
Interactive CAD Software for the Design of 2-manifold
Free-form Surfaces (NOME)

Gauthier Dieppedalle

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-48
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-48.html

May 10, 2018



Copyright © 2018, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
I would first want to say thank you to Professor Carlo H. Séquin for the time
he has spent advising me during the 5th year M.S. program and for all of the
discussions that we had in developing NOME. I would also like to say thank
you to Professor Björn Hartmann for giving me valuable feedback on this
report. I am also very grateful for the help that Toby Chen and Beren Oguz
have provided in writing code for NOME. I would like to thank Professor
Séquin’s URAP students for their feedback while using early versions of the
NOME programming environment.



/

Interactive CAD Software for the Design of 2-manifold Free-form Surfaces
(NoME)

by Gauthier Dieppedalle

Research Project

Submitted to the Department of Electrical Engineering and Computer Sclences,

University of California at Berke1e1,. in partial satisfaction of the requirements for the
<legree of Master of Science, PIan tr.

Approval for the Report and Comprehensive Examination:

Committee:

05 02'2018

*xr< ****

Professor Carlo H. S6qui

Professor Bjorn Hartmann
Second Reader

)ttl02t20t8



 1 

Interactive CAD Software for the Design of 2-manifold  
Free-form Surfaces (NOME) 

 
Gauthier Dieppedalle 

EECS Computer Sciences, University of California, Berkeley 
E-mail: gdieppedalle@berkeley.edu 

 

In order to build 2-manifold free-form surfaces of potentially high complexity but with much inherent 

regularity, we have developed a CAD (Computer-Aided Design) tool called NOME (Non-Orientable 

Manifold Editor). This tool makes it easier and more precise to build 2-manifold sculptures procedurally 

through a text editor and interactively through a GUI (Graphical User Interface). We have tested the 

software by reproducing sculptures by Eva Hild and by Charles O. Perry, which can then be 3D printed. 

 

1. Introduction 

Over the past twenty years, Professor Carlo Séquin and his students have been using Berkeley SLIDE 

(Scene Language for Interactive Dynamic Environments) to create abstract geometrical sculptures [10]. 

The SLIDE software offers numerous powerful constructs such as sweep generators, several different 

subdivision techniques, and rendering options. However, SLIDE has some shortcomings. It cannot 

subdivide and create offsets over non-orientable two-manifolds such as Möbius bands and Klein Bottles. 

The SLIDE code has also been poorly maintained over the years, as dozens of students have contributed 

to it without taking into consideration organization and scalability. We have observed that creating 

smooth, free-form two-manifold, particularly, if they are single sided, is still extremely difficult and 

tedious with the CAD tools currently on the market. Professor Séquin and Andy Wang, a previous 5th 

year Masters student at Berkeley, had started the construction of new software that would strike a good 

balance between procedural shape generation and interactive graphical editing capabilities [12]. Pushing 

forward in the same direction, the current software is called NOME (Non-Orientable Manifold Editor).  

 

2. NOME Compared to Existing CAD Tools on the Market 

We have started the NOME project to create an alternative to existing CAD tools, such as Maya and 

Blender, which rely too much on a point-and-click Graphical User Interface. This makes it difficult to 

construct precise geometrical free-form shapes with much inherent regularity. Forcing the designers to 

generate meshes entirely by clicking and dragging on the screen using the 3D GUI, often produces 

imprecise sculptures due to the inaccurate nature of physically selecting and moving vertices mapped from 
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the 2D plane of the screen to a 3D space. In the past several years, Blender has added the support to 

modify models programmatically, using Python to automate actions from the Blender GUI to speed up 

the workflow [14]. The scripting add-on to Blender is very powerful to create a first original design or to 

animate objects in 3D space. However, in Blender, it is not possible to read in a mesh via a script then 

edit via the graphical interface, and then save the result again as a script. Therefore, Python must be seen 

as a separate program from Blender that allows users to script their workflow. But it is not a descriptive 

language that can be used to define a hierarchical scene programmatically. The hierarchy in Blender files 

(.blend) cannot be accessed directly via a text editor, since the file is in byte format and thus not human 

readable. 

 

When developing NOME, we have focused on building a shape description language that allows designers 

to start their designs via code, then fine-tune it and enhance it via a graphical interface, and subsequently 

capture these edits in a piece of code that can readily be integrated with the original description. In this 

form, the design process alternates between procedural definitions and graphical edits. So far, NOME has 

primarily been used to help artists generate precise mathematically defined sculpture that can then be 3D 

printed [16]. The NOME GUI running on Windows can be seen in Figure 1 [9]. The displayed sample file 

shows twelve 4-stub Dyck funnels linked into a symmetrical cluster with the symmetry of the oriented 

cube (created by Carlo Séquin). 

     
Figure 1: Graphical User Interface of NOME running on Windows. 
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3. Formal Language Definition 

NOME follows the general scheme of a graphical scene description. It is a single assignment language 

requiring unique identifiers in each of its hierarchical contexts. Points, edges, and faces can be assembled 

into meshes, and these, in turn, can be assembled into groups that form a hierarchy. The following 

constructs are available in NOME: 

Point: point id ( point_triple ) endpoint 

Polyline: polyline id ( point_idlist ) [closed] endpolyline  

Face: face id ( point_idlist ) [surface surface_id] endface 

Object: object id ( face_or_polyline_idlist ) endobject 
Mesh: mesh id  

  face faceId1 ( point_idlist1 ) [surface surface_id1] endface  

  ...  

  face faceIdN ( point_idlistN ) [surface surface_idN] endface  

endmesh 

Group: group id  

  instance id1 object_id1 [surface surface_id] endinstance 

  ... 

  instance idN object_idN [surface surface_id] endinstance  

endgroup 

Circle: circle id (n ro) endcircle 

Funnel: funnel id (n ro ratio h) endfunnel  

Tunnel: tunnel id (n ro ratio h) endtunnel  

Bézier Curve: beziercurve id ( point_idlist ) slices numSlices endbeziercurve 

B-Spline: bspline{order} id ( point_idlist ) [closed] slices numSlices endbspline{order}  

Instance: instance id mesh_id [transformations] endinstance 

Surface: surface id ( color_triple ) endsurface  

Background: background surface surface_id endbackground  

Foreground: foreground surface surface_id endforeground  

Front Faces: frontfaces surface surface_id endfrontfaces  

Back Faces: backfaces surface surface_id endbackfaces  

Rim Faces: rimfaces surface surface_id endrimfaces 
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Bank: bank bankID 

  set setID1 value1 start1 end1 stepSize1 

  ... 

  set setIDN valueN startN endN stepSizeN  

endbank 

Delete: delete 

  face faceId1 endface 

  ... 

  face faceIdN endface 

enddelete 

Subdivision: subdivision id 

  type subdiv_type 

  max subdivision level 

endsubdivision 

Offset: offset name 

  type typeOffset 

  instance instanceName 

  max maxValue step stepValue 

endoffset 

 

Within a mesh, variable names must be unique. Sets within a bank and instances within a group must 

also have unique names. Most designers will spend a considerable amount of time modifying a .NOM file. 

It is convenient to be able to quickly disable some small or large portions of the code: # turns remainder 

of a line into a comment, (* and *) bracket a larger section of code spanning multiple lines. 

 

3.1 Workflow of NOME 

A NOME input file is analyzed in three phases: a lexer, which reads the program and creates the 

structure of the input file, a parser that structures these tokens, and lastly an evaluator that interprets 

the meaning of the program. Flex is used to create the lexer, and Bison is used for the compiler (these are 

newer versions of the tools called Lex and Yacc that were developed originally for UNIX) [3]. The 

workflow of NOME is shown in Figure 2. The user first opens a .NOM file. A .NOM file contains a 

hierarchical NOME description. Once the file has been opened, the lexer tokenizes the file into a set of 
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recognized tokens. Since NOME is a single-assignment language, the parser keeps track of variables that 

have been defined in the file, and duplicate names within the same context would trigger an error. These 

tokens are parsed using regular expressions. The parser organizes these tokens into sets that build up the 

scene graph. The evaluator takes these sets and constructs the meshes that define the geometry of the 

scene. These meshes can be modified and enhanced interactively through the graphical user interface. 

Finally, the user can subdivide and offset the mesh and generate a .STL file than can be sent to a 3D 

printer. 

 
Figure 2: General Workflow of NOME. 

 

 

3.2 Formal Naming for Variables and Reserved Names 

Variable names must begin with an uppercase or lowercase letter of the alphabet, or with an underscore. 

After the first character, the variable name can contain either letters or numbers. The NOME language 

differentiates between lower case and uppercase characters. Reserved keywords cannot be used as 

variables names, such as expr, bspline, endbspline, closed, slices, beziercurve, endbeziercurve, 

offset, endoffset, min, max, step, surface, endsurface, point, color, endpoint, bank, endbank, set, 

face, endface, object, endobject, mesh, endmesh, tunnel, endtunnel, funnel, endfunnel, polyline, 

endpolyline, circle, endcircle, instance, endinstance, scale, translate, rotate, reverse, 

foreground, endforeground, background, endbackground, insidefaces, endinsidefaces, 

outsidefaces, endoutsidefaces, offsetfaces, endoffsetfaces, delete, enddelete, group, endgroup, 

subdivision, endsubdivision, subdivisions, type, {, }, (, and ). Throughout the compiler pipeline, 

we have added multiple checks to ensure that the naming of variables is consistent throughout the file. 

 

3.3 Geometrical Elements and Data Structures 

We have defined three basic constructs generators in NOME: point, face, and polyline. All of them are 

stored using the two-winged edge data structure [1]. Each construct in NOME must have a name as a 
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string and a generated index is automatically created in order to be able to efficiently compare if two 

construct references the same object. 

Point: A point statement is used to define a vertex in 3D space, which can then be referenced by its id. 

The point_triple defines the 3D position of the point via its x, y, and z coordinates. The individual 

values in such a list must be separated by white spaces, which can be spaces, tabs, new lines, or return 

characters. 

Polyline: A polyline statement generates a 3D chain of piecewise linear segments. The point_idlist is a 

list of points. The list of point ids must be of length at least 2 (which would create a single edge) and they 

must be separated by whitespace.  

Face: A face statement defines a contour which may be non-planar and non-convex, that is panned by a 

“membrane” composed of triangles. The front side or outside of the face is defined as the direction from 

which it is seen in a counterclockwise manner when seen from the “outside”, i.e. the direction against the 

face normal. The point_idlist is a list of points ids. Optionally, the surface_id allows to assign 

predefined surface properties to this face. 

 

3.4 Hierarchical Constructs 

We have created three hierarchical constructs in NOME to group the basic constructs together: object, 

mesh, and group.  

object:  An object statement is used to define a collection of faces and polylines, which can then be 

referenced by its id. These elements need not be connected. The face_or_polylineidlist is a list of face 

or polyline names.  

mesh: A mesh statement also creates a collection of faces. Faces in a mesh can then be referred in the rest 

of the program via a hierarchical name: id.faceId, where id is the id of the mesh and faceId is the id of 

the face in the mesh. 

group: A group is a collection of instances of primitive objects or other groups. Groups are the most 

general construct to introduce hierarchy into the shape description. All constructs so far have been 

procedural definitions. No geometry is added into the scene until an instance of one of these definitions is 

called. 

 

 

 

 



 7 

3.5 Geometry Generators 

The NOME language also supports various geometry generators that makes modeling geometrical 

sculptures simpler. Currently implemented are circle, tunnel, funnel, bspline, and beziercurve. A 

generated tunnel, funnel, and circle are shown in Figure 3. Future work could add spheres and tori. 

 

                                      
                (a)                                   (b)                                        (c)                                                                    

Figure 3: Examples of generated in geometry: (a) circle (b) funnel, and (c) tunnel. 

 

circle: A circle statement generates a set of edges and vertices forming a regular n-gon with a given a 

radius and with n sides. 

 

funnel: This statement generates a mesh in the shape of a truncated pyramid. n represents the number of 

vertices along the rim of the funnel. ro represents the radius of that rim. ratio represents the size of the 

secondary rim compared to the original rim. h is the height of the funnel from the first rim to the second 

rim. 

 

tunnel: This statement generates a “cylindrical” surface that can be modeled by the inner part of a torus. 

It is defined by 3 circles. n represents the number of vertices along each circle. ro represents the radius of 

the central circle. ratio represents the size of the two outer rims compared to the central circle. h is the 

height of the tunnel from the middle circle to the outside rims. 

 

beziercurve: This defines a Bézier curve that interpolates the two end points and approximates the rest of 

the points from a list of control points. The point_idlist defines a list of control points. The numSlices 

parameter defines the number of slices by which the Bezier curve is sampled. 

NOME builds the Bezier curves based on the De Casteljau’s algorithm. According to the algorithm, a 

Bezier curve with n+1 control points (c0, c1, …, cn) can be evaluated at a point using the following 

function: 
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!(") = ∑ $%&%,((")(
%= 0  

where " ∈ [0,+ + ({,-./-} − 1)] and b is the Bernstein basis polynomial defined as: &%,((") = (+2) (1 − ")(− %"% 
Since NOME only supports uniform Bezier curves, if we have numSlices segments for a given Bezier 

curve then we need to create a for loop that calls B(t) with t incrementing by 1(5678%9:; at each step. 

 

B-spline: The statement bspline{order} defines a B-spline of degree {order}-1 that approximates a list 

of sequence of n+1 points. The point_idlist defines a list of control points. The closed parameter 

defines whether the curve is closed. This automatically repeat the first {order}-1 control points at the end 

of the sequence. NOME uses the De Boor’s algorithm to compute the points on the b-spline curve. Given 

a degree {order}-1 with n+1 control points (c0, c1, …, cn) the points of the b-spline can be obtained using 

the following equation: !(") = ∑ $%!%,((")(
%= 0  

where " ∈ [0, 1] and !%,((") is defined as the basis defined as following for + = 0: !%,0(") = {1, "% ≤ " < "%+ 10, ,"ℎ/-?2@/   For + ≠ 0: !%,B(") = " − "%"%+ B− 1 − 1 !%,B− 1(") + "%+ B − ""%+ B− 1 − 1 !%+ 1,B− 1(") 
 

3.6 Instances 

All constructs so far have been procedural definitions. No geometry is added into the scene until an 

instance of one of these definitions is called. 

 

instance: instance id mesh_id [transformations] endinstance 

An instance creates an instance of geometry. Each instance that is created outside of a group at the top 

level of the hierarchical description, is rendered in the scene. The mesh_id is the name of the primitive 

object or group that will be instantiated. The user can optionally translate, rotate, and/or mirror that 

instance. Multiple transformations can be used together in any arbitrary order. Color transformations can 

also be specified by giving a surface_id. 
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Rotations are specified by: rotate ( axis_triple ) ( angle_float ). The axis_triple defines the 

arbitrary axis of rotation u=(ux, uy, uz) through the origin. The angle_float representing the arbitrary 

angle of rotation is given in degrees.  

Non-uniform scaling can be obtained with: scale ( scale_triple ). scale_triple is the scale vector 

s=(sx, sy, sz) representing by how much each of the three coordinates must be scaled. The operation 

performed to scale a point p=(px, py, pz) is (px · sx, py · sy, pz · sz).  

Translations are applied by using: translate ( translate_triple ). The translate_triple specifies 

the three components of a translation vector t=(tx, ty, tz). This operation transforms all points p=(px, py, 

pz) as (px + tx, py + ty, pz + tz).  

To reverse the order of the vertices in a face the user can use the reverse transformation. The normal 

vector calculated for the face will then point in the opposite direction.  

For debugging purposes and to understand the geometry rendered in the scene, the user can set colors to 

every element in the scene. Color transformations are defined by: surface surface_id. The surface_id 

is the name of the surface to be applied on the instance. The surface construct defines a color as following: 

surface id ( color_triple ) endsurface  

The color_triple defines the RGB color of the surface. The values of each of the three parameters must 

lie between 0 and 1. 

A user may apply multiple colors to the same object in the scene and in that case the closest to the leaves 

of the tree color applied on the object will take precedence. Therefore, if an instance references to a vertex 

from another instance the color of the other instance will color the vertex. From a hierarchical standpoint, 

the color that is in the lowest node in the hierarchical tree representing the NOME file will color the 

object in the scene. 

Multiple transformations are composed left to right in world coordinates. 

 

3.7 Display Colors 

The background of the window containing the geometry is set by default to black but can be changed by 

using the following statement:  

background surface surface_id endbackground  

Geometry that does not get assigned an explicit color in the .NOM file will be rendered with some default 

display colors which can be set as follows:  

foreground surface surface_id endforeground  
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Once an offset has been applied on a geometry, the color of the front, back, and rim faces can be changed 

using the following statements:  

backfaces surface surface_id endbackfaces  

frontfaces surface surface_id endfrontfaces  

rimfaces surface surface_id endrimfaces 

These colors can also be set from the control panel in the GUI. Once the mesh has been merged and an 

offset is applied, the inside, outside, and offset faces corresponds to the colors of the faces.  

 

4. Hierarchy stored as a Graph 

4.1 Nodes of the Directed Scene Graph 

The NOME hierarchy corresponds to a directed scene graph in order to be able to instantiate useful 

constructs multiple times without having to copy the entire data into a new node. When an instance 

references a vertex in the scene, that vertex keeps a pointer to the original, to ensure that any 

modification is propagated across the hierarchy in case a parameter relating to that vertex is changed. 

The root node of the tree is always a Session object, representing the file that has been opened and 

parsed. This root node contains pointers to the different constructs and to the parameters available in the 

scene. In Figure 7, RENDER WORLD is the root node. A Session also contains a list of instances that are 

at the top level of the scene. An instance can reference either a mesh or a group. It contains a pointer to 

the original mesh or group but also makes a copy of all of the vertices, edges, and faces in order to ensure 

that if two instances reference the same mesh, they will be independent from each other. They still 

maintain a reference to the original mesh or group, in case the software needs to reference to the original 

definition. Similarly, a group also keeps a pointer to its list of instances. These instances may then 

reference either meshes or objects. Meshes or objects can contain faces, vertices, or edges. Polylines, 

funnels, and tunnels are stored as meshes.  

Every element (point, face, mesh, group…) has a unique hierarchical name so that it can be referenced 

unambiguously. Any construct can then be reused to create the scene graph.  
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Figure 4: Hierarchical graph of the geometrical constructs of a NOME file. 

 

4.2 Referencing to Vertices, Edges, and Faces 

If a user needs to reference a node in the tree from another node, he/she needs to provide the entire path 

to that node either from the root of the tree or from the current node. Thus, the hierarchical name of a 

node is a sequence of node ids separated by dots “.” following the path through the scene graph. For 

example, in Figure 4, if the face from Mesh C references to a vertex in inst o3, the path must be 

.g5.g3.o3.v3. The initial dot is needed, since the path starts at the root. If inst g9 wants to reference to a 

vertex from mesh B, then the user can use mE.B.v3 without using the initial . character, since the path 

starts at the current node of the tree and not at the root.  

 

4.3 Numerical Parameters and Sliders 

After having defined the proper topology of a scene via the scene graph, a designer after would like to 

fine-tune the geometry by changing some parameters interactively while observing the results on the 

graphical display (example: make a ribbon wider, or a tunnel larger). NOME provides sliders that allows 

the user to change any numerical value in the NOME file through a slider in the GUI. Multiple sliders can 

be combined in a bank: 

bank bankID 

  set setID1 value1 start1 end1 stepSize1 
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  ... 

  set setIDN valueN startN endN stepSizeN  

endbank 

 

Each setID must be a string representing the name of the variable to be changed. value represents the 

initial value of the slider. start represents the minimum value of the slider. end represents the maximum 

value of the slider. stepSize represents the size of the incremental steps. Each slider contains a pointer to 

a double value. In order for an object to reference a value from a slider, the user uses the following syntax 

{expr $bankID.setID}. The user can then use this value to change the z-value of a point: 

point p1 (0 0 {expr $lefttunP.n}) endpoint 

That point will maintain a pointer to the double value in the set.  

A bank is displayed in a window containing slider for every set. A user may use a set or a bank anywhere 

where a number is required. In order to add more flexibility every field requiring a numerical value can 

take {expr…} expression, which may contain complex mathematical expressions. These expressions are 

parsed using a lexer and parser developed in Flex and Bison. For example, the user may map two sliders 

to the position of an object such as in the following point definition:  

point p1 (0 0 {expr sqrt($lefttunP.n * cos($lefttunP.r + 5 * sin(0)))}) endpoint 

In order to parse these expressions, we have created a separate parser in Lex and Yacc that returns the 

calculated values. In our lexer, a bank/set combination must have the following regular expression syntax 

\$[a-zA-Z][a-zA-Z0-9]*.[a-zA-Z][a-zA-Z0-9]*, in which a bank or a set must start with any 

lowercase or uppercase letter and then may contain numbers in the name. The following mathematical 

operations are currently supported in NOME: sqrt, cos, sin, tan, sec, cot, csc, arccos, arcsin, arctan, 

arcsec, arccot, arccsc, log, e, ln, +, -, *, /, ^, (, ). They may include integers or floating-point numbers  

 

5. Graphical Editing 

When opening a file in NOME, the user can visualize it and edit it via the graphical interface. These 

changes can then later be saved back into the original NOME file in a convenient hierarchical manner. 

 

5.1 Editing via the User Interface 

After having read in the initial geometry described in the NOME file and displayed on the screen, the 

user can edit and fine tune the geometry while visually observing the results. First, sliders can be adjusted 

to obtain overall best dimensions and proportions. In addition, topological changes can be made. The user 
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may delete faces or add new ones. By clicking on vertices in the display, a user may select a sequence of 

points, which can then be turned into a polyline or into a face contour. 

 

5.2 Selecting Borders and Zippering 

Often an extrusion or bridge between lengthy contours needs to be constructed. To make adding faces in 

a well-structured manner less tedious and more efficient, a high-level “zippering” command has been 

implemented. It is possible to zipper together two closed or open borders. The user first needs to click on 

the “Select border” radio button, then needs to select the border by selecting one of the vertices on that 

border. The code works by iterating through all of the edges connected to that vertex and recursively 

returns a list of all the paths that connects back to the initial vertex. When all of the closed borders have 

been returned, NOME returns the path that has the lowest number of vertices, i.e. the shortest path. By 

clicking on the “Add one border” button, the user saves that border for zippering. After the user has 

selected a second border, he/she can then zipper them together using the “Zip two borders” button. The 

program first iterates through all pairs of vertices between the two borders and finds the closest vertex to 

each one by simply using the equation to get the distance between two points: √(D2 − D1)2 + (F2 − F1)2 +  (G2 − G1)2. NOME creates a dictionary containing a vertex as a key and the 

closest vertex from the other border as a value. The program simply iterates through all of the vertices, 

creating edges between the vertex itself and the closest vertex by looking through all of the keys in the 

hash table. Then the code iterates through the edges just created for each vertex and creates a face 

between the current vertex the next vertex and the edge connecting them to the closest vertex from the 

other border.  The zippering of borders is done by adding triangles or quads between the faces. Figure 5 

shows 3 examples of zippering borders. 

 

 
Figure 5: Three example cases of zippering of borders in NOME  

 

5.3 Saving the Changes 

Once the user has finished editing the file in the interface, he/she can save the changes back to the 

NOME file. Saving in the .NOM format will update the current value of each slider and append the 
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meshes added to the saved file. For example, a user may have defined two instances of a tunnel and 

created faces between them through the graphical interface. If the user wants to make further edits to the 

base geometry, such as creating multiple symmetrically placed copies of the faces just generated, that user 

needs to save the edits and make changes to the .NOM file. A user may also delete faces via the interface 

by selecting the face and clicking on the delete face button. Deleting a face only deletes the face itself 

without removing any of the edges or vertices. When saving the edited geometry, NOME also appends a 

list of deleted faces to the .NOM file. 

 

6. Exporting the File to Be 3D Printed 

Once a file has been opened in NOME and edited via the user interface, the user can then merge, 

subdivide, and add an offset to 3D print the geometry created.   

 

6.1 Merging 

The merging step is required before subdividing and offsetting a mesh and allows different instances to be 

connected with each other. Elements within an individual mesh are connected to each other, however 

constructs between two different instances will not share their vertices and edges. A merging step is 

therefore required in order to ensure that during subdivision the mesh is treated as a single mesh and 

individual mesh parts will not pull apart. During the merging procedure, only border edges are joined so 

that no non-manifold edges are being generated. Merging between border edges are done within the lowest 

subtree first. In other words, when multiple border edges can potentially be merged, NOME will take a 

hierarchical approach in which edges lowest in the scene graph will be merged together first. 

Once the merged button has been clicked, NOME creates a new merged mesh that will contain the mesh 

generated from the merging operation. Merging is implemented by checking whether the vertices of two 

border edges are within an ! value of each other. If this is true then the two edges are merged by 

following the rules illustrated in Figure 6. In NOME that ! value is set to 0.2 (assuming designs have a 

diameter or about 1 to 10). 
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Figure 6: Merging an edge in a mesh. 

 

When merging a pair of coinciding edges, we need to delete one edge and two vertices (Figure 6). In 

Figure 6, we need to remove the edge efj and vertices vf and vj. The edges connected to vf one connected 

to vc. The faces adjacent to vf become adjacent to vc. Similarly, edges connected to vj are connected to vd. 

The faces adjacent to vj now comprise vd. Every reference to vf and vj is replaced by references to vc and 

vd.  

 

Once a merged mesh has been created, it is not possible to make edits in the merged view that get 

transferred back to the regular hierarchical description. Mergers may change the topology and hierarchy 

dramatically and the new description may no longer be meaningful to the designer. This decision also has 

consequences for any slider action on a merged mesh. Sliders can still affect the geometry of a mesh. 

However, when a slider translates one of the meshes that contains one of the edges that have been 

merged, that merger is no longer possible within the given tolerances (Figure 7).  

 

 
                              (a)                                                        (b) 

Figure 7: Two merged funnels (a) before and after (b) merging. 
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If a connection between two meshes must be maintained when one of the edges is moved, then the 

designer should explicitly insert one or more (“rubber”) faces between the two meshes. Every time a slider 

is changed, NOME goes back to the hierarchical mesh and creates new mergers between every pair of 

border edges that coincide within !. 
 

6.2 Subdivision 

After a merging process, the geometry should consist of one or more 2-manifolds plus some polylines. The 

2-manifolds can then be subdivided in order to create smooth surfaces. The subdivision code module 

provides the needed parameters. The subdiv_type represents the type of subdivision used. Two types are 

currently available: SLF_CATMULL_CLARK (Regular Catmull-Clark Subdivision) and 

WEIGHTED_FACEPOINT_SLF_CATMULL_CLARK (a modified version of Catmull-Clark weighting the edges of a 

face according to their length). The advantage of using Catmull-Clark subdivision compared to other 

types of subdivision, such as Loop subdivision [4], is that it can subdivide faces with any number of 

vertices. Loop subdivision only supports subdivision for triangle faces. The subdivision module also 

displays a slider that allows the user to change the current level of subdivision. The level parameter (a 

pure integer) represents the maximum number of subdivisions allowed for the current .NOM file. 

 

6.3 Offset 

In order to be 3D printed, the 2-manifold geometry needs to be thickened [7]. The thickening is achieved 

by adding two offset surfaces: one that is displaced outwards along the surface normal vector and another 

one the opposite orientation that is moved inwards. In addition, rim faces are generated along the borders 

of the original 2-manifold to connect the inner and outer offset surfaces into a water tight boundary 

representation. The offset code module displays a slider that allows to set the offset distance between zero 

and a maximum value in incremental steps specified by step in the offset module. 

 

6.4 STL Output 

When the design of some 3D shape has been completed, the user can export it as a .STL file. The .STL 

file is generated by iterating through the vertices and faces of the hierarchically flattened mesh generated 

during the merging, subdividing, and offsetting operations. The quadrilateral faces of this mesh are split 

into two triangles and are output in STL format.  
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6.5 Other Input and Output Options 

To connect the NOME design environment to other programs that generate or modify geometry, NOME 

can currently open and save files in SIF, STL, and OBJ format. A user may import any generated mesh 

from a separate CAD tool into NOME supporting these file formats.  

 

7. Implementation Details 

7.1 Frameworks Used 

NOME has been developed using Qt [15], a cross-platform application framework used to make software 

running on different operating systems with minimal changes, it uses OpenGL [13] to render the 3D 

graphics. We have chosen to use these two frameworks in order to maintain and develop the application 

on multiple operating systems. NOME currently can be run on all major operating systems (Windows, 

macOS, and Linux), the code simply needs to be compiled separately on each OS. 

 

7.2 Getting References to Constructs  

Whenever a hierarchical NOME construct is reference via another instance in the NOME file, NOME 

traverses the scene graph to find the pointer to that construct. NOME never stores the hierarchical name 

in the construct itself, because an object in a scene may have multiple paths through the object may be 

used via multiple instances. Whenever a name is referenced in a NOME file, the program first checks if 

the first character of the path is a dot, and if it is the case, then NOME will start the search from the 

root node. After checking for the presence of the initial dot, NOME separates the path in a list of tokens 

delimited by the dot character. The program then uses breath first search to iterate through each of the 

constructs in the tree until it sees the correct id at each level. In the past we have considered using a 

dictionary at the root level of the tree, that would map entire string path names to pointers to the object. 

Such a dictionary would prevent the user from having to iterate through each object in the tree and the 

lookup operation would be more efficient. However, if an instance or a face is deleted updating the table 

would be inefficient as we would have to iterate through each construct using that instance or face and 

update the path name in that table. 

Selection of vertices or faces in the graphical interface is implemented using an octree-based approach [6]. 

Clicking the cursor on a vertex will return its index. From that index, NOME then iterates through the 

constructs of the scene graph to return a pointer to that element. 
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7.3 Updating the Scene when Moving Sliders 

Each construct that requires a number contains a double value corresponding to the current value and a 

string that contains the mathematical expression extracted by the parser. Whenever a slider is changed 

the NOME file is reinterpreted. All {expr …} fields are evaluated first. The change of a slider may lead to 

inappropriate references in the scene if it is mapped to a parameter that deletes or adds vertices in the 

scene. It is recommended that the user only changes the value mapping to the number of vertices in a 

funnel, tunnel, or circle, when no vertices in these constructs have been connected to any additional 

meshes.  

 

7.4 Subdivision Techniques 

The subdivided mesh is stored as a separate subdivision mesh at first when the subdivision level is at 0, it 

simply duplicates the merged mesh. The default subdivision technique used is Catmull Clark subdivision 

[2] and can be called using the subdiv_type called SLF_CATMULL_CLARK. In Catmull Clark subdivision, for 

each level of subdivision, we iterate through all of the faces and create a new face point that is at the 

position that averages the position of all of the contour vertices. For each edge in the mesh, we then add 

an edge mid-point that averages the position of the two new neighboring face points and the two 

endpoints of the edge. Then for each face point we add an edge that connects the new face point to each 

edge midpoint of the face. Lastly, for each vertex in the mesh, we create a new vertex point, where the 

new position of the vertex is defined according to the following formula: H + 2I + (+ − 3)J+  

where J  is the original point, + is the number of face points touching J , I is the average of all edge 

midpoints, H  is the average of all face points. We then connect each new vertex point to its adjacent edge 

points and define new faces between the vertex points, edge points, and face points as in the figure below: 

 
Figure 8: Catmull-Clark subdivision. 
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If the subdivision slider is changed, then the program checks if the subdivision has already been 

calculated. If this is the case, it switches a pointer to the previously cached mesh. Each previous level of 

subdivision only takes 14 of space for quad faces as each quad face is separated into 4 faces. Storing 

previous levels of subdivision doesn’t require significant space compared to the current level of 

subdivision.  

. 

After doing some user testing, we noticed that the default Catmull-Clark subdivision technique is not 

ideal for every type of meshes. For example, in Figure 9 (a), we can see that subdividing a face with 

multiple vertices close to each other along an explicitly specified smooth border curve will not create a 

face point that is at the geometrical center of the face. The vertices va, vb, vc, vd, ve, and vf on the border 

curve are pulling the face point towards the top of the face. 

 
(a)                                  (b) 

Figure 9: Regular vs. Modified Catmull-Clark subdivision technique. 

 

For this situation, we have introduced a modified Catmull-Clark subdivision technique called 

WEIGHTED_FACEPOINT_SLF_CATMULL_CLARK. Here the weight of contour vertices around a face is given by 

the length of the edges attached to them. In Figure 9, the vertices vh, vg, va, and vf would therefore have a 

greater weight compared to the other vertices as they are connected to longer edges. The face point will 

therefore be shifted slightly downwards in the face and would produce a smoother surface in the 

subdivision process. 

 

7.5 Offset Techniques 

NOME calculates the normal vector at each vertex by scaling each of the face normal vectors by the angle 

made between the two edges of the face sharing that vertex. The advantage of this method is that when 

one of the quads sharing a vertex is split into two triangles, the direction of the vertex normal does not 

change (Figure 10), because the weights of the two triangle normal is scaled down appropriately. 
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Figure 10: Calculation of a vertex normal using with weighted face normals. 

 

Two vertices are then created at distances equal to ± half of the offset distance along the vertex normal 

vector ++L⃗⃗⃗ ⃗⃗ ⃗⃗⃗ . The vertices along the vector +L⃗⃗⃗ ⃗⃗ ⃗⃗⃗  are then connected together to create the outward offset 

faces, and the vertices along the vector − +L⃗⃗⃗ ⃗⃗ ⃗⃗⃗  are connected to create the inward offset surface.  

 

The offset calculation described above assumes that the faces in a mesh form a 2-sided 2-manifold and all 

have mutually consistent the same orientations. On single-sided surfaces such as Möbius strips or Klein 

Bottles more analysis is needed, because the normal vectors of some adjacent faces on the surface will be 

pointing in opposite directions. Such misaligned normal vectors have to be reversed. A “Möbius edge” 

results when the vertices of one of the faces are defined in a clockwise order while the vertices of the other 

face are in a counter-clockwise order. Therefore, before calculating the normal vector for each vertex, 

NOME iterates through each edge and flags all the Möbius edges. For each vertex normal calculation, 

NOME iterates through all of the adjacent faces and temporarily reverses the direction of the normal 

when that face is contained between two Möbius edges.  

 

In order to link the front and back offset faces into a watertight boundary surface, NOME needs to create 

faces along the borders of the offset surfaces. These rim faces are generated by adding faces along the 

vertices of the outward and inward offset faces. 

 

8. Modeling Sculptures Using NOME 

8.1 “Daniela” by Charles Perry 

Professor Séquin, several URAPs students, and I have used the NOME program to model some of Charles 

Perry’s sculptures in a parametrized procedural manner. Charles Perry was an American sculptor who 

created many 2-manifold sculptures that he called “topological sculptures”. Over his lifespan, he built 
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hundreds of mathematically inspired sculptures for public spaces in the United States. He is mostly known 

through sculptures like “Continuum”, a single sided ribbon sculpture in front of the Smithsonian 

Institution's National Air and Space Museum in Washington, or “Eclipse” in the Hyatt Regency Hotel in 

San Francisco. As an example of how NOME can be used to model such 2-manifold sculptures, we focused 

on a simple sculpture titled “Daniela” [5] made by Charles Perry and placed in Carter Residence in 

Westport, CT, USA (Figure 11). The first step was to gather images of “Daniela” (we found only two). 

“Daniela” can be modeled by first creating an assembly of two tunnels and 5 circles which are then 

connected by adding faces. 

 

     
Figure 11: “Daniela” by Charles O. Perry 

 

We started by defining two interlocked tunnels in a .NOM text file. The exact dimensions, position, and 

tilt-angles are controlled by variable parameters, which are adjusted in an interactive session to best 

reflect the geometry seen in the photos (Figure 12 (a)). In that first interactive session we also remove 

half of the faces in each tunnel. We then saved and edited the file again in order to add circles to form the 

outer rims of “Daniela” and portions of the inner border curves that extend the rims of the half-tunnels 

(Figure 12 (b)). The graphical interface is then used to form the faces of “Daniela” by clicking manually 

on the vertices that needs to be connected (Figure 12 (c)).  
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                         (a)                                         (b)                                        (c) 

Figure 12: Intermediate steps in constructing “Daniela” by Charles O. Perry in NOME 

 

The placement and radii of the various circles are also parametrized so that they can be lined up against 

each other as needed (Figure 13 (a)). Moreover, after subdividing and offsetting the surface, we can fine-

tune the resulting shape by making small changes to the circle parameters (Figure 13 (b)). “Daniela” is a 

single-sided 2-manifold and therefore some Möbius edges (where the front and back face colors come 

together) are unavoidable. By saving the file in an STL format the geometry can then be 3D printed 

(Figure 14).  

 

  
                                            (a)                                               (b) 

Figure 13: “Daniela” modeled in NOME (a) after subdividing and (b) after offsetting. 
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                                            (a)                                               (b) 

Figure 14: 3D Printed “Daniela” 

 

Conclusion 

We believe that the NOME program will help designers build precise mathematically inspired sculptures 

in a parametrized manner. The ability to edit the ASCII NOME file and then continue to modify the 

geometry via a GUI speeds up the workflow of designers and permits the user to build sculpture in a clear 

hierarchical manner. Precise 2-manifold sculptures can be designed through a NOME script and adjusted 

via the interface. Small 3D prints allow sculptors and designers to obtain better results since the physical 

3D models typically reveal geometric details that were not readily discernable on a 2D computer screen.  

 

Acknowledgement 

I would first want to say thank you to Professor Carlo H. Séquin for the time he has spent advising me 

during the 5th year M.S. program and for all of the discussions that we had in developing NOME. I would 

also like to say thank you to Professor Björn Hartmann for giving me valuable feedback on this report. I 

am also very grateful for the help that Toby Chen and Beren Oguz have provided in writing code for 

NOME. I would like to thank Professor Séquin’s URAP students for their feedback while using early 

versions of the NOME programming environment. 

 

References 

[1] Baumgart, Bruce G. Winged edge polyhedron representation. No. STAN-CS-320. STANFORD UNIV 

CA DEPT OF COMPUTER SCIENCE, 1972. 



 24 

[2] E. Catmull, J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. 

Computer-Aided Design, Vol. 10, Iss. 6, pp. 350-355, 1978. - 

https://www.sciencedirect.com/science/article/pii/0010448578901100 

[3] Levine, John. Flex & Bison: Text Processing Tools. “ O'Reilly Media, Inc.”, 2009. 

[4] Loop, Charles. “Smooth subdivision surfaces based on triangles.” (1987). 

[5] C. Perry. “Daniela”, 2011. - http://www.charlesperry.com/sculpture/daniela 

[6] Peters, Stefan. “Quadtree-and octree-based approach for point data selection in 2D or 3D.” Annals of 

GIS 19.1 (2013): 37-44. 

[7] X. Qu, B. Stucker. A 3D surface offset method for STL-format models. Rapid Prototyping Journal, 

Vol. 9, Iss. 3, pp. 133-141, 2003. - https://www.emeraldinsight.com/doi/abs/10.1108/13552540310477436 

[8] C. Séquin. Homage to Eva Hild. 2017. - 

https://people.eecs.berkeley.edu/~sequin/PAPERS/2017_Bridges_HILD.pdf 

[9] C. Séquin. Multiple 4-stub Dyck funnels linked into symmetrical clusters based on Platonic and 

Archimedean polyhedra. 2017. http://people.eecs.berkeley.edu/%7Esequin/MATH-MODELS/Dyck4-

Clusters/Dyck4-Clusters.pdf 

[10] J. Smith, SLIDE design environment, (2003). – http://www.cs.berkeley.edu/~ug/slide/ 

[11] J. P. Smith, S. A. McMains, C. H. Séquin SIF: A Solid Interchangeable Format for Web-based 

Prototyping 

[12] Y. Wang, Robust Geometry Kernel and UI for Handling Non-orientable 2-Mainfolds (EECS-2016-65). 

– https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-65.html 

[13] OpenGL, OpenGL Homepage. - https://www.opengl.org 

[14] Python Blender Documentation Contents, https://docs.blender.org/api/current/ 

[15] Qt, Qt Homepage. - https://www.qt.io/ 

[16] Type A machines. – https://www.typeamachines.com/ 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.3714&rep=rep1&type=pdf  



 25 

Appendix A: Input NOME file for the “Daniela” 
 

### Daniela.nom 
#    
#   Another Perry sculpture in a disk 
#   A fists modeling approach, starting with 2 half-tunnels ... 
#   ... add a secondary arc to allow for a more concave disk surface. 
#   ... fine-tune the saddles between the ends of the half-tunnels. 
#   More fine tuning after first 3D print.  Also try different orientations for printing. 
 
###  CHS 2018/4/20 
 
 
#### Some Surface colors ##### 
surface R color (1 0.1 0) endsurface     # Red 
surface O color (1 0.7 0) endsurface     # Orange 
surface Y color (1 1 0) endsurface       # Yellow 
surface br color (0.4 0.4 0) endsurface  # brown 
surface L color (0.5 0.8 0) endsurface   # Lime 
surface G color (0.1 1 0) endsurface     # Green 
surface A color (0 0.9 0.7) endsurface   # Aqua 
surface C color (0 1 1) endsurface       # Cyan 
surface U color (0 0.5 1) endsurface     # Uniform 
surface B color (0.1 0.1 1) endsurface   # Blue 
surface P color (0.6 0 1) endsurface     # Purple 
surface M color (0.9 0 1) endsurface     # Magenta 
surface Z color (1 0 0.5) endsurface     # Zinnober 
surface S color (0.8 0.8 0.8) endsurface # Snow(dirty) 
surface W color (1 1 1) endsurface       # White 
 
####  Display settings  ##### 
foreground    surface O  endforeground 
background    surface S  endbackground 
insidefaces   surface U  endinsidefaces   ## really "outside" 
outsidefaces  surface C  endoutsidefaces  ## really "inside" 
offsetfaces   surface M  endoffsetfaces 
 
 
#####  Some elementary reference geometry   ################# 
 
## Coordinate axes: 
point ooo  ( 0 0 0 ) endpoint 
point xoo  ( 0.3 0 0 ) endpoint 
point oyo  ( 0 0.3 0 ) endpoint 
point ooz  ( 0 0 0.3 ) endpoint 
 
polyline xaxis  (ooo xoo) endpolyline 
polyline yaxis  (ooo oyo) endpolyline 
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polyline zaxis  (ooo ooz) endpolyline 
 
instance xax  xaxis  surface R  endinstance 
instance yax  yaxis  surface U  endinstance 
instance zax  zaxis  surface G  endinstance 
 
 
 
 
########### Defining the two half-tunnels  ################# 
 
bank ft 
    set     tn       8       3      10       1 
    set     tro      1       0.1     2.0     0.1 
    set     ratio    0.4    -0.5     0.5     0.1 
    set     th       0.4     0.0     1.0     0.1 
 
    set     tsep     0.0    -1.0     1.0     0.1  ## displacement 
    set     ttilt    0      -30      30.0     1   ## angle between half-tunnels 
endbank 
 
tunnel tun ( {expr $ft.tn} {expr $ft.tro} {expr $ft.ratio} {expr $ft.th} ) endtunnel 
 
instance tunp  tun   surface Y   rotate (0 1 0)({expr  45+$ft.ttilt})  translate ( 0  
{expr  $ft.tsep}  0 )  endinstance 
instance tunn  tun   surface O   rotate (0 1 0)({expr -45-$ft.ttilt})  translate ( 0  
{expr -$ft.tsep}  0 )  endinstance 
 
##  Get rid of unwanted half-tunnels: 
delete                         
    face tunp.f1_4 endface 
    face tunp.f1_5 endface 
    face tunp.f1_6 endface 
    face tunp.f1_7 endface 
    face tunp.f2_7 endface 
    face tunp.f2_6 endface 
    face tunp.f2_5 endface 
    face tunp.f2_4 endface 
 
    face tunn.f1_0 endface 
    face tunn.f1_1 endface 
    face tunn.f1_2 endface 
    face tunn.f1_3 endface 
    face tunn.f2_3 endface 
    face tunn.f2_2 endface 
    face tunn.f2_1 endface 
    face tunn.f2_0 endface 
enddelete 
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###########  Defining the rim and two additional arch-curves  ########################### 
 
bank cb 
    set     ocn      12       3       24      1 
    set     ocrad     3       1        5.0    0.1  ## outer disk rim 
 
    set     icn       8       3       10      1 
    set     icrad     1.3     0.1     3.0     0.1  ## inner arc curve 
    set     icsep     0.7     0.1     3.0     0.1 
    set     atilt    20     -30      30.0     1 
 
    set     mcn       8       3       10      1 
    set     mcrad     1.4     0.1     3.0     0.1  ## mid arc curve 
    set     mcsep     0.8     0.1     3.0     0.1 
    set     mtilt    -5     -30      30.0     1 
endbank 
 
circle ocirc ( {expr $cb.ocn} {expr $cb.ocrad}  ) endcircle 
 
instance oc  ocirc   surface M    endinstance 
 
 
circle iarc  ( {expr $cb.icn} {expr $cb.icrad}  ) endcircle 
 
instance arp  iarc   surface G   rotate (0 1 0)({expr -45-$ft.ttilt-$cb.atilt})  
translate ( 0  {expr  $cb.icsep}  0 )  endinstance 
instance arn  iarc   surface B   rotate (0 1 0)({expr  45+$ft.ttilt+$cb.atilt})  
translate ( 0  {expr -$cb.icsep}  0 )  endinstance 
 
 
## >>>  An additional intermediate arc between the above one and the rim, 
##      so that the disc surface cab be nade concave to blend more naturally into the  
##      half-tunnels. 
 
circle marc  ( {expr $cb.mcn} {expr $cb.mcrad}  ) endcircle 
 
instance marp  marc   surface G   rotate (0 1 0)({expr -45-$ft.ttilt-$cb.mtilt})  
translate ( 0  {expr  $cb.mcsep}  0 )  endinstance 
instance marn  marc   surface B   rotate (0 1 0)({expr  45+$ft.ttilt+$cb.mtilt})  
translate ( 0  {expr -$cb.mcsep}  0 )  endinstance 
 
 
############  Starting to fill in the outer disk surface  ############################# 
 
face rf0 (marp.v2 marp.v1 oc.v2 oc.v3 ) endface 
face rf1 (marp.v1 marp.v0 oc.v1 oc.v2 ) endface 
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face mf0 (arp.v2 arp.v1  marp.v1 marp.v2 ) endface 
face mf1 (arp.v1 arp.v0  marp.v0 marp.v1 ) endface 
face ff0 (marp.v0  arp.v0  tunn.f1_7.v1_0  tunn.f1_7.v2_0 ) endface 
face ff1 (oc.v0  oc.v1  marp.v0  tunn.f1_7.v2_0  tunn.f2_7.v3_0 ) endface 
 
 
object rim (rf0 rf1  mf0 mf1  ff0 ff1  ) endobject 
 
 
instance ri0  rim  surface Y  endinstance 
instance ri1  rim  surface O  rotate (0 1 0)(180)  endinstance 
instance ri2  rim  surface Y  rotate (1 0 0)(180)  endinstance 
instance ri3  rim  surface O  rotate (0 1 0)(180)  rotate (1 0 0)(180)  endinstance 
 
 
##  >>>  The challenging puzzle is how to complete the surface ... 
##       ... particularly, making nice saddles between the ends of the half-tunnels. 
 
mesh mm 
face f1 (tunp.f1_0.v1_1  tunp.f1_0.v1_0   oc.v0    tunn.f2_7.v3_0  tunn.f2_6.v3_7 ) 
surface A  endface 
face f3 (tunn.f1_4.v1_5  tunn.f1_4.v1_4   oc.v6    tunp.f2_3.v3_4  tunp.f2_2.v3_3 )  
surface P  endface 
endmesh 
 
instance im mm endinstance    
 
 
 
################################################################################## 
 
subdivision subdiv  type SLF_CATMULL_CLARK   subdivisions 6   endsubdivision 
 
offset  fatty       type WEIGHTED           min 0.0  max 0.4  step 0.02  endoffset 
 
################################################################################## 


