
Table-based Device Modeling: Methods and Applications

Archit Gupta

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-66
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-66.html

May 11, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Table-based Device Modeling: Methods and
Applications

Archit Gupta

Project Report

Submitted to the Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley, in partial satisfaction of

the requirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination.

Committee:

Professor Jaijeet S. Roychowdhury
Research Advisor

May 11, 2018

Professor Murat Arcak
Second Reader

May 11, 2018

Abstract

When simulating a practical present day analog circuit, device model evalu-
ations alone can take several days of compute time. This is largely because of
the complexity of the physical devices that these models represent. These mod-
els typically have only a few inputs, so approximating them with polynomials
is feasible and attractive. In this thesis, we build a general purpose framework
for translating any given compact model into a table-based approximation. We
show that with different interpolants, various improvements can be achieved over
conventional analytically-derived ‘compact models’. Low order cubic splines pro-
vide multiple orders of magnitude in speed improvement. Chebyshev polynomials
implemented using Barycentric-Lagrange Interpolation can yield near machine-
precision in terms of accuracy while still yielding a significant speedup. Cheby-
shev polynomials can also be used to diagnose hard-to-find modeling errors, like
derivative discontinuities. We also discuss the construction of table-based models
from sparse measurements of compact models using compressed sensing.

In order to make this work accessible, all the code that was used for
this report has been released along with it in the form of a MATLAB-
based software package titled STEAM. Examples have been included in
the package to reproduce the main results and figures presented here.

1

Acknowledgement

I am grateful to Prof. Jaijeet S. Roychowdhury for his guidance throughout the work
that went into the thesis. Tianshi Wang, and Ahmet Gokcen Mahmutoglu gave valuable
ideas and inputs without which this would not have been possible. I would also like to
thank the NEEDS project which introduced me to device modeling and is one of the
main reasons why this project started off; SRC, whose members gave valuable feedback
from time to time and encouraged this work. The Xyce team at Sandia National labs
was also very kind in providing comments and feedback on various aspects of device
modeling, compressive sensing and circuit simulation at large. Finally, I thank my
family and friends who have always been very supportive. Without them, this would
have never happened.

2

Contents

1 Introduction and Overview 5

2 Preliminaries 8
2.1 Splines . 8

2.1.1 Uniqueness . 8
2.1.2 Multiple dimensions . 9

2.2 Lagrange Interpolation . 10
2.3 Barycentric-Lagrange Interpolation . 10
2.4 Chebyshev Polynomials . 10
2.5 Chebyshev Points . 11
2.6 Chebyshev Series . 12

3 Previous Work 13

4 STEAM 14
4.1 Functional view of compact models . 14
4.2 Derivatives . 15
4.3 Extrapolation . 16
4.4 Device evaluation . 17
4.5 Accuracy, Memory and Speedup in analyses 18

4.5.1 Quiescent Steady State (QSS) 20
4.5.2 Transient Analysis . 20
4.5.3 AC Analysis . 20

5 Is accuracy a concern? 22
5.1 Accuracy comparison between Splines and Barycentric-Lagrange Inter-

polation (BLI) . 23
5.2 Interpolating non-smooth functions . 24
5.3 Machine precision in 2 Dimensions . 25
5.4 Analyses algorithms . 27

5.4.1 QSS and Transient Analysis . 28
5.4.2 RF design - Harmonic Balance 30

6 Sparse measurements 31
6.1 Compressibility of Device data . 31

6.1.1 Singular Value Decomposition 31
6.1.2 Basis Transformations . 32

6.2 Recreating a picture pixel-by-pixel . 33
6.3 Sparse sampling and reconstruction of device data 36

7 Model diagnosis 38
7.1 An illustrative 1D Example . 39
7.2 Notion of accuracy, domain splitting 40
7.3 How and Why Piecewise BLI “helps” 41

3

8 Open questions 44

9 Appendix: Code 47
9.1 Piecewise-Polynomial Interpolation (PPI) 47
9.2 Report results . 47

9.2.1 Chebyshev polynomials and Chebyshev points 47
9.2.2 Passive extrapolation . 48
9.2.3 STEAM: Device evaluation . 48
9.2.4 STEAM: Circuit analyses . 48
9.2.5 BLI and Splines . 48
9.2.6 ALACARTE: Circuit analyses 48
9.2.7 Sparse Measurements . 48
9.2.8 Application of Compressed Sensing (CS) 49
9.2.9 Model Diagnosis . 49

4

1 Introduction and Overview

Simulation of analog components in a system is computationally intense, typically
requiring days or even months for a single run over a small set of trial inputs. For
example, simulating an Analog-to-Digital Converter (ADC) comprising roughly 50,000
transistors (each represented with a Penn-State Phillips (PSP) model [1]), takes roughly
3 days for a million time-steps1. During design, each simulation of such an ADC can
take about 30M time-steps, translating to 3 months of computation to predict what the
real circuit would do over 3 seconds. For designers today, this compute time is necessary
because every individual device in the circuit that constitutes an ADC is very complex.
Many of the physical phenomena captured by the compact models (PSP or Berkeley
Short-channel IGFET Model (BSIM) [2], for example) can affect system level behavior.

For any physical device, at the microscopic level, materials, lattices, atoms and elec-
trons have rich interactions and produce complex overall behavior. With continuously
shrinking devices, this complexity is now reflected in the macroscopic (system level)
properties, like amplifier gains, bandwidths, etc., as well. In order to cope with the
increasingly complex behavior of devices, as new physical phenomenon are observed,
equations and unknowns are added to existing models. These additions have accumu-
lated over the last several decades of device scaling. Resulting primarily from the need
for a single model to suit all application domains, today’s models are very bulky and
slow.

Table 1 in Section 4, for example, lists the number of calls to elementary arithmetic
operations when trying to find the steady state operating point of a CMOS inverter
circuit. While searching for an operating point with the PSP model, there are close to
100 Million calls to multiplication and division alone. At the heart of the computational
complexity of simulating analog circuits lies the complexity of individual models. At the
same time, these models capture a large variety of physical phenomenon and predict
the behavior of real devices very well. If it was possible to construct a method to
faithfully reproduce the behavior of individual devices while significantly cutting down
the cost of evaluating the models, it could have a significant impact on the analog
design flow.

Polynomial interpolants are especially suited for this because of the relatively low
number of dimensions that have to be dealt with. The first half of this thesis ad-
dresses this by building and improving a general ‘table-based modeling’ framework for
approximating device models with polynomial interpolants.

Side effects of model complexity

In many practical scenarios, the ‘level of detail’ with which a model approximates a
device can be different for different operation regions. Region ‘X’ of operation can
be modelled with high fidelity while having a coarser model for another region ‘Y’.
For example, if one were to design an operational amplifier (system) in which transis-
tors (devices) are biased near saturation (‘X’), detailed modeling of the sub-threshold

1A single time-step could be anywhere between 1 ns to 1 us, depending on the application.

5

regime (‘Y’) of the transistors would lead to an unnecessary increase in both model-
development and compute time. Further, the increase in design/simulation time and
complexity would offer very little additional insight into the system’s operation.

Existing compact models cater to these practical requirements, and often, some
operation regimes are modelled in greater detail than others. This is typically done by
adding both empirical and physically derived equations inside the model in conditional
(if, else, etc.) blocks, or sometimes, using functions like abs, sign, etc., which provide
the same functionality.

Effectively, across operation boundaries, we have different mathematical models
which share the same variables. For the model to be physically realistic and mathe-
matically sound, it must be smooth as we transition across the operation regimes. As
a result, we add the task of model smoothing across operation regimes to the model
developer. Even a model with a few external inputs has internal variables, with respect
to all which, the model’s equations have to be continuous and differentiable to, at the
very least, a few orders across operation boundaries. BSIM for an instance, a com-
mon model for MOSFETs, can have up to 12 internal unknowns besides the terminal
quantities. For multivariate functions, smoothing all the variables across all operation
regimes by hand can quickly become unmanageable.

Simulation algorithms, especially ones based on Newton Raphson (NR)2, rely on the
existence and continuity of derivatives. In Radio Frequency (RF) design, high-order
derivatives are directly linked to mixing and harmonics in the response to periodic
signals. In Section 7, we perform Harmonic Balance (HB) on an analog amplifier
and show that discontinuities in the device model derivatives lead to nonphysical and
incorrect simulation results. While automatically fixing model discontinuities is a hard
problem, identifying modeling errors in itself can be a very helpful tool for device model
developers. The later part of the thesis uses the table-based modeling framework for
identifying modeling errors.

Organization of the rest of the thesis

The rest of the thesis is organized as follows: Section 2 details the mathematical
preliminaries required, including splines, Barycentric-Lagrange Interpolation (BLI),
and Chebyshev series approximation. Section 4 describes the basic framework, called
Spline-based Tables for Efficient and Accurate device Models (STEAM) [3], for table-
based modeling that this work is based on. Preliminary results with cubic splines are
also presented here. In Section 5, we extend STEAM by using Chebyshev polyno-
mials to achieve near machine precision with our table-based approximations, while
taking up lesser memory for the look-up tables themselves. This methods is dubbed
A LAgrange-interpolant with Chebyshev-samples for Accurately Representing TablE-
models (A-LA-CARTE). Section 6 explores the use of Compressed Sensing (CS) for
constructing table-based models from a sparse set of samples. This cuts down the
cost of evaluating compact models for building table based approximations. Some of

2Quiescent Steady State (QSS), AC analysis, transient analysis, harmonic balance, periodic steady-
state, envelope simulation, to name a few.

6

the observations made in Section 5 lead us to use Chebyshev polynomials for not only
building table-based models, but also as a diagnostic tool for finding errors in compact
models. This is demonstrated in Section 7. Section 8 addresses open questions and
future research directions. Finally, Section 9 provides an overview of the software pack-
age STEAM. Instructions on using provided examples and reproducing main results
presented in this report can also be found here.

7

2 Preliminaries

In this section, we talk about splines, Lagrange interpolants, and Chebyshev sample
points. A short introduction of Compressed Sensing (CS) and related transformations
is included in Section 6. The MODel SPECification (MODSPEC) modeling API is
briefly introduced in Section 4 where it is relevant.

Polynomial interpolation has a very long history, and therefore, a complete back-
ground is not possible in a single document. There are a few interesting categories,
each of which have distinguishing properties that make them suitable for the problem
that we are trying to solve.

2.1 Splines

Consider a function f that takes in a scalar argument x. We are interested in approxi-
mating this function, f(x), in a domain [a, b]. While we would like our approximation,
f̂(x), to be evaluable in (−∞,∞), we only want the approximation to be accurate in
[a, b]. A spline interpolant can be constructed for this purpose.

Splines, in general, are piecewise polynomials, used for interpolating a function from
sample values provided at a number of sample points (called knots), e.g., a = x0 <
x1 < . . . < xn = b. A key feature of spline interpolation is that it uses local polynomials,
i.e., separate polynomials between pairs of adjacent knots. These are stitched together
by enforcing continuity and differentiability at the knots. The local nature of splines
also leads to fast computation and localized memory accesses during their evaluation.

More precisely, a spline interpolant is defined as a piecewise polynomial interpolant
belonging to the space Sk,l

∆ ([a, b]), of functions in Cl−1([a, b])3, that are polynomials
of degree ≤ k locally. ∆ defines the set of intervals {∆1,∆2, . . . ,∆n}4. Therefore,
within each interval ∆i, the interpolant is at most a polynomial of degree k. Cubic
splines (S3,3), which we use in this work, match sample value, as well as first and second
derivatives of the polynomials that are used to approximate the original function in the
neighborhood of each knot. This is desirable for smooth modeling. Evaluation of the
interpolant at any point is computationally cheap, involving merely a cubic polynomial
in the input variable.

2.1.1 Uniqueness

One of the most interesting properties of cubic splines is that for a given set of knots
and associated function values, an interpolant that meets all the requirements above is
not unique. For each interval ∆i, we want a cubic polynomial which has 4 unknowns.
This gives us a total of 4n unknowns.

For the constraints, we have 2n constraints for matching the function values at
each knot in each interval. Enforcing the continuity of 1st and 2nd derivative at all
interior knots (i.e. knots 1, . . . , n− 1), gives us an additional 2(n− 1) constraints. In
all, we have 4n unknowns and 4n− 2 constraints. Therefore, given a set of knots and

3Global degree of smoothness l − 1.
4The interval ∆i is defined as: ∆i = [xi−1, xi).

8

sample values at the knots, a cubic spline interpolant is not unique [4]. It can be made
so by imposing 2 additional constraints, typically at or near the first and last knot
points. So-called natural splines and not-a-knot splines are two examples of splines
that result from slightly different constraints [4]. In Section 4.3, we show that minor
changes to natural splines result in an interpolation scheme that intuitively provides
better performance in simulation.

2.1.2 Multiple dimensions

In [4], Carl de Boor presented a technique for extending univariate splines to higher
dimensions using tensor products:

H∆(λ1, λ2, . . . , λN) = S∆1(λ1)⊗ S∆2(λ2)⊗ . . .⊗ S∆N
(λN), (1)

where λ1, λ2, . . . , λN are N input variables. The corresponding scalar output5 is given
byH∆. The functions S∆1(λ1),S∆2(λ2), . . . ,S∆N

(λN) are univariate splines in variables
λ1, λ2, . . . , λN , respectively, and λi ∈ ∆. The product, given by ⊗ in Equation 1, is
the tensor product of N univariate splines. For example, the tensor product of two
univariate cubic splines S∆x(x) and S∆y(y) is the bi-cubic function

H(x, y) =
3∑

j=0

3∑
i=0

cijx
iyj, where

S∆x(x) = span(xi, i ∈ {0, 1, 2, 3}).

(2)

Say we have a function g(x, y) of 2 variables, x and y, that has been sampled over a
rectangular grid of nx × ny points. We can approximate g(x, y) with a tensor product
spline, H, of the form:

H = C3(y)x3 + C2(y)x2 + C1(y)x+ C0(y), (3)

where Ci(y) is a cubic function of y. Substituting the expansions for each Ci(y) gives us
the general expansion in Equation 2. The form in Equation 3 yields a more tractable
implementation. First, we build splines in x for each of the ny sample points. This
gives us ny splines of the form:

Hk = C3,kx
3 + C2,kx

2 + C1,kx+ C0,k,

k ∈ 0, 1, . . . , ny.
(4)

The coefficients obtained from these spline Ci,j, can be treated as samples of the func-
tion Ci(y), allowing us to fit a spline over the computed spline coefficients in x. This
will give us, in total, 16nx coefficients for each of the ny coefficients, giving us all the
coefficients needed for a bi-cubic expansion. This makes spline evaluation inexpensive
and local. However, this is achieved at the cost of more memory since we need to
pre-compute and store 16nxny coefficients for nx × ny sample points. Tensor-product
splines inherit continuity and smoothness of univariate splines, making them well suited
for device modeling and circuit simulation.

5It is easy to extend this idea to an output that is a vector, however, for the sake of simplicity,
we will restrict the exposition to a scalar function. H can, for example, be the interpolation function
representing f in Equation 17.

9

2.2 Lagrange Interpolation

Continuing the case studied previously in Section 2.1 with Spline interpolants, the
value of a single-input, single-output function, f(x), is known at a set of knots, labelled
a = x0 < x1 < x2 < . . . < xn = b. The Lagrange interpolation formula [5], interpolates
between the known function values using the polynomial expression:

L(x) =
∑
i

f(xi)
∏

j 6=i (x− xj)∏
j 6=i xi − xj

. (5)

2.3 Barycentric-Lagrange Interpolation

Barycentric Lagrange Interpolation formula, as described in [5], is obtained by a small
tweak of the Lagrange interpolation formula. The first point to note is that the poly-
nomials, pi(x) =

∏
j 6=i (x− xj), can be be expressed in a simpler, non-polynomial form

as:

pi(x) =
l(x)

x− xi
, where l(x) =

∏
j

(x− xj). (6)

Applying this modification to the Lagrange Interpolation formula in Equation 5
gives us the Modified Lagrange Interpolant, which can be expressed as:

L(x) = l(x)
∑
i

f(xi)wi

(x− xi)
, where wi =

1∏
j 6=i (xi − xj)

(7)

Interpolating the constant function f(x) = 1, again using the modified Lagrange
interpolant, we obtain an interpolant, Ltrivial(x), as follows:

Ltrivial(x) = l(x)
∑
i

wi

(x− xi)
. (8)

This is essentially obtained by substituting f(xi) = 1, ∀i. Since Ltrivial(x) is a poly-
nomial of degree n, and takes the value 1 at n + 1 points, it must be identical to 1
for all x. Therefore, one can obtain a computationally efficient formula for comput-
ing the interpolant by dividing the Modified Lagrange formula in Equation 7 with the
expression in Equation 8 to obtain

B(x) =
∑
i

f(xi)wi

(x− xi)

/∑
i

wi

(x− xi)
. (9)

2.4 Chebyshev Polynomials

Chebyshev polynomials are a family of polynomials defined on the domain [−1, 1].
This family has 4 main branches, named just by a number. We will primarily be using
Chebyshev polynomials of 1st and 2nd kind.

Chebyshev Polynomials of the 1st kind:

Tn(x) = cos
(
n · cos−1(x)

)
. (10)

10

Chebyshev Polynomials of the 2nd kind:

Un(x) = cos

((
n+

1

2

)
· cos−1(x)

)
. (11)

Despite the presence of cos and cos−1 in their description, for integer values of
n, these are polynomials. Figure 1(a) shows Chebyshev polynomials of the first kind
for orders n = [1, 2, 4, 8]. For a more detailed description of the families and their
individual properties like orthogonality, nesting of roots and extremas etc., readers are
encouraged to refer to [6].

2.5 Chebyshev Points

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
n
(x

)

n = 1

n = 2

n = 4

n = 8

(a) Tn(x)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

T
8
(x

)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

T
1
6

(x
)

(b) Chebyshev Points

Figure 1: Chebyshev polynomials and Chebyshev points.

Chebyshev points are defined as the roots or extremas of Chebyshev polynomials
mentioned above. As an illustrative example, for Chebyshev polynomials of the first
kind in Equation 10, the roots are given by:

n · cos−1 (ri) =

(
i+

1

2

)
π,

ri = cos

((
i+

1

2

)
π

n

)
.

(12)

These are called Chebyshev points of the first kind. Similarly, Chebyshev points of the
second kind of order n are the extremas of the polynomial Tn(x). These are given by
the solutions of Tn(x) = ±1.

n · cos−1 (ei) = i · π,

ei = cos

(
i · π
n

)
.

(13)

Figure 1(b) shows Chebyshev points for T8(x) and T16(x) respectively. Observe that
the extremas of T16(x) are nested in the extremas of the previous polynomial T8(x).
Chebyshev points of second kind are used in [7] (and the tool described therein, called

11

CHEBFUN) because the set of Chebyshev points of second kind of order n is nested in
the set of Chebyshev points of order 2n. This makes incrementing the sample values of
a function at the Chebyshev points computationally efficient, as increasing the order
from n to 2n requires evaluation of the function at only n points.

Besides, using Chebyshev points for interpolation with Barycentric-Lagrange Inter-
polation (BLI) is numerically stable. The weights wi, described in Equation 7 depend
on the choice of sample points and are vital for the overall stability of the interpolant.
As noted in [5], these weights for a sampling domain of [−1, 1]6, for a set of uniform
sample points are given by:

wi = (−1)i
(
n

i

)
. (14)

While the smallest absolute value of a weight is that of w0 = 1, the maximum value
grows exponentially7 with n. With Chebyshev points however, these weights are given
by:

wi = (−1)iδi, where δi =

{
0.5 x = 0, or x = n
1 otherwise

(15)

2.6 Chebyshev Series

Chebyshev polynomials discussed above in Section 2.4 can be put together in the form
of a weighted series:

Sn(x) =
n∑

k=0

ck · Tk(x). (16)

Such a series is called a Chebyshev series. Chebyshev polynomials [T0(x), . . . , Tn(x)]
form a basis for the space of polynomials with degree ≤ n, and therefore, Chebyshev
series can be used to approximate any function by a polynomial of degree n. Chebyshev
polynomials themselves have similar characteristic to the elements of Discrete Cosine
Transform (DCT) basis, which can also be intuitively observed from Figure 1(a), where
polynomials of higher order seem to capture high frequencies. This results in rapidly
dropping Chebyshev series coefficients for smooth functions, similar to what is observed
for DCT. The advantage of this representation over conventional DCT in the present
context is that Chebyshev series is identical to the interpolant that we construct.

6for any other sampling domain, the weights are scaled by a constant factor
7These values grow so fast that straight-forward implementations of wi run into numerical overflow

even for moderate values of n used in the experiments in the upcoming sections.

12

3 Previous Work

Since the early 1980s, various methods have been proposed for incorporating table-
based device modeling into circuit simulation. Owing to their popularity and complex-
ity, MOS models have often been the central theme for publications on table-based
device modeling.

In 1983, CAzM[8], a macromodeling simulator, was developed. CAzM created a
‘macromodel’ of a sub-circuit that captured its steady state behavior. In order to build
such a macromodel, the terminal i− v characteristics of the sub-circuit were obtained
for a set of terminal inputs (typically bias voltages). To analyze the steady-state of the
sub-circuit at any give input, aforementioned i − v characteristics were interpolated.
Later, CAzM was updated to include a charge model by building similar tables for
q − v characteristics at the terminal nodes [9]. In [10, 11], splines were proposed to
interpolate branch currents for 4-terminal MOSFETs. Raw device evaluation speedups
up to 3× were reported in [10].

As discussed in [3], while measurement/characterization of terminal currents alone
is sufficient for DC analysis for most circuits, characterizing charges at terminals alone
leads to an incorrect approximation of a model. One of the main reasons why more
elaborate and accurate table-based models have not been built is memory requirement.
Building internal nodes and implicit equations into a table-based model requires look-
up tables with more dimensions, and therefore larger memory consumption. [9], the
update to CAzM in 1992 mentioned above, uses a total of 540 sample points to build
tables for a single 4-terminal MOSFET. As can be seen in Section 4, such a small
number of sample points is insufficient for the accuracy requirements for analog circuit
simulation today.

Later work in this direction [12, 13, 14], follows the same paradigm, and is unable to
advocate the use of table-based models for accelerating circuit simulation sufficiently.
Part of this can also be attributed to the lack of a clean, modular platform for device
modeling. In [12] a table-lookup scheme is implemented in SPICE. Such an implemen-
tation is difficult as algorithms and device models are not well-separated in SPICE.
[12] reports a speedup of 1.4× in the SPICE implementation using linear interpolation.
Their scheme suffers from significant modelling errors (up to ∼40%), largely because
of the crude, non-smooth interpolation scheme(s) used. Using more accurate interpo-
lation methods in [12] results in a slowdown over the analytical compact models that
table-based models are derived from.

Meanwhile, research on table-based modeling progressed in very exciting directions.
In [15], the authors claim that the analytical models available at the time (including
early Berkeley Short-channel IGFET Model (BSIM)) were incapable of handling several
short-channel effects, which motivated them to build table-based models to account for
these inaccuracies. The dynamic component of the model is handled by tabulating the
drain conductance gds as a function of the gate and drain voltages. Although such an
approach is not a paradigm shift in the correctness of table-based models, it does point
to the fact that as new devices are developed, compact models do not catch up rapidly
to meet the accuracy requirements. Eventually, patches are applied for considering the
new effects making model evaluation slow and complex.

13

4 STEAM

As discussed previously in Section 3, one of the factors holding down table-based de-
vice modeling is the lack of a modular implementation of a circuit simulator, and also
a flexible, open modeling framework in which device models can be expressed. The
de-facto industry standard for expressing compact models is, in fact, a non executable
language, called Verilog-A. The inability to execute a model makes it very difficult
to isolate it from the simulator. Model equations, unknowns, and functions have to
indeed be inferred from a Verilog-A description making it difficult to have a simulator
independent method for converting analytical compact models in to table-based mod-
els. Presently, a flexible framework for constructing table-lookup models from existing
compact models seems lacking.

The MODel SPECification (MODSPEC) modeling API [16] offers both trans-
parency into the model structure and is also executable, making it independent of
any simulator. A MODSPEC description of a compact model is supported in two open
source circuit simulators: Modeling and Algorithm Prototyping Platform (MAPP),
and Xyce.

In [3], we built a basic framework around MODSPEC for approximating any com-
pact model with a polynomial interpolant. This was dubbed Spline-based Tables for
Efficient and Accurate device Models (STEAM). Here, we explain the framework and
later sections (Sections 5, 6, and 7) build on this framework to resolve issues specific
to speed, accuracy, and memory requirements.

While the premise of STEAM in [3] is the MODSPEC modeling API, the framework
only demands that the characteristics of the Device of Interest (DoI) be expressible as
a set of functions of some inputs. MODSPEC is only one such example.

4.1 Functional view of compact models

R

C

p ni

diode(Is,Vth)

Figure 2: Schematic for a diode model.

In order to express a device model, MODSPEC
uses a compact set of up to 4 functions, each hav-
ing a physical meaning for the device behavior. A
detailed description can be found in [16]. We pro-
vide an example here to highlight the API’s main
aspects. The equation governing the dynamics of
the device in Figure 2 is:

d

dt
(Cvi,n) + diode(vi,n) +

vi,p
R

= 0. (17)

Here, the ideal diode equation is given as:

diode(vi,n) = Is · (e
vi,n
Vth − 1). (18)

For the simple device being discussed here, the functions that we are considering
are:

q(vi,n, vp,i) = Cvi,n, and,

f(vi,n, vp,i) = diode(vi,n) +
vi,p
R
.

(19)

14

Model Calls (*) (+) (-) (/) (**)

PSP 7840 85679787 37689915 18184544 11983440 5354720
STEAM (PSP) 7840 412731 653472 223129 156825 0

BSIM 5810 10640142 4898368 2062882 2028271 888930
STEAM (BSIM) 5810 368643 514746 174652 125516 0

Table 1: Comparing the total number of mathematical operations for different transistor models in
DC analysis.

More complex compact models, like Berkeley Short-channel IGFET Model (BSIM),
and Penn-State Phillips (PSP) models, involve many more arithmetic operations and
calls to functions like exp, log, etc. Table 1 shows the counts for simple arithmetic op-
erations for different compact models, highlighting the complexity of models like BSIM
and PSP, which are commonplace in industrial circuit simulation. At the same time,
we also show the arithmetic operations required for a table-based model constructed
from STEAM using the respective compact models. The approximation constructed
with STEAM requires roughly 100× fewer operations, resulting in a similar speedup
over the conventional models.

Since STEAM relies on splines, the operation count doesn’t increase with the ac-
curacy of the model. A slight increase can be seen if the sample points used for
constructing the interpolant are chosen to be non-uniformly distributed. This would
involve a search in the set of sample points for the appropriate interval which increases
as log(n), where n sample points are chosen for each input dimension. For structured
sample points, like Chebyshev points, this can still be avoided by applying a mapping
to uniform points (See Section 2.5 for details.).

STEAM is a very simple idea that the multi-variate functions that describe a com-
pact model, can be replaced with cubic splines for better speed. As can be noted from
Table 1, while the original functions that we start with are complex, the substituting
polynomials are far simpler at the cost of memory. One could possibly use higher or-
der splines, however, cubic splines already offer continuous first and second derivatives
which are sufficient for a large number of applications.

4.2 Derivatives

Simulation algorithms often require not just the device evaluations, but also the deriva-
tives of the evaluated values with respect to the inputs. Newton Raphson (NR), for
instance, a common algorithm used for finding a zero of an algebraic expression re-
quires the derivative of the expression with respect to the input arguments. Referring
to the MODSPEC terminology, it would require the derivatives of f and q functions
with respect to the inputs. Since we are approximating f and q with cubic splines, we
would also need the derivative(s) of the spline interpolant.

Recall that in 2 dimensions, the spline expression is:

H = C3(y)x3 + C2(y)x2 + C1(y)x+ C0(y). (20)

15

The partial derivatives for this are given by:

∂H(x, y)

∂x
= 3C3(y)x2 + 2C2(y)x+ C1(y), and

∂H(x, y)

∂y
=
dC3(y)

dy
x3 +

dC2(y)

dy
x+

dC1(y)

dy
x+

dC0(y)

dy
.

(21)

These can easily be computed using the pre-evaluated spline coefficients and the ability
to evaluate cubic expressions.

4.3 Extrapolation

Besides the requirement for derivatives for the device functions, methods like NR used
for solving circuit equations often sample the devices at infeasible input values. If the
circuits are constructed correctly, the final solution is usually in the input range that
we would expect the device to operate, but intermediate computation steps can lead
to device evaluation outside this range (say 1000V for a forward biased diode.). The
value and derivative returned by the model for these inputs determines how quickly
the algorithm will return to a feasible value, and therefore, converge to the solution.

This implies that the table-based approximation should at least return ‘reasonable’
values and derivatives outside the region which it was built for. If the model can be
made to return values that help with NR convergence, it can be useful for reducing the
overall simulation time. As discussed in Section 2.1, for a give set of sample values,
the spline interpolant is not unique. In 1 dimension, for example, we have 2 Degrees
of Freedom (DoF) to describe the interpolant. These can be used to set the terminal
slope, as demonstrated in Figure 3. The ability to adjust terminal slopes allows hand-
tuning for NR convergence. We call this method passive extrapolation because as

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

Sampled Data

Passive Spline

Refined Data

Figure 3: Illustrating passive extrapolation on a test function.

shown in Figure 3, this can be used to make any set of sample values behave like a
passive device.

16

4.4 Device evaluation

VD

VG VB

VS

(a) node-based model

VDB
VGB

VSB

(b) branch-based model

VDB
VGB

VSB=0

(c) 2-Dimensional model

Figure 4: Schematic of a transistor model.

In order to assess our method, given a compact model like BSIM or MIT Virtual
Source (MVS), we construct an approximation with STEAM. Figure 4 shows the
schematic of the transistor model on which STEAM is being applied. While internal
nodes are vital for the approximation to be correct, at the moment, we will ignore the
internal nodes in these models for simplicity. For the schematic shown, voltages vdb,
vsb, and vgb are the inputs, and currents idb, isb, and igb are the outputs.8 In order to
further simplify the table-based model and to visualize the device functions, for the
remainder of this section, we will restrict ourselves to the 3-terminal (2 input) model
shown in Figure 4(c).

1000 500 300 100 50 30 10 5 3

V
DS

,V
GS

discretization step (in mV)

10
-7

10
-5

10
-3

10
-1

10
1

10
3

M
E

A
N

 E
rr

o
r

(%
)

in
 e

s
ti
m

a
ti
n

g
 I

D
S

10
-2

10
-1

10
0

10
1

10
2

10
3

T
a

b
le

 S
iz

e
 (

in
 M

B
s
)

BSIM-NMOS

BSIM-PMOS

MVS-NMOS

MVS-PMOS

Static Memory

(a) Accuracy

1000 500 300 100 50 30 10 5 3

V
DS

,V
GS

discretization step (in mV)

0

20

40

60

80

100

120

140

160

180

S
P

E
E

D
U

P
 i
n
 e

s
ti
m

a
ti
n
g
 I

D
S

BSIM-NMOS

BSIM-PMOS

MVS-NMOS

MVS-PMOS

(b) Speedup

Figure 5: Comparing the accuracy and speedup in approximating compact models with cubic
splines (STEAM [3]).

In order to build an approximation of the model in Figure 4(c) with STEAM, we
evaluate the original compact model’s MODSPEC description on a Cartesian grid in the
input space. For example, we could choose the sets Svdb = {−1.0,−0.7,−0.3, 0.3, 0.7, 1.0},
and Svgb = {−1.0,−0.5,−0.3, 0.1, 0.7, 1.0}. We would then evaluate the original com-
pact model on Svdb × Svgb , and use the evaluated values for the MODSPEC functions

8Branch currents and branch voltages are simply defined as the differences of the respective node
quantities. For example, the current idb in Figure 4(b) is given by id − ib in Figure 4(a).

17

f(vdb, vgb), and q(vdb, vgb) to fit a 2-dimensional cubic spline. An interpolant that can
reconstruct all the MODSPEC functions at any given input value can act as a complete
substitute for the original model in a circuit.

Having constructed a STEAM approximation of the device model, we can analyze
its accuracy by comparing the STEAM model’s outputs at inputs other than the sample
values used to build the model. Figure 5 shows the accuracy and speedup results for
such device evaluation alone. In order to build the model in Figure 5, the sets Svdb , and
Svgb are all constructed by simply splitting a domain [−1, 1]V uniformly into a number
of pieces. In both Figures 5(a), and 5(b), the x-axis shows the step size for the uniform
split, whereas the y-axis shows the mean relative error and speedup in computing f
for the device model.

For larger discretization step sizes, the error is high. For example, if both input axes
were to be discretized with a 100mV discretization step for constructing the model,
the mean error would be roughly 0.1%.9 At the same time, lowering the discretization
step to 3mV for all the three inputs reduces the mean error to 10−7% for the BSIM
model.

The speedup, as shown in Figure 5(b), remains largely unaffected by the discretiza-
tion step. This is primarily because the computation needed to evaluate a STEAM
model, for any discretization step, is indeed the same: the evaluation of a bi-cubic
polynomial. As the discretization step drops, the memory requirements increase sig-
nificantly and this has an impact on the memory efficiency.

4.5 Accuracy, Memory and Speedup in analyses

VDD

VOUT
VIN

(a) inverter

VDD

VIN

RL RR

DL DR

IS

S

VCM

(b) differential pair

Figure 7: Circuits used for various analyses.

Both the accuracy figures, and speedup
obtained in evaluating the device mod-
els suggest that the look-up table ap-
proach proposed in STEAM could be
used to improve the runtime for several
analysis algorithms. The most common
among these are Quiescent Steady State
(QSS), transient analysis, and AC anal-
ysis. Later in the thesis, we also explore
Harmonic Balance (HB), a mixed time-
frequency domain analysis used in Radio
Frequency (RF) design. For each of the
analysis mentioned next, we start with a
compact model (BSIM, and MVS), and

construct its STEAM approximation. We then connect this model to the rest of the
circuit and perform the analysis. End results of the analysis are obtained for both
the models and compared for accuracy. The overall time taken by the analysis is also
compared later in Figure 8(b).

9The error is measured by evaluating both the original model and the STEAM approximation at
∼ 100K randomly chosen points.

18

0 0.2 0.4 0.6 0.8 1

V
IN

(volts)

0

0.2

0.4

0.6

0.8

1
V

O
U

T
(v

o
lt
s
)

Table-Based: e_in
Table-Based: e_out

BSIM3.2.4: e_in
BSIM3.2.4: e_out

(a) DC Analysis

0 0.2 0.4 0.6 0.8 1

V
IN

 (volts)

-6

-4

-2

0

2

4

6

8

∆
V

O
U

T
 (

v
o

lt
s
)

×10
-6

(b) Error in DC

0 1 2 3 4 5 6 7 8

TIME (in s) ×10
-3

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

O
U

T
P

U
T

(s
)

Table-Based: e_DL

Table-Based: e_DR

Table-Based: e_S

Table-Based: e_in

Table-Based: e_CM

BSIM3.2.4: e_DL

BSIM3.2.4: e_DR

BSIM3.2.4: e_S

BSIM3.2.4: e_in

BSIM3.2.4: e_CM

(c) Transient Analysis

0 1 2 3 4 5 6 7 8

V
IN

(volts) ×10
-3

-1.5

-1

-0.5

0

0.5

1

1.5

∆
V

O
U

T
(v

o
lt
s
)

×10
-5

∆ e_DL

∆ e_DR

∆ e_S

(d) Error in Transient

10
0

10
2

10
4

10
6

10
8

10
10

Frequency (Hz)

10
-4

10
-3

10
-2

10
-1

10
0

M
a
g
n
it
u
d
e
 (

d
B

)

Table-Based:e_DL
Table-Based:e_DR

Table-Based:e_S
BSIM3.2.4:e_DL

BSIM3.2.4:e_DR
BSIM3.2.4:e_S

(e) AC Analysis - Magnitude

10
0

10
2

10
4

10
6

10
8

10
10

Frequency (Hz)

10
-7

10
-6

10
-5

10
-4

10
-3

R
e

la
ti
v
e

 E
rr

o
r

in
 M

a
g

n
it
u

d
e

 (
∆

M
a

g
/M

a
g

)

∆e_DL
∆e_DR
∆e_S

(f) Error in AC Analysis (Magnitude)

10
0

10
2

10
4

10
6

10
8

10
10

Frequency (Hz)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

P
h
a
s
e
 (

ra
d
ia

n
s
)

Table-Based:e_DL
Table-Based:e_DR

Table-Based:e_S
BSIM3.2.4:e_DL

BSIM3.2.4:e_DR
BSIM3.2.4:e_S

(g) AC Analysis - Phase

10
0

10
2

10
4

10
6

10
8

10
10

Frequency (Hz)

-4

-3

-2

-1

0

1

2

∆
P

h
a

s
e

 (
ra

d
ia

n
s
)

×10
-4

∆e_DL
∆e_DR
∆e_S

(h) Error in AC Analysis (Phase)

Figure 6: Comparing analysis and respective errors in using STEAM approximation of compact
models.

19

4.5.1 QSS

QSS is used to obtain the steady state of a circuit or a system when the inputs are all
held at a steady value. In order to compare the accuracy of the STEAM approximation
of BSIM and MVS models, we sweep a single input for a circuit, and compare the
operating state obtained from the two models. The results for a CMOS inverter (circuit
schematic shown in Figure 7(a)) can be seen in Figure 6(a). The error between the
simulation output of the original compact model and the table-based approximation
can be seen in Figure 6(b). As the input is swept, and the output voltage swings from
1V to 0V , the error between the two models is less than 8µV .

4.5.2 Transient Analysis

For transient analysis, the input vin in the circuits in Figure 7, is set to be a sinusoid.
The output waveform is recorded at a set of nodes in the circuit and compared for
accuracy. Figures 6(c), and 6(d) show the outcome and the error between the two
models respectively. Here too, the error at the output nodes (DL, and DR) is less than
10µV .

4.5.3 AC Analysis

Circuits are analyzed with AC analysis by fixing the input vin at a constant bias and
analyzing the small signal response for the two models. Both the magnitude and phase
responses, as well as the errors in them resulting from table-based approximations are
shown in Figures 6(e)-6(h).

100 50 30 10 5 3

V
DS

,V
GS

discretization step (in mV)

10
-3

10
-2

10
-1

10
0

10
1

10
2

M
E

A
N

R
E

L
E

R
R

O
R

 i
n
 v

a
ri
o
u
s
 A

n
a
ly

s
is

 (
%

)

10
0

10
1

10
2

10
3

T
a
b
le

 S
iz

e
 (

in
 M

B
s
)

BSIM-DC

BSIM-AC

BSIM-TRAN

MVS-DC

MVS-AC

MVS-TRAN

Static Memory

(a) Approximation Error

100 50 30 10 5 3

V
DS

,V
GS

discretization step (in mV)

0

5

10

15

20

S
P

E
E

D
U

P
 i
n
 v

a
ri
o
u
s
 A

n
a
ly

s
is

BSIM-DC

BSIM-AC

BSIM-TRAN

MVS-DC

MVS-AC

MVS-TRAN

(b) Speedup

Figure 8: Aggregate performance of compact models approximated with STEAM.

The aggregate error and speedup have been compiled in Figure 8, showing that the
error between a compact model and its table-based approximation can be significantly
reduced at the cost of memory. For high accuracy, memory requirements seem high,
but not necessarily prohibitive. This is especially true for simulations involving digital
circuits where the number of distinct devices (and therefore tables) is relatively low.
As seen in Figure 8(b), for almost any choice of discretization step, a healthy amount of
speedup can be achieved over compact models. Also, the speedup that can be achieved

20

with STEAM is qualitatively independent of the accuracy. These numbers were taken
by averaging over several trials in MATLAB by clearing the function cache before each
trial. This was done to avoid interference from Just in Time (JIT) compilation of code
which seems to affect the compact model and table-based model differently.

21

5 Is accuracy a concern?

Despite the apparent advantages of table-based models demonstrated in Section 4 and
some prior publications [8, 12, 13, 14], Electronic Design Automation (EDA) circles
seem to have refrained from using table-based device models for industrial applications.
Device physicists often include look-up tables to augment existing models for a variety
of reasons. For large scale simulations, some arguments have held this category of
methods back:

1. Table-based models are not accurate enough to be applicable in analog design,
especially with Radio Frequency (RF) analysis algorithms which demand a high
level of accuracy,

2. Memory requirements for high accuracy prohibit the use of higher number of
dimensions which are needed to include internal nodes, model parameters etc.

With Spline-based Tables for Efficient and Accurate device Models (STEAM), in
Section 4, we demonstrated the promise of performance improvement that could be
achieved by using a table-based modeling approach. However, the memory-accuracy
trade-off discussed in Section 4.5 on the basis of the empirical data for various analyses
algorithms does not adequately answer the concerns raised above that have held table-
based models from being accepted in industry. Specifically, for a model accuracy of
about 8 decimal digits of precision, using STEAM, we need roughly 1GB of storage for
the tables (see Figure 5(a)) for a model with 2 inputs. The current section addresses
this issue. We propose the use of piecewise Chebyshev polynomials that significantly
cuts down the memory requirements for a given level of accuracy, allowing the use of
models with higher input dimensions. Alternatively, this section attempts to answer
the question: “Is it practical to have a table-based approximation that is
indistinguishable from the original compact model?”

In order to answer this question, we first take the best known general-purpose
polynomial interpolant, Barycentric-Lagrange Interpolation (BLI) constructed with
Chebyshev sample points, and compare it against more commonly used interpolants
like cubic splines over a range of test functions. This helps us identify the strengths
and weaknesses of BLI. Then, we apply this interpolant to device model functions,
discovering some of the details that are essential to adapt BLI to device functions.

This method is dubbed A LAgrange-interpolant with Chebyshev-samples for Ac-
curately Representing TablE-models (A-LA-CARTE). With it, we end up with ap-
proximation of a compact model based on BLI that is numerically indistinguishable
from the original compact model. More importantly, this can be done while consum-
ing lower memory than the best results obtained with splines earlier but at the cost
of a lower performance improvement. While for the same number of sample points,
A-LA-CARTE already produces 16× fewer coefficients to be stored, Figure 11 will
show that in 2-dimensions, BLI yields better accuracy with 4× fewer sample points.
This allows us a total of 64× memory compression while obtaining better accuracy
that STEAM.

22

5.1 Accuracy comparison between Splines and BLI

For a fixed number of sample points, let us compare the accuracy of cubic splines and
BLI in approximating a function. Besides the kind of interpolant used (splines vs.
BLI), the choice of sample points is important. In that regard, we choose between
uniform points and Chebyshev points (see Section 2.5 for details). There could in
fact be a very large range of options to choose the sampling points from, but there is
evidence, especially from polynomial interpolation research packages like CHEBFUN,
suggesting that Chebyshev points are a good choice [7, 17, 18, 5]. Uniform points, on
the other hand, appeal to the intuition and have a fast and clean implementation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f(
x
)

Original

BLI

SPLINE

(a) Gaussian

0 1 2 3 4 5 6 7 8 9 10

x

1.69

1.7

1.71

1.72

1.73

1.74

1.75

1.76

1.77

1.78

f(
x
)

10
-3

Original

BLI

SPLINE

(b) Product Peak

0 1 2 3 4 5 6 7 8 9 10

x

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

f(
x
)

Original

BLI

SPLINE

(c) Corner Peak

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

f(
x
)

BLI

SPLINE

(d) Error at Low-Order

0 1 2 3 4 5 6 7 8 9 10

x

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

f(
x
)

BLI

SPLINE

(e) Error at Low-Order

0 1 2 3 4 5 6 7 8 9 10

x

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

f(
x
)

BLI

SPLINE

(f) Error at Low-Order

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

10
-20

10
-15

10
-10

10
-5

10
0

f(
x
)

BLI

SPLINE

(g) Error at High-Order

0 1 2 3 4 5 6 7 8 9 10

x

10
-20

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

f(
x
)

BLI

SPLINE

(h) Error at High-Order

0 1 2 3 4 5 6 7 8 9 10

x

10
-20

10
-15

10
-10

10
-5

f(
x
)

BLI

SPLINE

(i) Error at High-Order

0 10 20 30 40 50 60 70

Coeff. Index

10
-20

10
-15

10
-10

10
-5

10
0

C
o
e
ff
.
V

a
lu

e

(j) Chebyshev Series
Coefficients

0 10 20 30 40 50 60 70

Coeff. Index

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

C
o
e
ff
.
V

a
lu

e

(k) Chebyshev Series
Coefficients

0 10 20 30 40 50 60 70

Coeff. Index

10
-20

10
-15

10
-10

10
-5

10
0

C
o
e
ff
.
V

a
lu

e

(l) Chebyshev Series
Coefficients

Figure 9: Comparing BLI with Spline for interpolation accuracy and its relation with Chebyshev
Series representation.

Figure 9 compares the performance of BLI and Spline interpolants for three smooth

23

functions, called Gaussian, Product Peak, and Corner Peak. These functions were used
in testing in the accuracy of polynomial interpolants in [19]. Plots of the test functions
for a random choice of function parameters have been added in Figure 9. Let us look
at the Gaussian function for an illustrative example.

Figure 9(a) shows the plot of the function and an overlaid plot of BLI and Spline
interpolants constructed with 9 sample points. The ‘eyeball metric’ or the visual ac-
curacy of interpolants is limited to 2 decimal digits, and therefore, we compare the
error between the original function and the interpolant(s) at a set of points that are
randomly chosen, but restricted to be within the sampling domain (in this case [0,2]).
Figure 9(d) shows the error in approximating the Gaussian function with BLI and
splines, when both of these are constructed using 9 sample points. The accuracy with
very few sample points is similar for the two interpolants.

As described in Section 2.6, a Chebyshev series representation gives the approxima-
tion of a function in the basis of orthogonal polynomials. Chebyshev series coefficients
are directly related to the accuracy of an approximation using BLI with Chebyshev
sample points. More precisely, the error in using an interpolant of degree n at any
point is bounded by the sum of the Chebyshev series coefficients with indices > n.

Figure 9(j) shows the first 65 Chebyshev coefficients of the Gaussian function in
Figure 9(a). One can notice that after about 40 indices, Chebyshev series coefficients
are smaller than the leading (largest) Chebyshev coefficient by a factor of ∼ 10−17.
Therefore, a BLI constructed with 40 Chebyshev sample points or more should be nu-
merically indistinguishable from the original function. This can be seen in Figure 9(g),
where the error is reported between the original Gaussian function and Spline/BLI
interpolants constructed with 65 sample points. While the error in spline interpolants
drops to ∼ 10−10, BLI with Chebyshev sample points approximates the function to nu-
merical precision. Uniform points are chosen in case of Splines. Choosing Chebyshev
points with the spline interpolant was observed to not affect the interpolation accuracy.

5.2 Interpolating non-smooth functions

As mentioned earlier in Section 1, in practice, many device model functions are not as
smooth and well behaved as a Gaussian, exponential, etc. Instead, they are written
with conditional statements, sign, sqrt. etc., making them discontinuous, sometimes
in value or first derivative(s), and more frequently in higher order derivatives. Here,
we summarize one of the most important aspects of using polynomial interpolants for
approximating such discontinuous functions. Figure 10(a) shows a function with a
discontinuity in the first derivative to illustrate this point. The Chebyshev series in
Figure 10(b) seems to suggest that we need over 500 sample points to achieve even 6
decimal digits of accuracy. This is in fact verified by Figure 10(c), which shows the
interpolation error in interpolants constructed with 513 sample points. However, if we
break the domain into 2 independent domains and construct an interpolant for each
of the domains with just 9 sample points each (a total of 18 sample points), then we
can achieve a lower error than a single interpolant with 513 sample points across the
entire domain (See Figure 10(d)).

24

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

0

0.2

0.4

0.6

0.8

1

f(
x
)

Original

BLI

SPLINE

(a) Continuous function

0 100 200 300 400 500 600

Coeff. Index

10
-8

10
-6

10
-4

10
-2

10
0

C
o
e
ff
.
V

a
lu

e

(b) Chebyshev Series

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

10
-20

10
-15

10
-10

10
-5

10
0

f(
x
)

BLI

SPLINE

(c) Error at high-order

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

f(
x
)

BLI

PIECEWISE

(d) Error with low-order piecewise interpolant

Figure 10: Comparing single-piece interpolation with BLI for a non-smooth function.

5.3 Machine precision in 2 Dimensions

We implemented BLI with Chebyshev sample point in Modeling and Algorithm Pro-
totyping Platform (MAPP)[20]. Unlike splines, generating a BLI interpolant doesn’t
require the solution to a linear system of equations, making the generation of the in-
terpolant practically insignificant. It is important, however, to have extrapolation for
BLI as Chebyshev polynomials are very unstable outside the domain [−1, 1]. First, the
desired domain has to be shifted and scaled so that it maps to [−1, 1]. We are also
forced to use linear extrapolation beyond the original sampling domain to maintain
continuity and differentiability at the extrapolation boundary. Listing 1 shows the

72

(9, 8)

 136

(17, 8)

 264

(33, 8)

 144

(9,16)

 272

(17,16)

 528

(33,16)

 288

(9,32)

544

(17,32)

1056

(33,32)

Sample Points (pts pp, pieces)

10
-15

10
-10

10
-5

10
0

10
5

M
e
a
n

E
rr

o
r

(%
)

in
e
s
ti
m

a
ti
n
g

f
e

STEAM-PSP

BLI-PSP

STEAM-BSIM

BLI-BSIM

(a) Error

72

(9, 8)

 136

(17, 8)

 264

(33, 8)

 144

(9,16)

 272

(17,16)

 528

(33,16)

 288

(9,32)

 544

(17,32)

1056

(33,32)

Sample Points

0

5

10

15

20

S
p

e
e

d
u

p
 i
n

 e
s
ti
m

a
ti
n

g
 f

e

STEAM-PSP

BLI-PSP

STEAM-BSIM

BLI-BSIM

(b) Speedup

Figure 11: Comparing the performance of STEAM and A-LA-CARTE.

25

code for 2-dimensional BLI that we have written for our simulations. One can see that
extending BLI to multiple dimensions is highly compact, requiring just 3 calls to the
1D interpolant for 2 dimensions for evaluating a multi-dimensional function as well as
its derivatives.

Listing 1: Matlab Code for BLI expressions and derivatives in 2 Dimensions using a 1D
interpolant

% CLASS BLI2/Public Method
function [val , der] = compute(Obj , x_in)

% Main function for evaluating a 2D BLI expression using
% a Tensor−Product decomposition of 1D BLI interpolants.
%
% INPUTS:
% − Obj, an instance of BLI2 class. It has 2 important
% members, BLI_d1 and BLI_d2, 1D interpolants for the
% two individual dimensions
%
% − x_in, a vector of size 2x1 comprising of the query
% point of the form [xq; yq]
%
% OUTPUTS:
% − val, a vector of size Obj.op_dims, which can in
% general be a multi−dimensional matrix
%
% − der, the derivative of ’val’ with respect to the
% two input variables

% For better readability, let us call
xq = x_in (1);

yq = x_in (2);

% Initializing the derivative for a vector function
der = zeros([Obj.op_dims , Obj.in_dims]);

% Computing the 1D BLI interpolant: fx(y)
[fx_of_y , dfx_of_y_dy] = Obj.BLI_d2.compute(yq);

% Using interpolated values fx(y) to evaluate:
% − B(x, y)
% − dB(x,y)/dx
[val , der (: ,1)] = Obj.BLI_d1.compute(xq, fx_of_y);

% BLI interpolant should be constructed in a way that
% can either use the stored function values at sample
% points as in the first call, or use supplied
% function values for the interpolation (as here)

% Substituting the values dfx(y)/dy in the BLI
% expression gives us, as a ’val’:
% − dB(x,y)/dy
der(:,2) = Obj.BLI_d1.compute(xq, dfx_of_y_dy);

end

Let us extend the use of Chebyshev polynomials to device model functions, and
compare it with the existing framework in STEAM. We want to compare the accu-
racy, memory, and speedup in approximating the core device functions for a MODel
SPECification (MODSPEC) model in 2 dimensions.

In Section 5.2, it was shown that if a function being approximated with BLI has a
discontinuity in value or derivative, the accuracy drops for a given number of sample
points. Currently, we want to reproduce the response of a given device model as
accurately as possible. This means that if there is a discontinuity in the model, we

26

will reproduce it as well. Later, in Section 7, we use these observations to find model
discontinuities.

One of the ways of replicating a compact model’s response ‘accurately’ is to split
the domain of interest into multiple pieces and fit a separate interpolant to each piece.
It is possible to make all the pieces continuous, however, it makes the table-based
approximation different from the underlying compact model, and is discussed in detail
in Section 7. For the device models discussed here, we split the domain into a uniform
grid, and inside each rectangular domain, we fit a 2D BLI.

Figure 11(a) shows the mean relative error in approximating fe for the Penn-State
Phillips (PSP) model and the Berkeley Short-channel IGFET Model (BSIM) model. In
order to make the models 2-dimensional, MOSFETs have their sources tied to the bulk
nodes as shown in Figure 4. For generating tables, devices are sampled in the regions
vgs, vds ∈ [−1.5, 1.5]V as the circuits in the later sections use vdd = 1V . In Figure 11(a),
the interpolated device functions are evaluated at 40,000 randomly selected points in
[−1, 1]V, and the mean relative error is reported.

For both PSP, and BSIM, with about 1056 sample points per input dimension,
BLI achieves near machine-precision with a mean relative error of roughly 10−13%, or
10−15. For the same number of sample points, the mean error with splines is 4-5 orders
of magnitude worse. While BLI consistently outperforms splines when more than 144
sample points are used, the difference become very prominent after 288 sample points
because of the underlying Chebyshev series behavior. Section 7.1 presents a detailed
analysis of this in 1-dimension. Moreover, the accuracy for approximating PSP as
compared with BSIM is higher with both BLI and splines. This is primarily because
PSP is a more smooth model and we discuss this too in detail there.

5.4 Analyses algorithms

VDD VDD VDD

(a) 3-Stage CMOS ring-oscillator
circuit

VDD

VIN

RL RR

IS

S

VLO

(b) Gilbert Cell mixer
circuit

Figure 12: Circuits used for various analyses.

For the subsequent experiments involving analyses algorithms, we compare PSP and
BSIM models with table-based approximations constructed using spline interpolants

27

0 0.2 0.4 0.6 0.8 1

V
IN

(volts)

-2

-1

0

1

2

3

V
O

U
T

(v
o
lt
s
)

10
-6

STEAM e_out

(a) STEAM

0 0.2 0.4 0.6 0.8 1

V
IN

(volts)

-1.5

-1

-0.5

0

0.5

1

1.5

V
O

U
T

(v
o
lt
s
)

10
-10

BLI e_out

(b) BLI

Figure 13: Error in simulating a CMOS inverter for QSS using STEAM and A-LA-CARTE

CIRCUIT
Error Speedup Error Speedup
BLI BLI STEAM STEAM

CMOS Inverter 5.13e-12 3.58 2.23e-4 3.32
Differential Pair 1.63e-12 3.08 7.24e-9 2.84

Gilbert Cell 1.22e-12 3.46 9.98e-8 3.17

Table 2: Runtime and Error analysis for QSS with various circuits using BSIM Model.

and BLI. A 2-dimensional piecewise BLI interpolant is constructed with 32 pieces
uniformly splitting the domain [−1, 1]V. Each piece had a local polynomial of degree
33 in both the dimensions. A 2-dimensional spline interpolant is constructed on a
uniform grid of 1056× 1056 points for it to have the same number of sample points as
the piecewise BLI interpolant. The accuracy and speedup for these interpolants relative
to the baseline models, PSP and BLI, can be seen in Figure 11(a) and Figure 11(b)
respectively.

5.4.1 Quiescent Steady State (QSS) and Transient Analysis

Having compared our approach with STEAM for evaluating device functions, i.e., f
and q, we now analyze the overall accuracy of QSS (or DC analysis) and Transient
analysis using the two approaches. We ran a QSS sweep for a CMOS inverter, and
Gilbert Cell. Figure 13 shows simulation results for a CMOS inverter comparing an
approximation with spline interpolants and BLI with Chebyshev sample points. As
before, the error with splines is limited to 3µV . With the same number of sample
points, BLI achieves an error under 0.15nV .

We also ran transient simulations for the circuits mentioned previously along with
a Gilbert cell(Figure 12(b)). Figure 14 shows the simulation error and the simulation
waveform for a ring oscillator circuit constructed by connecting an odd number of
inverters in a circle (See Figure 12(a)). Later, in Section 5.4.2, we will analyze the
same circuit using Harmonic Balance (HB) and look at the speedup and simulation

28

CIRCUIT
Error Speedup Error Speedup
BLI BLI STEAM STEAM

CMOS Inverter 6.02e-12 2.64 6.23e-4 2.48
Ring Oscillator 5.05e-12 2.91 1.48e-3 2.68
Differential Pair 3.84e-12 2.32 1.06e-8 2.21

Gilbert Cell 8.13e-12 2.75 7.90e-8 2.57

Table 3: Runtime and Error analysis for Transient Analysis with various circuits using BSIM
Model.

CIRCUIT
Error Speedup Error Speedup
BLI BLI STEAM STEAM

CMOS Inverter 1.09e-13 8.64 1.77e-9 13.24
Differential Pair 7.93e-16 11.01 1.37e-10 10.76

Gilbert Cell 5.11e-16 13.74 2.75e-10 12.86

Table 4: Runtime and Error analysis for QSS with various circuits using PSP Model.

CIRCUIT
Error Speedup Error Speedup
BLI BLI STEAM STEAM

CMOS Inverter 4.27e-15 10.27 2.74e-10 9.92
Ring Oscillator 1.96e-14 12.13 1.49e-9 11.57
Differential Pair 6.70e-16 11.01 1.37e-10 10.76

Gilbert Cell 4.72e-13 10.19 1.10e-9 9.69

Table 5: Runtime and Error analysis for Transient Analysis with various circuits using PSP Model.

0 0.5 1 1.5 2 2.5 3 3.5 4

TIME (in s) 10
-7

-6

-4

-2

0

2

4

6

8

V
O

U
T

(v
o
lt
s
)

10
-4

STEAM - e_inv3

STEAM - e_inv2

STEAM - e_inv1

(a) STEAM

0 0.5 1 1.5 2 2.5 3 3.5 4

TIME (in s) 10
-7

-3

-2

-1

0

1

2

3

4

V
O

U
T

(v
o
lt
s
)

10
-12

BLI - e_inv1
BLI - e_inv2

BLI - e_inv3

(b) BLI

Figure 14: Error in Transient Simulation of a 3-stage ring oscillator STEAM and A-LA-CARTE

29

Fourier comp. magnitudes, freq=5.910600e+06 (Hz)

-50 -40 -30 -20 -10 0 10 20 30 40 50

Harmonic Number

-300

-200

-100

0

 2
0
 l
o
g

1
0
V

(w
)

e_inv1

Time-domain waveforms, period=1.691876e-07 (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (sec) 10
-7

-1

0

1

2

V
 (

v
o
lt
s
)

10
-12

e_inv1

(a) BLI

Fourier comp. magnitudes, freq=5.910600e+06 (Hz)

-50 -40 -30 -20 -10 0 10 20 30 40 50

Harmonic Number

-100

-50

0

2
0
 l
o
g

1
0
V

(w
)

e_inv1

Time-domain waveforms, period=1.691876e-07 (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (sec) 10
-7

-2

0

2

V
 (

in
 V

o
lt
s
)

10
-4

e_inv1

(b) STEAM

Figure 15: Time-Frequency domain error in Harmonic balance for a 3-stage ring oscillator circuit.

error in a more accuracy sensitive application. The results with PSP and BSIM models
for various analyses and circuits are summarized in Tables 2, 3, 4, and 5. Figure 14
shows the error in transient simulation of a 3-stage ring oscillator (see Figure 12(a) for
the circuit) using STEAM and A-LA-CARTE. Here too, A-LA-CARTE improves the
simulation accuracy by 8 orders of magnitude.

5.4.2 RF design - Harmonic Balance

While previous attempts at table-based device modeling have made steady progress
towards accuracy improvements, none have so far reached a level that is adequate for
sensitive applications, like RF design. The achievement of near machine precision in
the previous section (Section 5.3) motivates the use of our approach for table-based
device modeling in these applications. Some of the methods used for analyzing analog
circuits that have periodic behavior include Periodic Steady State (PSS) (or Shooting)
and HB. In this section, we compare the results from the approach used in [3] and
our approach. Accuracy sensitive applications, like RF design, highlight the important
differences in accuracy between the two methods. This is especially true for a method
like HB that implicitly depends on the accuracy of higher order derivatives.

HB is a mixed time-frequency domain analysis that is used for analyzing oscillatory
circuits. It can be applied to both autonomous systems, like oscillators, and systems
driven by periodic signals like amplifiers. We applied both the approaches to accelerate
HB for computationally expensive simulations. For the former case, i.e., analysis of
oscillators, HB computes both the oscillation frequency and the amplitudes of various
harmonics corresponding to the oscillation frequency. This is shown in Figure 15. Here,
both BLI and spline interpolants were constructed by using 1056 sample points for each
of the two input dimensions. It can be seen that BLI has an error of ∼ 10−12V in a
peak voltage of 1V , whereas spline interpolant has an error of ∼ 10−4V.

30

6 Sparse measurements

So far, we have been relying only on the data that we have sampled from a device
model in order to construct a polynomial approximation. The prior knowledge of
the underlying smoothness of device models has been exploited only to the extent
of rapid drop in Chebyshev series coefficients. As discussed in Section 5, this gives
a very accurate approximation with Barycentric-Lagrange Interpolation (BLI) when
using Chebyshev sample points.

An alternate approach can be used to make use of the underlying model smoothness.
Having obtained a few sample values from the device functions, we can use the smooth-
ness assumption to ‘fill’ the gaps that have not been sampled yet. Such an approach
can have a lot of practical utility in situations where evaluating the device functions is
computationally more expensive than the ‘filling’ process mentioned above. Moreover,
this could also be used in situations where measurement data from physical devices
is used for constructing models as individual measurements could be cumbersome and
limited.

6.1 Compressibility of Device data

In order to assess the feasibility of such methods, it is essential to estimate the amount
of redundancy in the data that we are measuring to construct our polynomial approx-
imations. Low rank decomposition, and basis transformations are some of the most
commonly used methods for this purpose and we explore these in the context of device
model data to analyze how much data is needed for the accuracy levels that we have
previously mentioned. At the same time, for a given amount of data, we can under-
stand how much accuracy can be achieved by artificially generating the data based on
prior knowledge.

6.1.1 Singular Value Decomposition

Singular Value Decomposition (SVD) serves as a very useful tool in assessing matrices.
The idea behind SVD is to express a matrix Mm×n

10 as a sum of rank-1 matrices, i.e.,

M =
∑

1≤i≤min(m,n)

σiuivi
T , (22)

where ui and vi are unit-norm column vectors sized m× 1, and n× 1 respectively. The
weights of the rank-1 matrices uiv

T
i are the singular values.

Figure 16 looks at the singular values of a matrix of 64 Ids values for an NMOS
modelled with BSIM as depicted earlier in Figure 4. In order to obtain these values,
vdb, and vgb are varied on an 8× 8 rectangular grid of points. Figure 16(a) shows that
successive singular values for this matrix drop very rapidly, levelling off to numerical
precision error after 18 singular values. The impact of this on compressibility of the
matrix can be seen when only the k-highest singular values, and the corresponding

10Mm×n is a matrix with m rows and n columns.

31

0 10 20 30 40 50 60 70

Index

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

S
in

g
u

la
r

V
a

lu
e

(a) SVD for a 2D slice.

0 2 4 6 8 10 12 14 16 18 20

Singular Values

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

M
a

x
 r

e
c
o

n
s
tr

u
c
ti
o

n
 E

rr
o

r
(%

)

(b) Reconstruction with k-highest singular
values.

Figure 16: SVD on a 2D slice of Ids data for a NMOS using BSIM.

basis vectors uk, and vk are used to approximate the matrix. We get an approximation
of M , called M̂ , where,

M̂ =
∑

1≤i≤k

σiuiv
T
i . (23)

The corresponding error in this approximation can be measured as maxi,j

(
M̂(i,j)−M(i,j)

M(i,j)

)
11,

or the highest value of point-wise relative error. This is shown in Figure 16(b), where,
one can see that with only 10 singular values, the maximum relative error drops to
0.0001% or 10−6. After 17 singular values, this flattens out at 10−12 of the correspond-
ing values in M .

6.1.2 Basis Transformations

0 50 100 150 200 250 300

#DCT Coefficients

10
-3

10
-2

10
-1

10
0

10
1

M
e

a
n

 r
e

c
o

n
s
tr

u
c
ti
o

n
 E

rr
o

r

(a) Discrete Cosine Transform (DCT)

0 100 200 300 400 500 600

#DWT Coefficients

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

M
e
a
n
 r

e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

(b) Discrete Wavelet Transform (DWT)

Figure 17: Reconstruction error for a 1-dimensional slice of f using the highest k transform
coefficients as k is varied.

SVD is fairly informative of the structure and redundancy in the data available.
However, it still does not explicitly make use of the fact that the model data must
be smooth. This can easily be incorporated by representing the device model data

11Matrix division is done element by element.

32

631 388 239 147 90 56 34 21 13 8

discretization step (mV)

0

10

20

30

40

50

60

70

80

90

100

(%
)

V
a
lu

e
s
 (

C
o
e
ff
ic

ie
n
ts

) DCT

SVD

Figure 18: Comparing partial reconstruction using SVD and DCT.

in a basis which has smooth elements. DCT basis elements, as well several wavelet
families satisfy these requirements very well. Reconstruction error using a partial set
of basis coefficients is shown in Figure 17 for a total of 600 values for a model with a
single input. One of the reasons for the relatively poor performance of DCT is that
DCT inherently enforces boundary conditions. In that respect, it is similar to Discrete
Fourier Transform (DFT), which enforces a periodic boundary condition. As in our
case, if the signal or function being approximated with truncated DCT coefficients does
not meet the boundary conditions, a large amount of error is seen near the boundaries.

Figure 18 exemplifies the essential difference between a low-rank approximation
(using SVD) and a smooth approximation of the device model data. For a given level
of accuracy (in this case, 3 decimal digits), Figure 18 shows the percentage of coefficients
(singular values or DCT weights) needed to achieve this accuracy. Additionally, the
matrix size is varied here, and is inversely proportional to the discretization step on the
x-axis. For a discretization step of 631mV, the matrix would be 4× 4, and for 8mV, it
would be 250 × 250. For small matrices of device model data, SVD seems to require
relatively fewer entries, however, as the total amount of data grows, basis transforms
like DCT see greater improvement in their ability to compress the device model data.

6.2 Recreating a picture pixel-by-pixel

The observations in Section 6.1.2 tell us that the device model data is sparse in some
common bases, such as DCT and some families of wavelets. From a numerical stand-
point, many of the smaller basis coefficients do not contribute to the actual value of the
function, making it sparse. Compressed Sensing (CS) [21, 22, 23, 24] was built around
reconstruction of signals that could be sparsely represented in some basis using fewer
measurements than required by Shannon-Nyquist sampling theorem.

Figure 19 demonstrates one of the first applications of CS. In Figure 19(a), a
256 × 256 phantom image is shown. Its Fourier domain coefficients can be seen in
Figure 19(b). Only the absolute value of the coefficients is shown on a logarithmic

33

(a) Original image (b) True Fourier Coefficients (c) Observed Fourier Coefficients

Figure 19: Working example of CS

scale for better visibility. Note that the contrast on the logarithmic scale shows that
the coefficients are indeed very sparse. We are able to sample these Fourier coefficients
on any radial line in the Fourier space, and Figure 19(c) shows one such measurement.
In CS, the task is to reconstruct the original image in Figure 19(a), such that the
Fourier domain representation of the reconstruction matches the measured values at
the points where measurement is available (Figure 19(c)).

Interestingly, subjecting the reconstruction to have the least total variance in the
Fourier domain coefficients leads to an exact match with the original image. In this
case, we wish to reconstruct an image I, while we can measure its Fourier coefficients.
Such situations naturally arise in Magnetic Resonance Imaging (MRI) and Computa-
tional Tomography (CT), where measurements indeed correspond to Fourier represen-
tations. On the other hand, in our framework (Spline-based Tables for Efficient and
Accurate device Models (STEAM)), we can measure the image or a function at any
point, and the goal is to reconstruct the same image (function). We do know, from
prior experience, that the image would be sparse when represented in the DCT basis,
or the wavelet basis.

(a) Original Image (b) Random samples of
pixel values

(c) Reconstruction with
TV Minimization

(d) Reconstruction
with L1 minimization

Figure 20: A variant of the phantom experiment that leads to device evaluation

This analogy is depicted in Figure 20. In 20(a), we have the true image that we
are trying the measure. In order to do that, we only measure the image at a sparse set

34

of points, such that the number of measurements we make is significantly lesser than
the total number of pixels that we would like to reconstruct. Thereafter, we can recon-
struct the image by enforcing the sparsity of the DCT coefficients, while simultaneously
forcing the reconstruction to match the measured values. Reconstruction obtained by
enforcing sparsity with a TV minimization (as in the phantom experiment), and L1
norm minimization (conventional CS) are shown in Figures 20(c), and 20(d) respec-
tively. For these, and all future optimization experiments presented here, L1-magic
was used, which is a publicly available software package.

Let us formulate both the approaches mentioned above for a 1-dimensional signal.
An image can be converted to a 1D signal by concatenating all the columns into a
single one. Let us call the baseline signal or function, I. In the former approach,
measurements of I in a basis F are available, i.e.,

TI = MFI. (24)

Here, M is the measurement matrix. In Figure 19, F is the Fourier transform
matrix, whereas the measurement matrix M selects values along a radial line. Let FI

correspond to the Fourier-domain coefficients for I. Then, FI can be solved from the
under-determined system in Equation 24 by solving

arg min
‖x‖1

s.t. TI = Mx. (25)

The actual image I is obtained by inverting the Fourier transform, i.e., Ir =
F−1xsol, where, Ir is the reconstructed image, and xsol is the solution to Equation 25.
The later method, one we might call image completion12, involves a situation where
the some of the pixel values are known. In addition to this, we also assume that the
image has a sparse representation in some basis F̂ . Again, let M be a measurement
matrix. Since we are sampling a few discrete points in the original image, M depends
on the points being sampled, and is known. Now,

MI = MF̂−1x,

i.e. y = MF̂−1x.
(26)

Here, y refers to a measurement of a few pixel values of the original image I, x refers
to the coefficients corresponding to the image I in the basis F̂ . The coefficient vector,
x, can be obtained by solving the following optimization problem:

arg min
‖x‖1

s.t. y = MF̂−1x. (27)

The reasoning behind the working of Equation 27 lies in the fact that under some
circumstances, the solution xsol to Equation 27 not only has the smallest L1-norm, but
is also the most sparse vector to satisfy the constraint y = MF̂−1xsol, i.e., xsol is also
the solution to

arg min
‖x‖0

s.t. y = MF̂−1x. (28)

12This refers to matrix completion, which is essentially the same problem without the prior knowl-
edge that the matrix represents a smooth function or an image.

35

In [21, 22, 23], it was shown that the solution to 28 is same as the solution to 27, if the
orthonormal transform F̂−1 satisfies:

µ(F̂) = max
0≤i,j≤N

F̂(i, j) >
N

s
, (29)

where Fi,j corresponds to the (i, j) entry in F represented as a matrix, and the vector

x is s-sparse. µ(F̂) is the ‘coherence’ of the transform F̂ [24] and is a scalar value.
Simply put, for a given transform F̂ , if Sx denotes the set of coefficient vectors that
match the partial measurements specified by A, then

arg min
x∈Sx

‖x‖0 = arg min
x∈Sx

‖x‖1. (30)

In [24], it was shown that if I has an s− sparse representation in F̂ , then, the solution
to Equation 30 uniquely identifies I.

6.3 Sparse sampling and reconstruction of device data

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

v (in Volts)

-20

-15

-10

-5

0

5

i p
(v

)

×10
-5

Original Signal

Recovery

(a) 1D data slice

0 100 200 300 400 500 600

Frequency Index (w)

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g
(|

X
p
(w

)|
)

Original Signal

Recovery-DCT

(b) DCT coefficients

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

v (in Volts)

-1

0

1

2

3

4

5

6

∆
i p

(v
)

×10
-5

(c) Recovery error

0 100 200 300 400 500 600

Frequency Index (w)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

∆
X

p
(w

)

×10
-4

(d) DCT coefficients

Figure 21: Recovery of BSIM Ids with a compression factor of 8.

The recreation from sparse samples in Section 6.2 can be applied to the device data
too. Figure 17 shows the results for this for a 1-dimensional data slice. The original
signal and its reconstruction are shown in Figure 21(a). For reconstruction, first a few
points are randomly sampled. Then, over possible DCT coefficient values that match

36

measured data after application of inverse DCT transform, one with the minimum
L1-Norm is chosen. Figures 21(d) and 21(c) show the error in the reconstructed DCT
coefficients and waveform respectively. Again because of the periodic nature of DCT,
the error in the reconstruction is relatively high at the left boundary.

2 4 8 16 33 65 128

Compression Factor

10
-6

10
-4

10
-2

10
0

10
2

10
4

E
rr

o
r

(%
)

Max-Error

Mean-Error

(a) 2mV step

2 4 8 16 33 65 128

Compression Factor

10
-4

10
-2

10
0

10
2

10
4

E
rr

o
r

(%
)

Max-Error

Mean-Error

(b) 8mV step

Figure 22: Error in reconstructing Ids matrix obtained by sampling f(vds, vgs) with different
discretization steps as compression factor is varied.

Figure 22 extends the previous experiment to 2 dimensions. The error at the bound-
ary is handled by choosing a domain that extends beyond the desired boundary by a
small amount and ignoring the error in this extension strip. 2 different discretization
steps are chosen, and for each, compression factor represents the fraction of values that
are randomly sampled for reconstructing data over the entire grid. Interestingly, for the
same compression factor, we get better accuracy on a finer grid. If for an application,
∼ 1% maximum error is tolerable, then with this method, 16× fewer model evaluations
are needed to obtain the data corresponding to a 2mV discretization step. The key
result here is that the MODel SPECification (MODSPEC) functions, that completely
describe the behavior of a device can be reconstructed with a very high accuracy by a
few samples in the input dimensions.

37

7 Model diagnosis

As we have mentioned on several earlier occasions, compact models are prone to several
mathematical problems like discontinuities arising from hand-coded model equations.
These discontinuities degrade the performance of the model in simulation by taking
more Newton Raphson (NR) iterations to converge. More importantly, in Radio Fre-
quency (RF) design, derivative discontinuities result in incorrect harmonics.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
DC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8
10

-4 1
st

Harmonic

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
10

-6 2
nd

Harmonic

Figure 23: HB on a differential pair.

Figure 23 analyzes the outcome of HB on a differential pair (circuit shown earlier
in Figure 7) with the Shichman-Hodges (SH) model. In this experiment, the input bias
voltage, Vin, is varied from 0 to Vdd, and for each bias value, HB is executed on the
circuit to get the transfer function from the small-signal input vin to the output vout.
Both the 1st and 2nd harmonics obtained by HB while sweeping vin are noteworthy.
The second harmonic in the bottom panel abruptly drops to 0 for vin = 0.7, which
is unrealistic. SH is a fairly crude model of a transistor, and lacks continuous 2nd

derivatives. The idea behind this exercise is not to emphasize the choice of a model
for RF design. We are simply trying to demonstrate how derivative discontinuities in
a model seep into physical quantities that are of interest in real designs.

In Section 5, it was mentioned that discontinuities in the models force us to split
the domain and fit different polynomials to each domain. This was required because
there, the goal was to faithfully replicate the output or response of a given compact
model. Having looked at the affect of these discontinuities in the simulation results,
we will now take another look at them in the context of table-based modeling. We will
see that the observation of polynomial-ringing in Section 5.2 can be used to diagnose
and pin-point model discontinuities. Moreover, we will see that if the discontinuities
were not present, device models could be approximated with A LAgrange-interpolant
with Chebyshev-samples for Accurately Representing TablE-models (A-LA-CARTE)
using very very few points at near machine precision.

38

7.1 An illustrative 1D Example

Figure 24:
Schematic of a

diode connected
MOSFET

Consider a diode connected MOSFET as shown in Figure 24, mod-
eled with Berkeley Short-channel IGFET Model (BSIM) and Penn-
State Phillips (PSP) models with only one input, called vc. For
simplicity, we have ignored terminal resistances from the model,
making it a 1-port device. It can be completely characterized by
providing, for any terminal voltage vc, a DC current term ic and
a dynamic term qc. A table-based model for the diode-connected
MOSFET must reconstruct these two functions, ic(vc), and qc(vc).

Figure 25(a) shows the Chebyshev series coefficients for the in-
put current ic obtained from the PSP model. The view so far
has been: “After ∼ 800 indices, the coefficients are not numeri-
cally significant to contribute to any error in the table-based model.
Therefore, if we were to construct an interpolant with more than 800
Chebyshev sample points, it would reconstruct the model to near-
machine precision.” We can compare these Chebyshev series coef-
ficients with those for continuous and discontinuous functions (or

smooth and non-smooth functions) for some visual insight.

0 200 400 600 800 1000 1200

Coeff. Index

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

C
o
e
ff
.
V

a
lu

e

(a) PSP

0 200 400 600 800 1000 1200

Coeff. Index

10
-20

10
-15

10
-10

10
-5

C
o
e
ff
.
V

a
lu

e

0 200 400 600 800 1000 1200

Coeff. Index

10
-20

10
-15

10
-10

10
-5

C
o
e
ff
.
V

a
lu

e

(b) BSIM

Figure 25: Showing the first 1024 Chebyshev series coefficients for ic of a diode-connected
MOSFET model.

Figure 26 shows the typical shape of Chebyshev series coefficients for smooth (Fig-
ure 26(a), where the function has continuous value, first, and higher order derivatives),
as well as non-smooth functions (Figure 26(b), where there is discontinuity in first
derivative). There are two important observations to be made from the plots above.

1. Chebyshev series coefficients for ic from diode connected BSIM model bear strong
resemblance to the coefficients for a non-smooth function in Figure 26(b), and

2. Coefficients for ic from the PSP model drop rapidly initially (by ∼ 10 orders of
magnitude over the first 100 coefficients), but later on, show very slow decay and
some ringing.

There could be two explanations for the observations above:

39

0 10 20 30 40 50 60 70

Coeff. Index

10
-20

10
-15

10
-10

10
-5

10
0

C
o
e
ff
.
V

a
lu

e

(a) Smooth function

0 100 200 300 400 500 600

Coeff. Index

10
-8

10
-6

10
-4

10
-2

10
0

C
o
e
ff
.
V

a
lu

e

(b) Non-smooth function

Figure 26: Typical Chebyshev series coefficients for smooth vs. non-smooth functions.

1. Device model functions are inherently more complex that the simple examples
in Figure 26, and this is makes the use of high-order polynomial representations
necessary, or

2. Both PSP and BSIM models are discontinuous to some extent, and if we could
find these discontinuities, and fit interpolants to individual pieces, the Chebyshev
series coefficients for each of these pieces would resemble 26(a).

7.2 Notion of accuracy, domain splitting

Method Pieces
Total Measured

Coefficients Error

Single Polynomial

1 257 5.24e-6
1 513 1.68e-8
1 1025 1.136-12
1 2049 5.98e-13

Uniform Pieces

16 272 9.12e-7
32 544 2.42e-9
32 1040 4.90e-13
32 2080 4.89e-13

Hand-picked Split 8 70 4.92e-13

Table 6: Required Polynomial Coefficients (or table size) for reconstructing PSP - f .

If one looks at the segment of Table 6 that refers to single piece as the method, one
can notice that the mean point-wise relative error does indeed drop significantly when
the number of sample points is dropped from 513 to 1025. This is consistent with the
fact that after ∼ 800 Chebyshev series coefficients, remaining values are numerically
insignificant. Similar observation can also be made for the BSIM model in Table 7,

40

Method Pieces
Total Measured

Coefficients Error

Single Polynomial

1 257 3.81e-4
1 513 1.15e-4
1 1025 2.66e-5
1 2049 4.68e-6

Uniformly Spaced

16 272 6.59e-5
32 544 7.23e-6
32 1040 1.54e-6
32 2080 1.17e-7

Hand-picked Split 8 40 3.35e-14

Table 7: Required Polynomial Coefficients (or table size) for reconstructing BSIM-f .

where both the Chebyshev series coefficients and the interpolation error do not become
numerically insignificant.

Here, it is very important to note that this measure or notion of accuracy is based
entirely on how different the table-based model is from the original model. Let us now
see to what extent can Piecewise Barycentric-Lagrange Interpolation (BLI) cut down
on the memory requirement for this case and simultaneously increase the interpolation
accuracy.

Table 7 shows a summary of reconstruction results for the BSIM model. For this ex-
periment, the model was sampled in [−1, 1]V using Chebyshev points described in Sec-
tion 2.5. After constructing the interpolant, it was evaluated at 10000 points randomly
scattered in [−1, 1]V and the mean relative error was reported for these experiments.
For the first 4 entries in Table 7, the total number of sample points, and therefore the
degree of the interpolating polynomial is increased from 257 to 2049. Then, instead
of using a single high order polynomial, we use lower order polynomials for different
domains.

For example, pieces=8, and Total Coefficients=40 with uniform pieces would
correspond to a polynomials of degree 5 fit to domains (−1,−0.75), (−0.75,−0.5),
. . . , (0.75, 1) independently. For each of these domains, we first generate 5 Chebyshev
points, i.e., (−1,−

√
2, 0,
√

2, 1). These points then need to be scaled to the appropriate
domain, for example, for the domain (0.5, 0.75), these points would approximately be
(0.500, 0.537, 0.624, 0.713, 0.750). The function value, in this case ic, is evaluated at
these points, and a polynomial is constructed to interpolate these values if later on
during simulation, a voltage vc in the range (0.5, 0.75) is queried.

7.3 How and Why Piecewise BLI “helps”

Figure 28(a) shows the reconstruction error in the current ic for a polynomial of order
1025. The error has a marked peak near x(vv) ∼ −0.3V , which prompts further

41

33 65 129 257 513 1025 2049

Sample Points

10
-6

10
-4

10
-2

10
0

10
2

E
rr

o
r

(%
)

BLI
SPLINE

Figure 27: Reconstruction error in total current, ic, as vc is varied

investigation. The ringing that we see here is similar to the one observed earlier in
Section 5.2.

Figure 28(b) shows the derivative of the current ic with respect to the voltage vc
using the BSIM model. This is obtained from the original model by combining the
derivatives d

vgs
igs,

d
vgs
ids,

d
vds
igs, and d

vds
ids. The first derivative thus obtained is not

differentiable at the same point where we see the peak in interpolation error.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

f(
x
)

10
-12

BLI

SPLINE

(a) Error in Total Current ic

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

vc

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

d
i c

/d
v
c

10
-7

(b) Derivative of Total Current

Figure 28: Analyzing the reported inaccuracy in BSIM’s reconstruction with BLI.

Breaking the polynomial interpolant into smaller lower-order polynomials by finding
the appropriate breakpoints removes these problems as seen in Section 5.2. The last
entries in both Tables 6, and 7 show that it is indeed possible to cut down the cost
of memory dramatically for representing these models with an appropriate choice of
break points. While these problems can largely be alleviated by switching to a model
that is more mathematically sound, like PSP, errors in higher order derivatives are
inevitable in such complex models.

For both BSIM and PSP the total number of sample points required to get to
near machine-precision is far fewer than what can be achieved with ad-hoc measures
like uniform splitting. For BSIM, just 40 sample points suffice in 1 dimension for
achieving relative error close to 1e-14, and for PSP, 70 points are required for the
same. Besides, we’ve seen that fitting a single piece BLI with Chebyshev sample
points, and looking at the Chebyshev series can first help determine if the model has

42

discontinuities. Further, looking at the reconstruction error can help us pinpoint the
location of such a discontinuity.

43

8 Open questions

In this thesis, we explored a few methods and applications for table-based device mod-
eling. Along the way, we were pressed by both challenging questions and opportunities
that could not be fully covered here. Some of these are discussed below.

Precise speedup for higher dimensions

There is some preliminary evidence suggesting that in 3-dimensions, table-based mod-
els, especially derived using A LAgrange-interpolant with Chebyshev-samples for Accu-
rately Representing TablE-models (A-LA-CARTE), would provide sufficient accuracy
and speedup to be practically usable. Most of our implementation has been in MAT-
LAB and octave so far. The interpretive nature of these languages makes numerical
speedup numbers both unreliable and impractical as most efficient simulators rely on
compiled languages. An implementation in C/C++ would be necessary for a reliable
estimate of the speedup that can be achieved.

Compressed sensing with Chebyshev series

The Compressed Sensing (CS) experiments currently rely on a uniform discretization of
the domain. A sparse set of samples are obtained from this uniform grid. Preliminary
experiments show that if samples are obtained from a Chebyshev grid, then, CS can
directly reconstruct a truncated Chebyshev series. We have seen that for the same
compression factor, this reconstruction is far more accurate than one on a uniform
grid.

Table-based models from measurements

The ultimate goal of table-based modeling would be to construct models directly from
device measurements. Our approach is limited by internal unknowns and the model
structure which cannot be extracted trivially from measurements at the device termi-
nals. A more wholistic table-based modeling approach which can estimate not only
device functions, but the structure of internal nodes for producing a model would be
more useful in practice.

44

References

[1] G. Gildenblat, X. Li, W. Wu, H. Wang, A. Jha, R. Van Langevelde, G. D. J. Smit, A. J.
Scholten, and D. B. M. Klaassen. Psp: An advanced surface-potential-based mosfet model for
circuit simulation. IEEE Transactions on Electron Devices, 53(9):1979–1993, 2006.

[2] Y. Cheng and C. Hu. MOSFET modeling & BSIM3 users guide. Springer Science & Business
Media, 1999.

[3] A. Gupta, T. Wang, A. G. Mahmutoglu, and J. S. Roychowdhury. STEAM: Spline-based ta-
bles for efficient and accurate device modelling. In 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 463–468, Jan 2017.

[4] C. De Boor. A practical guide to splines, volume 27.

[5] J. Berrut and L. N. Trefethen. Barycentric Lagrange interpolation. SIAM review, 46(3):501–517,
2004.

[6] A. Gil, J. Segura, and N. Temme. Numerical Methods for Special Functions. Society for Industrial
and Applied Mathematics, 2007.

[7] R. B. Platte and L. N. Trefethen. Chebfun: a new kind of numerical computing. Progress in
industrial mathematics at ECMI 2008, pages 69–87, 2010.

[8] W. M. Coughran Jr, E. Grosse, and D. J. Rose. CAzM: A circuit analyzer with macromodeling.
30(9):1207–1213, 1983.

[9] W. R. Richards. CAzM 5.0 - A Robust, Table-Based Analog Circuit Simulator. In The 24th
Southeastern Symposium on System Theory and The 3rd Annual Symposium on Communications,
Signal Processing Expert Systems, and ASIC VLSI Design, pages 459–462, Mar 1992.

[10] T. Shima and H. Tamada. Table look-up MOSFET modeling system using a 2-D device simulator
and monotonic piecewise cubic interpolation. 2(2):121–126, 1983.

[11] J. A. Barby, J. Vlach, and K. Singhal. Polynomial splines for mosfet model approximation.
7(5):557–566, 1988.

[12] V. Bourenkov, K. G. McCarthy, and A. Mathewson. MOS table models for circuit simulation.
24(3):352–362, 2005.

[13] R. Kanj, T. Li, R. Joshi, K. Agarwal, A. Sadigh, D. Winston, and S. Nassif. Accelerated statistical
simulation via on-demand hermite spline interpolations. pages 353–360. IEEE, 2011.

[14] X. Li, F. Yang, D. Wu, Z. Zhou, and X. Zeng. MOS table models for fast and accurate sim-
ulation of analog and mixed-signal circuits using efficient oscillation-diminishing interpolations.
34(9):1481–1494, 2015.

[15] A. R. Rofougaran, B. Furman, and A. A. Abidi. Accurate analog modeling of short channel fets
based on table lookup. pages 13–1. IEEE, 1988.

[16] D. Amsallem and J. S. Roychowdhury. ModSpec: An open, flexible specification framework
for multi-domain device modelling. In Computer-Aided Design (ICCAD), 2011 IEEE/ACM
International Conference on, pages 367–374. IEEE, 2011.

[17] A. Townsend and L. N. Trefethen. An extension of chebfun to two dimensions. SIAM Journal
on Scientific Computing, 35(6):C495–C518, 2013.

[18] N. J. Higham. The numerical stability of barycentric lagrange interpolation. IMA Journal of
Numerical Analysis, 24(4):547–556, 2004.

[19] V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation on sparse
grids. Advances in Computational Mathematics, 12(4):273–288, 2000.

[20] T. Wang, A. V. Karthik, B. Wu, and J. S. Roychowdhury. MAPP: A platform for prototyping
algorithms and models quickly and easily. In IEEE MTT-S International Conference on Numer-
ical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), pages 1–3. IEEE,
2015.

[21] E. J. Candès, Y. C. Eldar, D. Needell, and P. Randall. Compressed sensing with coherent and
redundant dictionaries. Applied and Computational Harmonic Analysis, 31(1):59–73, 2011.

45

[22] E. J. Candès, M. Rudelson, T. Tao, and R. Vershynin. Error correction via linear programming.
In Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on, pages
668–681. IEEE, 2005.

[23] E. J. Candès and T. Tao. Near-optimal signal recovery from random projections: Universal
encoding strategies? IEEE transactions on information theory, 52(12):5406–5425, 2006.

[24] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruc-
tion from highly incomplete frequency information. IEEE Transactions on information theory,
52(2):489–509, 2006.

[25] Emmanuel Candes and Justin Romberg. l1-magic: Recovery of sparse signals via convex pro-
gramming. URL: www.acm.caltech.edu/l1magic/downloads/l1magic. pdf, 4:14, 2005.

46

9 Appendix: Code

The software used for various parts of this project has been compiled in the form of a package titled
STEAM. It is publicly available at https://github.com/architgupta93/STEAM. STEAM consists of 6
main sub-parts:

1. Berkeley Modeling and Algorithm Prototyping Platform (MAPP): An open-source
circuit simulator in MATLAB [20],

2. Piecewise-Polynomial Interpolation (PPI): A polynomial interpolation package that im-
plements all the interpolants mentioned in the report (splines, Chebyshev polynomials, Cheby-
shev series interpolant, Discrete Cosine Transform (DCT) based interpolants, etc.),

3. L1-Magic: Software provided open-source by Justin Romberg for Compressed Sensing (CS)
[25],

4. Device-Models: A set of compact models (Berkeley Short-channel IGFET Model (BSIM),
Penn-State Phillips (PSP) for example), translated into the MODel SPECification (MODSPEC)
modeling API using Verilog-A Parser and Preprocessor (VAPP),

5. Core framework: The framework for translating any device model expressed in the the
MODSPEC modeling API into a table-based approximation using either Splines, or Chebyshev
interpolants, and

6. Examples: These are distributed into two locations. A directory called ‘examples’ under
STEAM provides examples that demonstrate the use of the package, and another set of exam-
ples under ‘ThesisExtras’ which reproduce the results presented here.

The main aspects of software that we implemented are described here. For additional information
on the usage/extension of the package, we encourage you to read the package documentation.

9.1 PPI

The PPI package can be used to approximate functions with different polynomial interpolants that use
a common API. Interpolants used in this report can be found under bli, and splines in the package
directory. PPI package has some additional features which were not used here. The examples directory
in this package has a list of examples to demonstrate its functionality independently of the parent
package.

Files illustrative_example.m and univariate/fx_bli.m are good starting points. The former
script demonstrates the use of splines and the latter compares Barycentric-Lagrange Interpolation
(BLI) and splines for a given function.

9.2 Report results

Here, we walk the reader through the supplied example code and how it can be used to reproduce the
main results presented in this report. Prior to running any of the examples mentioned here, MATLAB
PATH must be set up appropriately. Scripts are provided for the this and users should refer to the
supplied documentation to access them.

9.2.1 Chebyshev polynomials and Chebyshev points

From ThesisExtras, run chebyshev_polynomials.m to generate Chebyshev polynomials of the first
kind. The supplied script allows to to vary the degree of the Chebyshev polynomial being drawn.
Similarly, Chebyshev Points can be visualized using the example code chebyshev_points.m in the
same location. This also allows you to visualize a Chebyshev points of different orders simultaneously.
These orders can be specified in the script to look at Chebyshev points of different orders. We
demonstrate orders 8 and 16 to show the embedding of Chebyshev points.

47

bli
splines
examples
illustrative_example.m
univariate/fx_bli.m
ThesisExtras
chebyshev_polynomials.m
chebyshev_points.m

9.2.2 Passive extrapolation

Within PPI, passive extrapolation can be seen. With examples/univariate/fx_extrapolation.m

in PPI package, reader can compare Not-A-Knot spline and passive spline. The code for generating a
passive spline (in general a spline interpolant with a given boundary slope can be found in splines/

PassiveSpline1D.m). This reuses bulk of the code for generating a spine interpolant from a given set
of knots and associated functions values in splines/SplineInterpolant.m.

9.2.3 STEAM: Device evaluation

With ThesisExtras/device_evaluation_speedup.m, one can evaluate the speedup and accuracy of
STEAM for approximating any given MODSPEC model. It also serves as a guide for using STEAM
with your own models. Currently, only 2-dimensional models (i.e. models with 2 inputs) can be
translated with STEAM. STEAM takes in a MODSPEC model and a set of interpolation parameters
(see STEAMArgs.m in utils for an overview) to create a polynomial approximation. This will generate
the accuracy and speedup results for a single device model.

9.2.4 STEAM: Circuit analyses

Files runDCAnalysis.m, runTransientAnalysis.m, and runACAnalysis.m allow one to run the 3
basic analysis algorithms on any circuit. This takes in a model (in this case a transistor model,
like BSIM, MIT Virtual Source (MVS), or PSP). It builds a circuit with the compact model and
another one with a STEAM approximation of the model. The scripts then run the corresponding
analysis on the circuit and compare the results. Circuit netlists that are used for these can be found
under circuits directory. The netlists are generic and can be used interchangeably with any of
the analyses/transistor models. For example, by default, runDCAnalysis.m uses daeMOSInverter.m,
which is a CMOS inverter circuit. The script also reports numerical error and speedup for using both
splines and BLI as the interpolant.

9.2.5 BLI and Splines

compare_BLI_w_Splines.m in ThesisExtras reproduces the comparison on BLI and Splines over
smooth functions described in Section 5.1. For this, a smooth function is chosen (getTestFHandle()
creates a function handle with random parameters). First, BLI and spline interpolants are constructed
with a few sample points, and then, they are reconstructed with a significantly higher number of sample
points. In both the cases, then, the interpolants are compared with the original function for accuracy.
One can change the interpolant arguments for BLI to be the same as Splines which uses uniform
sample points. This brings out the instability in Chebyshev polynomials when using uniform sample
points.

In the same script, you have the option to change the function class being used to perform the test.
By default, this class is set to ‘smooth’. Changing it to ‘d’ reproduces the results on a discontinuous
function, and ‘c’ produces results for a continuous function (with discontinuous derivative).

9.2.6 ALACARTE: Circuit analyses

Results for device evaluation and elementary analyses can be obtained with the same scripts that
were being used for STEAM. runHB.m in examples can be used to run Harmonic balance for both
oscillators (a 3-stage ring oscillator is provided), and circuits driven by a periodic signal (a Gilbert
cell circuit is provided).

9.2.7 Sparse Measurements

File BSIM_2D_SVD.m can be used to get a 2D slice of BSIM data, and perform Singular Value De-
composition (SVD) on it. First, the singular values are produced for the data slice, and then, the
reconstruction error is evaluated for using the k highest singular values. experiment_BSIM_DCT.m can

48

examples/univariate/fx_extrapolation.m
splines/PassiveSpline1D.m
splines/PassiveSpline1D.m
splines/SplineInterpolant.m
ThesisExtras/device_evaluation_speedup.m
STEAMArgs.m
runDCAnalysis.m
runTransientAnalysis.m
runACAnalysis.m
circuits
runDCAnalysis.m
daeMOSInverter.m
compare_BLI_w_Splines.m
ThesisExtras
getTestFHandle()
runHB.m
examples
BSIM_2D_SVD.m
experiment_BSIM_DCT.m

reproduce the results for reconstruction with a partial set of DCT coefficients for 1-dimensional device
data. It also demonstrates reconstruction of the device characteristics using sparse measurements in
1-dimension. The comparison between SVD and DCT can be generated using SVD_vs_DCT.m.

9.2.8 Application of CS

phantom_experiment.m can be used to generate the fourier coefficients for the Phantom image along
radial lines in the 2-dimensional Fourier domain. Since the results for reconstructing the image
are readily available [24], they have not been added. Readers can, however, experiment with the
reconstruction of an image for which some of the pixels are available. This can be done with the script
image_reconstruction.m.

Application of this method for a 1-dimensional device model is also included in experiment_

BSIM_DCT.m previously mentioned.

9.2.9 Model Diagnosis

To highlight the issues related to model discontinuities in Radio Frequency (RF) design, runHB-
Sweep.m can be used. This script takes a circuit driven by a periodic signal (by default it picks the
source follower circuit), and performs a DC sweep on the input voltage. At each steady-state operating
point, small signal analysis is performed using Harmonic Balance (HB) and the transfer function’s 1st

and 2nd harmonic are reported. The script titled diode_connected_mosfet.m reproduces the results
shown for a 1-dimensional MOSFET model in Section 7.1.

49

SVD_vs_DCT.m
phantom_experiment.m
image_reconstruction.m
experiment_BSIM_DCT.m
experiment_BSIM_DCT.m
diode_connected_mosfet.m

	Introduction and Overview
	Preliminaries
	Splines
	Uniqueness
	Multiple dimensions

	Lagrange Interpolation
	Barycentric-Lagrange Interpolation
	Chebyshev Polynomials
	Chebyshev Points
	Chebyshev Series

	Previous Work
	STEAM
	Functional view of compact models
	Derivatives
	Extrapolation
	Device evaluation
	Accuracy, Memory and Speedup in analyses
	QSS
	Transient Analysis
	AC Analysis

	Is accuracy a concern?
	Accuracy comparison between Splines and BLI
	Interpolating non-smooth functions
	Machine precision in 2 Dimensions
	Analyses algorithms
	QSS and Transient Analysis
	RF design - Harmonic Balance

	Sparse measurements
	Compressibility of Device data
	Singular Value Decomposition
	Basis Transformations

	Recreating a picture pixel-by-pixel
	Sparse sampling and reconstruction of device data

	Model diagnosis
	An illustrative 1D Example
	Notion of accuracy, domain splitting
	How and Why Piecewise BLI ``helps''

	Open questions
	Appendix: Code
	PPI
	Report results
	Chebyshev polynomials and Chebyshev points
	Passive extrapolation
	STEAM: Device evaluation
	STEAM: Circuit analyses
	BLI and Splines
	ALACARTE: Circuit analyses
	Sparse Measurements
	Application of CS
	Model Diagnosis

