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ABSTRACT 

 

The growing need for high performance but low power microelectromechanical system 

(MEMS) devices capable of operating at various frequency regimes, including high frequency 

(HF), very high frequency (VHF) and ultra-high frequency (UHF), fuels an increasing demand 

for resonators with simultaneous high quality factor (𝑄) and high electromechanical coupling, as 

gauged by the motional-to-static capacitive ratio (𝐶𝑥/𝐶𝑜). Capacitive-gap transduced resonators 

have already posted some of the highest disk 𝐶𝑥/𝐶𝑜-𝑄 products to date at HF and low-VHF. 

Attaining similar performance at the high-VHF and UHF ranges, however, if more difficult, as it 

requires electrode-to-resonator gaps considerably smaller than previously demonstrated.  

This thesis explores a method that raises 𝐶𝑥/𝐶𝑜 without excessive gap-scaling by hollowing 

out a disk resonator structure, which reduces the dynamic mass and stiffness of the structure. 

Since 𝐶𝑥/𝐶𝑜  goes as the reciprocal of mass and stiffness, a hollow disk can have considerably 

stronger electromechanical coupling than a solid one at the same frequency. This work introduces 

two types of hollow disks: asymmetric and symmetric. 

In an asymmetric hollow disk, a thin sidewall ring protrudes upward from the edges of an 

inner disk that itself anchors to the substrate via a center stem. The inner disk still vibrates in the 

radial contour mode in the radial direction. However, a few nonidealities influence this 

asymmetric structure, including transverse vibration of the inner disk and reduction of the 

nominal resonance frequency. The sidewall vibrates in a radial cantilever mode, which boosts 

𝐶𝑥/𝐶𝑜 even higher. In addition, the negative capacitance (−𝐶𝑒) in the equivalent circuit does not 

always equal the static capacitance (𝐶𝑜). As a result, an 80 MHz asymmetric radial contour hollow 

disk achieves 𝐶𝑥/𝐶𝑜 = 0.142%  and 𝐶𝑥/𝐶𝑒 = 0.358%  with a 148 nm  electrode-to-resonator gap 

and a 20 V  DC bias, while a solid disk only has 𝐶𝑥/𝐶𝑜 = 0.015%  with the same resonance 

frequency, gap spacing, and DC bias. 

In a symmetric hollow disk, the sidewall ring protrudes in both upwards and downwards 

directions along the inner disk edges. As long as the stem anchor is small, the symmetry 

eliminates vertical vibration nonidealities, allowing for even better performance. Unfortunately, 

post-fabrication stress gradients rendered testable only a large-stemmed 98 MHz  symmetric 

hollow disk. Although its large stem compromised its mode shape, this device still achieves 

𝐶𝑥/𝐶𝑜 = 0.261% and 𝐶𝑥/𝐶𝑒 = 0.430% with a 50 nm electrode-to-resonator gap and a 7 V DC bias, 

both higher than achievable by a similar frequency solid disk. 𝐶𝑒 is only 0.442𝐶𝑜, which makes its 

parallel frequency (𝑓𝑝) is parabolically dependent on DC bias. 
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CHAPTER 1   

INTRODUCTION 

 

 

1.1   Background and Objective 

The growing need for high performance and wide bandwidth handheld mobile devices 

capable of operating at various communication bands necessitates use of microelectromechanical 

system (MEMS) resonators having simultaneous high resonance frequency (𝑓𝑜 ), high quality 

factor (𝑄) and high electromechanical coupling as building blocks. These well-known but mostly 

competing requirements have driven research efforts on different transduction mechanisms. 

Among these, piezoelectric and film bulk acoustic resonators (FBAR) have achieved 

electromechanical coupling coefficients larger than 6%, but their 𝑄s are smaller than desired [1].  

Higher 𝑄 would provide lower insertion loss. There is no doubt that MEMS capacitive-gap 

transduced resonators can achieve high on-chip quality factors from high frequency (HF, 3 −

30 MHz) to very high frequency (VHF, 30 − 300 MHz) and even to ultra-high frequency (UHF, 

300 MHz − 3 GHz), with 𝑄 values reaching 98,000 at 73 MHz [2] and 40,000 at 2.97 GHz [3]. Lots 

of well-known applications with low insertion loss and low power consumption are based on this 

technology, for instance, a 0.09% bandwidth 223.4 MHz channel-select filters with only 2.7dB of 

in-band insertion loss and 50dB of out-of-channel interferer rejection [4], a 78 mW GSM phase 

noise-compliant pierce oscillator [5], a squegging micromechanical clock generator with only 

0.8 nW of battery power [6].  

However, there is a strong trade-off between frequency and electromechanical coupling 

gauged by the motional-to-static capacitive ratio (𝐶𝑥/𝐶𝑜) in capacitive-gap transduced resonators. 

This ratio represents the efficiency of energy transfer between the electrical and mechanical 

domains [7]. It determines the percent bandwidth of a micromechanical filter [8] and the tuning 

range of the resonance frequency [9]. At HF, the coupling is strong enough, with 𝐶𝑥/𝐶𝑜 reaching 

30% [8]. While in VHF and UHF devices mentioned above, 𝐶𝑥/𝐶𝑜 are much lower. Resonators 

with capacitive-gap transduced mechanism still struggle to achieve both high frequency and high 

𝐶𝑥/𝐶𝑜. A primary industrial requirement is 𝐶𝑥/𝐶𝑜 ≥ 6% at 𝑓𝑜 ≥ 700 MHz. With proper design, the 

strong electromechanical coupling should be achievable at UHF. 
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Pursuant to unleashing this potential, any decent approach should first determine the effect 

of various design and material parameters on electromechanical coupling. The motional-to-static 

capacitive ratio for a resonator with a fully surrounded electrode is given by 

 𝐶𝑥

𝐶𝑜
=

𝜀𝑜𝐴𝑜𝑉𝑃
2

(2𝜋𝑓𝑛𝑜𝑚)2𝑚𝑚𝑑𝑜
3 (1.1) 

where 𝐶𝑥  is the motional capacitance of the resonator, 𝐶𝑜  is the static capacitance, 𝜀𝑜  is the 

vacuum permittivity, 𝐴𝑜 is the overlap area between the electrode and the resonator, 𝑉𝑃 is the DC 

bias voltage, 𝑓𝑛𝑜𝑚  is the nominal frequency, 𝑚𝑚  is the dynamic mass, 𝑑𝑜  is the electrode-to-

resonator gap. From this expression, larger 𝐶𝑥/𝐶𝑜  requires large overlap area, large DC bias 

voltage and small gap spacing. 

Many research efforts went into different ways to reduce the electrode-to-resonator gap. Post 

ALD partial refilled gap lowered the effective gap down to 37 nm and achieved 𝐶𝑥/𝐶𝑜 around 

0.58% at 61 MHz [10]. Simply reducing the gap with a better etching recipe shrunk the gap as 

small as 13 nm and strengthened 𝐶𝑥/𝐶𝑜 up to 1.62% at 60 MHz [7]. Both works are astonishing, 

undoubtedly, but none of them approaches the industrial requirement and there is not enough 

room for shrinking the gap with today’s fabrication capability even for integrated circuits [11]. In 

addition, there is a strong tradeoff between the gap spacing and the DC bias due to the pull-in 

issue. Besides, the yield will degrade when a very tiny gap exists on a wafer. In addition, surface 

micromachining limits the overlap area of a disk resonator, for instance, limited deposition 

thickness and limited etching selectivity. Thus, to explore more potentials from Equation (2.1) 

𝑚𝑚 is the only parameter waiting to be improved.  

Hollowing out a disk resonator is an intuitive approach to reduce 𝑚𝑚 at VHF and even UHF 

because of less dynamic mass. One decent property of a disk resonator is that the nominal 

frequency is only determined by the lateral dimension (i.e., the radius of the disk, 𝑅) instead of 

its vertical geometry (i.e., thickness, 𝑡) [9]. A hollow disk can boost its 𝐶𝑥/𝐶𝑜, and its frequency 

will stay at the same level. 

There are many ways to make a hollow disk, and this thesis introduces two types of hollow 

structures: asymmetric and symmetric. Figure 1.1 presents their cross-section views. It is easier 

to fabricate an asymmetric hollow disk, where a thin sidewall ring protrudes upward from the 

edges of an inner disk. The radial vibration of the sidewall enhances 𝐶𝑥/𝐶𝑜 boosting, but it has 

more nonidealities, including the transvers vibration of the inner disk. A symmetric hollow disk, 

in which the sidewall ring protrudes in both upwards and downwards directions, can eliminate 

vertical vibration nonidealities because it is more symmetric in the vertical direction. However, a 

step of timed etch is required in fabricating this disk. 
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(a) (b) 

Figure 1.1: Schematic showing cross-section views of (a) an asymmetric hollow disk and (b) a 

symmetric hollow disk 

 

1.2   Thesis Overview 

This thesis explores a method that raises 𝐶𝑥/𝐶𝑜 by hollowing out a disk resonator structure. 

Chapters 2 and 3 introduce two types of hollow disk design: asymmetric and symmetric 

respectively.  

In Chapter 2, Section 2.1 introduces an asymmetric hollow disk and its negative capacitance 

equivalent circuit. Section 2.2 analyzes the transverse vibration nonideality in the hollow disk by 

finite element analysis (FEA). Section 2.3 creates a new radial cantilever model for the sidewall 

ring. Section 2.4 shows a new fabrication process yielding this device. Finally, Section 2.5 proves 

the entire modeling and simulation in previous sections by device measurements. 

In Chapter 3, Section 3.1 introduces a more symmetric hollow disk and its performance. 

Section 3.2 introduces a large-stemmed symmetric hollow disk, because this is the only testable 

one because of post-fabrication stress gradients. Section 3.3 shows a slightly different fabrication 

process yielding this device. Measurement results in Section 3.4 further confirm the entire 

modeling and simulation.   

Chapter 4 concludes the above research and provides a view on the future research.  
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CHAPTER 2   

ASYMMETRIC HOLLOW DISK 

 

 

2.1   Asymmetric Hollow Disk Design and Equivalent Circuit 

To prove the new method of hollow disk electromechanical coupling 𝐶𝑥/𝐶𝑜 boosting, Figure 

2.1 schematically shows an 80 MHz  asymmetric hollow radial contour disk with a fully 

surrounded electrode, in which a thin sidewall ring protrudes upward from the edges of an inner 

disk that itself anchors to the substrate via a center stem. A few nonidealities influence this 

asymmetric structure, for instance, transverse vibration of the inner disk and reduction of the 

nominal frequency. 

 

 

 

(a) (b) 

Figure 2.1: Schematic showing an asymmetric hollow disk with a fully surrounded electrode 

and variables used in derivation: (a) top view and (b) cross-section view 

 

Negative capacitance equivalent circuits in [9] can correctly model capacitive-gap transduced 

resonators, including hollow disks. Figure 2.2 presents two equivalent circuits of the device in 

Figure 2.1. In Figure 2.2 (a), the 𝐿𝐶𝑅 circuit (i.e., 𝑙𝑥 , 𝑐𝑥  and 𝑟𝑥 ) represents the resonator in the 

mechanical domain, and a static capacitor (𝐶𝑜) is in parallel with it in the electrical domain. In 

Figure 2.2 (b), the electromechanical coupling ratio (𝜂𝑒) converts all mechanical variables to the 
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electrical domain, where a negative capacitor (−𝐶𝑒) is equivalent to the negative electrical stiffness 

(𝑘𝑒). 

 

(a) 

 

(b) 

Figure 2.2: Equivalent circuits of a hollow disk with a fully surrounded electrode: (a) in the 

mechanical and electrical domains; (b) in the electrical domain 

 

Table 2.1 summarizes detailed design and equivalent circuit variables of the 80 MHz 

asymmetric hollow disk. All geometric dimensions of the structure (i.e., 𝑅, 𝐻, ℎ, 𝑡, and 𝑑𝑜) are 

from measurements in Section 2.4, including material thickness and profile measurements. 

Results from device measurement in Section 2.5 yield the rest design variables (i.e., 𝑉𝑃, 𝑄, 𝑓𝑛𝑜𝑚, 

and 𝑓𝑜). Finite element analysis (FEA) can extract all equivalent circuit variables directly. The 

mechanical inductance (𝑙𝑥) of the hollow disk is only 38% of the solid disk. The electromechanical 

coupling ratio (𝜂𝑒) of the hollow disk is 66% higher than the solid one. As a result, the motional-

to-static capacitive ratio (𝐶𝑥/𝐶𝑜) can be boosted by approximately ten times and the motional 

resistance (𝑅𝑥) is 87% lower.  

Figure 2.3 presents simulated mode shapes of the asymmetric hollow disk and a similar 

frequency solid disk in Table 2.1. According to Figure 2.3 (a), the inner disk vibrates not only 

radially but also transversely. Additionally, the thin sidewall tends to vibrate radially in evidence. 

This type of vibration is similar to a cantilever, which is the so-called radial cantilever mode in 

Section 2.4.  
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Table 2.1: Summary of detail design and equivalent circuit variables of the 80 MHz asymmetric 

hollow disk and a 80 MHz solid disk 
D

es
ig

n
 V

ar
ia

b
le

s 

Parameters Solid Disk Hollow Disk Units 

Disk Radius (outer), 𝑅 32.35 32.35 μm 

Total Height, 𝐻 2.4 2.4 μm 

Inner Disk Thickness, ℎ  -- 600 nm 

Sidewall Thickness, 𝑡 -- 350 nm 

Electrode-to-Resonator Gap, 𝑑𝑜 148 148 nm 

DC Bias Voltage, 𝑉𝑃 20 20 V 

Quality Factor, 𝑄 5000 5000 -- 

Nominal Frequency, 𝑓𝑛𝑜𝑚 81.637 79.601 MHz 

Resonance Frequency, 𝑓𝑜 81.631 79.450 MHz 

E
q

u
iv

al
en

t 
C

ir
cu

it
 V

ar
ia

b
le

s 

Mech. Inductance (mass), 𝑙𝑥 13.850 5.288 pH 

Mech. Capacitance (1/stiffness), 𝑐𝑥 0.274 0.756 μF 

Mech. Resistance (damping), 𝑟𝑥 1.421 0.529 μΩ 

Static Overlap Capacitance, 𝐶𝑜 29.185 29.185 fF 

Electromechanical Coupling Ratio, 𝜂𝑒 3.944 6.582 μC/m 

Motional Inductance, 𝐿𝑥 0.890 0.122 H 

Motional Capacitance, 𝐶𝑥 0.004 0.033 fF 

Motional Resistance, 𝑅𝑥 91.348 12.210 kΩ 

Electrical Stiffness Equiv. Cap., −𝐶𝑒 -29.185 -9.412 fF 

𝐶𝑥-to-𝐶𝑒 Capacitive Ratio, 𝐶𝑥/𝐶𝑒 0.015 0.384 % 

𝐶𝑥-to-𝐶𝑜 Capacitive Ratio, 𝐶𝑥/𝐶𝑜 0.015 0.142 % 
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(a) (b) 

Figure 2.3: Simulated mode shapes of (a) the 80 MHz asymmetric hollow disk and (b) the solid 

disk in Table 2.1 

 

FEA can generate surface and volume integrations directly from a simulated mode shape. 

Subsequently, these integrations can yield all equivalent circuit variables in Figure 2.2 (a). 

A volume integration can yield the total dynamic mass (𝑚𝑚) or mechanical inductance (𝑙𝑥) by 

 
𝑙𝑥 = 𝑚𝑚 =

∭([𝑅𝑚𝑜𝑑𝑒(𝑟, 𝜃, 𝑧)]2 + [𝑍𝑚𝑜𝑑𝑒(𝑟, 𝜃, 𝑧)]2)𝑑𝑚

[𝑅𝑚𝑜𝑑𝑒(𝑟𝑟𝑒𝑓 , 𝜃𝑟𝑒𝑓 , 𝑧𝑟𝑒𝑓)]
2

=
𝜌 ∭([𝑅𝑚𝑜𝑑𝑒(𝑟, 𝜃, 𝑧)]2 + [𝑍𝑚𝑜𝑑𝑒(𝑟, 𝜃, 𝑧)]2)𝑑𝑉

[𝑅𝑚𝑜𝑑𝑒(𝑅, 0, 0)]2
 

(2.1) 

where 𝑅𝑚𝑜𝑑𝑒(𝑟, 𝜃, 𝑧) and 𝑍𝑚𝑜𝑑𝑒(𝑟, 𝜃, 𝑧) are the simulated radial and vertical mode shape functions 

of the entire structure respectively, ∭([𝑅𝑚𝑜𝑑𝑒(𝑟, 𝜃, 𝑧)]2 + [𝑍𝑚𝑜𝑑𝑒(𝑟, 𝜃, 𝑧)]2)𝑑𝑉  is the volume 

integration based on these two functions, 𝑅𝑚𝑜𝑑𝑒(𝑟𝑟𝑒𝑓 , 𝜃𝑟𝑒𝑓 , 𝑧𝑟𝑒𝑓) is the radial displacement at the 

chosen reference point (i.e., 𝑟𝑟𝑒𝑓 = 𝑅, 𝜃𝑟𝑒𝑓 = 0, 𝑧𝑟𝑒𝑓 = 0), and 𝑅 is the outer radius of the hollow 

disk. The dynamic stiffness (𝑘𝑚) and damping (𝑏𝑚) yield the mechanical capacitance (𝑐𝑥) and 

resistance (𝑟𝑥), 

 
𝑐𝑥 =

1

𝑘𝑚
=

1

(2𝜋𝑓𝑛𝑜𝑚)2𝑚𝑚
 (2.2) 

 
𝑟𝑥 = 𝑏𝑚 =

√𝑘𝑚𝑚𝑚

𝑄
 (2.3) 

where 𝑓𝑛𝑜𝑚 is the nominal frequency, and 𝑄 is the quality factor. The static capacitance across the 

electrode-to-resonator gap (𝑑𝑜) is 
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𝐶𝑜 =

2𝜋𝜀𝑜𝑅𝐻

𝑑𝑜
 (2.4) 

where 𝜀𝑜  is the vacuum permittivity, and 𝐻  is the total height of the hollow disk. The 

electromechanical coupling ratio is given by 

 
𝜂𝑒 =

𝑉𝑃𝜆𝐶𝑜

𝑑𝑜
 (2.5) 

where 𝜆 is the nonlinear coefficient which can be extracted from a surface integration of the 

simulated radial mode shape function of the sidewall (𝑅𝑚𝑜𝑑𝑒(𝑅, 𝜃, 𝑧)), 

 
𝜆 =

1

2𝜋𝑅𝐻

∬ 𝑅𝑚𝑜𝑑𝑒(𝑅, 𝜃, 𝑧)𝑑𝑆

𝑅𝑚𝑜𝑑𝑒(𝑅, 0, 0)
 (2.6) 

and where 𝑅𝑚𝑜𝑑𝑒(𝑅, 0, 0) is from the same reference point. Convert mechanical variables to the 

electrical domain by 𝜂𝑒, 

 
𝐿𝑥 =

𝑙𝑥

𝜂𝑒
2 ,   𝐶𝑥 = 𝑐𝑥𝜂𝑒

2,   𝑅𝑥 =
𝑟𝑥

𝜂𝑒
2 (2.7) 

Mechanically, the DC bias introduces a negative electrical stiffness (−𝑘𝑒), which shifts the 

resonance frequency (𝑓𝑜) from the nominal frequency (𝑓𝑛𝑜𝑚), 

 
𝑓𝑜 = 𝑓𝑛𝑜𝑚√

𝑘𝑚 − 𝑘𝑒

𝑘𝑚
 (2.8) 

−1/𝑘𝑒 is equivalent to a negative capacitor (−𝐶𝑒) in the electrical domain as shown in Figure 2.2 

(b) by  

 
𝑘𝑒 =

𝜂𝑒
2

𝐶𝑒
= 𝑘𝑚

𝐶𝑥

𝐶𝑒
 (2.9) 

Substitute Equation (2.9) in (2.8),  

 
𝑓𝑜 = 𝑓𝑛𝑜𝑚√

𝑘𝑚 − 𝑘𝑒

𝑘𝑚
= 𝑓𝑛𝑜𝑚√

1/𝐶𝑥 − 1/𝐶𝑒

1/𝐶𝑥
= 𝑓𝑛𝑜𝑚√1 −

𝐶𝑥

𝐶𝑒
 (2.10) 

Rearrangement yields the expression for 𝐶𝑥/𝐶𝑒, 

 𝐶𝑥

𝐶𝑒
=

𝑓𝑛𝑜𝑚
2 − 𝑓𝑜

2

𝑓𝑛𝑜𝑚
2  (2.11) 
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On the other hand, Figure 2.2 (b) presents another equivalent circuit in the electrical domain. 

For simplicity, combine 𝐶𝑥 and −𝐶𝑒 as 𝐶𝑥
, , 

 
𝐶𝑥

, = 𝐶𝑥 ∥ (−𝐶𝑒) =
𝐶𝑥𝐶𝑒

𝐶𝑒 − 𝐶𝑥
 (2.12) 

The total impedance is the 𝐿𝐶𝑅 and 𝐶𝑜 in parallel, which is also the transfer function of the circuit, 

 
𝑍 = (𝑠𝐿𝑥 +

1

𝑠𝐶𝑥
, + 𝑅𝑥) ∥ (

1

𝑠𝐶𝑜
) =

1

𝑠𝐶𝑜

𝑠2𝐿𝑥𝐶𝑥
, + 𝑠𝑅𝑥𝐶𝑥

, + 1

𝑠2𝐿𝑥𝐶𝑥
, + 𝑠𝑅𝑥𝐶𝑥

, + 1 +
𝐶𝑥

,

𝐶𝑜

 (2.13) 

Extract the numerator (𝑁) and denominator (𝐷) for frequency analysis, 

 𝑁 = 𝑠2𝐿𝑥𝐶𝑥
, + 𝑠𝑅𝑥𝐶𝑥

, + 1 = (1 − 𝜔2𝐿𝑥𝐶𝑥
, ) + 𝑗𝜔𝑅𝑥𝐶𝑥

, ≅ 1 − 𝜔2𝐿𝑥𝐶𝑥
,  (2.14) 

 
𝐷 = 𝑠2𝐿𝑥𝐶𝑥

, + 𝑠𝑅𝑥𝐶𝑥
, + 1 +

𝐶𝑥
,

𝐶𝑜
= (1 +

𝐶𝑥
,

𝐶𝑜
− 𝜔2𝐿𝑥𝐶𝑥

, ) + 𝑗𝜔𝑅𝑥𝐶𝑥
,

≅ 1 +
𝐶𝑥

,

𝐶𝑜
− 𝜔2𝐿𝑥𝐶𝑥

,  

(2.15) 

where the imaginal term is negligible if 𝑄 > 10 . Minimizing 𝑁  and 𝐷  yields the series (or 

resonance, 𝜔𝑜) and parallel (𝜔𝑝) frequencies respectively, 

 
𝜔𝑜 = √

1

𝐿𝑥𝐶𝑥
,  (2.16) 

 

𝜔𝑝 =
√

1 +
𝐶𝑥

,

𝐶𝑜

𝐿𝑥𝐶𝑥
,  

(2.17) 

Substituting Equation (2.12) in (2.16) and (2.17) yields 

 
𝜔𝑜 = √

1

𝐿𝑥𝐶𝑥
, = √

1

𝐿𝑥
𝐶𝑥𝐶𝑒

𝐶𝑒 − 𝐶𝑥

= √
1

𝐿𝑥𝐶𝑥
√1 −

𝐶𝑥

𝐶𝑒
= 𝜔𝑛𝑜𝑚√1 −

𝐶𝑥

𝐶𝑒
 (2.18) 

 

𝜔𝑝 =
√

1 +
𝐶𝑥

,

𝐶𝑜

𝐿𝑥𝐶𝑥
, = √

1 +
1

𝐶𝑜

𝐶𝑥𝐶𝑒
𝐶𝑒 − 𝐶𝑥

𝐿𝑥
𝐶𝑥𝐶𝑒

𝐶𝑒 − 𝐶𝑥

= √
1

𝐿𝑥𝐶𝑥
√1 −

𝐶𝑥

𝐶𝑒
+

𝐶𝑥

𝐶𝑜
= 𝜔𝑛𝑜𝑚√1 −

𝐶𝑥

𝐶𝑒
+

𝐶𝑥

𝐶𝑜
 (2.19) 
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where the nominal frequency is, 

 
𝜔𝑛𝑜𝑚 = √

1

𝐿𝑥𝐶𝑥
 (2.20) 

Thus, rearrangement and simplification of Equations (2.18) and (2.19) yields the expression for 

𝐶𝑥/𝐶𝑜, 

 𝐶𝑥

𝐶𝑜
=

𝜔𝑝
2 − 𝜔𝑜

2

𝜔𝑝
2 =

𝑓𝑝
2 − 𝑓𝑜

2

𝑓𝑝
2  (2.21) 

According to Equation (2.19), the parallel frequency (𝑓𝑝) will equal the nominal frequency 

(𝑓𝑛𝑜𝑚) only if 𝐶𝑒 = 𝐶𝑜. Compare Equations (2.11) and (2.21), and these two capacitive ratios will 

be the same only if 𝐶𝑒 = 𝐶𝑜. However, 𝐶𝑒 does not equal 𝐶𝑜 as [9] in this hollow disk. Section 2.5 

will discuss this phenomenon in depth.  

The hollow disk should vibrate in the radial contour mode. According to Figure 2.3 (a), 

however, it is the most critical nonideality that the inner disk vibrates not only in the desired 

radial direction but also in the undesired vertical direction, especially near the stem. With such 

disturbing transverse vibration, it is hard to determine whether the hollow disk vibrates in the 

radial contour mode. Based on the simulated mode shape in Figure 2.3 (a), solid lines in Figure 

2.4 present the separated mode shape functions in the radial and vertical directions (i.e., 𝑅𝑚𝑜𝑑𝑒 

and 𝑍𝑚𝑜𝑑𝑒). For purposes of comparison, dashed lines show the mode shape functions of an ideal 

solid disk. Now, it becomes much easier to confirm that the inner disk still vibrates in the radial 

contour mode in the radial direction because the solid blue line follows the dashed blue line 

although there is a small ripple. However, the transverse vibration of the inner disk is severe (i.e., 

solid orange line) compared to the solid disk (i.e., dashed orange line). Section 2.2 will analyze 

this nonideality in detail. 

In Figure 2.3 (a), the sidewall also vibrates in the radial direction. Figure 2.5 presents this 

phenomenon more clearly. The blue line is the simulated radial mode shape function of the 

sidewall. For comparison, the displacement along the sidewall of the solid disk is uniform 

according to the orange line. Section 2.3 will have a more detailed analysis of this phenomenon. 

To quantify the abovementioned effects, including the transverse vibration of the inner disk 

and the radial vibration of the sidewall, kinetic energies in the radial and vertical directions (i.e., 

𝑅𝐾𝐸𝑖  and 𝑉𝐾𝐸𝑖 ) of each part (i.e., 𝑖 = 𝑑𝑖𝑠𝑘, 𝑠𝑖𝑑𝑒𝑤𝑎𝑙𝑙, 𝑡𝑜𝑡𝑎𝑙 ) can be derived from volume 

integrations based on the simulated mode shape functions, 
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𝑅𝐾𝐸𝑖 =

1

2
𝜌 ∭ [𝑅𝑚𝑜𝑑𝑒(𝑟, 𝜃, 𝑧)]2𝑑𝑉

𝑖

 (2.22) 

 
𝑉𝐾𝐸𝑖 =

1

2
𝜌 ∭ [𝑍𝑚𝑜𝑑𝑒(𝑟, 𝜃, 𝑧)]2𝑑𝑉

𝑖

 
(2.23) 

The total energy of each part is the sum of 𝑅𝐾𝐸𝑖 and 𝑉𝐾𝐸𝑖, 

 𝑇𝐾𝐸𝑖 = 𝑅𝐾𝐸𝑖 + 𝑉𝐾𝐸𝑖  (2.24) 

Table 2.2 presents the kinetic energy distribution of each part during vibration. Thus, 

according to the result, the radial contour mode of the inner disk accounts for 71.70% in total 

energy. One nonideality, the transverse vibration of the inner disk, comprises 16.08%. Another 

phenomenon, the radial vibration of the sidewall, makes up 12.16%. The vertical vibration of the 

sidewall is negligible since it is only 0.06%.  

 

𝑅
𝑚

𝑜
𝑑

𝑒
( 𝑟

,0
,0

) /
𝑅

𝑚
𝑜

𝑑
𝑒

( 𝑅
,0

,0
)  

  o
r 

  𝑍
𝑚

𝑜
𝑑

𝑒
( 𝑟

,0
,0

)

/𝑅
𝑚

𝑜
𝑑

𝑒
( 𝑅

,0
,0

)  
  [

 ]
 

 

𝑟/𝑅   [ ] 

 

Solid blue/orange line: radial/vertical mode shape function of the inner disk of the hollow disk 

Dashed blue/orange line: radial/vertical mode shape function of the solid disk 

Figure 2.4: Simulated normalized radial and vertical mode shape functions of the inner disk 

of the hollow disk and the solid disk 
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𝑧/
𝐻

   
[ 

] 

 

𝑅𝑚𝑜𝑑𝑒(𝑅, 0, 𝑧)/𝑅𝑚𝑜𝑑𝑒(𝑅, 0, 0) − 1   [ ] 

 

Blue: the sidewall of the hollow disk; Orange: the sidewall of the solid disk 

Figure 2.5: Simulated normalized radial mode shape functions of sidewalls of the hollow disk 

and the solid disk 

 

Table 2.2: Kinetic energy distribution of each part during vibration 

Parts 
Radial K.E. 

(i.e. 𝑹𝑲𝑬𝒊) 

Vertical K.E. 

(i.e. 𝑽𝑲𝑬𝒊) 

Total K.E. 

(i.e. 𝑻𝑲𝑬𝒊) 

𝒊 = 𝒅𝒊𝒔𝒌 71.70% 16.08% 87.78% 

𝒊 = 𝒔𝒊𝒅𝒆𝒘𝒂𝒍𝒍 12.16% 0.06% 12.22% 

𝒊 = 𝒕𝒐𝒕𝒂𝒍 83.86% 16.14% 100% 

 

Section 2.2 and 2.3 will investigate these phenomena in detail. 

 

2.2   Finite Element Analysis of the Transverse Vibration 

In Table 2.1, the inner disk thickness ( ℎ ) and total height ( 𝐻 ) of the designed 80 MHz 

asymmetric hollow disk are 0.6 μm and 2.4 μm respectively. A new parameter ℎ/𝐻 defines the 
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hollowness of a hollow disk, so the hollowness of the 80 MHz hollow disk is ℎ/𝐻 = 0.25. The 

smaller the value of ℎ/𝐻  is, the hollower the disk is. As ℎ/𝐻  reaches to one, the hollow disk 

becomes a solid one.  

Two critical phenomena exist in an asymmetric hollow disk, the transverse vibration of the 

inner disk and the radial vibration of the sidewall, by analyzing mode shape functions and 

quantifying by kinetic energy distribution. Now, we are focusing on the effect of ℎ/𝐻 on the 

transverse vibration.  

Figure 2.6 presents mode shapes of hollow disks with various ℎ/𝐻s, where ℎ is 0.6 μm, and 𝐻 

varies from 0.6 μm to 3 μm. As ℎ/𝐻 reaches to one, the hollow disk, which becomes a solid disk, 

vibrates in the ideal radial contour mode. The transverse vibration nonideality becomes very 

severe while ℎ/𝐻 is only 0.2. It is hard to determine whether the inner disk still vibrates in the 

radial contour mode in the radial direction. 

Figure 2.7 and 2.8 present simulated radial and vertical mode shape functions of inner disks 

in hollow disks with various ℎ/𝐻s respectively. In Figure 2.7, even when ℎ/𝐻 is approaching 0.2, 

the radial mode shape function of the inner disk still follows the ideal radial contour mode shape 

function, although there is nonideal undulation. However, the nonideal transverse vibration 

becomes more obvious in Figure 2.8.  

To quantify this nonideality, Figure 2.9 presents the effect of ℎ/𝐻  on the vertical kinetic 

energy of the inner disk. The severity of the transverse vibration goes above 12% when ℎ/𝐻 <

0.25 and reaches 45% when ℎ/𝐻 = 0.2. It becomes very sensitive to ℎ/𝐻 when ℎ/𝐻 is small. 

As shown in Figure 2.6, the nominal frequency decreases with decreasing ℎ/𝐻. To visualize 

this effect, Figure 2.12 presents the frequency degradation from the simulation. The hollow shape 

lowers the nominal frequency by more than 4.7% when ℎ/𝐻 < 0.25 and up to 10% when ℎ/𝐻 =

0.2. 

Overall, the transverse vibration nonideality of the inner disk, exists in asymmetric hollow 

disks and is not negligible. The hollower the disk is, the more severe and sensitive the nonideality 

is. The hollow shape also reduces the nominal frequency. For the hollow disk design with ℎ/𝐻 =

0.25 in Table 2.1, the transverse vibration of the entire structure comprises 12%, its nominal 

frequency is lowered by 4.7%. If the disk is hollower with ℎ/𝐻 = 0.2, the transverse vibration can 

make up 45% in total, and its frequency is only 90% of the original. 
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𝑓𝑛𝑜𝑚 = 81.657 MHz 

 

𝑓𝑛𝑜𝑚 = 80.761 MHz 

(a) ℎ/𝐻 = 1 (b) ℎ/𝐻 = 0.5 

 

𝑓𝑛𝑜𝑚 = 80.273 MHz 

 

𝑓𝑛𝑜𝑚 = 79.226 MHz 

(c) ℎ/𝐻 = 0.4 (d) ℎ/𝐻 = 0.3 

 

𝑓𝑛𝑜𝑚 = 77.827 MHz 

 

𝑓𝑛𝑜𝑚 = 73.167 MHz 

(e) ℎ/𝐻 = 0.25 (f) ℎ/𝐻 = 0.2 

Figure 2.6: Mode shapes of hollow disks with various ℎ/𝐻s 
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Blue: ℎ/𝐻 = 1; Orange: ℎ/𝐻 = 0.5; Gray: ℎ/𝐻 = 0.3; Yellow: ℎ/𝐻 = 0.25; Green: ℎ/𝐻 = 0.2 

Figure 2.7: Radial mode shape functions of inner disks with various ℎ/𝐻s 
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Blue: ℎ/𝐻 = 1; Orange: ℎ/𝐻 = 0.5; Grey: ℎ/𝐻 = 0.3; Yellow: ℎ/𝐻 = 0.25; Green: ℎ/𝐻 = 0.2 

Figure 2.8: Vertical mode shape functions of inner disks with various ℎ/𝐻s 
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Figure 2.9: Vertical kinetic energies of inner disks with various ℎ/𝐻s 
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Figure 2.10: Simulated nominal frequency degradation with decreasing ℎ/𝐻 

 



17 
 

2.3   Radial Cantilever Model of the Sidewall Ring 

Section 2.2 analyzed the effect of the asymmetric structure on the transverse vibration of the 

inner disk, and this section will analyze and model the radial vibration of the circular sidewall.  

Figure 2.11 presents radial mode shape functions of sidewalls in hollow disks with various 

ℎ/𝐻s. The radial vibration of the sidewall becomes more significant when the disk is hollower. 

This is a good property because it boosts 𝐶𝑥/𝐶𝑜 even higher.  

 

𝑧/
𝐻

   
[ 

] 

 

𝑅𝑚𝑜𝑑𝑒(𝑅, 0, 𝑧)/𝑅𝑚𝑜𝑑𝑒(𝑅, 0, 0) − 1   [ ] 

 

Blue: ℎ/𝐻 = 1; Orange: ℎ/𝐻 = 0.5; Grey: ℎ/𝐻 = 0.3; Yellow: ℎ/𝐻 = 0.25; Green: ℎ/𝐻 = 0.2 

Figure 2.11: Radial mode shape functions of sidewalls with various ℎ/𝐻s 

 

The radial vibration of the sidewall ring is similar to a radial cantilever, which is an infinite 

number of infinitely narrow cantilevers side by side in a circle, as shown in Figure 2.12. The main 

effect in the radial cantilever is the curvature effect that can boost the frequency from a simple 

cantilever but the mode shape stays the same.  
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(a) (b) 

Figure 2.12: Schematic showing that connect (a) an infinite number of infinitely narrow 

cantilevers side by side in a circle to form (b) a radial cantilever 

 

To derive the Euler Bernoulli beam equation for a radial cantilever, start from the equation of 

a simple cantilever, 

 
𝐸𝐼

𝜕4𝑟

𝜕𝑧4
= 𝜌𝑆𝜔2𝑟 (2.25) 

where 𝑟 is the displacement function, 𝜔 is the resonance frequency, 𝑆 is the cross-section area of 

the beam, and 𝐼 is the moment of inertia. Figure 2.13 shows the directions of 𝑟-axis and 𝑧-axis.  

 

 

The equation is just as simple as  

 

Figure 2.13: Schematic showing variables used in the Euler Bernoulli beam equation of a 

simple cantilever 
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 𝐹𝑏 = 𝐹 (2.26) 

where 𝐹𝑏 is the force due to bending of each infinitely small segment, 𝐹 is the inertia force, 

 
𝐹𝑏 ∝ 𝐸𝐼

𝜕4𝑟

𝜕𝑧4
,   𝐹 = 𝑘𝑐𝑥 ∝ 𝜌𝑆𝜔2𝑟,    (2.27) 

and where 𝑘𝑐  is the equivalent stiffness of each segment on the cantilever and 𝑥  is the 

displacement function (i.e. 𝑥 = 𝑟). 

Given by boundary conditions of a cantilever,  

 𝑟(𝑧 = 0) = 0 

𝑟′(𝑧 = 0) = 0 

𝑟′′(𝑧 = 𝐻) = 0 

𝑟′′′(𝑧 = 𝐻) = 0 

(2.28) 

solving Equation (2.25) yields the resonance frequency and mode shape function of a simple 

cantilever,  

 
𝑓𝑐𝑎𝑛 = 0.1615√

𝐸

𝜌

𝑡

𝐻2
 (2.29) 

 𝑋𝑚𝑜𝑑𝑒(𝑧) = [cos(𝜑𝑧) − cosh(𝜑𝑧)] + 𝜉[sin(𝜑𝑧) − sinh(𝜑𝑧)] (2.30) 

where 𝐻 is the length of the beam, 𝑡 is the thickness, and constants 𝜉 and 𝜑 are given by 

 
𝜉 = −

cos(𝜑𝐻) + cosh(𝜑𝐻)

sin(𝜑𝐻) + sinh(𝜑𝐻)
,   𝜑𝐻 = 1.8751 (2.31) 

Figure 2.14 (a) shows the mode shape from simulation in 2D, and it matches Equation (2.31) 

perfectly. 

Equivalently, a radial cantilever is an infinite number of infinitely narrow cantilevers 

connecting side by side in a circle, as shown in Figure 2.12. Figure 2.17 (b) presents its mode shape 

from FEA. 

The Euler Bernoulli beam equation of a radial cantilever becomes, 

 
𝐸𝐼

𝜕4𝑟

𝜕𝑧4
+ 𝐹𝑐

′ = 𝜌𝑆𝜔2𝑟 (2.32) 

where 
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𝐼 =

𝑅𝑑𝜃𝑡3

12
,   𝑆 = 𝑅𝑑𝜃𝑡 (2.33) 

and where 𝑅 is the outer radius of the radial cantilever, 𝑡 is the thickness of the cantilever or 

sidewall, and 𝐹𝐶
′  is the curvature force per unit length in 𝑟 direction due to the curvature effect, 

whose direction is opposite to the inertia force, as shown in Figure 2.15, 

 𝐹𝑐
′ = 𝜎𝜃𝑡𝑑𝜃 (2.34) 

where 𝜎𝜃 is the stress in tangential direction or 𝜃-direction generated by the curvature effect, 

 𝜎𝜃 = 𝐸𝜖𝜃 (2.35) 

and where 𝜖𝜃 is the strain in 𝜃-direction given by 

 
𝜖𝜃 =

2𝜋(𝑅 + 𝑟) − 2𝜋𝑅

2𝜋𝑅
=

𝑟

𝑅
 (2.36) 

and where 𝑟 is the radial displacement function.  

 

  

(a) (b) 

Figure 2.14: Simulated mode shapes of (a) a simple cantilever and (b) a radial cantilever 

 

Compare Equation (2.32) with Equation (2.25). The curvature effect introduces a new force 𝐹𝑐, 

which is in the same direction as the bending force, so the equation is just as simple as 

 𝐹𝑏 + 𝐹𝑐 = 𝐹 = 𝑘𝑟𝑐𝑥 (2.37) 

where 𝑘𝑟𝑐  is the equivalent stiffness of each segment on the radial cantilever, which must be 

larger than 𝑘𝑐 due to the extra force 𝐹𝑐. 
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Figure 2.15: Schematic showing variables used in the Euler Bernoulli equation of a radial 

cantilever 

 

Finally, Equation (2.32) becomes 

 
𝐸

𝑅𝑑𝜃𝑡3

12

𝜕4𝑟

𝜕𝑧4
+ 𝐸

𝑟

𝑅
𝑡𝑑𝜃 = 𝜌𝑅𝑑𝜃𝑡𝜔2𝑟 (2.38) 

To simplify the equation, rearrangement yields 

 𝜕4𝑟

𝜕𝑧4
= [

12𝜌𝜔2

𝐸𝑡2
−

12

𝑅2𝑡2
] 𝑟 (2.39) 

Solve the differential equations based on the same boundary conditions as Equations (2.28), 

 

𝑓𝑟𝑐 =
1

2𝜋
√

𝐸

𝜌
√1.0302

𝑡2

𝐻4
+

1

𝑅2
 (2.40) 

To provide better insight to variable dependencies, rearrangement and simplification yields the 

closed form 

 

𝑓𝑟𝑐 = 0.1615√
𝐸

𝜌

𝑡

𝐻2
√1 + 0.9707

𝐻4

𝑡2𝑅2
= 𝑓𝑐𝑎𝑛𝛽𝑐 (2.41) 
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where 𝑓𝑐𝑎𝑛 is the frequency of a simple cantilever given by Equation (2.29) and 𝛽𝑐 is the curvature 

coefficient given by 

 

𝛽𝑐 = √1 + 0.9707
𝐻4

𝑡2𝑅2
 (2.42) 

Thus, with the same 𝑓𝑐𝑎𝑛 (i.e. the ratio of 𝑡/𝐻2 is fixed), only the curvature radius (𝑅) can boost 

𝑓𝑟𝑐. To visualize this effect, Figure 2.16 presents the effect of the curvature radius on the curvature 

coefficient from both Equation (2.42) and simulation, and they match each other perfectly. As the 

radius decreases, the frequency increases quadratically. As the radius goes to infinity, the 

frequency converges to the frequency of the simple cantilever where 𝛽𝑐 = 1. 

 

𝛽
𝑐
   

[ 
] 

 

𝑅   [μm] 

 

 Blue line: model; Orange dots: simulation; Orange dashed line: 𝛽𝑐 = 1  

Figure 2.16: Curvature coefficient versus curvature radius 

 

In addition, by solving Equation (2.38), the curvature effect does not affect the mode shape 

function. It is the same as Equation (2.30), which is the orange line in Figure 2.17. The blue line 

replots the simulated radial mode shape function of the circular sidewall in the 80 MHz 

asymmetric hollow disk for comparison. They match each other perfectly. Thus, the sidewall 

vibrates as a radial cantilever in the so-called radial cantilever mode.  
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Recall the nonlinear coefficient ( 𝜆 ) in Equation (2.5) calculating the electromechanical 

coupling ratio (𝜂𝑒). It can be derived from not only the surface integration as Equation (2.16) but 

also the integration of the radial cantilever mode shape function (𝑋𝑚𝑜𝑑𝑒) in Equation (2.30). For a 

solid disk, since the sidewall vibrates uniformly, 𝜆 equals one. Due to the radial vibration of the 

circular sidewall, 𝜆 of the designed 80 MHz hollow disk becomes 1.669. As a result, in Table 2.1, 𝜂𝑒 

of the hollow disk is 6.582 μC/m, which is larger than 3.944 μC/m of the solid one. This is an 

advantage of hollow disks and one of the reasons they can boost 𝐶𝑥/𝐶𝑜. 

 

𝑧/
𝐻

   
[ 

] 

 

𝑅𝑚𝑜𝑑𝑒(𝑅, 0, 𝑧)/𝑅𝑚𝑜𝑑𝑒(𝑅, 0, 0) − 1   or   𝑋𝑚𝑜𝑑𝑒(𝑧)/𝑋𝑚𝑜𝑑𝑒(𝐻)   [ ] 

 

Blue: simulated radial mode shape function of the circular sidewall of the hollow disk;  

Orange: modeled radial mode shape function of the radial cantilever 

Figure 2.17: Normalized radial and vertical mode shape functions of a hollow disk and a solid 

disk from FEA 

 

Furthermore, Table 2.3 presents the simulated nominal frequencies and mode shapes of the 

separated inner disk and sidewall in the designed 80 MHz hollow disk. The frequency of the inner 

disk is closer to the combined hollow disk, although the frequency of the sidewall is also not far 

away. The hollow disk combines two mode shapes, the radial contour and radial cantilever mode, 

with the nonideality of the transverse vibration. 
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Table 2.3: Comparison of the separated inner disk and sidewall with the combined hollow disk  

 Isolated Inner Disk Isolated Sidewall Combined Hollow Disk 

Nominal 

Frequency 

81.637 MHz 

(from FEA) 

91.548 MHz 

(from FEA) 

79.601 MHz 

(from meas.) 

77.829 MHz 

(from FEA) 

Simulated 

Mode Shape  

(radial contour) 

 

(radial cantilever) 

 

(combined) 

 

In conclusion, according to Section 2.2 and 2.3, the inner disk vibrates in the radial contour 

mode in the radial direction and the sidewall vibrates in the radial cantilever mode, while the 

inner disk also vibrates transversely, which is a critical nonideality lowering 𝐶𝑥/𝐶𝑜. Hollow disk 

can boost 𝐶𝑥/𝐶𝑜 because of less dynamic mass and the radial vibration of the circular sidewall. 

 

2.4   Fabrication Process 

Figure 2.18 and Table 2.4 summarize the fabrication process yielding asymmetric hollow 

disks. This process flow follows the one yielding solid disk resonators in [9], but the most creative 

step is Step c-2, blank reactive ion etching (RIE) Si without a mask, where the anisotropic RIE 

leaves the sidewall. 

Figure 2.19 (a) presents a scanning electron micrograph (SEM) of a fabricated asymmetric 

hollow disk with a fully surrounded electrode. Figure 2.21 (b) shows a tilted cross-section view 

of a dummy device after Step c-2, which shows the asymmetric hollow structure. The roughness 

of the sidewall after the blank etch is approximately 50 nm, which is larger than expected. It also 

limits the possibility of fabricating a very small gap in the subsequent Step d-1. 

The process can make both the disk and the stem hollow as long as the stem is larger in Mask 

#2. As proved in [12], a higher quality factor is achievable in a disk resonator with a hollow stem. 

Figure 2.20 presents SEMs of a fabricated hollow disk with a hollow stem. 
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Figure 2.21 (a) presents a fabricated 148 nm gap spacing, while Figure 2.23 (b) shows the 

failure of the gap with a high DC bias voltage applied (𝑉𝑃 > 20 V) during measurement, in which 

the resonator and the electrode were shorted and the short current broke the hollow disk. 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Si:      SiO2:      SiN:      Poly-Si:    

Figure 2.18: Fabrication process yielding asymmetric hollow disks with more detailed 

information shown in Table 2.5 
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Table 2.4: Detailed fabrication process yielding asymmetric hollow disks 

Figure Step Fabrication Details Tools 

(a) 

a-1 Deposition LPCVD 2 μm LTO tyster 11 & 2 

a-2 Deposition LPCVD 500 nm LSN tyster 9 

a-3 Deposition LPCVD 1 μm LTO tyster 11 & 2 

a-4 (m1) Patterning RIE SiO2 (by Mask #1, m1) asml 300 & sts-oxide 

a-5 Deposition LPCVD 1.5 μm Si (doped) tyster 10 & 6 

a-6 CMP CMP Si (stopped on SiO2) cmp 

a-7 Deposition LPCVD 300 nm LTO tyster 12 & 3 

a- 8 (m2) Patterning RIE SiO2 (by Mask #2, m2) asml 300 & sts-oxide 

(b) 

b-1 Deposition LPCVD 600 nm Si (doped) tyster 16 & 3 

b-2 Deposition LPCVD 2 μm LTO tyster 12 & 4 

b-3 (m3) Patterning RIE SiO2 and Si (by Mask #3, m3) asml 300 & sts-oxide & sts2 

(c) 

c-1 Deposition LPCVD 350 nm Si (doped) tyster 16 & 3 

c-2 Etching Blank RIE Si (without a mask) sts2 

(d) 

d-1 Deposition  LPCVD 148 nm HTO tyster 17 

d-2 (m4) Patterning RIE SiO2 (by Mask #4, m4) asml 300 & sts-oxide 

(e) 

e-1 Deposition LPCVD 3 μm Si (doped) tyster 16 & 6 

e-2 CMP CMP Si (stopped on SiO2) cmp 

e-3 (m5) Patterning RIE Si (by Mask #5, m5) asml 300 & sts2 

(f) f-1 Release HF Release msink 18 

Note: LPCVD: Low Pressure Chemical Vapor Deposition; RIE: Reactive Ion Etching; LTO: Low 

Temperature Oxide (SiO2); LSN: Low Stress Nitride (SixNy). 
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(a) (b) 

Figure 2.19: SEMs of (a) a fabricated hollow disk with a fully surrounded electrode and (b) a 

tilted cross-section view of a dummy device after Step c-2 

 

  

(a) (b) 

Figure 2.20: SEMs of (a) a fabricated hollow disk and (b) its hollow stem 
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(a) (b) 

Figure 2.21: SEMs of (a) the fabricated 80nm gap and (b) its failure with a high DC bias 

voltage applied 

 

2.5   Measurement Results 

This section will discuss measurement of the fabricated 80 MHz asymmetric hollow disk and 

characterization of the model in Section 2.1. Figure 2.22 presents the measured frequency 

responses with various DC bias voltages. They can directly yield the resonance (or series) and 

parallel frequencies (i.e., 𝑓𝑜  and 𝑓𝑝 ) which are the frequencies of the maxima and minima 

respectively in the frequency response. The quality factor of this device is 5000.  

Figure 2.23 presents measured resonance and parallel frequencies versus DC bias voltage (𝑉𝑃). 

Both are dependent on 𝑉𝑃. To explain this phenomenon, recall Equation (2.18) and (2.19),  

 
𝑓𝑜 = 𝑓𝑛𝑜𝑚√1 −

𝐶𝑥

𝐶𝑒
 (2.43) 

 
𝑓𝑝 = 𝑓𝑛𝑜𝑚√1 −

𝐶𝑥

𝐶𝑒
+

𝐶𝑥

𝐶𝑜
 (2.44) 

Because both capacitive ratios (i.e., 𝐶𝑥/𝐶𝑒  and 𝐶𝑥/𝐶𝑜) are much smaller than 1, approximation 

yields 

 
𝑓𝑜 = 𝑓𝑛𝑜𝑚√1 −

𝐶𝑥

𝐶𝑒
≅ 𝑓𝑛𝑜𝑚 (1 −

1

2

𝐶𝑥

𝐶𝑒
) (2.45) 
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𝑓𝑝 = 𝑓𝑛𝑜𝑚√1 −

𝐶𝑥

𝐶𝑒
+

𝐶𝑥

𝐶𝑜
≅ 𝑓𝑛𝑜𝑚 (1 −

1

2

𝐶𝑥

𝐶𝑒
+

1

2

𝐶𝑥

𝐶𝑜
) (2.46) 

where 𝐶𝑜  and 𝐶𝑒  are voltage independent, but 𝐶𝑥  is proportional to 𝑉𝑃
2 . Linear regression of 

frequencies on 𝑉𝑃
2 yields  

 𝑓𝑜 = 𝑓𝑛𝑜𝑚 − 𝜑𝑜𝑉𝑃
2 = 79.603 × 106 − 361.500𝑉𝑃

2 (2.47) 

 𝑓𝑝 = 𝑓𝑛𝑜𝑚 − 𝜑𝑝𝑉𝑃
2 = 79.609 × 106 − 244.917𝑉𝑃

2 (2.48) 

which are the blue and orange lines in Figure 2.23. Both lines yield approximately the same 

nominal frequency. Taking the ratio of two slopes yields 

 𝜅 =
𝜑𝑜

𝜑𝑝
= 1.476 (2.49) 

Taking the same ratio from Equation (2.45) and (2.46) yields 

 

𝜅 =
𝜑𝑜

𝜑𝑝
=

1
2

𝐶𝑥
𝐶𝑒

1
2

𝐶𝑥
𝐶𝑒

−
1
2

𝐶𝑥
𝐶𝑜

=
𝐶𝑜

𝐶𝑜 − 𝐶𝑒
 (2.50) 

Rearrangement yields 

 
𝐶𝑒 =

𝜅 − 1

𝜅
𝐶𝑜 = 0.322𝐶𝑜 (2.51) 

The negative capacitance equivalent circuit in [9] assumes 𝐶𝑒 = 𝐶𝑜, but it is not accurate for 

this hollow disk. If it is true, 𝑓𝑝 will equal 𝑓𝑛𝑜𝑚  and become voltage independent. 𝐶𝑒  must not 

equal 𝐶𝑜, and Equation (2.51) can extract its value. For the asymmetric hollow disk in Table 2.1, 

𝐶𝑒  is 9.412 fF and 𝐶𝑜 is 29.185 fF. As a result, 𝐶𝑥/𝐶𝑒 is 0.385% and 𝐶𝑥/𝐶𝑜 is 0.142% at 𝑉𝑃 = 20 V. 

Both are much higher than 𝐶𝑥/𝐶𝑒 = 𝐶𝑥/𝐶𝑜 = 0.015% of the solid disk. 

According to Equations (2.11) and (2.21), Figure 2.25 presents measured and modeled 𝐶𝑥/𝐶𝑒 

and 𝐶𝑥/𝐶𝑜. They match each other perfectly.  
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 Yellow: 𝑉𝑃 = 20 V; Gray: 𝑉𝑃 = 15 V; Orange: 𝑉𝑃 = 10 V; Blue: 𝑉𝑃 = 5 V  

Figure 2.22: Frequency responses of the 80 MHz hollow disk with various DC bias voltages 
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Figure 2.23: Resonance and parallel frequencies versus DC bias voltage 
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Blue: 𝐶𝑥/𝐶𝑒; Orange: 𝐶𝑥/𝐶𝑜 

Figure 2.25: 𝐶𝑥/𝐶𝑒 and 𝐶𝑥/𝐶𝑜 versus DC bias voltage 

 

2.6   Conclusions 

In conclusion, it is evident that an asymmetric hollow disk design can boost 𝐶𝑥/𝐶𝑜. An 80 MHz 

asymmetric radial contour hollow disk achieves 𝐶𝑥/𝐶𝑜 = 0.142% and 𝐶𝑥/𝐶𝑒 = 0.358% with an 

148 nm  electrode-to-resonator gap and a 20 V  DC bias, which is much higher than 𝐶𝑥/𝐶𝑜 =

0.015% of a similar frequency solid disk. On the one hand, there is less dynamic mass, which is 

inversely proportional to 𝐶𝑥/𝐶𝑜, because the disk is hollow. On the other hand, FEA proves that 

the sidewall vibrates in the radial cantilever mode in the radial direction, and its vertical vibration 

is negligible. Its radial vibration introduces a nonlinear coefficient ( 𝜆 ) in electromechanical 

coupling ratio (𝜂𝑒). Since 𝜆 is larger than 1, the sidewall can boost 𝐶𝑥/𝐶𝑜 even higher by boosting 

𝜂𝑒. 

The inner disk vibrates in the radial contour mode in the radial direction, but it also vibrates 

transversely, which introduces an extra dynamic mass moving in the vertical direction. Since 

𝐶𝑥/𝐶𝑜 is inversely proportional to mass, the nonideality lowers 𝐶𝑥/𝐶𝑜, but only by a very small 

amount. In addition, the hollow structure reduces the nominal frequency. These nonidealities 

will become more critical if the disk is hollower. 
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Sections 2.1 and 2.5 conduct a detailed analysis of the negative capacitance equivalent circuit 

in [9]. The parallel frequency (𝑓𝑝) equals the nominal frequency (𝑓𝑛𝑜𝑚) only if 𝐶𝑒 = 𝐶𝑜. However, 

this assumption is not accurate for the 80 MHz  asymmetric hollow disk because its 𝑓𝑝  is 

dependent on DC bias. As a result, 𝐶𝑒 of this hollow disk is only 0.322𝐶𝑜. 
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CHAPTER 3   

SYMMETRIC HOLLOW DISK 

 

 

3.1   Symmetric Hollow Disk Design 

Asymmetric hollow disks tend to vibrate both radially and transversely. The transverse 

vibration of the inner disk introduces an extra dynamic mass moving in the vertical direction in 

the mechanical domain. This mass reduces the motional-to-static capacitive ratio (𝐶𝑥/𝐶𝑜 ). A 

symmetric hollow disk can eliminate this nonideality. Figure 3.2 schematically shows a 

symmetric radial contour hollow disk with a fully surrounded electrode. In this symmetric 

structure, a sidewall ring protrudes in both upwards and downwards directions along the inner 

disk edges. The hollow disk is more symmetric in the vertical direction.  

 

 

 

(a) (b) 

Figure 3.1: Schematic showing a symmetric hollow disk with a fully surrounded electrode 

and variables used in derivation: (a) top view and (b) cross-section view 

 

Figure 3.2 presents simulated mode shapes of a symmetric hollow disk and a solid disk for 

comparison. The symmetric hollow disk vibrates in the radial contour mode as the solid disk. 

There is no transverse vibration in the inner disk. Additionally, both sidewalls vibrate uniformly. 
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(a) (b) 

Figure 3.2: Radial contour mode shapes of (a) a solid disk and (b) a symmetric hollow disk 

 

Equivalent circuits in Figure 2.2 can model this symmetric hollow disk as well. In addition, 

the ideal radial contour function in [9] can derive all equivalent circuit variables by 

 

𝑅𝑚𝑜𝑑𝑒(𝑟) = 𝐽1(𝜑𝑟),   𝜑 = √
(2𝜋𝑓𝑛𝑜𝑚)2𝜌

𝐸
1 − 𝜈2

 (3.1) 

where 𝐽1 is the Bessel function, 𝜑 is a constant that depends on the nominal frequency (𝑓𝑛𝑜𝑚), 

density (𝜌), Young’s modulus (𝐸), and Poisson’s ratio (𝜈). Based on the derivation in [9], the only 

difference is that the total motion mass (𝑚𝑚) or mechanical inductance (𝑙𝑥) is the sum of the disk 

and the sidewall, 

 
𝑙𝑥 = 𝑚𝑚(𝑅) =

∭[𝑅𝑚𝑜𝑑𝑒(𝑟)]2𝑑𝑚

[𝑅𝑚𝑜𝑑𝑒(𝑟𝑟𝑒𝑓)]
2

=
2𝜋𝜌 {ℎ ∫ [𝑅𝑚𝑜𝑑𝑒(𝑟)]2𝑟𝑑𝑟

𝑅−𝑡

0
+ 𝐻 ∫ [𝑅𝑚𝑜𝑑𝑒(𝑟)]2𝑟𝑑𝑟

𝑅

𝑅−𝑡
}

[𝑅𝑚𝑜𝑑𝑒(𝑅)]2
 

(3.2) 

Table 3.1 summarizes detailed design and equivalent circuit variables of a 128 MHz 

asymmetric hollow disk. All geometric dimensions of the structure (i.e., 𝑅, 𝐻, ℎ, 𝑡, and 𝑑𝑜) are 

from measurements during fabrication. It is a reasonable assumption for a hollow disk that the 

DC bias voltage (𝑉𝑃) is 10 V and the quality factor (𝑄) is 5000. Equations (2.2) -- (2.11) give all 

equivalent circuit variables if 𝐶𝑒 = 𝐶𝑜. The table shows a 128 MHz solid radial contour disk as well 

for comparison. The dynamic mass of the hollow disk is only 27% of the original in the solid disk. 

As a result, the hollow disk can boost 𝐶𝑥/𝐶𝑜 by approximately four times and lower the motional 

resistance (𝑅𝑥) by 73%. 

Unfortunately, post-fabrication stress gradients rendered testable only a large-stemmed 

symmetric hollow disk. Section 3.2 will discuss this type of hollow disk with its nonidealities. 
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Table 3.1: Summary of detail design and equivalent circuit variables of the 128 MHz symmetric 

hollow disk and an 128 MHz solid disk 
D

es
ig

n
 V

ar
ia

b
le

s 

Parameters Solid Disk Hollow Disk Units 

Disk Radius (outer), 𝑅 20.6 20.6 μm 

Total Height, 𝐻 2.4 2.4 μm 

Inner Disk Thickness, ℎ  -- 500 nm 

Sidewall Thickness, 𝑡 -- 600 nm 

Electrode-to-Resonator Gap, 𝑑𝑜 50 50 nm 

DC Bias Voltage, 𝑉𝑃 10 10 V 

Quality Factor, 𝑄 5000 5000 -- 

Nominal Frequency, 𝑓𝑛𝑜𝑚 128.202 128.202 MHz 

Resonance Frequency, 𝑓𝑜 128.163 128.057 MHz 

E
q

u
iv

al
en

t 
C

ir
cu

it
 V

ar
ia

b
le

s 

Mech. Inductance (mass), 𝑙𝑥 5.616 1.506 pH 

Mech. Capacitance (1/stiffness), 𝑐𝑥 0.274 1.023 μF 

Mech. Resistance (damping), 𝑟𝑥 0.905 0.243 μΩ 

Static Overlap Capacitance, 𝐶𝑜 55.010 55.010 fF 

Electromechanical Coupling Ratio, 𝜂𝑒 11.002 11.002 μC/m 

Motional Inductance, 𝐿𝑥 0.046 0.012 H 

Motional Capacitance, 𝐶𝑥 0.033 0.124 fF 

Motional Resistance, 𝑅𝑥 7.475 2.005 kΩ 

𝐶𝑥-to-𝐶𝑜 Capacitive Ratio, 𝐶𝑥/𝐶𝑜 0.060 0.225 % 
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3.2   Symmetric Hollow Disk Design with a Large Stem  

Figure 3.3 schematically shows a symmetric hollow disk with a large stem and a fully 

surrounded electrode.  

 

 

 

(a) (b) 

Figure 3.3: Schematic showing a symmetric hollow disk with a large stem and variables used 

in derivation: (a) top view and (b) cross-section view 

 

Table 3.2 summarizes detailed design and equivalent circuit variables of a 98 MHz symmetric 

hollow disk with a large stem whose radius is 8 μm. Figure 3.4 shows its simulated mode shape. 

Like the asymmetric hollow disk, the inner disk vibrates not only radially but also transversely.  

To analyze how the hollow disk vibrates in the radial and vertical directions respectively. 

Figure 3.5 presents simulated radial and vertical mode shape functions. It is evident that there is 

undulation in the vertical mode shape function of the inner disk, although it still vibrates radially. 

Thus, follow the same procedure as Section 2.1 to analyze the device. 

Figure 3.6 shows the radial mode shape function of the sidewall, which proves that the 

displacement function along the sidewall is linear. In other words, unlike the asymmetric hollow 

disk, the symmetric circular sidewall does not vibrate by itself but driven by the inner disk. 

Like the asymmetric hollow disk, the rest design variables in Table 3.2 (i.e., 𝑉𝑃, 𝑄, 𝑓𝑛𝑜𝑚, and 

𝑓𝑜) are from the device measurement in Section 3.4. Volume or surface integrations can extract all 

equivalent circuit variables based on the simulated mode shape function directly.  
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Table 3.2: Summary of design and two-direction equivalent circuit variables of the 98 MHz 

symmetric hollow disk with a large stem 
D

es
ig

n
 V

ar
ia

b
le

s 

Parameters Asymmetric Hollow Disk Units 

Disk Radius (outer), 𝑅 20.6 μm 

Total Height, 𝐻 2.4 μm 

Inner Disk Thickness, ℎ  500 nm 

Sidewall Thickness, 𝑡 600 nm 

Electrode-to-Resonator Gap, 𝑑𝑜 50 nm 

Outer Stem Radius, 𝑅𝑠𝑡 8 μm 

DC Bias Voltage, 𝑉𝑃 7 V 

Quality Factor, 𝑄 1500 -- 

Nominal Frequency, 𝑓𝑛𝑜𝑚 98.048 MHz 

Resonance Frequency, 𝑓𝑜 97.837 MHz 

E
q

u
iv

al
en

t 
C

ir
cu

it
 V

ar
ia

b
le

s 

Mech. Inductance (mass), 𝑙𝑥 1.530 pH 

Mech. Capacitance (1/stiffness), 𝑐𝑥 1.723 μF 

Mech. Resistance (damping), 𝑟𝑥 0.628 μΩ 

Static Overlap Capacitance, 𝐶𝑜 70.364 fF 

Electromechanical Coupling Ratio, 𝜂𝑒 8.857 μC/m 

Motional Inductance, 𝐿𝑥 0.020 H 

Motional Capacitance, 𝐶𝑥 0.135 fF 

Motional Resistance, 𝑅𝑥 8.009 kΩ 

Electrical Stiffness Equiv. Cap., −𝐶𝑒 -31.117 fF 

Capacitive Ratio  𝐶𝑥/𝐶𝑒 = 0.430% 𝐶𝑥/𝐶𝑜 = 0.261% -- 
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(a) (b) 

Figure 3.4: Mode shape of the designed 98 MHz symmetric hollow disk with a large stem: (a) 

3D FEA; (b) 2D FEA 
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Blue: radial mode shape function; Orange: vertical mode shape function 

Figure 3.5: Simulated normalized radial and vertical mode shape functions of the inner disk 

of the hollow disk 
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𝑧/
𝐻

   
[ 

] 

 

𝑅𝑚𝑜𝑑𝑒(𝑅, 0, 𝑧)/𝑅𝑚𝑜𝑑𝑒(𝑅, 0, 0) − 1   [ ]   [μm] 

 

Figure 3.6: Simulated normalized radial mode shape function of the sidewall of the hollow 

disk 

 

3.3   Fabrication Process 

Figure 3.7 and Table 3.3 summarize the fabrication process yielding symmetric hollow disks. 

This process flow includes an extra step of timed etch (i.e., Step b-3), but industrial applications 

usually avoid timed etch because it is hard to control the uniformity of the etch rate throughout 

the wafer and from wafer to wafer. An optimized process might add a thin layer as etch stop in 

the thick silicon dioxide in the future. 

Figure 3.8 (a) presents a scanning electron micrograph (SEM) of a fabricated symmetric 

hollow disk with a fully surrounded electrode and a small stem, but the resonator shorts with the 

electrode after release due to a large stress gradient. Figure 3.8 (b) shows the cross-section view 

of a dummy device after Step c-1, which shows the symmetric hollow structure.  

After release, the profile measurement of the hollow disk in Figure 3.8 (a) explains why the 

device shorts out. The disk bends down and the vertical deflection of the disk’s edge is ∆=

0.11 μm. Since the radius of the disk is 𝑅 = 24 μm, the stress gradient in the inner disk is 

 
𝛤 =

2∆

𝑅2
= 3.85 × 10−4 μm−1 (3.3) 

This stress gradient is large enough to short a 50 nm gap, especially in large structures.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Si:      SiO2:      SiN:      Poly-Si:    

Figure 3.7: Fabrication process yielding symmetric hollow disks with more detailed 

information shown in Table 3.3 
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Table 3.3: Detailed fabrication process yielding symmetric hollow disks 

Figure Step Fabrication Details Tools 

(a) 

a-1 Deposition LPCVD 2 μm LTO tyster 11 & 2 

a-2 Deposition LPCVD 500 nm LSN tyster 9 

a-3 Deposition LPCVD 1 μm LTO tyster 11 & 2 

a-4 (m1) Patterning RIE SiO2 (by Mask #1, m1) asml 300 & sts-oxide 

a-5 Deposition LPCVD 1.5 μm Si (doped) tyster 10 & 6 

a-6 CMP CMP Si (stopped on SiO2) cmp 

a-7 Deposition LPCVD 1.5 μm LTO tyster 12 & 3 

a- 8 (m2) Patterning RIE SiO2 (by Mask #2, m2) asml 300 & sts-oxide 

(b) 

b-1 Deposition LPCVD 500 nm Si (doped) tyster 16 & 3 

b-2 Deposition LPCVD 2.2 μm LTO tyster 12 & 4 

b-3 (m3) Patterning 
RIE SiO2, Si and SiO2 (timed etch) 

(by Mask #3, m3) 
asml 300 & sts-oxide & sts2 

(c) 

c-1 Deposition LPCVD 600 nm Si (doped) tyster 16 & 3 

c-2 Etching Blank RIE Si (without a mask) sts2 

(d) 

d-1 Deposition  LPCVD 50 nm HTO tyster 17 

d-2 (m4) Patterning RIE SiO2 (by Mask #4, m4) asml 300 & sts-oxide 

(e) 

e-1 Deposition LPCVD 3 μm Si (doped) tyster 16 & 6 

e-2 CMP CMP Si (stopped on SiO2) cmp 

e-3 (m5) Patterning RIE Si (by Mask #5, m5) asml 300 & sts2 

(f) f-1 Release HF Release msink 18 
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(a) (b) 

Figure 3.8: SEMs of (a) a fabricated hollow disk with a fully surrounded electrode and (b) the 

cross-section view of a dummy device after Step c-1 

 

3.4   Measurement Results 

Follow the same procedure as Section 2.5, this section will discuss measurement of the 

fabricated 98 MHz symmetric hollow disk with a large stem and characterization of the model in 

Section 2.2. Its quality factor is only 1500 due to the anchor loss. Figure 3.9 presents measured 

frequency responses with various DC bias voltages. Figure 3.10 presents measured and modeled 

resonance and parallel frequencies versus DC bias (𝑉𝑃). Both are parabolically dependent on 𝑉𝑃, 

so linear regression of frequencies on 𝑉𝑃
2 yields  

 𝑓𝑜 = 𝑓𝑛𝑜𝑚 − 𝜑𝑜𝑉𝑃
2 = 98.048 × 106 − 4295𝑉𝑃

2 (3.4) 

 𝑓𝑝 = 𝑓𝑛𝑜𝑚 − 𝜑𝑝𝑉𝑃
2 = 98.082 × 106 − 2396𝑉𝑃

2 (3.5) 

which are the blue and orange lines in Figure 3.10. Both lines yield approximately the same 

nominal frequency. Taking the ratio of two slopes yields 

 𝜅 =
𝜑𝑜

𝜑𝑝
= 1.793 (3.6) 

Substitution of Equation (3.6) in (2.50) yields 

 
𝐶𝑒 =

𝜅 − 1

𝜅
𝐶𝑜 = 0.442𝐶𝑜 (3.7) 
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Figure 3.9: Frequency responses of the 98 MHz hollow disk with various DC bias voltages 
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Figure 3.10: Resonance and parallel frequencies versus DC bias voltage 
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Blue: 𝐶𝑥/𝐶𝑒; Orange: 𝐶𝑥/𝐶𝑜 

Figure 3.11: 𝐶𝑥/𝐶𝑒 and 𝐶𝑥/𝐶𝑜 versus DC bias voltage 

 

Thus, unlike the equivalent circuit in [9], 𝐶𝑒 does not equal 𝐶𝑜 because 𝑓𝑝 is voltage dependent. 

𝐶𝑒 of this hollow disk is 31.117 fF and 𝐶𝑜 is 70.364 fF.  

According to Equations (2.11) and (2.21), Figure 3.11 presents measured and modeled 𝐶𝑥/𝐶𝑒 

and 𝐶𝑥/𝐶𝑜. As a result, 𝐶𝑥/𝐶𝑒 of this hollow disk is 0.430% and 𝐶𝑥/𝐶𝑜 is 0.261% at 𝑉𝑃 = 7 V. 

 

3.5   Conclusions 

In conclusion, a symmetric hollow disk can not only boost 𝐶𝑥/𝐶𝑜  but also eliminate the 

transverse vibration nonideality. A designed 128 MHz symmetric radial contour hollow disk can 

achieve 𝐶𝑥/𝐶𝑜 = 0.225%, with a 50 nm electrode-to-resonator gap and a 10 V DC bias, which is 

much higher than 𝐶𝑥/𝐶𝑜 = 0.060%  of a similar frequency solid disk. Unfortunately, post-

fabrication stress gradients rendered testable only a few large-stemmed hollow disks. 

A 98 MHz symmetric hollow disk with an 8 μm radius stem survived after release, but its 

mode shape becomes nonideal and the quality factor is lower. Like the asymmetric hollow disk, 
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the inner disk vibrates both transversely and radially. Unlike the asymmetric one, the sidewall 

does not vibrate by itself but driven by the inner disk.  

The 98 MHz  hollow disk achieves 𝐶𝑥/𝐶𝑜 = 0.261%  and 𝐶𝑥/𝐶𝑒 = 0.430%  with a 50 nm 

electrode-to-resonator gap and a 7 V DC bias, and they are higher than solid disks. The same 

phenomenon of 𝐶𝑒 ≠ 𝐶𝑜  happens in this device again, in which 𝐶𝑒  is only 0.442𝐶𝑜 . This is the 

reason the parallel frequency (𝑓𝑝) is parabolically dependent on DC bias. 
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CHAPTER 4   

CONCLUSIONS 

 

 

4.1   Achievements 

This thesis successfully introduces a new hollow disk method to boost the electromechanical 

coupling gauged by motional-to-static capacitive ratio (𝐶𝑥/𝐶𝑜 ), which can be widely used in 

applications for wireless communication. Particularly, this work achieves the following results:  

1. Compared to solid disks, both asymmetric and symmetric hollow disks can boost 𝐶𝑥/𝐶𝑜. 

Table 4.1 summarizes three successful designs in this thesis.  

 

Table 4.1: Summary of asymmetric and symmetric hollow disks in this thesis and solid disks 

for comparison 

Disk Types 𝒇𝒐 𝒅𝒐 𝑽𝑷 𝑪𝒙/𝑪𝒆 𝑪𝒙/𝑪𝒐 

Asymmetric 79.450 MHz 

148 nm 20 V 

0.384% 0.142% 

Solid 81.631 MHz 0.015% 0.015% 

Symmetric* 128.057 MHz 

50 nm 10 V 

0.225% 0.225% 

Solid 128.163 MHz 0.060% 0.060% 

Symmetric w/ 

Large Stem 
97.837 MHz 50 nm 7 V 0.430% 0.261% 

* Due to the large stress gradient in the polysilicon structural layer of the inner disk, none of this type of 

hollow disks survives after release. The performance of this device is from modeling.  

 

2. 𝐶𝑥/𝐶𝑜 is inversely proportional to dynamic mass. Hollow disks have less mass moving 

during vibration and this is one of the reasons 𝐶𝑥/𝐶𝑜 can be boosted. Unlike symmetric 

hollow disks, the circular sidewall of an asymmetric hollow disk vibrates by itself in the 

radial cantilever mode. This radial vibration introduces a nonlinear coefficient (𝜆) in 
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electromechanical coupling ratio (𝜂𝑒). Since 𝜆 is larger than 1, the sidewall can boost 𝐶𝑥/𝐶𝑜 

even higher by boosting 𝜂𝑒. 

3. Hollow disks tend to vibrate not only radially but also transversely unless they are 

perfectly symmetric in the vertical direction (i.e., symmetric hollow disks with a small 

stem). The vertical vibration introduces an extra dynamic mass moving in the vertical 

direction. Since 𝐶𝑥/𝐶𝑜 is inversely proportional to the total mass, this nonideality lowers 

𝐶𝑥/𝐶𝑜, but only by a very small amount. In addition, the hollow structure reduces the 

nominal frequency. These nonidealities become more critical when the disk is hollower. 

4. Both chapters conduct a detailed analysis of the negative capacitance equivalent circuit in 

[9]. The parallel frequency (𝑓𝑝 ) equals the nominal frequency (𝑓𝑛𝑜𝑚 ) only if 𝐶𝑒 = 𝐶𝑜 . 

However, this assumption is not correct for some hollow disks because its 𝑓𝑝 is instead 

dependent on DC bias. As a result, 𝐶𝑥/𝐶𝑒 is higher than 𝐶𝑥/𝐶𝑜 as shown in Table 4.1. 

 

4.2   Future Research Directions 

This thesis successfully demonstrates the approach of hollow disk 𝐶𝑥/𝐶𝑜 boosting for the first 

time, so more investigation and optimization of the design are necessary for the future. In 

particular, researchers can apply more research efforts in the following directions: 

1. Lower the stress gradient in the polysilicon structural layer of the inner disk by optimizing 

deposition and annealing processes, which will prevent the disk bending down. 

2. Improve the roughness of the sidewall by optimizing deposition and etching processes, 

which will allow shrinking the gap and rising the DC bias even further. 

3. Create a method to measure the transverse vibration by putting more electrodes 

underneath the disk, which will allow proving the equivalent circuit model. 
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