
Exploring Novel Architectures For Serving Machine
Learning Models

Aditya Chopra

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-73
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-73.html

May 18, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Exploring Novel Architectures For Serving

Machine Learning Models

by Aditya Chopra

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Randy Katz
Research Advisor

(Date)

? ? ? ? ? ? ?

Professor Krste Asanović
Second Reader

(Date)

Exploring Novel Architectures For Serving Machine Learning Models

Copyright c© 2018

by

Aditya Chopra

1

Abstract

Exploring Novel Architectures For Serving Machine Learning Models

by

Aditya Chopra
Master of Science, Plan II in Engineering - Electrical Engineering and Computer

Sciences

University of California, Berkeley
Professor Randy Katz, Research Advisor

In this work, we present two serving-time machine learning service architectures. Our
goals are to improve resource utilization, inference latency, and throughput.

The first system, Shockwave, leverages hardware accelerators to explore pipelin-
ing a machine learning model such that we can achieve low batch size, low latency
inference while improving hardware utilization. Shockwave’s model is particularly
compelling given the increasingly prevalent disaggregated datacenters.

The second system, ModelFuse, attempts to manipulate inference graphs to
reduce overall latency when serving models. Specifically, we optimize model graphs
of a single model, or multiple models being served together. ModelFuse offers a
compelling way to combine those inferences to reduce overall latency.

Contents

Contents i

List of Figures ii

List of Tables iii

1 Introduction 1

2 Shockwave 4
2.1 Motivation . 4
2.2 Related Work . 4
2.3 System Design . 5
2.4 Evaluation . 7
2.5 Conclusion . 9

3 ModelFuse 11
3.1 Motivation . 11
3.2 Related Work . 13
3.3 System Design . 14
3.4 Evaluation . 18
3.5 Conclusion . 21

4 Conclusion 23

ii

List of Figures

1.1 Batching in a serving system. 2

2.1 The Shockwave pipeline design. 6
2.2 An alternative design. 7
2.3 Pipeline performance with and without Hwacha. 8
2.4 Pipeline performance different with varying network parameters. . . . 9

3.1 A simplified version of the Inception graph 12
3.2 The operator graph of two fused Inception models 13
3.3 Clipper’s containers can now take queries to one of many models in

the same container that are all being evaluated on the same hardware
resource. 17

3.4 TensorRT’s performance on MNIST Dense model. 18
3.5 TensorRT’s performance on ResNet on a Tesla K80 and Tesla V100. . 19
3.6 ModelFuse performance improvements. 20
3.7 Latency improvements with ModelFuse through layer fusion. 21
3.8 Clipper improvements allow for serving ensembles in a more granular

way and increases throughput in the case of queries to just one of those
models. 22

iii

List of Tables

2.1 Cycle counts from running a VCS simulation of one node with and
without pipelining. 7

2.2 Network configurations. 8

iv

Acknowledgments

This work would not have been possible without the help and collaboration of many of
my colleagues at the ADEPT and RISE labs. First, I want to thank Martin Maas for
introducing me to the world of research and guiding me through my undergraduate
years into grad school. I would also like to thank Sagar Karandikar, Nathan Pember-
ton, Colin Schmidt, Dayeol Lee, Howard Mao, and the rest of my colleagues at the
ADEPT lab as well as Corey Zumar, Ankit Mathur, Chia-Che Tsai, and Jeongsok
Son from the RISE lab.

I would like to thank my advisers Professors Randy Katz and Krste Asanović for
providing me the opportunity to do research throughout my undergraduate degree
and for providing guidance and support during my Master’s degree. Thank you also
to Professor Raluca Ada Popa for giving me the opportunity to both research and
teach security.

Thank you to my friends for all the adventures, memories, and support. Last
but not least, I would like to thank my parents, Meenu and Rajesh Chopra for their
unwavering support, positive influence, and inspiration. Without them, none of this
would have been possible.

1

Chapter 1

Introduction

Machine learning has become ubiquitous across consumer applications. Machine
learning algorithms power everything from natural language processing to computer
vision. These algorithms can be broken down into two classes: training and infer-
ence. Training workloads are characterized by large amounts of data being repeatedly
loaded into memory to train a model. The inference workload, by comparison, needs
to process far less data in order to classify a single piece of input data. While a large
body of research has been dedicated to improve training performance, particularly
because of this distinction in workload type, inference has not been given as much
focus. However, while a model can be allowed to train for long amounts of time on
the order of hours to days, inference has strict performance requirements because of
its consumer-facing nature. Given these constraints, systems engineers face an inter-
esting problem of being able to optimize a relatively small computation to achieve
ambitious performance goals.

Because of the enormous data, computational, and engineering requirements for
developing cutting edge machine learning models, companies such as Google devote
resources to developing machine learning models which they offer as a service to busi-
nesses and consumers. For example, Google offers Cloud Vision API [19] as a machine
learning service that classifies images. By leveraging Google’s API, businesses can
abstract away the complexities of developing and training such models and just fo-
cus on deployment in their own product. Because fast and consistent performance
from these models can be essential for a cloud provider’s customers, it is important
for these companies to enforce strict service-level agreements. Two key metrics for
measuring this performance are latency and throughput.

For a machine learning service, latency refers to the time it takes from the server
receiving the request to outputting the classification. This is an important metric for
companies to optimize for real-time applications because a large latency may directly
manifest itself in performance degradation in customer applications. Not only is it
important to optimize the average latency but also the tail latency. Tail latency refers
to the tail part of the latency distribution across a large number of requests. Even if a

CHAPTER 1. INTRODUCTION 2

USER
REQUEST

SERVER ML SERVICE

BATCHED
INPUT DATA

INFERENCES

USER
REQUEST

USER
REQUEST

Figure 1.1: Batching in a serving system.

service has a desirable average latency, it is important that said latency is consistent.
Throughput refers to the number of classifications made per time quanta. This is

an important metric to optimize for applications that require a large number of infer-
ences. Traditionally, in serving systems there is a user-level tradeoff between through-
put and latency. Requests can be batched together in order to improve throughput.
However, with large batch sizes, come larger average latencies because requests need
to be accumulated before being batch processed.

A metric that service providers look to optimize is utilization. A company offer-
ing a service is incentivized to completely utilize all their resources to maximize profit.
In practice, maximizing utilization is hard because it is impossible to predict exactly
how many requests will be incoming to the service at a given time, meaning that a
fully-utilized server would make incoming requests wait for the resources needed to
process them. This would hurt the service metrics such as latency and throughput,
which service providers are further incentivized to keep performant.

The crux of the problem that service providers face is that of maximizing hard-
ware utilization while also ensuring low latencies and high throughput. Hardware
accelerators take us one step towards solving this problem by allowing for faster com-
putation, thereby reducing latency while maintaining batch sizes.

In the past, companies were disincentivized from using specialized hardware.
There was no reason to spend more money on specialized hardware that will out-
perform a general-purpose CPU until the next generation CPU comes out with far
greater performance. Now, as we see the end of Moore’s law, CPUs are no longer able
to compete with hardware that has been built specifically for certain workloads. Com-
panies are now economically incentivized to build specialized hardware accelerators
such as Google’s TPU [10], which is designed to offer performance improvements when
running TensorFlow [1] applications. Accelerators are particularly useful for machine
learning workloads because these workloads repeatedly use the same mathematical
operators such as matrix multiplication. Building said operators into hardware can
immediately yield performance upgrades.

CHAPTER 1. INTRODUCTION 3

Cloud providers have also begun exploring novel datacenter architectures such as
the disaggregated [5] model. A disaggregated datacenter is built around splitting re-
sources such as CPUs, storage, and specialized compute. A disaggregated datacenter
is desirable because it allows for easy hardware upgrades (because of the decoupling
of resources) and statistical multiplexing, which allows for higher resource utilization.
Given pools of specialized compute, or hardware accelerators, we are faced with the
systems problem of how best to design our software to leverage this compute to serve
machine learning models.

The contributions of this paper are as follows:

1. In the first section we explore sharding a single model’s inference graph onto
several accelerators. In this exploration, we build and evaluate Shockwave,
a machine learning model serving pipeline which leverages a pool of custom
hardware accelerators.

2. Then in the next section we explore ModelFuse, a system built to transform
model graphs in order to improve single and multi-model inference performance.

The structure of the paper is as follows. Chapter II describes Shockwave. Chapter
III describes ModelFuse. Chapter IV concludes the paper with a high-level analysis
of all the results.

4

Chapter 2

Shockwave

2.1 Motivation

Neural networks can take on the order of days to train. Given the significant
amount of time spent training and tuning these networks, a single version of the
network can be served for extended periods of time. Because these neural networks
don’t change often, we can bake the weights into the hardware serving the models.
This enables us to avoid the overhead involved with loading weights into memory by
persisting them in on-chip registers. This is particularly useful in the case of larger
neural networks such as VGG [20] that can be on the order of 100s of MB large.

Unfortunately, because these networks can be so large, we cannot persist them
in a single accelerator’s on-chip memory. This is where the idea of a pool of hard-
ware accelerators is useful. We can shard the large neural network across a series of
accelerators, which communicate over a datacenter network. Furthermore, given the
trend towards disaggregated datacenters, we need to consider that the link latencies
for accessing memory and CPU can be much higher than that required to access other
accelerators.

We explore this idea with Shockwave, a bare-metal machine learning model
serving pipeline. The goal is to leverage a pool of hardware accelerators in order
to improve hardware resource utilization while maintaining inference latency, despite
the additional communication overhead between accelerator nodes.

2.2 Related Work

2.2.1 Brainwave

Microsoft recently announced their real-time AI system, Brainwave [3]. Project
Brainwave leverages Microsoft’s cloud FPGAs to synthesize soft deep neural network
(DNN) processing units (DPUs). More specifically, they leverage pools of FPGAs

CHAPTER 2. SHOCKWAVE 5

to serve pretrained machine learning models. When multiple DPUs serve a single
model, each contains a piece of the DNN. They claim that this design beats out other
architectures because:

1. FPGAs are flexible and allow for hardware innovations to be realized quickly.

2. They avoid batching by optimizing their soft DPUs to leverage all of the on-chip
resources to perform a single inference. This reduces latency while maintaining
high utilization.

Brainwave leverages the scalability of cloud FPGAs to deliver hardware mi-
croservices for serving machine learning models independent of CPU.

2.2.2 FireSim

To experiment on a disaggregated datacenter, we use FireSim [11], a cycle-exact,
FPGA-accelerated datacenter simulator developed at Berkeley. FireSim allows users
to use RTL to specify custom datacenter blades, use C++ to customize switches, and
configure network topologies and parameters at runtime. This is particularly valuable
for Shockwave, as it allows us quickly iterate on datacenter parameters to identify
bottlenecks when doing performance analysis.

2.2.3 Hwacha

Hwacha [14] is a non-standard RISC-V extension, also built at Berkeley, that
uses a vector-fetch paradigm. It is built to optimize for better performance, better
energy efficiency, and lower complexity. Specifically, we utilize the vector intrinsics
to accelerate our neural network computations.

2.3 System Design

We choose to evaluate a one-layer neural network for identifying handwritten
digits. This neural network was trained separately on the MNIST [13] dataset. This
dataset is often used as a proof of concept network due to its small size and simple
design.

We use FireSim to simulate a six node pipeline and measure cycle-accurate
timing information. Our simulated server blades are RISC-V rocket cores running at
3.2 GHz, with 16 KiB Instruction and Data Caches, a 256 KiB L2 Cache, and a 200
Gbps Ethernet NIC. We connect the server blades to a top-of-rack switch with 200
Gbps links of varying latencies.

We use the Hwacha vector accelerator to speed up our computations. Hwacha
lends itself to our use case since it intrinsicily supports vector and matrix computa-
tions, which are commonly found in neural network inference computations.

CHAPTER 2. SHOCKWAVE 6

CLIENT CELLS 0­1
(HWACHA)

TOP OF RACK SWITCH

CELLS 2­3
(HWACHA)

CELLS 4­5
(HWACHA)

CELLS 6­7
(HWACHA)

CELLS 8­9
(HWACHA) img 2 img 3img 5 img 4 img 1

argmax of img 0

argmax argmax argmax argmax

Figure 2.1: The Shockwave pipeline design.

2.3.1 Pipeline Design

We architect our pipeline such that each node is processing one image at a time.
Before we discuss what each node is doing, we look into how the neural network
computation produces classifications.

In this one-layer neural network, we have 10 cells. Each cell computes the
dot product between the weight associated with it, and the image (represented as
a vector). Each dot product represents the probability of the given cell being the
image’s classification. For example, if the cell at index 3 ends up having the largest
dot product, the classification is 3 (with probability equal to the normalized value of
the dot product).

Now, consider a single node in the pipeline. It begins by taking in an image vector
and the argmax of the previous nodes’ computations. Then, the node is responsible
for performing the computations for two cells. It will compute two dot products,
compare the values with the input argmax value, and pass the argmax of those values
on to the next node. Then, at the end of the pipeline, the resulting argmax is the
classification.

All of the nodes are interconnected using a top-of-rack switch and communicate
over an Ethernet link.

2.3.2 Alternate Designs

We also considered other designs for leveraging a pool of hardware accelerators.
For example, instead of having requests directly enter the pipeline, one may also de-
sign a system where client requests are first handled by a load balancing node that
forwards requests on to different nodes based on their utilization. The main differ-
ence between this design (Figure 2.2) and Shockwave is that each accelerator node
processes the entire neural network. This means that for large neural networks, the
weights take up a significant part of memory and need to be loaded for every inference.
Furthermore, the design suffers from software overhead of utilization monitoring and
load balancing. However, this design is similar to Shockwave in that it benefits from
using the entire processing capability of the accelerator to process each image.

CHAPTER 2. SHOCKWAVE 7

LOAD
BALANCER

HWACHA

TOP OF
RACK
SWITCH

HWACHA

HWACHA

HWACHA

HWACHA

INCOMING
REQUESTS

img 0

img 3

img 1

img 2

img 4

Figure 2.2: An alternative design.

Cycles Cycles (2 imgs)1

2 cells without Hwacha 460857 158925
2 cells with Hwacha 439805 76397
2 cell cycle savings 21052 82528

Aggregated savings2 105260 2063203

Table 2.1: Cycle counts from running a VCS simulation of one node with and without
pipelining4.

2.4 Evaluation

We begin by evaluating a single node running two cells on a VCS simulation of a
Hwacha where the node does not utilize the Hwacha’s vector instructions. Then, we
perform the same simulation, only using the vector instructions. We found that we
saved 21,052 cycles by using the accelerator. Furthermore, since this was a simulation
of one node, we can extrapolate the per-node cycle savings to our entire pipeline,
resulting in a speed up by ∼ 105,000 cycles.

Next, we simulated a node classifying two images. This was to measure the
effect of baking the neural network weights directly into the hardware. We expected
to see increased savings, since the model weights would not need to be loaded in
redundantly for each image. The results indicate that the per image cycle savings are
increased by a factor of two.

Next, we scaled the per-image performance improvements from using Hwacha
and subtracted it from the cycle counts from a FireSim simulation of the pipeline.
In Figure 2.3 we can see that as the number of images scales up, the performance

1The cycle counts for this column differ because of binary version.
2Cycle savings per image across all nodes.
3Normalizes the cycle savings for a single image.
4Note that in order to measure pipelined performance, we run the node on two images.

CHAPTER 2. SHOCKWAVE 8

1-layer neural net performance

C
yc

le
 c

ou
nt

275000000

381250000

487500000

593750000

700000000

Number of images

0 25 50 75 100

Hwacha
Without Hwacha

Figure 2.3: Pipeline performance with and without Hwacha.

improvements become significant.
After computing linear regressions on the data collected, we found that the non-

Hwacha pipeline cycle count scales in the number of images with a factor of 4.354×106

while the Hwacha pipeline scales with a factor of 3.837 × 106. Dividing the two, we
determine that Hwacha provides a speedup of around ∼ 1.13× for this use case.

Our next evaluation was of the entire pipeline in FireSim. We ran the pipeline
with three network link latencies ranging from 1 µs to 11 µs. As seen in Figure 2.4, the
latencies did not offer much performance improvement. Despite setting link latencies
to extremely low values, we found that there was no major improvement.

Network Link latency (µs)

0 1.001
1 5.469
2 10.938

Table 2.2: Network configurations.

We investigated the issue and found that it lay in the fact that nodes would

CHAPTER 2. SHOCKWAVE 9

1-layer neural net performance

C
yc

le
 c

ou
nt

275000000

381250000

487500000

593750000

700000000

Number of images

0 25 50 75 100

Network 0 Network 1
Network 2

Figure 2.4: Pipeline performance different with varying network parameters.

receive the data from packets, perform computations, and forward them on. These
nodes were not signaling to the previous nodes that they were done with computa-
tions, meaning that the previous nodes would either wait too long before sending more
packets and waste time, or drop packets all together because the receiving nodes had
not finished their computations. By introducing a feedback mechanism, we believe
we could resolve this bottleneck and improve throughput.

2.5 Conclusion

In this work, we built a neural network serving pipeline and evaluated it against
different network capabilities. We leveraged FireSim to quickly prototype and accu-
rately measure the performance of our model. We also modeled performance improve-
ments from utilizing Hwachas to accelerate our model’s classification. We learned that
the bottleneck in pipelines such as the one we built remains in the computation. While
improving the network link latencies offered some speedup, after a certain point, the
neural network computations were preventing further performance improvements.

CHAPTER 2. SHOCKWAVE 10

In terms of future improvements for Shockwave, we plan to:

1. Re-evaluate the performance when Hwacha support is added to FireSim.

2. Explore more complicated machine learning workloads such as deep neural net-
works.

3. Introduce a load generator to measure tail latency performance.

In the next chapter, we move from exploring resource-based optimization to
model graph optimizations.

11

Chapter 3

ModelFuse

3.1 Motivation

As machine learning is becoming increasingly productionized, model serving is
emerging as a central problem. Many larger companies have well-developed, yet pro-
prietary solutions for serving models, while companies with less infrastructure at their
disposal often leverage ad hoc solutions or traditional query serving systems. The re-
cent introduction of Clipper [4] and Tensorflow Serving [16], two dedicated model
serving platforms, is helping to improve the accessibility of serving infrastructure to
a broader set of organizations.

These model serving systems rely on an abstraction that treats each model as a
black box entity. Furthermore, these systems inhibit fine-grained hardware allocation
decisions, stipulating that only a single model be executed on a given accelerator at
any one time. We refer to this allocation policy as the one-to-one serving paradigm.

While few companies are able to allocate a dedicated compute resource for each
served model per quantum, this is not generally feasible. Rather, models often need
to share a constrained set of hardware resources. Accordingly, optimal utilization of
this limited set of resources is critical. However, the one-to-one paradigm falls short
of this goal: evaluating a single model rarely utilizes the entirety of available compute
afforded by a hardware accelerator. This underutilization is particularly prevalent in
the case of serving ensembles of lightweight models.

Ensembles are frequently used for a wide variety of production use cases, in-
cluding object identification, A/B testing, and data analysis. In particular, model
bootstrap aggregation (bagging) depends on the evaluation of large collections of
lightweight models with homogeneous architectures [2].

Additionally, model evaluation often includes a pre-processing step that con-
verts inference inputs into a model-compatible format. This compute-intensive pre-
processing is often performed for each model evaluation. However, a wide variety
of models process inputs of the same size and data type; therefore, aggregated pre-
processing is likely to reduce these compute overheads and improve inference perfor-

CHAPTER 3. MODELFUSE 12

mance when serving multiple models.

OUTPUT

3x3 CONV 5x5 CONV 1x1 CONV

1x1 CONV

1x1 CONV 1x1 CONV MAX POOL

DENSE
OUTPUT

DENSE 0

PREPROCESSING

IMAGENET INPUT

Figure 3.1: A simplified version of the In-
ception [21] graph

Accordingly, this exploration is mo-
tivated by the following question: Can
we improve hardware utilization by eval-
uating multiple models on the same
hardware resource? Our solution lever-
ages the fact that models can be rep-
resented as declaratively-specified com-
putation graphs comprised of layer oper-
ators; in practice, graphs reuse a small
set of popular layers. We propose merg-
ing these layer operators across model
graphs to increase utilization by more
effectively saturating GPU memory and
leveraging unused computational capac-
ity in GPUs. Furthermore, we propose
dynamically aggregating compute-heavy
pre-processing steps, parallelizing their
evaluation on GPUs, and broadcasting
results to multiple models for continued
evaluation.

Toward these ends, we present ModelFuse: a system for optimizing and serving
computation graphs. ModelFuse consists of:

1. A dynamic graph refactoring component that efficiently analyzes and restruc-
tures computation graphs by merging their constituent pre-processing steps and
layer operators

2. An efficient serving framework, based on Clipper, that supports collocation of
multiple logical models on the same hardware resource

Each component of ModelFuse is useful in isolation; the graph refactoring component
can help to achieve more performant deployments on existing serving platforms, such
as Tensorflow Serving, while the serving framework affords finer-granularity control
over model placement on hardware resources.

CHAPTER 3. MODELFUSE 13

3.2 Related Work

3.2.1 Clipper

OUTPUT

DENSE
OUTPUT

DENSE 0

PREPROCESSING

INPUT 1

COMBINED
CONVOLUTION

UNIT

INPUT 2

OUTPUT 1 OUTPUT 2

Figure 3.2: The operator
graph of two fused Incep-
tion models

Clipper is a serving system that uses a variety of tech-
niques to improve inference. The Clipper system studies
many optimization techniques, such as adaptive batching,
caching, and model selection. In addition, it defines a
general abstraction using containers, and that allows it to
serve models built in a wide variety of machine learning
frameworks.

Clipper also learns the best batch size for the
throughput-latency tradeoff, allowing for automatic hy-
perparameter tuning. It also caches outputs and hashes
inputs to improve latency for repeated queries, demon-
strating the usefulness of traditional systems solutions in
an inference system.

Finally, Clipper uses a multi-armed bandit algorithm
to select which models to serve from in an ensemble, cre-
ating an abstraction for feedback that can allow for an
inference system to adaptively respond to real-world re-
sponses to the outputs from the inference system. In gen-
eral, it defines a powerful abstraction for serving and a far
more general solution.

3.2.2 Tensorflow Serving

TensorFlow [1] is an open-source machine learning
framework built by Google. It supports easy customiza-
tion of machine learning algorithms by allowing users to
specify primitive operations in a dataflow graph. Tensor-
Flow supports algorithms and tools for training a variety
of models. TensorBoard is of the tools that we used in our
experimentation, and is useful for visualizing model graph
structure. TensorFlow also includes a serving system for
serving TensorFlow models in production.

TensorFlow Serving is the native serving system offered by TensorFlow which
focuses on providing low latency serving of models. Specifically, it offers libraries for
serving custom models, multiple models in a single process, multiple versions of a
single model, and variable batch sizes.

CHAPTER 3. MODELFUSE 14

3.2.3 TensorRT

TensorRT [6] is a deep-learning inference optimizer built by NVIDIA. TensorRT
offers graph structure optimizations, precision optimizations, kernel auto-tuning, and
memory reuse optimizations. While TensorRT supports multiple frameworks such as
Caffe [9], TensorFlow, and PyTorch [17], it is most compatible with TensorFlow and
has recently been integrated with TensorFlow.

TensorRT’s graph-based optimizations fall under two categories: vertical fusion,
and horizontal fusion. Vertical fusion of graph operators involves fusing sequential
operators into a single combined operator. An example of vertical fusion would be the
merging of the sequential MAX POOL and 1x1 CONV layers in Figure 3.1. Horizontal
fusion involves fusing layers that aren’t necessarily sequential, but input data and
filter size. An example of horizontal fusion would be the merging of all of the 1x1

CONV layers in Figure 3.1 that take input from the DENSE OUTPUT layer. We would
expect the result to look something like the graph in Figure 3.2. Layer fusion can
offer significant performance improvements because every operation requires a kernel
launch, which often slower than the actual kernel computations. Thus, by fusing
layers into fewer kernels, we avoid kernel launches and their overhead. Furthermore,
we also avoid the cost associated with reading and writing the intermediate data into
memory.

3.2.4 ModelBatch

ModelBatch [15] is a system aimed at improving model search (via training and
inference) by using batching techniques. In particular, the paper takes the approach
of using multiple CUDA streams to increase parallelism during training and inference
time, while batching preprocessing on the CPU.

However, the CUDA stream approach struggles to integrate into existing frame-
works, since it requires having a CUDA stream to launch. While the details of their
implementation are not released, the extended abstract suggests that ModelBatch
experiments involve custom GEMM kernels. ModelBatch claims to launch kernels
for each model, but it’s unclear how arbitrary Tensorflow models are translated to
CUDA kernels.

3.3 System Design

3.3.1 Fusion

The layer fusion module in ModelFuse currently works for Tensorflow graphs.
The static computation graph abstraction that Tensorflow offers makes it possible
to analyze the entire graph and run graph algorithms on the graph. Tensorflow also

CHAPTER 3. MODELFUSE 15

offers convenient abstractions for loading these graphs back in via the SavedModel
API.

However, this does not fundamentally limit to this approach to Tensorflow - the
machine learning community’s development of the ONNX format for all frameworks
to export models to means this approach will soon be convenient in most popular
frameworks. The fusion module of ModelFuse takes in as input two model graphs
and outputs one, combined model graph. This graph can be served via any serving
system.

Preprocessing ModelFuse can use Tensorflow graphs to identify computationally
similar preprocessing operations across different computation graphs. Either the user
specifies the name of the input tensor or the system analyzes the static graph and
looks for input placeholder tensors that might represent inputs to the graph.

ModelFuse has been pre-built with Tensorflow subgraphs that contain prepro-
cessing operations for several standard input types (MNIST [13], ImageNet [18], etc.).
The system compares the tensor shapes of the graph it is analyzing with these pre-
processing signatures. Users can also specify a new preprocessing signature by tagging
those operations with a preprocessing scope. The preprocessing components are exe-
cuted on the GPU by concatenating the input batches of each model and executing
the Tensorflow subgraph with the GPU enabled. It is also possible to have optimized
CUDA kernels that are executed instead.

Operator Fusion ModelFuse uses a similar approach to preprocessing signatures
to identify mergeable operators. It stores lists of operators that correspond to specific
layers. These lists are easily populated by analyzing the graphs created by the layers
defined in the Tensorflow layers API. ModelFuse implements combined operators, and
those are interpreted as a set of possible legal transformations over the graphs that
are being analyzed. Currently implemented transformations include Dense layers and
Convolution layers. All possible transformations are then scored via a cost model that
takes into account what part of the graph the operator is in (one wouldn’t want to
merge an operator that is later on in one graph but earlier in another, since this would
lead to near-sequential operation). The best graph is returned.

3.3.2 Serving Framework

While a component of dynamic layer and preprocessing fusion is necessary for
achieving improved evaluation performance and hardware utilization, it is not suffi-
cient; the optimized computation graph produced by the aforementioned component
must be executed via a model serving framework. Though Clipper and Tensorflow
Serving support the online evaluation of computation graphs, they do not offer the
flexibility with regard to model placement that is required in order to fully realize the
benefits of graph fusion.

CHAPTER 3. MODELFUSE 16

3.3.2.1 Terminology

For the purpose of motivating serving framework design decisions, it is important
to draw a distinction between the concept of a model and a computation graph.
For the remainder of this section, we refer to a model as a mathematical function
that maps a vector of batch inputs of a fixed data type and size to a vector of batch
outputs of a fixed output data type and size. A computation graph is a collection of
input pre-processing operations and layer operators. Note that, through the fusion
of computation graphs, a single computation graph can support the evaluation of
several models.

3.3.2.2 Hardware Limitations

We begin by discussing a critical hardware constraint by which serving systems
need to abide. While high-level abstractions to facilitate task parallelism on CPUs
have long been available to user applications, the same support is not yet available in
the context of GPUs. Though the CUDA streams API provides support parallel GPU
kernel evaluations [7] on NVIDIA-brand hardware, most popular machine learning
frameworks fail to utilize it. Furthermore, CUDA is not a first-class language in
the data science and model deployment landscape, and CUDA programs are not
easily incorporated into computation graphs defined in frameworks based on higher-
level languages, such as Tensorflow. Therefore, serving frameworks are restricted to
executing a single logical evaluation process on a GPU at any given time. Attempting
to execute multiple evaluation processes on the same GPU will, at best, fail to deliver
significant performance improvements due to CUDA context switches and, at worst,
produce erroneous or undefined behavior.

3.3.2.3 Clipper and Tensorflow Serving

Both Clipper and Tensorflow Serving abide by the restrictions on evaluation im-
posed by GPU hardware limitations. Clipper encapsulates each deployed model in
a Docker container and maintains the invariant that only a single active container
be deployed on a given hardware accelerator. This container-based architecture al-
lows Clipper to support models written in a variety of machine learning frameworks.
Similarly, Tensorflow Serving initializes a dedicated Tensorflow session for inference
on a given GPU and exposes a single point of entry for computation graph inputs,
effectively enforcing the association between a computation graph and a single model.
However, these solutions are problematic because each computation graph deployed
via either serving system is associated with a single mathematical model.

CHAPTER 3. MODELFUSE 17

Figure 3.3: Clipper’s containers can now take queries to one of many models in the
same container that are all being evaluated on the same hardware resource.

3.3.2.4 Improvements Upon Clipper

ModelFuse improves upon the Clipper serving framework by providing support
for logically associating multiple models with a single computation graph. Rather
than maintaining the explicit invariant that each container be associated with a single
model, ModelFuse allows a container to specify that it serves an arbitrary number of
different models. Inputs are delivered to a container in the form of a dictionary keyed
by model names. There are no restrictions placed on the models’ input data types or
sizes; a container is valid as long as its evaluation function produces a set of model-
keyed outputs where the number of outputs per model matches the corresponding
number of inputs. This API change allows containers to specify a unique codepath
and, therefore, a unique point of entry for each model associated with it. Figure 3.3
demonstrates the additional flexibility afforded by ModelFuse over the original Clipper
design. In the original Clipper system, a sequential computation graph consisting of
AlexNet [12] operators and ResNet [8] operators within a single container must be
treated as one model. As a result, AlexNet can only be evaluated if the entirety
of the depicted sequential pipeline is evaluated; this inflexible code path is depicted
via red arrows. In contrast, ModelFuse allows the container to expose the AlexNet
and ResNet operators as separate models. As a result, there are now three code
paths through the container, represented as blue arrows. Accordingly, AlexNet can
be evaluated directly, without incurring the additional latency of ResNet evaluation.

Relaxing the constraint on the number of models that can be logically associ-
ated with a given container also necessitates a redefinition of the expression for a
container’s query batch size. While quantifying batch size in terms of a number of
queries is meaningful when a container is associated with a single model, this unit
is not appropriate when the container is hosting models with heterogeneous input
characteristics. Accordingly, ModelFuse allows users to specify a container’s optimal
query batch size in terms of mebibytes of data. We argue that this quanitification is a
better choice given the relevance of appropriate memory management and allocation

CHAPTER 3. MODELFUSE 18

Dense model image throughput

im
ag

es
/s

680000

705000

730000

755000

780000

Native FP32 FP16

Figure 3.4: TensorRT’s performance on MNIST Dense model.

to GPU inference. Failure to correctly estimate GPU memory utilization under peak
load can result in erroneous behavior during inference.

Finally, ModelFuse intelligently handles deduplication of ensembled inputs to
efficiently leverage the multi-model container setup. When an input is submitted for
evaluation by multiple models, only a single copy of the input is sent to each target
container. If the target container is logically associated with several models on which
the input needs to be evaluated, a single input reference is maintained within the
evaluating container. This reference appears in the set of model-keyed inputs once
for each target model, avoiding unnecessary copies.

3.4 Evaluation

3.4.1 TensorRT

As discussed earlier, TensorRT is a proof of concept of layer fusion being useful
in the serving context. ModelFuse competes with the layer fusion component of Ten-
sorRT, which was designed ad hoc and with specific kernels for modules in specific
models that are useful for the customers of TensorRT. Benchmarking TensorRT func-
tioned as an effective baseline for us to compare ModelFuse to. As far as we know,
this benchmarking of TensorRT is not found elsewhere.

We performed several experiments with TensorRT that are worth reporting in
this context.

We measured the improvement that TensorRT had on a standard Dense layer
neural network for MNIST that used dropout in Figure 3.4. In this experiment, we
used a Tesla K80 on a p2.xlarge instance on Amazon AWS. Note that the näıve
throughput experiences far more variance, and TensorRT outperforms fairly signifi-
cantly.

CHAPTER 3. MODELFUSE 19

ResNet Throughput (K80)
Av

er
ag

e
im

gs
/s

0

47.5

95

142.5

190

Batch Size

10 16 32 64 128

Native K80
TRT K80

(a) Throughput on Tesla K80.

ResNet Throughput (V100)

Av
er

ag
e

im
gs

/s

0

425

850

1275

1700

Batch Size

10 16 32 64 128

Native V100
TRT V100

(b) Throughput on Tesla V100.

Figure 3.5: TensorRT’s performance on ResNet on a Tesla K80 and Tesla V100.

When evaluating TensorRT on ResNet, we observed an interesting characteristic
of the specific hardware on which we ran these experiments. We noticed that when we
ran the model on a Tesla K80 GPU, the performance of TensorRT’s optimized kernel
was actually worse, as seen in Figure 3.5a. However, when run on a Tesla V100, a
newer model with 33% extra GPU memory and HBM2, a much higher bandwidth
memory system, the performance with the optimized kernel was significantly better.
We see this in Figure 3.5b. This suggests that the reason for performance degradation
when performing inference using these optimized kernels could be that the kernels
themselves are too large to fit in memory, meaning serving is now memory-bound.

On the V100, we see significant improvements in the throughput and latency
numbers for ResNet. TensorRT works specifically in the single model case, so we
felt it stood to reason that a solution that performs similar optimizations in the
multi-model serving case would definitely be useful.

3.4.2 Preprocessing

Preprocessing is able to provide a significant win, especially in the case of an
ensemble models.

We evaluated a scenario where an ensemble of AlexNet and ResNet was being
näıvely served. Each model received the same batch of data at different endpoints,
and the models were evaluated sequentially by the serving system on a Tesla K80
on a p2.xlarge machine. ModelFuse detected the Imagenet preprocessing signature,
and it factored this out. We can see the performance characteristics in Figure 3.6b
and Figure 3.6a. The performance wins demonstrate an almost 2× improvement in
throughput while halving latency.

CHAPTER 3. MODELFUSE 20

(a) Throughput improvements with Model-
Fuse.

(b) Latency improvements with ModelFuse.

Figure 3.6: ModelFuse performance improvements.

3.4.3 Layer Fusion

We performed layer fusion experiments with an ensemble of eight digit recogni-
tion models that evaluated on the MNIST dataset. The models used both dense and
convolutional layers that were fused in a similar fashion to Figure 3.2. The exper-
iment ran on a Tesla K80 GPU on a p2.xlarge machine. The results are displayed
in Figure 3.7. We can make a couple of interesting observations here. First, we see
expected significant wins on the smaller batch sizes. This is expected because the
combination of the operators makes most sense in the case where the computation is
not compute-bound. For smaller sizes, the transfer overhead dominates the amount
of time taken to compute a response to the query. As the batch size increases, we
see a dip in the 8, 16, and 32 batch sizes, which doesn’t quite fit the trend we would
expect. We ensured to run the experiments with over 1000 trials to rule out statis-
tical error. We attribute this unexpected discrepancy to memory alignment issues.
As batch size increases, the GPU utilization begins to saturate, and the operations
become more compute-bound, demonstrating why we see smaller wins. It is worth
noting that further improvement on implementing kernels that merge other operators
will provide even more significant improvements here.

3.4.4 Clipper

All of the benefits of previous gains we saw from ModelFuse are enabled for users
of Clipper, through the ability to run multiple models in one container. That contri-
bution is independently useful to the open-source community. We can demonstrate

CHAPTER 3. MODELFUSE 21

Ratio Improvement of Dense Combined Layer, 8 MNIST Models,
10000 Trials

Ra
tio

 Im
pr

ov
em

en
t

0

0.075

0.15

0.225

0.3

Batch Size

2 4 8 16 32 64 128 256 512

Figure 3.7: Latency improvements with ModelFuse through layer fusion.

the gains in the case where one would want to serve an instance of AlexNet and an
instance of ResNet. In a standard Clipper, one would have to evaluate them sequen-
tially, with no way of separating out queries. The full computation graph would have
to run, which damages throughput in particular.

Figure 3.8 demonstrates the improvement that these specific changes in Clipper
have added. Specifically, we see that the ModelFuse impact when serving both models
sequentially isn’t significant in Clipper. This proves the overhead of serving both
models from one container does not negatively impact throughput. Serving just
ResNet has a slightly higher throughput with ModelFuse - this is because ResNet is
fairly large as compared to AlexNet. As a result, removing Alexnet’s inference from
the pipeline isn’t as consequential. Meanwhile, AlexNet sees almost 3× improvement
in throughput. This is a win because it means that smaller models can now be served
in an ensemble on one container with much lower latency.

3.5 Conclusion

In this work, we looked to improve hardware utilization by evaluating multiple
models on a single hardware resource. We presented ModelFuse, which successfully
merged layer operators across models being served. We found that pre-processing
aggregation yielded significant performance benefits. Additionally, we found that,
while dynamic layer fusion offered significant speedups, the gains varied as a function
of batch size. Larger batch sizes saw better performance than medium-sized batches,
both of which demonstrated lower performance than small batch sizes. Finally, our
experiments indicated that the Clipper modifications we made to support multi-
model serving can offer significant improvements in reducing the serving latency for
ensembles.

CHAPTER 3. MODELFUSE 22

Figure 3.8: Clipper improvements allow for serving ensembles in a more granular way
and increases throughput in the case of queries to just one of those models.

In the future, we plan to further extend our merging capabilities to support
different types of kernels. Additionally, we plan to implement kernels at the CUDA
level to avoid unnecessary overhead involved with the higher-level TensorFlow op-
erator API. Finally, we plan to perform further experimentation to measure GPU
utilization in order to better motivate our kernel development.

23

Chapter 4

Conclusion

Given the increasing dependence on machine learning in services across a variety
of domains, it is important for researchers to not only consider training performance,
but also the performance at inference time. In this paper, we explored two facets of
machine learning serving.

With Shockwave, we began by exploring how we might leverage a number of
hardware accelerators to improve serving latency and throughput for a single model.
Shockwave’s serving architecture involves sharding a model graph onto a network of
hardware accelerators, which communicate with each other directly. We found that
although we were leveraging specialized compute units, the bottleneck was still in
computation rather than network performance.

Next, with ModelFuse, we explored how we might leverage a single hardware
accelerator to best serve multiple models. ModelFuse merges multiple model graphs
together at the operator level. This means that we combine similar kernels across
models to save on kernel launch overhead and data transfer costs. We found that the
types of operator fusions that we explored have promising performance improvements.

While these explorations each offer a specific view into how we might improve
machine learning model serving, together, they offer a glimpse into what an ideal
model serving system ought to do. Ideally, a serving system would be able to provision
resources optimally to the models being served. If there is a single model being served,
it should be able to adapt its resources to all serve that model. If there are more
models being served, it should know how which graphs to combine and which to
serve alone. The explorations mentioned above examine these problems in isolation
and work towards a system that can efficiently and optimally provision resources for
serving machine learning models.

24

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[2] Leo Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, August 1996.

[3] Doug Burger. Microsoft unveils project brainwave for real-time ai, Aug 2017.

[4] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. Clipper: A low-latency online prediction serving system.
CoRR, abs/1612.03079, 2016.

[5] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker. Network requirements
for resource disaggregation. In Proceedings of the 12th USENIX Conference on
Operating Systems Design and Implementation, OSDI’16, pages 249–264, Berke-
ley, CA, USA, 2016. USENIX Association.

[6] Allison Gray, Chris Gottbrath, Ryan Olson, and Shashank Prasanna. Deploying
deep neural networks with nvidia tensorrt, Apr 2017.

[7] Mark Harris. Gpu pro tip: Cuda 7 streams simplify concurrency, Jan 2015.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. CoRR, abs/1512.03385, 2015.

[9] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional

BIBLIOGRAPHY 25

architecture for fast feature embedding. In Proceedings of the 22nd ACM In-
ternational Conference on Multimedia, MM ’14, pages 675–678, New York, NY,
USA, 2014. ACM.

[10] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley,
Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Got-
tipati, William Gulland, Robert Hagmann, Richard C. Ho, Doug Hogberg, John
Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James
Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan
Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller,
Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Amir
Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed
Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian,
Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric
Wilcox, and Doe Hyun Yoon. In-datacenter performance analysis of a tensor
processing unit. CoRR, abs/1704.04760, 2017.

[11] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya
Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan
Bachrach, and Krste Asanović. Firesim: Fpga-accelerated, cycle-accurate scale-
out system simulation in the public cloud. In Proceedings of the 45th Interna-
tional Symposium on Computer Architecture (ISCA18), Los Angeles, CA, June
2018, 2018. To appear.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems - Volume 1, NIPS’12,
pages 1097–1105, USA, 2012. Curran Associates Inc.

[13] Yann LeCun, Corinna Cortes, and Christopher JC Burges. Mnist hand-
written digit database. AT&T Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist, 2, 2010.

[14] Yunsup Lee, Colin Schmidt, Albert Ou, Andrew Waterman, and Krste Asanović.
The hwacha vector-fetch architecture manual, version 3.8.1.

[15] Deepak Narayanan, Keshav Santhanam, and Matei Zaharia. Accelerating model
search with model batching. SysML, 2018.

BIBLIOGRAPHY 26

[16] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao,
Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke. Tensorflow-
serving: Flexible, high-performance ML serving. CoRR, abs/1712.06139, 2017.

[17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. In NIPS-W, 2017.

[18] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein,
Alexander C. Berg, and Fei-Fei Li. Imagenet large scale visual recognition chal-
lenge. CoRR, abs/1409.0575, 2014.

[19] Kaz Sato. Experience google’s machine learning on your own images, voice and
text, Sep 2016.

[20] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556, 2014.

[21] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014.

