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Abstract

Understanding binding affinities of transcription factor (TF) proteins

to DNA sequence is crucial to the identification of regulatory regions that

control differential gene expression across cell types. Recent advancements

in ChIP-sequencing (ChIP-seq) allow us to accurately identify binding

sites for a specific TF in a cellular context of interest. However, running

a separate assay for each of the thousands of known TFs for a new cell

type of interest is time and cost-intensive, thus motivating the need for an

efficient computational method to infer experimental results of unknown

experiments using prior information gathered from experiments on ro-

bustly annotated cell types. We propose an attention-based deep learning

approach for learning the minimal set of epigenetic experiments required

to accurately quantify transcription factor (TF) binding sites from DNA

sequence.
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1 Introduction

1.1 Motivation

Understanding binding affinities of transcription factor (TF) proteins to DNA

sequence is crucial to the identification of regulatory regions that control differ-

ential gene expression across cell types. TFs recognize and bind to short DNA

motifs, regulating the rate at which nearby genes are transcribed into RNA. TF

binding specificity is not just determined by DNA sequence: TF cooperation

and other epigenetic factors also dictate where a given TF binds. TF coopera-

tion occurs when multiple TFs bind to nearby motifs, co-regulating expression

of nearby genes [6]. TF binding also depends on chromatin accessibility, whose

local and long range 3-dimensional interactions dictate the ability of TFs to

access regulatory regions of the genome [5].

Recent advancements in ChIP-sequencing (ChIP-seq) allow us to accurately

identify binding sites for a specific TF in a cellular context of interest [13].

However, running a separate assay for each of the thousands of known TFs for

a new cell type of interest is time and cost-intensive, thus motivating the need

for an efficient computational method to infer (or impute) experimental results

of unknown experiments using prior information gathered from experiments on

robustly annotated cell types.
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We propose an attention-based deep learning model based on the Trans-

former [15] for learning the minimal set of epigenetic experiments required to

accurately quantify transcription factor (TF) binding sites from DNA sequence.

Our method combines DNA sequence and partial epigenetic information to learn

the most informative set of biological experiments that can be leveraged to im-

pute missing experiments on unseen cell types. We frame this problem as a

sequence transformation problem, whereby partially observed labels are trans-

formed to have their missing values inferred, allowing for better predictions as

more epigenetic data is provided to the model.

We train and evaluate this model on four cell lines from the ENCODE con-

sortium [4], and though our preliminary experiments were unable to achieve

state-of-the-art in predicting TF binding sites, we do find that the information

gain through incremental inclusion of experimental data improves prediction

accuracy. We see this work-in-progress as a promising argument for imputation

as a valid framework for transfer learner and a step towards cell type agnostic

models.

1.2 Outline

The remaining sections in this report are structured as follows. Section 2 reviews

background information on the process of transcription, biological assays, and

the deep neural networks. Section 3 covers both related works in transcription

factor binding site prediction and other examples of deep learning in genomics.

Section 4 goes into detail on our methods and model architecture. Results are
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presented in Section 5. Section 6 includes analysis and discussion of the results,

and concludes with potential areas of future exploration.

2 Background

2.1 Regulation of Gene Expression

The first step of gene expression is the transcription of DNA into mRNA, which

begins with the recruitment of RNA polymerase to the gene. One or more TFs

may serve to either activate or block the recruitment RNA polymerase, thereby

directly upregulating or downregulating the given gene. TFs can act by binding

to the promoter site, which is proximal to the gene, or to distal enhancer sites.

While enhancers are linearly far from the promoter, they are brought into close

spatial contact through folding of the DNA.

Figure 1: Sketch of gene expression regulation, from Wikimedia Commons, the

free media repository [3].

TF binding specificity depends not just on binding site DNA sequence, but
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also on chromatin accessibility. Nuclear DNA is packed tightly in chromatin

complexes, which means that most of the genome is inaccessible to the proteins

that regulate transcription. A region of DNA is referred to as being in an “open”

state if it is accessible, and in a “closed” state otherwise. Open chromatin is

associated with active transcription, as the loose structure allows TFs, RNA

polymerase, and other proteins to access sites of interest.

Figure 2: Sketch of chromatin macrostructure, from Wikimedia Commons, the

free media repository [2].
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2.2 Deep Neural Networks

Deep neural networks (DNNs) are modern renditions of the classic multilayer

perceptrons from the sixties, and represent a powerful class of machine learning

models that are able to fully leverage modern compute. DNNs can be thought

of as abstract function approximators that can be trained efficiently through

stochastic gradient descent when given enough data and structurally specialized

for particular domains [10]. For instance, deep convolutional neural networks

(CNNs; [11]) excel in tasks where the input has strong spatial locality, such

as natural images and audio signals. CNNs exploit spatial locality by learning

a hierarchical set of translation-invariant filters. These translation-invariant

properties are enjoyed in many biological applications, such as scanning the

genome to call variants, which is only feasible when parameters are shared

across genomic regions.

Recurrent neural networks (RNNs; [12]) share parameters along a temporal

axis. They differ from CNNs in that they maintain an internal state which

gets updated as the input is processed sequentially. RNNs excel in tasks where

long-range relationships in the sequence need to be captured, such as natural

language parsing. One pitfall of RNNs is that updating the internal state at

each timestep requires the updated state from the previous timestep, a property

which earns the RNN its “recurrent” namesake. The sequential nature of this

computation make RNNs difficult to parallelize, and as a consequence slow to

train.

Until recently, the state-of-the-art in sequence-to-sequence modeling has
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been dominated by hybrid architectures that add an attention mechanism to

an RNN [9]. Recent work on the Transformer [15] mitigates this computational

constraint imposed by RNNs by relying solely on the attention component of

the hybrid architecture, which can be trivially parallelized as a series of dot-

products. The main component of the Transformer is the self-attention layer

which computes representations at each position in parallel with scaled dot-

product attention, relating different positions within a single sequence to com-

pute the succeeding representation, capturing the entire scope of a sequence in a

single layer. Scaled dot-product attention is computed as follows, where K,V,Q

are the keys, values, and queries, and d is the queries and keys dimension:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (1)

The authors found it beneficial to compute several attention functions by

linearly projecting the keys, values, and queries into multiple representation

spaces. A modification they call multi-headed attention.

Like most sequence-to-sequence architectures, the Transformer is built from

an encoder-decoder schema, where the encoder maps an input sequence to an

intermediary continuous representation, which is then decoded to an output

sequence by a decoder. In an encoder layer, one or two sub-layers of self-

attention is followed by a fully-connected feed-forward network. In a decoder

layer, one or two sub-layers of self-attention is followed by one or two sub-layers

of encoder-decoder attention, which integrates information from the encoder,

and finally by a fully-connected feed-forward network. In self-attention layers,
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the keys, values, and queries all come from either the encoder or decoder. For

the encoder-decoder attention, the keys and values come from the encoder while

the queries come from the decoder.

3 Related Work

3.1 DeepBind

Several works have used convolutional neural networks to predict TF binding

sites from DNA sequence. DeepBind [16] uses a single convolutional layer fol-

lowed by a fully connected layer to classify sequences on variable length regions.

Though this simple architecture is unable to achieve state-of-the-art in predict-

ing TF binding sites, the interpretability of the filters it learns are surprisingly

insightful and valuable to the biological community, illustrated in Figure 3.

3.2 DeepSEA

DeepSEA [1], uses a 3-layer convolutional neural network to predict binding

behavior of 200bp regions of DNA, optionally flanked by up to 800bp of “con-

text”. This model is hosted online to be applied by biologists in predicting the

local effects of single nucleotide polymorphisms (SNPs). SNPs are small genetic

mutations which often turn genes on and off, alter protein structures in a cell,

and cause genetic diseases including cancer. The model’s accuracy increases as

more contextual information is given, suggesting that there is value in consid-

ering larger genomic regions. DeepSEA serves as our state-of-the-art point of
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Figure 3: Example motif detectors learned by DeepBind models, along with

known motifs, from [16].

comparison.

4 Approach

4.1 Imputation

While the neural network architectures in Section 3 have had considerable suc-

cess in predicting TF binding sites from DNA sequence, they have two limita-

tions that we seek to address. First, these methods predict TF binding events in-

dependently, and fail to share information regarding cooperative binding across

model parameters. Second, because binding events are predicted independently,
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when partial experimental information from a new cell type is available, the

model is unable to leverage prior knowledge to bootstrap the prediction of un-

known experiments.

To overcome these two limitations, we present a neural network architecture

based on the Transformer that aims to improve TF binding site prediction by

imputing a set of unknown binding events from a set of known experiments.

This imputation model can be applied on a held out cell type of interest, re-

moving the cell type specific constraints of previous models [1]. We frame this

problem as a sequence-to-sequence task, whereby partially observed labels are

transformed to have their missing values imputed. The method, which we call

Transcription Factor Transformer Imputation (TFTI), incorporates cell type

specific information into the model, allowing for transfer learning to unseen cell

types.

4.2 Model Architecture

We modify several components of the original transformer architecture. On

the encoder side, our imputation model takes in as input an n-gram embedded

DNA sequence. We choose to work specifically with 4-grams to ensure a balance

between expressive power and model complexity. Following the multi-headed

attention, the encoder uses convolutional layers, instead of position-wise fully-

connected layers. We found that switching from fully-connected to convolutional

layers improved model performance.

On the decoder side, the network takes in as input a embedded sequence of
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Figure 4: The TFTI Transformer network.

partially observed labels, where missing labels get a unique embedding, and out-

puts a sequence of binary labels corresponding to negative and positive values.

All missing labels are imputed in the final output. Since there is no underlying

order in the label space, we remove the positional embedding and causal mask-

ing used in the decoder self-attention. The decoder generates outputs using the

latent input, so we want to allow each position to attend to all other positions,

including subsequent ones. The total size of our network is ∼50 million param-

eters, which is comparable to DeepSEA’s ∼60 million parameters. The TFTI

model architecture is illustrated in Figure 4.
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4.3 Input and Label Embedding

For the DNA sequence input, we use the DNA encoder in the Tensor2Tensor

[tensor2tensor] library to represent each 4-gram with a unique token. We

embed each of the 4-grams using a learned embedding matrix and use sinu-

soidal positional encoding, which was introduced by [15]. For the labels, we

use position-wise learned embeddings, as a binding event for a particular tran-

scription factor should be interpreted differently as a binding event for another

transcription factor. Thus, for each label, we learn an embedding for the posi-

tive, negative, and unknown values.

4.4 Training Procedure

To train a model that can perform imputation of missing data at test time,

we introduce stochasticity into the training procedure by randomly discarding a

subset of the labels. The proportion of the labels feed to the model is a hyperpa-

rameter, p, where any particular label is kept with probability p, and discarded

labels are replaced with an unknown token. We implement this procedure by

generating a random boolean mask for each batch of training examples. When

evaluating the model, we modify this procedure to mask out the same label

across all examples in a batch. The p used at inference time does not have to

match the p used at test time, we found that setting p = 0.1 at training time

yields the best results.
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5 Preliminary Results

5.1 Dataset

Both training and evaluation use the dataset published by the authors of DeepSEA,

which contains 4.2 million training examples from the ENCODE consortium

[encode-1, encode-2]. Each training example is DNA sequence of length 1000,

one hot encoded, and a corresponding binary label vector for 919 chromatin

features. Each value in the label applies only the middle 200bp of the DNA

sequence, and the 400bp flange on each side provides additional context. The

chromatin features contain not only transcription factors, but also DNase I-

hypersensitivity sites and histone marks. The DNA sequences from the hg37

reference genome and only those sequences with at least one transcription fac-

tor binding event are included in the dataset. The dataset suffers from class

imbalance as most of the labels are negative.

We consider only a subset of the labels present in the DeepSEA dataset.

Specifically, we look at the HeLa-S3, GM12878, HepG2, and K562 cell types.

We train on the HeLa-S3, GM12878, HepG2, and K562 cell types and validate

on held out chromosomes from the same cell types. For testing, we use the

H1-hESC cell type, which is never seen during training, to evaluate the transfer

learning capabilities of our model. This setup is similar to the zero-shot learning

problem, as the model is trained without any data from the test cell type. There

is biological motivation for such a setup, as we seek to apply our model to newly

sequenced cell populations.
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5.2 Comparison to DeepSEA

We compare our model to DeepSEA [16], a state-of-the-art convolutional model

for predicting TF binding sites from DNA sequence. We trained our model using

the same training and validation sets as DeepSEA, but considered only a subset

of their labels corresponding to cell type GM12878 to allow for transferability

between cell types. In comparing these models we consider a set of 35 epigenetic

marks, including 34 transcription factor binding events and a binary DNase

label. Each of these marks represents a separate but correlated binary prediction

task. Each model is evaluated on the average Area Under Receiver Operating

Characteristic (avgAUC) across these 35 marks. In this comparison, methods

are evaluated on held out chromosomes of the same cell type. As shown in Figure

2, our model does not outperform DeepSEA, even when additional epigenetic

information is provided. Although it is important to note that our model is cell

type agnostic and generalizes to unseen cells, as shown in Figure 1.

5.3 Transfer Learning

While restraining models to a single cell type makes comparing to existing mod-

els easier, the most exciting use cases of our model involve application to a new

cell type absent in the training set. To this end, we train a model on 19 epi-

genetic marks (18 TFs and DNase) across 4 cell types (HeLa-S3, GM12878,

HepG2, K562) and test on a fifth (H1-hESC). Cell types and transcription fac-

tors were chosen to have a large intersection of marks over a sufficient number

of cell types in the DeepSEA dataset. In this context we expect imputation to
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Figure 5: Imputation curves of models keeping different percents of the marks.

be valuable, since despite all cell types having the same genetic sequence, the

behavior of TFs differ and offers a window of insight into epigenetic behavior.

Probability of
keeping a mark

Average AUC on held out
chromosome in test cell

Average AUC on held out
chromosome in training cells

0.00 0.8211206 0.874447

0.03 0.8250943 0.883317

0.25 0.8473549 0.918758

0.50 0.8641222 0.933156

0.75 0.8725221 0.937384

Table 1: Multi-cell model trained with 25% on held out chromosomes.
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Figure 6: Average AUC as the number of known marks is increased. The blue

bands represent lower and upper bounds of the Average AUC and the black line

is the Expected Average AUC taken across all possible subsets of a given size.

5.4 Experimental Design

5.4.1 Beam Search

We perform greedy forward subset selection based on beam search over our im-

putation model to determine the set of experiments which maximizes prediction

accuracy on imputed experiments. Beam search provides a tractable approach

to exploring the space of all experimental subsets.

We define E as the set of all experiments and S ⊆ E as a subset of those

experiments. Starting from the root of the search tree B0 = {∅}, beam search

computes candidate beams B′i = {S ∪{e} : S ∈ Bi−1, e ∈ E, e 6∈ S}. Candidates
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are ordered according to a heuristic value function and only the top β experiment

sets are kept, thus Bi ⊆ B′i and |Bi| = β. For our heuristic, we use the average

area under the curve (AUC) computed over all epigenetic marks when partial

information from experiments in S is provided to the model during inference.

This heuristic is not sub-modular, we found that adding particular marks to a

subset occasionally has a negative effect on AUC.

Subset size Experiments
Average AUC of imputed marks

on held out chromosome

0 ∅ 0.869723

1 {CHD2} 0.905142

2 {DNase, CHD2} 0.924376

3 {RFX5, DNase, CHD2} 0.934909

4 {RFX5, EZH2, DNase, CHD2} 0.944609

Table 2: Average AUC of optimal subsets up to size four.

Although beam search is not guaranteed to give the optimal subset of ex-

periments, we can always trade computational efficiency for a better solution

by increasing β. When β is infinite, beam search is equivalent to an exhaustive

breadth-first search. In terms of complexity, exhaustively searching the space of

experiment subsets of size k is O(2k) in time complexity, while beam search runs

in O(βk). We find that running beam search with β = 4 to find optimal subsets

up to size k = 4 gets the same results as exhaustive search on the imputation

task, shown in Table 2.
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5.4.2 Shapley-value Analysis

Although Beam Search provides us with an optimal set of experiments, it does

not provide us with insight into how specific assays affect the efficacy of our

model. Multi-perturbation Shapley-value Analysis (MSA; [8]) gleans insight

into the marginal and cooperative contributions of epigenetic marks learned

from our imputation model, allowing us to determine the consequence of differ-

ent assay pairs on the final accuracy of our model. MSA has been succsessfully

been employed to identify the contributions of multiple genes to the success of

specific biological pathways [7]. In our setting, we use the marginal contribu-

tions indentified by MSA to identify outliers that have synergistic or adversarial

affects on prediction accuracy. Finally, two dimensional MSA allows us to iden-

tify cooperative contribution among marks.

The Shapley value computes the overall gain from a subset of a coalition of

players, and can determine the most important players in the outcome of a game

[14]. To determine marginal and cooperative contributions of epigenetic marks

in the prediction accuracy of our model, we define a coalitional game as a set of

experiments N of size n and a value function v that measures the contribution

of a subset of experiments in the coalition. We define the value function v(S)

as follows:

v(S) = AverageAUC(S)−AverageAUC(∅) (2)

Where S is a subset of epigenetic experiments, and AverageAUC(S) is the

average area under the curve (AUC) computed over all epigenetic marks when
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partial information from experiments in S is provided to the model during in-

ference. We use this value function to compute the generalized Shapley Value

φ for a given subset of epigenetic marks C:

φC(v) =
∑

T⊆N\C

(n− |T | − |C|)!|T |!
(n− |C|+ 1)!

∑
S⊆C

(−1)|C|−|S|v(S ∪ T ) (3)

Computing the Shapley value for each experiment requires inference to be

run on all possible combinations of partial experiments from the 19 original

experiments, resulting in 524,287 inferences to be run. To decrease the number

of inference runs, we utilize Multi-perturbation Shapley Value Analysis (MSA)

to predict the value function for combinations containing more than five exper-

iments using projection pursuit regression [8].

We perform one and two dimensional MSA to compute the marginal contri-

butions of nineteen epigenetic marks, including eighteen TFs and one chromatin

accessibility mark (DNase hypersensitivity). Figure 7 visualizes the marginal

and shared contribution of each mark. One dimensional Shapley Analysis re-

veals that CHD2, DNase, and p300 have the highest marginal contribution in

the system. These marginal contribution scores closely align with the average

AUC calculated from each mark.

Two dimensional MSA characterizes pairwise interactions between marks.

The two dimensional information between mark i and j, denoted Ii,j , is specified

in [8] as:

Ii,j = φ(i, j)− φC(i, j̄)− φC (̄i, j) (4)
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Figure 7: One dimensional MSA run on 19 epigenetic marks.

Where φ(i, j) is the Shapley value of i and j, φC(i, j̄) is the Shapley value of

the game containing i but not j, and φC(j, ī) is the Shapley value of the game

containing j but not i. The 2D information indicates whether pairwise inter-

actions are neutral, synergistic or antagonistic. If Ii,j = 0 then the marginal

contribution of marks i and j are additive, if Ii,j > 0 then the pairwise inter-

action is synergistic, otherwise the interaction is antagonistic. Figure 8 plots a

heatmap of the two dimensional information computed from all pairwise com-

binations of the 19 marks. From this figure, we conject that the interaction

between JunD and multiple other factors is antagonistic, which is a hypothe-

sis that is supported by the one dimensional MSA analysis, as JunD has no

marginal contribution.
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Figure 8: Two dimensional MSA run on 19 epigenetic marks.

6 Discussion

So far, in our work-in-progress, we were not able to achieve state-of-the-art

results in predicting TF binding sites. However, this project is a continued

effort and represents the iterative refinement process of research. We had a

hypothesis, that providing epigenetic data to our model would improve model

performance and enable cell type generalization, which we show to be true using
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our imputation method. Furthermore, we show that our imputation model

can be readily employed to determine the set of experiments which maximizes

prediction accuracy on imputed experiments, a first step in using DNNs to

inform experimental design in biology.
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