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Abstract

ConNect: Exploring Augmented Reality Service using Image Localization and Neural
Network Object Detection

by

Tong Li

Master in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Randy H. Katz, Chair

Conventional Mobile Augmented Reality (MAR) systems, which identify objects using an
image localization based instance identification system perform poorly in certain situations,
such as when the background is too simple to track, or the query image is taken too close to
the object. Some of these situations could be resolved by the recent improvement of neural
network object detection. This report proposed two ways of using neural network object
detection to complement computer vision based MAR system. We are able to achieve higher
accuracy, nearly 100% in certain situations, and lower false positive rate, down to 0% in
most cases, without introducing too much additional latency, around 30 ms (20%).
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Chapter 1

Introduction

Augmented Reality (AR) has seen wide adoption, with the recent advances in computer
vision and robotics. The basic concept of AR is to show a user additional information
overlaid on the original view when she sees the real world through the screen. A user expects
to see the augmented information both accurately and in real time, while moving her device.
To this end, an AR device must perform intense computations on a large amount of (visual)
data with imperceptible latency, from capturing an image to extracting the corresponding
information and overlaying it on the proper location of the screen.

While this challenge has been addressed by using powerful and expensive AR-oriented
hardware platforms, such as Microsoft HoloLens [10] and Google Tango [22], another ap-
proach has been also investigated: AR with regular mobile devices, such as a smartphone,
called Mobile AR (MAR). MAR is attractive in that it does not require users to purchase
and carry additional devices [6]. However, MAR has its own challenges since mobile devices
have significantly less storage and computation speed than AR-oriented devices. There are
relatively lightweight MAR software tools, such as Google ARCore [2] and Apple ARKit [3],
but they operate only on the latest generation of smart phones and consume considerable
energy, resulting in limited applicability.

This work investigates how to enhance MAR on ordinary mobile devices. Specially, we
aim to provide a stable annotation-based MAR service that understands objects, at which
the device points, and overlays the corresponding annotations on the relevant location of the
screen. This application is viable even with the restricted capabilities of mobile devices, in
contrast to more demanding AR that naturally embeds 3D objects into a 3D model using
a game engine [10]. More importantly, it has a variety of practical usage scenarios, such
as navigation through physical spaces like museums, grocery stores, and airports [12, 7],
Through the annotation service, a user can obtain information about an object by pointing
her phone at it. Furthermore, she is able to interact with (or control) the object by touching
annotations on the screen. In this report, annotation and label are used interchangeably as
the information of object that is being identified.

Some representative ways to support MAR includes image retrieval and image localiza-
tion. Both of these have their own limitations. They have poor performance when the image



CHAPTER 1. INTRODUCTION 2

is captured very close to the object. An image capture form a location that is too close to
the objects provides less surrounding features to localize or retrieve the image. On the other
hand, since they mainly rely on K-Nearest Neighbors (K-NN) [7] to find the approximate
closest result to the query image, their false positive rate is very high when there is no correct
result in the dataset.

On the other hand, Neural Network Object Detection (NNOD) has improved significantly
in recent years, due to the improvement in hardware support (e.g., better GPUs), as well
as a deeper understanding of neural networks and more complex and sophisticated neural
network architectures. The limitation of NNOD is that it only supports category detection,
where the categories are pre-defined during the training phase of neural network models.
This is resolved by tuning an existing model to have its own custom categories. That is,
each device is mapped to one category during the tuning phase. However, this approach fails
when two identical devices exist in the environment.

In this report, we design and implement ConNect, a prototype MAR system that can
quickly and accurately identify an object among hundreds to thousands of (possibly similar)
objects, in a building, based on a query image from an arbitrary location and orientation.
ConNect identifies objects by first processing a query image using both image localization
and NNOD. Then, ConNect fuses the result of the two to achieve higher accuracy and lower
false positive rate without sacrificing too much latency.

Our contributions are as follow:

• We demonstrate an end-to-end annotation-based MAR service on ordinary mobile de-
vices with high accuracy.

• We propose two novel ways of fusing image localization based objected identification
and NNOD based object identification.

• We evaluate two fusion algorithm proposals and analyze the advantages and disadvan-
tages of them.

In this report, background knowledge of image localization and neural network object
detection are introduced in Section 2. The architecture and workflow of ConNect is explained
in Section 3. Section 4 provides detained explanation of two fusion algorithms proposed in
ConNect, including their pros and cons, as well as the trade-off decisions made. Section 5
provides details of implementing ConNect. In Section 6, ConNect is evaluated and compared
to a baseline system, SnapLink [7], that only uses image localization to achieve similar MAR
service. Section 7 is the summary and future work of ConNect.
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Chapter 2

Background

2.1 Image localization

An image localization-based object identification system (Figure 2.1) contains two phases.
First, the construction phase involves constructing a database in the form of a 3D model of a
building and one labeled point for each object in the 3D space [20]. Second, the query phase
takes a query image as its input, it localizes the query image in the 3D-space database using
the most likely location and angle, captures the image of that specific location/angle (i.e., a
small fraction) from the 3D space, and finds the object label point closest to the center of
the captured image.

Several aspects make image localization a better fit for our target application compared
to image retrieval. First, the system deployment process is extremely simple, because a 3D
model that covers various angles can be built by capturing a video with a modern modeling
tool, such as Project Tango [22], during a building walk through. Labeling a 3D model is
also simple because every object only needs to be labeled once as a single point in the 3D
space, irrespective of the number of images containing that object in the database. Second,

Figure 2.1: Image Localization



CHAPTER 2. BACKGROUND 4

Figure 2.2: Neural Network Object Detection

because a 3D model incorporates all image features into a 3D space, it can represent all
angles and distances, resulting in a higher identification accuracy with an arbitrary query
image compared to image retrieval. As an example, in a room that contains 100 objects,
each of which needs to be captured from 10 different viewing locations, image retrieval
would require 1,000 reference images, whereas image localization only requires a video and
100 labeled points. Thus, our system uses image localization instead of image retrieval.

However, the false positive rate of image localization is very high. This is caused by
two reasons. First, it finds the most likely location and angle of the query image from the
3D model. Therefore, even if the image is not taken in any place that belongs to the 3D
model, the image localization based identification will still return something. Second, it
retrieves the labels of items on the image based on the re-projection from the position and
angles. Therefore when the position and angle are wrong, it localizes an incorrect position
and angle, and it will still return the contents from that wrong position and angle. This is
getting worse when the position is localized incorrectly from a extreme far distance, which
causes the image being considered to contain all the objects in the 3D model. This can be
extremely dangerous in some use cases where the objects are controllable such as electronic
appliances in the building.

2.2 An Alternative Approach: Neural Network

Object Detection

An NNOD based object identification system (Figure 2.2) contains two phases. First, the
training and tuning phase. The first part involves training a convolutional neural networks
(CNNs) that is able to classify detect general category objects such as cats, dogs, person,
orange, apple, and etc. The second part involves changing the NNOD output categories to
specific objects that we want to identify. Second, the query phase, also known as inference,
takes in a query image and outputs the identified objects category and their x-y position in
the query image.

For the training part, it usually takes a significant amount of time and effort in design-
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Figure 2.3: Different pre-trained models performance

Figure 2.4: Labeling time for different sizes of tuning images

ing the NNOD architecture, gathering and labeling the training images, as well as training
the parameters of the NNOD model. However, we can skip this step in most of the cases
because there are many well-trained NNOD models that can be download from the inter-
net. For example, in the official Tensorflow github [23], object detection models such as
ssd mobilenet v1 coco [11], ssd inception v2 coco [21], faster rcnn inception v2 coco [8] all
allow object detection in a fast and accurate manner. Among these pre-trained object de-
tection models, we choose faster rcnn inception v2 coco as our base NNOD model to do the
experiment and evaluation since it provides better accuracy with satisfactory latency. As
shown in Figure 2.3, faster rcnn inception v2 coco has 58 ms of inference latency and 28
mAP inference accuracy using an Nvidia GeForce GTX TITAN X card [24].

For the tuning part, since we want our own custom categories to be identified, we need to
provide some custom labeled training images, as well as training the NNOD model with some
additional epoch (one forward pass and one backward pass of all the training images). As
shown in Figure 2.4, the manually labeling time is linear to the number of images manually
labeled, which is approximately 10-15 seconds per image. The accuracy of NNOD object
identification depend on the number of training image, as well as the number of epoch ran
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Figure 2.5: Labeling time for different size of tuning images

during train. As shown in Figure 2.5, in our use case, with 200 training images, the loss for
custom objects detection is converged to 0.03 after 1671 secs (10212 steps) of training on
GPU NVIDIA Quadro M4000 [16].
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Chapter 3

ConNect Overview

3.1 System Overview

ConNect is a MAR system that allows a user to point their phone towards an object in
a building, and overlay labels of the objects in view on the screen. As shown in Figure
3.1, ConNect comprises the Offline Deployment Phase, and the Online Identification
Phase.

Offline Deployment Phase: First, a general category or tuned category NNOD model will
be prepared as stated in Section 2.2. From now on, we define general objects to be the
type of objects that could recognized by NNOD model and are likely to exist in the building.

Figure 3.1: Overview of ConNect
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Second, a 3D point cloud will be build in this phase, and objects in this 3D model will be
labeled as stated in Section 2.1. There will be two types of objects in the 3D model, one
of them are the general objects that the NNOD could identify, the other are the specific
objects, in which future users are interested in but the NNOD models dose not have the
specific category to identify. The specific and general objects are labeled manually and easily
with the ConNect labeling tool (e.g., click at the object in the image and type in its label).
In the case that the NNOD model is tuned to have each specific objects as its category, then
we call them unified objects to avoid confusion in later Sections.

Online Identification Phase: It consists of two parts, the client and the server. The client,
simply a smartphone, constantly previews the video of what the camera sees on the screen.
In the background, it sends the camera captures in the form of query images to the server.
Therefore, a user, by pointing her phone’s camera at the target objects that she wants to
get the label, is able to validate from the screen that the camera is indeed pointing at the
target. The server, on the other hand, with the query images as input, does two things
in parallel. It uses the image to do image localization, as well as NNOD. Both of the two
algorithms will tell the server the contents in the query image. The server will then return
both results to the client. The client then fuses the results based on which fusion algorithm
future user chooses to use, and display the identified label on the screen. Future user chooses
which fusion algorithm to use base on how much effort she is willing to spend on the offline
deployment phase, as well as how much accuracy does she want to achieve in identifying the
objects.

3.2 Goals and Design Choice

In designing ConNect, there are two goals we want to achieve. One goal is to achieve greater
accuracy than what is possible solely using image localization (SnapLink [7]) or NNOD. The
other goal is to reduce the false positives. That is, when we are unconfident of where a certain
object exists in the query image, we would rather not allow a user to see the unconfident
annotation. This is a better strategy than allowing a user to see the annotation of a certain
object that actually does not exist in the screen/query image. We choose this design because
if the annotation of the objects are confidential, or the annotation is able to allow a user to
control the object such as electronic appliance, a false positive is much more dangerous than
a false negative for security reasons.
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Chapter 4

Fusion algorithms

4.1 Image Localization with general NNOD model

As stated in Section 2, there are many available well-trained object detection models to
use. These models will identify some general category objects such as chairs, tables, TVs.
However, to allow it to identify all the specific objects in our use case, we need to spend
additional significant amount of time and effort to tune the model (hours of labeling and
training). Therefore, if time and computation resources (e.g., GPUs) are concerns for our
use case, we developed a fusion algorithm that require no tuning of the NNOD model.

The pseudocode of the first fusion algorithm is shown below. This algorithm is designed
based on two assumptions. First, false positive of NNOD is low, that is, NNOD will unlikely
say there is a general object O in the image (x, y), but actually there is nothing there.
Second, the false positive of image localization is higher than the false positive of NNOD,
as discussed in Section 2.1. This is why in the fusion algorithm we trust NNOD more than
image localization when there is a mismatch.
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Algorithm 1: fusion algorithm 1

Data: U is a hash table of the identified result from image localization
V is a hash table of the identified result from NNOD
Each entry of U and V are in the form of (name, (x, y))

Result: Identified objects’ labels after fusion
1 conflict←− false;
2 fused result←− [];
3 if (V not contains general objects) and (U contains general objects) then
4 return fused result;

5 for v ∈ V do
6 if v.name not in U then
7 conflict←− true;
8 break;

9 else
10 if distance(v, U.get(v.name)) > threshold then
11 conflict←− true;
12 break;

/* only return objects when 2 results are not conflicting */

13 if conflict = false then
14 for u ∈ U do
15 if u.name is specific object then
16 fused result.add(u);

17 return fused result;

Let’s say our targeting scenario is the conference room in Figure 4.1. The items that a
user is really interested in are the two drawings on the left and right of the wall. However,
we only have a general NNOD model that can detect a TV, projector, and whiteboard, but
not drawings.

There are four possible outcomes:

1. The image localization returns a correct result, and the NNOD also returns a correct
result. Since the localization result consists of both general and specific objects, we
compare the location of general objects in the localization result with the location of
identified objects in NNOD result. Their difference will be insignificant since both of
them are identified correctly. Then we can return all the specific objects for the user
to see the annotation.

2. The image localization returns an incorrect result, but the NNOD returns a correct
result. Then, there will be a mismatch. Based on the algorithm, the query image will
be discarded, and an empty list of objects will be returned. As a result, the user will
not see any annotation on the screen.
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Figure 4.1: Scenario of using ConNect fusion

3. The image localization returns a correct result, but the NNOD returns an incorrect
result. Based on our previous assumption, NNOD’s error will be caused by a false
negative instead of a false positive. That is, it is incorrect by, Case 1, missing some
general objects or, Case 2, missing all general objects. In Case 1, the fusion algorithm
will take the remaining NNOD identified general objects. It will then calculate the
distance between these objects identified via NNOD and identified via image localiza-
tion. Since image localization is identifying correctly and NNOD is identifying general
objects partial correctly, the distance will be less than a threshold. The correct specific
objects will be returned for the user to see annotation on the screen. In Case 2, based
on the fusion algorithm, the query image will be discarded and the user will not see
any annotation on the screen even though image localization returns the correct result.
However, this is the trade-off we have to make as discussed at the end of Section 3.
We allows prefer false negatives to false positive.

4. The image localization returns an incorrect result, and the NNOD also returns an
incorrect result. In this case, it is very unlikely that the two incorrect results will match
(In our experiments of hours of testing on ConNect, this never ocurred). Therefore a
empty list of objects will be returned and the user could not see any annotation on the
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screen.

By doing so, we do not improve the accuracy of the system by only applying image
localization based object identification. Rather, we provide a method to change most of the
false positive case of image localization to NULL results. This is a significant contribution
as discussed in Section 3. In addition, our Fusion Algorithm 1 provides a minimal way
of combining image localization based and NNOD based object identification. It does not
require a person to train or tune the NNOD model offline.
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4.2 Image Localization with tuned NNOD model

If time and computation resources are not constrained to the person who is doing the offline
deployment phase, then ConNect have the capability of improving the accuracy after fusing
the results of image localization and NNOD, by applying our Fusion Algorithm 2 shown
below.

Algorithm 2: fusion algorithm 2

Data: U is a hash table of the identified result from image localization
V is a hash table of the identified result from NNOD
Each entry of U and V are in the form of (name, (x, y))

Result: Identified objects’ labels after fusion
1 conflict←− false;
2 fused result←− [];
3 if V is empty and U is not empty then
4 return fused result;

5 for v ∈ V do
6 if v.name not in U then
7 conflict←− true;
8 break;

9 else
10 if distance(v, U.get(v.name)) > threshold then
11 conflict←− true;
12 break;

/* when there is no conflict, return all the objects */

13 if conflict = false then
14 fused result.add(U);

/* when there is conflict, only return objects identified by NNOD */

15 if conflict = true then
16 fused result.add(V);

17 return fused result;

The scenario is the same as in the previous sub-section, but this time, both labels in the
image localization 3D model and NNOD categories identify the same two unified objects,
left-drawing, and right-drawing, as shown in Figure 4.2. When we are running ConNect and
using Fusion Algorithm 2, again there are four possible outcomes:

1. The image localization returns a correct result, and the NNOD also returns a correct
result. Then both of the results will contain the same set of unified objects, and their
difference will be insignificant since both of them are identified correctly. Then we can
return all of the specific objects for user to see the annotation.
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Figure 4.2: Scenario of using ConNect fusion2

2. The image localization returns an incorrect result, but the NNOD returns a correct
result. There will be a mismatch. The conflict in the algorithm will be set to true,
and all the unified objects identified in NNOD will be returned to the user. Again, we
are making this decision based on the assumption that the false positive of NNOD is
very low. Whenever NNOD returns some identified objects, then the object must be
there. Therefore, in this case, part or all the unified objects in the query image will be
annotated on the screen. The important thing here is that there is no false positive;
The user should never see a annotation that should not appear on the screen.

3. The image localization returns a correct result, but the NNOD returns an incorrect re-
sult. As discussed above, it happens only when a subset of unified objects are identified
in the NNOD. In the case of NNOD identify at least one unified object, the identified
objects will be used to compare to the image localization result. It will eventually re-
turn all the annotations in its image localization result, which is the desired outcome.
On the other hand, in the case that NNOD identifies no object, our fusion algorithm
choose to return an empty list. That is because of prioritizing false negative over false
positive.

4. The image localization returns an incorrect result, and the NNOD also returns an
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incorrect result. In this case, again, it is very unlikely that the two incorrect results
will be matched (Again, in our experiments of hours of testing on ConNect, this never
happened). Therefore a empty list of objects will be returned and the user could not
see any annotation on the screen.
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Chapter 5

System Implementation

5.1 Offline deployment phase

For the offline deployment phase, when we are preparing 3D models for image localization,
we choose to use RTABMap [14] because it is open source and supports various types of
hardware such as stereo camera (camera with two or more lenses with a separate image
sensor or film frame for each lens) and RGB-Depth camera. RTABMap allows us to use a
RGB-Depth camera to take a video of a room as input. It will then output the 3D model
of that room for image localization to use. We also implemented a ConNect labeling tool
in 400+ lines of C++ code, using Qt as the GUI library. It currently reads RTABMap [14]
databases and presents images to users for labeling. Labels are saved to the original database
file. In the future, we plan to add adapters to other popular 3D reconstruction tools, such
as Google Tango [22] and Bundler [1]. When we are preparing NNOD models, we use
LabelImg [15]. It is a open sourced labeling tool to provide labeled images for NNOD to
train on. We use Tensorflow Object Detection API [18] to train and tune our NNOD model.

5.2 Online identification phase

For the online identification phase, we implemented our ConNect image localization runtime
in 3200+ lines of C++ code. It receives queries in a RESTful interface using GRPC. We
use the Qt event system to construct the image localization pipeline. In the pipeline, we use
OpenCV [5] to extract SURF [4], solve perspective-n-point (PnP) [9] problems, and project
points between 2D and 3D. Perspective-n-Point is the problem of estimating the pose of
a calibrated camera given a set of n 3D points in the world and their corresponding 2D
projections in the image. The camera pose consists of 6 degrees-of-freedom (DOF) which
are made up of the rotation (roll, pitch, and yaw) and 3D translation of the camera with
respect to the world. We use the randomized KD-Tree implementation in FLANN [17] and
transformation utilities from PCL [19]. On the other hand, we implemented our NNOD run
time in 200+ lines of Python code. It also receives queries in a RESTful interface using
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GRPC. On the client side, we developed an Android client using 1700+ lines of Java code.
It provides an ability to access images from the camera, and to send the images to the server,
as well as getting the result from the server and to fuse the result.

5.3 Detailed workflow of ConNect

The detailed workflow of ConNect using the tools mentioned above is summarized in Figure
5.1.
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Chapter 6

Evaluation

6.1 Accuracy

We evaluate the accuracy for both Fusion algorithms. The experiment is conducted as
follows: the user wanted to identify two objects that are close to each other, a fan, and a
lamp. User tried to identify them using her phone at distance 1m, 0.7m, 0.35m. For each
distance from the objects (fan and lamp), the client software of ConNect constantly sends
to the server around 150 query images in total. After receiving the results from server and
fuse them using the Fusion Algorithm, client software showed all three type of results (image
localization result, NNOD result, fusion result) on the screen for evaluation purpose. Then
we manually labeled and calculated the correctness for all of them. Based on extensive
experimentation, 1m is the distance that image localization performed very well. 0.7m is
the distance that image localization has lower accuracy. 0.35m is the distance that image
localization gives completely unreliable results. For the threshold in both algorithms, we use
50 pixels distance. This allows image localization and NNOD to agree with each other even
though their results are slightly different in a acceptable range, that is, 50 pixels distance in
our experiments. The reason why we choose 50 pixels distance is because we believe that if
the result is off by 50 pixels from its true location, it should be considered as a wrong result.

Accuracy of Fusion Algorithm 1

For Fusion Algorithm 1, NNOD is only capable of identifying general class objects. Therefore
it could not improve the accuracy on its own. The point of this subsection is to show that, in
most cases, Fusion Algorithm 1 does not lower the accuracy compared to solely using image
localization. For the experiment conducted in this subsection, we made sure fan, light, and
keyboard all appears in the screen view.

As shown in Table 6.1, at distance 1m, the accuracy of image localization is 98.7%. On
the other hand, the accuracy of Fusion Algorithm 1 is also 98.7%. This shows that Fusion
Algorithm 1, using NNOD to complement image localization, does not lower the accuracy.
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Figure 6.1: Accuracy for Fusion Algorithm 1 at different distances from the objects

A similar thing occurred at distance 0.7m (Table 6.1). The image localization accuracy is
lowered to 90.1% compared to its accuracy at distance 1m. However, Fusion Algorithm 1 also
yields similar accuracy, 89.4%. There is one frame that image localization identified correctly,
but the Fusion Algorithm discarded the result. That is because the distance between the
NNOD’s detected keyboard position and the image localization detected keyboard position
are slighter greater than the threshold. This could be resolved in the future when the
threshold is tuned to be slightly larger.

At distance 0.35m, as shown in Table 6.1, image localization yield random results. There-
fore the accuracy is down to 1.3%. We can see that this Fusion Algorithm does not lower
the accuracy in the case that the distance is 0.35.

Accuracy of Fusion Algorithm 2

For Fusion Algorithm 2, NNOD is capable of identifying the unified objects. Therefore, differ-
ent from the accuracy Table for Fusion Algorithm 1, we record NNOD fan and NNOD lamp,
which is the accuracy of NNOD correctly identifying unified objects.

For distance 1m, we see in Table 6.2 that both imgLoc fan and imgLoc lamp are 96.3%
accurate. On the other hand, NNOD is identifying a fan 100% accuratly but performs
poorly on identifying the lamp. However, after Fusion Algorithm 2, the fused result for fan
is 100% accurate due to the 100% accuracy of NNOD fan identification. And yet fusion lamp
achieved 96.3% accuracy due to 96.3% accuracy of imgLoc lamp. We can observe that there
is accuracy improvement after fusion.

For distance 0.7m, we saw in Table 6.2 that both imgLoc fan and imgLoc lamp are 92.4%
accurate. On the other hand, NNOD is identifying a fan and a lamp with 100% accuracy.
Then undoubtedly, after Fusion Algorithm 2, both the fused result for fan and lamp are 100%
accurate due to the 100% accuracy of NNOD. We can observe that accuracy is improved
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Figure 6.2: Accuracy for Fusion Algorithm 2 at different distances from the objects

significantly in this case.
For distance 0.35m, we saw in Table 6.2 that both imgLoc fan and imgLoc lamp are

30.5% accurate. On the other hand, NNOD is identifying a fan and a lamp with 100%
accuracy. Then undoubtedly, after Fusion Algorithm 2, both the fused result for fan and
lamp are 100% accurate due to the 100% accuracy of NNOD. We can observe that accuracy
is improved significantly in this case.

6.2 False positive rate

We also evaluate the false positive rate for both Fusion Algorithms. The experiment was
conducted as follow. User pointed his phone in a direction where there is nothing there to
identify. Then client software of ConNect sent around 150 query images to the server and
got the identified result for both image localization and NNOD. Then the client software
fused the result and showed all of them on the screen for evaluation purpose. We manually
calculated the false positive rate for all of them.

False positive rate of Fusion Algorithm 1

As shown in Table 6.3, when the phone is pointed to a direction with no objects, image
localization still has a very high chance, 77.5%, of falsely identifying a fan and a lamp. How-
ever, since NNOD never identified a keyboard at all, the false positives of image localization
is discarded. Therefore, our Fusion Algorithm 2 yielded no false positives, which is desired
since the phone is pointing at nothing, the user should not see anything being identified.
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Figure 6.3: False positive rate for both Fusion Algorithms

Figure 6.4: Latency comparison between SnapLink (image localization) and ConNect two
Fusion Algorithms

False positive rate of Fusion Algorithm 2

As we can see from Table 6.3, again, image localization gives a very high false positive rate.
However, our Fusion Algorithm 2 is able to use NNOD results to correct all the false positives
suggested by image localization.

6.3 Latency

End-to-end average latency is measured for ConNect’s two Fusion Algorithms, as well as
SnapLink, which only uses image localization to do object identification. As we can see from
Table 6.4, the latency of both ConNect Fusion Algorithms are higher than SnapLink. This
is not surprising because ConNect is doing everything SnapLnik does, with the addition of
NNOD object identification and fusion. For Fusion Algorithm 1, the latency is 27.75 ms
(16.1%) higher than SnapLink. For Fusion Algorithm 2, the latency is 33.45 ms (19.4%)
higher than SnapLink.
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Chapter 7

Summary and Future work

In this paper, we present ConNect, an accurate and responsive vision-based object iden-
tification system that enables users to see annotation of the many objects in the building
by using ubiquitous smartphones. This work proposes two innovative ways of fusing image
localization with Neural Network Object Detection to achieve higher accuracy and lower
false positive rate in identifying the objects. We showed that for Fusion Algorithm 1, where
less work is needed in the offline deployment phase, achieves the same accuracy as image
localization, but much less false positives. We also showed that for Fusion Algorithm 2,
where more work need to be done in the offline deployment phase, achieves higher accuracy
and much less false positives than image localization. Two Fusion Algorithms introduce
additional latency (less than 20%). Comparing the problem of misidentifying objects, we
believe the additional latency is acceptable.

As for future work, we plan to move ConNect toward a smart building service, where
many more applications can benefit from object detection inside buildings. In addition, we
also plan to deploy ConNect’s server on Edge devices, such as the NVIDIA Jetson TX2
Module [13], a power-efficient embedded AI computing device. This will potentially reduce
the latency of ConNect’s online identification phase. In the past, we spent some time on
deploying ConNect’s server on Jetson TX2 Module, but gave up after 2 month of trying.
This is because it is a new product released by NVIDIA and the insufficient software support
makes it difficult to develop ConNect on it. However, we believe in the near future, edge
devices such as Jetson TX2 Module will become the perfect machine to deploy ConNect.
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