
An Internet-Spanning Content Distribution Mechanism for
IoT

Griffin Potrock

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-56
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-56.html

May 11, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I’d like to thank the SwarmLab for supporting me through my degree. In
particular, I’d like to thank Professor John Kubiatowicz for serving as my
adviser and for helping shepherd this research. I’d also like to thank Nitesh
Mor for many design meetings and significant contributions to the GDP
sections of this thesis. I am grateful to Eric Allman and Richard Pratt, who
served as frequent sounding boards. Thanks is due to Ken Lutz for his advice
in the process of producing this work. Dylan Dreyer also deserves credit for
contributions implementing and analyzing the simulations. I would also like
to thank Professor Ion Stoica for his feedback on the project’s direction.
Finally, I would like to thank the faculty reviewers of this work, Professors
John Kubiatowicz and John Wawrzynek.

An Internet-Spanning Content Distribution Mechanism for IoT

by

Griffin Potrock

A thesis submitted in partial satisfaction of the
requirements for the degree of

Master of Science

in

Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor John Kubiatowicz, Chair
Professor John Wawrzynek

Spring 2018

The thesis of Griffin Potrock, titled An Internet-Spanning Content Distribution Mechanism
for IoT, is approved:

Chair Date

Date

University of California, Berkeley

An Internet-Spanning Content Distribution Mechanism for IoT

Copyright 2018
by

Griffin Potrock

1

Abstract

An Internet-Spanning Content Distribution Mechanism for IoT

by

Griffin Potrock

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor John Kubiatowicz, Chair

Low-cost, Internet-connected devices are rapidly proliferating in a computing mega-trend
known as the Internet of Things (IoT). While the IoT offers great opportunities, from smart
cities to smart homes, it also offers many new computing challenges. These challenges include
handling larger numbers of devices; handling more upstream and inter-device communica-
tion; and managing the secure storage and distribution of rapidly increasing amounts of
data.

The Global Data Plane (GDP) project seeks to re-architect the networking infrastructure
of the Internet to accommodate these trends. The GDP relies on replicated, append-only
logs. In addition to being a durable data store, these logs are often used as a single-writer
publish/subscribe mechanism.

This thesis proposes new mechanisms for adapting publish/subscribe to the networking
challenges of IoT. We detail design choices for a new overlay-based multicast system, the
Secure Content Distribution Tree (SCDT), that are both novel and thoroughly grounded
in existing literature and experience to ensure viability. We also propose new, scalable
mechanisms for providing reliability in such a system. While our evaluation focuses on
demonstrating the viability of our multicast architecture and reliability mechanisms through
simulations, we also include discussions on security and deployment.

i

Contents

Contents i

List of Figures ii

List of Tables iv

1 Introduction 1
1.1 Background . 1
1.2 Related Work . 3
1.3 Motivation . 6

2 The Global Data Plane 9
2.1 GDP Architecture for the Internet of Things 9
2.2 Secure Content Distribution Trees in the GDP 12

3 Methodology 14

4 Secure Content Distribution Trees 17
4.1 Architecture . 17
4.2 Security Implications . 21
4.3 Evaluation . 23

5 Reliability in SCDTs 28
5.1 Cached Nack Reliability . 28
5.2 Evaluation . 29

6 Wrapping Up 31
6.1 Future Work & Lessons Learned . 31
6.2 Conclusion . 32

ii

List of Figures

2.1 The Global Data Plane (GDP) operates above the network level and offers Common
Access APIs (CAAPIs) to applications rather than raw packet routing. We argue that
this abstraction is more appropriate for both IoT applications and the cloud. 10

2.2 The GDP design illustrated: (a) single-writer logs are appended to the head and com-
positions are achieved by subscription; (b) logs are split into chunks and stored in a
distributed fashion; (c) overlay multicast trees are constructed when there are multi-
ple subscribers; (d) location-independent routing enables log migration for optimizing
performance. 11

3.1 A diagram of a top-down BRITE topology [38]. 15

4.1 An example SCDT running over a physical network with a traffic camera publishing
data. The overlay network considers only the arrow links, which represent parent-child
links. Legend: large nodes are running SCDT software; small nodes are not running
SCDT software; arrow lines are overlay links; dashed lines are physical links; ovals are
trusted domains. 18

4.2 Left: Overlay routing without forced participation, requiring unnecessary retransmis-
sion. Right: Overlay routing with forced participation. Children receive the packet
faster, and the non-subscribing router handles fewer packets. Legend: light gray routers
are not subscribing; dark gray routers are subscribing; solid lines are physical links;
dashed lines show packet flow. 19

4.3 Left: A physical network with SCDT nodes running on some machines. Right: The
logical tree formed from that network. Legend: blue routers are not subscribing; red
routers are subscribing; solid lines are physical links; dashed lines show packet flow. . 21

4.4 The overlay multicast tree constructed out of 25 subscriber nodes and 1 publisher con-
nected to a BRITE topology. Topologies vary from run to run due to the randomization
of the BRITE topology and the link qualities. 24

4.5 Impact on latency of increasing the number of subscribers in the tree, with MAX_STRETCH
set to 2. Left: The average latency of a single packet to subscribers over multiple runs.
Right: The average latency of a single packet to subscribers, plotting individual runs
and an exponential trend line. 25

iii

4.6 Impact on latency of increasing the MAX_STRETCH parameter in the tree, with the number
of subscribers fixed at 100. Left: The average latency of a single packet to subscribers
over multiple runs. Right: The average latency of a single packet to subscribers, plotting
individual runs and an exponential trend line. 25

4.7 Impact on tree depth of increasing the MAX_STRETCH parameter in the tree, with the
number of subscribers fixed at 100. Left: The average depth of the tree over multiple
runs. Right: The average depth of the tree plotting individual runs and an exponential
trend line. 26

4.8 Impact on throughput of increasing the number of subscribers in the tree. Sampled by
sending 10KB with MAX_STRETCH fixed at 2. Left: The average throughput of the tree
over multiple runs. Right: The average throughput of the tree plotting individual runs
and an exponential trend line. 26

5.1 Impact on throughput of packet loss rate using CNR. Sampled by sending 100KB to
a tree containing 50 subscribers and a MAX_FANOUT of 4. The red line represents the
average throughput of TCP over several runs with no packet loss. Left: The average
throughput of CNR over multiple runs. Right: The average throughput of CNR plotting
individual runs and an exponential trend line. 30

iv

List of Tables

1.1 Comparison of IP multicast and overlay multicast. 3
1.2 Comparison of publish/subscribe systems. 5

3.1 Selection of BRITE model parameters and their meanings [16]. 16

4.1 Comparison of various overlay multicast schemes. 20

v

Acknowledgments

Many people contributed to the completion of this thesis. I’d like to thank the UC Berkeley
SwarmLab in general and the SwarmLab Global Data Plan group in particular for supporting
me through the research process. In particular, I’d like to thank Professor John Kubiatowicz
for his architectural guidance, for serving as my adviser, and for helping shepherd this
research to completion. I’d also like to thank Nitesh Mor for many long design meetings and
his sage advice on graduate studies, as well as significant contributions to the GDP sections of
this thesis. I am eternally grateful to Eric Allman and Richard Pratt, who were both critical
in helping me clarify the structure of SCDTs and served as frequent sounding boards. Thanks
is also due to Ken Lutz for his advice and guidance in the process of producing this work.
Dylan Dreyer also deserves credit and praise for substantial contributions in implementing
and analyzing the simulations presented in this work. I would also like to thank Professor Ion
Stoica for his feedback on the project’s direction. Finally, I would like to thank the faculty
reviewers of this work, Professors John Kubiatowicz and John Wawrzynek, for taking the
time to review this thesis.

1

Chapter 1

Introduction

1.1 Background
The Internet of Things is a computing macrotrend poised to change the way we interact with
computing environments and reshape the Internet. While the push toward cloud computing
has lead to increasing centralization of the Internet into a handful of data centers, the
proliferation of IoT devices is pushing computation and data flows back toward the network
edge.

IoT applications may be worth up to $11 trillion by 2025. However, 40% of this value
relies on coordination between IoT systems [36]. Developers face any a number of challenges
in capturing this value. An effective IoT deployment cannot simply be a direct connection
between every individual IoT device and a cloud data center [60]. Round trips to the cloud are
inefficient in latency, bandwidth, and network , limiting scalability and imposing deployment
constraints. IoT devices are often embedded, low-power devices with low duty-cycles, making
ensuring reliability and durability of data at best an unnecessary energy drain and at worst a
debilitating constraint. Furthermore, routing to and utilizing the cloud comes with a number
of privacy and security risks.

Latency, Bandwidth, and Scalability
In many cases, IoT devices can only realize their potential when they are able to distribute
their data to thousands or millions of subscribers efficiently. For example, a temperature
sensor might need to publish current temperature readings to every HVAC system in a
neighborhood, or an air quality sensor might need to send pollution warnings to citizens in
a wide area.

Many IoT applications involve real-time latency constraints, which almost entirely pre-
clude going to the cloud to access data. A traditional option is for the device originating the
record to store and retransmit it to interested nearby devices that fail to receive the original
transmission. This is a poor option given the constraints of such end-devices. If neither

CHAPTER 1. INTRODUCTION 2

the cloud nor the original device are a reasonable source of caching and retransmission, that
means that responsibility must be pushed elsewhere in the network.

Since many IoT applications involve nearby devices intercommunicating, round trips to
the cloud make little sense. Such a solution would place undo stress on the border gateways
of the network, requiring beefy links to the Internet. This is an unnecessary expense and a
serious problem for remote deployments.

Device Constraints
The uniformity of the phrase “Internet of Things” obscures the massive variety of devices and
software that will be deployed in the IoT, not only across manufacturers and developers but
also between different versions deployed at different times. Achieving consistent performance
is difficult in the presence of such heterogeneity. Some popular controllers such as Raspberry
Pi [48] and BeagleBone [9] are powerful enough to run full desktop Linux distributions.
Others, such as Telos B [46], which remains popular in the wireless sensor network research
community, focus on minimizing power consumption. Even low-power motes have a variety
of choices when it comes to operating systems, including TinyOS [33], Contiki [18], and
RIOT [5]. Further, such motes may only be able to transmit occasionally due to power
constraints, such as motes that use power harvesting techniques.

Developers currently looking to build heterogeneous IoT systems must develop solutions
that can coordinate across an ever increasing mix of hardware and software deployed in the
field. The low duty cycle of some IoT devices can make direct inter-device communication
difficult.

In many cases, IoT devices will also have to ensure the reliability and durability of their
data. Having all data subscribers communicate directly with the publisher, such as with
TCP, is essentially impossible due to inconsistent timing and a lack of sufficient processing
power and bandwidth on virtually all IoT devices to service heavy traffic.

Privacy and Security
Security requirements can impose significant constraints on any networking protocol for
the IoT. Many applications will require data confidentiality, necessitating that all data be
encrypted. This encryption scheme must be scalable to communication with thousands of
devices.

Encryption alone, however, does not preclude side-channel attacks or traffic analysis
attacks [45]. One example might be a device that writes an encrypted “open/close” com-
mand to a door, allowing anyone who can snoop on the encrypted traffic to determine when
someone enters/exits the building without decrypting the data. Corporations in particular
frequently do not want to entrust their proprietary data to external storage or allow it to
be routed outside their corporate network, even when it is encrypted. Data regulations in
some countries restrict what data can flow across international borders [14]. Even within

CHAPTER 1. INTRODUCTION 3

IP Multicast Overlay Multicast
Incrementally Deployable No Yes

Easily Support Firewalls/NATs No Yes
Network Stress Lower Higher
Average Stretch Lower Higher

Table 1.1: Comparison of IP multicast and overlay multicast.

countries, any IoT data security scheme must allow some restriction on where data is allowed
to flow, or set up secure, noise-injected channels between trusted nodes.

1.2 Related Work
Our solutions build upon the large body of academic literature and industry experience in
multicast. Multicast is fundamentally a simple concept: rather than sending packets to
individual destinations, the network uses intermediate routers as fanout points to reduce the
strain on any one router. Unfortunately, this concept has seen limited adoption due to a
number of implementation and deployment issues. There are two fundamentally different
categories of multicast schemes: IP multicast and overlay multicast. Either can be used in
a publish/subscribe system.

IP Multicast
IP multicast is a network-level multicast concept that has been a popular research topic
since at least the 1990s. Despite the uniformity implied by the name, there is no one single
IP multicast protocol or technology. Rather, IP multicast instead refers to a collection of
protocols. In general terms, these protocols rely on constructing forwarding tables at indi-
vidual routers that map an IP multicast address to a series of next-hop routers. IP multicast
addresses are specified in RFC 1112 [15]; specifically addresses ranging from 224.0.0.0 to
239.255.255.255 are pointed to zero or more end-hosts.

Perhaps the most common IP multicast deployment involves Protocol Independent Mul-
ticast (usually Sparse Mode) [19] and Internet Group Management Protocol (IGMP) [21].
Although they operate at the network level, these protocols operate above the protocols that
actually construct IP forwarding tables. Therefore, they can be used in conjunction with
most routing protocols, such as OSPF [42], IS-IS [29], and RIP [35] - hence the “Protocol
Independent” portion of the name.

In brief, PIM-SM works by having routers with downstream clients send Join/Prune
requests towards a designated Rendezvous Point (RP) and using these requests to build the
forwarding tables. Data is then multicasted by having each router forward the data on all
interfaces that have downstream clients in the multicast group.

CHAPTER 1. INTRODUCTION 4

There are any number of alternative and supplementary protocols in the IP multicast
space. PIM Dense Mode (PIM-DM) [1], Border Gateway Multicast Protocol (BGMP) [55],
Multicast Open Shortest Path First (MOSPF) [41], Distance Vector Multicast Routing Pro-
tocol (DVMRP) [56], Core Based Trees (CBT) [7], and Ordered Core Based Trees (OCBT)
[51] all fill similar niches with varying degrees of success. PIM can also be supplemented
with protocols like Multicast Source Discovery Protocol (MSDP) [37], which interconnects
PIM-SM domains. Multicast Listener Discovery Protocol (MLDP) [28] is essentially the
IPv6 version of IGMP.

A number of reliability schemes have been implemented on top of IP multicast, and
are overwhelmingly based on negative acknowledgments (NAKs). NACK-Oriented Reliable
Multicast (NORM) [2] handles reliability by asking receivers to send a negative acknowl-
edgment to request retransmission when a missed packet is detected. Pragmatic General
Multicast (PGM) [52] also uses nacks but trades off reliability guarantees for performance.
Scalable Reliable Multicast (SRM) [23] includes stronger locality principles: receivers re-
cover by multicasting a repair request, and the missing data is retransmitted by any host
that has received the packet. Excessive repair requests/retransmissions are suppressed using
exponential backoffs.

None of these protocols have seen much deployment outside of individual organization
networks, let alone an Internet-spanning deployment that would be needed in an IoT world.
The biggest problem has always been the deployment of multicast-capable routers. Since IP
multicast is network-level, generally all or at least most routers in the network must be able
to “speak” the required protocols. Similar to IPv6, which despite substantial effort reached
just 10% deployment by its 20th anniversary [10], IP multicast cannot be fully effective until
a large portion of the Internet adopts it, but few ISPs want to invest in a protocol with vague
future returns. This is the primary reason IP multicast has seen some limited deployments,
such as in corporate networks where the deployment can be controlled by a single entity, but
has not been widely deployed in the broader Internet. Other limiting factors on IP multicast
include but are not limited to difficulties handling interdomain routing (and who will pay
for it); problems handling NATs and firewalls; and security/authorization challenges [17].

Overlay Multicast
Overlay multicast (also called Application Level Multicast or Application Layer Multicast)
schemes arose to mitigate some of the problems faced by IP multicast schemes. Overlay
multicast utilizes the same fundamental concept as IP multicast, using intermediate routers
as fanout points to improve network efficiency. As the name suggests, overlay multicast
schemes operate on overlay networks [34]; they are application-level, rather than network-
level, protocols.

The biggest advantage of this approach is that it eliminates the deployment problems
faced by IP multicast; “multicasts” actually take the form of a series of unicast transmissions
to specific destination routers, routed over IP, which then further propagate the transmission.
Therefore, a handful of hosts running overlay multicast software can be deployed and reap

CHAPTER 1. INTRODUCTION 5

GDP RabbitMQ Kafka ZeroMQ
Data Distribution Push Push Pull Pull

Data Structure Append-Only Log Queue Append-Only Log Queue
Data Filtering No Yes Yes No
Edge-Ready Yes No No No

Table 1.2: Comparison of publish/subscribe systems.

(some of) the benefits of multicast without having to deploy IP multicast-enabled hardware
throughout the network.

One of the biggest challenges with overlay multicast is that the notion of neighboring
nodes is not as intuitive as it is in IP multicast. For instance, simply routing a join request
towards a rendezvous point (as PIM-SM does) does not guarantee that the packet will ever
encounter a router running the overlay multicast software before reading the RP, reducing
such a scheme to little better than unicast. In addition, overlay multicast is inherently less
efficient than IP multicast because overlay multicast does not fully consider the underlying
network the way IP multicast can.

There have been a number of influential overlay multicast implementations. Scribe [12]
builds a multicast tree on top of Pastry [49], a Distributed Hash Table (DHT) implemen-
tation with locality properties. By routing along Pastry towards a rendezvous point, Scribe
constructs a multicast tree from the union of the routes along the DHT. Overcast [30] takes
a different approach. Joining nodes will contact the root of the overcast tree and sample
the connection bandwidth. The joining node then begins a series of rounds in which it will
sample the current parent node’s children and attach itself to the closest child that does not
significantly reduce bandwidth. Narada [13] generates a connected graph among the nodes
called a mesh and constructs spanning trees from there.

Publish/Subscribe Systems
The pub/sub architecture [20] is a frequently used communications model for distributed
applications. As the name suggests, subscribers register interest in specific events, and are
notified of relevant events created by publishers. While the model is simple, there are many
different implementations that favor different design constraints. Dedicated pub/sub systems
include RabbitMQ, Apache Kafka, and ZeroMQ.

RabbitMQ [3, 4] and Kafka [31] are both pub/sub infrastructures. There are several
similarities, including having a similar architecture based on queues and message brokers.
The biggest fundamental difference between the two is that RabbitMQ brokers push data
to subscribers; in Kafka, clients must request data from the brokers. Both are primarily
centrally deployed (e.g. in data centers) and are mainly scaled by increasing the number of
brokers.

CHAPTER 1. INTRODUCTION 6

ZeroMQ [27] takes a fairly different approach. When configured to use multicast, sub-
scribers attach to the multicast tree via multicast switches; publishers send data to these
multicast switches to forward through the network. These switches use Pragmatic General
Multicast (PGM) [52], discussed briefly in section 1.2, to distribute data. Unfortunately,
ZeroMQ inherits many of the issues associated with PGM. ZeroMQ cannot generally be
deployed on top of an existing network because of its reliability on IP multicast. Publishers
have no way to determine when subscribers join, fail, or reconnect. Subscribers have no
ability to communicate with publishers to control the rate of messages; they must either
receive published data at full speed or drop packets.

All three of these systems exist in data centers and are not aimed at deployment on the
edge from either a scalability or security perspective. See chapter 2 for more on the edge-
focused pub/sub paradigm offered by the GDP and for our arguments on the advantages of
this paradigm over these existing pub/sub systems.

1.3 Motivation
This thesis argues for a new approach to multicast, primarily in order to enable a more
efficient publish/subscribe mechanism for IoT. Decades of work on IP multicast, however,
have produced lackluster results in real-world deployments, with the biggest roadblock being
the inability to incrementally deploy a multicast service. Overlay multicast schemes were
created to solve these problems.

However, existing overlay multicast schemes remain limited in their use cases. None
target the level of scale necessary for the Internet of Things. When it was introduced,
Overcast [30], for instance, was not evaluated on real deployments of significant size, and
only simulated on up to 600 nodes. Multicast groups in the IoT could grow to thousands
or even millions of nodes. Even without considering such large groups, with the number of
Internet-connected IoT devices surpassing 31 billion [40] in 2018, smaller multicast groups
will often be sharing the same infrastructure, so multicast mechanisms must still be relatively
lightweight and efficient.

Further, existing overlay multicast mechanisms are targeted at a non-mobile publisher
maximizing throughput to subscribers. Taking full advantage of the Internet of Things will
require pushing computation and networking to the edge. In many cases, this will mean
an IoT multicast scheme must rapidly adapt to a mobile publisher. Perhaps even more
significantly, developers will need the ability to rapidly push data to local devices. IoT
devices in the same vicinity may need to interact with each other in real time, such as a
smart home that turns on a light when a user opens the door or streams security camera
footage to the living room TV.

Devices further away are less likely to have real-time dependency on the data. This leads
us to propose a shift: that an IoT multicast scheme should prioritize delivering data to local
subscribers over subscribers further away. We further argue that, given the relatively small
or infrequent messages published by many IoT devices (e.g. a temperature sensor publishing

CHAPTER 1. INTRODUCTION 7

readings once per minute), an IoT multicast should prioritize latency over bandwidth. Of
course, latency is determined not just by the route packets take but also by the stress on the
network, the fanout at any individual node, and the quality of links (if the scheme is reliable,
lossy links will require more retries). We argue that the metric to optimize is stretch. Stretch
is defined as:

Actual Route Latency

Optimal Route Latency

We measure stretch for a given node in practice using:

(Node Latency to Parent) + (Parent Latency to Publisher)

Node Latency to Publisher

By setting a worst case stretch value, a multicast scheme can force traffic to route through
non-optimal routes in order to improve fanout and reduce stress, while simultaneously pre-
venting long, snaking multicast trees that reduce latency.

Stress on a given link is defined as “the number of identical copies of a packet carried
by a physical link” [13]; average stress is the average of stresses across all physical links in
the network. This metric is already established in the literature as a relevant measure of the
efficiency of application-level multicast.

For the purpose of the remainder of this paper, we generally refer to the “latency” of
a given node as the one-way transmission time from the root of the multicast tree to the
given node. One of the advantages of our simulation environment, described in chapter 3, is
that we do not have to perform clock synchronization or use round-trip times to determine
latency. We are primarily interested in this particular latency because it represents the path
data will generally take from the publisher to subscribers.

Unless otherwise noted, the “root” of the multicast tree refers to the publisher of data in
the tree.

Finally, existing multicast implementations have not paid sufficient attention to security
concerns. Multicast schemes face some of the same security concerns as other applications,
specifically ensuring confidentiality and authenticity of data transmitted over the network.
However, the solutions that work in unicast do not apply directly to multicast. The publisher
cannot negotiate a separate key for every subscriber in a system with any amount of scale.
Using a shared symmetric key for the group raises the question of how to distribute such a
key to new subscribers and revoke access from other subscribers.

Encryption alone cannot prevent side-channel or traffic analysis attacks. With many
organizations loathe to give up access to their data (and some prevented from doing so
by law), networking schemes to restrict the flow of data have a clear use case. Existing
multicast solutions (and many networking solutions in general) do not take trust of the
underlying network into account in routing. While assuming the underlying network to be
untrustworthy has been the traditional network security assumption, relying on end-to-end
encryption solutions alone is increasingly becoming untenable.

CHAPTER 1. INTRODUCTION 8

Our design of a new, edge-focused multicast is developed in conjunction with and targeted
for the Global Data Plane (GDP) project, a publish/subscribe architecture for the Internet
of Things (see chapter 2). The GDP seeks to shift the publish/subscribe model to favor the
edge over data centers; as such, a new multicast system fitting this model was necessary.

9

Chapter 2

The Global Data Plane

We have developed Secure Content Distribution Trees in conjunction with the Global Data
Plane (GDP) project. The SCDT concept is not exclusive to the GDP; however, the GDP is
a case study of the applications benefited by SCDTs. We will reference the GDP throughout
the remainder of this paper in order to demonstrate the broader infrastructure SCDTs are
designed to operate within.

2.1 GDP Architecture for the Internet of Things
The Global Data Plane (GDP) is a data-centric abstraction focused around the distribution,
preservation, and protection of information [60]. It supports the same application model as
the cloud, while better matching the needs and characteristics of the IoT by utilizing hetero-
geneous computing platforms, such as small gateway devices, moderately powerful nodes in
the environment and the cloud, in a distributed manner. As shown in Figure 2.1, the GDP
interface provides a new “narrow waist” upon which applications are constructed. The basic
foundation of the GDP is the secure, singlewriter log. Logs in the GDP are lightweight,
durable, and they support multiple simultaneous readers—either through random access
(pull-based) or subscription (push-based). Logs have no fixed location but rather are mi-
grated as necessary to meet locality, privacy, or QoS needs of applications. Applications are
built on top of the GDP by interconnecting log streams, rather than by addressing devices
or services via IP. Each sensor or computational element of an IoT application has its own
unique output log in the GDP and writes timestamped entries to this log. Actuators read
from a unique input log. The GDP masks the heterogeneity of underlying communication
paradigms, network/storage devices, and physical connections; and on top, it supports a
wide variety of Common Access Application Program Interfaces (CAAPIs) for applications.
We detail a few key design decisions below:

1. Single-writer time-series logs: For each IoT device or application component that
generates data, this data is represented as a log where the owner has the sole write permis-
sion. This model is based on our observation that peripherals are physical devices in our

CHAPTER 2. THE GLOBAL DATA PLANE 10

Figure 2.1: The Global Data Plane (GDP) operates above the network level and offers Common
Access APIs (CAAPIs) to applications rather than raw packet routing. We argue that this abstraction
is more appropriate for both IoT applications and the cloud.

environment. We assume that devices have cryptographic keys for signing and encryption.
Logs are append-only; most data is readonly and can be securely replicated and validated
through cryptographic hashes. For each log, our current design exposes append, read and
subscribe APIs. The single-writer model allows the following properties:

• Flexibility: The log interface is minimum but complete. Aggregations of logs or
CAAPIs (discussed below) can be built by composition. In part (a) of Figure 2.2,
a new log is created by composing two existing ones and writing back to the GDP.

• Access Control: Since devices and services have associated public-key identities, each
log has a single authorized writer. An append operation is permitted only when signed
by the appropriate writer’s key. For read operations, only those with an appropriate
decryption key can decrypt the data, providing for a way to implement read-access
control policies; a variety of more complex access control policies can be constructed
through hierarchical key management or selected use of trusted environments.

• Authenticity and integrity: Since only signed append operations are allowed, accidental
or malicious corruption of the log won’t occur and substitution attacks are easily
detected. A variety of traditional consistency problems are replaced with the simpler
problem of finding the latest update.

• Encryption: We envision that all data written to the log is encrypted with the encryp-
tion key held by the writer. A single writer with a single encryption key simplifies the
key management challenges.

• Durability and replication: In contrast to the cloud where users rely on whatever dura-
bility the cloud providers offer, our model enables the choice of the level of durability
and geographic span of replication on a per log basis. The log model also simplifies
replica consistency as previously mentioned.

CHAPTER 2. THE GLOBAL DATA PLANE 11

Figure 2.2: The GDP design illustrated: (a) single-writer logs are appended to the head and
compositions are achieved by subscription; (b) logs are split into chunks and stored in a distributed
fashion; (c) overlay multicast trees are constructed when there are multiple subscribers; (d) location-
independent routing enables log migration for optimizing performance.

2. Location-independent Routing: Logs must be physically stored in the infras-
tructure. As previously discussed, the current reliance of IoT on cloud storage provides few
guarantees about the placement, latency of access, or durability of information. Instead, to
embrace heterogeneous platforms and support a variety of storage policies, the GDP em-
ploys location-independent routing in a large, 256-bit address space. To meet the goal of
flexible placement, controllable replication and easy migration, packets are routed through
an overlay network of routers running GDP software. GDP optimizes latency through log
migration (see Figure 2.2(d)) and dynamic changes to the routing topology.

Logs are named with a 256-bit identifier which may be derived from a cryptographic hash
of the owner’s public key and metadata. Following a variety of placement and replication
policies, the GDP places logs within the infrastructure and advertises the location of these
logs to the underlying routing layer. Such placement and replication policies can optimize for
latency, QoS, privacy, durability, and so forth. Internally, logs are further split into chunks,
and each chunk can be distributed for durability [32] and performance [24] (see Figure 2.2(b)).

3. Pub/Sub and multicast tree: The publish/subscribe pattern has been shown
to support a wide variety of fundamental communication services (for mobility, multicast,
anycast [54]). This fits nicely with our log abstraction and can support building interactive
applications. To alleviate the growth of sensor data bandwidth, when multiple subscribers
exist, multicast trees can be built on top of the overlay network. We propose one such
method in this thesis in chapter 4.

4. Common Access API (CAAPI): Although the singlewriter log abstraction shel-
ters developers from low-level machine and communication primitives, many applications are
likely to need more common APIs or data structures [6]. In fact, logs are sufficient to imple-
ment any convenient, mutable data storage repository. Thus, Figure 2.1 shows a CAAPI
layer on top of the GDP. A CAAPI can provide key-value store, file system or database oper-
ations. Since logs serve as the ground truth, the benefit of consistency, durability, scalability
and availability are carried over to CAAPIs for free. However CAAPIs may need to replay
the logs if the service fails; in this case, checkpointing can be employed to avoid expensive

CHAPTER 2. THE GLOBAL DATA PLANE 12

log replay.
The single-writer, append only log models sensor data more accurately; integrity and

authentication by design provides better privacy and security; the distributed nature with
multicast makes scalability possible; explicit separation of policy from mechanism enables
better control on level of durability for end users; and finally, latency, bandwidth and QoS
guarantees are enabled by the integration of the cloud and the local infrastructure.

2.2 Secure Content Distribution Trees in the GDP
The Global Data Plane Infrastructure and its pub/sub architecture offer a real-world case
study for the application of Secure Content Distribution Trees (SCDTs), a networking pro-
tocol we will detail in the following chapters. SCDTs provide three main utilities to the
GDP:

1. SCDTs provide the mechanism by which data is distributed to thousands or millions
of geographically-disparate subscribers securely (and reliably, if necessary).

2. SCDTs provide the mechanism for distributing data among durable replicas.

3. SCDTs support fast distribution of data to local subscribers, enabling latency-dependent
applications.

The GDP is designed to allow publishers to reach thousands or millions of subscribers.
Often, the publisher and many (or all) of the subscribers are low-powered IoT devices. Those
requirements necessitate a multicast scheme; a traditional client-server model is simply not
scalable. Because the GDP is designed to support many different applications, it also requires
reliable distribution of published data. Even ignoring reliable applications, durable replicas
require reliability support.

The edge-focused nature of the GDP/SCDTs fills a need in pub/sub architectures not
met by existing systems like Kafka, RabbitMQ, and ZeroMQ. All of those systems exist pri-
marily in data centers; we have already discussed the drawbacks of this approach for the IoT
in section 1.1. In addition, they don’t account for the large number of overlapping data flows
in a network involving many edge devices communicating with each other. This is a funda-
mentally different constraint than a relatively small number of publishers and subscribers
communicating with a data center; in traditional applications, peer-to-peer communication
is less common and client-server more prominent. Using GDP/SCDTs, the pub/sub system
and the routing system are combined to increase efficiency, and can be scaled together. De-
ploying additional GDP routers on-site would generally improve performance, while with the
older pub/sub systems scaling has to be done at the data center, which individual end-users
may have limited or no control over.

One of the major, distinctive features of the IoT in general and the GDP in particular is
the peer-to-peer nature of many applications. For instance, a street intersection might have

CHAPTER 2. THE GLOBAL DATA PLANE 13

many “smart” devices that need to communicate amongst themselves with strong latency
constraints (such as stop lights, street cameras, and car sensors) and with devices further
away with weaker latency requirements (such as nearby intersections or a central control)
in a city’s traffic control system (see Figure 4.1). A traditional client-server model would
require round trips to the cloud; one of the design goals of the GDP and SCDTs is to break
out of this model to focus on supporting edge computing.

14

Chapter 3

Methodology

Our evaluation methods are based on simulations using ns-3 [44], a discrete-event network
simulator written in C++. ns-3 allows us to simulate the entire Internet stack, from physical
links up through link, network, and transport level protocols. Developing our applications
for ns-3 closely models the development process for a full implementation. We developed
SCDTs and CNR at the “application” level and “install” them onto our simulated nodes.
Our applications are written comparably to real implementations and behave similarly. Each
instance of our software is separated from each other instance; just like in a real network,
they can only communicate over the network using sockets. There is no overarching control
program coordinating the nodes in the simulation for us or otherwise simplifying coordination
and communication among nodes. The interfaces to the ns-3 library, such as our simulated
sockets, closely parallel the actual C++ socket interfaces, meaning that porting application
code from an ns-3 simulation into an actual implementation would not require major re-
architecting.

ns-3 allows us to manually specify a network topology, including the number of nodes, the
connections between them, the protocols used at each layer, and a number of parameters such
as bandwidth, network delay, and packet drop rate. We use ns-3 library implementations of
the IP stack including UDP and TCP; our code sits on top of these, handling the application-
level SCDT/CNR protocols. Both SCDTs and CNRs were coded in C++. The advantage of
this approach is that our simulated SCDTs closely mirror a full standalone implementation;
the disadvantage is that trying new algorithms is non-trivial, and dealing with both ns-3’s
and C++’s nuances makes rapid prototyping more difficult.

However, just because a given topology in ns-3 behaves as it would in the real world
does not mean that the topologies selected necessarily reflect real-world deployments. To
address this issue and avoid biasing our results by selecting hand-built topologies that favor
our algorithms, we instead take advantage of BRITE [39] and BRITE integration in ns-3.
BRITE, the Boston university Representative Internet Topology gEnerator, is a synthetic
topology generation framework [11, 58] designed to create topologies that closely resemble the
Internet in aspects including hierarchical structure and degree distribution. Using BRITE
topologies for our simulations greatly strengthens our argument that SCDTs and CNR are

CHAPTER 3. METHODOLOGY 15

Figure 3.1: A diagram of a top-down BRITE topology [38].

practical in real-world deployments. BRITE offers a number of different models, which can
be tuned to generate topologies with various numbers of ASes and nodes. Specifically, we
configured BRITE to use a model composed of the the Barabási-Albert model [8] and the
Waxman model [57] (see Figure 3.1), which are algorithms for generating network topologies.
BRITE also offers many tunable parameters to tweak how the model performs; see Table 3.1
for more on BRITE parameters.

In each test run, we randomly select a subset of BRITE-generated leaf nodes to attach
a node with our software “installed”. In order to generate our results, we run our tests
repeatedly in order to get results across many different BRITE-generated topologies and
many different distributions of overlay-enabled routers. We then draw our results from the
aggregate of this data, arguing that it is representative of an average use case of SCDTs and
CNR on the Internet.

CHAPTER 3. METHODOLOGY 16

Parameter Description
Flat Topology

HS Size of one side of the plane
LS Size of one side of a high-level square
N Number of nodes

Model Model ID
alpha Waxman-specific exponent
beta Waxman-specific exponent

Node Placement How nodes are placed in the plane
m Number of links per new node

Growth Type How nodes join the topology
BWdist Bandwidth assignment to links
MaxBW Max link bandwidth value
MinBW Min link bandwidth value

Top-Down Hierarchical Topology
Edge Connection Method for interconnecting router topologies

Intra BWdist Intra-domain bandwidth assignment distribution
Intra BWMax Max bandwidth values
Intra BWMin Min bandwidth values
Inter BWdist Inter-domain bandwidth assignment distribution
Inter BWMax Max bandwidth values for inter-domain links
Inter BWMin Min bandwidth values for inter-domain links

Table 3.1: Selection of BRITE model parameters and their meanings [16].

17

Chapter 4

Secure Content Distribution Trees

4.1 Architecture
In this section, we outline the design of SCDTs. We make no claim that these solutions
are optimal; rather, we chose these design patterns with implementation, deployment, and
scalability in real-world environments in mind.

The fundamental SCDT structure is a multicast tree constructed out of an incrementally
deployable overlay network [34] of routers and end-devices running SCDT software. The
goal of this tree is to support a publish/subscribe model with a single, mobile publisher
and a large number of subscribers. We argue for scalable tree-building mechanisms that
can support reliable subscribers without bottlenecking the network. Our reliability design is
based on well-researched negative acknowledgment schemes, with some changes to improve
scalability for large numbers of IoT devices. Finally, we pay particular attention to securing
SCDTs.

Heuristic, Adaptable Multicast
SCDTs rely on constructing overlay multicast trees to distribute data to large numbers of
end-devices. We show an example in Figure 4.1, a “smart city” [59] deployment where
street cameras must coordinate with traffic lights at the same intersection, traffic lights
of neighboring intersections, and central servers far away. While Figure 4.1 only shows a
half-dozen end devices, the analogy holds for thousands of end-devices across a smart city,
including all traffic lights, crosswalks, and public transit systems. Building multicast trees
on top of overlay networks has received significant study in the past [30, 12, 52]. However,
these protocols often have questionable scalability, require significant work at the root of
the tree, require IP multicast to be running underneath, or disregard latency or security
concerns.

Building optimal multicast trees would require unrealistic amounts of overhead at the
scale we are considering. Instead, SCDTs use heuristic methods. We describe the charac-
teristics necessary for an IoT multicast tree building protocol with some similarity to that

CHAPTER 4. SECURE CONTENT DISTRIBUTION TREES 18

Figure 4.1: An example SCDT running over a physical network with a traffic camera publishing
data. The overlay network considers only the arrow links, which represent parent-child links.
Legend: large nodes are running SCDT software; small nodes are not running SCDT software;
arrow lines are overlay links; dashed lines are physical links; ovals are trusted domains.

in [30], but with several critical modifications. Subscribers (and routers serving subscribers)
attach to a nearby node in the SCDT and migrate up or down the tree to best satisfy its
latency and bandwidth constraints.

Unlike many other solutions, we argue for a multicast model in which the publisher can
move in the network and reattach to the SCDT in a different location. There are three key
benefits to this model. First, it allows publishers to be mobile without having to regularly
rebuild the entire tree. Second, it allows nearby nodes (e.g. those with real-time constraints)
to receive data quickly, while still allowing more distant nodes to eventually receive data.
Third, in the event of a break somewhere up the tree, nearby devices can still receive data
quickly while the tree adapts. For instance, in Figure 4.1 a network fault which isolates the
local intersection from the rest of the network should not cause interrupt service at the local
intersection; instead, while it may reduce the effectiveness of nearby intersections which are
no longer receiving the data, the local system should continue to function.

We also argue for a publisher/subscriber model in which there is only one publisher and
arbitrarily many subscribers. This greatly simplifies tree construction and makes it easier to
implement a mobile publisher.

End-devices themselves are not the true leaves of the SCDT. Rather, the routers these
devices connect to should be considered the leaves of the SCDT. Since routers are often
plugged-in and wired-in, this change in structure allows SCDTs to impose some processing
load on the leaves without compromising low-power or low-resource devices. The leaves can
determine for themselves when and how their heterogeneous end-devices should receive data.

Latency should not be disregarded. Network operators should be able to tune their

CHAPTER 4. SECURE CONTENT DISTRIBUTION TREES 19

Figure 4.2: Left: Overlay routing without forced participation, requiring unnecessary retransmis-
sion. Right: Overlay routing with forced participation. Children receive the packet faster, and the
non-subscribing router handles fewer packets. Legend: light gray routers are not subscribing; dark
gray routers are subscribing; solid lines are physical links; dashed lines show packet flow.

devices for a worst case latency before optimizing for bandwidth. Latency may even be a
more important factor than bandwidth when considering IoT devices which send data to
subscribers relatively infrequently. Rather than trying to sample bandwidth, nodes should
simply attach to a nearby parent. If they are unable to satisfy latency constraints or keep
up with the data stream at their current location, they should migrate up/down the tree
as necessary. Such a strategy avoids prematurely optimizing for bandwidth in trees which
are only occasionally sending data, and helps to avoid unnecessarily long, snaking trees.
In Figure 4.1, SCDTs provide low latency to the nearby traffic light which requires current
data; meanwhile, devices further away with looser latency constraints will accrue greater
bandwidth advantages.

We argue that the optimal metric for ensuring the above properties is stretch, introduced
in section 1.3.

Rather than considering the Internet as a more or less randomly distributed graph of
nodes, SCDTs consider the network as a series of interconnected, hierarchical domains of
ownership. Domains are analogous to Autonomous Systems [26] and in many cases network
operators might determine domain and AS boundaries to be the same. Border gateways of
domains/ASes provide a natural choice for multicast points, and can help to service join
requests and maintenance, reducing strain at higher levels of the SCDT. While this might
provide a single point of failure (or relatively few points of failure), if the border gateways
of an AS fail then there is no access to the broader Internet anyway. See section 4.2 for a
discussion of the security aspects of domains.

We argue that overlay network routers that are not themselves subscribers to the data
on a particular SCDT should be eligible to be drafted into service to increase tree efficiency.
Figure 4.2 demonstrates a simple scenario in which router promotion would improve routing
efficiency. By analyzing the way overlay links are constructed over the physical network,
the SCDT can identify router promotions which would increase efficiency. The ability to

CHAPTER 4. SECURE CONTENT DISTRIBUTION TREES 20

SCDT Overcast Scribe
Locality Metric Stretch Bandwidth Typically RTT or Hop Count

Re-Optimizes Routes Yes Yes No
Mobile Publisher Yes No No

Table 4.1: Comparison of various overlay multicast schemes.

promote unknown routers relies on the construction of trusted domains; only routers within
the trusted domain should be eligible for promotion.

Secure Resolution Systems
A key construct of the SCDT system is the Secure Resolution System (SRS) provided by
each domain. SRSes are roughly analogous to DNS, in that they are a hierarchical address
resolution scheme. A new subscriber can contact its local SRS for information on border
routers and attachments points for the desired SCDT. If the subscriber is the first in its
domain, the SRS will point it to another SRS higher up the hierarchy.

Having all subscribers join the tree by contacting the root is cumbersome and slow.
However, because SCDTs involve migrating between attachment points, new subscribers
could theoretically use any existing node to join the tree. The closer the initially contacted
node is to the ultimate attachment point, the more quickly the SCDT will converge to
an optimal placement. The SRSes provide a simple way to find good attach points while
allowing local administrators to configure the joining process if necessary. For instance, the
local administrator might designate a single node as the domain attach point under the
assumption that the domain will always keep that node running; or the administrator could
configure a dynamic response based on the knowledge the SRS has about currently active
nodes in the domain.

The implementation of the SRS is up to the domain administrator. A basic version on an
SRS could simply be a database on a single server that contains border router information
and pointers to other SRSes up the hierarchy; the IP address of this server could then be
hard coded into all devices in the domain. A better version could be built using a Distributed
Hash Table [53, 61].

Durability and Replication
While many IoT applications involve sending data for immediate consumption, it is also
necessary to maintain a store of records somewhere in the network. The reasons for support-
ing such replicated, durable storage are threefold. First, end-devices which require reliable
service need a final ground-truth to consult when data has already been completely purged
from network caches. This is also the case for end-devices which go down and come back
up later and need to consult data long forgotten by the routing infrastructure or even the

CHAPTER 4. SECURE CONTENT DISTRIBUTION TREES 21

Figure 4.3: Left: A physical network with SCDT nodes running on some machines. Right: The
logical tree formed from that network. Legend: blue routers are not subscribing; red routers are
subscribing; solid lines are physical links; dashed lines show packet flow.

publisher itself. Second, many users will be interested in using analytics to derive insights
from historical data. Third, some devices may only need certain pieces of data, and do not
want to be fully joined to the SCDT.

Ideally, the SCDT can perform double duty, transporting data to interested end-devices
as well as these ground-truth durable replicas.

Mobile Writer
We have designed SCDTs with a mobile publisher in mind. This means that a self-driving
car or robot can reattach to the network elsewhere in the tree quickly. When the publisher
rejoins the tree, routers can easily convert their previous parent connection to a child connec-
tion (since they’re now receiving data from somewhere else). As the receivers continuously
test their connections and migrate to better positions, the tree will eventually reform to a
shape that better reflects the publisher’s new position. The SCDT tree building protocol is
extremely lightweight, allowing trees to quickly reform.

4.2 Security Implications
Denial of Service
Denial of service and amplification attacks are a major risk in SCDTs, since packets injected
into the network will be rebroadcast. SCDTs are named using a secure namespace that
allows many different SCDTs to coexist; specifically, they are named using a cryptographic

CHAPTER 4. SECURE CONTENT DISTRIBUTION TREES 22

hash over the credentials of the creator of the tree, making trees attributable to owners and
difficult to impersonate. Subscribers must present a certificate to join the SCDT, which can
be verified at the join point, limiting the ability of attackers to attempt to spam the tree
or eavesdrop on traffic. As discussed in section 4.1, we argue the use of trusted domains
to restrict the open flow of data further reduces the risk of data exposure via side channel
attacks. Additionally, the publisher signs data sent to the tree; packets without a valid
signature will not be forwarded.

Broadcast Encryption Schemes
To achieve confidentiality efficiently, we argue SCDTs should utilize broadcast encryption
techniques. Broadcast encryption [22] schemes, such as Subset Difference [43] or Layered
Subset Difference [25], allow data to be efficiently encrypted and transmitted to a large
number of receivers securely. In addition, the publisher can quickly revoke access from
misbehaving subscribers by transmitting a limited number of update messages.

Trust Domains
Domains are a concept introduced by the GDP. A key feature of domains is trust (or lack
thereof), primarily based on domain ownership, so that domains can serve as the boundaries
within which data flows relatively freely. Organizations can then choose acceptable domains
for their data to flow over, limiting data exposure risks. In order to transit further, developers
must either trust other domains (e.g. their ISP) or establish highly secured channels between
the border gateways of trusted domains. In many cases, ASes already fit the bill of trusted
domains, so few modifications would be necessary to support SCDTs, but domains can
also be much more specific, such as in the smart-home example. A simple example of the
motivations for trust domains is a smart-home where input device commands must be sent
to devices in the same home, but allowing those commands to leave the smart-home risks
leaking important information, such as when a user comes and goes.

A more complicated network might involve a company’s office infrastructure in one do-
main of trust, the company’s factory in the next town in a second, and the company’s ISP in
a third. By grouping the underlying infrastructure into domains of trust, users can specify
the flow of data in their networks, simplifying the process of securing data. This method
helps to prevent side-channel attacks and other attempts to surreptitiously access encrypted
data. For instance, previous research [45] has shown that analyzing the encrypted traffic of
MapReduce jobs can reveal substantial amounts of the supposedly-secure data.

In our previous case, the company could restrict data flow based on their needs by spec-
ifying which domains they trust for which data. For example, door open/close notifications
may only ever need to be routed to the on-site security staff, and could be restricted from
flowing to the ISP, preventing a malicious actor outside the corporate network from learn-
ing the comings and goings of employees. The factory might enforce that commands sent

CHAPTER 4. SECURE CONTENT DISTRIBUTION TREES 23

to robots on the factory floor cannot flow outside the building to prevent leakage of sen-
sitive information about the manufacturing process. However, the company may mark its
ISP’s domain as trustworthy for high-level analytics data to move from the factory to the
company’s offices.

4.3 Evaluation
SCDTs primary differentiator from existing multicast schemes is the application of the stretch
metric as the primary component for tree building. Trees are built by new nodes contacting
the root, and then moving down the tree to the child that has the best stretch; the pro-
cess continues until the joining node cannot move further down the tree without exceeding
MAX_STRETCH. An example of a generated overlay topology is shown in Figure 4.4.

The goal of this metric is construct a tree that balances the need to fan out further down
the tree for improve scalability with the real-time or near-real-time requirements of nearby
IoT devices. Existing solutions do not take these real-time requirements into account. This
solution is also more fault tolerant: partitions in the network, including losing connection
to the broader Internet, will not prevent nodes on the same side of the partition as the
publisher from continuing to receive content. Existing pub/sub architectures like RabbitMQ
and Kafka are focused on the datacenter, and are not designed to account for device locality.

The SCDT is somewhat simplified for simulation purposes. Recall that the root node is
the publisher in the tree and the first node to “join” the tree. Roughly, the simulation-version
of the algorithm works as follows, assuming that current_parent is initially set to the root:

1. The joining node pings current_parent to determine its round-trip latency.

2. The joining node requests a list of current_parent’s children from current_parent.

3. The joining node pings each of these children to determine latency from itself to the
child.

4. The joining node sends a request to each child requesting the child’s latency to the
root.

5. The joining node calculates stretch for each child as specified in section 1.3.

6. The joining node selects the child with the lowest stretch.

a) If stretch is less than MAX_STRETCH, set this child as the current_parent and
repeat this process.

b) If stretch is greater than MAX_STRETCH, send an ATTACH request to current_parent
and end the process.

CHAPTER 4. SECURE CONTENT DISTRIBUTION TREES 24

In order to generate a stable topology for our simulations, our simulated SCDTs do not
implement a re-optimization step. In a full implementation, SCDT nodes would periodically
repeat the above process to account for changes in the network and tree structure after they
joined The SCDT algorithm uses stretch as its primary metric rather than pure latency. This
allows the SCDT to satisfy both of its primary goals: enabling real-time latency constraints
and supporting a massively scalable pub/sub tree.

Figure 4.4: The overlay multicast tree constructed out of 25 subscriber nodes and 1 publisher
connected to a BRITE topology. Topologies vary from run to run due to the randomization of the
BRITE topology and the link qualities.

We simulated the impact of using SCDTs to distribute data. Our tests were constructed
by generating a BRITE [39] topology consisting of two connected autonomous systems,
and attaching SCDT nodes at the leaves of these ASes. BRITE topologies are regenerated
for each run, helping to eliminate the effect of particular topologies skewing our results.
See chapter 3 for more details. Link speeds are randomized to between 1 and 10 Mbps, and
delays are randomized to between 1 and 50 ms.

Figure 4.5 demonstrates a test in which a packet is distributed to all SCDT subscribers
and average latency is recorded. The latency subscribers encounter appears to increase
linearly with the number of nodes in the tree, demonstrating the scale potential of SCDTs.
However, we believe results in real-world deployments could scale even further. In our tests,
nodes are randomly distributed; in reality, we would be more likely to see node clusters. In
some of our tests, random distribution of nodes created a bottlenecking effect, with many
nodes attaching to a single point; an intelligently constructed deployment could mitigate
that issue.

CHAPTER 4. SECURE CONTENT DISTRIBUTION TREES 25

Figure 4.5: Impact on latency of increasing the number of subscribers in the tree, with MAX_STRETCH
set to 2. Left: The average latency of a single packet to subscribers over multiple runs. Right: The
average latency of a single packet to subscribers, plotting individual runs and an exponential trend
line.

Figure 4.6: Impact on latency of increasing the MAX_STRETCH parameter in the tree, with the number
of subscribers fixed at 100. Left: The average latency of a single packet to subscribers over multiple
runs. Right: The average latency of a single packet to subscribers, plotting individual runs and an
exponential trend line.

We also tested the stretch metric which is at the core of our algorithm. Figure Fig-
ure 4.6, shows the results of these tests. Based on this data, we believe the sweet spot for
MAX_STRETCH tends to be between 1.5 and 2. Lower values had a tendency to severely limit
node movement in the tree, resulting in nodes near the top of the tree with a large number
of direct children. Our results indicate that as MAX_STRETCH is increased beyond 2, latency
increases at an exponential rate. Examination of some of the constructed trees indicates an
excessively high MAX_STRETCH leads to long, snaking trees with limited branching.

Figure 4.6 is also important for establishing the efficiency of SCDTs over other schemes.
The case where MAX_STRETCH is set to one degenerates into a unicast relationship between
the root and all children. This is obviously not a tenable situation as the trees continue to
scale, but even at 100 nodes, SCDTs are about 30% faster than the basic unicast case with
MAX_STRETCH is set to 1.5.

The results in Figure 4.6 are further reinforced by examining the average depth of nodes
in SCDTs, show in Figure 4.7. As expected, tree depth tends to increase exponentially with

CHAPTER 4. SECURE CONTENT DISTRIBUTION TREES 26

Figure 4.7: Impact on tree depth of increasing the MAX_STRETCH parameter in the tree, with the
number of subscribers fixed at 100. Left: The average depth of the tree over multiple runs. Right:
The average depth of the tree plotting individual runs and an exponential trend line.

MAX_STRETCH, leading to the aforementioned exponential increase in latency.
Our results show that tuning the MAX_STRETCH parameter for particular deployments will

be critical. SCDTs, however, do allow a large degree of flexibility. The MAX_STRETCH value
is set at the node level, not the network level, meaning that every node could have its own
individually-tailored MAX_STRETCH.

This is an important property for real-world deployments. MAX_STRETCH could be set
based on device priority; real-time applications could enforce a lower MAX_STRETCH while
batch processing applications could settle for a much higher MAX_STRETCH.

It may also be important to tune this parameter based on where nodes (or clusters of
nodes) are positioned in the network. Nodes located far from the root may counterintuitively
require lower stretch values. These nodes will have a large latency when contacting the root,
reducing sensitivity to placement in their local area (see section 1.3). This effect could also
be offset by introducing intermediate join points in the tree, i.e. nodes that can serve as a
proxy for the root, as discussed in section 4.1.

Figure 4.8: Impact on throughput of increasing the number of subscribers in the tree. Sampled by
sending 10KB with MAX_STRETCH fixed at 2. Left: The average throughput of the tree over multiple
runs. Right: The average throughput of the tree plotting individual runs and an exponential trend
line.

CHAPTER 4. SECURE CONTENT DISTRIBUTION TREES 27

Finally, we examine how SCDTs perform in terms of throughput. Figure 4.8 shows that
average throughput decreases approximately linearly as the number of nodes increases. Note
that these values should not be compared to the values in section 5.2 directly since each test
was conducted under different parameters and configurations.

We also compared SCDTs throughput performance a naive tree building method fully
described in section 5.2. While we defer precise description of the algorithm to chapter 5,
in naive trees each node has a fixed fanout and chooses its children based on latency. In
these tests, naive trees were built on top of a BRITE topology. Due to limitations in our
simulations, we did not compare these at scale. However, we did compare the naive tree
building method on a simulation containing 50 nodes. Throughput comparisons were found
to be fairly comparable between the naive implementation and SCDTs at this size. Latency
comparisons were also similar. While further scaling of these simulations is necessary to
prove the effectiveness of SCDTs, we believe these results show that the concept has great
promise.

Overall, SCDTs performed well in our tests. Both latency and throughput appear to scale
well in our examinations. The most significant challenge is properly tuning the MAX_STRETCH
parameter. However, we have many improvements in mind for SCDTs, which we discuss
in section 6.1, which we believe will further improve SCDTs.

28

Chapter 5

Reliability in SCDTs

5.1 Cached Nack Reliability
Just like in traditional Internet services, IoT applications have a variety of reliability con-
straints. We propose that in a SCDT, the reliability should be constructed using negative
acknowledgments (“nacks”) from children. Previous research has already shown the negative
acknowledgment scheme to be superior to regular acknowledgments in traditional network-
level multicast trees [23, 52]; we argue that this principle extends to SCDTs. Unlike these
previous schemes, SCDTs utilize caching at intermediate nodes. We argue that drafting in-
termediate routers as caches will improve scalability (by reducing the amount of traffic that
must flow to the root) and improve partition tolerance (since retransmission could still occur
even if the path to the root is lost). We call this scheme Cached Nack Reliability (CNR).

The SCDT forwards data unreliably to improve latency, but caches the data it forwards
at each intermediate node. A traditional simple nacking scheme could use a similar method
to that employed in TCP [47]: by examining an incrementally increasing sequence number
associated with the SCDT included with every packet. Gaps observed in the sequence
numbers of received packets indicate what data to nack. Periodic heartbeats sent by child
nodes and acknowledged by parents keep sequence numbers updated even when data isn’t
frequently published. However, we argue for a more complex method: including a byte offset
and packet length in the header of each packet. This method supports refragmentation of
packets at intermediate points in the network.

Leaves can determine their reliability constraints for themselves, and send a nack for
the missing data to their parent. If there is a cache hit, the data is retransmitted; if there
is a miss, the nack is forwarded to the leaf’s grandparent and so on, ultimately creating a
hierarchy of caches. A slightly more sophisticated scheme could use timers with exponential
backoff to reduce unnecessary and redundant nacking [23, 52]. Since we are arguing for
a reliable system and the scheme presented so far relies on caches, there must ultimately
be one or more places in the network where data is durably stored when caches all miss;
see section 4.1 for more details.

CHAPTER 5. RELIABILITY IN SCDTS 29

Such a scheme provides a best of both worlds solution, minimizing latency while support-
ing packet retransmission. It breaks the traditional reliable vs unreliable (generally TCP vs
UDP) trade off developers must choose between. By putting the impetus to nack packets on
the leaf, rather than being completely reliable or unreliable, a leaf node could set a level of
unreliability. For instance, a leaf node could choose to nack just enough packets to maintain
a particular record reception rate.

5.2 Evaluation
We utilize a naive multicast tree building protocol to build the underlying multicast tree for
our CNR tests. This allows us to evaluate CNR independently of SCDTs. In summary, the
algorithm works as follows:

1. A joining node contacts the root and requests to join the tree.

2. The root pings the joining node to determine its round trip latency.

3. If the latency is substantially shorter than its existing children (or if the root has fewer
children than MAX_FANOUT), the root adds the joining node as a direct child. If not,
the root sends back a list of its children.

4. The joining node pings all of the children to determine which has the lowest latency.

5. The joining node repeats the process with the closest (determined by round trip time)
child. The process is repeated until the joining node finds a parent that will accept it.

We evaluate CNR in comparison to another baseline algorithm. Our naive reliability
algorithm simply uses TCP links between every parent and child, essentially creating a series
of point-to-point TCP links. Our results are predicated on comparing this naive baseline to
CNR.

Using point-to-point TCP presents a number of issues in actual deployments. One is the
risk of bottlenecking the entire tree due to one bad link, where a router’s buffer becomes
full and must drop incoming packets because it cannot push out data to one of its children
fast enough. Another issue is the high computational cost of setting up TCP links, which
is non-ideal if the tree is continuously shifting and re-optimizing. While we don’t advocate
using point-to-point TCP in multicast trees, it is a useful contrast point because it represent
a fairly direct comparison to reliability in the unicast space.

Preliminary simulation results for CNR are generated on a star topology with the root in
the center, using the naive trees (not SCDTs). Because of the limited fanout of our trees, we
nonetheless still build meaningful multicast trees on this topology. See chapter 3 for more
information about our simulation environment. Link speeds are randomized to between 1
and 100 Mbps, and delays are randomized to between 1 and 100 ms.

CHAPTER 5. RELIABILITY IN SCDTS 30

Figure 5.1: Impact on throughput of packet loss rate using CNR. Sampled by sending 100KB
to a tree containing 50 subscribers and a MAX_FANOUT of 4. The red line represents the average
throughput of TCP over several runs with no packet loss. Left: The average throughput of CNR over
multiple runs. Right: The average throughput of CNR plotting individual runs and an exponential
trend line.

Our results are summarized in Figure 5.1. We sent 100KB of data to all the subscribing
nodes in our multicast tree, and measured the throughput. We then introduced packet
drops into the network, and measured the throughput of CNR when packets were randomly
dropped 0.1%, 1%, 3%, and 5% of the time. The data suggests that CNR performs well
in the face of fairly substantial packet loss, with fairly minor performance degradation until
packet losses grow above 3%, after which performance reductions become more substantial.

What is particularly interesting, however, is how much better CNR performed compared
to hop-to-hop TCP links, even with no packet loss. Our data shows CNR generating substan-
tially greater throughput than hop-to-hop TCP even when CNR is experiencing 3% packet
loss and TCP is experiencing none; the breakeven point is somewhere between 3% and 5%
packet loss. While this is admittedly hardly the use case TCP was designed for, we believe
this demonstrates the superiority of our approach and of nacking in multicast applications
in general. We attribute the poor performance of hop-to-hop TCP to the overhead imposed
by the TCP protocol and the loss of end-to-end efficiency [50] TCP generally relies on. As
discussed in section 4.1, however, using many end-to-end TCP connections simply does not
scale with the number of subscribers we are considering.

We believe this result will only improve with increased scale. Our test described in Fig-
ure 5.1 considers only 50 nodes and a MAX_FANOUT of 4, meaning that a packet would traverse
at most 3 overlay hops to reach its destination. In a larger network (or, in some cases, in an
SCDT), the number of hops would be greatly increased. In a system without caching, this
would impose substantially greater round trip times. However, we did not test the effect of
varying cache sizes and the impact of cache misses on CNR performance.

31

Chapter 6

Wrapping Up

6.1 Future Work & Lessons Learned
We’ve shown SCDTs to be a viable networking structure for the Internet of Things. However,
many of our discussed optimizations were not included in our simulations. Implementing
any number of these would improve the performance of SCDTs even further.

For instance, in our simulated nacking scheme we always return data in fixed size blocks.
However, fragmentation in actual networks could lead to nacks which request byte ranges
that don’t conform to block boundaries. For example, we might cache 100 byte blocks on
the parent containing bytes 1-100, 101-200, and 201-300, but the child might nack bytes
50-150. Currently, our simulation would respond with 1-200; an optimized implementation
could return only bytes 50-150.

Our simulations of tree building do not allow nodes to join at intermediate points in
the network, an optimization that will ultimately be critical for scalability. Instead, our
simulated nodes always join at the root. In addition, we do not include the re-optimization
step in our simulations, which would allow nodes to shift their position in the tree after
joining.

We do not measure network stress in our simulations. Measuring stress requires modifying
the network stack on all simulated nodes to monitor network-level traffic to observe the
movement of individual packets over every link. While it is fully possible to do this, we do
not include it in our simulations at this time.

On the other hand, we have not simulated the impact of a mobile publisher. While the
effect of an actively moving publisher will likely have a negative impact on the performance
of the algorithm, we do not believe that this effect will be overly damaging. The performance
impact of SCDT security mechanisms was also not evaluated in these simulations, though
the algorithms and techniques we selected were specifically chosen for their applicability and
low-overhead in applications comparable to SCDTs.

While we believe we have proved the utility of SCDTs, further work to implement SCDTs
and test them in real-world deployments is certainly necessary. We hope to take many of the

CHAPTER 6. WRAPPING UP 32

design principles of SCDTs and implement them in the Global Data Plane (see section 2.2),
a rapidly developing infrastructure of the Internet of Things.

6.2 Conclusion
We have presented the design and architecture of Secure Content Distribution Trees, a
networking protocol targeting the Internet of Things. We argue that existing networking
protocols do not address the scale of the Internet of Things or the real-time and locality
aspects of many applications. Our architecture is designed to address these dual goals above
all else. Simulations indicate that SCDTs are a promising avenue for future edge networking
research.

We have also presented an improved multicast reliability scheme, Cached Nack Reliability.
While we introduce this algorithm in the context of SCDTs, it is a viable approach to
reliability for any multicast scheme, including both IP multicast and overlay multicast.

The Internet of Things presents enormous challenges and opportunities. Increasingly
pushing computing systems to the edge of the network has already begun to upend the
traditional networking infrastructure, which prioritized mainly-downstream traffic from a
relatively small number of data centers to largely-independent terminals and devices. SCDTs
can help to change that paradigm, pushing more traffic to the edge and de-emphasizing the
cloud.

33

Bibliography

[1] A. Adams, J. Nicholas, and W. Siadak. Protocol Independent Multicast - Dense Mode
(PIM-DM): Protocol Specification (Revised). RFC 3973. RFC Editor, Jan. 2005.

[2] B. Adamson et al. NACK-Oriented Reliable Multicast (NORM) Transport Protocol.
RFC 5740. RFC Editor, Nov. 2009.

[3] Sanjay Aiyagari et al. Advanced Message Queuing Protocol. Tech. rep. Dec. 2006. url:
https://www.rabbitmq.com/resources/specs/amqp0-9.pdf.

[4] AMQP 1.0 Discussion Paper: Broker Behavior. Tech. rep. June 2010. url: https:
//www.rabbitmq.com/wp-uploads/2010/11/amqp-broker-prototype.pdf.

[5] Emmanuel Baccelli et al. RIOT: One OS to Rule Them All in the IoT. Tech. rep.
[Research Report] RR-8176, INRIA 2012. �hal-00768685v3�. Dec. 2012.

[6] Mahesh Balakrishnan et al. “Tango: Distributed Data Structures over a Shared Log”.
In: Nov. 2013. url: https://www.microsoft.com/en-us/research/publication/
tango-distributed-data-structures-over-a-shared-log/.

[7] A. Ballardie. Core Based Trees (CBT) Multicast Routing Architecture. RFC 2201. RFC
Editor, Sept. 1997.

[8] Albert-László Barabási and Réka Albert. “Emergence of Scaling in Random Networks”.
In: Science 286.5439 (1999), pp. 509–512. issn: 0036-8075. doi: 10.1126/science.
286.5439.509. eprint: http://science.sciencemag.org/content/286/5439/509.
full.pdf. url: http://science.sciencemag.org/content/286/5439/509.

[9] “BeagleBone”. In: (). www.beagleboard.org/bone.
[10] Iljitsch Van Beijnum. “IPv6 celebrates its 20th birthday by reaching 10 percent de-

ployment”. In: (Jan. 2016). https://arstechnica.com/information-technology/
2016/01/ipv6- celebrates- its- 20th- birthday- by- reaching- 10- percent-
deployment/.

[11] Ken Calvert, Matt Doar, and Ellen W. Zegura. “Modeling Internet Topology”. In: June
1997.

[12] M. Castro et al. “Scribe: a large-scale and decentralized application-level multicast
infrastructure”. In: IEEE Journal on Selected Areas in Communications 20.8 (Oct.
2002), pp. 1489–1499. issn: 0733-8716. doi: 10.1109/JSAC.2002.803069.

https://www.rabbitmq.com/resources/specs/amqp0-9.pdf
https://www.rabbitmq.com/wp-uploads/2010/11/amqp-broker-prototype.pdf
https://www.rabbitmq.com/wp-uploads/2010/11/amqp-broker-prototype.pdf
https://www.microsoft.com/en-us/research/publication/tango-distributed-data-structures-over-a-shared-log/
https://www.microsoft.com/en-us/research/publication/tango-distributed-data-structures-over-a-shared-log/
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
http://science.sciencemag.org/content/286/5439/509.full.pdf
http://science.sciencemag.org/content/286/5439/509.full.pdf
http://science.sciencemag.org/content/286/5439/509
www.beagleboard.org/bone
https://arstechnica.com/information-technology/2016/01/ipv6-celebrates-its-20th-birthday-by-reaching-10-percent-deployment/
https://arstechnica.com/information-technology/2016/01/ipv6-celebrates-its-20th-birthday-by-reaching-10-percent-deployment/
https://arstechnica.com/information-technology/2016/01/ipv6-celebrates-its-20th-birthday-by-reaching-10-percent-deployment/
https://doi.org/10.1109/JSAC.2002.803069

BIBLIOGRAPHY 34

[13] Yang-hua Chu et al. “A Case for End System Multicast”. In: IEEE Journal on Selected
Areas in Communications 20.8 (Oct. 2002), pp. 1456–1471. issn: 0733-8716. doi: 10.
1109/JSAC.2002.803066.

[14] Nigel Cory. “Cross-Border Data Flows: Where Are the Barriers, and What Do They
Cost?” In: (2017). https://bit.ly/2DU4D6y.

[15] Steve Deering. Host extensions for IP multicasting. STD 5. http://www.rfc-editor.
org/rfc/rfc1112.txt. RFC Editor, Aug. 1989. url: http://www.rfc-editor.org/
rfc/rfc1112.txt.

[16] Design and Implementation of BRITE. Tech. rep. Apr. 2001. url: https://www.cs.
bu.edu/brite/user_manual/BritePaper.html.

[17] C. Diot et al. “Deployment issues for the IP multicast service and architecture”. In:
IEEE Network 14.1 (Jan. 2000), pp. 78–88. issn: 0890-8044. doi: 10.1109/65.819174.

[18] A. Dunkels, B. Gronvall, and T. Voigt. “Contiki - a lightweight and flexible operating
system for tiny networked sensors”. In: 29th Annual IEEE International Conference on
Local Computer Networks. Nov. 2004, pp. 455–462. doi: 10.1109/LCN.2004.38.

[19] D. Estrin et al. Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Spec-
ification. RFC 2362. RFC Editor, June 1998.

[20] Patrick Th. Eugster et al. “The Many Faces of Publish/Subscribe”. In: ACM Comput.
Surv. 35.2 (June 2003), pp. 114–131. issn: 0360-0300. doi: 10.1145/857076.857078.
url: http://doi.acm.org/10.1145/857076.857078.

[21] B. Fenner et al. Internet Group Management Protocol (IGMP) / Multicast Listener
Discovery (MLD)-Based Multicast Forwarding (”IGMP/MLD Proxying”). RFC 4605.
http://www.rfc- editor.org/rfc/rfc4605.txt. RFC Editor, Aug. 2006. url:
http://www.rfc-editor.org/rfc/rfc4605.txt.

[22] Amos Fiat and Moni Naor. “Broadcast Encryption”. In: Advances in Cryptology —
CRYPTO’ 93. Ed. by Douglas R. Stinson. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1994, pp. 480–491. isbn: 978-3-540-48329-8.

[23] S. Floyd et al. “A reliable multicast framework for light-weight sessions and application
level framing”. In: IEEE/ACM Transactions on Networking 5.6 (Dec. 1997), pp. 784–
803. issn: 1063-6692. doi: 10.1109/90.650139.

[24] Trinabh Gupta et al. “Bolt: Data Management for Connected Homes”. In: 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 14). Seattle,
WA: USENIX Association, 2014, pp. 243–256. isbn: 978-1-931971-09-6. url: https://
www.usenix.org/conference/nsdi14/technical-sessions/presentation/gupta.

[25] Dani Halevy and Adi Shamir. “The LSD Broadcast Encryption Scheme”. In: Pro-
ceedings of the 22Nd Annual International Cryptology Conference on Advances in
Cryptology. CRYPTO ’02. London, UK, UK: Springer-Verlag, 2002, pp. 47–60. isbn:
3-540-44050-X. url: http://dl.acm.org/citation.cfm?id=646767.704291.

https://doi.org/10.1109/JSAC.2002.803066
https://doi.org/10.1109/JSAC.2002.803066
https://bit.ly/2DU4D6y
http://www.rfc-editor.org/rfc/rfc1112.txt
http://www.rfc-editor.org/rfc/rfc1112.txt
http://www.rfc-editor.org/rfc/rfc1112.txt
http://www.rfc-editor.org/rfc/rfc1112.txt
https://www.cs.bu.edu/brite/user_manual/BritePaper.html
https://www.cs.bu.edu/brite/user_manual/BritePaper.html
https://doi.org/10.1109/65.819174
https://doi.org/10.1109/LCN.2004.38
https://doi.org/10.1145/857076.857078
http://doi.acm.org/10.1145/857076.857078
http://www.rfc-editor.org/rfc/rfc4605.txt
http://www.rfc-editor.org/rfc/rfc4605.txt
https://doi.org/10.1109/90.650139
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/gupta
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/gupta
http://dl.acm.org/citation.cfm?id=646767.704291

BIBLIOGRAPHY 35

[26] J. Hawkinson and T. Bates. Guidelines for creation, selection, and registration of an
Autonomous System (AS). BCP 6. RFC Editor, Mar. 1996.

[27] Pieter Hintjens. ZeroMQ. Messaging for Many Applications. O’Reilly Media, 2013.
[28] H. Holbrook, B. Cain, and B. Haberman. Using Internet Group Management Protocol

Version 3 (IGMPv3) and Multicast Listener Discovery Protocol Version 2 (MLDv2) for
Source-Specific Multicast. RFC 4604. http://www.rfc-editor.org/rfc/rfc4604.
txt. RFC Editor, Aug. 2006. url: http://www.rfc-editor.org/rfc/rfc4604.txt.

[29] Information technology – Telecommunications and information exchange between sys-
tems – Intermediate System to Intermediate System intra-domain routeing informa-
tion exchange protocol for use in conjunction with the protocol for providing the
connectionless-mode network service (ISO 8473). Standard. Geneva, CH: International
Organization for Standardization, Nov. 2002.

[30] John Jannotti et al. “Overcast: reliable multicasting with on overlay network”. In:
Proceedings of the 4th conference on Symposium on Operating System Design &
Implementation-Volume 4. USENIX Association. 2000, p. 14.

[31] Jay Kreps, Neha Narkhede, Jun Rao, et al. “Kafka: A Distributed Messaging System
for Log Processing”. In: Proceedings of the NetDB. 2011, pp. 1–7.

[32] John Kubiatowicz et al. “OceanStore: An Architecture for Global-scale Persistent
Storage”. In: SIGPLAN Not. 35.11 (Nov. 2000), pp. 190–201. issn: 0362-1340. doi:
10.1145/356989.357007. url: http://doi.acm.org/10.1145/356989.357007.

[33] Philip Levis et al. “TinyOS: An Operating System for Sensor Networks”. In: Ambient
Intelligence. Vol. 00. Jan. 2005, pp. 115–148. isbn: 978-3-540-23867-6.

[34] Eng Keong Lua et al. “A survey and comparison of peer-to-peer overlay network
schemes”. In: IEEE Communications Surveys Tutorials 7.2 (Feb. 2005), pp. 72–93.
issn: 1553-877X. doi: 10.1109/COMST.2005.1610546.

[35] Gary Scott Malkin. RIP Version 2. STD 56. http://www.rfc-editor.org/rfc/
rfc2453.txt. RFC Editor, Nov. 1998. url: http://www.rfc-editor.org/rfc/
rfc2453.txt.

[36] James Manyika et al. “The Internet of Things: Mapping the Value Beyond the Hype”.
In: (2015). http://bit.ly/2gyPezB.

[37] M. McBride, J. Meylor, and D. Meyer. Multicast Source Discovery Protocol (MSDP)
Deployment Scenarios. BCP 121. RFC Editor, Aug. 2006.

[38] Alberto Medina et al. BRITE: Universal Topology Generation from a User’s Perspec-
tive. Tech. rep. BU-CS-TR-2001-003. Apr. 2001.

[39] A. Medina et al. “BRITE: an approach to universal topology generation”. In: MAS-
COTS 2001, Proceedings Ninth International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems. 2001, pp. 346–353. doi:
10.1109/MASCOT.2001.948886.

http://www.rfc-editor.org/rfc/rfc4604.txt
http://www.rfc-editor.org/rfc/rfc4604.txt
http://www.rfc-editor.org/rfc/rfc4604.txt
https://doi.org/10.1145/356989.357007
http://doi.acm.org/10.1145/356989.357007
https://doi.org/10.1109/COMST.2005.1610546
http://www.rfc-editor.org/rfc/rfc2453.txt
http://www.rfc-editor.org/rfc/rfc2453.txt
http://www.rfc-editor.org/rfc/rfc2453.txt
http://www.rfc-editor.org/rfc/rfc2453.txt
http://bit.ly/2gyPezB
https://doi.org/10.1109/MASCOT.2001.948886

BIBLIOGRAPHY 36

[40] Bill Morelli et al. IoT Trend Watch 2018. IHS Markit, 2018.
[41] J. Moy. Multicast Extensions to OSPF. RFC 1584. RFC Editor, Mar. 1994.
[42] John Moy. OSPF Version 2. STD 54. http://www.rfc-editor.org/rfc/rfc2328.

txt. RFC Editor, Apr. 1998. url: http://www.rfc-editor.org/rfc/rfc2328.txt.
[43] Dalit Naor, Moni Naor, and Jeff Lotspiech. “Revocation and Tracing Schemes for

Stateless Receivers”. In: Advances in Cryptology — CRYPTO 2001. Ed. by Joe Kilian.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 41–62. isbn: 978-3-540-44647-
7.

[44] “ns-3”. In: (). https://www.nsnam.org/.
[45] Olga Ohrimenko et al. “Observing and Preventing Leakage in MapReduce”. In: Pro-

ceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications
Security. CCS ’15. Denver, Colorado, USA: ACM, 2015, pp. 1570–1581. isbn: 978-1-
4503-3832-5. doi: 10.1145/2810103.2813695. url: http://doi.acm.org/10.1145/
2810103.2813695.

[46] J. Polastre, R. Szewczyk, and D. Culler. “Telos: enabling ultra-low power wireless
research”. In: IPSN 2005. Fourth International Symposium on Information Processing
in Sensor Networks, 2005. Jan. 2005, pp. 364–369. doi: 10.1109/IPSN.2005.1440950.

[47] Jon Postel. Transmission Control Protocol. STD 7. http://www.rfc-editor.org/
rfc/rfc793.txt. RFC Editor, Sept. 1981. url: http://www.rfc-editor.org/rfc/
rfc793.txt.

[48] “Raspberry Pi”. In: (). www.raspberrypi.org.
[49] Antony Rowstron and Peter Druschel. “Pastry: Scalable, Decentralized Object Loca-

tion, and Routing for Large-Scale Peer-to-Peer Systems”. In: Middleware 2001. Ed. by
Rachid Guerraoui. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 329–350.
isbn: 978-3-540-45518-9.

[50] J. H. Saltzer, D. P. Reed, and D. D. Clark. “End-to-end Arguments in System Design”.
In: ACM Trans. Comput. Syst. 2.4 (Nov. 1984), pp. 277–288. issn: 0734-2071. doi:
10.1145/357401.357402. url: http://doi.acm.org/10.1145/357401.357402.

[51] C. Shields and J. J. Garcia-Luna-Aceves. “The ordered core based tree protocol”. In:
INFOCOM ’97. Sixteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Driving the Information Revolution., Proceedings IEEE. Vol. 2.
Apr. 1997, 884–891 vol.2. doi: 10.1109/INFCOM.1997.644571.

[52] T. Speakman et al. PGM Reliable Transport Protocol Specification. RFC 3208. http:
//www.rfc- editor.org/rfc/rfc3208.txt. RFC Editor, Dec. 2001. url: http:
//www.rfc-editor.org/rfc/rfc3208.txt.

http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc2328.txt
https://www.nsnam.org/
https://doi.org/10.1145/2810103.2813695
http://doi.acm.org/10.1145/2810103.2813695
http://doi.acm.org/10.1145/2810103.2813695
https://doi.org/10.1109/IPSN.2005.1440950
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
www.raspberrypi.org
https://doi.org/10.1145/357401.357402
http://doi.acm.org/10.1145/357401.357402
https://doi.org/10.1109/INFCOM.1997.644571
http://www.rfc-editor.org/rfc/rfc3208.txt
http://www.rfc-editor.org/rfc/rfc3208.txt
http://www.rfc-editor.org/rfc/rfc3208.txt
http://www.rfc-editor.org/rfc/rfc3208.txt

BIBLIOGRAPHY 37

[53] Ion Stoica et al. “Chord: A Scalable Peer-to-peer Lookup Protocol for Internet Appli-
cations”. In: IEEE/ACM Trans. Netw. 11.1 (Feb. 2003), pp. 17–32. issn: 1063-6692.
doi: 10.1109/TNET.2002.808407. url: http://dx.doi.org/10.1109/TNET.2002.
808407.

[54] Ion Stoica et al. “Internet Indirection Infrastructure”. In: IEEE/ACM Trans. Netw.
12.2 (Apr. 2004), pp. 205–218. issn: 1063-6692. doi: 10.1109/TNET.2004.826279.
url: http://dx.doi.org/10.1109/TNET.2004.826279.

[55] D. Thaler. Border Gateway Multicast Protocol (BGMP): Protocol Specification. RFC
3913. RFC Editor, Sept. 2004.

[56] D. Waitzman, C. Partridge, and S.E. Deering. Distance Vector Multicast Routing Pro-
tocol. RFC 1075. RFC Editor, Nov. 1988.

[57] B. M. Waxman. “Routing of multipoint connections”. In: IEEE Journal on Selected
Areas in Communications 6.9 (Dec. 1988), pp. 1617–1622. issn: 0733-8716. doi: 10.
1109/49.12889.

[58] J Winick et al. “INET: An autonomous system (AS) level Internet Topology generator,
Ver. 3.0”. In: University of Michigan, Technical Report CSE-TR-456-02 (2002).

[59] A. Zanella et al. “Internet of Things for Smart Cities”. In: IEEE Internet of Things
Journal 1.1 (Feb. 2014), pp. 22–32. issn: 2327-4662. doi: 10 . 1109 / JIOT . 2014 .
2306328.

[60] Ben Zhang et al. “The Cloud is Not Enough: Saving IoT from the Cloud”. In: 7th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 15). Santa Clara,
CA: USENIX Association, 2015. url: https : / / www . usenix . org / conference /
hotcloud15/workshop-program/presentation/zhang.

[61] Ben Yanbin Zhao, John Kubiatowicz, Anthony D Joseph, et al. “Tapestry: An infras-
tructure for fault-tolerant wide-area location and routing”. In: (2001).

https://doi.org/10.1109/TNET.2002.808407
http://dx.doi.org/10.1109/TNET.2002.808407
http://dx.doi.org/10.1109/TNET.2002.808407
https://doi.org/10.1109/TNET.2004.826279
http://dx.doi.org/10.1109/TNET.2004.826279
https://doi.org/10.1109/49.12889
https://doi.org/10.1109/49.12889
https://doi.org/10.1109/JIOT.2014.2306328
https://doi.org/10.1109/JIOT.2014.2306328
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/zhang
https://www.usenix.org/conference/hotcloud15/workshop-program/presentation/zhang

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Related Work
	Motivation

	The Global Data Plane
	GDP Architecture for the Internet of Things
	Secure Content Distribution Trees in the GDP

	Methodology
	Secure Content Distribution Trees
	Architecture
	Security Implications
	Evaluation

	Reliability in SCDTs
	Cached Nack Reliability
	Evaluation

	Wrapping Up
	Future Work & Lessons Learned
	Conclusion

