
InferLine: ML Inference Pipeline Composition Framework

Corey Zumar

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-76
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-76.html

May 18, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I would like to thank the rest of the InferLine team: Dan Crankshaw, Alexey
Tumanov, Eyal Sela, Joseph Gonzalez, and Ion Stoica.

InferLine: ML Inference Pipeline Composition Framework
Corey Zumar∗

Abstract
Model composition in the form of prediction pipelines
is an emerging pattern in the design of machine learning
applications that offers the opportunity to substantially
simplify development, improve accuracy, and reduce cost.
However, in low-latency settings spanning multiple ma-
chine learning frameworks with varying resource require-
ments , prediction pipelines are challenging and expensive
to provision and execute.

In this paper we address the challenges of allocating
resources and efficiently and reliably executing prediction
pipelines spanning multiple machine learning models and
frameworks. We exploit the reproducible performance
characteristics of individual models and monotonic per-
formance scaling of prediction workloads to decompose
the resource allocation and performance tuning problem
along model boundaries. Consequently, we are able to es-
timate and optimize end-to-end system performance. Our
proposed system—InferLine—leverages these insights
and instantiates a general-purpose framework for serving
prediction pipelines. We demonstrate that InferLine is
able to configure and execute prediction pipelines across
a wide range of throughput and latency goals and achieve
over a 6x reduction in cost when compared to a hand-
tuned and horizontally scaled single process pipeline.

1 Introduction
Machine learning (ML) is rapidly maturing from an aca-
demic field to an engineering discipline at the center of
many production software systems. As a consequence, the
need for systems in machine learning is shifting from the
development and training of individual models [14,36,42]
to the composition [5, 27, 32] and serving of prediction
pipelines spanning multiple models and frameworks.
∗Based on OSDI 2018 conference submission written with Daniel

Crankshaw, Alexey Tumanov, Eyal Sela, Joseph E. Gonzalez, and Ion
Stoica

InferLine
Profiler

Load
Generator

Planner

Optimizer

Estimator

Driver.py

Sample
Queries

Latency
SLO

Offline

Online

Live
Queries

Preds.

PICL Expression

Model
Profiles

Pipeline

Config

Budget $

Physical Execution Engine
Queue Manager

Container

GPU

GPUCPU

CPU

Container

Big GPU

CPU

Container

CPU

CPU

CPU

CPU CPU

Figure 1: Architecture Diagram. InferLine consists of three
main components: the Profiler, the Planner, and the Physical
Execution Engine. The Planner builds on the interaction between
the Optimizer and the Estimator. Given a pipeline driver pro-
gram, a representative workload, and end-to-end latency SLO,
the Profiler produces pipeline lineage and model profiles, used
by the Planner to find an optimal pipeline configuration. The
Physical Execution Engine is then used to configure and serve
the specified pipeline on a heterogeneous mix of hardware.

Prediction pipelines offer the opportunity to improve
accuracy [4, 7], increase throughput [17, 40], and simplify
model development [5, 31]. For example, by decompos-
ing complex prediction tasks (e.g., speech translation)
into a sequence of simpler prediction tasks (e.g., speech
recognition and text translation) we can reuse established
task-specific models to develop new functionality in a
modular fashion. Moreover, model compositions yields
the familiar benefits of modularity by amortizing the cost,
both time and money, of developing and maintaining mod-
els across a wide range of prediction pipelines.

Problem Statement. The transition from learning sin-
gular models to composing and serving increasingly so-
phisticated prediction pipelines presents fundamental new
challenges around how we provision, manage, and serve
these new prediction workloads. Pipeline developers must
navigate a complex trade-off space spanned by latency,

throughput, accuracy, and monetary costs that depends
on the type and configuration of each model and choice
of hardware. These choices can have significant conse-
quences, with prediction performance and costs often
varying by orders-of-magnitude across configurations.
Prediction pipelines are often deployed in latency-critical
applications, imposing latency constraints on the end-to-
end performance of prediction pipelines. Failing to meet
these latency service level objectives can also have signif-
icant consequences (e.g., lost revenue).

Complex Configuration Space. The combination of
types of models and parallel hardware, in conjunction
with model specific replication and batching parameters,
creates a combinatorially complex search space of op-
tions for deploying prediction pipelines. Each model can
be configured to leverage a wide range of parallel hard-
ware including multi-core processors, multiple GPU gen-
erations (e.g., K80, V100), and specialized accelerators
(e.g., TPUs [18]). The resulting throughput and latency
for a given hardware configuration depends heavily on the
choice of model and query batching. As a consequence, it
is also necessary to specify a batching parameter for each
model and hardware configuration.

The configuration of each model interacts with other
models in a pipeline requiring global reasoning. For ex-
ample, tuning the batch size of an upstream model to
maximize parallelism may tighten the latency require-
ments of a downstream model and change its optimal
hardware configuration. Moreover, optimally configuring
prediction pipelines requires both a local understanding of
the performance characteristics of each model and glob-
ally reasoning about each model configuration to match
latency and throughput requirements.

Proposed Solution. To address these challenges we
propose InferLine—a high-performance, general purpose
system for provisioning and serving prediction pipelines.
InferLine takes as input a pipeline driver program (e.g.,
python script), a collection of model containers, and exam-
ple queries. InferLine automatically extracts the pipeline
structure from execution traces and constructs perfor-
mance profiles for each model as a function of hardware
and batch size. InferLine combines the individual profiles
to construct an end-to-end pipeline performance estima-
tor and optimize the system configuration to maximize
throughput subject to end-to-end latency and cost con-
straints. Finally, InferLine serves the prediction pipeline
by adopting a decentralized container oriented architec-
ture similar to the design of Clipper [12].

Key Insight and Contributions. The key insight in
the design of InferLine is that the complex but determin-
istic performance characteristics of each model can be

accurately characterized using offline profiling and then
composed to optimally configure end-to-end prediction
pipelines. The resulting contributions of InferLine are:
(1) a single model profiler that empirically extracts the
performance characteristics of each model in the pipeline
as a function of hardware allocation and batch size, (2) a
workload-aware estimator that uses the individual model
profiles to estimate end-to-end pipeline throughput, la-
tency, and cost as a function of a given pipeline configu-
ration, and (3) a pipeline optimizer that uses the perfor-
mance estimates to efficiently maximize throughput per
dollar subject to SLO constraints.

We use InferLine to configure a range of realistic pre-
diction pipelines that capture common pipeline designs.
We evaluate the configured pipelines using query traces
with a multiple query arrival distributions. We compare In-
ferLine’s optimizer-produced plans to two standard meth-
ods for serving prediction pipelines: a hand tuned single
process query driver that directly invokes each parallel
modeling framework avoiding any RPC overheads, as
well as TensorFlow Serving [38], an open-source model
serving system developed at Google. We show that Infer-
Line can reliably estimate end-to-end performance and
construct configurations that achieve cost reductions that
exceed the hand tuned single process design by more than
a factor of 6× while meeting latency requirements.

2 Prediction Pipelines
Model composition is the process of composing multiple
models to complete a single prediction task. Model com-
position can improve prediction accuracy, reduce the cost
of serving predictions, and simplify model development.
Thus, model composition is rapidly becoming standard
practice in machine learning [32]. For instance, visual
models are combined with language models for visual
Q&A [2, 24]. Recent work [43] on stream processing for
video surveillance combined models for vehicle detection
with models for license plate decoding.

In the following we outline the advantages of model
composition and then characterize several of the key sys-
tem challenges in supporting model composition. We offer
a high-level taxonomy of common composition patterns
(Figure 2) informed by interviews with industrial and
academic ML practitioners.

2.1 Opportunities
Improved Accuracy. Model composition can be used
to boost prediction accuracy using a wide range of estab-
lished techniques. Ensemble methods (e.g., boosting [30],
and bagging [7]) are used to combine predictions from
multiple models (e.g., by averaging) to obtain more ac-
curate predictions. Bandit methods [4, 22], which dynam-

Model	1 Model	2 … Model	m

AND

(a) ensemble

Bandit	1 Bandit	2 … Bandit	m

OR
p1 p2 pi pm

(b) bandit/selection

Model	1 Model	2 … Model	mp1 pip2 pm

(c) cascade

Model11

Model12

Model21

p11 p21

p12 p22

Model22

(d) cascade ensemble

Figure 2: Common composition patterns that arise in practice include ensembles of models, bandit algorithms, and cascading
machine ML inference. There’s closure under some of these patterns (e.g., an ensemble of cascades).

ically select and average one or more models on a per
query basis, are widely used to personalize predictions.

Faster Inference. Model composition can actually re-
duce the cost of rendering predictions. Prediction cas-
cades, introduced by Viola and Jones [17] to enable face
detection on embedded devices, reduce prediction costs by
only invoking more accurate and expensive models when
necessary. Typically models are invoked in sequence of in-
creasing cost until their is sufficient confidence in the pre-
diction. However, to retain the full accuracy some queries
must still pass through all the models in the cascade. With
the increasing computational cost of deep learning, there
has been a resurgence of interest [3,15,25,34] in cascaded
model design. These newer cascades present the opportu-
nity to substantially reduce prediction costs, but introduce
prediction pipelines with varying latencies that span mod-
els with different hardware scaling characteristics.

Faster Development. Developing and training new
deep learning models requires substantial training data,
compute resources, and expertise in the brittle process of
hyperparameter tuning [6, 33]. As a consequence, model
developers commonly reuse models [41] that have been
pre-trained on large well studied benchmark datasets or
developed internally and used across the organization
(e.g., customer churn). In many cases, a single model
(e.g., ResNet152 [16]) may be re-used as a feature func-
tion for a wide range of prediction tasks (e.g., product
recommendation and medical imaging).

While pre-trained versions of these models are freely
available [10, 37], they are often coded and optimized for
a particular machine learning framework. The outputs of
these models are then used as inputs to more robust and
easier to train models (e.g., nearest neighbor and linear
models) or as input to subsequent deep learning pipelines.
By avoiding the need to go through the costly model
design and training process, this form of model reuse can
substantially accelerate application development.

2.2 Model Composition Challenges
Rendering predictions for many machine learning work-
loads can be computationally intensive with substantial
opportunities for internal and external parallelism. A sin-
gle deep neural network may have many stages that can
benefit from parallel hardware. In some cases, this par-
allelism can result in orders of magnitude improvements
in throughput and latency. For example, in our experi-
ments we found that TensorFlow can render predictions
for the relatively large ResNet152 neural network at 0.6
queries per second (QPS) on a CPU and at 191 QPS on an
NVIDIA Tesla V100 GPU (a 300x difference in through-
put). However, to fully use the available parallel hardware,
queries must be processed in batches (e.g., ResNet152
required a batch size of 32 to maximize throughput on the
V100). The optimal batch size depends on the model and
hardware configuration as well as latency goals.

Not all models benefit equally from hardware acceler-
ators. The diversity of models results in heterogeneous
compute and hardware requirements. In contrast to deep
neural networks which substantially benefit from parallel
accelerators, many widely used classical models (e.g., sup-
port vector machines [9] and decision trees [8]) can be
difficult to parallelize on GPUs. Similarly, many of the
necessary pre-processing and post-processing operations
(e.g., error checking or beam search) have limited use of
parallel hardware. As a consequence, allocating parallel
hardware resources to a single model presents a complex
model dependent trade-off space between cost, through-
put, and latency. This trade-off space is combinatorially
more complex for prediction pipelines.

In high query load settings it is necessary to leverage
parallelism at the level of the pipeline to scale-out indi-
vidual models and high-fanout stages. Identifying and
scaling the bottleneck models is critical to achieving high-
throughput at low cost. Pipelines with high-fanout stages
(e.g., ensembles of models) can often be accelerated by
dividing compute resources across parallel paths in the
pipeline. However, the optimal placement of resources

depends heavily on the performance characteristics of
each model and the optimal choice of batch size. Further-
more, as we scale the compositions of models, we quickly
discover that individual components scale differently.

Dynamicaly Changing Configuration Space. The op-
timal point in the trade-off space can change with new
hardware, changes in the underlying software, and up-
dates to the model. Over the course of writing this pa-
per, the optimal configuration of the benchmark pipelines
changed due to upgrades in the low-level CUDA drivers,
TensorFlow library, and even the Meltdown [23]/Spec-
tre [20] kernel patches. As a consequence, exhaustively
optimized configurations would need to be rerun with
each update to any part of the pipeline or system.

3 Design and Architecture
In this section we provide a high-level overview of the
three parts of InferLine system (see Figure 1): the Profiler,
the Planner, and the Physical Execution Engine. The Pro-
filer takes user-provided machine learning pipelines writ-
ten with the light-weight InferLine model composition
API and extracts the logical pipeline dependency structure
and individual model performance profiles. The Planner
takes the dependency graph and profiles expressed in the
PICL declarative language, along with latency and cost
constraints for the end-to-end pipeline and produces a con-
figuration for the physical execution engine. At serving
time, the physical execution engine provisions container
resources according to the configuration produced by the
planner. Queries are then executed through an RPC inter-
face between the driver program an the execution engine.

3.1 Pipeline Composition API
Every prediction pipeline in InferLine consists of a single,
stateless driver function that takes an input (the query) and
returns an output (the prediction). Within this function, de-
velopers interleave application-specific code executed in
the driver with asynchronous RPC calls to models hosted
in InferLine. This flexible programming model addresses
the fundamental need for an expressive mechanism to
compose models in a prediction pipeline.

To support user defined logic and flexible model com-
position, InferLine allows users to specify their pipeline
in a fully featured Python driver rather than a restrictive
domain specific language [26, 32]. However, to scale out,
support query planning, and to enable model execution on
different hardware architectures, InferLine needs a way to
capture statistics about the pipeline call graph and move
model invocation off the driver hardware.

The current implementation of the InferLine prediction
pipeline API exposes a Python client API wrapping a C++

RPC client that issues queries to the InferLine serving
system. To query a model, the driver program makes an
RPC request to InferLine specifying the model name and
providing the input. This RPC call is asynchronous and
returns a future so that pipelines can evaluate multiple
models in parallel. InferLine’s futures can be chained,
composed, and transformed to maximize external paral-
lelism. Finally, the futures are used to extract statistics
about function invocations needed for planning.

Before the Planner can optimize a prediction pipeline,
all of the models referenced in the pipeline must be reg-
istered with the system. InferLine employs a distributed,
containerized architecture (see §3.2) for the physical ex-
ecution engine. Registering a model in InferLine simply
requires associating a name (the model name) and op-
tional version with a Docker image. Models can then be
associated with multiple pipelines.

3.2 Physical Execution Engine
Similar to [12], the InferLine online physical execution
engine adopts a distributed micro-service architecture con-
sisting of three components, a pipeline driver embedded
in the client application (e.g., an application server), a
centralized queuing system, and a set of replicated model
containers each hosted in their own Docker container.

InferLine maintains a centralized queue for all replicas
of each type of model. Every RPC requests to a model
is placed in the queue corresponding to that model. The
replicated model containers then request bounded size
batches of queries from their respective centralized queue.
The batch size is determined by the Planner.

Each model queue is an EDF priority queue ordered
by request deadline to ensure that InferLine is always
processing the queries that will expire first. When a model
replica worker is ready to process a new batch of inputs,
it requests a new batch from the queue. The size of the
batch is bounded by the maximum batch size for the
model, one of the three configuration parameters that
the InferLine planner configures. By employing a pull-
based queuing strategy and imposing a maximum batch
size, InferLine places an upper bound on the time that a
query will spend in the model container itself after leaving
the queue. This upper bound is critical for enabling the
Estimator to accurately estimate the inference time of
each model.

Because inference is a compute-intensive operation,
it is critical that each container has exclusive access to
its own set of compute resources to minimize interfer-
ence. As a consequence, each replica for a model runs
in its own Docker container, allocated an exclusive set
of computational resources: the resource bundle, the sec-
ond configuration parameter set by the Planner. All repli-

cas of a model are allocated the same type of resource
bundle and each individual replica is given its own dis-
tinct bundle. Each resource bundle is pinned to a unique
set of physical CPUs and GPUs based on the Planner
configuration. Because GPUs intensive models still re-
quire substantial CPU resources to mediate network and
GPU data transfers we use Docker’s cpuset-cpus op-
tion to pin containers to cores at runtime, and set the
CUDA_VISIBLE_DEVICES environment variable for
each container to control GPU access.

When a model container is started, it is provided the
address of the InferLine queue. It registers itself with
the queuing system, informing the queue which model it
is running and requesting a first batch. Once the model
receives a batch, it processes it fully before returning
the predictions to the queueing system (to be forwarded
back to the client) and requesting another batch. Model
containers communicate with the queue over an RPC
system (note that this RPC system is separate from the
one the driver clients use to communicate with InferLine),
allowing InferLine to scale its model workers across a
cluster. We refer to the number of replicas of a model
as the model’s replication factor, the third configuration
parameter set by the Planner.

3.2.1 Implementation

The InferLine physical execution engine is an extension
of the Clipper [12] prediction serving system. Clipper
provides a latency-aware model serving platform that
leverages query batching to improve system throughput.
In order to meet the high performance demands asso-
ciated with serving large volumes of pipeline requests,
InferLine’s physical execution layer extends Clipper in
the following ways:

1. High-performance RPC frontend: In order to sup-
port query ingest rates of up to 10Gps, InferLine
replaces Clipper’s client-facing REST frontend with
an RPC implementation based on ZeroMQ [1]. The
client-side module for querying the frontend sup-
ports the asynchronous sending of requests and the
execution of user-defined callbacks upon request
completion.

2. Improved memory management: Clipper’s query
frontend allocates memory to store model input data
on a per-request basis. Unfortunately, in scenarios
where the query ingest rate is high, performing thou-
sands of heap allocations per second imposes a sig-
nificant latency overhead. Accordingly, the InferLine
physical execution engine preallocates a large mem-
ory buffer for receiving requests. Requests are read
from the frontend RPC socket into this buffer at the

smallest unoccupied index, thus avoiding additional
heap allocations.

3. Lock-free queueing: Clipper’s critical query eval-
uation path relies on several highly-utilized queues
that are accessed by multiple threads. Lock-based
synchronization is employed to prevent concurrency
errors. Based on the observation of significant lock
contention associated with queue accesses, InferLine
replaces the lock-based implementation with lock-
free, concurrent queues [13] in the task execution
and RPC subsystems.

4. Removal of redundant copies: Ideally, request data
should only be copied in or out of socket buffers
associated with Clipper’s frontend or model-facing
RPC systems. Because inputs often exceed 1MB
in size, as is the case with ImageNet samples, It is
critical that no additional copies occur. InferLine
heavily modifies Clipper’s input data representation
format and critical query evaluation path to ensure
that this is the case.

These performance-oriented improvements are slated
for incorporation into the open source implementation
available on GitHub [11].

4 The Profiler
The first step in the offline planning process is to run the
Profiler and extract the logical pipeline structure as a di-
rected acyclic graph (DAG) of data dependencies among
models. We employ an empirical procedure to infer the
pipeline structure directly from the pipeline driver pro-
gram. Along with the pipeline program, users must pro-
vide sample queries that characterize the model inputs.
The profiler evaluates the pipeline on every sample query,
using the RPC and futures to collect the pipeline graph of
each individual query through the pipeline. Because the
first stage of profiling is primarily focused with extracting
the pipeline structure and not pipeline performance, it can
be run on an un-tuned deployment.

Once all the sample queries have been evaluated, the
Profiler has a set of pipeline graphs, each of which con-
tains some subset of the entire pipeline structure that
resulted from a real evaluation of the pipeline. The Pro-
filer takes the union of all the pipeline graphs to form a
single pipeline graph which contains every observed path
of a query through the pipeline.

During pipeline aggregation, the Planner counts the
number of pipeline graphs each model appears in. The
Planner can use these frequencies to detect models that
are only queried under certain conditions (e.g., a face-
recognition model that is only used if an earlier model in

the pipeline detects a person) and allocate proportionally
less resources to them, as described in §4.1. Finally, the
aggregated pipeline graph is analyzed to ensure it does
not contain any cycles. If a cycle is detected, an error is
returned to the developer identifying the models contained
in the cycle.

4.1 Single Model Profiling
We make the key observation that end-to-end throughput
and latency for a pipeline configuration can be accurately
estimated as a function of the throughput and latency
statistics of the individual models. This property allows
the Planner to effectively search this combinatorially large
space by exploiting monotonicity (see §5.2) in throughput
and latency as a function of configuration control param-
eters without reprofiling end-to-end pipelines for each
point in this multi-dimensional configuration space.

There are three parameters that control model perfor-
mance: compute resource bundle, maximum batch size,
and replication factor. An individual model configuration
corresponds to a specific value for each of these param-
eters. The Profiler characterizes the model’s latency and
throughput as a function of these parameters.

Both the batch size and the compute resource bundle
are mechanisms for exploiting a model’s parallelism and
therefore offer diminishing returns. The profiler exploits
this property in two ways. We restrict our search over
resource bundles to exploring different kinds of resources
(e.g. different hardware accelerators) but only allocating
at most a single instance of each resource type to a model.
And we explore batch size in powers of two to efficiently
detect the maximum performance to be gained from batch-
ing without having to try every batch size in sequence.

After profiling has been completed, any configurations
that result in a performance regression along any of the
three performance metrics of cost, latency, or through-
put, are eliminated. This pruning step primarily removes
sub-optimal batch sizes – batch sizes that do not improve
throughput over a lower batch size but lead to higher-
latency predictions. Because models are inherently state-
less and therefore enjoy perfect horizontal scaling we only
need to profile under a replication factor of one.

For each configuration, the Planner measures the max-
imum throughput and 99th percentile latency the model
can sustain with the model queue at a steady state. How-
ever, the throughput and latency of a model depend on the
batch size, which in turn depends on the state of the model
queue. Naively profiling models by sending queries at the
maximum sustainable rate conflates time spent in the
model queue with inference latency. Instead, we employ
a two stage approach to profiling that measures through-
put and latency separately. In the first stage, the Planner

sends requests to the model at a high rate, ensuring that
the queue is always larger than the maximum batch size.
As a result, the profiler can measure throughput with the
assurance that the model is always using the configured
batch size. But because the queue is diverging, end-to-end
latency at this stage are meaningless.

In the second stage, the planner sends a batch of queries
at a time, waiting for the entire previous batch to return
before sending the next batch. This eliminates all the
pipeline parallelism in InferLine but provides accurate
end to end latency measurements without including any
time spent in the queue. The Planner repeats this two-
stage over-saturation/under-saturation profiling process
for each candidate configuration.

While we ensure that models have exclusive access to
the CPUs and GPUs allocated to them in their resource
bundles there are still sources of kernel level contention
(e.g., memory allocation or GPU calls). As a consequence,
we also simulate a load on the remaining cores by invok-
ing other models. In Figure 3, we plot the throughput
and latency under various levels of simulated load on the
remaining cores within a machine. We observe that for
some models contention can have a measurable impact on
latency and throughput. We therefore profile all models
under heavy background load.

5 Planner

The purpose of the Planner is to determine the best possi-
ble pipeline configuration subject to the given latency
SLO and cost constraints. The Planner operates with
profiler-provided per-model information that precisely
captures the latency and throughput of a model as a func-
tion of its batch size, resource bundle and replication
factor. The empirically captured structure of the pipeline,
along with individual model profiles is fused into an ex-
pression encoded in our declarative intermediate language
representation (ILR) called PICL (§5.1). This PICL ex-
pression can be used for (1) throughput and latency esti-
mation, given a point in the configuration search space, (2)
automatically formulating a quadratic programming (QP)
problem that mathematically captures the throughput opti-
mization problem, (3) capturing the optimization structure
of the pipeline and guiding the iterative greedy algorithm
through this structure. We introduce InferLine ILR formu-
lation in §5.1 and show how it succinctly encodes pipeline
structure, model configurations, conditional probabilities,
and the structure and direction of the optimization search
procedure. We conclude this section with the discussion
of a greedy iterative algorithm leveraging PICL ILR.

0 250 500 750 1000
Background Load (QPS)

0

500

1000
Th

ro
ug

hp
ut

 (Q
PS

)

0 250 500 750 1000
Background Load (QPS)

0.00

0.05

P9
9

La
te

nc
y

(s
)

Batch 1
Batch 8

Batch 16
Batch 32

Kernel SVM

(a) Kernel SVM (CPU Only) 1

0 250 500 750 1000
Background Load (QPS)

0

20

Th
ro

ug
hp

ut
 (Q

PS
)

0 250 500 750 1000
Background Load (QPS)

0

1

2

P9
9

La
te

nc
y

(s
)

Batch 1
Batch 16

Batch 32

Image Pre-Process

(b) Image Pre-processing (CPU Only) 2

0 250 500 750 1000
Background Load (QPS)

0

200

Th
ro

ug
hp

ut
 (Q

PS
)

0 250 500 750 1000
Background Load (QPS)

0.0

0.1

0.2

P9
9

La
te

nc
y

(s
)

Batch 1
Batch 8

Batch 16
Batch 32

Inception

(c) Inception (V100 GPU) 3

Figure 3: Sensitivity of model profiles to background contention in the host environment. We found that this slowdown occurred
inside the model inference computation itself, not outside of the model’s container in the network or the queuing system. Each model
has exclusive access to its own compute resource bundle, but cannot prevent contention caused by the operating system kernel.

5.1 PICL ILR
Here we introduce our intermediate representation lan-
guage (ILR) called Pipelined Inference Composition Lan-
guage (PICL). We design PICL to serve as the intermedi-
ate language representation (ILR) for declaratively spec-
ifying inference pipeline structure and configuration op-
tions associated with its individual models.

We make an observation that searching the space of
pipeline configurations can be reduced to bin-packing a
space-time rectangle defined by the set of available re-
sources in one dimension and time in the other. Latency
SLO bounds the latter, while the provided cost budget
constrains the former. We take inspiration from the Space-
Time Request Language [39], providing additional sup-
port for end-to-end latency SLOs.

Any pipeline graph can be represented as an algebraic
expression tree composed of non-leaf operators and leaf
operands. For the leafs we introduce a Linear nCk prim-
itive that captures model’s throughput and latency as a
function of its batch size, replication factor, and resource
bundle. Note, that PICL is a declarative language, not
procedural. It declares a relationship between a (through-
put,latency) output tuple and a (replication factor, batch
size, resource bundle) input tuple. As such, the LnCk
primitive encodes this relationship for each profiled (batch
size, resource bundle) input tuple. The effect of the repli-
cation factor is captured as the linear part of this primitive.
We leverage the fact that model throughput scales linearly
with the number of replicas. Once each profiled model’s
configuration choice is specified as an LnCk operand
they can be composed with PICL operators to encode
ensembles (with a min), mutually exclusive choices (with
a max), and conditional probabilities (with scale). We
provide formal specification of the LnCk primitive and
the rest of PICL in §5.1.1.

5.1.1 PICL specification

PICL consists of primitives and operators that allow ar-
bitrary composition of subexpressions. Primitives form
base expressions, and composite expressions are formed
by applying operators to other subexpressions. This re-
sults in a natural algebraic tree structure that enables the

flow of value from its primitives up to the root of the
tree, modified by the operators along the way. Primitives
always form the leaves of this tree, while operators are
always the non-leaf nodes.

- LnCk(K,dur,v,con f ig = [batch,~b]) is an expression
that evaluates to k ∗ v if k ≤ K replicas were allocated to
this model. It establishes a relationship between a con-
figuration tuple (k, batch~b) and the performance tuple
(k ∗ v, dur) for all replication factors k ≤ K without enu-
merating them! Each replica is~b-sized, so the total cost
of this LnCk is computed as k ∗~b ·~1. Visualized, LnCk
expresses a space-time rectangle, described by a choice
of k~b-sized replicas used for duration dur, and associates
this elastic rectangle with a value of (k ∗ v,dur). In this
paper,~b = [cores,gpus]. Parameter v is a constant that re-
flects the throughput obtained with configuration con f ig.
con f ig is extensible, but currently includes the batch size
batch and a resource bundle~b used by the profiler. Each
LnCk primitive captures exactly one model configuration
for exactly one model. Each model in the logical plan
produced by the Profiler is associated with at least one
LnCk primitive.

- max(e1,e2, ...en) – a max expression that evaluates
to the value produced by the maximum-valued child ex-
pression. Immediate utility of this operator is evident as
multiple model configurations can be grouped by join-
ing them with a max operator. For example, two pro-
files corresponding to two different batch sizes would
result in an expression that looks like this : max(LnCk
(..., v = 100, config=[batch=32,...]), LnCk (..., v = 120,
config=[batch=64, ...])). Composing these two options
with a max operator, declaratively specifies to the Planner
the available options as well as quantifies their absolute
throughput value.

- min(e1,e2, ...en) – a min expression that evaluates
to the value produced by the minimum-valued child
subexpression. This operator is key to declaratively spec-
ifying ensembles of models (Figure 2(a)). For an en-
semble of two models m1 and m2 an expression would
be : min(LnCk(k1,v1 = throughput1),LnCk(k2,v2 =
throughput2)) and, if satisfied, would evaluate to the
min(v1,v2).

- scale(e, f) – a scale operator that amplifies the flow
of value from its child expression. It’s essential for ex-
pressing probabilities of taking a particular branch. SIt
allows throughput value adjustment on the Forced Flow
Law (§4.1).

It is important to note that the invariant of this lan-
guage is that any subexpression of any PICL expression
necessarily evaluates to an output tuple (throughput, la-
tency) that corresponds to the model pipeline subgraph
encoded/captured by that subexpression. This is a pow-
erful invariant that simultaneously allows InferLine to
use these expressions for automatically generating a QP
formulation, using it to evaluate a configuration point in
the search space, and guide an iterative algorithm through
that search space greedily.

5.1.2 PICL Example: Cascade Pipeline

To illustrate how PICL expressions can be used to rep-
resent and optimize pipeline graphs, we implement the
cascade pipeline using PICL (Figure 2(c)).

It consists of model m1, with a possibility of an early
exit, and model m2 reached with probability p2. The entry
and the exit point are included in the figure, but don’t
need to be captured in the PICL, as they don’t contribute
to the throughput, cost, or latency we aim to model.

For each model, the batch is specified as a vector
~b = [1,0], indicating that a single replica of this model
uses a single CPU core and no GPUs. Maximum external
parallelism (constrained by the cost budget) is specified as
K The LnCk also specifies the throughput v1

1 associated
with model m1 and attained using batch size bs1

1. This
captures the declaration of a single model configuration
as follows: LnCk(K,dur,v1

1,bs1
1,
~b = [1,0]). We drop dur

for convenience of notation.
We create one such LnCk for each meaningful

configuration we wish to consider. In this example, model
m1 can run with and without a GPU, each with two
possible batch sizes, totaling 4 LnCk leaves to represent
this model. We then attach them to the max operator,
which yields the following complete expression for
model m1 : e1 =
max(LnCk(v1

1,K,bs1
1,
~b = [1,0]),LnCk(v2

1,K,bs2
1,
~b = [1,0]),

LnCk(v3
1,K,bs1

1,
~b = [1,1]),LnCk(v4

1,K,bs2
1,
~b = [1,1]))

The second model is a CPU model, has two possible
batch sizes, and is reached with probability p2. We use
the scale operator to reflect the probabilistic/conditional
model access. This yields the following complete PICL
expression for m2 : e2 = scale(1

p2
,max(

LnCk(v1
1,K,bs1

1,
~b = [1,0]),LnCk(v1

1,K,bs1
1,
~b = [1,0])))

Finally, we impose the latency SLO
with the window operator to get the fi-

nal expression: e = win(deadline,e) =
win(...,max(LnCk(), ...),scale(max(LnCk(), ...))).

5.2 Greedy Planner
We describe the Optimizer part of InferLine Planner in
this section. The key enabling insight for the greedy opti-
mizer is our observation that model throughput is mono-
tonic in all the three control parameters we consider: batch
size, replication factor, and resource bundles. Note that
resource bundles can always be ordered such that it is
true.

The Profiler (§4) provides the Planner (§5) with a dis-
crete representation of this 4D1 surface for each of the
models in a pipeline. Note that overlaying these convex
4D surfaces (by applying PICL min, max, or sum) creates
a convex search space. This means that PICL expressions
are convexity-preserving—the key property suitable for
a greedy coordinate descent search. Given the discrete
nature of the search space, we thus implement an itera-
tive greedy search algorithm that maximizes throughput
subject to the specified latency and cost constraints.

Algorithm. At each iteration, the algorithm identifies
a throughput bottleneck and alleviates it. To do that, every
step of the algorithm sorts all models in the pipeline in
the order of increasing adjusted throughput (§4.1). Then
the gradient of the model’s throughput is computed and a
step is taken in the direction of the steepest partial deriva-
tive. The cycle is concluded by a constraint check. If the
latency or the cost is violated by the update step, we at-
tempt a step along the other partial derivative. If both
partial derivatives yield a step that violates SLO or cost
constraint, we backtrack, and try the next model in the
sorted list. We evaluate this algorithm in §8.

Initialization. Given the monotonicity of the search
space, initializing the search algorithm with a feasible
solution is trivial. All models are configured with the
smallest batch size, bundle, and the number of replicas.
We’re guaranteed that this configuration is minimal in
terms of throughput, latency, and cost. The infeasibility of
this configuration implies the infeasibility of the problem,
thus serving as the termination condition. The algorithm
then proceeds to iteratively improve the solution by tak-
ing throughput maximizing steps along one of the three
control dimensions.

Termination Condition. Visiting each model at least
once constitutes a single full configuration pass through
the pipeline. Save for the immediate termination, a full

1A choice of a resource bundle makes it 4D, but is easily handled by
taking a greedy step to always try GPU models on a GPU and fall back to
CPU if need to backtrack. So the order of throughput maximizing steps
for a given model are: (a) cpu/gpu bundle choice, (b) highest derivative
w.r.t. number of replicas or batch size, (c) second highest derivative.

pipeline pass guarantees existence of a candidate solution.
Importantly, the candidate solution forms a subtree E ′ ⊂
E of the PICL expression E representing this pipeline.
Specifically, each max is left with an exactly one chosen
LnCk attached to it, each LnCk—evaluates to a concrete
number of replicas k and, by extension, throughput k ∗
V . Thus, PICL is a general framework for expressing,
evaluating, and navigating the configuration search space
either with a solver or greedily.

Constraints. Another enabling insight in the greedy
algorithm is the ability to quickly check specified SLO
and cost constraints in constant time per each iteration.
Indeed, given a candidate solution, which consists of a
set of models, each configured with a concrete resource
bundle, batch size, and replication factor, we can use the
PICL-based estimator by evaluating the PICL expression,
given the current algorithm state that consists of a (batch
size, replication factor, resource bundle) input tuple for
each model in the pipeline. Recall that it evaluates to an
output tuple (throughput,latency).

6 System Comparisons
We compare InferLine against a hand-tuned, replicated
single process prediction service, as well as Tensorflow
Serving - a commercial grade prediction service.

6.1 Single Process Drivers
Today’s most common pipeline serving technique treats
the entire pipeline as a single black-box model and de-
ploys it within a single process or Docker container. This
is equivalent to replacing all of the RPC calls in Infer-
Line with local function calls and embedding the model
inference code within the driver program. We refer to this
design as the single process driver (SPD).

The coarse-grained configuration control of the SPD
design offers a contrast with the fine-grained control af-
forded by the InferLine architecture. Specifically, because
SPD treats a pipeline as a single black box function, it
cannot do any per-model configuration. We configure the
SPD implementations to use a single batch size, replica-
tion factor, and GPU type for the entire pipeline, while
InferLine offers the ability to control these parameters on
a per-model basis.

It is worth noting that various machine learning frame-
works have limited capacity for cross-compatibility,
which restricts the flexibility of the SPD approach. For
example, some deep learning frameworks, such as Ten-
sorFlow, attempt to proactively requisition all available
GPU resources available to the process in order to elimi-
nate memory allocation overheads during execution; this
makes it difficult to compose models across frameworks
using the SPD approach. Furthermore, the depth of a

model pipeline is limited by the end-to-end latency con-
straints of an application. Therefore, as model pipelines
grow, developers will be forced to explore methods that
afford more parallelism during evaluation in order to meet
their latency demands. One consequence of this observa-
tion is that wider pipelines substantially complicate the
problem of bin-packing SPD replicas onto physical nodes
with limited slots for hardware accelerators. More funda-
mentally, this class of systems lacks the fine-grained con-
trol over per-model configuration parameters that yields
fine-tuned end-to-end pipeline balance — ideal for maxi-
mizing throughput per dollar.

6.1.1 Implementation

The single process driver is implemented using a queue-
based request submission and processing scheme in
Python. There are two major components of this de-
sign: a query generator and a query processor. Given a
pre-specified batch size and arrival process consisting of
inter-request delays, query generator performs the routine
described in algorithm 1. This query generation design

Algorithm 1: SPD query generation
Data: ap = arrival process, ap_idx = 0
arrival_window =
get_time_elapsed_since_last_query_generation();

requests_delay = 0;
while True do

requests_delay += ap[ap_idx];
if requests_delay <= arrival_window then

new_query = create_query();
request_queue.submit(new_query);
ap_idx += 1;

else
remaining_delay = requests_delay -
arrival_window;

ap[ap_idx] = remaining_delay;
break;

GOTO query processing;

is motivated by the need to avoid explicit waiting. On
many Unix-based systems, syscall-based sleeps initiated
in Python exhibit a significant lack of granularity; guar-
anteeing sleep duration at the millisecond level is not
possible. Additionally, busy waiting is not viable due to
performance limitations imposed by Python’s Global In-
terpreter Lock (GIL). We find that the stated procedure
is substantially more effective than an approach based
on explicit weighting at realizing the inter-request delays
specified by the supplied arrival process. Following an

iteration of query generation, the SPD control flow pro-
ceeds to process queries as in algorithm 2. The evaluate

Algorithm 2: SPD query processing
Data: bs = batch size
batch_inputs =

request_queue.get_batch(max_size=bs);
batch_outputs, batch_latency =

evaluate_inputs(batch_inputs);
GOTO query generation;

inputs function is a pipeline-specific batch query evalua-
tor that queries models instantiated in the same process.
This evaluator leverages multithreading to perform par-
allel computations on distinct hardware resources where
possible.

6.2 TensorFlow-Serving
The second comparison point is a pipeline manually com-
posed of individual calls to an existing prediction serving
system. We use the TensorFlow-Serving (TFS) system to
construct this pipeline, as it is the most widely adopted
open-source prediction serving system. The TFS com-
parison highlights the need to perform global reasoning
about the end-to-end performance of a pipeline when con-
figuring its constituent models. In particular, without the
ability to reason about how changing a single model’s
configuration will affect the end-to-end latency of the
pipeline, one must employ a greedily latency-minimizing
approach to ensure that SLOs will be met. Therefore, in
order to minimize pipeline latency, batch size is held fixed
at a value of one for all models. However, we tune the
replication factor on a per-model basis because adding
replicas does not impact end-to-end latency. Note that
TFS cannot adjust the replication factor to account for
models that are conditionally executed and, therefore, do
not need to be provisioned for the full workload.

6.2.1 Challenges

Implementing a scalable, high-performance pipeline atop
TFS is difficult due to the synchronous query evaluation
abstraction provided by the system’s user-facing RPC
layer. In order to evaluate n queries concurrently, a client
must manage n threads - one for each query. This task is
complicated by the performance-impacting restrictions
imposed Python’s GIL; namely, only a single Python
thread can execute per quantum.

6.2.2 Implementation

Fortunately, the decision to fix a query batch size of one
per model replica due to a lack of global reasoning af-

forded by TFS substantially simplifies the pipeline im-
plementation: only a single thread is necessary to fully
saturate a given replica. Additionally, these per-replica
threads spend an appreciable amount of time waiting for
the delivery of a prediction response, reducing the afore-
mentioned GIL-related inefficiencies. Nevertheless, based
on empirically observed performance degradation when
managing more than ten replica threads in a given pro-
cess, we partition the pool of threads associated with all
pipeline model replicas into groups. Each group contains
at most ten threads. Pipeline queries are submitted to a
global request queue. A master process is responsible
for polling this request queue and forwarding queries to
the pipeline-appropriate series of model replica queues.
This design successfully avoids GIL contention and ex-
tracts sufficient parallelism from Tensorflow Serving’s
RPC implementation.

7 Experimental Setup
To evaluate InferLine we constructed two representative
prediction pipelines that span the fundamental model com-
position patterns. We configure each pipeline with vary-
ing cost and latency budgets, and then evaluate the la-
tency SLO attainment and cost-effectiveness measured in
queries-per-second-per-dollar (QPSD) under a range of
workloads, varying mean throughput and coefficient of
variation (CV). We compare the performance of serving
each pipeline with InferLine against SPD and TensorFlow
serving. In the following, we describe both the prediction
pipelines and the comparison points in more detail.

We include two image processing pipelines (Pipeline 1
and Pipeline 2) that take dense, uniformly sized images as
input and perform inference using a combination of state-
of-the-art convolutional neural networks and classical
machine learning models.

The structure of the pipelines were selected to simul-
taneously reflect realistic application scenarios and in-
clude commonly occurring composition patterns such as
model sequences, joins, and preprocessing. The models
themselves are drawn from a variety of widely used ma-
chine learning frameworks to reflect the rich ecosystem
of machine learning software in use today, although we
primarily use models trained in TensorFlow to compare
InferLine’s approach to TensorFlow-Serving, which only
supports TensorFlow models (see §6). In addition to pro-
viding a broad coverage of use cases and types of applica-
tions, this also serves to exercise many of the InferLine
primitives and operators introduced in §5.

DNN Ensemble. The first pipeline is an example of the
ensemble composition pattern. It performs inference in
parallel along two separate paths and then aggregates the
results of the independent paths together to return a final

prediction. The first path uses a ResNet152 convolutional
neural network model [16] to extract 2048-dimensional
features from a 224x224x3 dimensional image. This is
a standard technique in machine-learning [28] to extract
useful generic features for images. The neural features are
subsequently sent to a kernel SVM [9] for binary classifi-
cation. The second path follows a similar pattern, using
an InceptionV3 model [35] to extract 2048-dimensional
neural features and a logistic regression model to render
a final prediction. All four models in this pipeline were
implemented in TensorFlow [36].

Photo Analysis. The second pipeline illustrates a com-
mon real-world method of using machine learning. It
performs some complex but deterministic pre-processing
on input images to transform dirty and mixed format pho-
tos into the canonical RGB pixel format that models are
typically trained on. It then uses the relatively simple and
well-understood AlexNet [21] architecture for classifying
the image. The image pre-processing was implemented in
the Python Image Library (PIL) and we used the AlexNet
model from the PyTorch model zoo.

7.1 Physical Setup

We ran all experiments in a distributed cluster on Amazon
EC2. We consider two GPU types in this paper. When
using NVIDIA’s K80s we use a p2.8xlarge instance,
which has 32 vCPUs, 8 GPUs, 488.0 GiB of memory
and 10Gbps networking all within a single NUMA node.
When using NVIDIA’s V100s we use a p3.8xlarge
which has 32 vCPUs, 4 GPUs, 244 GiB of memory,
and 10Gbps networking in a single NUMA node. Ama-
zon also offers a p3.16xlarge instance which has
8 V100 GPUs, twice as many cores, and two NUMA
nodes, but we found that the performance to price ratio of
p3.8xlarge to be more favorable.

We ran the benchmark client driver on a separate in-
stance for all three systems. For InferLine and TFS, this
is the driver program making the individual RPC calls
to models, while for SPD this is a batching queue that
dispatches a batch of queries at a time to one of the SPD
workers. Queries were spread evenly over the workers.
We use an m4.16xlarge instance for the client, which
has 64 vCPUs, 256 GiB of memory, and 25Gbps net-
working across two NUMA zones. We used large client
instance types to ensure that network bandwidth from the
client is not a bottleneck in the experiments. All instances
were running Ubuntu 16.04 with Linux Kernel version
4.4.0 and used Amazon’s Enhanced Networking on Linux
features to utilize the full network capacity.

0 100 200
Throughput (QPS)

0

20

40

60

QP
SD

0 100 200
Throughput (QPS)

0.00

0.25

0.50

0.75

1.00

SL
O

M
iss

 R
at

e

IFL
SPD

(a) cv=0.1,SLO=300ms

0 100 200
Throughput (QPS)

0

20

40

60

QP
SD

0 100 200
Throughput (QPS)

0.00

0.25

0.50

0.75

1.00

SL
O

M
iss

 R
at

e

IFL
SPD

(b) cv=0.1,SLO=500ms

Figure 4: This pipeline consists of a CPU-intensive pre-
processing stage followed by a lightweight AlexNet GPU model.

7.2 Workload Setup

We evaluate InferLine on a range of realistic serving work-
loads. The contents of the queries were randomly sam-
pled with replacement from the validation datasets used
to evaluate the component machine learning models in the
pipeline. Both pipelines used images from the ImageNet
benchmark dataset, although in some cases the model
could operate on these images directly (Inception), while
in others the image needed to be resized (Resnet152) and
transformed (AlexNet) to be compatible.

The workload traces range across different ingest rates
and burstiness. We generated the traces by sampling the
inter-arrival time for the queries from a Gamma distribu-
tion with differing mean (β) to vary the ingest rate, and
coefficient of variation (CV) to vary the workload bursti-
ness. When reporting performance on a specific workload
as characterized by β and CV, a trace for that workload
was generated once and reused across all experiments to
provide a more direct comparison of performance.

8 Experimental Evaluation

In the first part of the experimental evaluation, we com-
pare InferLine’s performance to the Single Process Driver
and TensorFlow-Serving in an end-to-end system com-
parison. Next, we evaluate InferLine on a series of mi-
crobenchmarks that evaluate the sensitivity of both the
Planner and the physical execution engine to changes in
model, workload, and system behavior.

0 200 400
Throughput (QPS)

0

10

20
QP

SD

0 200 400
Throughput (QPS)

0.00

0.25

0.50

0.75

1.00

SL
O

M
iss

 R
at

e

IFL
SPD
TFS

(a) through-
put,cv=0.1,SLO=300ms

0 200 400
Throughput (QPS)

0

10

20

QP
SD

0 200 400
Throughput (QPS)

0.00

0.25

0.50

0.75

1.00

SL
O

M
iss

 R
at

e

IFL
SPD
TFS

(b) throughput,cv=4,SLO=300ms

0 200 400 600
Throughput (QPS)

0

10

20

30

QP
SD

0 200 400 600
Throughput (QPS)

0.00

0.25

0.50

0.75

1.00

SL
O

M
iss

 R
at

e

IFL
SPD
TFS

(c) through-
put,cv=0.1,SLO=500ms

0 200 400 600
Throughput (QPS)

0

10

20

30

QP
SD

0 200 400 600
Throughput (QPS)

0.00

0.25

0.50

0.75

1.00

SL
O

M
iss

 R
at

e

IFL
SPD
TFS

(d) throughput,cv=4,SLO=500ms

Figure 5: DNN Ensemble System Comparison: End-to-end performance comparison across all three systems for the DNN
Ensemble.

8.1 End-to-end Evaluation
We start with a direct comparison of the performance of
all three systems on Pipeline One. InferLine configures
throughput maximizing configurations that still meet the
specified cost and latency constraints. We compare the
maximum throughput that each system can provide under
the same cost and latency constraints.

To find the maximum throughput for InferLine a given
cost and latency constraint pair, we generate workload
traces with a range of mean throughputs (by varying the
Gamma distribution β) and then perform a binary search
over these traces with the InferLine Planner to find the
trace with the highest mean throughput that the Planner
determines that InferLine can support.

For SPD and TFS, we first configure the systems to
meet the latency and cost constraints. For TFS, this simply
means replicating the bottleneck model iteratively until
the cost budget is reached. For SPD, we first profile the
system under increasing batch sizes to find the maximum
batch size the application can support that is still under
the latency SLO, then replicating the entire pipeline until
the cost budget is reached.

We evaluated two types of pipelines: one balanced Fig-
ure 5 and one unbalanced Figure 5 pipeline. We expect
our approach to fine-grain configuration control to work
best for unbalanced pipelines. We vary the costs and la-
tency SLOs to analyze the behavior of the systems under
different application settings. We also varied the bursti-
ness of the workloads, considering workloads with a CV
of 0.1 (very little burstiness), CV of 1.0 (moderate bursti-
ness, corresponding to an arrival process described by a

0 10 20 30 40 50 60 70
% Latency Underestimate

0.0

0.5

1.0
SL

O
M

iss
 R

at
e

SLO 0.3

Figure 6: Sensitivity of SLO miss rate to profiled P99 latency.

Poisson distribution), and a CV of 4.0 (high burstiness).
In Figure 4, we find that InferLine significantly outper-
forms an expertly tuned, monolithic single process driver
by 7× on the number of queries it can sustain per sec-
ond per dollar(QPSD), while simultaneously meeting its
300ms SLO objective. SPD SLO miss rater is higher, as
it is provisioned for the mean throughput. For a tighter
SLO objective of 200ms, InferLine achieves a 6.3x im-
provement over SPD with a similarly favorable SLO miss
rate.

For a more balanced pipeline that consists of a prepro-
cessing stage followed by a GPU model stage, we find
that we still match the throughput performance of the
expertly tuned SPD, however we significantly outperform
SPD with a 0% SLO miss rate, while SPD lets too many
queries miss their SLO. In this pipeline, InferLine and
SPD provision the same amount of resources because
it’s balanced. However, InferLine does so in a way that
satisfies the latency SLO.

0 2 4 6 8 10 12
% Throughput Underprovisioned

0.0

0.5

1.0
SL

O
M

iss
 R

at
e

SLO 0.3

Figure 7: Sensitivity of SLO miss rate to profiled throughput.

8.2 Sensitivity Analysis
The InferLine planner is designed to provision model
pipelines to peak capacity while still ensuring that the
pipeline can meet its latency objective. It relies on the fi-
delity of the individual model profiles to do this provision-
ing safely. We next evaluate the effect of mis-estimated
model profiles on the SLO rate. The optimizer relies on
both the profiled throughput and latency.

We first evaluate the impact of mis-estimated P99 la-
tency. In Figure 6 we jointly reduced the P99 latency of
each model profile in the DNN Ensemble pipeline and
re-running the optimizer on the new profiles. Up until the
P99 latency is underestimated by 30% for every model
in the pipeline, the SLO miss rate remains close to zero.
This is because in order for the optimizer to change plans
based on the p99 latency, it needs to be low enough for
the estimator to accept the higher latencies associated
with larger batch sizes as being within the latency object.
Because increasing the batch size results in a significant
increase in end-to-end latency, the optimizer is robust to
mis-estimates in P99 latency of up to 20%. By provision-
ing for P99 latency – a measure of worst-case behavior
that is much more pessimistic than the average case of
the running system – the profiling itself builds robustness
into the optimizer and ensures that transient changes in
performance do not affect the SLO miss rate.

In contrast to the P99 latency, throughput is a much
less noisy estimator and therefore the Planner is able to
provision to the max throughput capacity of a pipeline,
maximizing resource utilization, while meeting the la-
tency SLOs. As we see in the Figure 5 and Figure 4, the
optimizer properly provisions the pipeline to achieve the
SLO. To evaluate the extent to which the optimizer over-
provisions the pipeline and as a result increasing the cost
unnecessarily, in Figure 7 we increased the load on the
pipelin above what the optimizer claimed it could support.
Here, we see that as soon as the pipeline is underprovi-
sioned by as little 4%, the SLO miss rate starts to increase,
and by the time the pipeline is underprovisioned by 10%,
the queues start to diverge, filling up faster than they
can be drained, and the SLO miss rate goes to 1.0. This
demonstrates that the Planner is provisioning the pipelines

just to their peak capacity but not beyond, extracting the
maximum value out of the expensive hardware resources.

9 Related Work
There have been a number of recent efforts to study the
design of generic prediction serving systems. TensorFlow
Serving [38] is a commercial grade prediction serving
system primarily designed to support prediction pipelines
implemented using the TensorFlow APIs. Unlike Infer-
Line, TensorFlow Serving adopts a more monolithic de-
sign with the pipeline orchestration living within a single
process. As a consequence, TensorFlow Serving is able
to introduce important performance optimizations like
operator fusion across computation stages to reduce coor-
dination between the CPU and GPU. More recently, Bay-
lor et al. [5] extended TensorFlow to support the larger
machine learning life-cycle. They added more support for
basic data transformations and multitenancy in the serv-
ing system and found that model loading can interfere
with low-latency predictions and used large thread pools
to help alleviate this contention resulting in an order-of-
magnitude reduction in the P99 serving latency.

Alternatively, Clipper [12] adopts a more distributed
design, similar to InferLine. Like InferLine, each model
in Clipper is placed in a separate Docker container. This
design improves isolation across individual models at the
expense of greater data movement. In addition, Clipper
does not directly support prediction pipelines.

The Zhang et al. [43] explored the design of a stream-
ing video processing system in the VideoStorm project.
VideoStorm shares several common goals and archi-
tectural decisions with InferLine. Similar to InferLine,
VideoStorm adopts a distributed design with pipeline oper-
ators provisioned across compute nodes. VideoStorm also
focus on optimizing the combinatorial search space of
hardware and model configurations. However, rather than
adjusting resource type and batching, VideoStorm focuses
on replication, frame skipping, and re-sizing to trade-off
throughput and accuracy. Like InferLine, VideoStorm
also introduces an offline profiling stage to estimate the
trade-off space for individual models and then uses a
greedy algorithm similar to the one described in §5.2 to
search the configuration space. However, unlike Infer-
Line VideoStorm focuses on provisioning a fixed pool of
resources across a changing set of queries.

The PICL intermediate representation used in Infer-
Line was inspired by TetriSched’s [39] space-time request
language (STRL). We augment PICL with additional oper-
ators to support end-to-end latency SLO specification and
partial order constraints. PICL’s main primitive, LnCk
deviates from STRL, though, as it supports arbitrary re-
source bundles. The main contribution of PICL is demon-

strating how common inference pipelines, including with
conditionals, can be declaratively captured and how this
ILR representation (a) generalizes and (b) formalizes the
search space for both the optimizer and the greedy heuris-
tic we propose.

A large body of prior work leveraged profiling informa-
tion to inform better scheduling. Workflow-aware schedul-
ing, however, is a relatively recent phenomenon, including
SLURM-integrated HPC scheduler published in 2017 [29]
and Morpheus [19]. In this paper, we concretely exploit
the compute-intensive and side-effect free nature of ma-
chine learning models to estimate end-to-end pipeline
performance given individual model profiles. Note that
we do not and cannot leverage prior runs of the entire
pipeline to estimate its throughput and latency, as they
change with different latency SLO and cost constraints.
Rather, we use individual model performance estimates
PICL to extrapolate the pipeline performance.

10 Conclusion
In this paper we exploit unique machine learning model
properties to address the challenges of configuring and
provisioning inference pipelines. The key insight is that
fine-grain control of per-model configurations can be
achieved with a greedy search policy that leverages the
monotonicity of a model’s throughput as a function of
its internal and external replication factors. We instanti-
ate these ideas in a system prototype, InferLine, which
builds on three principal contributions. First, we develop
a pipelined inference composition language (PICL) —the
intermediate language representation for arbitrary model
pipelines. PICL enables a declarative specification of a
large configuration space with a handful of arbitrarily
composable primitives and operators. Second, we intro-
duce a greedy algorithm used to efficiently navigate this
combinatorial configuration space, formalized by PICL
and produce throughput optimal pipeline configurations
that satisfy latency and cost constraints. Third, we build
an optimizer that extracts per-model profiling informa-
tion and pipeline structure empirically. As a result, we
achieve 6x improvement in cost for the same throughput
and latency objectives over single process driver pipeline.
InferLine straddles a wide opportunity gap in the through-
put/cost trade-off space and efficiently gains throughput
per dollar by greedily maintaining a balanced end-to-end
pipeline through its fine-grain control of each model’s
internal and external paralellism.

References
[1] F. Akgul. ZeroMQ. Packt Publishing, 2013.

[2] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Deep
compositional question answering with neural module net-
works. CoRR, abs/1511.02799, 2015.

[3] A. Angelova, A. Krizhevsky, V. Vanhoucke, A. S. Ogale,
and D. Ferguson. Real-Time Pedestrian Detection with
Deep Network Cascades. BMVC, pages 32.1–32.12, 2015.

[4] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire.
The nonstochastic multiarmed bandit problem. SIAM J.
Comput., 32(1):48–77, Jan. 2003.

[5] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo,
Z. Haque, S. Haykal, M. Ispir, V. Jain, L. Koc, C. Y. Koo,
L. Lew, C. Mewald, A. N. Modi, N. Polyzotis, S. Ramesh,
S. Roy, S. E. Whang, M. Wicke, J. Wilkiewicz, X. Zhang,
and M. Zinkevich. TFX: A tensorflow-based production-
scale machine learning platform. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’17, pages 1387–
1395. ACM, 2017.

[6] J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization. J. Mach. Learn. Res., 13:281–305,
Feb. 2012.

[7] L. Breiman. Bagging predictors. Mach. Learn., 24(2):123–
140, Aug. 1996.

[8] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Statistics/Probability
Series. Wadsworth Publishing Company, Belmont, Cali-
fornia, U.S.A., 1984.

[9] C. J. C. Burges. A tutorial on support vector machines for
pattern recognition. Data Min. Knowl. Discov., 2(2):121–
167, June 1998.

[10] Caffe Model Zoo. https://github.com/BVLC/
caffe/wiki/Model-Zoo.

[11] D. Crankshaw. Clipper, oct 2016.

[12] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E.
Gonzalez, and I. Stoica. Clipper: A low-latency online
prediction serving system. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17),
pages 613–627, Boston, MA, 2017. USENIX Association.

[13] C. Desrochers. A fast lock-free queue for c++, 2013.

[14] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on
natural graphs. OSDI, pages 17–30, 2012.

[15] J. Guan, Y. Liu, Q. Liu, and J. Peng. Energy-efficient
Amortized Inference with Cascaded Deep Classifiers.
arXiv.org, Oct. 2017.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep resid-
ual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015.

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo

[17] M. J. Jones and P. Viola. Robust real-time object detection.
Workshop on Statistical and Computational Theories . . . ,
2001.

[18] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers,
R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Da-
ley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami,
R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hog-
berg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Ja-
worski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,
Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore,
M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Stein-
berg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,
E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,
and D. H. Yoon. In-datacenter performance analysis of a
tensor processing unit. In Proceedings of the 44th Annual
International Symposium on Computer Architecture, ISCA
’17, pages 1–12, 2017.

[19] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayana-
murthy, A. Tumanov, J. Yaniv, R. Mavlyutov, I. n. Goiri,
S. Krishnan, J. Kulkarni, and S. Rao. Morpheus: Towards
automated slos for enterprise clusters. In Proceedings
of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’16, pages 117–134,
Berkeley, CA, USA, 2016. USENIX Association.

[20] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom. Spectre attacks: Exploiting speculative exe-
cution. ArXiv e-prints, Jan. 2018.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, pages 1097–1105, 2012.

[22] L. Li, W. Chu, J. Langford, and R. E. Schapire. A
contextual-bandit approach to personalized news article
recommendation. In WWW, 2010.

[23] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg. Meltdown. ArXiv e-prints, Jan. 2018.

[24] M. Malinowski, M. Rohrbach, and M. Fritz. Ask your
neurons: A neural-based approach to answering questions
about images. 2015 IEEE International Conference on
Computer Vision (ICCV), pages 1–9, 2015.

[25] M. McGill and P. Perona. Deciding How to Decide: Dy-
namic Routing in Artificial Neural Networks. arXiv.org,
Mar. 2017.

[26] PMML 4.2. http://dmg.org/pmml/v4-2-1/
GeneralStructure.html.

[27] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich. Data
management challenges in production machine learning.

In Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD ’17, pages 1723–1726.
ACM, 2017.

[28] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son. Cnn features off-the-shelf: An astounding baseline
for recognition. In Proceedings of the 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition Work-
shops, CVPRW ’14, pages 512–519, Washington, DC,
USA, 2014. IEEE Computer Society.

[29] G. P. Rodrigo, E. Elmroth, P.-O. Östberg, and L. Ramakr-
ishnan. Enabling workflow-aware scheduling on hpc sys-
tems. In Proceedings of the 26th International Symposium
on High-Performance Parallel and Distributed Computing,
HPDC ’17, pages 3–14, New York, NY, USA, 2017. ACM.

[30] R. E. Schapire. The strength of weak learnability. Mach.
Learn., 5(2):197–227, July 1990.

[31] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips,
D. Ebner, V. Chaudhary, and M. Young. Machine learning:
The high interest credit card of technical debt. In SE4ML:
Software Engineering for Machine Learning (NIPS 2014
Workshop), 2014.

[32] E. Sparks. End-to-End Large Scale Machine Learning with
KeystoneML. PhD thesis, EECS Department, University
of California, Berkeley, Dec 2016.

[33] E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. I.
Jordan, and T. Kraska. Automating model search for large
scale machine learning. In Proceedings of the Sixth ACM
Symposium on Cloud Computing, SoCC ’15, pages 368–
380, New York, NY, USA, 2015. ACM.

[34] Y. Sun, X. Wang, and X. Tang. Deep Convolutional Net-
work Cascade for Facial Point Detection. CVPR, pages
3476–3483, 2013.

[35] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wo-
jna. Rethinking the inception architecture for computer
vision. arXiv preprint arXiv:1512.00567, 2015.

[36] TensorFlow. https://www.tensorflow.org.

[37] TensorFlow Models. https://github.com/
tensorflow/models.

[38] TensorFlow Serving. https://tensorflow.
github.io/serving.

[39] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch,
M. Harchol-Balter, and G. R. Ganger. TetriSched: global
rescheduling with adaptive plan-ahead in dynamic het-
erogeneous clusters. In Proc. of the 11th European Con-
ference on Computer Systems, EuroSys ’16. ACM, Apr
2016.

[40] X. Wang, Y. Luo, D. Crankshaw, A. Tumanov, and J. E.
Gonzalez. IDK cascades: Fast deep learning by learning
not to overthink. CoRR, abs/1706.00885, 2017.

[41] Y. Yang, D.-C. Zhan, Y. Fan, Y. Jiang, and Z.-H. Zhou.
Deep learning for fixed model reuse, 2017.

http://dmg.org/pmml/v4-2-1/GeneralStructure.html
http://dmg.org/pmml/v4-2-1/GeneralStructure.html
https://www.tensorflow.org
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://tensorflow.github.io/serving
https://tensorflow.github.io/serving

[42] M. Zaharia et al. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In
NSDI, 2012.

[43] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose,
P. Bahl, and M. J. Freedman. Live video analytics at
scale with approximation and delay-tolerance. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 377–392, Boston, MA,
2017. USENIX Association.

	1 Introduction
	2 Prediction Pipelines
	2.1 Opportunities
	2.2 Model Composition Challenges

	3 Design and Architecture
	3.1 Pipeline Composition API
	3.2 Physical Execution Engine
	3.2.1 Implementation

	4 The Profiler
	4.1 Single Model Profiling

	5 Planner
	5.1 PICL ILR
	5.1.1 PICL specification
	5.1.2 PICL Example: Cascade Pipeline

	5.2 Greedy Planner

	6 System Comparisons
	6.1 Single Process Drivers
	6.1.1 Implementation

	6.2 TensorFlow-Serving
	6.2.1 Challenges
	6.2.2 Implementation

	7 Experimental Setup
	7.1 Physical Setup
	7.2 Workload Setup

	8 Experimental Evaluation
	8.1 End-to-end Evaluation
	8.2 Sensitivity Analysis

	9 Related Work
	10 Conclusion

