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Fighting Fake News: Image Splice Detection
via Learned Self-Consistency

Minyoung Huh∗1,2 Andrew Liu∗1 Andrew Owens1 Alexei A. Efros1

UC Berkeley1 Carnegie Mellon University2
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Predicted Splice 

Mask
Ground Truth Mask

Fig. 1: Our algorithm learns to detect and localize image manipulations (splices), despite being
trained only on unmanipulated images. The two input images above might look plausible, but our
model correctly determined that they have been manipulated because they lack self-consistency:
the visual information within the predicted splice region was found to be inconsistent with the
rest of the image. IMAGE CREDITS: automatically created splice from Hays and Efros [1] (top),
manual splice from Reddit user /u/Name-Albert Einstein (bottom).

Abstract. Advances in photo editing and manipulation tools have made it sig-
nificantly easier to create fake imagery. Learning to detect such manipulations,
however, remains a challenging problem due to the lack of sufficient training
data. In this paper, we propose a model that learns to detect visual manipulations
from unlabeled data through self-supervision. Given a large collection of real
photographs with automatically recorded EXIF metadata, we train a model to de-
termine whether an image is self-consistent — that is, whether its content could
have been produced by a single imaging pipeline. We apply this self-supervised
learning method to the task of detecting and localizing image splices. Although
the proposed model obtains state-of-the-art performance on several benchmarks,
we see it as merely a step in the long quest for a truly general-purpose visual
forensics tool.

Keywords: Visual forensics, image splicing, self-supervised learning, EXIF

1 Introduction

Malicious image manipulation, long the domain of dictators and spy agencies, has now
become accessible to legions of common Internet trolls and Facebook con-men [2].

∗Indicates equal contribution.
Code and additional results can be found on our website.
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EXIF CameraMake: NIKON CORPORATION 
EXIF CameraModel: NIKON D5300 
EXIF ColorSpace: sRGB 
EXIF DateTimeOriginal: 2016:09:13 16:58:26 
EXIF ExifImageLength: 3947 
EXIF ExifImageWidth: 5921 
EXIF Flash: No 
EXIF FocalLength: 31.0mm 
EXIF WhiteBalance: Auto 
EXIF CompressedBitsPerPixel: 2 

…

EXIF CameraMake: EASTMAN KODAK COMPANY 
EXIF CameraModel: KODAK EASYSHARE CX7300… 
EXIF ColorSpace: sRGB  
EXIF DateTimeOriginal: 2005:09:29 01:31:02 
EXIF ExifImageLength: 1544 
EXIF ExifImageWidth: 2080 
EXIF Flash: No (Auto) 
EXIF FocalLength: 5.9mm 
EXIF WhiteBalance: Auto 
EXIF CompressedBitsPerPixel: 181/100 

…

Fig. 2: Anatomy of a splice: a fake image is created by splicing together content from two source
images. The insight explored in this paper is that patches from spliced images are typically pro-
duced by different imaging pipelines, as indicated by the EXIF meta-data of the two source
images. The problem is that in practice, we never have access to these source images.1

With only rudimentary editing skills, it is now possible to create realistic image compos-
ites [3, 4], fill in large image regions [1, 5, 6], generate plausible video from speech [7,
8], etc. One might have hoped that these new methods for creating synthetic visual con-
tent would be met with commensurately powerful techniques for detecting fakes, but
this has not been the case so far.

One problem is that standard supervised learning approaches, which have been very
successful for many types of detection problems, are not well-suited for image foren-
sics. This is because the space of manipulated images is so vast and diverse, that it is
rather unlikely we will ever have enough manipulated training data for a supervised
method to fully succeed. Indeed, detecting visual manipulation can be thought of as an
anomaly detection problem — we want to flag anything that is “out of the ordinary,”
even though we might not have a good model of what that might be. In other words, we
would like a method that does not require any manipulated training data at all, but can
work in an unsupervised/self-supervised regime.

In this work, we turn to a vast and previously underutilized source of data, image
EXIF metadata. EXIF tags are camera specifications that are digitally engraved into
an image file at the moment of capture and are ubiquitously available. Consider the
photo shown in Figure 2. While at first glance it might seem authentic, we see on closer
inspection that a car has been inserted into the scene. The content for this spliced region
came from a different photo, shown on the right. Such a manipulation is called an image
splice, and it is one of the most common ways of creating visual fakes. If we had access
to the two source photographs, we would see from their EXIF metadata that there are
a number of differences in the imaging pipelines: one photo was taken with an Nikon
camera, the other with a Kodak camera; they were shot using different focal lengths, and
saved with different JPEG quality settings, etc. Our insight is that one might be able to
detect spliced images because they are composed of regions that were captured with
different imaging pipelines. Of course, in forensics applications, we do not have access

1Photo credits: NIMBLE dataset [9] and Flickr user James Stave.
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to the original source images nor, in general, do we even have access to the fraudulent
photo’s metadata. This poses a challenge when trying to design methods that use EXIF
cues.

We propose a self-supervised method for identifying and localizing image splices
by predicting the consistency of EXIF attributes between pairs of patches to determine
whether they came from a single coherent image. We validate our approach using sev-
eral benchmark datasets and show that the model performs better than the state-of-the-
art — despite never seeing annotated splices or using handcrafted detection cues.

2 Related work

Over the years, researchers have proposed a variety of visual forensics methods for iden-
tifying various manipulations [2]. The earliest and most thoroughly studied approach is
to use domain knowledge to isolate physical cues within an image. Drawing upon tech-
niques from signal processing, previous methods focused on cues such as misaligned
JPEG blocks [10], compression quantization artifacts [11], resampling artifacts [12],
color filtering array discrepancies [13], and camera-hardware “fingerprints” [14]. We
take particular inspiration from the recent work of Agarwal and Farid [15] which ex-
ploits a seemingly insignificant difference between imaging pipelines to detect spliced
image regions — namely, the way that different cameras truncate numbers during JPEG
quantization. While these domain-specific approaches have proven to be extremely use-
ful due to their easy interpretability, we believe that the use of machine learning will
open the door to discovering many more useful cues while also producing more adapt-
able algorithms.

Indeed, recent work has moved away from using a priori knowledge and toward
applying end-to-end learning methods for solving specific forensics tasks using labeled
training data. For example, Salloum et al. [16] propose learning to detect splices by
training a fully convolutional network on labeled training data. Bondi et al. [17] train a
model to identify a photo’s source camera model and apply their predictions to detecting
manipulations [18]. There has also been work that estimates whether a photo’s semantic
content (e.g., weather) matches its metadata [19]. Moreover, there have been a variety
of learning methods for detecting physical cues, such as double-JPEG compression [20,
21] and contrast enhancement [22].

In our work, we seek to further reduce the amount of information we provide to the
algorithm by having it learn to detect manipulations without ground-truth annotations.
For this, we take inspiration from recent works in self-supervision [23, 24, 25, 26, 27,
28] which train models by solving tasks solely defined using unlabeled data. Of these,
the most closely related approach is that of Doersch et al. [24], in which they trained
a model to predict the relative position of pairs of patches within an image. Surpris-
ingly, the authors found that their method learned to utilize very subtle artifacts like
chromatic lens aberration as a shortcut for learning the task. While imaging noise was
a nuisance in their work, it is a useful signal for us — our self-supervised algorithm
is designed to learn about properties of the imaging pipeline while ignoring semantics.
Our technical approach is also similar to [29], which trains a segmentation model using
self-supervision to predict whether pairs of patches co-occur in space or time.
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Image A

Image B

Self-supervised Training

Image A Metadata

Image B Metadata

Consistent  

Metadata?

Image Patches 

(128 x 128)

EXIF CameraModel: NIKON D3200 
EXIF CameraMake: NIKON CORP 
EXIF ColorSpace: Uncalibrated 
EXIF ISOSpeedRatings: 800 
EXIF DateTimeOriginal: 2016:04:17 
EXIF ImageLength: 2472 
EXIF ImageWidth: 3091 
EXIF Flash: Flash did not fire 
EXIF FocalLength: 90 
EXIF ExposureTime: 1/100 
EXIF WhiteBalance: Auto 

…

Siamese Networks

EXIF CameraModel: NIKON D3200 
EXIF CameraMake: NIKON CORP 
EXIF ColorSpace: Uncalibrated 
EXIF ISOSpeedRatings: 800 
EXIF DateTimeOriginal: 2016:04:17 
EXIF ImageLength: 2472 
EXIF ImageWidth: 3091 
EXIF Flash: Flash did not fire 
EXIF FocalLength: 90 
EXIF ExposureTime: 1/100 
EXIF WhiteBalance: Auto 

…

Resnet-50 Concatenated 

Features 

(1 x 8192)

Binary 

Classification

Diff 
Diff 
Diff 
Diff 
Diff 
Diff 
Diff 
Same  
Diff 
Diff 
Same 
…

Fig. 3: Self-supervised training: Our model takes two random patches from different images and
predicts whether they have consistent meta-data. Each attribute is used as a consistency metric
during training and testing.

Individual image metadata tags, such as focal length, GPS, hashtags, etc. have long
been employed in computer vision as free supervisory signal. A particularly creative
use of EXIF metadata was demonstrated by Kuthirummal et al. [30], who used the
CameraModel tag of a very large image collection to compute per-camera priors such
as their non-linear response functions. In contrast, our approach uses almost the entire
list of EXIF tags simultaneously.

Our work is also related to the anomaly detection problem. Unlike traditional visual
anomaly detection work, which is largely concerned with detecting unusual semantic
events like the presence of rare objects and actions [31, 32], our work needs to find
anomalies in photos whose content is designed to be plausible enough to fool humans.
Therefore the anomalous cues we search for should be imperceptible to humans and
invariant to the semantics of the scene.

3 Learning Photographic Self-consistency

Our model works by predicting whether a pair of image patches are consistent with
each other. Given two patches, Pi and Pj , we estimate the probabilities x1, x2, ..., xn

that they share the same value for each of n metadata attributes. We then estimate the
patches’ overall consistency, cij , by combining our n observations of metadata con-
sistency. At evaluation time, our model takes a potentially manipulated test image and
measures the consistency between many different pairs of patches. A low consistency
score indicates that the patches were likely produced by two distinct imaging systems,
suggesting that they originate from different images. Although the consistency score
for any single pair of patches will be noisy, aggregating many observations provides a
reasonably stable estimate of overall image self-consistency.
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3.1 Predicting EXIF Attribute Consistency

We use a Siamese network to predict the probability that a pair of 128 × 128 image
patches shares the same value for each EXIF metadata attribute. We train this network
with image patches randomly sampled from 400, 000 Flickr photos, making predictions
on all EXIF attributes that appear in more than 50, 000 photos (n = 80, the full list of
attributes can be found in Section A1). For a given EXIF attribute, we discard EXIF
values that occur less than 100 times.

We observe that training with a typical random sampling procedure will not be suc-
cessful because: 1) there are some rare EXIF values that will be very difficult to learn,
and 2) randomly selected pairs of images are unlikely to have consistent EXIF val-
ues just by chance. Therefore, we introduce two types of re-balancing during training:
unary and pairwise. For unary re-balancing, we oversample rare EXIF attribute values
(e.g. rare camera models). When constructing a mini-batch, we first choose an EXIF
attribute and uniformly sample an EXIF value from all possible values of this attribute.
For pairwise re-balancing, we make sure that pairs of training images within a mini-
batch are selected such that for a given EXIF attribute, half the batch share that value
and half do not.
Analysis Although we train on all available EXIF attributes, we expect the model to
excel at distinguishing ones that directly correlate to properties of the imaging pipeline
such as LensMake [24, 17]. In contrast, arbitrary attributes like the exact date an image
was taken (DateTimeOriginal) leave no informative cues in an image. In order to
identify predictive metadata, we evaluated our EXIF-consistency model on a dataset
of 50K held-out photos and report the individual EXIF attribute accuracy in Figure 4.
Because the accuracy is computed on pairwise-balanced batches, chance performance
is 50%.

Our model obtains high accuracy when predicting the consistency of attributes
closely associated with the image formation process such as LensMake, which con-
tains values such as Apple and FUJIFILM. But more surprisingly, we found that the
most predictable attribute is UserComment. Upon further inspection, we found that
UserComment is a generic field that can be populated with arbitrary data. We found
that the most frequent values were either binary strings embedded by camera man-
ufacturers or logs left by image processing software. For example, one of the com-
mon UserComment values, Processed with VSCOcam, is added by a popular photo-
filtering application. In Section A1, we show the full list of EXIF attributes and their
corresponding definitions.

3.2 Post-processing Consistency

Many image manipulations are performed with the intent of making the resulting im-
age look plausible to the human eye: spliced regions are resized, edge artifacts are
smoothed, and the resulting image is re-JPEGed. If our network could predict whether
two patches are post-processed differently, then this would be compelling evidence for
photographic inconsistency. To model post-processing consistency, we add three aug-
mentation operations during training: re-JPEGing, Gaussian blur, and image resizing.
Half of the time, we apply the same operations to both patches; the other half of the
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EXIF UserComment
EXIF FocalPlaneResolutionUnit 

EXIF FileSource
EXIF CustomRendered

EXIF LensMake
EXIF LightSource

EXIF SensingMethod
EXIF LensSpecification

EXIF SceneType
Inter InteroperabilityVersion 

EXIF Sharpness
Image Make

EXIF Saturation
EXIF Contrast

EXIF FlashPixVersion
Image YResolution
Image XResolution

Image YCbCrPositioning 
Inter InteroperabilityIndex 

EXIF ExposureProgram

EXIF SubSecTime
EXIF SubSecTimeOriginal 

EXIF SubSecTimeDigitized 
GPS GPSDate

Chance

Accuracy
40     50         60             70    80        90

Fig. 4: EXIF Accuracy: How predictable are
EXIF attributes? For each attribute, we com-
pute pairwise-consistency accuracy on Flickr
images using our self-consistency model.

EXIF-Consistency (Ours) 
Image YResolution 
Image XResolution 

Image ExifOffset
Image Model

EXIF ExifImageLength 
EXIF ExifVersion

EXIF ExifImageWidth
EXF ExposureMode

EXIF FocalLength
EXIF WhiteBalance

EXIF FNumber
Image DateTime

EXIF DateTimeOriginal 
EXIF DateTimeDigitized 

EXIF ColorSpace
EXIF Flash

EXIF ExposureTime 
Image-Consistency

Inter InteroperabilityVersion

CFA
FCN
NOI

Camera-Classification 
DCT

Columbia - Splice Localization (mAP)
0.5  0.6   0.7   0.8    0.9    1.0

Fig. 5: EXIF Splice Localization: How useful
are EXIF attributes for localizing splices? We
compute individual localization scores on the
Columbia dataset.

time, we apply different operations. The parameters of each operation are randomly
chosen from an evenly discretized set of numbers. We introduce three additional clas-
sification tasks (one per augmentation type) that are used to train the model to predict
whether a pair of patches received the same parameterized augmentation. This increases
our 80-way classification to 83-way. Since the order of the post-processing operations
matters, we apply them in a random order each time.

3.3 Predicting Patch Consistency

Once we have predicted the consistency of a pair of patches for each of our EXIF
(plus post-processing) attributes, we would like to estimate the pairs’ overall consis-
tency cij . If we were solving a supervised task, then a natural choice would be to use
spliced regions as supervision to predict, from the n EXIF-consistency predictions, the
probability that the two patches belong to different regions. Unfortunately, we do not
have spliced images to train on. Instead, we use a self-supervised proxy task. Given the
83 consistency predictions, we train a two-layer classifier to predict whether the two
patches come from the same image or not. Because we only see natural images dur-
ing training, we know for certain that image consistency is equivalent to photographic
consistency.

3.4 Directly Predicting Image Consistency

One might ask whether a model can learn a measure of consistency by directly predict-
ing whether two image patches come from the same image. The main problem is that
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Mean ShiftInputGround Truth Mask

…

Patch Consistency

a b c d

Fig. 6: Test Time: Our model samples patches in a grid from an input image (b) and estimates
consistency for every pair of patches. (c) For a given patch, we get a consistency map over all
other patches in the image. (d) We use Mean Shift to aggregate the consistency maps into a final
prediction.

such a model, which is trained on arbitrary image pairs, will be tempted to focus on
easy cues because they are sufficient to solve the vast majority of cases. For example,
the network might simply learn to compare color histograms, which is a surprisingly
powerful cue for same/different image classification task [33, 29]. Of course, given in-
finite training data and training time, we would expect this model to eventually learn
the same cues as the metadata model. To study this further, we also train a Siamese
network with the similar structure to the metadata model (Section 3.1) to solve this
same-or-different image consistency task.

3.5 From Patch Consistency to Image Self-Consistency

So far we have introduced models that can measure some form of consistency be-
tween pairs of patches. In order to transform this into something usable for detecting
splices, we need to aggregate these pairwise consistency probabilities into a global self-
consistency score for the entire image.

Given an image, we sample approximately 500 patches in a grid, selecting a stride
dependent on the size of the image, and construct an affinity matrix by computing con-
sistencies between every pair of patches. That is, for a given patch, we can visualize a
response map corresponding to its consistency with every other patch in the image. To
increase the spatial resolution of each response map, we average the predictions of over-
lapping patches. If there is a splice, then the majority of patches from the untampered
portion of the image will ideally have low consistency with patches from the tampered
region (see Figure 6c).

To produce a single response map for an input image, we want to find the most con-
sistent mode among all 500 patch response maps. We do this mode-seeking using Mean
Shift [34]. The resulting response map naturally segments the image into consistent and
inconsistent regions (see Figure 6d). We call the merged response map a consistency
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Tampered Ground Truth Combined

Image GPSInfoEXIF FileSourceGPS GPSDate

EXIF DigitalZoomRatio EXIF GainControlImage Model

EXIF FNumber EXIF ISOSpeedRatings Image YCbCrPositioning EXIF ExifVersion EXIF ColorSpace Image Make

EXIF ExifImageWidth EXIF ExifImageLength

Fig. 7: Consistency map from different EXIF tags: We compute consistency maps for each
metadata attribute independently (response maps sorted by localization accuracy). The merged
consistency map accurately localizes the spliced car.

map. We can also qualitatively visualize the tampered image region by clustering the
affinity matrix, e.g. with Normalized Cuts [35].

To help understand how different EXIF attributes vary in their consistency predic-
tions, we created response maps for each tag for an example image (Figure 7). While the
individual tags provide a noisy consistency signal, the merged response map accurately
localizes the spliced region.

4 Results

We evaluate our self-consistency model on two closely related tasks: splice detection
and splice localization. In the former, our goal is to simply classify images as being
spliced vs. authentic. In the latter, the goal is to localize the spliced regions within an
image.

4.1 Benchmarks

We evaluate our method on five different datasets. This includes three existing datasets:
the widely used Columbia dataset [36], which consists of 180 relatively simple splices,
and two more challenging datasets, Carvalho et al. [37] (94 images) and Realistic
Tampering [38] (220 images), which combine splicing with post-processing operations.

One potential shortcoming of these existing datasets is that they were created by
a small number of artists and may not be representative of the variety of forgeries en-
countered online. To address this issue, we introduce a new In-the-Wild forensics dataset
that consists of 201 images scraped from THE ONION, a parody news website (i.e. fake
news), and REDDIT PHOTOSHOP BATTLES, an online community of users who create
and share manipulated images. Since ground truth labels are not available for internet
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Dataset Columbia [36] Carvalho [37] RT [38]

CFA [39] 0.83 0.64 0.54
DCT [40] 0.58 0.63 0.52
NOI [41] 0.73 0.66 0.52

Supervised FCN 0.57 0.56 0.56

Camera Classification 0.70 0.73 0.15
Image-Consistency 0.96 0.65 0.35
EXIF-Consistency 0.98 0.87 0.55

Table 1: Splice Detection: We compare our splice detection accuracy on 3 different datasets. For
each one, we measure the mean average precision (mAP) of detecting whether an image has been
spliced. The numbers were computed on the validation set.

splices, we annotated the dataset by hand and obtain approximate ground truth (refer-
ring to the source images when they were available).

Finally, we also want to evaluate our method on automatically-generated splices.
For this, we used the scene completion data from Hays and Efros [1], which comes with
inpainting results, masks, and source images for a total of 55 splices. We note that the
ground-truth masks are only approximate, since the scene completion algorithm may
alter a small region of pixels outside the mask in order to produce seamless splices.

4.2 Comparisons

We compared three baseline algorithms, all of which use classic image processing tech-
niques to explicitly model and exploit imaging artifacts: Color Filter Array (CFA) [39]
detects artifacts in color pattern interpolation; JPEG DCT [40] detects inconsistencies
over JPEG coefficients; and Noise Variance (NOI) [41] detects anomalous noise pat-
terns using wavelets. We used implementations of these algorithms provided by [42].

Since we also wanted to compare our unsupervised method with approaches that
were trained on labeled data, we report results from a learning-based method: E-MFCN
[16]. Given a dataset of spliced images and masks as training data, they use a supervised
fully convolutional network (FCN) [43] to predict splice masks and boundaries in test
images. As a supervised method, their model requires a large training set of splices.
Since their model and data are not publicly available, we implemented a simplified
version of their algorithm using a standard FCN that was trained with a training split
of the Columbia, Carvalho, and Realistic Tampering datasets. We split every dataset in
half to construct train/validation sets.

Finally, we present two simplified versions of our full EXIF-Consistency model. The
first, Camera-Classification, was trained to directly predict which camera model pro-
duced a given image patch. We evaluate the output of the camera classification model by
sampling image patches from a test image and assigning the most frequently predicted
camera as the natural image and everything else as the spliced region. We consider an
image to be untampered when every patch’s predicted camera model is the same.

The second model, Image-Consistency, is a network that directly predicts whether
two patches are sampled from the same image (Section 3.4). An image is considered
likely to have been tampered if its constituent patches are predicted to have come from
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Columbia [36] Carvalho [37] RT [38] In-the-Wild Hays [1]

Model MCC F1 p-mAP MCC F1 p-mAP p-mAP p-mAP p-mAP

CFA [39] 0.23 0.47 0.84 0.16 0.29 0.58 0.69 0.56 0.58
DCT [40] 0.33 0.52 0.58 0.19 0.31 0.60 0.53 0.55 0.52
NOI [41] 0.41 0.57 0.69 0.25 0.34 0.66 0.58 0.65 0.60

Supervised FCN 0.37 0.57 0.80 0.07 0.57 0.58 0.58 0.55 0.57

Camera Classification 0.29 0.51 0.59 0.15 0.55 0.53 0.51 0.54 0.55
Image-Consistency 0.55 0.59 0.91 0.20 0.76 0.67 0.58 0.72 0.69
EXIF-Consistency 0.69 0.71 0.97 0.37 0.91 0.75 0.59 0.72 0.75

Table 2: Splice Localization: We evaluate our model on 5 datasets using a mean average
precision-based metric (p-mAP). We also include MCC and F1 metrics, following [16]. For these
two metrics, we obtain a binary mask by thresholding our consistency maps at 0.5.

Columbia [36] Carvalho [37]

Model MCC F1 MCC F1

E-MFCN [16] 0.48 0.61 0.41 0.48

Image-Consistency 0.58 0.62 0.17 0.71
EXIF-Consistency 0.70 0.72 0.32 0.86

Table 3: Comparison against Salloum et. al: We compare against numbers reported by [16] for
splice localization. We note that they compute their numbers after finding individual threshold
that optimizes their score per image, while we threshold our probabilities at 0.5.

different images. The evaluations of the simplified models are performed the same way
as our full EXIF-Consistency model.

We trained all our models, including our variant models, using a ResNet50 [44]
pretrained on ImageNet [45]. We used a batch size of 128 and optimized our objective
using Adam [46] with a learning rate of 1e − 4. For EXIF-Consistency and Image-
Consistency, we report our results after training for 1 million iterations. The 2 fully
connected layers used to compute patch consistency on top of the EXIF-Consistency
model predictions were trained for 10, 000 iterations.

4.3 Splice Detection

We evaluate splice detection using the three datasets that contain both untampered and
manipulated images: Columbia, Carvalho, and Realistic Tampering. For each algo-
rithm, we extract the localization map and obtain an overall score by averaging the
output pixels. The images are ranked based on their overall scores, and we compute the
mean average precision (mAP) for the whole dataset. We chose to use mAP as it is a
condensed representation of the precision-recall curves previously used by [42, 39, 40,
41].

Table 1 shows the mAP for detecting manipulated images. Our EXIF-Consistency
model achieves state-of-the-art performance on Columbia and Carvalho while produc-
ing results comparable to supervised FCN on Realistic Tampering.
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Input Ground TruthConsistency Input Ground TruthConsistency Normalized CutNormalized Cut

Fig. 8: Detecting Fakes: EXIF Consistency successfully localizes manipulations across many
different datasets. We show qualitative results on images from Carvalho, In-the-Wild, Hays and
Realistic Tampering.
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Input Consistency Input Consistency

Fig. 9: Response on real images: Our algorithm’s response map contains fewer inconsistencies
when given an untampered images.

Input Ground TruthConsistency Normalized Cut Input Ground TruthConsistency Normalized Cut

Fig. 10: Failure Cases: We present typical failure modes of our model. As we can see with
outdoor images, overexposure frequently leads to false positives in the sky. In addition some
splices are too small that we cannot effectively locate them using consistency. Finally the flower
copy-move confuses EXIF Consistency because inconsistent post-processing augmentation will
disagree with consistent EXIF values.

4.4 Splice Localization

Having seen that our model can distinguish spliced and authentic images, we next
ask whether it can also localize spliced regions within images. For each image in our
dataset, our algorithm produces an unnormalized probability that each pixel is part of a
splice.

Since it is sometimes ill-defined which of the two segments is spliced (e.g. when the
splice is approximately half of the image), we evaluate our performance using a metric
that is invariant to permutations of the two regions. We use a metric similar to mAP,
but with symmetry and permutation invariance built in (we denote it p-mAP). Given
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CFA DCT NOIInput FCNImage-ConsistencyGround Truth Mask EXIF-Consistency

Fig. 11: Comparing Methods: We visualize the qualitative difference between Self-Consistency
and baselines. Our model can correctly localizes image splices from In-the-Wild, Columbia and
Carvalho that other methods make mistakes on.

an image’s ground-truth binary mask m and unnormalized splice probabilities p, we
compute max(s(m, p), s(1−m, p)), where s(m, p) is symmetrized average precision:
1
2 (AP (m, p) + AP (1 − m, 1 − p)). We also evaluated our results using MCC and
F1 measures, so that we could directly compare with previous forensics work [16].
However, these metrics evaluate a binary segmentation, and hence require thresholding
the predicted probabilities. We threshold our predictions at p = 0.5 for all images.
Since [16] reported their numbers on the full Columbia and Carvalho, we evaluated our
methods on the full dataset and report the comparison in Table 3.

The quantitative results on Table 2 show that our Self-Consistency model achieves
the best performance across all datasets with the exception of the Realistic Tamper-
ing (RT) dataset. Notably, the model generally outperformed the supervised baselines,
which was trained with actual manipulated images, despite the fact that our model never
saw a tampered image during training. We suspect that the supervised models’ poor per-
formance may be due to the difficulty in generalizing to manipulations made by artists
whose works were not present at training time.

We also observed that EXIF-Consistency consistently outperformed Image-Consistency
across different datasets. We suspect that this may be due to “shortcuts” Image-Consistency
learns during training (3.4). For example, during training it often suffices to analyze the
similarity of the content of the patches (e.g., their color histograms). At test time, how-
ever, these shortcuts are not maladaptive since a forger will have intentionally concealed
such obvious cues.

It is also instructive to look at the qualitative results of our method, which we show
in Figure 8. We see that our method can localize manipulations on a wide range of
different splices. Furthermore, in Figure 9, we show that our method produces highly
consistent predictions when tested on real images. We can also look at the qualitative
differences between our method and the baselines in Figure 11.

Finally, we ask which EXIF tags were useful for performing the splice localization
task. To study this, we computed a response map for individual tags on the Columbia
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dataset, which we show in Figure 7. We see that the most successful tags tend to be
associated with the dimensions of the camera and the camera model.
Failure cases In Figure 10 we show some common failure cases. Our performance
on Realistic Tampering illustrates some shortcomings with EXIF-Consistency. First, our
model is not well-suited to finding small splices that are common in RT. When spliced
regions are small, the model’s large stride will completely skip over spliced regions,
mistakenly suggesting that no manipulations exist. Second, over- and under-exposed
regions are sometimes flagged by our model to be inconsistent because they lack any
meta-data signal (e.g. because they are nearly uniformly black or white). Finally, RT
contains a significant number of additional manipulations, such as copy-move, that can-
not be consistently detected via meta-data consistency since the manipulated content
comes from exactly the same photo.

5 Discussion

In this paper, we have proposed a self-supervised method for detecting image manipu-
lations. Our experiments show that the proposed method obtains state-of-the-art results
on several datasets, even though it does not use labeled data during training. However,
our work also raises a number of questions. In contrast to physically motivated forensics
methods [2], our model’s results are not easily interpretable, and in particular, it is not
clear which visual cues it uses to solve the task. It also remains an open question how
best to fuse consistency measurements across an image for localizing manipulations.
Finally, while our model is trained without any human annotations, it is still affected in
complex ways by design decisions that went into the self-supervision task, such as the
ways that EXIF tags were balanced during training.

Self-supervised approaches to visual forensics hold the promise of generalizing to
a wide range of manipulations — potentially beyond those that can feasibly be learned
through supervised training. However, for a forensics algorithm to be truly general, it
must also model the actions of intelligent forgers that adapt to the detection algorithms.
Work in adversarial machine learning [47, 48] suggests that having a self-learning
forger in the loop will make the forgery detection problem much more difficult to solve,
requiring new technical advances to solve.

As new advances in computer vision and image-editing emerge, there is an increas-
ingly urgent need for effective visual forensics methods. We see our approach, which
successfully detects manipulations without seeing examples of manipulated images, as
being an initial step toward building general-purpose forensics tools.
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18. Bondi, L., Lameri, S., Güera, D., Bestagini, P., Delp, E.J., Tubaro, S.: Tampering detection
and localization through clustering of camera-based cnn features. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops. (2017) 1855–
1864 3

19. Chen, B.C., Ghosh, P., Morariu, V.I., Davis., L.S.: Detection of metadata tampering through
discrepancy between image content and metadata using multi-task deep learning. IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2017) 3

20. Barni, M., Bondi, L., Bonettini, N., Bestagini, P., Costanzo, A., Maggini, M., Tondi, B.,
Tubaro, S.: Aligned and non-aligned double JPEG detection using convolutional neural
networks. CoRR abs/1708.00930 (2017) 3

https://www.nist.gov/itl/iad/mig/nimble-challenge
https://www.nist.gov/itl/iad/mig/nimble-challenge


16 Huh et al.

21. Amerini, I., Uricchio, T., Ballan, L., Caldelli, R.: Localization of jpeg double compression
through multi-domain convolutional neural networks. In: Proc. of IEEE CVPR Workshop
on Media Forensics. (2017) 3

22. Wen, L., Qi, H., Lyu, S.: Contrast enhancement estimation for digital image forensics. arXiv
preprint arXiv:1706.03875 (2017) 3

23. de Sa, V.: Learning classification with unlabeled data. In: Neural Information Processing
Systems. (1994) 3

24. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context
prediction. ICCV (2015) 3, 5

25. Jayaraman, D., Grauman, K.: Learning image representations tied to ego-motion. In: ICCV.
(December 2015) 3

26. Agrawal, P., Carreira, J., Malik, J.: Learning to see by moving. In: ICCV. (2015) 3
27. Owens, A., Wu, J., McDermott, J.H., Freeman, W.T., Torralba, A.: Ambient sound provides

supervision for visual learning. (2016) 3
28. Zhang, R., Isola, P., Efros, A.A.: Split-brain autoencoders: Unsupervised learning by cross-

channel prediction. (2017) 3
29. Isola, P., Zoran, D., Krishnan, D., Adelson, E.H.: Learning visual groups from co-

occurrences in space and time. (2016) 3, 7
30. Kuthirummal, S., Agarwala, A., Goldman, D.B., Nayar, S.K.: Priors for large photo col-

lections and what they reveal about cameras. In: European conference on computer vision,
Springer (2008) 74–87 4

31. Hoai, M., De la Torre, F.: Max-margin early event detectors. International Journal of Com-
puter Vision 107(2) (2014) 191–202 4

32. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes.
In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, IEEE
(2010) 1975–1981 4

33. Lalonde, J.F., Efros, A.A.: Using color compatibility for assessing image realism. In: Com-
puter Vision, 2007. ICCV 2007. IEEE 11th International Conference on, IEEE (2007) 1–8
7

34. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis
and Machine Intelligence 17(8) (Aug 1995) 790–799 7

35. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22(8) (Aug 2000) 888–905 8

36. Ng, T.T., Chang, S.F.: A data set of authentic and spliced image blocks. (2004) 8, 9, 10
37. d. Carvalho, T.J., Riess, C., Angelopoulou, E., Pedrini, H., d. R. Rocha, A.: Exposing dig-

ital image forgeries by illumination color classification. IEEE Transactions on Information
Forensics and Security 8(7) (July 2013) 1182–1194 8, 9, 10

38. Korus, P., Huang, J.: Evaluation of random field models in multi-modal unsupervised tam-
pering localization. In: Proc. of IEEE Int. Workshop on Inf. Forensics and Security. (2016)
8, 9, 10

39. Ferrara, P., Bianchi, T., Rosa, A.D., Piva, A.: Image forgery localization via fine-grained
analysis of cfa artifacts. IEEE Trans. Information Forensics and Security 7(5) (2012) 1566–
1577 9, 10

40. Ye, S., Sun, Q., Chang, E.C.: Detecting digital image forgeries by measuring inconsistencies
of blocking artifact. In: ICME07. (2017) 9, 10

41. Mahdian, B., Saic, S.: Using noise inconsistencies for blind image forensics. In: IVC09.
(2009) 9, 10

42. Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y., Bouwmeester, R., Spangenberg, J.:
Web and social media image forensics for news professionals. In: Social Media In the News-
Room, SMNews16@CWSM, Tenth International AAAI Conference on Web and Social Me-
dia workshops. (2016) 9, 10



Fighting Fake News: Image Splice Detection via Learned Self-Consistency 17

43. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation.
CoRR abs/1605.06211 (2016) 9

44. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. (2016)
770–778 10

45. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hier-
archical Image Database. In: CVPR09. (2009) 10

46. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980
(2014) 10

47. Ian J. Goodfellow, Y.B.: Generative adversarial networks. arXiv preprint arXiv:1406.2661
(2014) 14

48. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.:
Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013) 14



18 Huh et al.

A1 Appendix
EXIF attribute definitions We have abbreviated the definitions that were originally
sourced from http://www.exiv2.org/tags.html. Please visit our website for additional
EXIF information such as: distributions, common values, and prediction rankings.

EXIF Attribute Definition
EXIF BrightnessValue The value of brightness.
EXIF ColorSpace The color space information tag is always recorded as the color space speci-

fier. Normally sRGB is used to define the color space based on the PC monitor
conditions and environment. If a color space other than sRGB is used, Uncali-
brated is set. Image data recorded as Uncalibrated can be treated as sRGB when
it is converted to FlashPix.

EXIF ComponentsConfiguration Information specific to compressed data. The channels of each component are
arranged in order from the 1st component to the 4th. For uncompressed data
the data arrangement is given in the tag. However, since can only express the
order of Y, Cb and Cr, this tag is provided for cases when compressed data uses
components other than Y, Cb, and Cr and to enable support of other sequences.

EXIF CompressedBitsPerPixel Specific to compressed data; states the compressed bits per pixel.
EXIF Contrast This tag indicates the direction of contrast processing applied by the camera

when the image was shot.
EXIF CustomRendered This tag indicates the use of special processing on image data, such as ren-

dering geared to output. When special processing is performed, the reader is
expected to disable or minimize any further processing.

EXIF DateTimeDigitized The date and time when the image was stored as digital data.
EXIF DateTimeOriginal The date and time when the original image data was generated.
EXIF DigitalZoomRatio This tag indicates the digital zoom ratio when the image was shot. If the nu-

merator of the recorded value is 0, this indicates that digital zoom was not
used.

EXIF ExifImageLength The number of rows of image data. In JPEG compressed data a JPEG marker
is used instead of this tag.

EXIF ExifImageWidth The number of columns of image data, equal to the number of pixels per row.
In JPEG compressed data a JPEG marker is used instead of this tag.

EXIF ExifVersion The version of this standard supported. Nonexistence of this field is taken to
mean nonconformance to the standard

EXIF ExposureBiasValue The exposure bias.
EXIF ExposureMode This tag indicates the exposure mode set when the image was shot. In auto-

bracketing mode, the camera shoots a series of frames of the same scene at
different exposure settings.

EXIF ExposureProgram The class of the program used by the camera to set exposure when the picture
is taken.

EXIF ExposureTime Exposure time, given in seconds.
EXIF FileSource Indicates the image source. If a DSC recorded the image, this tag value of this

tag always be set to 3, indicating that the image was recorded on a DSC.
EXIF Flash Indicates the status of flash when the image was shot.
EXIF FlashPixVersion The FlashPix format version supported by a FPXR file.
EXIF FNumber The F number.
EXIF FocalLength The actual focal length of the lens, in mm.
EXIF FocalLengthIn35mmFilm This tag indicates the equivalent focal length assuming a 35mm film camera, in

mm. A value of 0 means the focal length is unknown. Note that this tag differs
from the tag.

EXIF FocalPlaneResolutionUnit Unit of measurement for FocalPlaneXResolution and FocalPlaneYResolution.
EXIF FocalPlaneXResolution Number of pixels per FocalPlaneResolutionUnit in ImageWidth direction for

main image.
EXIF FocalPlaneYResolution Number of pixels per FocalPlaneResolutionUnit in ImageLength direction for

main image.
EXIF GainControl This tag indicates the degree of overall image gain adjustment.
EXIF InteroperabilityOffset Unknown
EXIF ISOSpeedRatings Indicates the ISO Speed and ISO Latitude of the camera or input device as

specified in ISO 12232.
EXIF LensMake This tag records the lens manufacturer as an ASCII string.
EXIF LensModel This tag records the lens’s model name and model number as an ASCII string.
EXIF LensSpecification This tag notes minimum focal length, maximum focal length, minimum F num-

ber in the minimum focal length, and minimum F number in the maximum
focal length, which are specification information for the lens that was used in
photography. When the minimum F number is unknown, the notation is 0/0

EXIF LightSource The kind of light source.

http://www.exiv2.org/tags.html
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EXIF MaxApertureValue The smallest F number of the lens.
EXIF MeteringMode The metering mode.
EXIF OffsetSchema Unknown
EXIF Saturation This tag indicates the direction of saturation processing applied by the camera

when the image was shot.
EXIF SceneCaptureType This tag indicates the type of scene that was shot. It can also be used to record

the mode in which the image was shot. Note that this differs from the tag.
EXIF SceneType Indicates the type of scene. If a DSC recorded the image, this tag value must

always be set to 1, indicating that the image was directly photographed.
EXIF SensingMethod Type of image sensor.
EXIF SensitivityType The SensitivityType tag indicates which one of the parameters of ISO12232 is

the PhotographicSensitivity tag.
EXIF Sharpness This tag indicates the direction of sharpness processing applied by the camera

when the image was shot.
EXIF ShutterSpeedValue Shutter speed.
EXIF SubjectArea This tag indicates the location and area of the main subject in the overall scene.
EXIF SubjectDistanceRange This tag indicates the distance to the subject.
EXIF SubSecTime A tag used to record fractions of seconds for the tag.
EXIF SubSecTimeDigitized A tag used to record fractions of seconds for the tag.
EXIF SubSecTimeOriginal A tag used to record fractions of seconds for the tag.
EXIF UserComment A tag for Exif users to write keywords or comments.
EXIF WhiteBalance This tag indicates the white balance mode set when the image was shot.
GPS GPSAltitude Indicates the altitude based on the reference in GPSAltitudeRef.
GPS GPSAltitudeRef Indicates the altitude used as the reference altitude.
GPS GPSDate A character string recording date and time information relative to UTC (Coor-

dinated Universal Time).
GPS GPSImgDirection Indicates the direction of the image when it was captured.
GPS GPSImgDirectionRef Indicates the reference for giving the direction of the image when it is captured.
GPS GPSLatitude Indicates the latitude.
GPS GPSLatitudeRef Indicates whether the latitude is north or south latitude.
GPS GPSLongitude Indicates the longitude.
GPS GPSLongitudeRef Indicates whether the longitude is east or west longitude.
GPS GPSTimeStamp Indicates the time as UTC (Coordinated Universal Time).
GPS GPSVersionID Indicates the version of GPS.
Image Artist This tag records the name of the camera owner, photographer or image creator.
Image Copyright Copyright information.
Image ExifOffset Image ExifOffset.
Image GPSInfo A pointer to the GPS Info IFD.
Image ImageDescription A character string giving the title of the image.
Image Make The manufacturer of the recording equipment.
Image Model The model name or model number of the equipment.
Image Orientation The image orientation viewed in terms of rows and columns.
Image PrintImageMatching Print Image Matching, description needed.
Image ResolutionUnit The unit for measuring YResolution and XResolution. The same unit is used

for both.
Image Software This tag records the name and version of the software or firmware of the camera

or image input device used to generate the image.
Image XResolution Number of pixels per FocalPlaneResolutionUnit in ImageWidth direction for

main image.
Image YCbCrPositioning The position of chrominance components in relation to the luminance compo-

nent.
Image YResolution Number of pixels per FocalPlaneResolutionUnit in ImageLength direction for

main image.
Inter InteroperabilityIndex Indicates the identification of the Interoperability rule.
Inter InteroperabilityVersion Interoperability version.
Inter RelatedImageLength Image height.
Inter RelatedImageWidth Image width.


