow meaningful learning, increasing the ∆t too much can also make the learning process

more difficult because it increases the complexity of the underlying continuous-time dynamics. Although we

do not perform a structured study of various ∆t values for our system, we provide this insight as something

for consideration when implementing this method on other systems.

We define the state st of the VelociRoACH to be [x, y, z, vx, vy, vz, cos(φr), sin(φr), cos(φp),

sin(φp), cos(φy), sin(φy), ωx, ωy, ωz, cos(aL), sin(aL), cos(aR), sin(aR), vaL, vaR, bemfL, bemfR,

Vbat]
T . The center of mass positions (x, y, z) and the Euler angles to describe the center of mass pose

(φr, φp, φy) come from the OptiTrack motion capture system. The angular velocities (ωx, ωy, ωz) come from

the gyroscope onboard the IMU, and the motor crank positions (aL, aR) come from the magnetic rotary

encoders, which give a notion of leg position. We include (bemfL, bemfR) because back-EMF provides a

notion of motor torque/velocity, and (Vbat) because the voltage of the battery affects the VelociRoACH’s

performance. Note that the state includes sin and cos of angular values, which is common practice and allows

the neural network to avoid wrapping issues.

We define the action representation of the VelociRoACH to represent desired velocity setpoints for the

rotation of the legs, and we achieve these setpoints using a lower-level PID controller onboard the system.

We collect training data by placing the robot in arbitrary start states and executing random actions at each

time step. We record each resulting trajectory τ = (s0,a0, · · · , sT−2,aT−2, sT−1) of length T . We slice the

trajectories {τ} into training data inputs (st,at) and corresponding output labels (st+1 − st). We train the

dynamics model f̂θ(st,at) on data from the training dataset D by minimizing the error

E(θ) =
1

|D|
∑

(st,at,st+1)∈D

1

2
‖(st+1 − st)− f̂θ(st,at)‖22 (3.1)

using stochastic gradient descent. Prior to training, we preprocess the training data by normalizing it to be

mean 0 and standard deviation 1, which ensures equal weighting of different state elements, regardless of

their magnitudes.

3.2 Model-Based Control Using Learned Dynamics

We formulate a model-based controller which uses the learned model f̂θ(st,at) together with a cost function

c(st,at) that encodes some task. Many methods could be used to perform this action selection, and we use

a random-sampling shooting method [46]. At each time step t, we randomly generate K candidate action

sequences of H actions each, use the learned dynamics model to predict the resulting states, and then use

the cost function to select the action sequence with the lowest cost. The cost function that we use for path

following is as follows:

c(st,at) = fp ∗ p+ fh ∗ h+ ff ∗ f, (3.2)

10

Figure 3.2: Our image-conditioned neural network dynamics model. The model takes as input the current state st, action at,
and image It. The image is passed through the convolutional layers of AlexNet [47] pre-trained on ImageNet [48], which is then
flattened and projected into a lower dimension through multiplication with a random fixed matrix to obtain et. The image and
concatenated state-action vectors are passed through fully connected layers, fused via an outer product, flattened, and passed
through more fully connected layers to obtain the predicted state difference ∆ŝt.

where the parameter fp penalizes perpendicular distance p away from the desired path, parameter ff
encourages forward progress f along the path, and parameter fh maintains the heading h of the system

toward the desired direction. Rather than executing the entire sequence of selected optimal actions, we use

model predictive control (MPC) to execute only the first action at, and we then replan at the next time step,

given updated state information.

3.3 Image-Conditioned Dynamics Model

As currently described, our model-based learning approach can successfully follow arbitrary paths when

trained and tested on a single terrain. However, in order to traverse complex and varied terrains, it is

necessary to adjust the dynamics to the current terrain conditions. One approach to succeeding in multiple

environments would be to train a separate dynamics model for each terrain. However, in addition to requiring

many separate models, this would lead to models that would likely generalize poorly. Furthermore, this

approach would require a person to label the training data, as well as each run at test-time, with which

terrain the robot is in. All of these aspects are undesirable for an autonomous learning system.

Instead, we propose a simple and highly effective method for incorporating terrain information, using

only observations from a monocular color camera mounted on the robotic platform. We formulate an

image-conditioned dynamics model f̂θ(st,at, It) that takes as input not only the current robot state st and

action at, but also the current image observation It. The model (Fig. 3.2) passes image It through the

first eight layers of AlexNet [47]. The resulting activations are flattened into a vector, and this vector is

then multiplied by a fixed random matrix in order to produce a lower dimensional feature vector et. The

concatenated state-action vector [st;at] is passed through a hidden layer and combined with et through an

outer product. As opposed to a straightforward concatenation of [st;at; et], this outer product allows for

higher-order integration of terrain information terms with the state and action information terms. This

combined layer is then passed through another hidden layer and output layer to produce a prediction of state

difference ∆ŝt.

Training the entire image-conditioned neural network dynamics model with only minutes of data—

11

corresponding to tens of thousands of datapoints—and in only a few environments would result in catastrophic

overfitting. Thus, to perform feature extraction on our images, we use the AlexNet [47] layer weights optimized

from training on the task of image classification on the ImageNet [48] dataset, which contains 15 million

diverse images. Although gathering and labelling this large image dataset was a significant effort, we note

that such image datasets are ubiquitous and their learned features have been shown to transfer well to other

tasks [49]. By using these pre-trained and transferable features, our image-conditioned dynamics model is

sample-efficient and can automatically adapt to different terrains without any manual labelling of terrain

information.

We show in our experiments that this image-conditioned dynamics model outperforms a naïvely trained

dynamics model that is trained simply on an aggregation of all the data. Furthermore, the performance of

our image-conditioned dynamics model is comparable, on each terrain, to individual dynamics models that

are specifically trained (and tested) on that terrain.

12

Chapter 4

Results

The goal of our experimental evaluation is to study how well our model-based learning algorithm can control

a real-world VelociRoACH to follow user-defined paths on various surfaces.

4.1 VelociRoACH Platform

The VelociRoACH is a minimally actuated, small, legged, and highly dynamic palm-sized robotic platform [50].

Compared to wheeled/tracked robots of similar size (Fig. 4.1), this legged system is able to successfully

navigate over more complex terrains.

The VelociRoACH is constructed through a rapid manufacturing process known as smart composite

microstructure (SCM) process [51]. This process allows for the creation of lightweight linkages, enabling the

Figure 4.1: Over 15 teleoperated trials performed on rough terrain, a legged robot succeeded in navigating through the terrain
90% of the time, whereas a tracked robot of comparable size succeeded only 30% of the time.

13

rapid realization of fully functional prototypes of folded flexure-based mobile millirobots. The VelociRoACH’s

robot chassis can be constructed for just $2, and this rigid structural core houses the battery, two motors,

transmission, microcontroller, and all sensors. The core also provides mechanical grounding points for the

kinematic linkages, which couple each of the two motors to three legs in order to reduce the number of

required actuators.

The VelociRoACH carries an ImageProc embedded circuit board1, which includes a 40 MHz Microchip

dsPIC33F microprocessor, a six axis inertial measurement unit (IMU), an 802.15.4 wireless radio (XBee),

and motor control circuitry. We added a 14-bit magnetic rotary encoders to the motors on each side of the

robot to monitor absolute position. Additional sensory information includes battery voltage and back-EMF

signals from the motors.

The onboard microcontroller runs a low-level 1 kHz control loop and processes communication signals

from the XBee. Due to computational limits of the onboard microcontroller, we stream data from the robot

to a laptop for calculating controller commands, and then stream these commands back to the onboard

microcontroller for execution. To bypass the problem of using only on-board sensors for state estimation, we

also use an OptiTrack motion capture system to stream robot pose information during experiments. The

motion capture system does not provide any information about the environment terrain, so we also mounted

a 3.4 gram monocular color camera onto the VelociRoACH, which communicates directly with the laptop via

a radio frequency receiver and USB video converter.

4.2 Details of Our Approach

The learned dynamics function f̂θ(st,at, It) is the neural network depicted in Fig. 3.2. For all experiments

and results reported below, we use only 17 minutes (10,000 datapoints) of data from each terrain to train the

dynamics model: This consists of 200 rollouts, each containing 50 data points that are collected at 10 Hz.

We train each dynamics model for 50 epochs, using the Adam optimizer [52] with learning rate 0.001 and

batchsize 1000.

Relevant parameters for our model-based controller are the number of candidate action sequences sampled

at each time step N = 500, the amount of time represented by one time step ∆t = 0.1 sec, the horizon H = 4,

and parameters fp = 50, ff = 10, and fh = 5 for the perpendicular, forward, and heading components of the

cost function from Eqn. 3.2. To simplify training and testing of the image-conditioned dynamics model, the

image at the start of the rollout was used for all timesteps. The process of using the neural network dynamics

model and the cost function to select the best candidate action sequence at each time step can be done in

real-time, even on a laptop with no GPU, and even taking bi-directional communication delays into account.

Note that the training data is gathered entirely using random trajectories, and therefore, the paths

executed by our controller at run-time differ substantially from the training data. This illustrates that

our approach can be trained with off-policy data, and that the model exhibits considerable generalization.

1https://github.com/biomimetics/imageproc_pcb

https://github.com/biomimetics/imageproc_pcb

14

Figure 4.2: Execution of our model-based learning method, using an image-conditioned dynamics model, on various desired
paths on the four terrains (styrofoam, gravel, carpet, and turf) we consider. Note that the path boundaries are outlined for
visualization purposes only, and were not present during the experiments.

Furthermore, although the model is trained only once, we use it to accomplish a variety of tasks at run-time

by simply changing the desired path in our cost function. This eliminates the need for task-specific training,

which further improves overall sample efficiency. We show in Fig. 4.2 some images of the VelociRoACH using

our model-based learning method to execute different paths on various surfaces.

4.3 Comparing to Differential Drive

To provide a comparison of our model-based learning algorithm’s performance, we compare to a differential

drive controller, which is a common steering method used for robots with wheel or leg-like mechanisms on

both sides. A differential drive control strategy controls the system’s heading by specifying the left and right

leg velocities based on the system’s perpendicular distance to the desired path: Moving the right wheels

would turn the robot to the left, and moving the left wheels would turn the robot to the right.

In comparing our method to the differential drive controller, we tuned the differential drive controller

hyperparameters in the same single environment that the model-based controller hyperparameters were tuned

in. Also, all cost numbers reported below are calculated on the same cost function (Eqn. 3.2) that indicates

how well the executed path aligns with the desired path, and each reported number represents an average

over 10 runs.

Fig. 4.3 illustrates, on different paths executed on carpet, that our model-based learning method and

the differential drive control strategy are comparable at low speeds. However, our model-based approach

outperforms the differential drive strategy at higher speeds. The performance of differential drive deteriorates

15

Figure 4.3: An analysis of cost incurred during trajectory following, as a function of the speed of the robot, shows that our
model-based learning method is comparable to a differential drive control strategy at low speeds, but outperforms differential
drive at high speeds. Note that each cost shown here is the sum of costs accumulated over 100 timesteps for each trajectory.

as leg speeds increase, because traction decreases and causes the legs to have less control over heading.

Also, at high speeds, the dynamics of the legged robot can produce significant roll oscillations, depending

on the leg phasing [14]. Therefore, based on the timing of left and right foot contacts, the system can

produce turns inconsistent with a differential drive control strategy. Fig. 4.4 illustrates that for different

paths across various surfaces, our model-based learning method outperforms the differential drive control

strategy. Furthermore, we note that this difference in performance is most pronounced on surfaces with less

traction, such as styrofoam and carpet.

4.4 Improving Performance with More Data

To investigate the effect of the quantity of training data, we trained three different dynamics models using

different amounts of training data on carpet. We trained one with 50 rollouts (4 minutes), one with 200

rollouts (17 minutes), and one with 400 rollouts (32 minutes). Table 4.1 indicates that more training data

can indeed improve task performance. This is an encouraging indication that improvement can occur over

time, which is not the case for hand-engineered solutions.

Straight Left Right
50 rollouts 14.4 16.6 29.4
200 rollouts 10.3 13.6 17.1
400 rollouts 10.8 11.3 11.5

Table 4.1: Cost incurred by the VelociRoACH during the task of trajectory following on carpet. Three models were trained,
each with different amounts of training data, and they show performance improvements occurring over time (with more data).
Here, one rollout corresponds to 50 timesteps or 5 seconds of data.

16

4.5 Learning Environmental Information

To verify whether our learned model encapsulates information about the environment, and to see whether

or not the learned model itself has a large effect on controller performance, we conducted experiments on

a carpet material and a slippery styrofoam material. Table 4.2 shows that the baseline differential drive

controller performs relatively poorly on both surfaces. For the model-based approach, the model trained on

the carpet works well on the carpet, and the model trained on the styrofoam works well on the styrofoam.

The poor performance of either model on the other surface illustrates that our learned dynamics model does

in fact encode some knowledge about the surface. Also, performance diminishes when the model is trained on

data gathered from both terrains, which indicates that this naïve method for training a joint dynamics model

is insufficient.

Carpet Styrofoam
Differential Drive 13.85 15.45
Model trained on carpet 5.69 18.62
Model trained on styrofoam 22.25 8.15
Model trained on both 7.52 15.76

Table 4.2: Costs incurred by the VelociRoACH while executing a straight line path. The model-based controller has the best
performance when executed on the surface that it was trained on. Additionally, a model trained on carpet fails on styrofoam
(and vice versa), indicating that the model incorporates some knowledge about the environment of operation. Furthermore, a
model trained jointly on data from all surfaces does not result in good performance.

4.6 Image-Conditioned Dynamics Models

We have shown so far that when trained on data gathered from a single terrain, our model-based approach is

superior to a standard differential drive approach, and that our approach improves with more data. However,

although we saw that the robot’s dynamics depend on the environment, we would like our approach to be

able to control the VelociRoACH on a variety of terrains.

A standard approach would be to train a dynamics model using data from all terrains. However, as shown

above in Table 4.2 as well as below in Fig. 4.4, a model that is naïvely trained on all data from multiple

terrains and then tested on one of those terrains is significantly worse than a model that is trained solely on

that particular terrain. The main reason that this naïve approach does not work well is that the dynamics

themselves differ greatly with terrain, and a dynamics model that takes only the robot’s current state and

action as inputs receives a weak and indirect signal about the robot’s environment.

To have a direct signal about the environment, our image-conditioned model takes an additional input: an

image taken from an onboard camera, as described in Sec. 3.3. We compare our image-conditioned dynamics

model to various alternate approaches, including (a) training a separate dynamics model on each terrain, (b)

naïvely training one joint dynamics model on all training data, with no images or labels, and (c) training

17

one joint dynamics model using data with explicit terrain labels e (Fig. 3.2) in the form of a one-hot vector

(where the activation of a single vector element corresponds directly to operation in that terrain).

Fig. 4.4 compares the performance of our image-conditioned approach to that of these alternative

approaches, on the task of path following for four different paths (straight, left, right, zigzag) on four different

surfaces (styrofoam, carpet, gravel, turf). The naïve approach for training one joint dynamics model using

an aggregation of all data performs worse than the other learning-based methods. The method of having a

separate dynamics model for each terrain, as well as the method of training one joint dynamics model using

one-hot vectors as terrain labels, both perform well on all terrains. However, both of these methods require

human supervision to label the training data and to specify which terrain the robot is on at test time. In

contrast, our image-conditioned approach performs just as well as the separate and one-hot models, but does

not require any additional supervision beyond an onboard monocular camera. Finally, our image-conditioned

approach also substantially outperforms the differential drive baseline on all terrains.

Figure 4.4: Comparison of our image-conditioned model-based approach to alternate methods. Each method was evaluated on
four different terrains: styrofoam, carpet, gravel, and turf. On each terrain, four different paths (straight, left, right, and zigzag)
were evaluated 10 times each. The methods that we compare to include: a hand-engineered differential drive controller, a joint
dynamics model that is naïvely trained on all data from all terrains, an “oracle" approach that uses a separate dynamics model
on each terrain, and another “oracle" approach where the joint dynamics model is trained using data containing an extra one-hot
vector input indicating the terrain label of each data point. Our method outperforms the differential drive method and the naïve
model-based controller, while performing similarly to the oracle baselines without needing any explicit labels.

18

Chapter 5

Discussion

We presented a sample-efficient model-based learning algorithm using image-conditioned neural network

dynamics models that enables accurate locomotion of a low-cost, under-actuated, legged, and highly dynamic

VelociRoACH robot in a variety of environments. Using only 17 minutes of real-world data for each terrain,

our method outperformed a common differential drive control strategy, showed improvement with more data,

and was able to use features from images in order to execute successful locomotion on various terrains.

One drawback of our method is the amount of computation involved at each step. We overcame the

limitations of our embedded processor by streaming information to and from an external computer. However,

performing all computations on-board would reduce delays, increase robustness to communication issues, and

make this system more suitable for real-world tasks. One option could be to use the learned dynamics model

to simulate rollouts of training data, which could then be used to train a policy (without more real-world

data collection). However, this would require further algorithmic development, because the current dynamics

model diverges after a few time steps, which precludes its direct applicability to traditional reinforcement

learning algorithms that require longer rollouts for policy training.

Another direction for future work includes developing an algorithm for online adaptation of the learned

model. This would improve performance because over time, the roach suffers from deterioration of the chassis,

motor strength, and leg characteristics. Furthermore, online adaptation would allow the robot to succeed at

test tasks further away from the training distribution, allowing for adaptation to both new tasks as well as to

unexpected environmental perturbations. Additionally, removing the dependence on a motion capture system

is compelling, particularly when aiming for real-world application.

Another interesting line of future work includes improving the MPC controller. Our current approach

samples random actions at each time step and uses the predictions from the dynamics model to select the

best action sequence. However, sampling based approaches are intractable for systems with high-dimensional

action spaces over long time horizons. Furthermore, a more structured search of the action space could

prevent rapidly changing actions, limit the search space to more meaningful options, and also enable the

discovery of gaits through imposing cyclic or other intelligible constraints.

19

Chapter 6

Acknowledgements

This report includes contributions from graduate student Gregory Kahn, undergraduate students Guangzhao

Yang and Thomas Asmar, and professors Sergey Levine and Ronald S. Fearing. We would like to thank

Carlos Casarez for extensive in-lab training of VelociRoACH construction, constant mechanical support,

general expertise with these systems, and many insightful discussions. This work is supported by the National

Science Foundation under the National Robotics Initiative, Award CMMI-1427096.

20

Bibliography

[1] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie,

P. Fankhauser, M. Bloesch, et al., “Anymal-a highly mobile and dynamic quadrupedal robot,” in

IEEE/RSJ Int. Conf. on Intell. Robots and Systems, 2016, pp. 38–44.

[2] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura, “The intelli-

gent ASIMO: System overview and integration,” in Intelligent Robots and Systems, 2002. IEEE/RSJ

International Conference on, vol. 3. IEEE, 2002, pp. 2478–2483.

[3] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “Bigdog, the rough-terrain quadruped robot,”

IFAC Proceedings Volumes, vol. 41, no. 2, pp. 10 822–10 825, 2008.

[4] K. Byl, “Metastable legged-robot locomotion,” Ph.D. dissertation, Massachusetts Institute of Technology,

2008.

[5] J. Z. Kolter, P. Abbeel, and A. Y. Ng, “Hierarchical apprenticeship learning with application to quadruped

locomotion,” in Advances in Neural Information Processing Systems, 2008, pp. 769–776.

[6] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Fast, robust quadruped locomotion

over challenging terrain,” in IEEE Int. Conf. on Robotics and Automation, 2010, pp. 2665–2670.

[7] M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J. A. Bagnell, C. G. Atkeson, and J. Kuffner, “Optimization

and learning for rough terrain legged locomotion,” The International Journal of Robotics Research,

vol. 30, no. 2, pp. 175–191, 2011.

[8] R. Altendorfer, N. Moore, H. Komsuoglu, M. Buehler, H. Brown, D. McMordie, U. Saranli, R. Full, and

D. E. Koditschek, “RHex: A biologically inspired hexapod runner,” Autonomous Robots, vol. 11, no. 3,

pp. 207–213, 2001.

[9] A. J. McClung III, Techniques for dynamic maneuvering of hexapedal legged robots, 2006, vol. 67, no. 11.

[10] D. Zarrouk, D. W. Haldane, and R. S. Fearing, “Dynamic legged locomotion for palm-size robots,” in

SPIE Defense+ Security. International Society for Optics and Photonics, 2015, pp. 94 671S–94 671S.

21

[11] J. E. Clark, J. G. Cham, S. A. Bailey, E. M. Froehlich, P. K. Nahata, R. J. Full, and M. R. Cutkosky,

“Biomimetic design and fabrication of a hexapedal running robot,” in IEEE Int. Conf. on Robotics and

Automation, vol. 4, 2001, pp. 3643–3649.

[12] S. Kim, J. E. Clark, and M. R. Cutkosky, “iSprawl: Design and tuning for high-speed autonomous

open-loop running,” The International Journal of Robotics Research, vol. 25, no. 9, pp. 903–912, 2006.

[13] A. M. Hoover, S. Burden, X.-Y. Fu, S. S. Sastry, and R. S. Fearing, “Bio-inspired design and dynamic

maneuverability of a minimally actuated six-legged robot,” in IEEE RAS and EMBS Int. Conf. on

Biomedical Robotics and Biomechatronics, 2010, pp. 869–876.

[14] D. W. Haldane and R. S. Fearing, “Roll oscillation modulated turning in dynamic millirobots,” in IEEE

Int. Conf. on Robotics and Automation, 2014, pp. 4569–4575.

[15] H. Komsuoglu, K. Sohn, R. J. Full, and D. E. Koditschek, “A physical model for dynamical arthropod

running on level ground,” University of Pennsylvania, Departmental Papers (ESE), p. 466, 2008.

[16] H. Komsuoglu, A. Majumdar, Y. O. Aydin, and D. E. Koditschek, “Characterization of dynamic behaviors

in a hexapod robot,” in Experimental Robotics. Springer, 2014, pp. 667–684.

[17] R. Altendorfer, D. E. Koditschek, and P. Holmes, “Stability analysis of a clock-driven rigid-body SLIP

model for RHex,” The International Journal of Robotics Research, vol. 23, no. 10-11, pp. 1001–1012,

2004.

[18] X. Da, R. Hartley, and J. Grizzle, “Supervised learning for stabilizing underactuated bipedal robot

locomotion, with outdoor experiments on the wave field,” in ICRA, 2017.

[19] S. Gay, J. Santos-Victor, and A. Ijspeert, “Learning robot gait stability using neural networks as sensory

feedback function for central pattern generators,” in Intelligent Robots and Systems (IROS), 2013

IEEE/RSJ International Conference on, 2013.

[20] R. Tedrake, T. W. Zhang, and H. S. Seung, “Learning to walk in 20 minutes,” in Proceedings of the

Fourteenth Yale Workshop on Adaptive and Learning Systems, vol. 95585. Yale University New Haven

(CT), 2005, pp. 1939–1412.

[21] S. Chernova and M. Veloso, “An evolutionary approach to gait learning for four-legged robots,” in

IEEE/RSJ Int. Conf. on Intell. Robots and Systems, vol. 3, 2004, pp. 2562–2567.

[22] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “An experimental comparison of bayesian

optimization for bipedal locomotion,” in IEEE Int. Conf. on Robotics and Automation, 2014, pp.

1951–1958.

[23] D. J. Lizotte, T. Wang, M. H. Bowling, and D. Schuurmans, “Automatic gait optimization with gaussian

process regression.” in IJCAI, vol. 7, 2007, pp. 944–949.

22

[24] M. Tesch, J. Schneider, and H. Choset, “Using response surfaces and expected improvement to optimize

snake robot gait parameters,” in IEEE/RSJ Int. Conf. on Intell. Robots and Systems, 2011, pp. 1069–1074.

[25] V. Mnih and et. al., “Human-level control through deep reinforcement learning,” Nature, 2015.

[26] J. Oh, V. Chockalingam, S. Singh, and H. Lee, “Memorybased control of active perception and action in

minecraft.” ICML, 2016.

[27] T. P. Lillicrap and et. al., “Continuous control with deep reinforcement learning,” ICLR, 2016.

[28] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,

“Asynchronous methods for deep reinforcement learning,” in ICML, 2016.

[29] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimization,” in

ICML, 2015.

[30] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic manipulation with

asynchronous off-policy updates,” in ICRA, 2017.

[31] R. Lioutikov, A. Paraschos, J. Peters, and G. Neumann, “Sample-based information-theoretic stochastic

optimal control,” in IEEE Int. Conf. on Robotics and Automation, 2014.

[32] M. C. Yip and D. B. Camarillo, “Model-less feedback control of continuum manipulators in constrained

environments,” in IEEE Transactions on Robotics, 2014.

[33] A. D. Buchan, D. W. Haldane, and R. S. Fearing, “Automatic identification of dynamic piecewise affine

models for a running robot,” in IEEE/RSJ Int. Conf. on Intell. Robots and Systems, 2013, pp. 5600–5607.

[34] M. Deisenroth and C. Rasmussen, “A model-based and data-efficient approach to policy search,” in

ICML, 2011.

[35] J. Ko and D. Fox, “GP-BayesFilters: Bayesian filtering using gaussian process prediction and observation

models,” in IEEE/RSJ Int. Conf. on Intell. Robots and Systems, 2008.

[36] M. P. Deisenroth, R. Calandra, A. Seyfarth, and J. Peters, “Toward fast policy search for learning legged

locomotion,” in IEEE/RSJ Int. Conf. on Intell. Robots and Systems, 2012, pp. 1787–1792.

[37] H. Cruse, T. Kindermann, M. Schumm, J. Dean, and J. Schmitz, “Walknet—a biologically inspired

network to control six-legged walking,” in Neural Networks, 1998.

[38] X. Xiong, F. Worgotter, and P. Manoonpong, “Neuromechanical control for hexapedal robot walking on

challenging surfaces and surface classification,” in RAS, 2014.

[39] R. Grandia, D. Pardo, and J. Buchli, “Contact invariant model learning for legged robot locomotion,” in

RAL, 2018.

http://ieeexplore.ieee.org/abstract/document/6907424/
http://ieeexplore.ieee.org/abstract/document/6907424/
http://ieeexplore.ieee.org/abstract/document/6776556/
http://ieeexplore.ieee.org/abstract/document/6776556/
http://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf
https://link.springer.com/article/10.1007/s10514-009-9119-x
https://link.springer.com/article/10.1007/s10514-009-9119-x

23

[40] B. Leffler, “Perception-based generalization in model-based reinforcement learning,” Ph.D. dissertation,

Rutgers, 2009.

[41] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny,

G. Hoffmann, et al., “Stanley: The robot that won the darpa grand challenge,” Journal of Field Robotics,

2006.

[42] M. A. Hoepflinger, C. D. Remy, M. Hutter, L. Spinello, and R. Siegwart, “Haptic terrain classification

for legged robots,” in ICRA, 2010.

[43] X. A. Wu, T. M. Huh, R. Mukherjee, and M. Cutkosky, “Integrated ground reaction force sensing and

terrain classification for small legged robots,” RAL, 2016.

[44] F. L. G. Bermudez, R. C. Julian, D. W. Haldane, P. Abbeel, and R. S. Fearing, “Performance analysis

and terrain classification for a legged robot over rough terrain,” in IROS, 2012.

[45] A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural network dynamics for model-based deep

reinforcement learning with model-free fine-tuning,” arXiv preprint arXiv:1708.02596, 2017.

[46] A. Rao, “A survey of numerical methods for optimal control,” in Advances in the Astronautical Sciences,

2009.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural

networks,” in NIPS, 2012.

[48] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image

database,” in CVPR, 2009.

[49] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-the-shelf: an astounding

baseline for recognition,” in CVPR Workshops (CVPRW), 2014.

[50] D. W. Haldane, K. C. Peterson, F. L. G. Bermudez, and R. S. Fearing, “Animal-inspired design and

aerodynamic stabilization of a hexapedal millirobot,” in IEEE Int. Conf. on Robotics and Automation,

2013, pp. 3279–3286.

[51] A. M. Hoover and R. S. Fearing, “Fast scale prototyping for folded millirobots,” in IEEE Int. Conf. on

Robotics and Automation, 2008, pp. 886–892.

[52] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR, 2014.

http://www.anilvrao.com/Publications/ConferencePublications/trajectorySurveyAAS.pdf
https://arxiv.org/abs/1412.6980

24

Appendix A

Differential Drive Baseline

The differential drive baseline method used in this paper is a common steering method used for robots with

wheel or leg-like mechanisms on both sides. In this control scheme, the turn rate ωrobot is proportional to the

difference between left ωl and right ωr leg velocities. A differential drive controller assumes that the system

behavior can be thought of as two wheels connected by a common axis: Here, moving the right wheel would

turn the robot to the left, and moving the left wheel would turn the robot to the right. Note that this general

idea of a difference in leg velocities translating to heading change of the entire system can be implemented in

many ways, and we describe our implementation below merely as a guideline.

As described in Algorithm. 1, our implementation of a differential drive controller uses robot heading, as

well as perpendicular distance away from the desired path, in order to set velocity setpoints for each side

of robot. In addition to standard heading control where the robot turns such that its heading matches the

angle of the line, it also incorporates the perpendicular error metric to say that its heading should be more or

less than the heading of the line, in order to actually move back toward the line. This controller outputs

desired leg velocities at a rate of 10 Hz. To enable the realization of these leg velocities, we also implement a

low-level PID controller that runs in the firmware at 1000 Hz. Encoder readings of the leg positions provide

feedback, and the PID controller monitors proportional, integral, and derivative errors in order to output the

PWM values required for achieving the desired leg velocities.

25

Algorithm 1 A Differential Drive Algorithm for Trajectory Following

1: Inputs: Current state (x, y, z, roll,pitch, yaw),
Desired waypoints W = [w0, w1, . . .],
Controller parameters f1 and f2

2: Line segment L← closest [wi, wi+1] to (x, y)
3: dline ← angle of L
4: p← perpendicular distance of (x, y) to line segment L
5: if (x, y) to right of L
6: then d = dline + f1 ∗ p
7: else d = dline − f1 ∗ p
8: left leg velocity ωl ← ωnom − d ∗ f2
9: right leg velocity ωr ← ωnom + d ∗ f2

10: Outputs: leg PID velocity setpoints ωl and ωr

26

Appendix B

Choice of Action Abstraction

Our model-based learning method allows users the freedom to vary the level of abstraction at which they

would like to operate. Two options, which we illustrate in Fig. B.1 as exhibiting comparable task performance,

include setting direct motor PWM values and setting desired velocity setpoints.

Directly setting motor commands, instead of velocity setpoints, precludes the need to tune another layer

of feedback control (i.e. lower-level PID controller) for calculating motor commands. The method of directly

sending commands, however, encounters the problems involved with a lack of feedback loop. In the case

of the VelociRoACH, a given PWM value can result in different amounts of leg movement, due to both

variations in the battery level, as well as due to the leg kinematics leading to different forces at different

stages of the leg rotation. At the same time, outputting desired velocities and then designing a lower-level

PID controller to achieve those velocities involves an additional stage of parameter tuning, and one concern

includes unpredictable behavior caused by not achieving the desired velocity within the time ∆t before the

next setpoint is received. Each of these action abstraction options has pros and cons that manifest themselves

differently on different systems. Thus, it is an enticing feature to have an algorithm easily adapt to the user’s

choice of action abstraction.

27

Figure B.1: Trajectories executed by the model-based controller when the control outputs were (Top:) direct motor PWM
values and (Bottom:) leg velocity setpoints, which a lower-level controller was tasked with achieving. Note that for each of
these options, the corresponding dynamics model was trained using data where the at represented the indicated choice of action
abstraction.

28

Appendix C

Images of Terrain

Shown in Fig. C.1 are images of the terrain, as seen by the VelociRoACH through its 3.4 gram monocular

color camera. The images include carpet, turf, styrofoam, and gravel.

Figure C.1: Sample terrain images, as seen by the VelociRoACH.

29

Appendix D

Telemetry Data

The following three figures (Fig. D.1 - Fig. D.3) compare saved telemetry data from runs executed by

the learned method, with data from runs executed by the differential drive strategy. Fig. D.1 shows the

distribution of commanded actions for the right vs. left side of the robot during various "straight" and "left"

runs. Fig. D.2 shows histograms of the roll angles during the execution of "straight," "right," and "left"

trajectories. These histograms show more symmetric distributions of roll angles for the differential drive

method, and more skewed roll angles for the learned method. Fig. D.3 shows 4 "left" runs from the learned

method (top), and from the differential drive method (bottom). We see a clear correlation between desired

robot heading and resulting control commands for the differential drive strategy, but a less clear pattern

for the learned method. Finally, Fig. D.4 and Fig. D.5 show saved telemetry data (including gyro data,

accelerometer data, back EMF, duty cycle, battery voltage, torque, leg positions, commanded actions, robot

heading, x, y, roll, pitch, yaw) from the execution of a "left" trajectory by the two methods (differential drive

method and learned method).

30

Figure D.1: Distribution of commanded actions for the right vs. left side of the robot, where the commanded actions are velocity
setpoints for the legs, in units of leg revolutions per second. The top plots show multiple "straight" runs, and the bottom plots
show multiple "left" runs.

31

Figure D.2: Histograms of roll angles during the execution of "straight," "right," and "left" trajectories, showing more symmetric
distributions of roll angles for the differential drive method and more skewed roll angles for the learned method.

32

Figure D.3: Four "left" runs (top) from the learned method, and four "left" runs (bottom) from the differential drive method.
The blue dots correspond to the right motor, and the left dots correspond to the left motor. The differential drive runs show a
clear correlation between heading error (in radians) and resulting control commands, whereas the learned model does not. Note
that the visible "noise" in the differential drive data is due to the fact that those commands depend on distance error as well as
heading error.

33

Figure D.4: Differential Drive: left turn. The top plots show 1kHz data from on-board the robot during a "left" run,
with zoomed-in plots on the right. The bottom plots show 10Hz data from the motion capture system, during the same run.
Additionally, the back EMF values (indicating motor velocities) in this figure show some rapid value changes and sometimes do
not correlate to the leg positions seen, so we suspect that there is some unresolved electrical error with electronics on our circuit
board, and a correction of these (occasionally) incorrect values could further help our learned method.

34

Figure D.5: Learned Model: left turn. The top plots show 1kHz data from on-board the robot during a "left" run, with
zoomed-in plots on the right. The bottom plots show 10Hz data from the motion capture system, during the same run. Duty
cycle varies less frequently here than in Fig. D.4, because our commands are PWM values sent at 10Hz (rather than velocity
setpoints, which then require a controller to set PWM values at 1kHz).

	Contents
	Introduction
	Related Work
	Model-Based Learning Method for Locomotion Control
	Learning System Dynamics
	Model-Based Control Using Learned Dynamics
	Image-Conditioned Dynamics Model

	Results
	VelociRoACH Platform
	Details of Our Approach
	Comparing to Differential Drive
	Improving Performance with More Data
	Learning Environmental Information
	Image-Conditioned Dynamics Models

	Discussion
	Acknowledgements
	Bibliography
	Appendices
	Differential Drive Baseline
	Choice of Action Abstraction
	Images of Terrain
	Telemetry Data

