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Dueling Metrics: Choosing the Appropriate Error Metric for Models of
Cognition in the Learning Analytics Field
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Seung Yeon Lee, University of California, Berkeley
Zachary A. Pardos, University of California, Berkeley

Similar to how a machine learning model converges by following the gradient produced by the choice of loss
function, a scholarly field converges towards adoption of various model modification by following a type of
gradient produced by the choice of error metrics used to report results in its papers. In this way, a field
and its practitioners become a part of a larger human-centric process of design. In this paper we argue for
the importance of choosing the right error metric for a popular cognitive model called Bayesian Knowledge
Tracing (BKT), used in the context of intelligent tutoring systems. According to our analyses with synthetic
data—including correlation analysis, gradient visualization, and parameter estimation—we find that error
metrics of Root Mean Squared Error (RMSE) and log-likelihood provide the best correspondence to the
true generating model. Area Under the Curve (AUC) and accuracy are significantly behind, while precision
and recall have extremely poor performance. Our result validates the standard practices of using RMSE
as a metric to evaluate BKT models and using RMSE or log-likelihood for BKT parameter estimation. Our
result adds to the mounting wisdom against using AUC and accuracy, which are the other metrics that have
been frequently used to evaluate BKT models as depicted in our seven-year literature review of the field.
Additionally, we investigate the validity of parameters estimated using the different error metrics on real
data from ASSISTments, Cognitive Tutor, and Khan Academy. The real data analysis reinforces our finding
that log-likelihood and RMSE appear to be superior to the rest of the metrics and should be the metric of
choice when applying this model.

CCS Concepts: rApplied computing→ Computer-assisted instruction;

General Terms: Algorithms, Human Factors

1. INTRODUCTION
The development of a machine learning model occurs not just within the confine of a
project limited to several contributors. In the case of a model specific to a discipline,
a much larger community contributes to the development of the model. The choice of
the error metric used in the evaluation of models can influence the magnitude of per-
formance difference between one model and another, and change how the field selects
which introduced extensions are kept and which are discarded. In this paper, we study
a model frequently used in the Intelligent Tutoring Systems (ITS) and Educational
Data Mining (EDM) field to make decisions about when a student has reached mas-
tery of knowledge. We present an argument for which error metrics should and should
not be used so that both the model and the field can better converge towards an evolu-
tion of the model that best correlates with the objective of improving human learning
outcomes.

Mastery learning, in brief, is an instructional strategy whereby students are re-
quired to master prerequisite material before being allowed to advance in the cur-
riculum [Bloom 1984]. Many computer-based tutoring programs, aspired by the ben-
efits of this in-person instructional strategy, have implemented mastery learning in
their systems in one form or another. Since these systems rely on a machine learn-
ing algorithm, instead of a human, to make inferences about cognitive mastery, the
effectiveness of mastery learning depends largely on the accuracy of the inferences
made by this algorithm. The most popular algorithm in the literature and in practice
for modeling cognitive mastery in tutoring systems has been the Bayesian Knowledge
Tracing (BKT) model, introduced by Corbett and Anderson [1994]. It has been applied
to datasets from a variety of tutoring systems [Koedinger et al. 1997; Beck and Sison
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2006] to predict student performance as well as to determine whether students have
mastered a particular skill. A standard BKT model is characterized by four model pa-
rameters: prior, learn, guess, and slip. In contrast to other types of machine learning
models such as support vector or neural network techniques, BKT is often preferred
due to its interpretability. For instance, the BKT parameters can provide pedagogi-
cal insights (e.g., learning effect of a tutoring system); therefore, the values of these
parameters are often of interest to researchers.

How do we identify whether a model’s parameters and inferences accurately rep-
resents reality? Unfortunately, since student knowledge is not directly observed, we
cannot directly measure discrepancy between the estimated parameters and the true
parameters. In practice, we use error metrics to evaluate and report the difference be-
tween the predicted performance (i.e., correctness of answers) and the actual observed
performance. In the general context of machine learning, the principal objective is of-
ten to achieve the best generalized predictive performance on new data. When this
predictive performance is the objective, error metrics are used to evaluate the good-
ness of the model; however, they do not directly evaluate the validity of a latent vari-
able (e.g., student knowledge state) that may be modeled. Some error metrics might
conclude that two models’ predictive performances are the same, but fail to capture a
substantive difference in how student knowledge is represented between the models.
For example, Beck and Xiong [2013] showed that the models that are significantly dif-
ferent in their knowledge inferences may result in an only slight amount of difference
in their predictive performance (e.g. in the fifth decimal place of RMSE). In addition,
Pelánek [2015] identified that small differences in predictive performance between
models may have significant impact on student practice and interpretable results; for
example, slight differences in RMSE or log-likelihood can lead to significant changes
on student over-practice and under-practice [Yudelson and Koedinger 2013], improve-
ments in the tutoring system [Liu et al. 2014], and suggested numbers of instructional
problems [Rollinson and Brunskill 2015].

Finding the ground truth model with respect to the model parameters become more
and more crucial among researchers and practitioners. Recently, increasing number of
studies have applied variants of the BKT model to draw pedagogical conclusions based
on the model parameters. For example, Beck et al. [2008] used an extension of a BKT
model to investigate the impact of receiving help on future knowledge and performance
in a reading tutor. Pardos and Heffernan [2009] followed with instrumenting the model
to detect differences in learning gain between different orderings of problems in a math
tutor and then using a similar model extension to detect the effect of tutorial strategies
such as giving hints versus breaking the problem down into steps [Pardos et al. 2011].
Lin and Chi [2016] applied a similar extension to evaluate the instructional value of
having the tutoring system preemptively give help versus asking the student to reflect
on what step should come next. They also found that the Bayesian Networks based
BKT method performed better than alternative logistic based methods in predicting
the students’ outcomes.

Despite growing interest of finding the ground-truth model, there is still a lack of
studies on how we can assess a model in terms of the model parameters themselves.
There is a recent study on evaluating the model based on not only its predictive per-
formance but also the plausibility of its parameters and the consistency with which it
arrives at those parameters during fitting [Huang et al. 2015]. Another related work
on selection of error metrics has been conducted [Pelánek 2015] which overviews the
appropriateness of similar metrics to ours for a variety of models in education includ-
ing models of affect and skill, such as BKT. However, none of them directly assesses
the validity of model parameters or their inferences. Unlike the other works, we look at
how the values of error metrics correlate with the validity of the learned parameters,



DUELING METRICS A:3

building on prior early-stage work on the topic [Pardos and Yudelson 2013; Dhanani
et al. 2014].

Although error metrics are defined to measure discrepancy in performance (discrep-
ancy between the predicted performance and the observed performance), we presume
that an error metric can function as a proxy for discrepancy in parameters (discrepancy
measure between the estimated model’s parameter values and the true parameter val-
ues). Considering that student performance is predicted by the model parameters, we
expect that a set of parameters which is closer to the ground truth will lead to a more
accurate prediction in performance. This is the assumption made when evaluating
BKT models: the increase in predictive accuracy translates to improvement in the va-
lidity of their inference, used to determine when a student has reached cognitive mas-
tery. In this study, we attempt to answer which error metric serves as the best proxy
of discrepancy in parameters, consequently, best representing the ground truth.

For the evaluation of the error metrics, we use synthetic data that are generated
from the known ground truth (true model parameter values) so that we can estab-
lish the relationship between the discrepancy in performance and the discrepancy in
parameters. The use of simulated data has proven to be useful in many studies, for
example, to study the impact of prediction accuracy on students’ learning experience
in an adaptive educational system [Niznan et al. 2014], and to evaluate the appro-
priateness of various predictive models [Beheshti and Desmarais 2015]. In particular,
Niznan et al. [2014] used simulated data to confirm that when a model A achieves
better RMSE than a model B, A better corresponds to reality than B, in the studied
setting. Similarly, we will use simulation to study not only RMSE but also other met-
rics in BKT setting. The work of Rosenberg-Kima and Pardos [2014] further supports
our use of simulated data by showing that in BKT setting, characteristics of real and
simulated data are extremely similar.

The outline of this paper is as follows. We, first, describe the BKT model in Sec-
tion 2. In Section 3, we provide the overview of error metrics and discuss trends in the
selection of metrics in the EDM community. Section 4 describes our data simulation
procedure. In Section 5 and 6, we calculate values obtained from different error metrics
at different locations over the entire parameter space, and examine the relationship
between the discrepancy in performance and the discrepancy in the parameters. In
Section 7, we run a gradient decent with each error metric, and the Expectation Maxi-
mization algorithm with log-likelihood to simulate actual model estimating processes.
We then compare the metrics based on the distances between their estimated param-
eters and the true parameters. In Section 8, we investigate the validity of parameters
estimated using the different error metrics on real data from ASSISTments, Cogni-
tive Tutor, and Khan Academy. Additionally, we show that our simulated data exhibit
similar characteristics to the real data. Finally, we present our conclusion in Section 9.

2. OVERVIEW OF BAYESIAN KNOWLEDGE TRACING
Knowledge tracing, popularized by Corbett and Anderson [1994], is a well-known
method for modeling student knowledge. Many intelligent tutoring systems use this
model to predict students’ performance and determine if students have mastered a
particular skill. Knowledge tracing uses four model parameters: prior, learn, guess,
and slip. The prior parameter is the initial probability that students know the skill at
the beginning of using the tutor. The learn parameter is the probability that students’
knowledge state will transition from unlearned to learned after interacting with each
question. The guess parameter is the probability that students get a correct answer
when they do not know the associated skill, and the slip parameter is the probability
that students make a mistake when they know the associated skill.
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The system computes the probability that a student knows a given skill at a given
time by updating the probability based on the observed response at each problem step
using Bayesian inference. Let Ln denote the probability that a student knows the skill
at time n; the prior parameter can be denoted by L0. The probability that the student
knew the skill before responding to the question at time n, Ln−1, is updated as follows:

Ln−1|Correctn =
Ln−1 × (1− slip)

Ln−1 × (1− slip) + (1− Ln−1)× guess

Ln−1|Incorrectn =
Ln−1 × slip

Ln−1 × slip+ (1− Ln−1)× (1− guess)
where Correctn and Incorrectn indicate correct and incorrect response to the question
at time n respectively. Next, the system incorporates the possibility that the student
learned the skill while trying to solve the problem:

Ln = Ln−1|Actionn + (1− Ln−1|Actionn)× learn
where Actionn is either Correctn or Incorrectn. An advantage of BKT over other
types of machine learning models is its interpretability. The estimated parameters
not only allow us to infer student knowledge, but also provide pedagogical insights to
researchers.

3. METRICS
3.1. Definition of metrics
This section provides overview of commonly used metrics. We discuss metrics catego-
rized into three families suggested by Ferri et al. [2009] and Pelánek [2015]. To define
metrics, we denote that the each data point is subscripted by i ∈ {1, ..., n}. yi and ŷi
denote the actual and predicted value of the ith component of the outcome respectively.

Probabilistic Understanding of Error. The first family of metrics is described as proba-
bilistic understanding of error which measures the deviation from the true probability.
Pelánek [2015] has suggested that this type of metrics is natural for predictions of
performance in student modeling. Most popular metrics in this family are Mean Abso-
lute Error (MAE), Root Mean Squared Error (RMSE) and Log-likelihood (LL). MAE is
defined by absolute differences between predicted values and observed values:

MAE =
1

n

n∑
i=1

|yi − ŷi|

Similarly, RMSE is defined by the square root of the mean squared errors:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

Likelihood of a set of parameters is the probability of the observed outcome given those
parameter values. Log-likelihood is a natural log transformation of the likelihood, de-
fined as:

LL =

n∑
i=1

yi ln(ŷi) + (1− yi) ln(1− ŷi)

Among theses metrics, Pelánek [2015] showed that MAE is not suitable when the
outcome variable is binary, like in BKT, because it is not a proper score and may lead
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to misleading conclusion. RMSE is a most frequently chosen metric by researchers in
general, including the Educational Data Mining community. Some researchers, how-
ever, useR2 as a substitution of RMSE because of the difficulty of RMSE interpretation
under certain circumstances. R2 is defined as 1−

∑n
i=1(yi − ŷi)2/

∑n
i=1(yi − ȳ)2, where

ȳ is the mean, and can be interpreted as explained variability by the model.
In MAE and RMSE, the smaller value the better because they measure errors. On

the other hand, in LL, the higher the better. LL and RMSE, in fact, share similar-
ities in that they both take sum of errors into account, and they are considered to
be equivalent in linear models; under the assumption of normally distributed errors,
minimizing the residual sum-of-squares (least squares) is equivalent to maximizing
likelihood [Hastie et al. 2009]. LL is also used for other model evaluation metrics such
as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).

Qualitative Understanding of Errors. The second family is defined as qualitative under-
standing of error. This family consists of metrics based on a threshold such as metrics
calculated by a confusion matrix, shown in general form below.

Observed
Correct Incorrect

Predicted Correct True Positive (TP) False Positive (FP)
Incorrect False Negative (FN) True Negative (TN)

Precision, recall, accuracy, F-measure, and Kappa statistics are defined as:

precision =
TP

TP + FP

recall =
TP

TP + FN

accuracy =
TP + TN

TP + FP + TN + FN

F −measure =
2TP

2TP + FP + FN

Kappa =
accuracy −R

1−R
where R = (TP + FN)(TP + FP ) + (TN + FP )(TN + FN)n2

(1)

These metrics depend on what we choose as the classification threshold. For exam-
ple, in BKT with a threshold of 0.5, the performance predicted as 0.49 and 0.51 are
classified into different classes (incorrect and correct respectively), while prediction
0.51 and 0.99 are classified into the same class. Pelánek [2015] discussed that such
characteristic is not desirable for student modeling.

Assessing Ranking of Examples. The metrics of the last family measure how well the
model ranks the examples. This family includes Area under the ROC curve (AUC),
a commonly used metric. AUC is defined as the area under the Receiver Operating
Characteristic (ROC) curve, which plots False Positive Rate (FPR) vs. True Positive
Rate (TPR) for all possible threshold values. A threshold value is a decimal between 0
and 1, where a prediction above that threshold is considered a prediction in favor of the
positive class. FPR and TRP are defined in Equation (2). AUC can also be described
as the probability that the prediction of a randomly chosen correct response will be
greater than the prediction of a randomly chosen incorrect response. An AUC value of
0.5 represents predicting no better than random chance, while 1 represents the perfect
model (TPR of 1 and FPR of 0).
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TPR =
TP

TP + FN

FPR =
FP

FP + FN

(2)

Several studies have raised some issues about using AUC. Cortes and Mohri [2004]
analyzed the relationship between AUC and error rates used in an objective function
optimization. Their results showed that while an average AUC value increases as clas-
sification accuracy increases, the standard deviation of AUC values is high for uneven
distribution and higher error rates. As a result, the best AUC value may not lead to
the minimum error rate. In addition, Pelánek [2015] highlighted concern swith using
AUC in student modeling. AUC considers only relative ranking between predictions, so
it cannot capture the absolute values of predictions. For example, if all predictions are
divided by two, the AUC value remains constant. In skill models such as BKT, where
well-calibrated absolute values of predictions are needed, AUC may not be appropriate.

3.2. Survey of metrics used for BKT
The BKT model of cognitive mastery is of broad relevance to the field of learning ana-
lytics and has been most studied in the overlapping area of Educational Data Mining
(EDM). To investigate trends in selection of error metrics for evaluating BKT, we sur-
veyed the proceedings of the last seven years of the EDM conference.

Table I displays the types of error metrics and the number of times they have been
used in the EDM conference proceedings from 2010 to 2016. Accuracy, RMSE, AUC,
F-measure, recall, and precision are the most frequently used metrics in descending
order with AUC, F-measure, precision and recall trending in recent years. We then
extracted only papers that evaluated BKT models. Figure 1 presents the number of
times each error metric has been used in BKT-related papers. Similarly, RMSE, AUC,
and accuracy have been frequently used. In particular, RMSE and AUC are the two
most popular metrics.

This paper aims to compare the error metrics in terms of their performance in iden-
tifying ground truth. For the comparison, we include the following metrics: LL, RMSE,
AUC, accuracy, precision, and recall. Pelánek [2015] has suggested that LL and RMSE
are appropriate for the evaluation of skill models. Although there exists a dispute on
AUC, it appears as one of the most popular metrics in BKT-related papers based on our
survey. In addition, although it has been discussed that metrics based on qualitative
understanding of errors are not desirable for skill models, accuracy is quite frequently
used in BKT-related papers, and other metrics such as recall and precision are also
commonly used in the overall studies based on our survey; particularly, recall and ac-
curacy have been suggested by Pardos and Yudelson [2013] as the metrics that best
correspond to accuracy in skill mastery estimation.

Year RMSE LL AUC Accuracy Recall Precision F-measure R2 AIC BIC MAE Kappa Others
2016 12 3 12 10 12 16 19 10 6 5 1 12 6
2015 22 9 18 20 8 8 14 8 9 5 2 12 10
2014 9 2 9 13 9 8 4 7 4 5 3 4 0
2013 12 1 11 13 4 4 5 4 2 5 5 9 0
2012 5 1 3 10 4 0 0 0 2 3 2 1 5
2011 8 1 3 10 4 4 1 3 4 5 1 0 1
2010 2 2 3 7 2 1 1 5 0 2 2 3 0
Total 70 19 59 83 43 41 44 37 27 30 16 41 22

Table I: Number of times different error metrics appeared in the EDM conference pro-
ceedings from 2010 to 2016. R2 is an abbreviation for R2 / pseudo R2.
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Fig. 1: Error metrics used in the EDM 2010–2016 papers that concentrate on BKT

4. DATASETS
The accuracy of a model’s inference depends on its parameters. In real-world datasets,
this inference of knowledge can not directly be validated, nor can the accuracy of its pa-
rameters. In order to determine which error metric is the best indicator of valid param-
eters, and thus inferences, we use simulated data, where the parameters generating
the data are known. We will refer to these generating parameters as the ground truth
parameters. We generated simulated student responses based on predefined ground
truth parameters in a similar fashion to the data generated in [Pardos and Heffernan
2010]. We used the standard BKT model with four parameters: prior, learn, guess, and
slip. The BKT model was constructed using functions from MATLAB’s Bayes Net Tool-
box [Murphy 2001]. Each dataset contains N students answering Q questions. Each
data point indicates whether the student’s answer was correct or incorrect.

Parameter ≤ 0.5 > 0.5
prior 16 10
learn 19 7
guess 17 9
slip 15 11

Table II: Distribution of datasets’ parameter values. Column 2 and 3 contain numbers
of datasets whose specific parameter value is less than and greater than 0.5 respec-
tively.

We generated 26 datasets with diverse parameter values.1 Fifteen datasets contain
data for 3,000 students, and 11 datasets contain data for 30,000 students. Nineteen of
the datasets had responses for five questions per student, and seven of the datasets had
responses for ten questions per student. Each dataset, and respective set of generating
parameters, can be considered as a separate skill or Knowledge Component (KC) that
our simulated students interacted with. Table II shows the distribution of prior, learn,
guess, and slip parameter values in our datasets. The actual parameters, numbers of

1Datasets, code for their generation, and result files are available at https://github.com/CAHLR/publications/
tree/master/JEDM_metrics
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students, and numbers of questions used in generating the datasets can be found in
Appendix A. Most of our datasets have low guess values (guess ≤ 0.5). However, nine
datasets with high guess values were generated as well to account for some problem
sets with high guess values such as the exercises in the Reading Tutor [Beck and
Chang 2007].

5. CORRELATIONS TO GROUND TRUTH
In this section, we evaluate how good each of the selected error metrics are at indi-
cating the closeness (or distance) of a model’s parameters to the ground truth values,
i.e., the discrepancy between the estimated parameter values and the true parameter
values. An instructional designer may use a BKT model to evaluate the effectiveness
of an instruction by inspecting the learn parameter value given a particular stimulus
or intervention; this is, a human perception matters. We assume the instructional de-
signer naturally interprets that the distance between different values of the parameter
is at face and linear. Therefore, we use Euclidean distance to measure the closeness of
parameter values.

5.1. Methodology
For each dataset, we calculated (i) the error metric value measuring predictive perfor-
mance and (ii) the distance to the ground truth of each parameter point in the four
dimensional parameter space (dimensions were prior/learn/guess/slip) with a interval
of 0.1. Each point P is defined as follows.

P = (P1, P2, P3, P4) = (prior, learn, guess, slip)

On each point P , we calculated students’ predicted responses (probability that stu-
dents will answer questions correctly) conditioned on previous responses. We then used
these predicted responses along with the actual simulated responses to calculate LL,
RMSE, AUC, precision, recall, and accuracy for all points.

To determine which error metric was best at indicating ground truth, we looked
at the correlations between values calculated by the error metrics and the Euclidean
distances from the corresponding points to the ground truth. The distance from a point
P to the ground truth R is define as follows.

d(P,R) =

√√√√ 4∑
i=1

(Pi −Ri)2

For each error metric, we plotted the error metric values against distances. Note that
we used -RMSE instead of RMSE to standardize our convention across different er-
ror metrics; as a result, with this change, higher error metric values indicate smaller
error—closer to the ground truth—for all error metrics. In addition to visualizing the
results, we calculated correlation coefficients between the six error metric values and
distances. For a particular set of parameters, we call a better indicator of the ground
truth if values calculated by an error metric have stronger positive correlations with
the distances to the ground truth.

After evaluating correlations over the entire parameter space, called entire space,
we conducted a focused analysis on the area close to the ground truth. Assuming the
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ground truth is R, we define nearby space to be the area that covers all points p:

p ∈ {(p1, p2, p3, p4) | R1 − 0.1 ≤ p1 ≤ R1 + 0.1,

R2 − 0.1 ≤ p2 ≤ R2 + 0.1,

R3 − 0.1 ≤ p3 ≤ R3 + 0.1,

R4 − 0.1 ≤ p4 ≤ R4 + 0.1}

For each error metric, a correlation coefficient is calculated considering points in the
nearby space with a 0.02 interval.

We hypothesized that higher correlations with the distance in the entire space do
not always imply higher correlations with the distance in the nearby space. We also
considered the situation in which one metric is the best at directing to the right region
but another metric is better at greater precision. This is important as we are looking
for an error metric that can guide the parameter estimation not only to an area close
to the ground truth but also to a specific location that is as close to the ground truth
as possible.

5.2. Results
Figure 2 displays the scatter plots of values calculated by the error metric vs. distances
from the ground truth of dataset 2. The dataset was generated with prior = 0.2, learn
= 0.444, guess = 0.321, and slip = 0.123. As shown in the figure, LL and -RMSE appear
to have stronger correlations with the distance from the ground truth. This pattern,
in fact, is common in all datasets. This indicates LL and RMSE as good measures of
distances from the ground truth. In the case of AUC, precision, recall and accuracy, we
are not able to discern any observable relationship between distances from the ground
truth and error metric values. In certain cases, they exhibit a similar pattern to that
of RMSE and LL, but the appearance of this pattern is inconsistent.

The correlation coefficients we calculated between the error metric values and the
distances from the ground truth further support the findings from our visual analysis.
Table IIIa summarizes the correlation coefficient values over the entire space. The
table includes mean, maximum and minimum values of the correlations from the 26
datasets. An entry in ‘best’ and ‘worst’ row shows the number of the datasets for which
a particular error metric has the highest and lowest correlation value, respectively,
among all metrics. The individual correlation coefficients of all datasets can be found
in Appendix B.

Fig. 2: Values calculated by different error metrics vs. distances to the ground truth.
Each dot in the plots corresponds to an individual point in the four dimensional pa-
rameter space.
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LL -RMSE AUC precision recall accuracy
mean 0.4705 0.4926 0.4090 N/A 0.0623 0.3712
max 0.7133 0.7343 0.5930 N/A 0.5472 0.5931
min 0.2418 0.2601 0.0879 N/A -0.5875 0.1031
best 0 15 11 0 0 0

worst 0 0 3 0 23 0

(a) Entire parameter space with a 0.1 interval

LL -RMSE AUC precision recall accuracy
mean 0.5479 0.5811 0.2702 -0.0035 0.0450 0.2787
max 0.7337 0.8758 0.5152 0.3194 0.3073 0.4749
min 0.4247 0.4965 -0.0080 -0.2961 -0.3089 0.0144
best 6 20 0 0 0 0

worst 0 0 5 9 12 0

(b) Nearby space with a 0.02 interval

Table III: Summary of correlation coefficients on all points over entire space (top) and
the nearby space (bottom). An entry in ‘best’ and ‘worst’ row shows the number of the
datasets for which a particular error metric has the highest and lowest correlation
value respectively.

According to the entire space table, RMSE has the best performance. RMSE has
the highest mean, min, and max correlation values. Additionally, it has the highest
correlation value in 15 out of 26 datasets and does not has the smallest correlation
value in any dataset. Although LL does not have the highest correlation value in any
dataset, its performance is the second best according to mean, max, and min. AUC,
on the other hand, has the highest correlation value in 11 datasets, but its min and
max are much lower than those of RMSE and LL, and it performs worst in three
datasets. This statistic reveals that the performance of AUC is inconsistent across
datasets. Thus, despite being the best in 11 datasets, AUC may not be a good metric.
The correlations of precision values cannot be calculated because some precision values
are undefined. According to its definition in Equation (1), precision considers only the
student responses that are predicted as correct; as a result, when the denominator
is zero, the precision value can be undefined.2 This demonstrates the limitation of
precision. Overall, recall also performs poorly. It has the smallest mean, max, and min
correlation values, has the smallest correlation values in 23 datasets, and has negative
correlation values in eight datasets. Lastly, accuracy shows comparable performance
with AUC in terms of mean, max, and min. It clearly performs worse than LL and
RMSE but better than recall.

Table IIIb shows the correlation coefficient values over the nearby space. The indi-
vidual correlation coefficients of all datasets on the nearby space can be found in Ap-
pendix B. Superiority of RMSE is even more noticeable in the nearby space analysis;
RMSE has the largest values in mean, max, and min, and is the best in 20 datasets. LL
is the second best metric as it is in the entire space analysis. AUC, in the nearby space,
does not have the highest correlation value in any dataset and, furthermore, produces
negative correlations for one dataset. This result further suggests that AUC is not a
reliable metric. The mean correlation values of precision and recall are almost equal
to zero. With this result, we can conclude that precision and recall are poor metrics for
identifying the ground truth. Accuracy performs slightly better than AUC, as it does

2With some parameter values, the BKT model predicts that all students always answer incorrectly; for each
response of each student, a probability that such response is correct is always less than 0.5. According to
Equation (1), TP and FP are both zero. As a result, precision = 0/0 = undefined.
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Comparison ∆ of correlations t p-value
RMSE > LL 0.0221 7.1975 < 0.001
RMSE > AUC 0.0835 2.3487 0.0135
RMSE > Accuracy 0.1214 12.023 < 0.001
RMSE > Recall 0.4302 6.0144 < 0.001
LL > AUC 0.0614 1.7233 0.0486
LL > Accuracy 0.0993 8.3329 < 0.001
LL > Recall 0.4082 5.6814 < 0.001
AUC > Accuracy 0.0379 0.9774 0.1689
AUC > Recall 0.3467 5.9946 < 0.001
Accuracy > Recall 0.3089 4.1642 < 0.001

(a) Entire space

Comparison ∆ of correlations t p-value
RMSE > LL 0.0332 3.972 < 0.001
RMSE > AUC 0.3109 11.347 < 0.001
LL > AUC 0.2778 10.71 < 0.001

(b) Nearby space

Table IV: T-test statistics for comparing A > B. A is defined as correlation between
values calculated from an error metric A and distances to the ground truth.

not have a negative correlation value in any dataset, but it is still much worse than LL
and RMSE.

In order to determine if the differences in correlations to the ground truth between
different metrics are statistically significant, we evaluated the one-tailed paired t-test
on correlation values of all 26 datasets comparing all pairs of metrics excluding pre-
cision because of its missing correlation coefficients. Recall and accuracy were also
excluded from the nearby space t-test because of their missing correlation coefficients
on some datasets. The result is shown in Table IV. In summary, the differences in all
pairs of the metrics, except for AUC-accuracy pair, are statistically significant at 5%
significance level. Although the mean RMSE correlation is only slightly greater than
that of LL, the difference is significant.

Hence, the results in both the entire space and nearby space analyses suggest that
RMSE and LL are good indicators of the distance to the ground truth with RMSE being
best at any proximity to the ground truth.

6. GRADIENT VISUALIZATION
In this section, we examine further why RMSE and LL appear to be better indica-
tors of ground truth than the other metrics by visualizing the gradient of the values
calculated from the error metrics across the domain of the model parameters.

6.1. Methodology
We visualized error metric values of all points over the two dimensional guess/slip
space with an interval of 0.02. We fixed prior and learn parameter values to the ground
truth values. Using the guess and slip parameters as the axes, we visualized the val-
ues calculated from the error metrics by colors ranging from dark red to dark blue
corresponding to the values ranging from low to high. We call this plot a heat map.

6.2. Results
According to the visual characteristics of the heat maps, we could roughly categorize
the datasets into four groups shown in Table V. Figure 3 shows the heat maps of all
error metrics using a representative dataset from each of the four groups. The white
dot in each graph indicates the location of the ground truth (generating parameter val-
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Dataset 2 Dataset 4 Dataset 13 Dataset 11
prior=0.2 learn=0.444 prior=0.5 learn=0 prior=0.872 learn=0.145 prior=0.745 learn=0.683

guess=0.321 slip=0.123 guess=0.321 slip=0.123 guess=0.514 slip=0.014 guess=0.570 slip=0.735

L
L

rentire = 0.6, rnearby = 0.5 rentire = 0.48, rnearby = 0.64 rentire = 0.63, rnearby = 0.53 rentire = 0.44, rnearby = 0.48
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rentire = 0.63, rnearby = 0.59 rentire = 0.52, rnearby = 0.72 rentire = 0.65, rnearby = 0.55 rentire = 0.46, rnearby = 0.5
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U

C

rentire = 0.48, rnearby = 0.4 rentire = 0.30, rnearby = 0.52 rentire = 0.36, rnearby = 0.45 rentire = 0.32, rnearby = −0.01
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rentire = 0.51, rnearby = 0.31 rentire = 0.42, rnearby = 0.47 rentire = 0.55, rnearby = 0.15 rentire = 0.37, rnearby = N/A
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rentire = N/A, rnearby = 0.08 rentire = N/A, rnearby = 0.23 rentire = N/A, rnearby = −0.16 rentire = N/A, rnearby = N/A

R
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rentire = 0.46, rnearby = −0.03 rentire = 0.38, rnearby = −0.07 rentire = 0.55, rnearby = 0.16 rentire = −0.36, rnearby = N/A

Fig. 3: Guess-slip heat maps of some simulated datasets when fixing prior and learn
to true values. X-axis is guess, an Y-axis is slip. The colors range from red to blue with
blue representing high prediction accuracy or low error depending on the metric (blue
is good, red is poor). The white dot represents the ground truth. rentire is a correlation
coefficient in the entire space, while rnearby is a correlation coefficient in the nearby
space for that dataset from Tables 3 and 4.
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ues). Black represents undefined values resulting from dividing by zero. These regions
only exist in precision heat maps.

In all LL, -RMSE, AUC, and accuracy heat maps, the actual ground truth param-
eters are located in the expected regions, the dark blue regions, the areas with high
error metric values. However, in precision and recall heat maps, the dark blue regions
often do not contain the ground truth. In precision and recall heat maps of Group A
and B, the actual parameters are located in regions with colors ranging from light blue
to green. Note that these two groups contain more than half of the datasets. Group
B differs from Group A only that Group B has two dark blue regions instead of one.
In precision heat maps of Group C, the actual parameters are located in the regions
with colors ranging from orange to red, opposite from the expected colors. In Group D,
the actual parameters are located in N/A (black) regions of precision heat maps, and
in dark red regions of recall heat maps. Thus, these heat maps clearly suggest that
precision and recall are, again, poor error metrics for identifying the ground truth in
BKT.

Although the dark blue regions of AUC, and accuracy heat maps contain the ground
truth parameters, the AUC and accuracy heat maps do not have smooth gradients from
low to high values compared to the LL and -RMSE heat maps. In particular, accuracy
heat maps show more severe pattern, segmenting the parameter space into several
sections without smooth gradients. The same pattern is also observed in precision and
recall heat maps. This pattern of the heat maps can be connected to the threshold issue
addressed in section 3: accuracy, recall, and precisions do not distinguish predictions
classified into the same class. The lack of smooth gradients in the heat maps of AUC,
accuracy, precision, and recall agrees with their low correlations with the distances
to the ground truth, discovered in Section 5. This result further suggests that these
metrics might not be good error metrics for indicating the closeness to the ground
truth.

These heat maps also explain why RMSE has higher correlation with the distances
to the ground truth than does LL, particularly in the area around the ground truth. In
each dataset, if we follow the gradient from the dark red region to the dark blue region,
we can see that RMSE has a smoother, more gradual transition than LL and that the
region surrounding the ground truth has more level of gradation for RMSE than for
LL. However, we still cannot conclude that RMSE is more accurate metric than LL at
identifying the ground truth from these results, but rather that it might be a better
metric for conducting a guided search of the parameter space.

7. ESTIMATING MODEL PARAMETERS
Thus far, the correlational analysis and visualization of the gradient space have shown
that LL and RMSE are good indicators of the closeness of a model’s parameters to the
ground truth. This section compares the performance of the error metrics in identi-
fying the ground truth when used for guiding the parameter estimation process. We
exclude precision and recall from our analysis in this section as results from the previ-
ous sections demonstrate those metrics have very low correspondence to ground truth.

Group Datasets Characteristics
A 1 2 3 6 7 9 12 17 19 20 21 24 25 Ground truth lies in high accuracy regions for all metrics.
B 4 5 Heat maps are symmetric along guess + slip = 1 line.
C 8 13 15 18 22 Ground truth lies in a low precision region.
D 11 10 14 16 23 26 Ground truth lies in a low recall and undefined precision region.

Table V: Groups of datasets categorized according to the visual similarities of their
heat maps
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7.1. Methodology
Part I. We implemented BKT model parameter estimation using Matlab’s

fminsearch optimization function to find prior, learn, guess, and slip parameters such
that each of -LL, RMSE, -AUC, and -accuracy is minimized. Fminsearch employs the
Nelder-Mead simplex direct search algorithm [Nelder and Mead 1965]. We selected
ten random starting points to be used for the parameter estimation procedure. For
each error metric, we ran the estimation process ten times starting from the ten pre-
determined random points, and selected the best parameters converged to among the
ten runs. We set the termination tolerance on x (parameters) to 10−6. We then recorded
the distance between the best converged parameters, according to the respective error
metric, and the ground truth values for each error metric on each dataset.

Part II. Although our overall focus is not on determining which fitting algorithm
is best at finding accurate model parameters, we are still interested in the effect of
fitting algorithms on the accuracy of the solution, and whether the choice of error
metric is the more significant factor. Therefore, we also included the standard modeling
fitting approach [Chang et al. 2006; Pardos and Heffernan 2010] using EM with LL to
compare to the Nelder-Mead search with LL. EM from the xBKT library3 and the
Nelder-Mead search (fminsearch) are compared using the same methodology as in
Part I.

7.2. Results
Part I. Table VIa summarizes the distances between the ground truth and the pa-

rameters estimated using the different error metrics. LL estimates the closet parame-
ters to the ground truth in half of the datasets, while RMSE does in the other half. In
contrast, AUC and accuracy never estimate the closet parameters to the ground truth.
The average distances to the ground truth when using LL and RMSE are both around
0.12, while the average distances to the ground truth when using AUC and accuracy
are around 0.53. This result further supports our speculation that LL and RMSE are
better at indicating the closeness to the ground truth. Although Table IIIa and IIIb
show that -RMSE values have slightly higher correlation with the distances to the
ground truth than do LL values, the result here shows that they are equally accurate
at identifying the ground truth. The individual results of all datasets can be found in
Appendix C.

Part II. Table VIb shows the distances between the ground truth and the parame-
ters estimated using LL as an error metric with fminsearch and EM. Fminsearch and
EM estimate the closest parameters to the ground truth in 19 and 14 datasets, re-

3https://github.com/CAHLR/xBKT

Distances to ground truth
dataset LL -RMSE AUC Accuracy
mean 0.1211 0.1192 0.5269 0.5370
min 0.0020 0.0018 0.1470 0.1382
max 0.7925 0.7932 0.9611 1.0002
best 13 13 0 0

(a) Comparing error metrics using fminsearch

Distances to ground truth
dataset fminsearch EM
mean 0.1211 0.1080
min 0.0020 0.0020
max 0.7925 0.7925
best 19 14

(b) Comparing search algorithms using
LL as an error metric

Table VI: Distances between the estimated parameters and the ground truth on 26
datasets. The ’best’ row summarizes the numbers of datasets the corresponding met-
rics predict the closet parameters to the ground truth.
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Fig. 4: LL and -RMSE heatmaps. Colors ranging from red to blue represent low to high
values. Black dots represent the initial parameter values of the 10 runs. Each line
connects an initial point to the corresponding solution, marked in pink, for each run.
The red dot represents the final solution, the best of all runs. The white dot represents
the ground truth. The thin light blue line is the guess and prior values derived from
van de Sande’s functional form.

spectively. Fminsearch and EM tied in 7 dataset. However, the average distance to the
ground truth when using fminsearch is slightly larger than when using EM. There-
fore, we conclude that whether using EM or fminsearch does not significantly affect
the accuracy of the solution.

7.3. Issues of Identifiability and Label Switching
Identifiability and label switching are the two main empirical problems of BKT, which
may occur in our synthetic datasets. In this section we look deeper into the outlier
datasets to explore if their poor convergence was caused by issues of identifiability
or label switching that can be explained by the previous works. The outlier datasets
include datasets 4, 11, and 26, in which the parameter estimation procedure did not
converge to points within 0.2 distance to the ground truth using LL or RMSE. While
the identifiability issue and label switching should theoretically present themselves re-
gardless of the fitting procedure, we investigated them using the following subset of fit-
ting procedures to observe their susceptibility in depth: (1) EM with LL, (2) fminsearch
with LL, and (3) fminsearch with RMSE.

Label Switching Problem. In dataset 4, all three estimation procedures estimate similar
parameter values. The differences between the estimated values and the true values
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were less than 0.05 for prior and learn, but were more than 0.5 for guess and slip. Thus,
we investigated this problem further by visualizing the heat maps of LL and -RMSE
values, shown in Figure 4, when varying guess and slip (the problematic parameters),
while fixing prior and learn (the non-problematic parameters) to the true values. We
use the same colors ranging from dark blue to dark red as in Figure 3. Black dots
represent the initial parameter values of the 10 runs. Each line connects an initial
point to the corresponding solution, marked in pink. The red dot represents the best
converged parameters. The white dot represents the ground truth.

It can be observed that there are two regions of good fit in dataset 4. Some starting
positions resulted in convergence very close to the true parameters, while others con-
verged to a region far from ground truth. With all three fitting procedures, the error
metrics indicated that the points converged to in the far away region were slightly
better than the region around the ground truth.

This divergence issue is an artifact of a known issue called label switching [Redner
and Walker 1984; Celeux 1998]. Applied to BKT, the word label refers to the value of
the knowledge node and its corresponding relationship to the observable question re-
sponses. The assumed relationship in the context of learning is that a value of true for
the knowledge node, the learned state, should be associated with true values for the
observable question nodes (correct answers). Label switching is when the underlying
distribution of the data, or generating parameters in our case, allows for a switching
of the label to result in an identical fit to the data. This occurs when the learning rate
is zero. In this case, knowledge could be represented instead by a negative value, in
which case guess and slip parameters would likewise swap interpretations. By avoid-
ing parameter values where guess + slip >= 1, as done in Pardos and Heffernan [2010],
we can avoid a switched label, and the parameter estimation will converge towards the
ground truth. Our result of dataset 4 is an example of when fitting is vulnerable to la-
bel switching as the generating learn rate in this dataset was zero.

Prior-Guess Identifiability Problem. Unlike dataset 4, dataset 11 and 26 do not have two
regions of high LL or -RMSE values, yet the parameter estimation processes still did
not converge to locations close to the ground truth. All three fitting procedures again
found similar parameter values. The differences between the estimated slip and the
true slip was less than 0.002 in this dataset, unlike dataset 4. In contrast, the dif-
ferences between the estimated prior and the true prior was greater than 0.4. For
learn and guess parameters, the differences were on average 0.08 and 0.16 respec-
tively. Therefore, instead of generating the heat maps by varying guess and slip, we
varied the two most problematic parameters in this dataset, prior and guess. Columns
2 and 3 of Figure 4 shows the heat maps of dataset 11 and 26. In these two datasets,
10 runs of EM with LL converged to different locations, of which a few were close to
the true parameters. For fminsearch with LL and RMSE, most runs converged to the
same small area that was far away from the ground truth.

We believe that this divergence issue is an artifact of the identifiability problem.
Beck and Chang [2007; van de Sande [2013] show that the identifiability problem ex-
ists in the BKT function form (in which prediction is made without considering observ-
able student’s responses). The authors show that when learn and slip parameters are
assigned to specific values, multiple combinations of prior and guess fit the student
performance data equally well. This is a troubling potential when the goal of model
fitting is to draw pedagogical conclusions from the learned parameters. Furthermore,
van de Sande [2013] analytically proves that there are not merely a few sets of pa-
rameters that explain the data equally well but instead a continuous line of best fit in
the prior vs. guess space. This analytical proof applies to the functional form of BKT,
which van de Sande refers to as the Hidden Markov Model (HMM) form. The same
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phenomenon cannot be proved analytically for the algorithm form (in which prediction
is made based on observable student’s responses). Although previous works cannot
show that the identifiability issue may exist in the BKT algorithm form, our result
here—which was derived from the BKT algorithm form—suggests that to some degree
the same effect can exist in the BKT algorithm form as well.

Before we can conclude that the identifiablity problem indeed exist in the BKT algo-
rithm form, we first investigated how well van de Sande’s explanation fits our results.
According to van de Sande, the probability that a student gets opportunity n correct
is:

Correctn = 1− slip−Ae−βn

where
A = (1− slip− guess)(1− prior)
β = −log(1− learn)

There are different combinations of guess and prior that give the same value for A;
these different combinations will result in models that give the same predictions. If
n,Correctn, learn, and slip are given, then guess and prior values can be derived. We
hypothesize that if van de Sande’s explanation for the identifiablity problem is appli-
cable to the BKT algorithm form, the estimated guess and prior from the fitting algo-
rithms should be close to the guess and prior values derived from the HMM functional
form.

To test this hypothesis, in each of datasets 11 and 26, we derived guess and prior
values from the functional form of Correct0, the probability that students answer the
first question correctly (n = 0). We calculated Correct0 from the simulated student per-
formance data, and Correct0 of datasets 11 and 26 were 0.340 and 0.349 respectively.
Setting learn and slip parameters to the ground truth values, we derived guess and
prior values from the HMM functional form. The derived guess and prior values are
shown as thin light blue lines on the heat maps of datasets 11 and 26 in Figure 4.
The true parameters and almost all estimated parameters perfectly lie on top of the
derived values. Although according to our result, points on van de Sande’s best fit line
do not have identical LL and RMSE values as they would be if using the functional
form, many points along the line do have identical LL and RMSE values. With this
evidence, we conclude that van de Sande’s explanation for the identifiablity problem
in the HMM form can also explain the identifiablity problem in the BKT algorithm
form.

In conclusion, neither EM with LL, fminsearch with LL, or fminsearch with RMSE
perform any better at avoiding the false regions when an identifiability issue or label
switching occurs. While we do not know under which condition these issues may occur,
the generating values for prior and learn appear to have an influence. In the case of
all three datasets, the generating prior is greater than 0.5. In two cases, the learn
rate is very high, greater than 0.65, and in the third case it is zero. With a high prior
or a zero learn rate, there are few training examples to observe possible guesses and
slips. A more typical dataset, or skill, is one in which most students begin interacting
without knowing the skill and learn gradually, as opposed to already knowing the
skill at the beginning or not learning or learning immediately. These more normal
types of learning scenarios may be more resilient to the identifiability issue and label
switching.

To mitigate the issue, Dirichlet priors have been suggested [Beck and Chang 2007]
to bias the parameters towards a particular region; this is similar to biasing the search
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initial positions. This approach requires an assumption about which regions are plau-
sible and which are not. Simply bounding the parameter search can accomplish a simi-
lar outcome if the same assumption is applied. Baker et al. [2008] suggested using con-
textual features to determine if an answer is more likely to be a slip (or guess). While
this method can improve interpretation of individual student responses, it is based on
regressing to an already trained BKT model, whose fitting procedure is prone to the
same issues described in this section. BKT model extensions allowing for a different
guess and slip per question have been robust to the label switching issue; however,
the questions themselves must be given in a random order per student in order to be
effective. While increasing the number of parameters is not an intuitive approach to
solving theses issues, modeling the control for ordering effects might add constraints
which ameliorate identifiability and label switching issues. Lastly, controlling for prior
knowledge per student has shown promise in improving convergence properties [Par-
dos and Heffernan 2010], perhaps thanks to allowing for a greater variety of observa-
tions of guess and slip when using individual priors instead of a single point estimate.

8. REAL DATASETS
Up until this point, we have been working with simulated data. In this section, we
would like to establish the relationship between simulated and real data. Ultimately,
if simulated data and real data are similar, our findings in the previous sections should
apply to real data as well. We also investigate the validity of the estimated parameters
on the real data in this section.

8.1. Datasets
We obtained the datasets from three online educational platforms: ASSISTments, Cog-
nitive Tutor, and Khan Academy. On each platform, we obtained three datasets for
three skills: fraction, circle area, and exponent calculations. We only considered the
first five responses of each student, discarding students with less than five responses.
Table VII displays the numbers of students with at least five responses in the datasets.

Platform Fraction Circle Area Exponent
ASSISTments 393 40 407

Cognitive Tutor 996 99 1221
Khan Academy 130 96 152

Table VII: Numbers of students in real datasets from ASSISTments, Cognitive Tutor,
and Khan Acamedy on fraction, circle area, and exponent calculation skills.

8.2. Similarity Between Simulated and Real Data
Gradient Visualization. We hypothesized that the heat maps of the real data follow the

similar patterns as those of the simulated data. Therefore, we visualized the guess-slip
heat maps of the real datasets (with the same process as in Section 6.1) when fixing
prior and learn to the best values according to RMSE since RMSE appears to be the
most accurate metric in identifying ground truth. Figure 5 displays the heat maps of
the exponent skill datasets, the biggest datasets, from the three platforms. We can
observe that the heat maps of the real datasets exhibit the same patterns as those of
the simulated datasets, shown in Figure 3.

Parameter Estimation. Besides visualizing heat maps, we ran parameter estimation us-
ing fminsearch with the six error metrics (as in Section 7.1) on our simulated and
real datasets. In each dataset, we calculated a parameter distance (Euclidean dis-
tance) between each pair of parameters estimated with two different error metrics.
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ASSISTments Cognitive Tutor Khan Academy
prior=0.435 learn=0.284 prior=0.957 learn=0.187 prior=0.367 learn=0.088
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Fig. 5: Guess-slip heat maps for the skill of exponentiation from ASSISTments, Cog-
nitive Tutor, and Khan Academy. We fixed prior and learn to best values found using
RMSE. X-axis is guess and Y-axis is slip. The colors range from red to blue with blue
representing high prediction accuracy or low error depending on the metric (blue is
good, red is poor).
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Distance LL RMSE AUC Precision Recall Accuary
LL - 0.207 0.756 0.964 0.841 0.674

RMSE - - 0.762 0.870 0.860 0.577
AUC - - - 0.738 0.870 0.789

Precision - - - - 0.840 0.598
Recall - - - - - 0.439

Accuary - - - - - -

(a) Real datasets

Distance LL RMSE AUC Precision Recall Accuary
LL - 0.004 0.492 0.676 0.654 0.480

RMSE - - 0.492 0.675 0.654 0.481
AUC - - - 0.705 0.785 0.564

Precision - - - - 0.793 0.557
Recall - - - - - 0.491

Accuary - - - - - -

(b) Simulated datasets

Table VIII: Average parameter distances. Each entry is the average distance between
the parameters estimated by the row metric and the parameters estimated by the
column metric.

Metrics Guess > 0.5 Slip > 0.5
LL 1 1

RMSE 2 2
AUC 5 6

Precision 9 9
Recall 0 0

Accuracy 3 3

Table IX: Number of datasets (out of nine datasets) whose estimated parameters con-
tain guess > 0.5 or slip > 0.5 when estimating using the different error metrics

We then calculated the average parameter distances on all simulated datasets and on
all real datasets. We then used the average parameter distances as the characteristics
of datasets in our comparison between the simulated and real datsets.

Tables VIIIa and VIIIb display the average parameter distances on the real and
simulated datasets respectively. The correlation of the parameter distances between
real and simulated datasets is 0.8599 with p-value < 0.001. Thus, we conclude that the
real and simulated datasets are significantly similar and that our findings so far are
valid to not only simulated data but also real data. Notice that all average parameter
distances from the real datasets are larger than from the simulated datasets. This
may imply that the choice of error metric is even more important when used in the
real setting.

8.3. Parameter Validity
We further examined the resulting parameters estimated with different metrics from
Section 8.2. Although we do not have the ground truth for the real datasets, we know
that in general guess and slip values of most skills should be less than 0.5. Thus,
we can use this criteria for checking parameter validity. Table IX reports numbers of
datasets in which parameters estimated by different error metrics are degenerated
(guess > 0.5 or slip > 0.5).

At the first glance, recall seemed to perform best at estimating the real datasets.
However, when we examined the parameters esitmated using recall, we found that
the estimated parameters are exactly the same (prior = 0.2551, learn = 0.8407, guess
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= 0.4733, and slip = 0.3804) for all datasets as well as for the simulated datasets.
This is in fact not totally surprising. According to Equation (1), recall = TP/(TP +
FN). Therefore, there can exist parameters that predict all students’ answers to be
correct; FP = 0, and TP/(TP + FN) = 1. The parameters estimated by recall have
this characteristic because learn is very high, and slip is low; thus, the probability
that a student gives a correct answer is always more than 0.5 for any attempt, so recall
considers all the responses to be correct (positive). In fact, there are many more sets
of parameters that have this characteristic. When we evaluated recall at all points
in the entire parameter space with interval 0.1, there are between 2,400 and 3,200
points of parameters out of 10,000 points that have recall = 1. We can also observe this
characteristic in the recall heat maps in Figure 3 and 5 as the highest value regions
(dark blue region) are widely span across the parameter space.

Apart from recall, according to the result, LL was the best, estimating guess > 0.5 in
only one dataset and slip > 0.5 in only one dataset. RMSE estimated almost iden-
tical parameters as did LL, except for the circle area calculation skill from Khan
Academy. In that particular dataset, the estimated parameters using LL (PLL) had
prior = 0.2009, learn = 0.0491, guess = 0.05629, and slip = 0.1276, while the estimated
parameters using RMSE (PRMSE) had prior = 0.7183, learn = 0.186, guess = 0.9929,
and slip = 1. However, when we evaluated LL and RMSE of PLL and PRMSE , we actu-
ally found that PLL had better LL and RMSE values than did PRMSE ; unfortunately,
fminsearch failed to discover PLL when using RMSE. Therefore, it was not because
RMSE was inferior to LL, but fminsearch might not be the right algorithm for esti-
mating parameters. Accuracy appeared to be better than AUC according to the result,
and precision still appeared to be the worst metric.

Once again, the result from analyzing the real data suggests that LL and RMSE are
superior indicators of parameter validity.

9. CONCLUSION
According to all experiments we performed, the results consistently showed that when
evaluating Bayesian Knowledge Tracing models, RMSE and log-likelihood were su-
perior indicators of parameter validity (best representing ground truth). The other
metrics, on the other hand, were poor indicators and sometimes anti-correlated with
the closeness to ground truth. Our survey of EDM literature from 2010 to 2016 re-
vealed that RMSE was the most popular metric to evaluate BKT models. Our re-
sults validate this standard choice of evaluation metric. However, the close second
and third most frequently-used error metrics to evaluate BKT models—AUC and ac-
curacy, respectively—were shown to be particularly poor indicators of the closeness of
a model’s parameters to the ground truth in our studies. Metrics other than RMSE
and LL should therefore be steered clear of when evaluating BKT models except in
the cases where the model would be used purely for its prediction of observables and
not interpretation of its parameters or inferences on knowledge. For parameter fitting,
both RMSE and LL were again superior and provided a smoother gradient allowing for
better convergence than the other metrics. These results validate the existing standard
practices of using EM with LL or grid search with RMSE (or other residual based error
metrics such as SSE and MSE).

There are a few limitations of our study. First, we conducted our analyses on the
standard four parameter BKT model used in current intelligent tutoring systems.
However, researchers have extended the model to include additional parameters and
our studies did not include these new variants of the BKT model. Second, we conducted
most of our analyses on simulated datasets due to the lack of the ground truth in real
world settings. When we conducted the analysis on the real data, we could only use
the heuristic criterion that guess and slip should be less than 0.5 for checking param-
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eter validity but this criterion may not be appropriate for all settings. The domain
of reading tutors, for example, often have high guess and slip values associated with
words.

BKT and its extension models are being used to make pedagogical discoveries and
inform instructional practice in classrooms and within education technologies. The
original BKT model relies on accurate and interpretable parameter values in order to
make valid inferences on skill mastery. Our findings indicate that the accuracy of these
inferences is sensitive to the metric chosen to fit and select the underlying model. The
selection of the parameters for this student-centric model and broader development of
the model among the learning analytics field is strongly impacted by the chosen error
metric. It is incumbent upon the field to therefore choose the appropriate criteria to
guide model selection and development that improves the chances of realizing more
effective interactive learning environments for future learners.
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A. PARAMETERS OF THE 26 DATASETS
Table X shows numbers of student (N ), numbers of questions (Q), and the model pa-
rameters (prior, learn, guess, and slip) used in generating the 26 datasets.

data N Q parameters
prior learn guess slip

1 300 5 0.500 0.444 0.321 0.123
2 3,000 5 0.200 0.444 0.321 0.123
3 3,000 5 0.800 0.444 0.321 0.123
4 3,000 5 0.500 0.000 0.321 0.123
5 30,000 5 0.500 0.000 0.123 0.321
6 3,000 5 0.485 0.236 0.395 0.173
7 3,000 5 0.146 0.525 0.225 0.351
8 3,000 5 0.622 0.015 0.734 0.497
9 3,000 5 0.674 0.356 0.813 0.590

10 3,000 5 0.145 0.542 0.356 0.825
11 3,000 5 0.745 0.683 0.570 0.735
12 3,000 10 0.135 0.356 0.013 0.223
13 3,000 10 0.872 0.145 0.514 0.014
14 3,000 10 0.175 0.375 0.015 0.532
15 3,000 10 0.256 0.714 0.614 0.520
16 3,000 10 0.618 0.154 0.389 0.820
17 30,000 5 0.245 0.385 0.012 0.001
18 30,000 5 0.734 0.002 0.726 0.555
19 30,000 10 0.164 0.393 0.032 0.375
20 30,000 10 0.724 0.155 0.726 0.830
21 30,000 5 0.200 0.250 0.650 0.700
22 30,000 5 0.300 0.350 0.750 0.500
23 30,000 5 0.400 0.450 0.450 0.750
24 30,000 5 0.464 0.700 0.250 0.200
25 30,000 5 0.564 0.800 0.350 0.400
26 30,000 5 0.643 0.900 0.250 0.600

Table X: Numbers of student (N ), numbers of questions (Q), and the model parameters
used in generating the 26 datasets
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B. CORRELATION COEFFICIENTS
Tables XI and XII display the correlation coefficients between the error metric values
and the distances to the ground truth of the 26 datasets. Table XI shows the correlation
coefficients on the entire space, while Table XII shows the correlation coefficients on the
nearby space.

dataset LL -RMSE AUC precision recall accuracy
1 0.6662 0.6938 0.5714 N/A 0.5439 0.5630
2 0.6042 0.6347 0.4785 N/A 0.4645 0.5092
3 0.5313 0.5533 0.5099 N/A 0.4519 0.4542
4 0.4845 0.5167 0.3036 N/A 0.3835 0.4189
5 0.2840 0.2761 0.3836 N/A 0.0559 0.1046
6 0.6237 0.6450 0.4847 N/A 0.4987 0.5134
7 0.4158 0.4547 0.4613 N/A 0.1065 0.3779
8 0.3615 0.3570 0.4686 N/A 0.1505 0.1713
9 0.3472 0.3650 0.5112 N/A 0.0500 0.1722

10 0.6080 0.6234 0.0879 N/A -0.5421 0.5394
11 0.4355 0.4600 0.3234 N/A -0.3600 0.3680
12 0.4839 0.5361 0.5697 N/A 0.2123 0.3900
13 0.6326 0.6472 0.3609 N/A 0.5472 0.5461
14 0.4135 0.4283 0.4411 N/A -0.1880 0.3262
15 0.2473 0.2601 0.1955 N/A 0.0291 0.1031
16 0.6486 0.6601 0.2873 N/A -0.5498 0.5495
17 0.6049 0.6596 0.5930 N/A 0.3743 0.5056
18 0.3106 0.3145 0.4753 N/A 0.0472 0.1315
19 0.4146 0.4674 0.5335 N/A 0.0391 0.4968
20 0.5033 0.5184 0.5370 N/A -0.3533 0.3811
21 0.4536 0.4776 0.3741 N/A -0.1901 0.3678
22 0.4662 0.4720 0.3559 N/A 0.2158 0.2689
23 0.7133 0.7343 0.2384 N/A -0.5875 0.5931
24 0.4779 0.5081 0.5441 N/A 0.3636 0.3963
25 0.2418 0.2601 0.3218 N/A 0.1080 0.1355
26 0.2586 0.2833 0.2234 N/A -0.2507 0.2671

Table XI: Correlation coefficients on all points over the entire parameter space with a
0.05 interval.
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dataset LL -RMSE AUC precision recall accuracy
1 0.5114 0.5851 0.1453 -0.2114 0.2181 0.2238
2 0.4996 0.5914 0.3978 0.0826 -0.0273 0.3116
3 0.4247 0.5226 0.3088 -0.1019 0.0953 0.0903
4 0.6377 0.7231 0.5152 0.2327 -0.0706 0.4749
5 0.6890 0.7477 0.3739 0.2535 -0.1145 0.4316
6 0.5422 0.5615 0.3208 -0.2351 0.2478 0.2576
7 0.5665 0.5683 0.2997 -0.0369 0.0692 0.3062
8 0.5008 0.4965 0.1199 -0.2961 0.3073 0.3165
9 0.5101 0.5125 0.0688 N/A -0.0729 0.3801

10 0.4887 0.5526 0.1385 N/A N/A N/A
11 0.4769 0.4976 -0.0080 N/A N/A N/A
12 0.7097 0.7816 0.2569 0.1845 0.0439 0.3970
13 0.5255 0.5510 0.4504 -0.1644 0.1591 0.1450
14 0.6120 0.5859 0.3918 N/A -0.1631 0.1637
15 0.5219 0.5211 0.2294 N/A -0.0304 0.1100
16 0.5090 0.5292 0.3716 N/A N/A N/A
17 0.7337 0.8758 0.1852 0.3194 -0.3089 0.3083
18 0.5070 0.5070 0.3835 N/A 0.0419 0.3496
19 0.6644 0.6578 0.3423 0.1512 0.2177 0.4596
20 0.5444 0.6261 0.4221 N/A 0.0192 0.4127
21 0.5257 0.5242 0.2536 N/A 0.0453 0.3269
22 0.5125 0.5137 0.3232 -0.2132 0.2115 0.2520
23 0.4954 0.5070 0.1458 N/A N/A N/A
24 0.5225 0.5530 0.2738 -0.0144 0.0144 0.0144
25 0.5106 0.5117 0.0728 N/A 0.2215 0.2651
26 0.5041 0.5047 0.2411 N/A -0.1346 0.1345

Table XII: Correlation coefficients on all points over the nearby space with a 0.02 in-
terval.
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C. DISTANCES BETWEEN ESTIMATED AND TRUE PARAMETERS
Table XIIIa shows the distances between the true parameters and the parameters es-
timated using different error metrics. Table XIIIb shows the distances between the
true parameters and the parameters estimated using LL as an error metric with dif-
ferent optimization algorithms: the Nelder-Mead simplex direct search (fminsearch)
and EM.

Distances to ground truth
dataset LL -RMSE AUC Accuracy

1 0.16046 0.13851 0.35401 0.55390
2 0.01870 0.02018 0.42327 0.49986
3 0.05339 0.05379 0.25588 0.73739
4 0.79249 0.79318 0.83887 0.98154
5 0.00936 0.00912 0.86006 0.97494
6 0.08051 0.08259 0.24353 0.68375
7 0.05039 0.04757 0.62954 0.13820
8 0.08243 0.08241 0.76614 0.94761
9 0.05520 0.05513 0.20995 0.25054

10 0.06052 0.06425 0.42118 0.41955
11 0.70889 0.68040 0.81159 0.81159
12 0.01549 0.01618 0.38466 0.24073
13 0.00708 0.00684 0.18687 1.00025
14 0.00946 0.00958 0.67632 0.39972
15 0.07440 0.07469 0.72818 0.62698
16 0.03552 0.03002 0.42083 0.42235
17 0.00205 0.00176 0.66953 0.34508
18 0.02349 0.02332 0.35834 0.51167
19 0.00376 0.00398 0.46414 0.20174
20 0.00778 0.00835 0.14700 0.18727
21 0.00554 0.00546 0.43619 0.45631
22 0.01813 0.01817 0.62902 0.57764
23 0.02575 0.02484 0.40507 0.40135
24 0.03385 0.03254 0.55523 0.38189
25 0.16129 0.16217 0.96108 0.33565
26 0.65286 0.65288 0.86217 0.87407

mean 0.1211 0.1192 0.5269 0.5370
min 0.0020 0.0018 0.1470 0.1382
max 0.7925 0.7932 0.9611 1.0002
best 13 13 0 0

(a) Comparing error metrics using fminsearch

Distances to ground truth
dataset fminsearch EM

1 0.160456 0.160505
2 0.018700 0.018700
3 0.053392 0.053379
4 0.792490 0.792490
5 0.009361 0.009364
6 0.080506 0.080482
7 0.050389 0.050432
8 0.082431 0.082566
9 0.055203 0.055236
10 0.060524 0.066500
11 0.708886 0.560981
12 0.015491 0.015491
13 0.007084 0.007084
14 0.009462 0.009463
15 0.074401 0.107410
16 0.035518 0.035571
17 0.002048 0.002048
18 0.023489 0.025221
19 0.003764 0.003764
20 0.007785 0.007785
21 0.005540 0.005517
22 0.018134 0.016804
23 0.025751 0.016068
24 0.033850 0.033875
25 0.161295 0.168621
26 0.652855 0.422812

mean 0.1211 0.1080
min 0.0020 0.0020
max 0.7925 0.7925
best 19 14

(b) Comparing search algorithms using
LL as an error metric

Table XIII: Distances between the estimated parameters and the ground truth. Bold
indicates the best estimation when comparing error metrics (left) and when comparing
the Nelder-Mead search and EM (right).


