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Abstract

Visual Model Predictive Control

by

Varun Tolani

Masters of Science in EECS
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Professor Jitendra Malik, Chair

We introduce an autonomous navigation framework for ground-based, mobile robots that
incorporates a known dynamics model into training, allows for planning in unknown, partially
observable environments, and solves the full navigation problem of goal-directed, collision-
avoidant movement on a robot with complex, non-linear dynamics. We leverage visual
semantics through a trained policy that, given a desired goal location and first person image
of the environment, predicts a low frequency guiding control, or waypoint. We use the
waypoint produced by our policy along with robust feedback controllers and known dynamics
models to generate high frequency control outputs. Our approach allows for visual semantics
to be learned during training while providing a simple methodology for incorporating robust
dynamics models into training. Our experiments demonstrate that our method is able to
reason through statistics of the visual world allowing for effective planning in unknown
spaces. Additionally, we demonstrate that our formulation is robust to the particulars of
low-level control, achieving performance over twice that of a comparable end-to-end learning
method.
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1 Introduction

This works studies the problem of indoor visual navigation for ground based mobile robots.

Classical methods for robotic navigation use a pipelined approach separating perception
and control into distinct modules. The perception module localizes the robot with respect to
a known map, and the control module uses this estimated location along with desired goal
location to compute control commands (motor torques or velocities) to apply to the robot
to move it to the desired goal location efficiently. This clean separation between perception
and control led to the development of sophisticated techniques for both mapping and local-
ization as well as planning and control. There are sophisticated techniques for going from
observations (images or LiDAR scans) to 3D geometric maps [4, 29, 12], as well as advanced
planning and control methods for dynamically aware navigation in these 3D maps [29]. Be-
cause these control techniques use a dynamics model to represent the underlying system,
they can be designed to be robust to sensor and actuator noise as well as perturbations in
the physical properties of the system. However, the choice of a purely geometric description
of the world poses challenges when operating in novel environments where pre-mapping may
be too expensive.

The shortcomings of the traditional methods motivates recent work in end-to-end learning-
based approaches to navigation. These approaches learn policies that map raw pixels to mo-
tor controls (torques or velocities) [13, 15, 20]. Through the training process, these policies
can learn about semantics, or patterns of the visual world that can enable them to operate
under partial observations of the environment. However, it is challenging to leverage the
known dynamics of the underlying control system with end-to-end approaches. Ignoring
these dynamics makes the learning problem much harder, leading to requirement of a large
number of samples to train. Moreover, these methods overfit to the underlying robot and
environment dynamics and are usually not robust to even slight changes in the underlying
physical system (e.g. different actuator noise models).

These drawbacks motivate recent learning-based work focused on building more gen-
eralizable navigation systems. Sadeghi et al. demonstrate transfer of simulation trained
quadcopter navigation policies to real world settings [24]. Similarly recent work from Kahn
et al. provides a framework for training a ground-based navigational robot in the real-world
[10]. While these approaches build on generalizable learning-based navigation, they sub-
stantially simplify the navigation problem by ignoring goal-directed movement and focusing
only on collision avoidance. On the other hand, Gupta et al. develop a joint mapping and
planning architecture and are able to demonstrate goal-driven, collision-avoidant behavior
in novel environments. However, their method also simplifies the navigation problem by
assuming a discrete grid world and perfect robot egomotion [9].

Inspired by the strengths and weaknesses of the above-mentioned approaches we develop
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Figure 1: Top view of our method: The robot moves from start (blue dot) to goal (green
circle), periodically producing new waypoints (cyan) that guide it towards the goal while
avoiding collision with obstacles (dark gray).

an intelligent controller that incorporates a known dynamics model into training, allows
for planning in unknown, partially observable environments, and solves the full navigation
problem of goal-directed, collision-avoidant movement on a robot with complex, non-linear
dynamics. Specifically, we propose to train a policy that, given inputs of goal state and first-
person-view image of the environment, outputs a waypoint that leads to collision-avoidant,
goal-driven behavior. Given such a waypoint we can then use optimal control, specifically
Iterative Linear Quadratic Regulator (ILQR), to interpolate smooth trajectories between the
initial state, waypoint, and goal state (see Figure 1). In our method we use model predictive
control, iteratively producing a waypoint, interpolating a dynamically-feasible trajectory,
and moving along this trajectory for a few steps. Our method acquires semantic knowledge
through the training process, applying it to plan in unknown, partially observable spaces
via a low frequency guiding signal or waypoint. By incorporating known dynamics models
and feedback control we hypothesize that our method can execute complex trajectories and
remain robust to system changes. In section 6 we benchmark our method against a variety
of baselines including a comparable end-to-end method demonstrating that our method is
robust to the particulars of low-level control.
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2 Related Work

Newer learning-based navigation work aims to build more generalizable, robust navigation
models.

Approaches focused on real world generalizability tend to ignore the goal-driven nature
of the navigation problem. Kahn et al. provide sample efficient methods for training ground
base navigational robots entirely in the real world [11, 10]. Similarly, Ross et al. provides a
solution for training sensor limited quadcopters to fly [23]. Sadeghi et al. demonstrate trans-
fer of simulation based policies for quadcopter navigation to a real-world quadcopter [24].
Finally, work from Gandhi et al. proposes yet another novel solution to training policies for
quadcopter flight entirely in the real world [6]. While these methods build on generalizability
of learning-based navigation techniques, they entirely ignore the goal driven aspect of the
navigation problem.

On the other hand, Richter et al. achieve goal-driven, collision-avoidant navigation while
incorporating robot dynamics models and generalizing across systems and unknown envi-
ronments (i.e. trained in simulation and deployed in the real world) [22, 21]. Their work,
however, assumes access to a laser scanner for constructing high quality 3d belief maps on the
fly, and learns a logistic regression model on top of hand-designed features (e.g. estimated
distance to nearest obstacle, estimated velocity to nearest obstacle, etc.). In contrast, we
do not construct an intermediate map representation, but learn directly from RGB imagery.
We use a convolutional neural network which eliminates the need for hand designed features.
Additionally, while planning over a short horizon, Richter et al. explicitly consider a variety
of dynamically feasible trajectories, selecting and executing the lowest cost one (their cost
function penalizes collision and encourages goal directed movement). In contrast, we assume
collision-free behavior over a sufficiently small horizon and use ILQR to plan over this horizon.

Simulation based approaches, on the other hand, tend to focus only on goal-driven be-
havior, simplify complex robot dynamics, or even ignore them entirely. Work in learned
mapping representations from Parisotto et al. assumes a discrete action space and ignores
collision avoidance [19]. Recent work from Mirowski et al. demonstrates autonomous robot
navigation through cities, but assumes an underlying discrete graph structure, simple robot
dynamics, perfect robot egomotion, and entirely ignores the collision-avoidance problem [18].
In contrast, Gupta et al. focus on goal-driven and collision-avoidant navigation, but simi-
larly assume simplified robot dynamics, a grid world, and perfect egomotion [9].

Our work attempts to bridge these bodies of work, providing an intelligent low level
controller that observes the environment through first-person RGB images and produces
goal-driven, collision-avoidant behavior in a dynamically aware fashion.
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3 Background

In this section we elaborate on core algorithms and techniques used in our framework.

Iterative Linear Quadratic Regulator (ILQR)

Optimal control aims to find the optimal trajectory, τ ∗, with respect to a cost function
cILQR subject to the constraint that τ ∗ is dynamically feasible with respect to a dynamics
model f . Let J denote the following optimal control problem:

J = min
[(s0,u0)....(sT ,uT ),sT+1]

cILQR(sT+1) +
T∑
t=0

cILQR(st, ut) : st+1 = f(st, ut) ∀t ∈ [0, T ]

τ ∗ = arg min
[(s0,u0)....(sT ,uT ),sT+1]

cILQR(sT+1) +
T∑
t=0

cILQR(st, ut) : st+1 = f(st, ut) ∀t ∈ [0, T ]

If cILQR is quadratic and f is linear the Linear Quadratic Regulator(LQR) provides a
dynamic programming solution to exactly solve the optimal control problem. For problems
where f is non linear and/or cILQR non quadratic, ILQR provides an iterative approximation
method leveraging LQR to solve local approximations to J. Let τi = [(si0, u

i
0)....(s

i
Ti
, uiTi), (s

i
Ti+1)]

denote a trajectory around which we initially linearize to run ILQR. For a horizon of T , ILQR
solves for Kt, kt ∀t ∈ [0, T ] which dictate locally optimal linear feedback controllers. The
optimal control at each time step t ∈ [0, T ] can then be calculated in the following manner
[28]:

u∗t = Kt(s− sit) + αkt + uit

Here Kt(s− sit) is the feedback term, kt is the feedforward term, uit is the reference term,
and α is a step size over which we line search (starting from α = 1). In our formulation the
inputs to ILQR are f , a dynamics model, cILQR, a cost function, τi, an initial trajectory, τR,
a reference trajectory against which to penalize, and n, the number of iterations for which
we run ILQR. Pseudocode for ILQR is presented in the appendix.

Fast Marching Method

The Fast Marching Method (FMM) aims to solve the Eikonal Equation, a partial dif-
ferential equation which describes the evolution of the surface t(s) with speed f(s) in the
normal direction to the surface t(s) [25].

|∇t(s)| = 1

f(s)

such that: s ∈ Ω, t(δΩ) = 0, f(s) > 0 ∀s ∈ Ω

When s ∈ R2, the function t(s) can be thought of as the time to reach δΩ from s
moving at speed f(s). Let S be the Cartesian plane discretized in units of size δx and s̃ be
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the discretized version of s that lies on S. FMM iteratively uses a numerical differencing
approach to approximately solve the Eikonal Equation in a manner that closely resembles
Djikstra’s algorithm for shortest paths. We use TFMM = FMM TIME(δΩ) to denote the
output of the Fast Marching Method, a discretized grid where TFMM(s̃) represents the time
to reach the goal δΩ from s̃ moving at speed f(s̃). In our method the speed function is
constant for all s̃. In particular we use v = f(s̃) ∀ s̃ ∈ S. Thus a simple relation between
FMM DIST and FMM TIME holds, specifically:

FMM DIST(s̃) = FMM TIME(s̃) ∗ v = TFMM [s̃] ∗ v

We use FMM to find shortest feasible paths to the goal in our environment. To interpolate
the shortest path from a state st to the goal δΩ we follow the direction of the negative gradient
of t(s) evaluated at st (direction of steepest descent). As FMM is a discrete method this
amounts to iteratively applying the update:

st+1 = st −∆(∇TFMM(s̃t)) for a small enough ∆

Pseudocode for FMM is presented in the appendix.

Convolutional Neural Networks

In the computer vision community convolution has been a widely used tool for image
understanding, feature extraction, filtering, etc. as it is known to exploit local spatial corre-
lation of pixels while providing some amount of spatial invariance. Common image processing
pipelines have alternated convolution and subsampling, allowing for reasoning over images
at various spatial resolutions, since the later 20’th century [1, 3]. Convolutional Neural Net-
works (CNN), build on this work, taking a data-driven approach, allowing optimal filters to
be learned from data. Typical CNN’s alternate convolutional layers with non-linear activa-
tion functions and subsampling layers.

Some of the first major work in data-driven, learned convolutional filters was released in
1980 with the advent of the Neocognitron by Fukushima et al. [5]. In 1998 Yann LeCun
expanded on this work by training a CNN using backpropogation on the task of hand-written
digit classification [17]. Though these advances in neural networks came at the end of the
20’th century, CNN’s did not gain popularity until recent advances in “big data” and hard-
ware made them feasible. CNN’s now provide state of the art results in many computer
vision tasks [7, 16].
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4 Our Approach

The robot is placed into a new, unknown environment and given a goal location (g) speci-
fied in its egocentric coordinate frame. At each time step the robot observes the environment
through first person images (It). Its goal is to navigate efficiently through the unknown en-
vironment towards the goal while avoiding collision. We define the robot’s trajectory τ , of
length T , as a collection of dynamically feasible states (st) and actions (ut), with respect to
the robot’s dynamics model (f).

τ = [(s0, u0), ...(sT , uT ), (sT+1)]

subject to: st+1 = f(st, ut)

Parameterized Model-based Controller

Rather than move directly towards the goal, our robot moves towards an intermediate
point, or waypoint (wt). Given wt and g we use a heuristic trajectory mapper (H(wt, g))
to construct an infeasible reference trajectory (τRwt

) between the robot’s current location,
waypoint, and goal. We use ILQR with a cost function (cILQR) to generate a low-cost,
dynamically feasible trajectory, τwt , around τRwt

. The robot then takes h steps along τwt before
observing a new image It+h, producing a new waypoint wt+h, and repeating the process. The
robot’s trajectory, τ , in terms of these intermediate waypoint driven trajectories is:

τ = [τw0 [0 : h− 1], τwh
[h− 1 : 2h− 1], ...]

Learning To Predict Waypoints

We pose the problem of choosing a goal-directed, collision-avoidant waypoint as a classi-
fication problem over Nw waypoints in the set W. We train a parametrized policy πθ(It, g)
to predict optimal waypoints. To train πθ we first compute ground truth free space maps
in our simulated environment. We then compute shortest collision-free paths through the
map using FMM. For each waypoint wt ∈ W we compute a heuristic reference trajectory
τRwt

= H(wt, g), then computing WCF , the set of waypoints that correspond to collision free
reference trajectories:

WCF = {wt|No collision along τRwt
}

For each waypoint wt in WC we then compute the FMM COST over the first h steps of
τwt as the weighted sum of the FMM distance along the trajectory and the alignment to the
FMM gradient (shortest feasible path to the goal).

FMM COST(wt) =
1

h
(FMM DIST(τwt [: h]) + λFMM ALIGNMENT(τwt [: h]))



8

Figure 2: From left to right: 1. The robot uses policy πθ(It, g) to produce a waypoint wt.
2. The robot uses a heuristic trajectory mapper H(wt, g) to plan an infeasible reference
trajectory, τRwt

, between start, waypoint, and goal. 3. The robot uses ILQR along with cost
function cILQR to generate a feasible reference trajectory τwt . 4. The agent executes τwt in
the environment for h steps then makes a new observation It+h

The optimal waypoint selected for supervision is then:

w∗t = arg min
wt∈W

FMM COST(wt)

Pseudocode for our algorithm is given below:

1 Our Algorithm :
2 #Co l l e c t Data
3 inputs , outputs = [ ] , [ ]
4 while i < ND :
5 env . r e s e t ( ) #samples a new s t a r t and goa l
6 done = False
7 while not done :
8 inputs . append ( ( env . ge t obs ( ) , env . goa l ( ) )
9 opt waypt = calcu late opt imal fmm waypt ( env . goal , λ , h )

10 outputs . append ( opt waypt )
11 next s ta t e , done = env . s tep ( opt waypt ) #use ILQR and take h s t e p s

a long t h i s path
12 i++
13
14 #Train π
15 D = ( inputs , outputs )
16 D = standard i z e (D)
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17 t ra in , v a l i d = s p l i t (D)
18 π = setup and i n i t i a l i z e network
19 for i in [ 0 , num epochs ] :
20 for batch in batches :
21 t r a i n π on batch
22 return π

1 ca lcu late opt imal fmm waypt ( g , λ , h ) :
2 waypt t ra j s = [ ]
3 for wi ∈W :
4 τwi

= H(wi, g) #he u r i s t i c t r a j e c t o r y through wi and g
5 i f (No c o l l i s i o n along τwi

) :
6 waypt t ra j s . append (τwi [: h] ) #fo l l ow t h i s f o r h s t e p s
7 d i s t s , a l ignments = [ ] , [ ]
8 for t r a j in waypt t ra j s :
9 d i s t c o s t , a l i g n c o s t = 0 , 0

10 for st ∈ t r a j :
11 fmm grad x , fmm grad y = ∇x FMM TIME, ∇y FMM TIME
12 fmm heading = arctan2 ( fmm grad y [ st ] , fmm grad x [ st ] )
13 robot head ing = arctan2 (st [ 1 ] , st [ 0 ] )
14 a l i g n c o s t += wrap ( robot heading , fmm heading )
15 d i s t c o s t += FMM DIST[ s t ]
16 d i s t s . append ( avg ( d i s t c o s t ) )
17 a l ignments . append ( avg ( a l i g n c o s t ) )
18 return argmin ( d i s t s + λ∗al ignments )

5 Experimental Setup

Agent Setup

We model our robot in simulation as a discrete time “augmented” Dubins Car. The
augmented Dubins Car formulation has a state space of s = [x, y, θ, ṽ, ω̃] and control space
of u = [∆̃v, ∆̃ω]. Here ṽ and ω̃ represent unsaturated linear and angular velocity and
sat1, sat2 represent saturation functions for linear and angular velocity respectively. The
augmented Dubins Car is functionally equivalent to the ideal Dubins Car (see appendix),
but allows our ILQR cost function to penalize linear and angular acceleration, rather than
velocity of the robot leading to smoother trajectories.

Augmented Dubins Car Dynamics Model
x
y
θ
ṽ
ω̃


t+1

= f(~st, ~ut) =


xt + ∆t ∗ cos(θt) ∗ sat1(ṽt)
yt + ∆t ∗ sin(θt) ∗ sat1(ṽt)

θt + ∆t ∗ sat2(ω̃t)
∆̃vt + ṽt
∆̃ωt + ω̃t
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We model our agent as a cylinder of height .8m and radius .15m. The robot has a
RGB camera mounted at height .8m with 120 degree horizontal and vertical field of view.
The camera is tilted 15 degrees below the horizontal. We use linear clipping for saturation
functions sat1, sat2 clipping the linear velocity to be in the range [0,.55] m/s and the angular
velocity to be in the ranges [-1.1, 1.1] rad/s. For all experiments we use ∆t = .1 seconds.

ILQR Parametrization

In our ILQR implementation we use a quadratic cost function cILQR designed to minimize
the weighted squared distance from a given reference trajectory τR.

cILQR(st, ut) = (st − sRt )TQ(st − sRt ) + (ut − uRt )TR(ut − uRt )

Q = diag([α1, α2, α3, α4, α5])

R = diag([α6, α7])

Here Q and R are square matrices with elements αi on the diagonals and zeros elsewhere.
We fix α1 = α2 = α3 = 4.0, α4 = α5 = 1e − 5, and systematically vary α6, α7 in our
experiments.

Waypoints

To allow for translational as well as pure rotational behavior we represent our waypoint
grid W as the union of two waypoint subsets, WR, a set of purely rotational waypoints (i.e.
of the form [0, 0, θ]) and WT , a set of translational waypoints equally distributed around a
conical field of view centered at the robots camera center. To generate WT we uniformly
sample a 7x7 grid in polar coordinates with r ∈ [0, 2.0] meters and θ ∈ [−30, 30] degrees (see
figure 3). To construct WR we uniformly sample 11 angles in the range θ ∈ [−30, 30]).

Simulation Environment

We train and evaluate our approach using the Stanford Large-Scale 3D Indoor Spaces
Dataset (S3DIS) which contains 6 different indoor building environments rendered from
scans of real Stanford buildings using a Matterport camera [2]. In all experiments we set our
problem horizon, T , to be 200 and our waypoint horizon h to be 20. We consider a circle
of radius .3 meters around the goal to be the “success region”. Upon reaching the “success
region” we immediately terminate the episode. We call a trajectory τ a “success” if the
robot reaches the “success” region in under T = 200 steps without collision.

Let sG and gG denote a start and goal position in the global coordinate frame respec-
tively. We find that randomly sampling sG and gG in free space resulted in many navigation
problems that could either be solved by taking a straight line path to the goal or were un-
realistically difficult to expect the robot to solve in 200 time steps. In our final method for
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Figure 3: Equally spaced translational waypoints, w ∈WT , for a robot at [0,0] facing along
the x axis. Waypoints are uniformly sampled in a conical field of view using polar coordinates
with r ∈ [0.0, 2.0] meters and θ ∈ [−30, 30] degrees.

Figure 4: Example of data from the S3DIS dataset. Left: First-person view rendered from
the robot’s perspective. Right: Corresponding topview of the environment from the robot’s
perspective (black arrow). Here light gray represents free space, while dark gray represents
occupied space (obstacles).
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sampling navigation problems, we sample sG from our precomputed free space map. We
then randomly sample a distance di between [0, .5] meters. The goal gG is then sampled
from the set G:

G = {gG| ‖FMM DIST (gG, sG)− ‖gG − sG‖2‖2 ≥ di, .3 ≤ ‖gG − sG‖2 ≤ 5}

We use the above FMM-L2 heuristic to choose a suitably difficult distribution of problems
where the shortest feasible paths between start and goal are larger than the straight line path
by at least some distance di. In other words our sampling procedure selects “interesting”
problems where the agent cannot simply move in a straight line, but must navigate around
obstacles. All training, validation, and test problems are sampled in this manner.

Network Architecture

We represent our policy function as a CNN. The output of our policy is:

wt = πθ(It, g) = arg max
w∈W

softmax(φ3([φ1(It), φ2([g])]))

Here φ1 is a learned image encoder represented by 5 convolution, rectified linear unit
(ReLU), max-pooling blocks, φ2 is a learned goal encoding represented by a single fully con-
nected layer with ReLU activation, and φ3 is a 3 layer multilayer perceptron (MLP) with
ReLU activation functions that produces logits of dimension Nw. We use a cross entropy loss
in specifying our objective function and train our network using the ADAM optimizer with
a batch size of 64 and a learning rate of 5e − 4 [14]. We initialize our network with Xavier
initializer, which is designed keep the variance of the input and output of each network layer
constant [8].

Deep neural networks often have many more parameters than available data, leading
to overfitting [27]. We use standard techniques to avoid overfitting in deep neural networks
including dropout (with dropout probability .15 in the second to last MLP layer) [27], weight
decay (using l2 norm and regularizer strength 1e−5) [16], and data augmentation (randomly
adjusting brightness and saturation of RGB images during training) [26]. We use a 80%,
20% training, validation split using cross validation to select all hyper parameters.

We keep a held out set of 200 goals in each of the 6 S3DIS environments on which
we test our agent. We train our agent on approximately 6000 episodes of data from 1 S3DIS
environment, keeping 1 S3DIS environment for validation and testing respectively. All neural
networks for our method and baselines are trained for a maximum of 28 epochs. We report
all metrics recorded when validation loss is lowest (typically around 10-12 epochs).

Baselines

We compare our method against a variety of methods:
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Figure 5: Policy Architecture: The policy π processes a first person image, It and the robot’s
current goal (specified in egocentric coordinates), g, predicting a probability distribution over
the Nw waypoints, and selecting the index of the waypoint with the maximum probability.

Random Waypoint Baseline (Random Wpt)

The policy πθ(It, g) in this method samples a waypoint wt at random from W, executing
it for h steps.

No Waypoint Baseline (No Wpt)

We compare against a waypoint-less baseline, which simply turns towards the goal and
proceeds in a straight line until reaching the “success” region or colliding with an obstacle.

No Image Baseline (No Image)

We compare our method against a similar, but visionless method. We remove the learned
image encoder and train our visionless policy πθ(g) using the same settings as in “our”
method. We represent our visionless policy as:

wt = πθ(g) = arg max
w∈W

softmax(φ3(φ2([g]))

End-to-end, Discrete Action Space, FMM Supervision (FMM Disc)

We compare our method against a comparable end-to-end approach, which we term FMM
Disc. FMM Disc learns a policy πθ(It, g) that outputs a raw control command at each time
step (ut).

ut = [∆ṽt,∆w̃t]

We frame the action selection problem posed by FMM Disc as a classification problem
over Nu actions where Nu = 49. To generate supervision for FMM Disc we first use cal-
culate optimal fmm waypt (section 44) to compute a waypoint wt at each timestep t, then
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computing a heuristic trajectory τRwt
with our heuristic trajectory planner H(wt, g). Next we

apply ILQR to reference trajectory τRwt
creating a dynamically feasible reference trajectory

τwt . Finally we discretize the first action u of τwt into one of Nu bins. We use this discretized
action as our supervision signal.

6 Results

We report 3 metrics- mean final distance to goal, collision rate, and success rate over a
held out set of 200 navigational goals in training, validation, and testing environments. To
demonstrate our method’s robustness to the particulars of low level control, we run our tests
with two different ILQR cost functions cLILQR, a low control cost version with α6 = α7 = 1e−5
and cHILQR, a high control cost version with α6 = α7 = 1. Results are presented in tables
1 and 2. Both our method and FMM DISC perform noticeably better, with respect to all
three metrics, in the training environment than in the validation or test environments; thus
we focus our analysis on metrics in the test environment.

Table 1: Low Control Penalty

Train Validation Test

Coll
%

Final
Dist

Success
Rate

Coll
Rate

Final
Dist

Success
Rate

Coll
Rate

Final
Dist

Success
Rate

Wpt .09 .40 .875 .17 .66 .74 .13 .86 .665
FMM Disc .06 .391 .905 .23 .62 .725 .15 .49 .8
No Image .87 1.96 .12 .77 1.68 .22 .77 1.8 .21
Random
Wpt

.95 3.41 .01 .955 3.48 .95 .975 3.59 0.01

No Wpt .965 2.055 .035 .96 1.89 .04 .99 2.01 .02

In table 1 we find that our method outperforms the No Image, Random Wpt, and No
Wpt baselines while performing only slightly worse than the end-to-end method, FMM Disc.
We conclude that in the low control cost setting, FMM DISC is able to learn to successfully
navigate slightly better than our method in terms of final distance (.49 vs .86 meters) and
success rate (.8 vs .665). Comparing methods across tables 1 and 2 we find, however, that
our method remains robust to the particulars of low level control (similar final distances
(.86 vs .74), collision rates (.13 vs .165), and success rates (.665 vs .715)). The FMM Disc
baseline, on the other hand, scores substantially worse when trained using cHILQR. The FMM
Disc method achieves a final distance 3 times worse (1.5 vs .49) and collision rate almost
three times as high (.49 vs .15) when trained using cHILQR.
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Table 2: High Control Penalty

Train Validation Test

Coll
%

Final
Dist

Success
Rate

Coll
Rate

Final
Dist

Success
Rate

Coll
Rate

Final
Dist

Success
Rate

Wpt .06 .412 .89 .145 .578 .785 .165 .74 .715
FMM Disc .24 .83 .70 .33 1.01 .55 .39 1.53 .55
No Image .86 1.90 .14 .80 1.7 .2 .83 1.90 .18
Random
Wpt

.97 3.48 0 .985 3.31 0 .935 3.6 0.015

No Wpt .97 2.07 .035 .995 1.89 .045 .98 2.01 .02

In both tables 1 and 2 our method vastly outperforms the No Image, Random Wpt,
and No Wpt baselines. In the low control penalty setting the No Wpt baseline achieves .99
collision rate, indicating that the majority of the held-out test goals are not solveable by
simply following a straight line path to the goal. The same pattern holds true in the high
control penalty setting with the No Wpt baseline colliding 98% of the time. As our method
achieves a .13 and .15 collision rate in these same test cases, we conclude that our method
dramatically outperforms a simple, greedy straight line heuristic.

In comparison to the No Image baseline in table 1 we see that our method reduces
empirical collision rate by a factor of almost 6 (.13 vs .77), and average final distance by a
factor of 2 (.86 meters vs 1.8 meters). We note that this pattern holds across known and un-
known environments indicating that our method has learned to reason through the statistics
of the visual world. In figure 6 we visualize a particular trajectory from our trained policy
in which the robot makes a semantically based decision to navigate through a doorway to
reach the goal. In figure 7 we visualize the variance of our method as we vary the random
seed used in our environment. In figure 8 we visualize topviews for four different successful
goals using our waypoint method.

7 Conclusion

Inspired by the strengths and weaknesses of traditional, and learning based navigation
approaches we propose a new method designed to bridge the bodies of work. Our method
uses tools from optimal control and deep learning to allow the robot to learn semantics of the
visual world while allowing for simple incorporation of known dynamics models. We hypoth-
esize and demonstrate empirically that learning a low frequency guiding control (waypoint)
allows our system to remain independent of the particulars of low level control as compared
to a comparable end-to-end method. In terms of final distance from goal and percent col-
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Figure 6: Visualized trajectory of our trained robot navigating from a hallway to a goal
inside an office room. Here the robot must guide itself to and through an open doorway,
though it is not immediately obvious that doing so will lead till the goal. We conclude that
the robot has learned some semantics of the visual world through the training process.

Figure 7: Variance of the metrics average collision rate, final distance to goal, and success
rate of our method in training, validation, and testing environments as we vary the random
seed. We plot the mean and variance of the metrics across 5 different random seeds for both
the cLILQR and cHILQR methods.
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Figure 8: Topviews of 4 successful trajectories (red) generated using our waypoint method.
The robot successfully navigates from start (blue dot) to goal (green circle) while avoiding
collision (dark gray) using a series of guiding waypoints (cyan).
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lisions, our proposed method achieves performance more than twice that of a comparable
end-to-end method.

We also demonstrate that our method is able to effectively reason through statistics
of the visual world as it dramatically outperforms a vision-less baseline by a factor of 6 (in
terms of collision rate). This performance holds across a diverse set of indoor simulation en-
vironments both seen and unseen during training indicating that our method has not merely
overfit to the data, but rather learned to reason through patterns of the visual world. Finally,
we visualize a particular trajectory where our robot demonstrates semantic understanding
of the visual world through navigation.

We provide our framework as a method for building a generalizable, learning-based, intel-
ligent controller that incorporates semantic reasoning into dynamically aware path planning
in unknown, partially-observable environments.
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Appendix

ILQR Pseudocode:

1 def ILQR( f , c , τi , τR , n ) :
2 Loop n times :
3 co s t = c (τi, τR ) #( cos t o f τi wrt τR )
4 At, Bt, Qt, Rt = 1 s t order approximation o f f and 2nd order
5 approximation o f c around τi ∀t ∈ [0, T ]
6 Ca l cu la t e Kt, kt = LQR(A,B,Q,R)
7 α = 1
8 Loop : #Line Search Over α

9 ut
∗

= Kt(s− st1) + αkt + ut1 ∀t ∈ [0, T ]

10 s∗ = apply a c t i o n s ut
∗

through system f s t a r t i n g at s0i
11 τ = [s∗, u∗]
12 new cost = c (τ, τR )
13 i f new cost < co s t :
14 τi = τ
15 break
16 else :
17 dec r ea s e alpha
18 return τi

FMM Pseudocode:

1 def FMM TIME(δΩ , δx) :
2 D i s c r e t i z e the space in i n t e r v a l s o f δx
3 For every s̃i ∈ S :
4 TFMM (s̃i) = ∞
5 l a b e l ( s̃i ) = f a r
6 TFMM (δΩ) = 0
7 l a b e l (δΩ) = accepted
8 Loop :
9 For every s̃i ∈ S :

10 T̃i = eikona l update ( s̃i , dx )

11 i f T̃i < TFMM ( s̃i ) :

12 TFMM (s̃i) = T̃i
13 l a b e l ( s̃i ) = cons ide r ed
14 Sc = {s̃i|label(s̃i) = considered}
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15 s̃ = arg min
s̃i∈Sc

TFMM (s̃i)

16 l a b e l ( s̃) = accepted
17 For every neighbor s̃i o f s̃ :
18 i f l a b e l ( s̃i ) != accepted :

19 Ũi = eikona l update ( s̃i , dx )

20 i f Ũi < U(s̃i) :

21 TFMM (s̃i) = Ũi

22 l a b e l ( s̃i ) = cons ide r ed
23 Sc = {s̃i|label(s̃i) = considered}
24 i f len (Sc ) == 0 :
25 break
26 return TFMM

1 #so l v e a d i s c r e t e approximation to the Eikonal Equation
2 def e ikona l update ( s̃i , dx ) :
3 x , y = s̃i
4 TH = min(TFMM [x− 1, y], TFMM [x+ 1, y])
5 TV = min(TFMM [x, y − 1], TFMM [x, y + 1])

6 TFMM = TH+TV

2 + 1
2

√
(TH + TV )2 − 2(T 2

H + V 2
H −

dx2

f(s̃i)
)

7 return TFMM

Ideal Dubins Car Dynamics Model

xy
θ


t+1

= f(st, ut) =

xt + ∆t ∗ cos(θt) ∗ vt
yt + ∆t ∗ sin(θt) ∗ vt

θt + ∆t ∗ ωt


st =

xy
θ

 , ut =

[
vt
ωt

]
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