
Interactive CAD Software for the Design of 2-manifold
Free-form Surfaces (NOME)

Gauthier Dieppedalle

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-48
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-48.html

May 10, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would first want to say thank you to Professor Carlo H. Séquin for the time
he has spent advising me during the 5th year M.S. program and for all of the
discussions that we had in developing NOME. I would also like to say thank
you to Professor Björn Hartmann for giving me valuable feedback on this
report. I am also very grateful for the help that Toby Chen and Beren Oguz
have provided in writing code for NOME. I would like to thank Professor
Séquin’s URAP students for their feedback while using early versions of the
NOME programming environment.

/

Interactive CAD Software for the Design of 2-manifold Free-form Surfaces
(NoME)

by Gauthier Dieppedalle

Research Project

Submitted to the Department of Electrical Engineering and Computer Sclences,

University of California at Berke1e1,. in partial satisfaction of the requirements for the
<legree of Master of Science, PIan tr.

Approval for the Report and Comprehensive Examination:

Committee:

05 02'2018

*xr< ****

Professor Carlo H. S6qui

Professor Bjorn Hartmann
Second Reader

)ttl02t20t8

 1

Interactive CAD Software for the Design of 2-manifold
Free-form Surfaces (NOME)

Gauthier Dieppedalle

EECS Computer Sciences, University of California, Berkeley
E-mail: gdieppedalle@berkeley.edu

In order to build 2-manifold free-form surfaces of potentially high complexity but with much inherent

regularity, we have developed a CAD (Computer-Aided Design) tool called NOME (Non-Orientable

Manifold Editor). This tool makes it easier and more precise to build 2-manifold sculptures procedurally

through a text editor and interactively through a GUI (Graphical User Interface). We have tested the

software by reproducing sculptures by Eva Hild and by Charles O. Perry, which can then be 3D printed.

1. Introduction

Over the past twenty years, Professor Carlo Séquin and his students have been using Berkeley SLIDE

(Scene Language for Interactive Dynamic Environments) to create abstract geometrical sculptures [10].

The SLIDE software offers numerous powerful constructs such as sweep generators, several different

subdivision techniques, and rendering options. However, SLIDE has some shortcomings. It cannot

subdivide and create offsets over non-orientable two-manifolds such as Möbius bands and Klein Bottles.

The SLIDE code has also been poorly maintained over the years, as dozens of students have contributed

to it without taking into consideration organization and scalability. We have observed that creating

smooth, free-form two-manifold, particularly, if they are single sided, is still extremely difficult and

tedious with the CAD tools currently on the market. Professor Séquin and Andy Wang, a previous 5th

year Masters student at Berkeley, had started the construction of new software that would strike a good

balance between procedural shape generation and interactive graphical editing capabilities [12]. Pushing

forward in the same direction, the current software is called NOME (Non-Orientable Manifold Editor).

2. NOME Compared to Existing CAD Tools on the Market

We have started the NOME project to create an alternative to existing CAD tools, such as Maya and

Blender, which rely too much on a point-and-click Graphical User Interface. This makes it difficult to

construct precise geometrical free-form shapes with much inherent regularity. Forcing the designers to

generate meshes entirely by clicking and dragging on the screen using the 3D GUI, often produces

imprecise sculptures due to the inaccurate nature of physically selecting and moving vertices mapped from

 2

the 2D plane of the screen to a 3D space. In the past several years, Blender has added the support to

modify models programmatically, using Python to automate actions from the Blender GUI to speed up

the workflow [14]. The scripting add-on to Blender is very powerful to create a first original design or to

animate objects in 3D space. However, in Blender, it is not possible to read in a mesh via a script then

edit via the graphical interface, and then save the result again as a script. Therefore, Python must be seen

as a separate program from Blender that allows users to script their workflow. But it is not a descriptive

language that can be used to define a hierarchical scene programmatically. The hierarchy in Blender files

(.blend) cannot be accessed directly via a text editor, since the file is in byte format and thus not human

readable.

When developing NOME, we have focused on building a shape description language that allows designers

to start their designs via code, then fine-tune it and enhance it via a graphical interface, and subsequently

capture these edits in a piece of code that can readily be integrated with the original description. In this

form, the design process alternates between procedural definitions and graphical edits. So far, NOME has

primarily been used to help artists generate precise mathematically defined sculpture that can then be 3D

printed [16]. The NOME GUI running on Windows can be seen in Figure 1 [9]. The displayed sample file

shows twelve 4-stub Dyck funnels linked into a symmetrical cluster with the symmetry of the oriented

cube (created by Carlo Séquin).

Figure 1: Graphical User Interface of NOME running on Windows.

 3

3. Formal Language Definition

NOME follows the general scheme of a graphical scene description. It is a single assignment language

requiring unique identifiers in each of its hierarchical contexts. Points, edges, and faces can be assembled

into meshes, and these, in turn, can be assembled into groups that form a hierarchy. The following

constructs are available in NOME:

Point: point id (point_triple) endpoint

Polyline: polyline id (point_idlist) [closed] endpolyline

Face: face id (point_idlist) [surface surface_id] endface

Object: object id (face_or_polyline_idlist) endobject
Mesh: mesh id

 face faceId1 (point_idlist1) [surface surface_id1] endface

 ...

 face faceIdN (point_idlistN) [surface surface_idN] endface

endmesh

Group: group id

 instance id1 object_id1 [surface surface_id] endinstance

 ...

 instance idN object_idN [surface surface_id] endinstance

endgroup

Circle: circle id (n ro) endcircle

Funnel: funnel id (n ro ratio h) endfunnel

Tunnel: tunnel id (n ro ratio h) endtunnel

Bézier Curve: beziercurve id (point_idlist) slices numSlices endbeziercurve

B-Spline: bspline{order} id (point_idlist) [closed] slices numSlices endbspline{order}

Instance: instance id mesh_id [transformations] endinstance

Surface: surface id (color_triple) endsurface

Background: background surface surface_id endbackground

Foreground: foreground surface surface_id endforeground

Front Faces: frontfaces surface surface_id endfrontfaces

Back Faces: backfaces surface surface_id endbackfaces

Rim Faces: rimfaces surface surface_id endrimfaces

 4

Bank: bank bankID

 set setID1 value1 start1 end1 stepSize1

 ...

 set setIDN valueN startN endN stepSizeN

endbank

Delete: delete

 face faceId1 endface

 ...

 face faceIdN endface

enddelete

Subdivision: subdivision id

 type subdiv_type

 max subdivision level

endsubdivision

Offset: offset name

 type typeOffset

 instance instanceName

 max maxValue step stepValue

endoffset

Within a mesh, variable names must be unique. Sets within a bank and instances within a group must

also have unique names. Most designers will spend a considerable amount of time modifying a .NOM file.

It is convenient to be able to quickly disable some small or large portions of the code: # turns remainder

of a line into a comment, (* and *) bracket a larger section of code spanning multiple lines.

3.1 Workflow of NOME

A NOME input file is analyzed in three phases: a lexer, which reads the program and creates the

structure of the input file, a parser that structures these tokens, and lastly an evaluator that interprets

the meaning of the program. Flex is used to create the lexer, and Bison is used for the compiler (these are

newer versions of the tools called Lex and Yacc that were developed originally for UNIX) [3]. The

workflow of NOME is shown in Figure 2. The user first opens a .NOM file. A .NOM file contains a

hierarchical NOME description. Once the file has been opened, the lexer tokenizes the file into a set of

 5

recognized tokens. Since NOME is a single-assignment language, the parser keeps track of variables that

have been defined in the file, and duplicate names within the same context would trigger an error. These

tokens are parsed using regular expressions. The parser organizes these tokens into sets that build up the

scene graph. The evaluator takes these sets and constructs the meshes that define the geometry of the

scene. These meshes can be modified and enhanced interactively through the graphical user interface.

Finally, the user can subdivide and offset the mesh and generate a .STL file than can be sent to a 3D

printer.

Figure 2: General Workflow of NOME.

3.2 Formal Naming for Variables and Reserved Names

Variable names must begin with an uppercase or lowercase letter of the alphabet, or with an underscore.

After the first character, the variable name can contain either letters or numbers. The NOME language

differentiates between lower case and uppercase characters. Reserved keywords cannot be used as

variables names, such as expr, bspline, endbspline, closed, slices, beziercurve, endbeziercurve,

offset, endoffset, min, max, step, surface, endsurface, point, color, endpoint, bank, endbank, set,

face, endface, object, endobject, mesh, endmesh, tunnel, endtunnel, funnel, endfunnel, polyline,

endpolyline, circle, endcircle, instance, endinstance, scale, translate, rotate, reverse,

foreground, endforeground, background, endbackground, insidefaces, endinsidefaces,

outsidefaces, endoutsidefaces, offsetfaces, endoffsetfaces, delete, enddelete, group, endgroup,

subdivision, endsubdivision, subdivisions, type, {, }, (, and). Throughout the compiler pipeline,

we have added multiple checks to ensure that the naming of variables is consistent throughout the file.

3.3 Geometrical Elements and Data Structures

We have defined three basic constructs generators in NOME: point, face, and polyline. All of them are

stored using the two-winged edge data structure [1]. Each construct in NOME must have a name as a

 6

string and a generated index is automatically created in order to be able to efficiently compare if two

construct references the same object.

Point: A point statement is used to define a vertex in 3D space, which can then be referenced by its id.

The point_triple defines the 3D position of the point via its x, y, and z coordinates. The individual

values in such a list must be separated by white spaces, which can be spaces, tabs, new lines, or return

characters.

Polyline: A polyline statement generates a 3D chain of piecewise linear segments. The point_idlist is a

list of points. The list of point ids must be of length at least 2 (which would create a single edge) and they

must be separated by whitespace.

Face: A face statement defines a contour which may be non-planar and non-convex, that is panned by a

“membrane” composed of triangles. The front side or outside of the face is defined as the direction from

which it is seen in a counterclockwise manner when seen from the “outside”, i.e. the direction against the

face normal. The point_idlist is a list of points ids. Optionally, the surface_id allows to assign

predefined surface properties to this face.

3.4 Hierarchical Constructs

We have created three hierarchical constructs in NOME to group the basic constructs together: object,

mesh, and group.

object: An object statement is used to define a collection of faces and polylines, which can then be

referenced by its id. These elements need not be connected. The face_or_polylineidlist is a list of face

or polyline names.

mesh: A mesh statement also creates a collection of faces. Faces in a mesh can then be referred in the rest

of the program via a hierarchical name: id.faceId, where id is the id of the mesh and faceId is the id of

the face in the mesh.

group: A group is a collection of instances of primitive objects or other groups. Groups are the most

general construct to introduce hierarchy into the shape description. All constructs so far have been

procedural definitions. No geometry is added into the scene until an instance of one of these definitions is

called.

 7

3.5 Geometry Generators

The NOME language also supports various geometry generators that makes modeling geometrical

sculptures simpler. Currently implemented are circle, tunnel, funnel, bspline, and beziercurve. A

generated tunnel, funnel, and circle are shown in Figure 3. Future work could add spheres and tori.

 (a) (b) (c)

Figure 3: Examples of generated in geometry: (a) circle (b) funnel, and (c) tunnel.

circle: A circle statement generates a set of edges and vertices forming a regular n-gon with a given a

radius and with n sides.

funnel: This statement generates a mesh in the shape of a truncated pyramid. n represents the number of

vertices along the rim of the funnel. ro represents the radius of that rim. ratio represents the size of the

secondary rim compared to the original rim. h is the height of the funnel from the first rim to the second

rim.

tunnel: This statement generates a “cylindrical” surface that can be modeled by the inner part of a torus.

It is defined by 3 circles. n represents the number of vertices along each circle. ro represents the radius of

the central circle. ratio represents the size of the two outer rims compared to the central circle. h is the

height of the tunnel from the middle circle to the outside rims.

beziercurve: This defines a Bézier curve that interpolates the two end points and approximates the rest of

the points from a list of control points. The point_idlist defines a list of control points. The numSlices

parameter defines the number of slices by which the Bezier curve is sampled.

NOME builds the Bezier curves based on the De Casteljau’s algorithm. According to the algorithm, a

Bezier curve with n+1 control points (c0, c1, …, cn) can be evaluated at a point using the following

function:

 8

!(") = ∑ $%&%,((")(
%= 0

where " ∈ [0,+ + ({,-./-} − 1)] and b is the Bernstein basis polynomial defined as: &%,((") = (+2) (1 − ")(− %"%
Since NOME only supports uniform Bezier curves, if we have numSlices segments for a given Bezier

curve then we need to create a for loop that calls B(t) with t incrementing by 1(5678%9:; at each step.

B-spline: The statement bspline{order} defines a B-spline of degree {order}-1 that approximates a list

of sequence of n+1 points. The point_idlist defines a list of control points. The closed parameter

defines whether the curve is closed. This automatically repeat the first {order}-1 control points at the end

of the sequence. NOME uses the De Boor’s algorithm to compute the points on the b-spline curve. Given

a degree {order}-1 with n+1 control points (c0, c1, …, cn) the points of the b-spline can be obtained using

the following equation: !(") = ∑ $%!%,((")(
%= 0

where " ∈ [0, 1] and !%,((") is defined as the basis defined as following for + = 0: !%,0(") = {1, "% ≤ " < "%+ 10, ,"ℎ/-?2@/ For + ≠ 0: !%,B(") = " − "%"%+ B− 1 − 1 !%,B− 1(") + "%+ B − ""%+ B− 1 − 1 !%+ 1,B− 1(")

3.6 Instances

All constructs so far have been procedural definitions. No geometry is added into the scene until an

instance of one of these definitions is called.

instance: instance id mesh_id [transformations] endinstance

An instance creates an instance of geometry. Each instance that is created outside of a group at the top

level of the hierarchical description, is rendered in the scene. The mesh_id is the name of the primitive

object or group that will be instantiated. The user can optionally translate, rotate, and/or mirror that

instance. Multiple transformations can be used together in any arbitrary order. Color transformations can

also be specified by giving a surface_id.

 9

Rotations are specified by: rotate (axis_triple) (angle_float). The axis_triple defines the

arbitrary axis of rotation u=(ux, uy, uz) through the origin. The angle_float representing the arbitrary

angle of rotation is given in degrees.

Non-uniform scaling can be obtained with: scale (scale_triple). scale_triple is the scale vector

s=(sx, sy, sz) representing by how much each of the three coordinates must be scaled. The operation

performed to scale a point p=(px, py, pz) is (px · sx, py · sy, pz · sz).

Translations are applied by using: translate (translate_triple). The translate_triple specifies

the three components of a translation vector t=(tx, ty, tz). This operation transforms all points p=(px, py,

pz) as (px + tx, py + ty, pz + tz).

To reverse the order of the vertices in a face the user can use the reverse transformation. The normal

vector calculated for the face will then point in the opposite direction.

For debugging purposes and to understand the geometry rendered in the scene, the user can set colors to

every element in the scene. Color transformations are defined by: surface surface_id. The surface_id

is the name of the surface to be applied on the instance. The surface construct defines a color as following:

surface id (color_triple) endsurface

The color_triple defines the RGB color of the surface. The values of each of the three parameters must

lie between 0 and 1.

A user may apply multiple colors to the same object in the scene and in that case the closest to the leaves

of the tree color applied on the object will take precedence. Therefore, if an instance references to a vertex

from another instance the color of the other instance will color the vertex. From a hierarchical standpoint,

the color that is in the lowest node in the hierarchical tree representing the NOME file will color the

object in the scene.

Multiple transformations are composed left to right in world coordinates.

3.7 Display Colors

The background of the window containing the geometry is set by default to black but can be changed by

using the following statement:

background surface surface_id endbackground

Geometry that does not get assigned an explicit color in the .NOM file will be rendered with some default

display colors which can be set as follows:

foreground surface surface_id endforeground

 10

Once an offset has been applied on a geometry, the color of the front, back, and rim faces can be changed

using the following statements:

backfaces surface surface_id endbackfaces

frontfaces surface surface_id endfrontfaces

rimfaces surface surface_id endrimfaces

These colors can also be set from the control panel in the GUI. Once the mesh has been merged and an

offset is applied, the inside, outside, and offset faces corresponds to the colors of the faces.

4. Hierarchy stored as a Graph

4.1 Nodes of the Directed Scene Graph

The NOME hierarchy corresponds to a directed scene graph in order to be able to instantiate useful

constructs multiple times without having to copy the entire data into a new node. When an instance

references a vertex in the scene, that vertex keeps a pointer to the original, to ensure that any

modification is propagated across the hierarchy in case a parameter relating to that vertex is changed.

The root node of the tree is always a Session object, representing the file that has been opened and

parsed. This root node contains pointers to the different constructs and to the parameters available in the

scene. In Figure 7, RENDER WORLD is the root node. A Session also contains a list of instances that are

at the top level of the scene. An instance can reference either a mesh or a group. It contains a pointer to

the original mesh or group but also makes a copy of all of the vertices, edges, and faces in order to ensure

that if two instances reference the same mesh, they will be independent from each other. They still

maintain a reference to the original mesh or group, in case the software needs to reference to the original

definition. Similarly, a group also keeps a pointer to its list of instances. These instances may then

reference either meshes or objects. Meshes or objects can contain faces, vertices, or edges. Polylines,

funnels, and tunnels are stored as meshes.

Every element (point, face, mesh, group…) has a unique hierarchical name so that it can be referenced

unambiguously. Any construct can then be reused to create the scene graph.

 11

Figure 4: Hierarchical graph of the geometrical constructs of a NOME file.

4.2 Referencing to Vertices, Edges, and Faces

If a user needs to reference a node in the tree from another node, he/she needs to provide the entire path

to that node either from the root of the tree or from the current node. Thus, the hierarchical name of a

node is a sequence of node ids separated by dots “.” following the path through the scene graph. For

example, in Figure 4, if the face from Mesh C references to a vertex in inst o3, the path must be

.g5.g3.o3.v3. The initial dot is needed, since the path starts at the root. If inst g9 wants to reference to a

vertex from mesh B, then the user can use mE.B.v3 without using the initial . character, since the path

starts at the current node of the tree and not at the root.

4.3 Numerical Parameters and Sliders

After having defined the proper topology of a scene via the scene graph, a designer after would like to

fine-tune the geometry by changing some parameters interactively while observing the results on the

graphical display (example: make a ribbon wider, or a tunnel larger). NOME provides sliders that allows

the user to change any numerical value in the NOME file through a slider in the GUI. Multiple sliders can

be combined in a bank:

bank bankID

 set setID1 value1 start1 end1 stepSize1

 12

 ...

 set setIDN valueN startN endN stepSizeN

endbank

Each setID must be a string representing the name of the variable to be changed. value represents the

initial value of the slider. start represents the minimum value of the slider. end represents the maximum

value of the slider. stepSize represents the size of the incremental steps. Each slider contains a pointer to

a double value. In order for an object to reference a value from a slider, the user uses the following syntax

{expr $bankID.setID}. The user can then use this value to change the z-value of a point:

point p1 (0 0 {expr $lefttunP.n}) endpoint

That point will maintain a pointer to the double value in the set.

A bank is displayed in a window containing slider for every set. A user may use a set or a bank anywhere

where a number is required. In order to add more flexibility every field requiring a numerical value can

take {expr…} expression, which may contain complex mathematical expressions. These expressions are

parsed using a lexer and parser developed in Flex and Bison. For example, the user may map two sliders

to the position of an object such as in the following point definition:

point p1 (0 0 {expr sqrt($lefttunP.n * cos($lefttunP.r + 5 * sin(0)))}) endpoint

In order to parse these expressions, we have created a separate parser in Lex and Yacc that returns the

calculated values. In our lexer, a bank/set combination must have the following regular expression syntax

\$[a-zA-Z][a-zA-Z0-9]*.[a-zA-Z][a-zA-Z0-9]*, in which a bank or a set must start with any

lowercase or uppercase letter and then may contain numbers in the name. The following mathematical

operations are currently supported in NOME: sqrt, cos, sin, tan, sec, cot, csc, arccos, arcsin, arctan,

arcsec, arccot, arccsc, log, e, ln, +, -, *, /, ^, (,). They may include integers or floating-point numbers

5. Graphical Editing

When opening a file in NOME, the user can visualize it and edit it via the graphical interface. These

changes can then later be saved back into the original NOME file in a convenient hierarchical manner.

5.1 Editing via the User Interface

After having read in the initial geometry described in the NOME file and displayed on the screen, the

user can edit and fine tune the geometry while visually observing the results. First, sliders can be adjusted

to obtain overall best dimensions and proportions. In addition, topological changes can be made. The user

 13

may delete faces or add new ones. By clicking on vertices in the display, a user may select a sequence of

points, which can then be turned into a polyline or into a face contour.

5.2 Selecting Borders and Zippering

Often an extrusion or bridge between lengthy contours needs to be constructed. To make adding faces in

a well-structured manner less tedious and more efficient, a high-level “zippering” command has been

implemented. It is possible to zipper together two closed or open borders. The user first needs to click on

the “Select border” radio button, then needs to select the border by selecting one of the vertices on that

border. The code works by iterating through all of the edges connected to that vertex and recursively

returns a list of all the paths that connects back to the initial vertex. When all of the closed borders have

been returned, NOME returns the path that has the lowest number of vertices, i.e. the shortest path. By

clicking on the “Add one border” button, the user saves that border for zippering. After the user has

selected a second border, he/she can then zipper them together using the “Zip two borders” button. The

program first iterates through all pairs of vertices between the two borders and finds the closest vertex to

each one by simply using the equation to get the distance between two points: √(D2 − D1)2 + (F2 − F1)2 + (G2 − G1)2. NOME creates a dictionary containing a vertex as a key and the

closest vertex from the other border as a value. The program simply iterates through all of the vertices,

creating edges between the vertex itself and the closest vertex by looking through all of the keys in the

hash table. Then the code iterates through the edges just created for each vertex and creates a face

between the current vertex the next vertex and the edge connecting them to the closest vertex from the

other border. The zippering of borders is done by adding triangles or quads between the faces. Figure 5

shows 3 examples of zippering borders.

Figure 5: Three example cases of zippering of borders in NOME

5.3 Saving the Changes

Once the user has finished editing the file in the interface, he/she can save the changes back to the

NOME file. Saving in the .NOM format will update the current value of each slider and append the

 14

meshes added to the saved file. For example, a user may have defined two instances of a tunnel and

created faces between them through the graphical interface. If the user wants to make further edits to the

base geometry, such as creating multiple symmetrically placed copies of the faces just generated, that user

needs to save the edits and make changes to the .NOM file. A user may also delete faces via the interface

by selecting the face and clicking on the delete face button. Deleting a face only deletes the face itself

without removing any of the edges or vertices. When saving the edited geometry, NOME also appends a

list of deleted faces to the .NOM file.

6. Exporting the File to Be 3D Printed

Once a file has been opened in NOME and edited via the user interface, the user can then merge,

subdivide, and add an offset to 3D print the geometry created.

6.1 Merging

The merging step is required before subdividing and offsetting a mesh and allows different instances to be

connected with each other. Elements within an individual mesh are connected to each other, however

constructs between two different instances will not share their vertices and edges. A merging step is

therefore required in order to ensure that during subdivision the mesh is treated as a single mesh and

individual mesh parts will not pull apart. During the merging procedure, only border edges are joined so

that no non-manifold edges are being generated. Merging between border edges are done within the lowest

subtree first. In other words, when multiple border edges can potentially be merged, NOME will take a

hierarchical approach in which edges lowest in the scene graph will be merged together first.

Once the merged button has been clicked, NOME creates a new merged mesh that will contain the mesh

generated from the merging operation. Merging is implemented by checking whether the vertices of two

border edges are within an ! value of each other. If this is true then the two edges are merged by

following the rules illustrated in Figure 6. In NOME that ! value is set to 0.2 (assuming designs have a

diameter or about 1 to 10).

 15

Figure 6: Merging an edge in a mesh.

When merging a pair of coinciding edges, we need to delete one edge and two vertices (Figure 6). In

Figure 6, we need to remove the edge efj and vertices vf and vj. The edges connected to vf one connected

to vc. The faces adjacent to vf become adjacent to vc. Similarly, edges connected to vj are connected to vd.

The faces adjacent to vj now comprise vd. Every reference to vf and vj is replaced by references to vc and

vd.

Once a merged mesh has been created, it is not possible to make edits in the merged view that get

transferred back to the regular hierarchical description. Mergers may change the topology and hierarchy

dramatically and the new description may no longer be meaningful to the designer. This decision also has

consequences for any slider action on a merged mesh. Sliders can still affect the geometry of a mesh.

However, when a slider translates one of the meshes that contains one of the edges that have been

merged, that merger is no longer possible within the given tolerances (Figure 7).

 (a) (b)

Figure 7: Two merged funnels (a) before and after (b) merging.

 16

If a connection between two meshes must be maintained when one of the edges is moved, then the

designer should explicitly insert one or more (“rubber”) faces between the two meshes. Every time a slider

is changed, NOME goes back to the hierarchical mesh and creates new mergers between every pair of

border edges that coincide within !.

6.2 Subdivision

After a merging process, the geometry should consist of one or more 2-manifolds plus some polylines. The

2-manifolds can then be subdivided in order to create smooth surfaces. The subdivision code module

provides the needed parameters. The subdiv_type represents the type of subdivision used. Two types are

currently available: SLF_CATMULL_CLARK (Regular Catmull-Clark Subdivision) and

WEIGHTED_FACEPOINT_SLF_CATMULL_CLARK (a modified version of Catmull-Clark weighting the edges of a

face according to their length). The advantage of using Catmull-Clark subdivision compared to other

types of subdivision, such as Loop subdivision [4], is that it can subdivide faces with any number of

vertices. Loop subdivision only supports subdivision for triangle faces. The subdivision module also

displays a slider that allows the user to change the current level of subdivision. The level parameter (a

pure integer) represents the maximum number of subdivisions allowed for the current .NOM file.

6.3 Offset

In order to be 3D printed, the 2-manifold geometry needs to be thickened [7]. The thickening is achieved

by adding two offset surfaces: one that is displaced outwards along the surface normal vector and another

one the opposite orientation that is moved inwards. In addition, rim faces are generated along the borders

of the original 2-manifold to connect the inner and outer offset surfaces into a water tight boundary

representation. The offset code module displays a slider that allows to set the offset distance between zero

and a maximum value in incremental steps specified by step in the offset module.

6.4 STL Output

When the design of some 3D shape has been completed, the user can export it as a .STL file. The .STL

file is generated by iterating through the vertices and faces of the hierarchically flattened mesh generated

during the merging, subdividing, and offsetting operations. The quadrilateral faces of this mesh are split

into two triangles and are output in STL format.

 17

6.5 Other Input and Output Options

To connect the NOME design environment to other programs that generate or modify geometry, NOME

can currently open and save files in SIF, STL, and OBJ format. A user may import any generated mesh

from a separate CAD tool into NOME supporting these file formats.

7. Implementation Details

7.1 Frameworks Used

NOME has been developed using Qt [15], a cross-platform application framework used to make software

running on different operating systems with minimal changes, it uses OpenGL [13] to render the 3D

graphics. We have chosen to use these two frameworks in order to maintain and develop the application

on multiple operating systems. NOME currently can be run on all major operating systems (Windows,

macOS, and Linux), the code simply needs to be compiled separately on each OS.

7.2 Getting References to Constructs

Whenever a hierarchical NOME construct is reference via another instance in the NOME file, NOME

traverses the scene graph to find the pointer to that construct. NOME never stores the hierarchical name

in the construct itself, because an object in a scene may have multiple paths through the object may be

used via multiple instances. Whenever a name is referenced in a NOME file, the program first checks if

the first character of the path is a dot, and if it is the case, then NOME will start the search from the

root node. After checking for the presence of the initial dot, NOME separates the path in a list of tokens

delimited by the dot character. The program then uses breath first search to iterate through each of the

constructs in the tree until it sees the correct id at each level. In the past we have considered using a

dictionary at the root level of the tree, that would map entire string path names to pointers to the object.

Such a dictionary would prevent the user from having to iterate through each object in the tree and the

lookup operation would be more efficient. However, if an instance or a face is deleted updating the table

would be inefficient as we would have to iterate through each construct using that instance or face and

update the path name in that table.

Selection of vertices or faces in the graphical interface is implemented using an octree-based approach [6].

Clicking the cursor on a vertex will return its index. From that index, NOME then iterates through the

constructs of the scene graph to return a pointer to that element.

 18

7.3 Updating the Scene when Moving Sliders

Each construct that requires a number contains a double value corresponding to the current value and a

string that contains the mathematical expression extracted by the parser. Whenever a slider is changed

the NOME file is reinterpreted. All {expr …} fields are evaluated first. The change of a slider may lead to

inappropriate references in the scene if it is mapped to a parameter that deletes or adds vertices in the

scene. It is recommended that the user only changes the value mapping to the number of vertices in a

funnel, tunnel, or circle, when no vertices in these constructs have been connected to any additional

meshes.

7.4 Subdivision Techniques

The subdivided mesh is stored as a separate subdivision mesh at first when the subdivision level is at 0, it

simply duplicates the merged mesh. The default subdivision technique used is Catmull Clark subdivision

[2] and can be called using the subdiv_type called SLF_CATMULL_CLARK. In Catmull Clark subdivision, for

each level of subdivision, we iterate through all of the faces and create a new face point that is at the

position that averages the position of all of the contour vertices. For each edge in the mesh, we then add

an edge mid-point that averages the position of the two new neighboring face points and the two

endpoints of the edge. Then for each face point we add an edge that connects the new face point to each

edge midpoint of the face. Lastly, for each vertex in the mesh, we create a new vertex point, where the

new position of the vertex is defined according to the following formula: H + 2I + (+ − 3)J+

where J is the original point, + is the number of face points touching J , I is the average of all edge

midpoints, H is the average of all face points. We then connect each new vertex point to its adjacent edge

points and define new faces between the vertex points, edge points, and face points as in the figure below:

Figure 8: Catmull-Clark subdivision.

 19

If the subdivision slider is changed, then the program checks if the subdivision has already been

calculated. If this is the case, it switches a pointer to the previously cached mesh. Each previous level of

subdivision only takes 14 of space for quad faces as each quad face is separated into 4 faces. Storing

previous levels of subdivision doesn’t require significant space compared to the current level of

subdivision.

.

After doing some user testing, we noticed that the default Catmull-Clark subdivision technique is not

ideal for every type of meshes. For example, in Figure 9 (a), we can see that subdividing a face with

multiple vertices close to each other along an explicitly specified smooth border curve will not create a

face point that is at the geometrical center of the face. The vertices va, vb, vc, vd, ve, and vf on the border

curve are pulling the face point towards the top of the face.

(a) (b)

Figure 9: Regular vs. Modified Catmull-Clark subdivision technique.

For this situation, we have introduced a modified Catmull-Clark subdivision technique called

WEIGHTED_FACEPOINT_SLF_CATMULL_CLARK. Here the weight of contour vertices around a face is given by

the length of the edges attached to them. In Figure 9, the vertices vh, vg, va, and vf would therefore have a

greater weight compared to the other vertices as they are connected to longer edges. The face point will

therefore be shifted slightly downwards in the face and would produce a smoother surface in the

subdivision process.

7.5 Offset Techniques

NOME calculates the normal vector at each vertex by scaling each of the face normal vectors by the angle

made between the two edges of the face sharing that vertex. The advantage of this method is that when

one of the quads sharing a vertex is split into two triangles, the direction of the vertex normal does not

change (Figure 10), because the weights of the two triangle normal is scaled down appropriately.

 20

Figure 10: Calculation of a vertex normal using with weighted face normals.

Two vertices are then created at distances equal to ± half of the offset distance along the vertex normal

vector ++L⃗⃗⃗ ⃗⃗ ⃗⃗⃗ . The vertices along the vector +L⃗⃗⃗ ⃗⃗ ⃗⃗⃗ are then connected together to create the outward offset

faces, and the vertices along the vector − +L⃗⃗⃗ ⃗⃗ ⃗⃗⃗ are connected to create the inward offset surface.

The offset calculation described above assumes that the faces in a mesh form a 2-sided 2-manifold and all

have mutually consistent the same orientations. On single-sided surfaces such as Möbius strips or Klein

Bottles more analysis is needed, because the normal vectors of some adjacent faces on the surface will be

pointing in opposite directions. Such misaligned normal vectors have to be reversed. A “Möbius edge”

results when the vertices of one of the faces are defined in a clockwise order while the vertices of the other

face are in a counter-clockwise order. Therefore, before calculating the normal vector for each vertex,

NOME iterates through each edge and flags all the Möbius edges. For each vertex normal calculation,

NOME iterates through all of the adjacent faces and temporarily reverses the direction of the normal

when that face is contained between two Möbius edges.

In order to link the front and back offset faces into a watertight boundary surface, NOME needs to create

faces along the borders of the offset surfaces. These rim faces are generated by adding faces along the

vertices of the outward and inward offset faces.

8. Modeling Sculptures Using NOME

8.1 “Daniela” by Charles Perry

Professor Séquin, several URAPs students, and I have used the NOME program to model some of Charles

Perry’s sculptures in a parametrized procedural manner. Charles Perry was an American sculptor who

created many 2-manifold sculptures that he called “topological sculptures”. Over his lifespan, he built

 21

hundreds of mathematically inspired sculptures for public spaces in the United States. He is mostly known

through sculptures like “Continuum”, a single sided ribbon sculpture in front of the Smithsonian

Institution's National Air and Space Museum in Washington, or “Eclipse” in the Hyatt Regency Hotel in

San Francisco. As an example of how NOME can be used to model such 2-manifold sculptures, we focused

on a simple sculpture titled “Daniela” [5] made by Charles Perry and placed in Carter Residence in

Westport, CT, USA (Figure 11). The first step was to gather images of “Daniela” (we found only two).

“Daniela” can be modeled by first creating an assembly of two tunnels and 5 circles which are then

connected by adding faces.

Figure 11: “Daniela” by Charles O. Perry

We started by defining two interlocked tunnels in a .NOM text file. The exact dimensions, position, and

tilt-angles are controlled by variable parameters, which are adjusted in an interactive session to best

reflect the geometry seen in the photos (Figure 12 (a)). In that first interactive session we also remove

half of the faces in each tunnel. We then saved and edited the file again in order to add circles to form the

outer rims of “Daniela” and portions of the inner border curves that extend the rims of the half-tunnels

(Figure 12 (b)). The graphical interface is then used to form the faces of “Daniela” by clicking manually

on the vertices that needs to be connected (Figure 12 (c)).

 22

 (a) (b) (c)

Figure 12: Intermediate steps in constructing “Daniela” by Charles O. Perry in NOME

The placement and radii of the various circles are also parametrized so that they can be lined up against

each other as needed (Figure 13 (a)). Moreover, after subdividing and offsetting the surface, we can fine-

tune the resulting shape by making small changes to the circle parameters (Figure 13 (b)). “Daniela” is a

single-sided 2-manifold and therefore some Möbius edges (where the front and back face colors come

together) are unavoidable. By saving the file in an STL format the geometry can then be 3D printed

(Figure 14).

 (a) (b)

Figure 13: “Daniela” modeled in NOME (a) after subdividing and (b) after offsetting.

 23

 (a) (b)

Figure 14: 3D Printed “Daniela”

Conclusion

We believe that the NOME program will help designers build precise mathematically inspired sculptures

in a parametrized manner. The ability to edit the ASCII NOME file and then continue to modify the

geometry via a GUI speeds up the workflow of designers and permits the user to build sculpture in a clear

hierarchical manner. Precise 2-manifold sculptures can be designed through a NOME script and adjusted

via the interface. Small 3D prints allow sculptors and designers to obtain better results since the physical

3D models typically reveal geometric details that were not readily discernable on a 2D computer screen.

Acknowledgement

I would first want to say thank you to Professor Carlo H. Séquin for the time he has spent advising me

during the 5th year M.S. program and for all of the discussions that we had in developing NOME. I would

also like to say thank you to Professor Björn Hartmann for giving me valuable feedback on this report. I

am also very grateful for the help that Toby Chen and Beren Oguz have provided in writing code for

NOME. I would like to thank Professor Séquin’s URAP students for their feedback while using early

versions of the NOME programming environment.

References

[1] Baumgart, Bruce G. Winged edge polyhedron representation. No. STAN-CS-320. STANFORD UNIV

CA DEPT OF COMPUTER SCIENCE, 1972.

 24

[2] E. Catmull, J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes.

Computer-Aided Design, Vol. 10, Iss. 6, pp. 350-355, 1978. -

https://www.sciencedirect.com/science/article/pii/0010448578901100

[3] Levine, John. Flex & Bison: Text Processing Tools. “ O'Reilly Media, Inc.”, 2009.

[4] Loop, Charles. “Smooth subdivision surfaces based on triangles.” (1987).

[5] C. Perry. “Daniela”, 2011. - http://www.charlesperry.com/sculpture/daniela

[6] Peters, Stefan. “Quadtree-and octree-based approach for point data selection in 2D or 3D.” Annals of

GIS 19.1 (2013): 37-44.

[7] X. Qu, B. Stucker. A 3D surface offset method for STL-format models. Rapid Prototyping Journal,

Vol. 9, Iss. 3, pp. 133-141, 2003. - https://www.emeraldinsight.com/doi/abs/10.1108/13552540310477436

[8] C. Séquin. Homage to Eva Hild. 2017. -

https://people.eecs.berkeley.edu/~sequin/PAPERS/2017_Bridges_HILD.pdf

[9] C. Séquin. Multiple 4-stub Dyck funnels linked into symmetrical clusters based on Platonic and

Archimedean polyhedra. 2017. http://people.eecs.berkeley.edu/%7Esequin/MATH-MODELS/Dyck4-

Clusters/Dyck4-Clusters.pdf

[10] J. Smith, SLIDE design environment, (2003). – http://www.cs.berkeley.edu/~ug/slide/

[11] J. P. Smith, S. A. McMains, C. H. Séquin SIF: A Solid Interchangeable Format for Web-based

Prototyping

[12] Y. Wang, Robust Geometry Kernel and UI for Handling Non-orientable 2-Mainfolds (EECS-2016-65).

– https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-65.html

[13] OpenGL, OpenGL Homepage. - https://www.opengl.org

[14] Python Blender Documentation Contents, https://docs.blender.org/api/current/

[15] Qt, Qt Homepage. - https://www.qt.io/

[16] Type A machines. – https://www.typeamachines.com/

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.3714&rep=rep1&type=pdf

 25

Appendix A: Input NOME file for the “Daniela”

Daniela.nom

Another Perry sculpture in a disk
A fists modeling approach, starting with 2 half-tunnels ...
... add a secondary arc to allow for a more concave disk surface.
... fine-tune the saddles between the ends of the half-tunnels.
More fine tuning after first 3D print. Also try different orientations for printing.

CHS 2018/4/20

Some Surface colors #####
surface R color (1 0.1 0) endsurface # Red
surface O color (1 0.7 0) endsurface # Orange
surface Y color (1 1 0) endsurface # Yellow
surface br color (0.4 0.4 0) endsurface # brown
surface L color (0.5 0.8 0) endsurface # Lime
surface G color (0.1 1 0) endsurface # Green
surface A color (0 0.9 0.7) endsurface # Aqua
surface C color (0 1 1) endsurface # Cyan
surface U color (0 0.5 1) endsurface # Uniform
surface B color (0.1 0.1 1) endsurface # Blue
surface P color (0.6 0 1) endsurface # Purple
surface M color (0.9 0 1) endsurface # Magenta
surface Z color (1 0 0.5) endsurface # Zinnober
surface S color (0.8 0.8 0.8) endsurface # Snow(dirty)
surface W color (1 1 1) endsurface # White

Display settings #####
foreground surface O endforeground
background surface S endbackground
insidefaces surface U endinsidefaces ## really "outside"
outsidefaces surface C endoutsidefaces ## really "inside"
offsetfaces surface M endoffsetfaces

Some elementary reference geometry #################

Coordinate axes:
point ooo (0 0 0) endpoint
point xoo (0.3 0 0) endpoint
point oyo (0 0.3 0) endpoint
point ooz (0 0 0.3) endpoint

polyline xaxis (ooo xoo) endpolyline
polyline yaxis (ooo oyo) endpolyline

 26

polyline zaxis (ooo ooz) endpolyline

instance xax xaxis surface R endinstance
instance yax yaxis surface U endinstance
instance zax zaxis surface G endinstance

########### Defining the two half-tunnels #################

bank ft
 set tn 8 3 10 1
 set tro 1 0.1 2.0 0.1
 set ratio 0.4 -0.5 0.5 0.1
 set th 0.4 0.0 1.0 0.1

 set tsep 0.0 -1.0 1.0 0.1 ## displacement
 set ttilt 0 -30 30.0 1 ## angle between half-tunnels
endbank

tunnel tun ({expr $ft.tn} {expr $ft.tro} {expr $ft.ratio} {expr $ft.th}) endtunnel

instance tunp tun surface Y rotate (0 1 0)({expr 45+$ft.ttilt}) translate (0
{expr $ft.tsep} 0) endinstance
instance tunn tun surface O rotate (0 1 0)({expr -45-$ft.ttilt}) translate (0
{expr -$ft.tsep} 0) endinstance

Get rid of unwanted half-tunnels:
delete
 face tunp.f1_4 endface
 face tunp.f1_5 endface
 face tunp.f1_6 endface
 face tunp.f1_7 endface
 face tunp.f2_7 endface
 face tunp.f2_6 endface
 face tunp.f2_5 endface
 face tunp.f2_4 endface

 face tunn.f1_0 endface
 face tunn.f1_1 endface
 face tunn.f1_2 endface
 face tunn.f1_3 endface
 face tunn.f2_3 endface
 face tunn.f2_2 endface
 face tunn.f2_1 endface
 face tunn.f2_0 endface
enddelete

 27

########### Defining the rim and two additional arch-curves ###########################

bank cb
 set ocn 12 3 24 1
 set ocrad 3 1 5.0 0.1 ## outer disk rim

 set icn 8 3 10 1
 set icrad 1.3 0.1 3.0 0.1 ## inner arc curve
 set icsep 0.7 0.1 3.0 0.1
 set atilt 20 -30 30.0 1

 set mcn 8 3 10 1
 set mcrad 1.4 0.1 3.0 0.1 ## mid arc curve
 set mcsep 0.8 0.1 3.0 0.1
 set mtilt -5 -30 30.0 1
endbank

circle ocirc ({expr $cb.ocn} {expr $cb.ocrad}) endcircle

instance oc ocirc surface M endinstance

circle iarc ({expr $cb.icn} {expr $cb.icrad}) endcircle

instance arp iarc surface G rotate (0 1 0)({expr -45-$ft.ttilt-$cb.atilt})
translate (0 {expr $cb.icsep} 0) endinstance
instance arn iarc surface B rotate (0 1 0)({expr 45+$ft.ttilt+$cb.atilt})
translate (0 {expr -$cb.icsep} 0) endinstance

>>> An additional intermediate arc between the above one and the rim,
so that the disc surface cab be nade concave to blend more naturally into the
half-tunnels.

circle marc ({expr $cb.mcn} {expr $cb.mcrad}) endcircle

instance marp marc surface G rotate (0 1 0)({expr -45-$ft.ttilt-$cb.mtilt})
translate (0 {expr $cb.mcsep} 0) endinstance
instance marn marc surface B rotate (0 1 0)({expr 45+$ft.ttilt+$cb.mtilt})
translate (0 {expr -$cb.mcsep} 0) endinstance

############ Starting to fill in the outer disk surface #############################

face rf0 (marp.v2 marp.v1 oc.v2 oc.v3) endface
face rf1 (marp.v1 marp.v0 oc.v1 oc.v2) endface

 28

face mf0 (arp.v2 arp.v1 marp.v1 marp.v2) endface
face mf1 (arp.v1 arp.v0 marp.v0 marp.v1) endface
face ff0 (marp.v0 arp.v0 tunn.f1_7.v1_0 tunn.f1_7.v2_0) endface
face ff1 (oc.v0 oc.v1 marp.v0 tunn.f1_7.v2_0 tunn.f2_7.v3_0) endface

object rim (rf0 rf1 mf0 mf1 ff0 ff1) endobject

instance ri0 rim surface Y endinstance
instance ri1 rim surface O rotate (0 1 0)(180) endinstance
instance ri2 rim surface Y rotate (1 0 0)(180) endinstance
instance ri3 rim surface O rotate (0 1 0)(180) rotate (1 0 0)(180) endinstance

>>> The challenging puzzle is how to complete the surface ...
... particularly, making nice saddles between the ends of the half-tunnels.

mesh mm
face f1 (tunp.f1_0.v1_1 tunp.f1_0.v1_0 oc.v0 tunn.f2_7.v3_0 tunn.f2_6.v3_7)
surface A endface
face f3 (tunn.f1_4.v1_5 tunn.f1_4.v1_4 oc.v6 tunp.f2_3.v3_4 tunp.f2_2.v3_3)
surface P endface
endmesh

instance im mm endinstance

subdivision subdiv type SLF_CATMULL_CLARK subdivisions 6 endsubdivision

offset fatty type WEIGHTED min 0.0 max 0.4 step 0.02 endoffset

