
Lifted Recurrent Neural Networks

Rajiv Sambharya

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-52
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-52.html

May 11, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to acknowledge and give thanks to my adviser Professor Laurent
El Ghaoui for his invaluable guidance as my mentor. I would also like to
thank PhD students Armin Askari and Geoffrey Negiar for all their support
and help throughout the year.

Lifted Recurrent Neural Networks

Rajiv Sambharya 1

Abstract

In this paper, we extend the lifted neural network
framework (described in section 2) to apply to
recurrent neural networks (RNNs). As with the
general lifted neural network case, the activation
functions are encoded via penalties in the training
problem. The new framework allows for algo-
rithms such as block-coordinate descent methods
to be applied, in which each step is composed of
a simple (no hidden layer) supervised learning
problem that is parallelizable across data points
and/or layers. The lifted methodology is partic-
ularly interesting in the case of recurrent neural
networks because standard methods of optimiza-
tion on recurrent neural networks perform poorly
due to the vanishing and exploding gradient prob-
lems. Experiments on toy datasets indicate that
our lifted model is more equipped to handle long-
term dependencies and long sequences.

1. Introduction
Given current advances in computing power, dataset sizes
and the availability of specialized hardware/ software pack-
ages, the popularity of neural networks continue to grow.
The model has become standard in a large number of tasks,
such as image recognition, image captioning and machine
translation. RNNs are a natural extension to neural networks
because they allow people to model sequential data such as
language. Current state of the art is to train this model by
variations of stochastic gradient descent (SGD), although
these methods have several caveats. Most problems with
SGD are discussed in (Taylor et al., 2016).

Optimization methods for neural networks has been an ac-
tive research topic in the last decade. Specialized gradient-
based algorithms such as Adam and ADAGRAD (Kingma &
Ba, 2015; Duchi et al., 2011) are often used but were shown
to generalize less than their non adaptive counterparts by
(Wilson et al., 2017). Our work is related to a main current
of research aimed at improving neural network optimization:
non gradient-based approaches.

While training neural networks with SGD has problems,
training RNNs introduces two additional widely known

problems: the vanishing and the exploding gradient prob-
lems detailed in (Bengio et al.,1994). These issues arise
from the use of gradient descent as an optimization tech-
nique. The proposed model circumvents this weakness as
it is not a gradient-based method. We hope that our work
serves as a useful alternate optimization method for RNNs.

(Taylor et al., 2016) and (Carreira-Perpinan & Wang, 2014)
propose an approach similar to ours, adding variables in the
training problem and using an l2-norm penalization of equal-
ity constraints. They both break down the network training
problem into easier sub-problems and use alternate mini-
mization; however they do not exploit structure in the activa-
tion functions. For Convolutional Neural Networks (CNN),
(Berrada et al., 2016) model the network training problem as
a difference of convex functions optimization, where each
subproblem is a Support Vector Machine (SVM).

The general lifted approach focuses on transforming the
non-smooth optimization problem encountered when fit-
ting neural network models into a smooth problem in an
enlarged space; this ties to a well developed branch of opti-
mization literature (see e.g. section 5.2 of (Bubeck, 2015)
and references therein). Our approach can also be seen as
a generalization of the parameterized rectified linear unit
(PReLU) proposed by (He et al., 2015). Our work can be
compared to the standard practice of initializing Gaussian
Mixture Models using K-Means clustering; our model uses
a simpler but similar algorithm for initialization.

Paper outline. In Section 2, we begin by describing the
mathematical setting of neural networks and the lifted opti-
mization problem to train the model. Then, we describe the
mathematical formulation of RNNs in Section 3. Section 4.1
details the lifted structure of standard RNNs. Section 5 de-
scribes a block-coordinate descent method to solve the train-
ing problem. Section 6 describes numerical experiments
that support a finding that lifted RNN is well-equipped to
handle long-term dependencies and longer sequences.

2. Background: Feedforward and Lifted
Neural Networks

Feedforward neural networks We begin by establish-
ing notation. We are given an input data matrix X =
[x1, . . . , xm] ∈ Rn×m and response matrix Y ∈ Rp×m and

Lifted Recurrent Neural Networks

consider a supervised problem involving a neural network
having L ≥ 1 hidden layers. At test time, the network pro-
cesses an input vector x ∈ Rn to produce a predicted value
ŷ(x) ∈ Rp according to the prediction rule ŷ(x) = xL+1

where xL+1 is defined via the recursion

xl+1 = φl(Wlxl + bl), l = 0, . . . , L, (1)

with initial value x0 = x ∈ Rn and xl ∈ Rpl , l = 0, . . . , L.
Here, φl, l = 1, . . . , L are given activation functions, acting
on a vector; the matrices Wl ∈ Rpl+1×pl and vectors bl ∈
Rpl+1 , l = 0, . . . , L are parameters of the network. In
our setup, the sizes (pl)

L+1
l=0 are given with p0 = n (the

dimension of the input) and pL+1 = p (the dimension of the
output).

We can express the predicted outputs for a given set of m
data points contained in the n×m matrix X as the p×m
matrix Ŷ (X) = XL+1, as defined by the matrix recursion

Xl+1 = φl(WlXl + bl1
T), l = 0, . . . , L, (2)

with initial value X0 = X and Xl ∈ Rpl×m, l = 0, . . . , L.
Here, 1 stands for the vector of ones in Rm, and we use the
convention that the activation functions act column-wise on
a matrix input.

In a standard neural network, the matrix parameters of the
network are fitted via an optimization problem, typically of
the form

min
(Wl,bl)L0 ,(Xl)L1

L(Y,XL+1) +

L∑
l=0

ρlπl(Wl)

s.t. Xl+1 = φl(WlXl + bl1
T
m), l = 0, . . . , L

X0 = X

(3)

where L is a loss function, ρ ∈ RL+1
+ is a hyper-parameter

vector, and πl’s are penalty functions which can be used to
encode convex constraints, network structure, etc. We refer
to the collections (Wl, bl)

L
l=0 and (Xl)

L
l=1 as the (W, b)-

and X-variables, respectively.

To solve the training problem (3), the X-variables are usu-
ally eliminated via the recursion (2), and the resulting objec-
tive function of the (W, b)-variables is minimized without
constraints, via stochastic gradients. While this appears to
be a natural approach, it does make the objective function
of the problem very complicated and difficult to minimize.

Lifted models. The lifted neural network model describes
a family of models where the X-variables are kept, and the
recursion constraints (1) are approximated instead, via penal-
ties. We refer to these models as “lifted” because we lift
the search space of (W, b)-variables to a higher-dimensional
space of (W, b,X)-variables. The training problem is cast in
the form of a matrix factorization problem with constraints
on the variables encoding network structure and activation
functions.

Lifted models have many more variables but a much more
explicit structure than the original, allowing for training
algorithms that can use efficient standard machine learning
libraries in key steps. The block-coordinate descent algo-
rithm described here involves steps that are parallelizable
across either data points and/or layers; each step is a simple
structured convex problem.

Example run-through To describe the basic idea, we
consider a specific example, in which all the activation func-
tions are the ReLUs, except for the last layer. There φL is the
identity for regression tasks or a softmax for classification
tasks. In addition, we assume in this section that the penalty
functions are of the form πl(W) = ‖W‖2F , l = 0, . . . , L.

We observe that the ReLU map, acting componentwise on
a vector input u, can be represented as the “argmin” of an
optimization problem involving a jointly convex function:

φ(u) = max(0, u) = argmin
v≥0
‖v − u‖2. (4)

As seen later, many activation functions can be represented
as the “argmin” of an optimization problem, involving a
jointly convex or bi-convex function.

Extending the above to a matrix case yields that the condi-
tion Xl+1 = φ(WlXl + bl1

T) for given l can be expressed
via an “argmin”:

Xl+1 ∈ argmin
Z≥0

‖Z −WlXl − bl1T ‖2F .

This representation suggests a heuristic to solve (3), replac-
ing the training problem by

min
(Wl,bl),(Xl)

L(Y,WLXL + bL1T) +

L∑
l=0

ρl‖Wl‖2F

+

L−1∑
l=0

(
λl+1‖Xl+1 −WlXl − bl1T ‖2F

)
s.t. Xl ≥ 0, l = 1, . . . , L− 1, X0 = X.

(5)
where λl+1 > 0 are hyperparameters, ρl are regularization
parameters as in (3) and L is a loss describing the learning
task. In the above model, the activation function is not used
in a pre-defined manner; rather, it is adapted to data, via the
non-negativity constraints on the “state” matrices (Xl)

L+1
l=1 .

We refer to the above as a “lifted neural network” problem.

The above optimization problem is, of course, challenging,
mainly due to the number of variables. However, for that
price we gain a lot of insight on the training problem. In
particular, the new model has the following useful charac-
teristics:

• For fixed (W, b)-variables, the problem is convex in
the X-variables Xl, l = 1, . . . , L; more precisely it

Lifted Recurrent Neural Networks

is a (matrix) non-negative least-squares problem. The
problem is fully parallelizable across the data points.

• Likewise, for fixed X-variables, the problem is convex
in the (W, b)-variables and parallelizable across layers
and data points. In fact, the (W, b)-step is a set of
parallel (matrix) ridge regression problems.

These characteristics allow for efficient block-coordinate
descent methods to be applied to our learning problem.
Each step reduces to a basic supervised learning problem,
such as ridge regression or non-negative least-squares. The
lifted neural network block-coordinate descent algorithm
alternates between modifying the W-variables and the X-
variables.

3. Background: Recurrent Neural Networks
RNNs are designed to handle data in which each sample
is a sequence of data points. Time series and Natural Lan-
guage Processing (NLP) offer many applications due to their
sequential nature.

RNNs have several different structures depending on the
application. There is a many-to-many structure in which we
output a value at each point in time. There is a many-to-one
structure in which we output a value only at the final time
point. There is a translation-type many-to-many task in
which we output many values only after all of the input data
points have been processed. In this paper we focus on the
first two structures.

We establish notation for RNNs here.

1. i is the dimensionality of each input sample at each
time point.

2. h is the dimensionality of each hidden state at each
time point.

3. o is the dimensionality of each output state at each
time point.

4. T is the length of the longest sequence.

5. m is the number of training samples.

We are given an input data tensor X = [x1, . . . , xm] ∈
Rm×i×T and response matrix Y ∈ Rm×o×T and consider
a supervised problem involving an RNN. At test time, the
network processes an input matrix x ∈ Ri×T to produce a
predicted value ŷ(x) ∈ Ro×T according to a basic feedfor-
ward prediction rule.

While RNNs can have any amount of depth, we focus on
the standard RNN which has one layer of hidden units. This
RNN has 3 layers of states: input states, hidden states, and

output states. Each layer has a length T. The same weight
matrix, U0, connects each input unit with its correspond-
ing hidden unit. The same weight matrix, U1, connects
each hidden unit with its corresponding output unit. In ad-
dition, a weight matrix, W , connects each hidden state to
the next hidden state. In addition, RNNs in general can
handle variable length sequences (by simply zero-padding
data sequences with shorter length).

We can represent each unit as a matrix of all the data points.
Let Hi,j : i ∈ 0, 1, 2, j ∈ 0, . . . T − 1 represent each hid-
den unit. H0,j ∈ Rm×i, H2,j ∈ Rm×h, H0,j ∈ Rm×o.
Let Yj :∈ Rm×o denote the target value matrices for a cer-
tain time point j. Let Xj :∈ Rm×i denote the input value
matrices for a certain time point j.

The input units are trivially determined as the input data
points.

Each hidden unit is calculated as ...

H1,j = φ0(H1,j−1W +H0,jU0 +~1b
T
0)

Each output unit is calculated as ...

H2,j = φ1(H1,jU1 +~1b
T
1)

For a regression problem with an L2-loss, the RNN problem
can be viewed as the following. Note that the F-norm is the
Frobenius norm.

min
U0,b0,U1,b1,W

K−1∑
j=0

‖Yj −H2,j‖2F + p(U0, U1,W)

s.t.H2,j = φ1(H1,jU1 +~1b
T
1)

H1,j = φ0(H1,j−1W +XjU0)

RNNs can also handle classification. In this case the prob-
lem becomes. s is the cross-entropy loss function typically
used for classification problems. The function includes a
softmax over the H2,j variable to normalize into a probabil-
ity distribution.

min
U0,U1,W

K−1∑
j=0

−Y T
j logH2,j + p(U0, U1,W)

s.t.H2,j = s(H1,jU1 +~1b
T
1)

H1,j = φ(H1,j−1W +XjU0)

Usually we consider L2 regularization as the penalty on the
U and W weight matrices.

p(U0, U1,W) = ρ0‖
(
W
U0

)
‖2F + ρ1‖U1‖2F

Lifted Recurrent Neural Networks

The mathematical formulation proposed above relates to the
many-to-many problem. It is easily adapted to the many-to-
one problem by only including the loss for the last element
in the sequence.

4. Lifted RNN Framework
4.1. Lifted RNNs

The RNN structure changes several things about the lifted
problem. Each X-variable becomes T different state-
variables. In our case we only consider the standard RNN,
so the number of hidden layers is one. However, each layer
now was T matrix variables instead of one. Furthermore, the
weight-variables from the general lifted model are the same
except we now have to account for the recurrent weight ma-
trix (W). This recurrent weight matrix requires us to update
each hidden state matrix separately.

The lifted model consists in replacing the constraints with
penalties in the training problem. Specifically, the lifted
network training problem takes the following form for the
regression task with relu activations. The zeroth and sec-
ond hidden layers are fixed to the inputs and the outputs
respectively. H0,j = Xj and H2,j = Yj

min
W,U0,U1,(Hlj)

2,K−1
l=0,j=0

λ0[‖H1,0 −H0,0U0 −~1bT0 ‖2F

+

K−1∑
j=1

‖H1,j −H0,jU0 −H1,j−1W −~1bT0 ‖2F]

+ λ1[

K−1∑
j=0

‖H2,j −H1,jU1 −~1bT1 ‖2F] + ρ0‖
(
W
U0

)
‖2F

+ ρ1‖U1‖2F
s.t.H0,j = Xj : j = 0, . . . , T − 1

H2,j = Yj : j = 0, . . . , T − 1

H1,j ≥ 0 : j = 0, . . . , T − 1

with λ0, λ1 given positive hyper-parameters. These hyper-
parameters indicate how harshly we should penalize the
loss in computing the hidden layer and the loss in estimat-
ing the true labels. ρ0, ρ1 are given hyperparameters that
are regularization terms for the weight matrices. As with
the model introduced in section 2, the lifted RNN model
enjoys the same parallel and convex structure outlined ear-
lier. In particular, it is convex in state-variables for fixed
weight-variables.

As a specific example, consider a multi-class classification
problem where the hidden layer involves ReLUs. The last
layer aims at producing a probability distribution to be com-
pared against training labels via a cross entropy loss function.

The training problem writes

min
W,U0,U1,(Hl,j)

2,K−1
l=0,j=0

λ0[‖H1,0 −H0,0U0 −~1bT0 ‖2F

+

K−1∑
j=1

‖H1,j −H0,jU0 −H1,j−1W −~1bT0 ‖2F]

+ λ1

K−1∑
j=0

−TrHT
2,j log s(H1,jU1 +~1b

T
1)

+ ρ0‖
(
W
U0

)
‖2F + ρ1‖U1‖2F

s.t.H0,j = Xj : j = 0, . . . , T − 1

H2,j = Yj : j = 0, . . . , T − 1

H1,j ≥ 0 : j = 0, . . . , T − 1

Here, s(·) : Rn 7→ Rn is the softmax function.

4.2. Lifted prediction rule

For notation purposes in this paragraph, we specify the
lower cases yj , h1,j , and xj to specify 1 sample of Yj , H1,j ,
and Xj respectively. In our model, the prediction rule will
be different from that of a standard neural network, but it
is based on the same principle. In a standard network, the
prediction rule can be obtained by solving the problem

ŷj(x) = min
y
L(y, h2,j) : (2), x0 = x,

where the weights are now fixed, and y ∈ Rp is a variable.
Of course, provided the loss is zero whenever its two argu-
ments coincide, the above trivially reduces to the standard
prediction rule: ŷj(x) = h2,j , where h2,j is obtained via
the basic feedforward network).

In a lifted framework, we use the same principle: solve the
training problem, using the test point as input, fixing the
weights, and letting the predicted output values be variables.
In other words, the prediction rule for a given test point x in
lifted networks is based on solving the problem

ŷ = arg min
y,(h1)

λ1L1(y, h1U1 + b1)

+ λ0

T−1∑
j=0

L2(h1,j−1W + h0,jU0 + b0, h1,j)

s.t. h0,j = xj .

The above prediction rule is a simple convex problem in the
variables yj and h1, j, j = 0, . . . , T−1. In our experiments,
we have found that applying the standard feedforward rule
of traditional networks is often enough.

5. Block-Coordinate Descent Algorithm
In this section, we outline a block-coordinate descent ap-
proach to solve the training problem. There are two differ-

Lifted Recurrent Neural Networks

ent types of variables: weights and states. The weights are
U0, b0, U1, b1,W . The states are (Hl,j)

2,K−1
l=0,j=0 . Recall in

the standard RNN formulation, the weights are the only non-
trivial variables; the state variables are totally constrained.
We have lifted the variable space to a higher degree. We
alternate between optimizing over the weights and optimiz-
ing over the states. With the states fixed, optimizing over
the weights is a convex problem. With the weights fixed,
optimizing over the states is also a convex problem.

5.1. Updating Weight-variables

For fixed state-variables, the problem of updating the weight-
variables, i.e. the weighting matrices U0, U1,W , is not ex-
actly parallelizable across both data points and layers. In
order for the weight update to be parallelizable across the
data points and layers, we need to update the W and U0

variables simultaneously. They U1 update is done separately.
After we group the first layer weights together, the problem
becomes parallelizable across the layers.

The above is a convex problem, which can be solved via
standard machine learning libraries. Since the divergences
are sums across columns (data points), the above problem
is indeed parallelizable across data points.

For example, when the problem is regression, the activation
function at the hidden layer is a ReLU, and the penalty is a
squared Frobenius norm, the above problem reads

(W,U0, b0) = arg min
W,U0,b0

λ0[‖H1,0 −
(
0 X0

~1
)WU0

bT0

 ‖2F
+

k−1∑
j=1

‖H1,j −
(
H1,j−1 Xj

~1
)WU0

bT0

 ‖2F] + ρ0‖
(
W
U0

)
‖2F

which is a standard (matrix) ridge regression problem. Mod-
ern sketching techniques for high-dimensional least-squares
can be employed, see for example (Woodruff et al., 2014;
Pilanci & Wainwright, 2016).

Once the first layer weights (W, U0, b0) have been updated,
we update the second layer weights (U1, b1)

(U1, b1) = arg min
U1,b1

λ1

k−1∑
j=0

‖H2,j −
(
H1,j

~1
)(U1

bT1

)
‖2F +

ρ1‖U1‖2F

This update is also a simple ridge regression problem. When
the problem is a classification one with a cross-entropy loss,
this problem is no longer a ridge problem, but it is still
convex.

5.2. Updating state-variables

In this step we minimize over the matrices (H1, j)
L−1
j=0 . Re-

call that theH0,j matrices are fixed to the inputs and that the
H2,j matrices are fixed to the outputs. The sub-problem now
has the weight-variables, (W,U0, U1, b0, b1), fixed. The up-
date must be done cyclically over each time element, in a
block-coordinate fashion.

Let us detail this approach in the case when the hidden layer
units are all activated by ReLUs. The sub-problem above
becomes

H1,j = arg min
H≥0

λ0‖H −XjU0 −~1bT0 −H1,j−1W‖2F +

λ0‖H1,j+1 −Xj+1U0 −~1bT0 −HW‖2F + ‖Yj −HU0‖2F

The above is a (matrix) non-negative least-squares, for
which many modern methods are available, see (Kim et al.,
2007; 2014) and references therein. As before, the problem
above is fully parallelizable across data points (columns),
where each data point gives rise to a standard (vector) non-
linear least-squares. Note that the cost of updating all
columns can be reduced by taking into account that all
column’s updates share the same coefficient matrix.

6. Numerical Experiments
In this section we explore several different toy datasets. We
find that the lifted framework achieves higher performance
for tasks that are more numerically-based rather than tasks
that are more based on memorization or interpretation. Each
experiment was conducted 10 times: the average results are
shown.

For all the experiments, some hyperparameters were kept
the same.

1. Learning rate schedule: 1e-5 with a decay rate of 0.9
every 1000 training steps.

2. batch size = 100

3. train size = 200

4. test size = 1000

5. SGD: ρ0, ρ1 = 1e-3

6. Lifted: ρ0, ρ1 = 1e-1

7. Lifted: λ0, λ1 = 10, 1

6.1. Lag echo sequence

Experiment description This synthetic dataset is a sim-
ple many-to-many memorization task. The input is a se-
quence of 1-hot vectors. The output is the same as the input

Lifted Recurrent Neural Networks

sequence but at a specified time lag. The parameters neces-
sary for the dataset are the number of classes, the lag, and
the sequence length.

The following is an example of an input-output sequence
pair with lag 1, length 6, and 4 different classes. Note that
the ith column of x matches the (i+1)th column of y. The
first several sequences (before the lag kicks in) of the output
are randomly assigned. Therefore, it is unreasonable to
expect any classifier to attain 100% accuracy on this dataset.

x =


0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 1 1 0
0 0 1 0 0 0

 y =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 1 1
0 0 0 1 0 0



Experiment details

1. hidden unit size = 20

2. num classes = 10

3. length = 10

Lag Lifted Model SGD maxScorePossible
1 0.91 0.91 0.91
2 0.82 0.82 0.82
3 0.25 0.73 0.73
4 0.15 0.64 0.64

6.2. Sum of random values thresholded

Experiment description: This is another classification
task. The input is a sequence of uniformly random values
between -1 and 1. At each time point, the output is a 1-hot
vector. The output is on (index 0 is 1) if the sum of the
input values up to that point are positive. If the sum of the
values are negative, then the output is off (index 1 is 1). The
running sum, RS, is written to help illustrate the mechanics
of the dataset.

x =
(
−0.26 0.55 −0.78 0.05 0.89 0.12

)
y =

(
0 1 0 0 1 1
1 0 1 1 0 0

)
RS =

(
−0.26 0.29 −0.49 −0.44 0.45 0.57

)

Experiment details:

1. hidden unit size = 10

Length Lifted Model SGD
10 0.92 0.79
20 0.92 0.75
50 0.88 0.72
75 0.875 0.65
100 0.85 0.60
200 0.80 0.50
300 0.78 0.50
400 0.72 0.50

6.3. Timer

Experiment description Here we describe a timer
dataset for binary classification. The input data is three-
dimensional at each timestep. The first input is a random
integer between 1 and p inclusive. p indicates the longest
possible timer value. This value will indicate how long our
timer is on. The second/third inputs indicates whether the
on switch is on for the timer. We imagine that there is a
running timer which is a single integer. At each time step,
the running timer decreases by 1 (or if it’s zero it stays at
zero). Then we consider the next input vector. If the second
input is off then we ignore that timestep input. If the sec-
ond input is on, then we update our running timer to be the
max of the previous running timer and the timer input. We
specify the fraction of the time that the inputs are on as a
hyperparameter. The fraction and the actual time value are
independent of each other.

The output is a two-dimensional one-hot vector at each time
step. Our output at each time point will be ”on” if the
running timer has a positive value and ”off” if the running
timer has a negative value. The running timer labelled as
RT is given here to illustrate the mechanics of the example.

x =

3 2 5 4 2 4
0 1 0 0 1 0
1 0 1 1 0 1


y =

(
0 1 1 0 1 1
1 0 0 1 0 0

)
RT =

(
0 2 1 0 2 1

)
Experiment details: varying the dependency

1. hidden unit size = 10

2. Length = 60

3. the fraction of the time that the inputs are on is chosen
such that the dataset is 50/50 on/off on the output

Max-dependency Lifted Model SGD
5 1.0 1.0
10 0.88 0.97
20 0.84 0.89
30 0.80 0.60
40 0.65 0.50

Lifted Recurrent Neural Networks

Experiment details: varying the length

1. hidden unit size = 10

2. Dependency = 20

3. the fraction of the time that the inputs are on is chosen
such that the dataset is 50/50 on/off on the output: in
this case, the fraction is set to 0.08

Length Lifted Model SGD
60 0.99 1.0
100 0.96 0.89
200 0.84 0.50
300 0.80 0.50
400 0.65 0.50

We see some mixed results across the toy datasets. Our lifted
RNN model does not perform well on the lag sequence task.
High lags are captured perfectly in the SGD model, but our
model fails after lag 2. This indicates that our model may
not perform well on memorization-based tasks.

The other two tasks show favorable result for our lifted
model. The random values summation task shows that our
model does well across all time lengths. In addition, our
model does better in comparison as the length of the se-
quence increases.

The timer task had two different experiments: one that
varied the length of the sequence while keeping the time
dependencies at the same length and one that varied time the
length of the dependencies within the data while keeping
the sequence length constant. The timer task indicates that
for shorter sequences, our model does not perform as well
as the SGD model. However, as the length of the sequence
increase, the SGD model breaks down, while ours only sees
a small decrease in performance.

Additionally, This may indicate that our model performs
well as the sequence length increases as well as when the
time dependencies within the data increase.

As a supplementary note, generally, the lifted model was
much quicker than SGD with the longer sequences.

7. Conclusion
In this work we adapt the lifted neural network framework to
recurrent neural networks. We propose a structure in which
the lifted version just in itself yields successful results as
it circumvents the common issues of gradient-based opti-
mization techniques for RNNs: the exploding and vanishing
gradient problems.

In this work we have proposed a novel model for supervised

learning specifically for data that comes as sequences. The
key idea behind our method is replacing non-smooth activa-
tion functions by smooth penalties in the training problem;
we have shown how to do this for general monotonic activa-
tion functions. This modifies the recurrent neural networks
optimization problem to a similar problem which we called
a lifted recurrent neural network.

8. Future Work
While lifted recurrent neural networks give good results for
many of the toy tasks described, they perform poorly on
more complicated tasks such as Natural Language Process-
ing tasks (preliminary results not shown). We can further
extend our lifted framework to Long-short-term-memory
cells (LSTMs); we hope this will allow our model to in-
terpret less arithmetic data such as language, pictures, etc.
We can also easily extend our model to deeper networks
and bi-directional structures. We plan on extending the
applications to the many-to-many translation tasks.

References
Berrada, Leonard, Zisserman, Andrew, and Kumar,

M. Pawan. Trusting svm for piecewise linear cnns. CoRR,
abs/1611.02185, 2016.

Bubeck, Sébastien. Convex optimization: Algorithms and
complexity. Found. Trends Mach. Learn., 2015. doi:
10.1561/2200000050. URL http://dx.doi.org/
10.1561/2200000050.

Carreira-Perpinan, Miguel and Wang, Weiran. Dis-
tributed optimization of deeply nested systems. In
Kaski, Samuel and Corander, Jukka (eds.), Proceed-
ings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, volume 33 of
Proceedings of Machine Learning Research, pp. 10–
19, Reykjavik, Iceland, 22–25 Apr 2014. PMLR.
URL http://proceedings.mlr.press/v33/
carreira-perpinan14.html.

Duchi, John C., Hazan, Elad, and Singer, Yoram. Adaptive
subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research,
12, 2011. URL http://dl.acm.org/citation.
cfm?id=2021068.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. CoRR,
abs/1502.01852, 2015. URL http://arxiv.org/
abs/1502.01852.

Kim, Dongmin, Sra, Suvrit, and Dhillon, Inderjit S. Fast
Newton-type methods for the least squares nonnegative

http://dx.doi.org/10.1561/2200000050
http://dx.doi.org/10.1561/2200000050
http://proceedings.mlr.press/v33/carreira-perpinan14.html
http://proceedings.mlr.press/v33/carreira-perpinan14.html
http://dl.acm.org/citation.cfm?id=2021068
http://dl.acm.org/citation.cfm?id=2021068
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852

Lifted Recurrent Neural Networks

matrix approximation problem. In Proceedings of the
2007 SIAM international conference on data mining, pp.
343–354. SIAM, 2007.

Kim, Jingu, He, Yunlong, and Park, Haesun. Algorithms
for nonnegative matrix and tensor factorizations: A uni-
fied view based on block coordinate descent framework.
Journal of Global Optimization, 58(2):285–319, 2014.

Kingma, Diederik P. and Ba, Jimmy. Adam: A method for
stochastic optimization. In 3rd International Conference
for Learning Representations (ICLR), 2015.

Pilanci, Mert and Wainwright, Martin J. Iterative Hessian
sketch: Fast and accurate solution approximation for con-
strained least-squares. The Journal of Machine Learning
Research, 17(1), 2016.

Taylor, Gavin, Burmeister, Ryan, Xu, Zheng, Singh,
Bharat, Patel, Ankit, and Goldstein, Tom. Train-
ing neural networks without gradients: A scalable
admm approach. In Proceedings of the 33rd Inter-
national Conference on International Conference on
Machine Learning - Volume 48, ICML’16, pp. 2722–
2731. JMLR.org, 2016. URL http://dl.acm.org/
citation.cfm?id=3045390.3045677.

Wilson, Ashia C., Roelofs, Rebecca, Stern, Mitchell, Srebro,
Nati, and Recht, Benjamin. The marginal value of adap-
tive gradient methods in machine learning. In Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, pp.
4151–4161, 2017.

Woodruff, David P et al. Sketching as a tool for numerical
linear algebra. Foundations and Trends R© in Theoretical
Computer Science, 10(1–2):1–157, 2014.

http://dl.acm.org/citation.cfm?id=3045390.3045677
http://dl.acm.org/citation.cfm?id=3045390.3045677

