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Abstract

When a human supervisor collaborates with a team of robots, the human’s
attention is divided, and cognitive resources are at a premium. We aim to
optimize the distribution of these resources and the flow of attention. To
this end, we propose the model of an idealized supervisor to describe human
behavior. Such a supervisor employs a potentially inaccurate internal model of
the the robots’ dynamics to judge safety. We represent these safety judgements
by constructing a safe set from this internal model using reachability theory.
When a robot leaves this safe set, the idealized supervisor will intervene to
assist, regardless of whether or not the robot remains objectively safe. False
positives, where a human supervisor incorrectly judges a robot to be in danger,
needlessly consume supervisor attention. In this work, we propose a method
that decreases false positives by learning the supervisor’s safe set and using
that information to govern robot behavior. We prove that robots behaving
according to our approach will reduce the occurrence of false positives for our
idealized supervisor model. Furthermore, we empirically validate our approach
with a user study that demonstrates a significant (p = 0.0328) reduction in
false positives for our method compared to a baseline safety controller.

5



Chapter 1

Introduction and Background

As automation becomes more pervasive throughout society, humans will in-
creasingly find themselves interacting with autonomous and semi-autonomous
systems. These interactions have the potential to multiply the productivity of
humans workers, since it will become possible for a single human to supervise
the behavior of multiple robotic agents. For example, a single human driver
could manage a fleet of self-driving delivery robots, but the driver would only
take full control for the “last mile,” guiding the robots to precisely deposit
packages in environments where autonomous navigation may not be reliable.
Human experts regularly serve as failsafe supervisors on factory assembly floors
staffed with robotic arms [1]. Air traffic controllers soon will have to manage
completely autonomous drones flying through their airspace alongside existing
traditional mixed-autonomy planes and their auto-pilots [2].

While a human may be able to successfully exert direct control over a single
robot, it becomes intractable for a human to directly control teams of robots
(in fact, humans often benefit from automated assistance when controlling
even a single robot, as discussed in the literature on assistive teleoperation
[3, 4]). In order to manage the increased complexity of multi-robot teams, the
human must be able to rely on increased autonomy from the robots, freeing
the human to focus their attention only on those areas where they are most
needed. Our goal is to model what grabs the supervisor’s attention in order
to modify robot behavior to reduce the occurrence of distractions.

This project is inspired by work like A. Bajcsy et al [5] and Jain et al [6] that
learn from supervisor interventions in a “coactive” learning framework. These
works apply Learning from Demonstration techniques to the more challeng-
ing domain where the given data is just a correction from a trajectory rather
than a full trajectory. The authors of [5] posed this correction challenge in
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Figure 1.1: Top: if a robot’s behavior does not take into account a human
supervisor’s notion of safety, the misaligned expectations can degrade team
performance. Bottom: When a robot acts according to a human supervisor’s
expectations, the supervisor can more easily predict the robot’s behavior.

model-based framework that interprets the human’s signals as resulting from
an optimization problem. This inverse optimization framework has also been
used in Inverse Reinforcement Learning [7, 8] which applies Inverse Optimal
Control (as conceived of by Kalman [9]) to interpreting human trajectories.
Our work applies the inverse optimization framework to learn from the super-
visor’s decisions to intervene.

Results in cognitive science suggest that humans observing physical scenes
can be modeled as performing a noisy “mental simulation” to predict trajec-
tories [10, 11]. The use of mental dynamical models is also supported by work
in neuromechanical motor control which asserts that human action mastery
involves building a dynamical model of the human body [12]. Robinson et
al. posited that this dynamics learning extends not just to direct control of
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the body but to external systems with which the human interacts, such as
human-cyber-physical systems [13]. We posit that human supervisors utilize
this same cognitive dynamic simulation to predict robot safety and intervene
accordingly. Specifically, we theorize that the intervention behavior is driven
by an internal “safe set” which we can attempt to reconstruct by observing
supervisor interventions.

Safe sets are conceived from the Formal Methods notion of “Viability”. A
set of states is “viable” if for every state in the set there exists a dynamic tra-
jectory that stays within the set for all time. Reachability analysis calculates
the largest viable set that doesn’t include any undesirable state configurations
(e.g. collisions with obstacles, power overloads, etc). Since the set is viable,
it is possible to guarantee that the dynamic system will always stay within
the set and therefore stay safely away from the undesirable states. For this
reason, viability kernels are often refered to as “safe sets”. Reachability can
be used for robust path planning in dynamically changing environments [14]
or working around multiple dynamic agents [15], and recent results have lever-
aged the technique to bound tracking error in order to generate dynamically
feasible paths using simple planning algorithms [16].

Hoffman et al. used the safety guarantees of reachability analysis to engineer
a multi-drone team that could automatically avoid collisions [17]. Similarly,
Gillula could guarantee safety for learning algorithms by constraining their
explorations to stay within the safe set [18]. Extending this, Akametalu and
Tomlin [19] were able to guarantee safety while simultaneously learning and ex-
panding the safe set. All of these controllers supervise otherwise un-guaranteed
systems and intervene to maintain safety whenever the system threatens to
leave the viable safe set. In this paper, we explore how this intervention be-
havior is similar to human supervision, and apply this to representing human
safety concerns as safe sets in the state space.
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Chapter 2

Supervisor Safe Set Control

Based on the success of cognitive dynamical models for explaining humans’
understanding of physical systems, we posit that human operators may have
some notion of reachable sets which they employ to predict collisions or avoid
obstacles. We propose a noisy idealized model to describe the behavior of the
human supervisor of a robotic team, and we develop a framework for esti-
mating the human supervisor’s mental model of a dynamical system based on
observing their interactions with the team. We then propose a control frame-
work that capitalizes on this learned information to improve collaboration in
such human-robot teams.

2.1 Preliminaries: Reachability for Safety

Consider a dynamical system with bounded input u and bounded disturbance
d, given by

ẋ = f(x, u, d),

x ∈ Rn, u ∈ U ⊂ Rnu , d ∈ D ⊂ Rnd ,
(2.1)

where U and D are compact. We let U and D denote the sets of measurable
functions u : [0,∞) → U and d : [0,∞) → D, respectively, which represent
possible time histories for the system input and disturbance. Given a choice
of input and disturbance signals, there exists a unique continuous trajectory
ξ : [0,∞)→ Rn from any initial state x which solves

ξ̇(t) = f(ξ(t),u(t),d(t)), a.e. t ≥ 0,

ξ(0) = x,
(2.2)
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where ξ(·) describes the evolution of the dynamical system [20].
Obstacles in the environment can be modeled as a “keep-out” set of states

K ⊂ Rn that the system must avoid. We define the safety of the system
with respect to this set, such that the system is considered to be safe at state
ξ(0) = x over time horizon T as long as we can choose u(·) to guarantee that
there exists no time t ∈ [0, T ] for which ξ(t) ∈ K. The task of maintaining
the system’s safety over this interval can be modeled as a differential game
between the control input and the disturbance. Consider an optimal control
signal u(·) which attempts to steer the system away from K and an optimal
disturbance d(·) which attempts to drive the system towards K. By choosing
any Lipschitz payoff function l : Rn → R which is negative-valued for x ∈
K and positive for x /∈ K, we can encode the outcome of this game via a
value function V (x, t) characterized by the following Hamilton-Jacobi-Isaacs
variational inequality [21]:

min

{
l(x)− V (x, t),
∂V
∂t

(x, t) + max
u∈U

min
d∈D

∂V
∂x

(x, t)· f(x, u, d)
= 0

V (x, T ) = l(x).

(2.3)

The value function V (x, t) that satisfies the above conditions is equal to
minτ∈[t,T ] l(ξ

∗(τ)) for the trajectory with ξ∗(t) = x driven by an optimal control
u(·) and an optimal disturbance d(·). We can therefore find the set of states
RT = {x ∈ Rn :V (x, 0) < 0} from which we cannot guarantee the safety of
the system on the interval [0, T ], also known as the backward-reachable set
of K over this interval. That is, for all initial states x ∈ RT and feedback
control polices u(t) = g(ξ(t)), there exists some disturbance d(·) ∈ D such
that ξ(t) ∈ K for some t ∈ [0, T ].

If there exists a non-empty controlled-invariant set Ω that does not intersect
K, then we deem this set Ω a “safe set” because there exists a feedback policy
that guarantees that the system remains in Ω, and thus out of K, for all time.
It follows from their properties that Ω is the complement of RT , and the
relationship between K, RT , and Ω is visualized in Fig. 2.1. Within a safe set
Ω, the value function becomes independent of t as T → ∞ [21]. Because we
focus on the case where the system is initialized to some safe state ξ(0) ∈ Ω
and we aim to maintain ξ(t) ∈ Ω for all t ∈ [0,∞), we simplify notation by
defining the terms V (x) , limT→∞ V (x, ·) and R , R∞.

One approach to guaranteeing the safety of the system is to apply a “min-
imally invasive” controller which activates on the zero level set of V (x) [18].
This approach allows complete flexibility of control as long as ξ(t) ∈ interior(Ω),
and applies the optimal control to avoid K when ξ(·) reaches the boundary of
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Figure 2.1: Illustration of the relationship between a keep-out set K, the
derived backward-reachable set R, and the resulting safe set Ω. Note that
K ⊆ R, and Ω is equal to the complement of R. This illustration approxi-
mates the result obtained using the Dubins car dynamics given in (3.1).

Ω. We refer the interested reader to [18, 21] for a more thorough treatment of
reachability and minimally invasive controllers.

2.2 Noisy Idealized Supervisor Model

We define an idealized model of the supervisor of a robotic team whose respon-
sibility it is to ensure that no robots collide with obstacles represented by the
keep-out set K. The idealized supervisor behaves as a minimally invasive con-
troller as described in Section 2.1. However, while the robotic team members’
true dynamics are given by the function f(x, u, d) as in (2.1), the supervi-
sor possesses an internal model of the robots’ dynamics given by fS(x, u, d),
which is not necessarily equal to the true dynamics. Following the differ-
ential game characterized by (2.3), the supervisor also possesses an internal
value function VS(·) and safe set ΩS which they use to evaluate the safety of
each state x in the environment. We allow for the possibility that the su-
pervisor adds some amount of margin µ to their internal safe set, such that
ΩS = {x ∈ Rn :VS(x) ≥ µ}. Therefore, the idealized supervisor will always
intervene when a robotic team member reaches the µ level set of VS(·), rather
than the zero level set of the true V (·). We further specify that the idealized
supervisor is conservative: ∀x ∈ Rn, V (x) ≤ 0 =⇒ VS(x) ≤ µ. This condi-
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tion implies that the supervisor will never let a robot teammate leave the true
safe set Ω since ΩS ⊆ Ω. Additionally, we propose a noisy version of this
idealized supervisor: the noisy idealized supervisor will intervene when they
observe a robot reach the µ + w level set of VS(·), where w is drawn from
N (0, σ2

S) whenever a supervisor makes a safety judgement.

2.3 Learning Safe Sets from Supervisor

Interventions

We choose to model the human supervisor of a robotic team as approximating
the behavior of the idealized supervisor model presented in Section 2.2. That
is, the human supervisor will allow the robots to perform their task however
they choose, but intervene whenever they perceive that a robot is approaching
an obstacle K in the state space. Given this model, we can interpret the points
at which the human intervenes as corresponding to the unknown µ level set
of some value function VH(·) : Rn → R, which characterizes the human’s
mental safe set ΩH . Our goal is to use observations of human interventions to
derive an estimated value function V̂H(·) and µ̂ which describe the observed
behavior and induce an estimated Ω̂H . We approach this task by deriving a
Maximum Likelihood Estimator (MLE) of the human’s mental safe set. If we
assume that a human supervisor always intends to intervene at the µ level
set of VH(x), but their ability to precisely intervene at this level is subject to
Gaussian noise, either from observation error or variability in reaction time,
then we can consider the value at an intervention point xi as being drawn from
a normal distribution centered at µ (that is, VH(xi) ∼ N (µ, σ2)).

Given a proposed value function V̂H(·) and a set of intervention points
{x1, x2, · · · , xp} with corresponding values {V̂H(x1), V̂H(x2), · · · , V̂H(xp)}, we
wish to estimate the most likely µ and σ2 to explain these interventions. Gaus-
sian distributions induce the following probability density function for a single
observation V̂H(xj)

f
(
V̂H(xj) | µ, σ2

)
=

1√
2πσ2

exp

−
(
V̂H(xj)− µ

)2
2σ2

 (2.4)

which leads to the following probability density for a set of p independent
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observations

f
(
V̂H(x1), · · · , V̂H(xp) | µ, σ2

)
=

p∏
j=1

f
(
V̂H(xj) | µ, σ2

)

=

(
1

2πσ2

) p
2

exp

−
∑p

j=1

(
V̂H(xj)− µ

)2
2σ2

 .

(2.5)

The likelihood of any estimated parameter values µ̂ and σ̂2 being correct,
given the observations and the proposed value function V̂H(·), is expressed

as L
(
µ̂, σ̂2 | V̂H(·)

)
= f

(
V̂H(x1), · · · , V̂H(xp) | µ̂, σ̂2

)
. It can be shown that

the values of the unknown parameters µ and σ2 that maximize the likelihood
function are given by

µ̂∗ =
1

p

p∑
j=1

V̂H(xj) and σ̂∗2 =
1

p

p∑
j=1

(
V̂H(xj)− µ̂∗

)2
, (2.6)

which are simply the mean and variance of the set of observations.
Notice that the estimates given by (2.6) are computed with respect to a

given value function V̂H(·). If we were to assume that the human supervisor
has a perfect model of the system dynamics, then we could simply set V̂H(·) to
equal the true V (·) of the system in (2.1), and µ̂∗ would be the maximum like-
lihood estimate for the level at which the supervisor will intervene. However,
it is unlikely that a human supervisor’s notion of the dynamics will correspond
exactly to this model, and we would like to maintain the flexibility of estimat-
ing value functions that are not strictly derived from (2.1). To this end, we
define the maximum likelihood of V̂H(·) being the VH(·) that produced our ob-
servations as L∗(V̂H(·)) = maxµ̂,σ̂2 L(µ̂, σ̂2 | V̂H(·)). The value of L∗(V̂H(·)) is
obtained by substituting the estimates from (2.6) into the probability density

function from (2.5). That is, L∗
(
V̂H(·)

)
= f

(
V̂H(x1), · · · , V̂H(xp) | µ̂∗, σ̂∗2

)
.

We seek the most likely value function to explain our observations, which
will be the value function V̂ ∗(·) with the greatest maximum likelihood L∗(V̂ ∗(·))
(the maximum over maxima)

V̂ ∗(·) = arg max
V (·)∈V

L∗ (V (·)) , (2.7)

where V is the set of all possible value functions.
In order to make this optimization tractable, we can restrict ourselves to

a set of value functions {Vθ(·)}θ∈Rm corresponding to a family of dynamics
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functions {fθ(·, ·, ·)}θ∈Rm parameterized by θ ∈ Rm, making the optimization
in question

V̂ ∗(·) = arg max
θ∈Rm

L∗ (Vθ(·)) . (2.8)

In practice, we may not be able to find an expression for the gradient
of L∗(Vθ(·)) with respect to θ, since the value function is derived from the
dynamics fθ(·, ·, ·) via the differential game given by (2.3). The lack of a
gradient expression restricts the use of numerical methods to solve the problem
as presented in (2.8). In these cases, we can compute a representative library of
b value functions {Vi(·)}bi=1 corresponding to a set of b representative parameter
values {θi}bi=1 (see Fig. 2.2 for an example library). The optimization then
reduces to choosing the most likely value function from among this library

V̂ ∗(·) = arg max
i∈{1,··· ,b}

L∗ (Vi(·)) . (2.9)

In order to ensure that the learned safe set is conservative, we can extend
our MLE to a Maximum A Posteriori (MAP) estimator by incorporating our
prior belief that, regardless of the safe set that the supervisor uses to generate
interventions, they do not want the robots to be unsafe with respect to the
true dynamics. In this case, we maintain a uniform prior P (θ) that assigns
equal probability to all Vθ(·) whose zero sublevel sets are supersets of the zero
sublevel set of the true V (·), and zero probability to all other Vθ(·). In other
words, we assume that the supervisor does not overestimate the agility of the
robots, and in practice we can enforce this condition by choosing the library
in (2.9) to only contain appropriate value functions. Moreover, regardless of
the choice of V̂H(·), we assume that the supervisor intends to intervene before
reaching the zero level set of V̂H(·), which always includes the boundary of K.
If we choose a prior P (µ) that assigns zero probability to all non-positive µ and
uniform probability elsewhere, it can be shown that the MAP estimates are
obtained by letting µ̂∗ equal max {µ̂∗, 0} and otherwise proceeding as before.
Fig. 2.3 provides an example of this algorithm estimating a safe set from
human supervisor intervention data.

2.4 Team Control with Learned Safe Sets

We propose that safe sets learned according to the approach in Section 2.3
can be used to create effective control laws for the robotic members of human-
robot teams. Recall our model of the human supervisor of a robotic team: the
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Figure 2.2: Two dimensional slices of the zero level sets of the value functions
Vi(·) from the library used for the experiment described in Chapter 3. We used
a family of Dubins car dynamics (see (3.1)) parametrized by ωmax. Notice that
as ωmax decreases (the modeled control authority is decreased), the level sets
extend farther away from the obstacle, indicating that a robot is expected to
turn earlier to guarantee safety.

supervisor must rely on each robot’s autonomy to complete the majority of
their tasks unassisted, but the supervisor may intervene to correct a robot’s
behavior when necessary (such as by avoiding an imminent collision with the
keep-out set K). We put forth that in the scenario where the human intervenes
to prevent a collision, they do so because they observe that a robot has violated
the boundaries of their mental safe set ΩH .

Now, consider a team of robots navigating an unknown environment, and
which are able to avoid any obstacles that they detect. One approach to safely
automating this team is to have each robot behave according to a minimally
invasive control law: the robots are allowed to follow trajectories generated
by any planning algorithm, so long as they remain within Ω, the reachable
set computed using the baseline dynamics model (2.1) with associated value
function V (·). Whenever these robots detect an obstacle, they add it to the
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Figure 2.3: An example data set from the experiment described in Chapter
3. The red circles represent the location of supervisor interventions, and the
colored background represents the learned value function V (·) with contour
lines shown in black. In this case, the learning algorithm chose a dynamics
model parametrized by ωmax = 0.75.

keep-out set K, thus modifying Ω and V (·). If a robot reaches the boundary
of Ω, it applies the optimal control to avoid K until it has cleared the obstacle.
However, it is possible that a robot does not detect an obstacle, and a human
supervisor must intervene to ensure robot safety.

As stated above, the human supervisor will intervene when a robot reaches
the boundary of ΩH , not the boundary of Ω. This discrepancy leads to the pos-
sibility that the supervisor will intervene when the robot reaches some state x,
even if the robot would have avoided the obstacle without intervention. These
situations arise whenever VH(x) ≤ µ but V (x) > 0. These “false positive”
interventions represent unnecessary work for the human supervisor, and we
seek to eliminate them in order to improve the human’s experience and the
team’s overall performance.
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We propose using a safe set Ω̂H learned from previous observations of su-
pervisor interventions, as outlined in Section 2.3, as a substitute for Ω in the
robots’ minimally invasive control law. By estimating the human’s internal
safe set, we take advantage of the following property:

Property. For an idealized supervisor collaborating with a team of robots as
described in Section 2.4, if the robots avoid detected obstacles K by applying
an optimally safe control at the boundary of safe set ΩS, then if the supervisor
plans to intervene because they observe ξi(t) ∈ RS for robot i, the supervisor
can infer that robot i has not detected an obstacle and any supervisor inter-
vention will not be a false positive.

Proof. The proof of this property follows constructively from the definitions
of safe set, idealized supervisor, and false positive. If robot i had correctly
detected an obstacle and adjusted its representation of ΩS accordingly, then
it would have applied the optimal control to remain within the supervisor’s
safe set. Therefore, if the supervisor is able to observe that robot i has left
ΩS, it must be the case that the robot has not detected the obstacle. False
positives are defined to be supervisor interventions that occur when a robot
has detected an obstacle but the supervisor still intervenes. In this case, the
supervisor can correctly infer that robot i has not detected an obstacle, so any
intervention at this point cannot be a false positive. �

For an idealized supervisor, as Ω̂S becomes an arbitrarily good approxima-
tion of ΩS, the number of false positive interventions will approach zero. For a
noisy idealized supervisor, the supervisor will intervene whenever VS(x)+w ≤
µ where w ∼ N (0, σ2

S). This noise will continue to produce false positives,
even with a perfect fit Ω̂S = ΩS, if the robots apply the optimally safe control
at the µ-level set of ΩS. Instead, the level set α where the optimally safe con-
trol is applied can be raised arbitrarily high to drive the false positive rate to
zero. For example, α = µ+ 2σS is sufficient to avoid over 97% of intervention
states used for learning, in expectation. We test the efficacy of our approach
through the human-subjects experiment described in Chapter 3.
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Chapter 3

Experimental Design for User
Validation

Our goal in understanding and modeling the supervisor’s conception of safety
is to improve team performance by decreasing cognitive overload. Although
we have based our human modeling on the cognitive science literature, we do
not intend to verify humans’ exact cognitive processes. Instead, we aim to
apply our inspiration from cognitive science toward building better human-
robot teams. To this end, our hypotheses are:

H1. Representing supervisor behavior as cognitive keep-out sets allows inter-
vention signals to be distilled into an actionable rule which will decrease super-
visory false positives and cognitive strain, thereby increasing team performance
and trust.

H2. Fitting danger-avoidance behavior to a supervisor’s beliefs is preferable to
generic conservative behavior.

In our experiment, we gather supervisor intervention data, fit our model to
the data, and then run a human-robot teaming task that assesses performance.

3.1 Procedure

Our experiment applies the idealized supervisor theory and learning algorithm
to supervising simulated robots. The robots moved according to the Dubins
car model:

18



Figure 3.1: Safe sets tested in our experiment (illustrated by their complemen-
tary reachable set): (left) Standard safe set (calculated from true dynamics
and obstacle size), (middle) example Learned safe set (calculated from fitted
supervisory perception of dynamics and obstacle size), (right) Conservative
safe set (calculated from true dynamics and inflated obstacle size)

ẋ = 3 cos(θ)

ẏ = 3 sin(θ)

θ̇ = u

u ∈ U = [−ωmax, ωmax], ωmax = 1

(3.1)

The experiment is divided into three phases. In Phase I, the subject is given
an opportunity to familiarize themselves with the robotic system’s dynamics.
The user is allowed to directly apply the full range of controls through the
computer keyboard for one minute. After ensuring the user has some expe-
rience from which to build an internal dynamics model, we then assess their
emergent conception of safety. In Phase II, supervisory data is extracted from
the subject by showing them scenes where the robot is driving towards an
obstacle, and the supervisor decides where to intervene to avoid a crash. This
intervention data is then fed into our algorithm (described in Section 2.3) that
extracts the best fitting safe set. Our estimator used a library of candidate dy-
namics functions parameterized by values of ωmax between 0 and 3, as shown
in Fig. 2.2. In this experiment, we enforced conservativeness by excluding sub-
jects whose Learned sets were not supersets of the Standard safe set, rather
than enforcing a prior directly on ωmax. The Learned safe set is assessed in
Phase III against two fixed safe sets (see Fig. 3.1) pre-calculated from the true
dynamic equations.

These safe sets were calculated using Hamilton-Jacobi reachability as de-
scribed in Section 2.1 using the Level Set Toolbox [22] for MATLAB. During
this final phase, the subject sequentially supervises homogeneous teams of
robots, each team avoiding obstacles based on one of the three assessed safe
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Figure 3.2: Screenshot of the task from Phase III of the experiment. Robotic
vehicles make trips back and forth across the screen, detecting and avoiding
each obstacle with 80% probability. The human supervisor must remove an
obstacle in the event that it is undetected, but must infer this information
from the robots’ motion.

sets. Ten randomly placed obstacles are strewn about the screen impeding
the robots’ autonomous trips back and forth across the screen (see Fig. 3.2).
Although robots will detect and avoid an obstacles in 80% of their interactions
with it, there is a 20% chance that the robot will not detect an obstacle as it
approaches. The subject is charged with catching these random failures and
removing an obstacle before the robot crashes. Crashing is disincentivized by
decrementing an on-screen “score” counter. Removing an obstacle costs only
half of what a crash costs the player. This system encourages saving the robot
but not guessing wildly. Moreover, simply clearing out all obstacles is not a
viable strategy because every obstacle removed generates a new obstacle else-
where. This score mechanism was also used to make the participant invested
in team success by awarding points every time a robot completes a trip across
the screen.
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3.2 Independent Variables

To assess our hypotheses, we manipulate the safe set used between team su-
pervision trials. We exposed the human subject to three teams, each driving
using one of three safe sets. The Learned set is derived from Phase II super-
visor intervention observations as described in Section 2, using α = µ. The
two baseline kernels are calculated using Hamilton-Jacobi-Isaacs reachability
on the true dynamic equations. The Standard set is calculated using the true
obstacle size. The Conservative set adds a buffer that doubles the effective
size of the obstacle, inducing trajectories that give obstacles a wide berth.

3.3 Dependent Measures

3.3.1 Objective Measures

The team was tasked with making trips across the screen to reach randomized
goals. The robots’ task was to travel across the screen, safely dodging obstacles
along the way, while the human was tasked with supervising as a failsafe to
remove an obstacle if the robots should fail to observe and avoid it.

Team performance was quantified using three objective metrics: number
of trips completed, number of supervisory interventions, and the number of
obstacle collisions. These metrics were presented to the subject as an aggre-
gated, arcade-style score. To incentivize participants to only intervene when
necessary, obstacle-removal interventions reduced the score, but only by half
as much as an obstacle collision.

The number of interventions taken by the supervisor can also serve as a
proxy measurement to quantify the amount of cognitive strain they experi-
ence while working with the robotic team. Of particular note are the number
of interventions that were not actually required, as the supervisor incorrectly
judged that a robot had not detected an obstacle. These false positives need-
lessly drain supervisor attention and indicate a lack of trust in the system.
We aim to increase the human’s trust in the system, which we quantify by a
decrease in these false positives.

3.3.2 Subjective Measures

After each round of pairwise comparison (completing the task with two dif-
ferent robotic teams), we presented the subject with a questionnaire to gauge
how the choice of safe set impacted their experience. These questionnaires
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contained statements about each team that subjects would respond to using a
7-point Likert scale (1 - Strongly Disagree, 7 - Strongly Agree). These state-
ments were designed to measure Trust, Perceived Performance, Interpretabil-
ity, Confidence, Team Fluency, and overall Preference between the teams in
the comparison.

3.4 Subject Allocation

The subject population consisted of 6 male, 5 female, and 1 non-binary par-
ticipants between the ages of 18-29. We used a within-subjects design where
each subject was asked to complete all three possible pairwise comparisons of
our three treatments (the safe sets used). We used a balanced Latin Square
design for the order of comparisons, with no treatment being first in a pair
twice. Furthermore, we generated six randomized versions of the task so that
subjects were presented with a different version of the task for each trial across
the three pairwise comparisons. To avoid coupling the treatment results to a
particular version of the task, each treatment was paired with each task version
an equal number of times across our subject population.
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Chapter 4

Analysis and Discussion

4.1 H1: False Positive Reduction over

Standard

Our first hypothesis is that a Learned safe set that reflects the supervisor’s
intervention behavior would decrease the number of false positives compared
to the Standard safe set. To test this, we performed a one-way repeated mea-
sures ANOVA on the number of supervisory false positives from Phase III of
the experiment with safe set as the manipulated factor. A false positive was
any supervisor intervention where the removed obstacle was actually detected
by all nearby robots, which would have avoided it successfully. The robot
team’s safe set had a significant effect on the number of supervisory false pos-
itives (F (2, 20) = 8.72, p < 0.01). An all-pairs post-hoc Tukey method found
that the Learned safe set significantly decreased (p = 0.0328 < 0.05) false
positives over the Standard safe set, but there was no significant difference
between the Learned safe set and the Conservative safe set (which also sig-
nificantly decreased false positives over the Standard safe set, with p < 0.01).
These results support our main hypothesis that representing supervisor
behavior as cognitive keep-out sets allows intervention signals to
be distilled into an actionable rule which will decrease supervisory
false positives.

The second half of that hypothesis, that decreasing supervisory false
positives will increase trust and team performance was not shown con-
clusively from our data. We performed a one-way, repeated measures ANOVA
on the pairwise comparison surveys between the teams using the Learned and
the Standard safe sets. Measures of trust showed no significant improvement
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Figure 4.1: Average number of false positives per trial plotted against the
three safe set types. There were significant differences between Standard and
Learned (p < .05) and between Standard and Conservative (p < .01). There
was no significant difference between Learned and Conservative.

(F (1, 9) = 1.86, p = 0.21).

4.2 H2: Preference over Conservative

For 9 of 11 participants, the Learned safe set had shorter avoidance arcs than
the Conservative set. We hypothesized that this greater efficiency would make
the tailored conservativeness of the Learned set preferable to the baseline Con-
servative safe set. However, a t-test showed that the survey responses for pref-
erence were statistically indistinguishable (p = 0.8) from a neutral score: an
inconclusive result for Hypothesis 2. We believe that this result stems from
users judging preference more on intelligibility, the ease of avoiding false pos-
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Figure 4.2: Regressed safe sets (viewed on the θ = 0 slice) from supervisor
intervention data overlaid on baselines. Three users’ safe sets clustered to
arcing like the Standard safe set. Three others clustered to arcing like the
Conservative safe set. The final five safe sets exhibit a distinct behavior that
reflects supervisors’ preference for gradual, pre-emptive arcs.

itives, than on efficiency, the shortness of paths. As discussed in Section 4.1,
both the Learned and Conservative safe sets led to significant false positive
reductions over the Standard set.

This indistinguishability is further compounded since a preference for intel-
ligibility seems to be expressed by some subjects in their Phase II intervention
data, resulting in their Learned safe sets having similar arcs as the Conser-
vative safe set (see Fig. 4.2). Future work could investigate this efficiency-
intelligibility trade-off further by using a conservative baseline that is distin-
guishably more conservative than user safe sets and by making efficiency more
central to the team task.
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Interventions Predicted Average Observed
in Safe Set F.P. vs Std. F.P. F.P. vs Std.

Standard 397 / 440 100% 12.54 100%
Learned 220 / 440 55.4% 7.31 58.3%
Conservative 115 / 440 29% 4.68 37.3%

Table 4.1: Predicted and observed false positives. Left: Predicted false posi-
tives from Phase II data. Right: Observed false positives in Phase III.

4.3 Model Validity

The statistically significant decreases in false positives observed in Phase III
agree with the decreases predicted by the supervisor model based on interven-
tion data from Phase II. Our model posits that interventions occur at states
noisily distributed about a safe set boundary. Therefore, it predicts that the
empirical distribution of Phase II intervention states contained within a pro-
posed safe set (see Fig. 4.3) will mirror the proportion of false positive in-
terventions observed in Phase III: if states are deemed safe by the controller,
they will not be avoided, even when the noisy supervisor would judge them to
be unsafe. Since the Learned safe set controller intervenes at the µ̂∗ level set
(see Section 2.3), exactly half the intervention states will be contained within
the Learned safe set in expectation. The model’s predictions are compared
against observed false positives in Table 4.1.
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Figure 4.3: Empirical distribution of intervention states observed during data
collection (Phase II of the experiment). The interventions within the Conser-
vative reachable set are colored in red, leaving 115 interventions in the corre-
sponding safe set. Similarly, the interventions within the Standard reachable
set are colored darker, leaving 397 interventions in the corresponding safe set.
Intervention states not contained within a reachable set would have generated
a false positive during the human-robot teaming task.
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Chapter 5

Conclusion

Automation with human supervisors relies on leveraging the human supervi-
sor’s cognitive resources for success. Respecting these resources is essential
for creating well performing human-robot teams. It is especially important to
avoid overtaxing the human as automated teams continue to scale up, and a
single human worker both accomplishes more and bears more cognitive load
than ever. To alleviate this burden, we can decrease the number of issues
that command the supervisor’s attention by reducing false positives. By mod-
eling which system states command supervisory attention, we can program
autonomous systems to avoid those states when they do not require attention.
To capture this information, we combine the concept of mental simulation
from cognitive science with formal safety analysis from reachability theory to
propose the noisy idealized supervisor model. We employ the noisy idealized
supervisor as the generative model in a learning algorithm to predict super-
visor safety judgements, and we present a safety controller for robotic agents
that respects the supervisor’s perception of safety. This safety controller is
guaranteed to reduce false positives for idealized supervisors. Furthermore,
for actual supervisors, our human-robot teaming user study demonstrated a
significant reduction in false positives when using our approach compared to
the standard baseline.

Our results show that it is possible to reduce false positives, and thus cogni-
tive load, by aligning robot behavior with humans’ expectations. Our approach
is applicable whenever reachability theory can tractably analyze a dynamical
system that will be subject to human safety judgements. Future work will
explore the impact of this framework on application domains from air traffic
management to self-driving vehicles.
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