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Abstract

An important diagnostic tool in identifying heart rhythm irregularities, known as arrhyth-
mias, is the electrocardiogram (ECG). Accurate identification of arrhythmias is critical to
patient well-being in clinical settings, as both acute and chronic heart conditions are typ-
ically reflected in these readings. This is known to be a difficult problem even for human
experts, due to variability between individuals and inevitable noise. We explore the use of
deep neural networks for the task of classifying ECG recordings using recurrent and residual
architectures. Using a dataset of 106 patient readings, we train several deep networks to
categorize slices of ECG data into one of six classes, including normal sinus rhythm, arti-
fact/noise, and four arrhythmias of varying levels of severity. We investigate the usefulness
of multi-channel ECG data without additional feature extraction in this problem, especially
when common frequency domain transformation feature representation may not be suitable
due to low periodicity of data.
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Chapter 1

Introduction

An important diagnostic tool in identifying chronic and acute heart rhythm irregularities
(cardiac arrhythmias) is the electrocardiogram (ECG), which measures electrical heart ac-
tivity via electrodes placed on a patient’s skin. ECGs are ubiquitous in intensive care units
(ICUs), where clinicians must be able to make critical care decisions quickly and accurately.
The ability to correctly distinguish various arrhythmias from each other is crucial for patient
well-being; in many cases, the wave morphologies of benign and lethal arrhythmias can be
difficult to distinguish.

Existing monitoring systems for ECGs record a myriad of vital signs and also utilize
algorithms to determine changes in cardiac rhythm. However, accurate identification of
arrhythmias is known to be challenging even for medical professionals, and requires con-
siderable medical expertise. A study investigating diagnostic accuracy for licensed general
practitioners showed a specificity of 92% and sensitivity of only 80% in distinguishing atrial
fibrillation from healthy sinus rhythms [1]. Waveforms often show variation given an indi-
vidual’s unique biological characteristics, even for arrhythmias whose identifying patterns
are known and well-documented.

ECG recordings also suffer from several potential sources of considerable noise, including
device power interference (as the measurements themselves are voltages), baseline drift, con-
tact noise between the skin and the electrode, and motion artifacts. These motion artifacts,
in particular, can be caused by any muscular activity from the patient; even innocuous move-
ment can be mistakenly registered as arrhythmia. Many of our data points are classified as
artifacts due to lead failure, excessive measurement noise, or even unclassifiable arrhythmia.

The combination of inter-patient variability and noise makes this a challenging algo-
rithmic classification problem, and a variety of methods have been proposed to increase
diagnostic accuracy. Standard regression and feed-forward neural network models have been
explored in the past, and more recent approaches also utilize deep CNN or RNN structures.
Feature engineering and spectral analysis are also popular methods for adding or replacing
features, though this often limits the scope of the classification.

To exploit the inherently time-dependent nature of ECG readings, we investigate the use
of LSTM networks, commonly used to classify or generate sequential data, to distinguish
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normal sinus rhythm from artifacts and several arrhythmias of varying levels of severity. In
addition, we explore a combined architecture that includes residual connections, which have
been have shown to improve classification performance without the significant increase in
model complexity typically seen in deep learning architectures.

As we have access to multi-channel data, we incorporate this increased dimensionality
into our algorithm, in contrast to the single-channel input format commonly used in ECG
classification. Individual channels record cardiac electrical activity from various spatial an-
gles, and the use of multiple channels is likely to give deeper insight into any underlying
patterns of arrhythmia that can be interpreted by our model.

We train two baseline models: a single-layer, unidirectional LSTM, and a convolutional
neural network without residual connections. We then train models from three categories
(LSTM only, residual networks, and LSTM-CNN combined networks), for a total of six
models not including our baseline models.

All models exceed baseline performance on training, validation, and test accuracy. A
2-layer, bidirectional LSTM achieves the best performance overall; though networks with
residual structures achieve higher training accuracy, their validation and test accuracies are
lower than those of the LSTM only networks. The overall F1 score of 0.803 achieved by this
network exceeds reported cardiologist F1 scores reported in [2].
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Chapter 2

Background

2.1 Cardiac Arrhythmias

The rhythm of a human heart is regulated by electrical signals produced by two nodes
within the heart and conducted through a series of specialized cardiac cells. During healthy,
normal operation, this occurs at regular intervals and the electrical signal, which causes the
heart muscles to contract, propagates via the cardiac electrical conduction system along the
correct path through the atria and ventricles.

Cardiac arrhythmia occurs when the heartbeat is too fast (tachycardia), too slow (brady-
cardia), or altogether abnormal. Both atrial and ventricular arrhythmias can have any num-
ber of causes, including scar tissue from previous trauma (such as myocardial infarction)
and coronary disease, and can even occur in healthy hearts. Though many arrhythmias are
asymptomatic, those that are not can cause symptoms as mild as occasional palpitations or
as severe as stroke and sudden cardiac death. As arrhythmias are caused by disorders of the
electrical conduction system, they are reflected in ECG readings as abnormal waveforms.

The complexity of this system often necessitates that clinicians use anywhere from six to
twelve ECG leads to capture electrical activity across multiple spatial planes [3]. A single
lead only provides a ‘projection’ of this activity across one specific plane and may not provide
enough information to make accurate diagnoses of underlying pathologies.

The rhythms we aim to classify are normal (sinus) rhythm, noise/artifact (or otherwise
unidentifiable arrhythmia), ventricular tachycardia (VT), atrial fibrillation (AF), bigeminy,
and premature ventricular contraction (PVC). An example of each class is shown in figure
2.1; only one channel is plotted for clarity.

Figure 2.2 presents a case where using multiple channels is key to correct classification.
While the single channel recording in 2.2a implies a normal (albeit slightly noisy) sinus
rhythm, the full multi-channel recording of the same data point in 2.2b shows a large,
abnormal wave about 3 seconds in. This is labeled as an artifact in our dataset; had we
considered only the data shown in 2.2a, this would have likely been classified as ‘sinus’.
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(a) Sinus/normal (b) Artifact

(c) Ventricular tachycardia (d) Atrial fibrillation

(e) Ventricular bigeminy (f) Premature ventricular contraction

Figure 2.1: Examples of rhythm types
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(a) Single-channel recording (b) Multi-channel recording

Figure 2.2: Single vs multi-channel data

Clinical Significance

Differentiation between various types of arrhythmias is critical. For example, ventricular
bigeminy, a premature beat every two beats, can occur for short periods without symptoms in
healthy people. They are a general type of premature ventricular contraction (though a label
of PVC typically indicates a single premature beat), which, when occurring rarely enough,
is clinically inactionable [4]. In contrast, sustained ventricular tachycardia or complete heart
block can lead to cardiac arrest within minutes and thus require immediate intervention.

While high sensitivity of arrhythmia classification is important, its specificity is also
significant in practice. Repeated false positive alarms from monitoring devices, which can
be caused by innocuous motion artifacts or lead failures, lead to a documented phenomenon
among clinicians known as alarm fatigue. This can lead to false positive rates as high as 89%
[4], which can cause desensitization or annoyance, and can be a significant safety hazard for
patients.

2.2 Related Work

Finding efficient, accurate ECG classification algorithms is not a new problem; currently
available ICU monitoring devices are able to perform live diagnosis based on observed record-
ings. However, the accuracy of these devices—specifically in differentiating between mor-
phologically similar cardiac rhythm types and safely reducing false positive rates—remains
an issue.

As far back as 1990, simple feed-forward networks have been proposed for classifying
underlying cardiac conditions from ECGs [5]. Hidden Markov models have also been used in
conjunction with QRS waveform detection for classifying specific arrhythmias, though these
have been limited to distinguishing between very few possible classes, such as supraventric-
ular tachycardia [6] or premature ventricular contraction versus beat fusion [7].

The periodic nature of most ECG signals has also been an area of interest, and spectral
analysis has been used specifically to identify sustained ventricular tachycardia [8]. Alterna-
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tive time-frequency distributions to Fourier transform have been explored in the identification
of various ventricular arrhythmias [9].

In general, much work in this area, until recently, has relied on extracting hand-crafted
features and comprehensive prior knowledge of specific arrhythmias and their waveform pat-
terns. This limits the number of classes that can be reliably differentiated with a given model,
as the morphology of different waveforms is usually highly specific to a given arrhythmia.
More recent developments in arrhythmia classification research have utilized well-known deep
learning algorithms such as deep CNNs and incorporation of skip/residual layers to improve
classification accuracy [2].

Leveraging multi-channel time series data in clinical settings for various classification
tasks is an active area of research [10]. In recent work, this approach has been used to
classify human activities based on motion sensor data [11]. Existing techniques for ECG
classification in particular almost exclusively use single-channel data [5–7], however, likely
due to lack of data. The ECG recordings provided by the PhysioNet database of physiological
signals [12], used for testing and training many ECG classification algorithms, are primarily
dual or single-channel.
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Chapter 3

Methods

3.1 Data

The data used to train the models is a set of ECG recordings, obtained from UCSF, for
106 patients for varying lengths of time. Seven channels are provided, though one is removed
during extraction as it is simply a linear combination of three of the other channel readings.
These include manually labeled alarms of specified length—this is distinct from many of the
datasets found in the MIT-BIH database [12] that is typically used for ECG classification
tasks, as the MIT-BIH data typically does not provide duration information for any of the
alarms.

The window for each sample is either truncated or padded to 5 seconds as many of
the viable ‘alarm segments’—namely, alarms not caused by internal error—are close to this
length. As this data was passively collected, the distribution of classes is extremely skewed,
so more common classes (specifically, sinus rhythm and noise) were downsampled to achieve
a more even class distribution.

We extract over 150,000 segments classified as one of six classes, as detailed in section
2.1. From this dataset we sample nearly 12,000 data points due to the aforementioned class
imbalance.

We split this dataset into training, validation, and test sets, at 68%, 17%, and 15%
respectively (obtained from an initial 85/15 split into training and test data, followed by a
80/20 split of that training data into training and validation sets). To achieve reasonable
training time, the samples were decimated by a factor of 2 to achieve an effective sampling
rate of 120 Hz from the original 240 Hz. Each sample, thus, is of size (600×6). Each sample
is then assigned a ground truth label from its corresponding alarm, regardless of the length
of the actual alarm (as the data is padded if it is shorter than our 5 second window).
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Type Original Downsampled
Sinus rhythm 126,435 4,000
Artifact/Noise 18,953 3,000
Ventricular tachycardia 249 249
Atrial fibrillation 1,452 1,452
Bigeminy 896 896
PVC 2,374 2,374
Total 150,359 11,971

Table 3.1: ECG dataset profile

3.2 Model Architectures

LSTM

Long short-term memory units are used to build recurrent neural networks. In particular,
they address the issue of exploding/vanishing gradients in standard recurrent architectures.
Several gates control updates from inputs, as well as how much of a memory state is retained
and passed on to the proceeding timestep. Notably, the cell state ct (for timestep t) is only
ever gated element-wise with the forget gate f and the input activation gate g without
undergoing linear transformation. This allows gradients to pass through many steps in
time without vanishing (hence ‘memory’), and thus the model is able to learn long-term
dependencies within the data. Formally, we define the relationship between cell inputs
xt, ht−1, ct−1 and cell outputs ht, ct for data inputs xt, hidden states ht, and cell states ct at
a given timestep t as follows (further detailed in [13]):

it = σ(Wixt + Uiht−1 + bi) = σ(ît)

ft = σ(Wfxt + Ufht−1 + bf ) = σ(f̂t)

ot = σ(Woxt + Uoht−1 + bo) = σ(ôt)

gt = tanh(Wgxt + Ught−1 + bg) = tanh(ĝt)

(3.1)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)
(3.2)

The first four equations (barring nonlinearities) can be summarized as the following:
ît
f̂t
ôt
ĝt

 = W

(
xt
ht−1

)
+


bi
bf
bo
bg

 (3.3)

W, b define the weights that multiply cell inputs and added bias terms respectively, and are
thus the parameters learned by the model. The hidden state vector (ht) corresponds to cell
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Figure 3.1: An LSTM unit

‘output’ and is passed along to the next unit, at the next time step, along with cell state ct.
We can either consider the output of just the last unit (for final output classification from
the last layer), or from all time steps (when sequences are needed, or to pass into another
layer of LSTM units). A visual representation of a single LSTM unit is shown in figure 3.1.

For our LSTM networks, an individual sample is treated as a 600-timestep sequence,
where each timestep is a 6-feature data point. In addition to a single-layer unidirectional
baseline model, we also train 2- and 5-layer stacks of LSTM units, where the output of each
LSTM unit not in the final layer is treated as input to a unit in the next. To increase the
contextual information available to the model, we also train a bidirectional variant of the
2-layer LSTM model. These use the same update equations, but add a second LSTM flowing
backwards in time; cell outputs from both networks are then concatenated at each time step.
As this allows propagation of information from future timesteps, the model can often learn
more contextual information and has been shown to improve performance in many tasks [14].
Full high-level architecture of the 2-layer bidirectional LSTM network is shown in figure 3.2.

Residual Networks

Residual networks, as introduced by [15], address several of the concerns in using deep
networks for classification (among other learning tasks), including exploding or vanishing
gradients [16] and accuracy degradation from increased network depth [17]. Techniques such
as normalized initialization of weights [18] and independent normalization of each training
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Figure 3.2: Bidirectional LSTM network with 2 stacked layers

batch [19] have shown to be effective in allowing deep networks to converge using standard
gradient descent and backpropagation.

However, the saturation (and eventual degradation) of accuracy at high depth levels
remains an issue. As it is reflected in decreased training accuracy [15], this is not a result of
overfitting training data. By adding identity shortcuts over various blocks in the network,
gradients can flow through many layers during training without vanishing. We can thus take
advantage of the increased representational power provided by deep networks.

In the general case, we have an input x to some set of layers (for example, a block of
convolution, max-pooling, and activation layers) and an output F (x;W ) for a set of internal
parameters W . The output of a residual block, which includes this set of layers and a residual
connection, is defined to be:

y = H(x) = F (x;W ) + x (3.4)

F (x;W ) is the residual, or the difference between input x and output y, that is to be learned.
Residual connections may take different forms; in this case, our residual connections are
maxpooling layers (due to reduction in size from convolutional layers).

For our baseline and deep CNN architectures, each sample is treated as set of 6 single-
channel 600-timestep recordings. These subnetworks are trained in parallel before their
outputs are concatenated and fed into the fully connected and softmax block for classification
output. Each subnetwork contains multiple one-dimensional convolution and maxpool layers
are stacked to form the network, and we also utilize batch normalization [19] and dropout as
regularization techniques. In the case of the deeper network, we add a shortcut connection
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Figure 3.3: Residual network, showing only the CNN architecture

between every two convolutional layers after the first few convolutional layers to form the
residual network structure (where the residual connection itself is a maxpool layer). In total,
we use 35 convolutional layers in each subnetwork. Full high-level architecture of our residual
network is shown in figure 3.3.

Combined Networks

To utilize both the pattern recognition afforded by deep CNNs and the temporal learning
ability of LSTMs, we also train an additional architecture that combines them into a single
model. We begin with a stacked LSTM to extract temporal structures from the data, and
instead of feeding the unrolled hidden state into another LSTM layer, we feed it as input into
a (deep) CNN to extract localized features. In the combined model, we begin by feeding the
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Figure 3.4: Combined LSTM-CNN model (LSTM portion may be uni- or bidirectional)

data into a 2-layer LSTM. The output of the final LSTM layer is treated as a one-dimensional
image of size (100 × 600), and fed into a CNN to extract localized features. We also train a
similar architecture with a bidirectional 2-layer LSTM, where the image is of size (200×600).

Full high-level architecture of our combined network is shown in figure 3.4.

3.3 Metrics

For a given classification label, we consider how well a model predicts samples to be
positive or negative cases of that label. This is broken down into four categories: TP (true
positive) for correctly labeled positive predictions, TN (true negative) for correctly labeled
negative predictions, and FP (false positive) and FN (false negative) for incorrectly labeled
positive and negative predictions respectively. In addition to overall accuracy ( TP+TN

all predictions
),

we also utilize the following metrics, due to their clinical and practical significance:

Recall / Sensitivity =
TP

TP + FN
(3.5)

Precision / Positive Predictive Value =
TP

TP + FP
(3.6)
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Specificity =
TN

TN + FP
(3.7)

F1 Score =
2 · Recall · Precision

Recall + Precision
(3.8)

In the context of this problem, recall reflects accurate positive identification of an arrhythmia
when it occurs in the patient, precision reflects accurate positive identification when identified
by the algorithm, and high specificity indicates a low false alarm rate. The F1 score provides
a convenient metric for comparing performance as it is the harmonic mean of precision and
recall. These metrics are particularly significant in clinical applications, where misdiagnoses
of any kind may have severe consequences.
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Chapter 4

Experiments and Results

4.1 Setup

We formulate this as a sequence classification problem, and train multiple models to
investigate the effectiveness of a combining residual connections with LSTM architecture.
We train six model architectures from three categories:

1. LSTM

• 2-layer unidirectional LSTM

• 5-layer unidirectional LSTM

• 2-layer bidirectional LSTM

2. Residual networks

• 16-block deep residual convolutional neural network

3. Combined models

• Unidirectional LSTM-CNN

• Bidirectional LSTM-CNN

Baselines

As baselines, we train a 4-block (each block containing a sequence of convolution, max-
pool, batch normalization, and dropout layers) CNN with maxpool residual connections as
well as a single-layer, unidirectional LSTM with a hidden dimension of 100 (the dimension-
ality of the hidden/output space as defined in section 3.2).
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Aggregate Accuracy Comparison
Model Training Validation Test
Baseline (unidirectional) LSTM 66.9% 66.4% 65.7%
Baseline CNN (4 blocks) 68.5% 72.1% 68.9%
Stacked unidirectional LSTM (2-layer) 80.6% 78.2% 79.3%
Stacked bidirectional LSTM (2-layer) 82.0% 79.6% 80.1%
Stacked unidirectional LSTM (5-layer) 80.3% 79.5% 79.4%
Deep residual CNN (16 blocks) 84.6% 75.4% 74.9%
Combined unidirectional LSTM-CNN 83.5% 77.6% 79.5%
Combined bidirectional LSTM-CNN 93.3% 74.9% 76.9%

Table 4.1: Aggregate test set accuracy for all classes using multi-channel data

4.2 Training

All networks are trained using a minibatch size of 64, and 100 epochs of training. We
minimize categorical cross-entropy loss in all cases, and we use the Adam optimizer [20], an
extension of the classic stochastic gradient descent optimizer.

All LSTM networks use a hidden dimension of 100, as well as a small dropout parameter
(p = 0.1) for all gates (and thus applied between cell input and output as well as between
‘unrolled’ instances of each unit). All dropout layers in CNN models used p = 0.5 to
maximize regularization [21].

To investigate the usefulness of multi-channel ECG data, we also retrain a representative
model from each architecture using only one of the available channels per sample (specifically,
the BDLSTM with two stacked LSTM layers, deep residual network, and combined LSTM-
CNN with two stacked LSTM layers).

4.3 Results

The tables in this section summarize our experimental results. We investigate the overall
accuracy of all models (table 4.1), and derive more detailed performance metrics (recall,
precision, specificity, and F1 score) of the representative models mentioned above (table
4.3). A comparison between F1 scores of the same three models using both multi-channel (6
channel) and single-channel data is also provided (table 4.4).

Except for VT (whose classification showed relatively poor performance in all models) and
PVC, the 2-layer bidirectional LSTM had the highest F1 score out of the three representative
models, as shown in table 4.2. The low F1 scores for VT classification are likely a result of
its low support in the dataset (figure 3.1). This is also seen to a lesser extent in bigeminy
classification, with low recall and F1 scores in the residual network.

From figure 4.1, we see that VT is often mislabeled as PVC; both these arrhythmias
have wide QRS complexes [3], which are the characteristic waveform morphologies visible
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F1 Score Class Comparison
Rhythm class BDLSTM Residual LSTM-CNN
Sinus rhythm 0.832 0.754 0.783
Artifact/Noise 0.854 0.808 0.823
Ventricular tachycardia 0.225 0.069 0.407
Atrial fibrillation 0.827 0.783 0.774
Bigeminy 0.683 0.116 0.543
PVC 0.779 0.801 0.714
Overall 0.803 0.718 0.752

Table 4.2: F1 score comparison over classes for test set, using representative LSTM (2-layer
BDLSTM), residual (CNN), and combined (LSTM-CNN) models. Overall F1 score is a
weighted average given the class’s support in the test set.

Classification Metrics Comparison
BDLSTM Residual LSTM-CNN

Class R P S F1 R P S F1 R P S F1
S 0.83 0.84 0.95 0.83 0.89 0.65 0.87 0.75 0.78 0.79 0.94 0.78
A/N 0.89 0.83 0.95 0.85 0.73 0.90 0.98 0.81 0.82 0.82 0.95 0.82
VT 0.15 0.50 0.96 0.23 0.04 0.47 0.98 0.07 0.32 0.55 0.98 0.41
AF 0.81 0.84 0.95 0.83 0.85 0.73 0.91 0.78 0.87 0.70 0.89 0.77
B 0.71 0.66 0.83 0.68 0.06 0.90 0.99 0.12 0.46 0.66 0.98 0.54
PVC 0.79 0.77 0.89 0.78 0.84 0.77 0.92 0.80 0.67 0.76 0.93 0.71

Table 4.3: Performance metric comparison over classes for test set

F1 Score Class Comparison
Class BDLSTM Residual LSTM-CNN

Multi Single Multi Single Multi Single
S 0.832 0.619 0.754 0.697 0.783 0.706
A/N 0.854 0.766 0.808 0.744 0.823 0.770
VT 0.234 0.021 0.069 0.075 0.407 0.143
AF 0.827 0.360 0.783 0.798 0.774 0.712
B 0.683 0.247 0.116 0.074 0.543 0.526
PVC 0.779 0.671 0.801 0.707 0.714 0.701

Table 4.4: F1 score comparison over classes for test set, comparing single and multi-channel
input data
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(a) BDLSTM (b) Residual (c) LSTM-CNN

Figure 4.1: Confusion matrices for the three representative models where each row (true
class) is scaled by its sum, for a visualization of classification recall. True and predicted
labels are numbered in the order presented in tables 4.2-4.4.

(a) Accuracy curves (b) Loss curves

Figure 4.2: Deep residual CNN accuracy and loss curves: This model also shows a degree
of overfitting as validation accuracy does not show appreciable increase after about 40-50
epochs, even as performance on training data continued to improve.

in figures 2.1c (occurring repeatedly) and 2.1f (in the single abnormal wave in the middle).
The waveform similarity between the abnormal waves in bigeminy and PVC also explains
why the residual network often confused the two. The convolutional structure recognizes the
existence of similar patterns, but might not distinguish the number of times it occurs or its
regularity, which is what distinguishes bigeminy from PVC.

We note that the overall F1 score of 0.803 achieved by the 2-layer BDLSTM exceeds
cardiologist scores as reported in [2], both sequence level1 F1 score of 0.719 and set level2 F1
score of 0.751.

1Accuracy metric is the average second-level overlap between ground truth annotations and predictions
2For each sample, the set of identified rhythm classes present is compared (no penalty for time misalign-

ment)
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(a) Accuracy curves (b) Loss curves

Figure 4.3: Combined BDLSTM-CNN accuracy and loss curves: Much like the deep residual
network, this model also shows a degree of overfitting as performance on validation data
does not improve after about 30 epochs. Validation loss started to increase slightly as well.

Although models utilizing residual structures showed the highest training accuracies (ta-
ble 4.1), the relatively low validation and test accuracies, particularly for the combined
BDLSTM-CNN model, seem to imply some degree of overfitting. This is evident in the
loss/accuracy curves for these models (figures 4.2, 4.3). Experiments with hyperparameter
adjustment and increasing regularization and dropout either did not show marked improve-
ment in validation performance or led to underfitting.

We can also see that utilizing multi-channel data is beneficial (table 4.4). For the BDL-
STM and combined models in particular, all classes show notable decrease in F1 score when
the feature space for each timestep is reduced to 1. In the cases where single-channel data
performed better (ventricular tachycardia and atrial fibrillation detection in the residual
network), the differences are small, at 0.006 and 0.015 respectively. Compare this to the
differences in F1 score demonstrated by the other models for the same classes at 0.213 and
0.467 respectively for the BDLSTM, and 0.264 and 0.062 respectively for the combined model
(all decreases in scores upon reducing the feature space).
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Chapter 5

Conclusions and Future Work

We show that using known deep network algorithms for classifying time-series data allows
for accurate classification of normal, benign, and critical arrhythmias as well as distinguishing
artifacts and noise from multi-channel ECG recordings. A layered bidirectional LSTM as
well as a combined LSTM-CNN architecture is able to achieve relatively high accuracy and
precision without the use of feature engineering or extraction of previously known waveform
patterns.

We also show that ECG classification greatly benefits from the use of multi-channel
data, with nearly all classes and models showing markedly decreased accuracy when only
one channel is used.

5.1 Limitations

An inherent limitation for this particular problem is the difficulty in obtaining accurate
ground truth labels. In the context of general machine learning, humans are typically the
experts from whom ground truth labels or optimal actions are learned. However, ECG
classification is inherently challenging even for practicing cardiologists; since we train the
models under the assumption that cardiologist annotations reflect the ground truth, the
models have an inherent limitation in performance.

In addition, a cursory review of the data implies a small proportion of the data labels
is actually incorrect (figure 5.1). As it would be infeasible to manually check every avail-
able sample, this surely introduced additional error into our model. Some arrhythmias are
morphologically very similar (figures 2.1e and 2.1f), and small differences in wave patterns
can indicate different classes of arrhythmia—incorrect labels throw off the model’s learned
assumptions even further.

The low success rate of ventricular tachycardia classification is likely due to two primary
factors: low support from the dataset, and that the few samples we do have are typically
short (73% of the training set examples are only 2 seconds long).
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(a) Labeled as sinus, despite clearly evident noise and lack of distinct sinus wave

(b) Labeled as atrial fibrillation, though this lacks the small but regular perturbations that are
characteristic of fibrillation and shows large, unexplained waveforms

Figure 5.1: Examples of mislabeled data



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 21

5.2 Future Work

Past experiments with frequency domain transformation and custom feature extraction
(such as P-QRS-T wave analysis [22] and clustering [23]), have shown to be useful in iden-
tifying specific arrhythmias; an ensemble model using both time series and these additional
features will likely improve classification accuracy.

One area of interest is the optimization of these deeper models to perform online classi-
fication on a stream of ECG data, as existing measurement devices currently perform ECG
interpretation in this way (which is necessary due to the time-critical nature of cardiac ar-
rhythmia). Similarly, patient biometrics, which are typically available in real-life use cases
of ECGs, can potentially be used in an integrated classifier. Patient-specific instances can
be trained on a large, diverse dataset, and fine-tuned as they receive more readings from the
patient. Underlying factors that can affect arrhythmia classification, such as resting heart
rate, and existing or prior cardiac conditions, can also be incorporated.
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