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ABSTRACT
As the rate of data collection continues to grow rapidly,
developing visualization tools that scale to immense data
sets is a serious and ever-increasing challenge. Existing ap-
proaches generally seek to decouple storage and visualization
systems, performing just-in-time data reduction to transpar-
ently avoid overloading the visualizer. We present a new ar-
chitecture in which the visualizer and data store are tightly
coupled. Unlike systems that read raw data from storage,
the performance of our system scales linearly with the size
of the final visualization, essentially independent of the size
of the data. Thus, it scales to massive data sets while sup-
porting interactive performance (sub-100 ms query latency).
This enables a new class of visualization clients that auto-
matically manage data, quickly and transparently request-
ing data from the underlying database without requiring
the user to explicitly initiate queries. It lays a groundwork
for supporting truly interactive exploration of big data and
opens new directions for research on scalable information
visualization systems.

1. INTRODUCTION
As researchers in the 1980s and 1990s were just discov-

ering how to use high-resolution color displays to visualize
information, it became clear that interactive visualization
and data processing are useful to a wide variety of applica-
tions [30] and would augment users’ ability to perform mean-
ingful analyses [20]. In 1996, Shneiderman stated his famous
information-seeking mantra, “Overview first, zoom and fil-
ter, then details-on-demand” [31] as a guiding principle in
creating data visualization tools. However, this gold stan-
dard has proved difficult to realize when working with large
datasets. There has been a sharp tradeoff between achiev-
ing interactivity and scaling to large datasets, due to the
data management problems inherent in creating overview
visualizations [15].

Even as computing and storage technologies have improved
vastly over the past two decades, this problem has not abated.
In fact, it has worsened. As Hellerstein et al. explain in
1999, the appetite for data has grown faster than Moore’s
Law, meaning that the time to analyze large data sets has
steadily grown [20], and as Stoica explains in 2013, this trend
is only expected to continue [33]. To address this prob-
lem, the database and systems communities have developed
column-oriented databases [36], parallel databases [27] and
distributed computation frameworks [38] to process data
faster. In addition, researchers have applied sampling tech-
niques [21, 1] and precomputation of aggregates [12, 4] to

respond to queries at interactive speeds, by providing ap-
proximate results or statistical summaries rather than exact
results or raw data.

Meanwhile, the data visualization community has arrived
at similar solutions. In his keynote paper at SIGMOD 2008,
Shneiderman observed that data sets had grown so large
that they could no longer be rendered with atomic markers
on a single display. He predicted that visualization tools
will need to use data reduction techniques, such as filtering,
aggregation, or sampling, to solve the problem of “squeezing
a billion records into a million pixels” [32]. Recent work in
visualization systems makes use of data reduction to scale
communication, rendering, and visualization quality to large
datasets. ScalaR [9] uses query plan information to decide
if data reduction should be used. M4 [23] renders aggre-
gates instead of raw points. However, these systems do not
take advantage of interactive databases that use similar tech-
niques. They perform queries against traditional databases,
performing aggregation just-in-time.

In this paper, we present Mr. Plotter, the Multiresolution
Plotter, which unifies the data reduction techniques used
to create scalable visualizations with those used to create
interactive databases. Specifically, we use a data store that
uses hierarchical pre-aggregation to provide fast response
times, and leverage the same aggregation technique to alle-
viate bottlenecks in rendering, communication, and visual
clutter in the visualization client. As a result, Mr. Plot-
ter substantially outperforms other visualization tools (see
Figure 1 and Table 1).

Mr. Plotter consists of a visualization client and a data
store. For the data store, we use the Berkeley Tree Database
(BTrDB) [4], a database for scalar-valued timeseries data
that can efficiently serve queries for statistical summaries of
data. The visualization client is a custom-built desktop ap-
plication responsible for providing a user interface and fetch-
ing and rendering the appropriate data. By closely coupling
these two components, we create a highly responsive and
interactive visualization for the user.

Some past work has also tried to closely couple the vi-
sualization client and the data store. The prior work most
similar to Mr. Plotter is Skydive [19], a system for visu-
alizing spatial data. Skydive encodes its data into an ag-
gregate pyramid, with raw data at the base and statistical
summaries, at progressively larger bin sizes, as one moves
up the pyramid. The data visualization client lets the user
choose a stratum from the pyramid and a “cut” of data (i.e.,
a working dataset), and then map that data to a visual pre-
sentation.
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However, Mr. Plotter improves upon systems like Sky-
dive by incorporating data management into the visualiza-
tion client. While the user focuses on zooming and scrolling
through the data, the client automatically requests data at
the appropriate resolution and time ranges, and shows per-
ceptually relevant information until that data is received
from the data store. We call this behavior automatic data
management. Furthermore, Mr. Plotter reconciles client-
side caching and automatic data management with the no-
tion of fast data—data that are inserted out-of-order, being
streamed into the data store, or otherwise changing. This
makes Mr. Plotter suitable for situations where data are be-
ing materialized in real-time [6, 5].

In summary, the main contributions of our work are:

• We unify data reduction techniques used by database sys-
tems to support interactivity, with those used by visu-
alization systems to eliminate rendering/network bottle-
necks and visual clutter.

• We demonstrate how to apply hierarchical aggregation
to provide interactive visualization of scalar-valued time-
series data.

• We provide a visualization client that caches data, au-
tomatically and transparently requests data as the user
pans and zooms, and shows a perceptually relevant plot
until the requests return—behavior that we term auto-
matic data management.

• We reconcile this with “fast” data (i.e., data streaming
into the data store, being inserted out-of-order, or other-
wise changing).

The remainder of this paper is organized as follows. Sec-
tion 2 provides necessary details about BTrDB, the backend
data store used by Mr. Plotter. Sections 3 and 4 describe the
design and implementation, respectively, of Mr. Plotter’s vi-
sualization client. Section 5 evaluates Mr. Plotter. Section
6 compares Mr. Plotter to related work. Finally, Section 7
discusses directions for future work, and Section 8 concludes
the paper.

2. DATA STORAGE: BTRDB
This section motivates our choice of aggregation as a data

reduction technique, and then explains relevant details about
the API and implementation of BTrDB, the data store used
by Mr. Plotter.

2.1 The Case for Aggregation
We describe the three main data reduction techniques that

database systems and visualization systems use: filtering,
sampling, and aggregation. Then, we explain our choice to
use aggregation.

2.1.1 Sampling and Filtering
In sampling and filtering techniques, a subset of the data

is selected, and traditional techniques for query processing
or visualization are applied to that subset. In filtering tech-
niques, this subset consists of data that match a certain
predicate (e.g., adding a WHERE clause to a SQL query).
In sampling techniques, the subset is chosen without at-
tention to a particular predicate on the data; usually, it
is chosen randomly. BlinkDB [1] precomputes samples of

(a) A näıve design: visualization client requests and renders
all points matching a query

(b) A design used by visualization tools like M4 and ScalaR:
visualization client requests and renders data aggregates,
which are computed by the database system on the fly

(c) Mr. Plotter’s design: database system accelerates queries
using precomputation; visualization client requests and ren-
ders precomputed data aggregates

Figure 1: Comparison of approaches to data visual-
ization

data, which it uses to produce approximate results to queries
within a user-specified time bound or error bound. Visual-
ization tools [2, 28, 26] also use these techniques, retrieving
only a subset of data from the server to reduce the costs of
communication and rendering.

2.1.2 Aggregation
In aggregation techniques, the space of data is divided into

bins, and aggregate statistics (e.g., number of records, av-
erage value, etc.) are computed for each bin. Respawn [12]
and BTrDB [4] precompute aggregates, accelerating queries
for those aggregates. Visualization tools such as ATLAS [14],
ScalaR [9], M4 [23], and Skydive [19] display aggregates
instead of raw data. Hierarchical aggregation schemes, in
which bins are organized as a tree where each bin is the
union of its children, are particularly amenable to visualiza-
tion [17, 5, 10]. One can create an overview of a large data
set using the aggregate at the root, and drill down to the
details by following a branch of the tree, realizing Shneider-
man’s mantra, “Overview first, zoom and filter, then details-
on-demand.”

2.1.3 Discussion
We use aggregation for data reduction in Mr. Plotter. The

primary reason is that random sampling always has the po-
tential to miss outliers. In contrast, aggregrates such as
“min” and “max” reliably capture the existence of outliers.
Meanwhile, filtering cannot be used to produce an overview
visualization, as the subset is, by construction, not repre-
sentative of the overall dataset.
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System ATLAS [14] ScalaR [9] ScalaR [9] M4 [23] Mr. Plotter Mr. Plotter
Number of Records 1.28 Billion 2.70 Billion 2.70 Billion 3.60 Million 233 Million 23.3 Billion
Time to Overview 28 s 89.55 s 1.95 s 5 s 223 ms / 56.2 ms 294 ms / 50.0 ms
Data Reduction Aggregation Aggregation Sampling Aggregation Aggregation Aggregation

Table 1: Time to produce an overview visualization. We provide two measurements for Mr. Plotter: (1)
latency to fetch aggregates when the server-side in-memory cache is empty, and (2) latency to fetch aggregates
with a hot server-side cache.

Existing research has also investigated non-random sam-
ples, chosen so that a sampled plot looks similar to a plot
with all of the raw data [26]. However, such approaches do
nothing to remove visual clutter. In contrast, a plot of ag-
gregates may actually convey more useful information than
a plot of raw data. With aggregation, one could plot the
mean value in each bin; such moving average plots can be
more insightful than ones containing raw data [29], as they
are less easily cluttered by local fluctuations than individ-
ual data points [16, 17]. See Section 3.1 for Mr. Plotter’s
solution.

Other researchers [25] have elected to use aggregation,
rather than filtering or sampling, for similar reasons.

2.2 BTrDB’s Timeseries Abstraction
We use BTrDB [4] for Mr. Plotter’s data store because it

not only supports accelerated aggregate queries, but also
provides a unique timeseries abstraction enabling visual-
ization of “fast data.” This section describes the parts of
BTrDB’s API relevant to Mr. Plotter.

In BTrDB, a stream is a representation of a timeseries. A
stream is identified by a 128-bit Universally Unique Identi-
fier (UUID), and stores a sequence of (time, value) points.
The time is a 64-bit nanosecond timestamp, and the value
is a 64-bit floating-point number. BTrDB is a copy-on-write
database. When a stream is modified, a new logical version
of the stream is created. The old version of the stream still
exists in the database and can be queried separately.

The most basic query that BTrDB supports is a query for
raw data: RawValues(UUID, StartTime, EndTime,
Version) → (Version, [(Time, Value)]). This query
returns the list of (time, value) pairs in the stream identified
by UUID, where StartTime ≤ time < EndTime. A special
value “latest,” that represents the most recent version, can
be passed in as the Version argument; in this case, the return
value contains the corresponding version number.

The query used most often by Mr. Plotter is a query for
statistical aggregates: AlignedWindows(UUID, Start-
Time, EndTime, Resolution, Version) → (Version,
[(Time, Min, Mean, Max, Count)]). To process this
query, BTrDB divides the time range [StartTime, EndTime)
into intervals that are each 2Resolution nanoseconds wide.
BTrDB then returns the number of points in each time inter-
val, along with the minimum value, mean value, and maxi-
mum value of those points. StartTime and EndTime must
be multiples of 2Resolution, hence the name Aligned Windows.

Mr. Plotter makes two more types of queries to BTrDB.
The first is Nearest(UUID, Time, Direction, Version)
→ (Version, (Time, Value)), which returns the point im-
mediately before or after the specified time. The Direction
argument may be either “Forward” or “Backward,” specify-
ing in which direction to look for the nearest point. The
second is Changes(UUID, FromVersion, ToVersion,

Resolution) → (Version, [(StartTime, EndTime)]),
which returns the time ranges in which two versions of a
stream differ. Each returned time range is at least 2Resolution

nanoseconds wide. Thus, the caller can use the Resolution
argument to control the granularity at which the time ranges
are computed.

BTrDB supports additional queries not described in this
paper. For a full description of BTrDB’s API, we direct the
reader to [3].

2.3 Summary of BTrDB’s Implementation
BTrDB supports each type of query in Section 2.2 with

running time logarithmic in the density of the stream, and
linear in the size of the response. In this section we provide
a summary of BTrDB’s implementation to motivate how it
achieves this running time.

BTrDB stores data in a time-partitioning tree. Each stream
is represented as a separate tree. The tree is copy-on-write,
so whenever a stream is modified, the nodes in the tree that
would be modified, and all of their ancestors, are copied;
thus each version of a stream corresponds to a separate root
node.

The tree can be logically understood as a binary tree.
Raw data is stored at the leaves, and each intermediate node
stores a statistical aggregate containing the min, mean, max,
and count. The tree partitions time. The root node holds
the aggregate for the stream over the entire space of time
that BTrDB supports. The left child of the root stores the
aggregate for the first half of that time range, and the right
child stores the aggregate for the second half of that time
range. As one travels from root to leaf, the time range is re-
peatedly divided in half. The nodes at logical depth 63 hold
aggregates for each nanosecond, and their children contain
the raw data.

When a data point is inserted, the aggregates along the
path from leaf to root are recomputed and placed in new
nodes, creating a new tree for the new version of the stream.
These new nodes may contain pointers to nodes in the old
tree. The aggregates (min, mean, max, and count) can
be computed at each node using only the node’s immedi-
ate children, making this process very efficient. Note that
aggregates are updated at insertion time, not query time.

The tree is structured so that the internal nodes of depth
d contain statistical aggregates of aligned intervals of size
263−d. Therefore, to support the AlignedWindows query,
BTrDB simply reads and returns internal nodes of the tree
at the correct depth. Furthermore, the tree structure makes
satisfying a Nearest query simple: it is easy to avoid empty
subtrees. Finally, each node is annotated with the earliest
version number it is a part of, making it possible to efficiently
satisfy Changes queries: BTrDB traverses the tree corre-
sponding to ToVersion, skipping over subtrees whose root
is annotated with a version at least as old as FromVersion,
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adding a time range to the output whenever this happens.
BTrDB’s physical data structure contains important op-

timizations. First, BTrDB’s physical tree has a branching
factor of 64, rather than a branching factor of 2. Thus, mov-
ing one level up or down the physical tree is equivalent to
moving 6 levels in the logical tree. The intermediate nodes
“missing” from the physical tree are computed on the fly as
they are needed. Second, BTrDB does not always store raw
data at the maximum depth. It may store data higher up in
tree, if that subtree represents very few data points. Once
the number of data points at a node crosses a threshold,
the data are partitioned by time, and a new internal node,
storing an aggregate, is created. Third, inserted points are
processed in batches, amortizing the cost of recomputing
aggregates and creating new nodes. Fourth, BTrDB stores
internal nodes in a small storage pool backed by fast Solid-
State Drives, and leaf nodes in a large storage pool backed
by slower Hard-Disk Drives, taking advantage of the fact
that there are many more leaves than internal nodes.

This is just a summary of BTrDB’s implementation. For
a comprehensive description, see [4].

3. SYSTEM DESIGN
This section describes the design of Mr. Plotter, explain-

ing how it supports interactive exploration of scalar-valued
timeseries. Section 3.1 describes the user-facing plot that
Mr. Plotter renders, examining it as a static object. Section
3.2 describes the plot as a dynamic object, explaining how
the user can interact with it to explore timeseries. Section
3.3 discusses data management challenges in supporting this
mode of interaction, and our solutions for coping with them.

3.1 User-Facing Plot
Central to Shneiderman’s problem of “squeezing a billion

records into a million pixels” [32] is drawing plots where mul-
tiple points map to the same pixel. Aggregation techniques
are a natural solution: where multiple atomic markers would
“collide” in the same pixel, a single aggregate marker can be
used. In Mr. Plotter, we consider line plots with time on the
horizontal axis, and value on the vertical axis. Our primary
consideration is densely-packed timeseries, where adjacent
points may map to the same pixel column.

Solutions such as M4 [23] compute data aggregates to pro-
duce a plot that is equivalent, pixel-for-pixel, to a plot drawn
with the raw data points. While such a solution eliminates
communication and rendering bottlenecks, it does not solve
the problem of visual clutter. Plots of raw data points, es-
pecially over long periods of time, are often too cluttered for
meaningful analysis, because short-term fluctuations tend to
hide long-term trends [16, 17, 29].

Mr. Plotter uses a different approach. It uses the “min”
and “max” values of aggregates to draw a translucent silhou-
ette of what the plot would look like if all of the raw points
were plotted, and then draws a line plotting the “mean” val-
ues over the same period. This shows a smoothed plot of
mean values that is less cluttered, while still indicating the
variance in the data pre-smoothing, via the min-max silhou-
ette. See Figure 2(a) for an example. Because the min-max
silhouette is translucent, it does not block large areas of the
plot, even if the stream is very noisy. This makes plots with
multiple streams less cluttered. Our plot provides strictly
more information than a plot of raw data (Figure 2(b)),
while reducing visual clutter.

(a) A plot of a single stream, rendered by Mr. Plotter

(b) Same data, raw points rendered and connected with lines

Figure 2: Comparison of a plot of aggregates, as
drawn by Mr. Plotter, to a plot of raw data points

To indicate missing data, Mr. Plotter draws a data density
plot when a user selects a stream. This displays the “count”
aggregates for the selected stream (see Figure 5). We also
emphasize missing data in the main plot by rendering gaps
in the data as gaps in the visualization1. Neighboring ag-
gregates are drawn connected to each other as long as they
are temporally adjacent2. This implies that, if the user has
zoomed in so far that there is a gap between every pair of
neighboring points, Mr. Plotter will no longer connect the
points, effectively displaying a scatterplot.

3.2 Interaction with the Plot
We support a very fluid mode of interaction with the plot.

The user clicks and drags the plot in order to scroll hori-
zontally, and uses her mousewheel or touchpad to zoom in
or out. The user does not manually initiate queries to fetch
new data; the visualization client automatically queries data
depending on the user’s current view.

The success of this interaction model depends on timely
processing of queries by the database; data must be loaded
at interactive, or near-interactive, speeds. We make this
possible by unifying the aggregation technique BTrDB uses
to accelerate queries, with those that the visualization client
uses for rendering.

1Optionally, the user may turn off this behavior, to always
connect neighboring points.
2BTrDB omits aggregates with count = 0 when responding
to AlignedWindows queries, in order to save bandwidth.
The client infers the existence of gaps when the aggregates
returned by BTrDB are not temporally adjacent.

4



(a) User starts at this view, and then rapidly zooms in to the
data near December 18

(b) Mr. Plotter continues displaying aggregates from the pre-
vious view, transformed to the new axes, while waiting for
BTrDB to return data at the new resolution

(c) When data at the new resolution finally arrives (usually
within 100 milliseconds), the plot is updated

Figure 3: When the desired data is not available on
time, Mr. Plotter continues to display perceptually
relevant data

Even so, we cannot depend on requests to the database to
always return at interactive speeds. First, the load on the
server could vary, causing query processing times to increase
when the server load is heavy. Second, network characteris-
tics may affect performance. Depending on the physical lo-
cation of the client and server, the network round-trip time
may exceed 100 ms.

The visualization client manages queries to the BTrDB
server and responses from the server, to mitigate the impact
if some requests take longer to return. First, whenever ag-
gregates are received from the server, they are placed in an
in-memory cache, decreasing the average wait time for new
aggregates to load. Second, when the user zooms or scrolls
to a region whose data is not in the cache, Mr. Plotter con-
tinues showing aggregates in the previous view, transformed
according to the current view, until the new aggregates are
received. In this way, Mr. Plotter shows perceptually rele-
vant information, even if the “ideal” data is not yet available.
See Figure 3 for an example. Finally, data is pre-fetched
according to the user’s current view, further reducing the
user’s expected wait time. Collectively, we call this behav-
ior automatic data management.

3.3 Supporting Automatic Data Management
This section explains aspects of Mr. Plotter’s design that

support the mode of interaction described above.

3.3.1 Size and Alignment of Aggregates
Solutions such as M4 [23] compute an aggregate of data

for each pixel column of the plot, and display each aggregate

in its pixel column. The rationale is that rendering multi-
ple aggregates per pixel column results in implicit loss of
detail. Therefore, requesting finer-grained aggregates from
the database wastes network bandwidth and rendering time.

However, requiring each aggregate to correspond exactly
to one pixel column is very restrictive. If the user chooses
to zoom in by a small amount, the size of the time interval
represented by each pixel column decreases slightly, requir-
ing new aggregates to be computed. Similarly, if the user’s
view shifts to the left or right, the alignment of time inter-
vals corresponding of pixel columns may change, requiring
new aggregates to be computed.

This model introduces nontrivial problems when working
with client-side caching and precomputed aggregates. First,
caching aggregates returned by the server is only useful for
drawing other plots at the exact same zoom, and at the ex-
act same alignment between time and pixels, as the plot for
which the aggregates were requested. Every time the user
changes zoom, an additional request for the entire screen of
data would have to be made to the server. Second, the client
must request aggregates for time intervals whose size and
alignment can vary arbitrarily. BTrDB can quickly return
aggregates over time intervals whose endpoints, in nanosec-
onds, are aligned to multiples of a power of two; however,
pixel columns on the user’s screen need not be aligned in
any particular way3.

Mr. Plotter relaxes this constraint. Rather than requiring
aggregates to correspond exactly to pixel columns, Mr. Plot-
ter only requires that each aggregate represent a time inter-
val that is at most one pixel column in width. To choose the
size of aggregates, Mr. Plotter takes the size of a pixel col-
umn in nanoseconds—the size of aggregates that M4 uses—
and rounds it down to the nearest power of two. This is
always a power of two, so the aggregates can be efficiently
obtained from BTrDB. Because we no longer require the ag-
gregates to correspond directly to pixel columns, there are
no alignment issues4. Thus, the client can effectively cache
aggregates obtained from the server: the aggregates used to
draw one plot can be used to draw another overlapping plot,
even if the zoom and translation are slightly different.

One may argue that this approach is somewhat wasteful:
more aggregates are drawn than pixel columns. We can
compute an upper bound on how many extra aggregates are
rendered. The size of aggregates, computed as per above,
has the following property:

Pixel column size ≥ Aggregate size >
1

2
· Pixel column size

where the sizes of pixel columns and aggregates are mea-
sured in time. We can then divide the width of the screen
(in time) by each of these three quantities to show that:

Pixel columns ≤ Aggregates rendered < 2 · Pixel columns

which means that we are overplotting by less than a factor
of two.

3BTrDB does support Windows queries that compute
aggregates over unaligned, arbitrarily-sized intervals, but
processing these queries is less efficient than processing
AlignedWindows queries. See [3] for details.
4Aggregates can be rendered even if they span multiple pixel
columns, or if a pixel column contain multiple aggregates;
this is handled in the graphics pipeline, taking advantage of
multisample anti-aliasing if the client’s graphics card sup-
ports it.
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3.3.2 Prefetching Policy
As described in Section 3.2, Mr. Plotter prefetches data

to hide the latency of requesting and receiving aggregates
from the database. Mr. Plotter uses a stateless prefetching
scheme. At any given view, there are four actions that the
user can take: (1) scroll to the left, (2) scroll to the right,
(3) zoom in, or (4) zoom out. Once Mr. Plotter has received
the data for the current view, it prefetches data, assuming
that the user may take any of these actions. Specifically,
Mr. Plotter prefetches:

• One screen of data to the left of the current view

• One screen of data to the right of the current view

• The current screen’s data at the next smaller aggregate
size

• The current screen’s data, and the two neighboring screens’
data, at the next larger aggregate size

The purpose of the first two items is to prefetch a scrolling
gesture. We prefetch one screen’s worth of data to the left
and right, because of the click-and-drag interface that Mr.
Plotter supports; the user is not likely to move the view by
more than one screen width in one gesture. The purpose
of the last two items is to prefetch a zooming gesture. The
user uses the mousewheel to zoom, and the cursor’s current
position acts as the focus of the operation. The user can
zoom in at any point of the screen, so we prefetch all of the
current screen’s data at the next smaller size of aggregates.
When the user zooms out with the cursor (focus) on one
side of the screen, most of the extra time range comes from
the other side of the screen; furthermore, if the user zooms
out to the next larger aggregate size, the total time range is
doubled, because consecutive aggregate sizes vary by factors
of two. Therefore, we prefetch the two neighboring screens
at the next larger size of aggregates.

Prefetching is not a new idea. For example, ATLAS [14]
is a visualization tool for scalar-valued timeseries that uses
prefetching. Like Mr. Plotter, its “objective is not to pull
the maximum amount of data possible, but rather to get the
minimum amount of data to sustain smooth interactions.”
To perform prefetching effectively, ATLAS maintains a tim-
ing model of the database, allowing it to estimate the latency
of each query. It limits how fast the user can scroll, to ensure
that prefetched data will arrive in time.

Although ATLAS’ prefetching policy is more sophisticated
than Mr. Plotter’s, a prefetching methodology similar to AT-
LAS’ would not be very useful in Mr. Plotter due to some
key differences between the two systems. First, Mr. Plot-
ter, unlike ATLAS, does not restrict how fast the user can
move between views. Although Mr. Plotter uses mouse in-
put, which has its limits (it is humanly possible only to move
the mouse so fast), it is difficult to characterize how fast the
user can move between views. As a result, it is less mean-
ingful to schedule prefetch requests to meet deadlines based
on how fast the user can zoom or scroll. Second, and more
importantly, ATLAS’ prefetching methodology rests on the
assumption that “query processing times increase linearly
with the number of records contained in the query range.”
This assumption does not hold for Mr. Plotter. Due to the
hierarchical pre-aggregation scheme described in Section 2.3,
the time taken by BTrDB to process an AlignedWindows
query is linear in the number of aggregates returned, not in

the number of raw records those aggregates comprise. For
most modern screens, which are at most 3000 or 4000 pixels
wide, results from [4] (confirmed in Section 5) suggest that
query processing in BTrDB will take at most a few hundred
milliseconds—barely enough time for a user to click and drag
the plot across the screen. Thus, prefetching only adjacent
screens is sufficient.

There exist proposals for dynamic prefetching based on
similar assumptions to Mr. Plotter (e.g., ForeCache [8]).
However, our experience is that Mr. Plotter’s simple prefetch-
ing strategy performs well (see Section 5). Therefore, we
leave an investigation of more sophisticated prefetching tech-
niques to future work.

3.3.3 Request Throttling
An advantage of plotting the “min” and “max” is that

anomalies are visible even in overview visualizations. If a
user notices an anomaly, she may rapidly zoom in to examine
it in more detail. As the user zooms in, the plot moves
through many levels of resolution. The user does not stop at
each resolution before continuing to zoom in, so the “think
time” between individual gestures is very low5.

A näıve implementation would perform a full data refresh
on every frame. However, this is wasteful, because the user
zooms to the next resolution before each request for data
returns. Furthermore, after the user stops zooming in, the
request for the final plot would be placed behind these extra-
neous requests on the server-side request queue, degrading
the user’s experience.

To solve this problem, Mr. Plotter implements request
throttling. If a cache miss has occurred and a request sent to
BTrDB in the past 300 ms, cache lookups are done without
making requests to BTrDB on misses; the on-screen data set
is left unchanged. Mr. Plotter smoothly updates the current
view as the user zooms and scrolls, using only the on-screen
data set, so the plot continues to feel responsive. This limits
the number of extraneous requests.

4. VISUALIZATION CLIENT
This section describes the implementation of the visual-

ization client. The visualization client is a desktop applica-
tion written in the Qt framework. It is written primarily in
C++, but parts of the user interface are written in QML.
As depicted in Figure 4, the visualization client has four
layers: Data Retrieval, Data Management, Rendering, and
User Interface. We describe each layer in turn.

4.1 Data Retrieval Layer
The Data Retrieval Layer is requests data from BTrDB.

On cache misses, the Data Retrieval Layer requests aggre-
gates from BTrDB by making AlignedWindows queries.
It takes care to properly align queries to multiples of the
appropriate powers of two, and leverages gzip compression
to make more efficient use of network bandwidth.

4.2 Data Management Layer
The Data Management Layer issues queries to the Data

Retrieval Layer, maintains a cache of the resulting aggre-
gates, and prefetches data according to the user’s current
view.
5Because Mr. Plotter continues to show perceptually rel-
evant information until the desired data is available (see
Section 3.2), the user is able to continue zooming.
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Figure 4: System architecture of Mr. Plotter

4.2.1 Cache Organization
The in-memory cache stores aggregates obtained from the

server in past queries to prevent additional queries for the
same data, increasing Mr. Plotter’s responsiveness.

When the user navigates to a certain view, Mr. Plotter
computes the appropriate resolution (size of aggregates),
and then requests aggregates at that resolution for each vis-
ible stream, in the time range that is visible. We use a
tree-based map to store the aggregates for each stream and
resolution, to allow for efficient lookup of aggregates in a
time range. We organize these trees in array-based map
data structures, to allow efficient lookup of the tree of ag-
gregates given a specific stream and resolution. We keep
track of the cache size, and use the LRU (“Least Recently
Used”) cache eviction policy to keep it within a strict upper
bound.

However, storing the aggregates directly in a tree struc-
ture is inefficient. Aggregates must be individually tagged
for LRU cache management, adding additional overhead.
Information regarding gaps in the data is also lost in this
scheme; the absence of an aggregate in the cache could mean
that there is no data for that time range, or it could mean
that the aggregate has not been fetched yet.

Our solution is to manage aggregates in chunks, instead of
individually. The cache holds data as a set of cache entries.
A cache entry contains a set of aggregates for a specific
stream at a specific resolution, received in response to a
single AlignedWindows query, stored as an array. It also
contains the start and end timestamps for the query that was
performed. Cache entries keep track of gaps in the data;
the existence of a cache entry guarantees that all of the
data in the specified time range, for the specified stream
and resolution, is in the cache entry. The cache stores and
manipulates cache entries as single units, for lookup and
LRU eviction. This helps amortize the overhead of storing
many aggregates. Furthermore, it makes it easier to prepare
aggregates for rendering, because data is passed to the GPU
as arrays (see Section 4.3).

4.2.2 Fast Data
To handle changing data, we maintain a base version num-

ber for each stream. The base version number is the most
recent version such that all of the cache entries for that
stream were obtained from a version of the stream at least
as recent as the base version. Stated differently, the base
version number is a bound on how stale the cached data for
a stream can be.

When we make an AlignedWindows query to BTrDB,
we receive both the aggregates and the version number of the
stream from which those aggregates were obtained. When
the cache receives the aggregates, it sets the base version
number to the minimum of the current base version num-
ber, and the version number of the received data. We pe-
riodically make Changes queries to BTrDB, querying the
changes between the base version and the latest version.
When we receive the time ranges containing the differences,
we drop all cache entries containing data in those time ranges,
and update the base version to the latest version of the
stream, as returned by the Changes query.

4.2.3 On-Screen Data
One of the functions of the Data Management Layer is to

continue displaying perceptually relevant information when
requests miss in the cache and are sent to BTrDB. As de-
scribed in Section 3, Mr. Plotter continues to display the
aggregates last displayed on the screen, mapped to the cur-
rent view, while data is loading. To implement this, the
Data Management Layer explicitly manages a collection of
cache entries that are rendered on-screen. When the view
changes, the data for the new time range and resolution are
looked up in the cache, and missing aggregates are requested
from the server. Until the new data arrive, the on-screen
data are not updated, and therefore continue to be mapped
to the current view and rendered.

4.2.4 Cache Misses
When the user updates her view, Mr. Plotter looks in the

cache to update the on-screen data set. When not all of the
required data is in the cache, a request is sent to the Data
Retrieval Layer, which makes a request to BTrDB.

However, even before the data is loaded, the user may
slightly adjust their plot. In such a scenario, we should not
repeat the request to BTrDB. Instead, we should wait for the
current outstanding request to finish, and only request data
that will not be returned by the request we have already
made. To do this, we create a placeholder cache entry with
a “pending” bit set to indicate that a request for that data
is outstanding. When another cache miss occurs for that
data, the caller sees that there is already a pending request,
and waits for the response instead of issuing a new request.

4.3 Rendering Layer
The Rendering Layer is responsible for converting the on-

screen data set, maintained by the Data Management Layer,
into a user-facing plot. To render the plot, we use OpenGL,
an API for interacting with a GPU for hardware-accelerated
graphics rendering.

The first time a cache entry is rendered, it is converted
to a Vertex Buffer Object, or VBO. A VBO is a buffer of
data in graphics memory, ready for processing by a shader
program running on the GPU. The VBO handle is stored in
the cache entry, for easy retrieval. Then, the VBOs for cache
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(a) The first three aggregates have gaps on both sides and
are rendered as lone points, whereas the remaining six are
temporally adjacent and are rendered connected

(b) Same plot as Figure 5(a), with the “Always connect
points” option selected

Figure 5: Plots that display all cases for rendering
aggregates

entries in the on-screen data set, along with the domains of
the time and value axes and aesthetic settings chosen by
the user, are passed to a shader program, which renders the
plot. This section describes the rendering pipeline in detail.

4.3.1 Rendering an Aggregate
Before discussing how to generate VBOs from cache en-

tries, we discuss how aggregates are rendered. The “min,”
“mean,” and “max” values are drawn at the midpoint of the
time interval represented by that aggregate. If the neighbor-
ing aggregates are temporally adjacent (i.e., there is no gap
in between), then the aggregates are connected: the mean
values are connected by a line, and the min-max values are
connected by a translucent trapezoid. If this aggregate is
not temporally adjacent to either of its neighbors, then a
translucent vertical line is drawn connecting the min and
max, and the mean is depicted as a single point (as in a
scatterplot). This often happens when the aggregate con-
tains a single raw data point, in which case the min and
max are equal and the vertical line is not visible.

Figure 5 demonstrates how aggregates are rendered. Note
that temporally adjacent aggregates are normally at most
one pixel column apart; these plots are zoomed in beyond
the granularity of nanosecond timestamps, to emphasize in-
dividual aggregates.

4.3.2 Generation of Vertex Buffer Objects
To draw the min-max translucent silhouette, we need to

pass the min and max for each aggregate as separate vertices
to the GPU. Therefore, we generate two vertices in the VBO

for every aggregate in the cache entry. Then, we render the
data as a triangle strip.

To ensure that gaps are rendered properly, we must in-
clude information in the VBOs that the shader program can
use to selectively omit certain triangles. Our approach is to
insert two new points in every gap, with a special flag value
indicating that their purpose is to mark a gap; the vertex
shader sets a “do not render” flag for these points. The value
of the “do not render” flag is interpolated between all of the
pixels; we discard fragments where the interpolated “do not
render flag” is strictly greater than 0, thereby drawing a
gap.

To draw the mean line, we make a second pass, rendering
a line strip instead of a triangle strip. We also use only
one point per aggregate instead of two. We then make two
more rendering passes, drawing vertical lines and points, to
render lone points. When generating the VBOs, we identify
lone points and set special flags, so that only those points
are rendered during these passes.

Finally, the user has an option to “Always connect points.”
With this option enabled, neighboring points are always con-
nected, regardless of whether they are temporally adjacent.
To implement this, we pass this option to the vertex shader
as another uniform variable; if the option is set, then the
“do not render” flag is never set. Note that the vertices
do not change, so the vertices in each gap are still present.
However, we can position them appropriately so that they
do not interfere with the final image. See Figure 5(b).

4.3.3 Data Density Plot
As described in Section 3.1, a data density plot is drawn

when the user selects a stream. This plot displays the “count”
aggregates, pulling the plot down to 0 where aggregates are
missing. To pull the plot to 0, we insert an extra pair of
points in each gap, at the timestamp where the the first ag-
gregate in the gap would be if it were present. Two points
are needed so that the count maintains a step-like appear-
ance. Because we need two extra points anyway to render
the gap in the min-max silhouette (Section 4.3.2), this comes
at no additional cost.

4.3.4 Shader Programs
The shader programs map the generated vertices, passed

in via a VBO, to pixels on the screen. The user’s current
view is passed to the GPU as a base vector ~vbase ∈ R2 con-
taining the (time, value) coordinates of the lower left-hand
coordinate of the screen, and an axis matrix A ∈ M3(R)
based on the sizes of the time and value axes. To map a
(time, value) coordinate ~x to its final position, we compute
A · pad(~x−~vbase), where “pad” converts a vector in R2 to a
vector in R3 by padding it with a 1.

One subtlety is that this transformation applies to float-
ing point numbers, but the timestamp is stored as a 64-bit
integer representing the number of nanoseconds since 1970.
Converting this to a single-precision floating point number
would result in an unacceptable loss of precision. To solve
this problem, we store timestamps relative to an epoch time,
which is computed as the midpoint of the cache entry. Any
differences between timestamps in the cache entry and the
epoch time will be on the same order as the full time range
currently displayed. Therefore, the difference between the
timestamps in the cache entry and the epoch time can be
safely converted to a single-precision floating point number

8



without losing too much precision. The base vector is also
computed relative to the epoch time.

4.3.5 Additional Considerations
In the rendering pipeline, each cache entry is drawn inde-

pendently. However, the aggregate at the end of one cache
entry may be temporally adjacent to the aggregate at the
beginning of the next cache entry, meaning that the two
points should be connected. As the points will be in sepa-
rate VBOs, this is not possible. To solve this problem, we
modify each query to include the aggregate immediately be-
fore and the aggregate immediately after the queried time
interval. When a cache entry is created, it checks if the
cache entries immediately before it and immediately after it
have been created and connect to its “edge” points; if not,
it takes ownership of connecting to those points.

Another issue is that the CPU and GPU must commu-
nicate to initiate the rendering of each cache entry. This
overhead may become significant if many small cache entries
must be drawn for a certain view. Our solution is to avoid
making queries for tiny segments of data, to prevent cache
entries from becoming too fragmented. If the user scrolls by
a small amount, we request the next screen width’s worth of
data, rather than just the small interval that is newly vis-
ible. This guarantees that at most five cache entries must
be drawn to render any view of a single stream, which is a
good enough upper bound to maintain qualitatively good
performance.

4.4 User Interface Layer
The User Interface Layer provides the click-and-drag in-

terface for scrolling and the mousewheel interface for zoom-
ing. In response to click-and-drag and mousewheel events,
the User Interface Layer updates the user’s current view of
the plot. Because the user interface handles user input and
sees individual gestures, it is a natural place to handle re-
quest throttling.

5. EVALUATION
This section evaluates the performance of Mr. Plotter and

quantifies the extent to which it supports interactive explo-
ration of big data.

5.1 Performance Model
Our primary goal is to support interactive exploration of

data, so our main metric is the time to access data. Draw-
ing from models of the memory hierarchy of a computer
system, we model this as Data Access Time = Hit Time +
Miss Rate ×Miss Penalty. Hit Time is the time to access
data in the client-side in-memory cache. Miss Rate is the
fraction of requests that miss in the cache. Miss Penalty is
the time to request data from BTrDB after a cache miss.

Prefetching issues requests for data preemptively. It re-
duces the miss rate by eliminating compulsory misses, and
reduces the miss penalty by issuing requests for data early.

Unlike memory accesses in a computer system, data ac-
cesses in Mr. Plotter happen at perceptible time scales and
are individually visible to the user. Therefore, the worst-case
access time, Hit Time + Miss Penalty, is also important.

5.2 Experimental Methodology
Our workload for characterizing Mr. Plotter is based on

Shneiderman’s information-seeking mantra: “Overview first,

zoom and filter, then details-on-demand” [31]. The user be-
gins with an overview visualization that shows all of the data
for a stream. Then the user picks an interesting region of the
plot, and zooms in to investigate. The user may again iden-
tify an interesting region of the zoomed-in plot, and zoom
in further, and repeat the process until she is looking at
individual points (the “details”).

We use a Python script to simulate this use case pro-
grammatically. It chooses a random point on the time axis
of the plot. Then the script programmatically moves the
mouse to that point (which takes 100 ms), and zooms in by
a fixed amount. The script repeats this process until indi-
vidual points are visible. In between iterations, it pauses,
to simulate the user’s “think time” as she selects an inter-
esting point to zoom in. We repeat the experiment multiple
times, varying the think time, to measure how well Mr. Plot-
ter performs. For the data stream that we used, it took 16
iterations to zoom in from an overview visualization com-
prising 233 million points over three weeks, to individual
points spaced 120 ms apart.

We ran BTrDB on a server with an Intel Xeon E5 2640
v4 @ 2.40 GHz and network-attached storage. BTrDB was
configured to use no more than 64 GiB of memory. The Mr.
Plotter client ran on a laptop with an Intel Core i7-7820HQ
@ 2.90 GHz, and was configured to use no more than 1 GiB
of memory to cache aggregates from BTrDB. The client and
server were separated by one network router, with a network
round-trip time of approximately 0.5 ms.

5.3 Hit Time
In each simulation that we performed using the above

workload, we measure the cache lookup time, by obtaining
a millisecond-precise timestamp before each cache lookup
and after the requested data is available. On cache hits,
these timestamps differed by at most 1 ms, and were iden-
tical 98.8% of the time. This confirms that cache lookup is
instantaneous compared to fetching data from BTrDB.

5.4 Miss Rate and Miss Penalty
We identify two metrics that determine the miss rate and

miss penalty. First, the latency of requests to BTrDB, in-
cluding the query processing time in the database, deter-
mines the miss penalty. Second, prefetching affects the miss
rate and the miss penalty—even if the prefetched results are
not available in time, the time spent waiting for them is less,
because the request was issued earlier.

In our workload, the user continually moves to new data;
therefore, we expect many compulsory misses. However, we
still expect the cache hit rate to be nonzero, as the on-screen
data may be refreshed from the cache multiple times at the
same resolution, in between times where the user crosses the
resolution boundary. We quantify the effect of prefetching
by measuring the cache miss rate and miss penalty, with and
without prefetching enabled.

5.4.1 Results
We ran the workload described in Section 5.2, while vary-

ing the think time from 0 ms to 500 ms. For each value of
the think time, we repeated the experiment 10 times, and
measured the latencies of cache lookups in all of the exper-
iments. We also record the fraction of lookups that missed,
and required requests to be made to BTrDB, in order to
measure the miss rate. We carried out this process twice,
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Figure 6: Miss rate, with and without prefetching

(a) Without prefetching (b) With prefetching

Figure 7: Distribution of miss penalty

once with prefetching enabled, and once with prefetching
disabled. The results are shown in Figures 6 and 7.

Figure 7(a) displays the miss penalty, without any prefetch-
ing. Over 95% of cache misses are serviced within the in-
teractive threshold of 100 milliseconds. In other words, even
if we use no caching or prefetching at all, the vast majority
of requests to BTrDB return at interactive speeds. This is
a direct consequence of unifying data reduction techniques
in storage and visualization systems. Because Mr. Plotter
draws plots using aggregates that BTrDB has precomputed,
it can retrieve data to draw plots at interactive speeds.

That said, the distribution has a long tail. The 99th
percentile miss penalty is approximately 400 ms. However,
prefetching helps solve this problem. When the think time is
at least 300 ms, the 99th percentile miss penalty is less than
100 ms. Furthermore, Figure 6 also shows that prefetching
is effective at increasing the cache hit rate, especially when
the think time is large.

It is expected that prefetching is more effective at reduc-
ing the miss penalty when the think time is large, because
prefetching only occurs once the data for the current screen
has already been fetched. When the think time is very small,
the user zooms past the current screen before the data has
been fully loaded; therefore prefetching happens less often.
Furthermore, even if the prefetching were to happen for
small think times, it would be less useful, because the user
would move to new data very quickly. It is also expected
that the cache miss rate is higher when the think time is
small. As the user zooms in, the on-screen data is refreshed
every 300 ms during the gesture (see Section 3.3.3), and each
refresh counts as a separate miss, if the data is not present.
The increased cache miss rate reflects the fact that the user
sometimes zooms in before the data is loaded.

Figure 8: Miss rate on a flaky network

(a) Without prefetching (b) With prefetching

Figure 9: Distribution of miss penalty on a flaky
network

5.4.2 Simulating Non-Ideal Network Conditions
An important challenge addressed by Mr. Plotter is that,

although BTrDB may process queries at interactive speeds,
factors such as server load or a flaky network may cause
delays in retrieving data. Mr. Plotter’s client-side data man-
agement should ideally provide interactive performance, even
under such conditions.

We simulate a flaky network using NetEm. We add a nor-
mally distributed delay, with a mean of 200 ms and a jitter
of 20 ms, to each outgoing packet, and drop 2% of outgo-
ing packets. We do not explicitly place a cap on bandwidth,
but the variable latency and packet loss interact poorly with
TCP, effectively limiting the bandwidth. Using Measure-
ment Lab’s speed test hosted by Google, we measured the
downlink bandwidth to be approximately 6 Mb/s with the
simulated flaky network. Without simulating a flaky net-
work, it is more than 100 Mb/s for the internet connection
that we used. We repeated the experiments in Section 5.4.1
while simulating a flaky network. The results are shown in
Figures 8 and 9.

As expected, the miss penalty is much higher than in Fig-
ure 7, because the network round trip to fetch data from
BTrDB is more expensive. Prefetching reduces the miss
penalty when the think time is large. In particular, prefetch-
ing allows the miss penalty to drop below 200 ms, in cases
where a request for data was made earlier due to prefetch-
ing. Figure 8 tells a similar story; when the think time is
large, the miss rate is significantly less, because prefetching
ensures that necessary data is pre-loaded into the cache.

Prefetching performs slightly worse when the think time
is 0 ms. One explanation is that, when the user moves
through data very rapidly, prefetching is ineffective, and
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only uses bandwidth that could be used to handle normal
cache misses.

5.5 Overview Visualizations
The latency of querying a full screen of aggregates, where

the left and right endpoints of the screen coincide with the
earliest and latest data points in the stream, is shown in Ta-
ble 1. We performed this experiment twice, once with the
original stream, and again with a derivative stream that re-
peats the data of the original stream 100 times. The results
confirm that the performance of Mr. Plotter is essentially
independent of the size of the underlying data, allowing it
to scale to massive data sets.

To produce this overview visualization, Mr. Plotter must
first make two Nearest queries to find the timestamps for
the earliest and latest points in the stream. We do not in-
clude the time for these queries in Table 1, because overview
visualizations do not always require such information (e.g.,
the overview may show data over the past few hours or days,
so the time range does not depend on the stream). If we had
included the time for these queries, the latencies would have
been 549 ms / 371 ms and 609 ms / 365 ms.

6. RELATED WORK
This section compares Mr. Plotter to related work.

6.1 Polaris/Tableau (2002, 2008, 2011)
Tableau is a commercial visualization system for RDBMS

systems that grew out of the Polaris [34, 35] project. Tableau
focuses on multidimensional databases, allowing the user to
create a grid of plots, in an organization inspired by Pivot
Tables.

Both Tableau and Mr. Plotter perform data management
on the client. Mr. Plotter uses an in-memory cache; Tableau
clients use the Tableau Data Engine [37] to store and process
data. However, the systems’ motivations for client-side data
management are different. Mr. Plotter masks the latency
of database queries via its in-memory cache. In contrast,
the Tableau Data Engine supports Tableau’s extract feature,
which retrieves a subset of data for offline analysis.

A key difference between Tableau and Mr. Plotter is that
Mr. Plotter places a greater emphasis on providing a truly
interactive interface to explore data, whereas Tableau fo-
cuses on providing a flexible, high-quality visualization. The
authors of Tableau note that, while the user may change the
view and presentation model, the resulting database query
may take several tens of seconds [34]. A visualization system
like Tableau, that makes a query for raw data to produce
a visualization, becomes progressively slower as data sets
grow, because the time to process a query is linear in the
number of records read. In contrast, BTrDB/Mr. Plotter
scales linearly in only the number of aggregates drawn, and
can therefore scale to massive data sets.

6.2 ATLAS (2008)
ATLAS [14] aims to provide an environment for interac-

tive exploration of massive time series. Like Mr. Plotter,
ATLAS identifies the latency of querying large amounts of
data as the key obstacle to realizing interactivity, and uses
data prefetching as a tool to mask this latency. Furthermore,
Mr. Plotter and ATLAS leverage database technology to
improve performance. Mr. Plotter uses BTrDB, which uses
precomputed statistical aggregates to accelerate queries, and

ATLAS uses kdb+, which stores data in a column-oriented
format.

However, there are important differences between Mr. Plot-
ter and ATLAS. First, Mr. Plotter draws the same aggre-
gates that BTrDB can compute efficiently. In contrast, AT-
LAS’ aggregation is computed just in time. The column-
oriented techniques used by kdb+ do not carry through to
the plots produced by ATLAS. Second, as discussed in Sec-
tion 3.3, the time to process queries in BTrDB/Mr. Plotter
is essentially independent of the size of raw data bounded by
the query, allowing Mr. Plotter to use a simple prefetching
scheme. Third, Mr. Plotter, unlike ATLAS, does not place
any limits on how fast the user can pan or zoom, and may
show perceptually relevant information from the previous
view until data for the new view is available. Fourth, Mr.
Plotter is suitable for viewing fast data that is changing,
inserted out-of-order, or streaming in.

6.3 sampleAction (2012)
The sampleAction [18] visualization system leverages the

idea of incremental databases pioneered by Hellerstein [21,
20]. This is similar to our approach of unifying data reduc-
tion strategies in database and visualization systems. How-
ever, there are important differences. Unlike Mr. Plotter,
which is a visualization tool for timeseries data, sampleAc-
tion compares different aggregate queries in a column chart.
Furthermore, the focus of [18] is not on the data manage-
ment problems in building such a system, but rather on the
user experience that such a system, if built, would provide.

6.4 imMens (2013)
The imMens system [25] is based on the “principle that

scalability should be limited by the chosen resolution of the
visualized data, not the number of records,” which is similar
in spirit to Mr. Plotter. It provides interactive performance
for visualizing relational data. The imMens system produces
binned plots, and precomputes 3- or 4-dimensional subcubes
of the overall data cube on the server. If these subcubes are
still large, they are further segmented into multivariate data
tiles, which are sent to the client on demand. The client
performs query processing on the multivariate data tiles on
the GPU, and supports brushing and linking at interactive
speeds.

The key difference between imMens and Mr. Plotter is
that imMens focuses on interactive support for brushing and
linking6, whereas Mr. Plotter focuses on allowing the user
to move interactively through the data. This partially stems
from the fact that Mr. Plotter focuses on visualizing scalar-
valued timeseries data, for which brushing and linking is
not as relevant; multiple timeseries may be related, but the
corresponding points are generally at the same timestamp,
making brushing and linking less relevant.

6.5 ScalaR (2013)
ScalaR [9] is an interactive visualization system for big

data. Data are stored in SciDB, and visualized in a web-
based front-end written with D3 [11]. The key innovation of
ScalaR is an intermediate layer that receives queries from the
front-end, requests query plans and metadata from SciDB,

6While [25] mentions that the user can pan and zoom, the
interface to doing so is not clearly mentioned, and the inter-
activity of panning and zooming is not evaluated.
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and decides whether resolution reduction needs to be per-
formed. While ScalaR uses data reduction to alleviate bot-
tlenecks in transferring data from the server and managing
large query results on the client, it incurs the cost of reading
the underlying raw data for each query.

6.6 M4/VDDA (2014, 2016)
M4 [23] is a visualization system for timeseries data. Like

ScalaR, M4 introduces an intermediate layer between the
visualization client and the data store. The intermediate
layer transparently rewrites queries to return the first point,
last point, lowest point, and highest point in each pixel col-
umn, instead of all of the raw data requested by the client.
The authors observe that the resulting plot is equivalent,
pixel for pixel, to drawing the raw data, but with a smaller
data transfer latency and network bandwidth use. The au-
thors also present Visualization-Driven Data Aggregation
(VDDA) [24], a generalization of this technique to other
types of plots. M4/VDDA has similar pitfalls to ScalaR—
while the use of aggregation decreases the data transferred
to and rendered by the client, the database query still oper-
ates on raw data, and is therefore slow for large data sets.
Furthermore, as explained in Section 3.1, a plot that is pixel-
for-pixel equivalent to one containing raw data does nothing
to eliminate visual clutter; plotting aggregates such as min,
mean, and max, may produce a better visualization.

6.7 Skydive (2015)
Perhaps the existing system most similar to Mr. Plotter

is Skydive [19]. As described in Section 1, Mr. Plotter im-
proves on Skydive by providing a visualization client that
performs automatic data management. In contrast, Skydive
requires the user to manually initiate queries by choosing a
“cut” of data to visualize.

6.8 Visualization-Aware Sampling (2016)
Visualization-Aware Sampling (VAS) [26] is a technique

to perform data reduction via sampling. Unlike traditional
sampling techniques, VAS does not choose a sample ran-
domly; rather, it frames sample selection as an optimization
problem, and uses an approximate solution to that problem
to select the sample. The key contribution of VAS is that the
sample optimizes a visualization-specific metric that ensures
that the resulting visualization will be high-quality.

A major difference between VAS and Mr. Plotter is that
VAS uses sampling to perform data reduction. As discussed
in Section 2.1.3, we prefer aggregation for several reasons.
Furthermore, VAS’ optimization function prefers samples
that, when plotted, look similar to a plot containing all data
points. This has the same pitfall as M4: it does not reduce
visual clutter. In contrast, displaying statistical aggregates
explicitly may produce a better plot.

6.9 ASAP (2017)
Automatic Smoothing for Attention Prioritization (ASAP)

[29], is a timeseries visualization operator that computes a
moving average over a timeseries, to draw the user’s atten-
tion to anomalies in fast data [7, 6]. The authors present
ASAP as an optimization problem, where the window size of
the moving average is chosen to minimize the standard devi-
ation of deltas (roughness) while preserving kurtosis (long-
term deviations) in the data.

ASAP focuses on producing a visualization that is more
useful than simply plotting the raw data. Mr. Plotter, by
displaying min-mean-max aggregates instead of raw data,
uses a similar approach. We note that by drawing the min
and max aggregates, Mr. Plotter displays a silhouette of
what the plot would look like if every raw point were plot-
ted. The smoothed timeseries that ASAP produces does not
convey this information, though the authors note that ASAP
could be used in conjunction with a plot of raw data. We
believe that ASAP’s goals are complementary to Mr. Plot-
ter’s; one could use Mr. Plotter’s interactive exploration in
conjunction with ASAP’s smoothed timeseries.

7. FUTURE WORK
Mr. Plotter does not address the problem of moving across

different time series—for example, starting with many time-
series and finding the one that matches certain criteria. Al-
gorithms for pattern search in timeseries have been studied.
In TimeSearcher [22, 13], the user can draw a timebox on
the screen by clicking and dragging the mouse. This filters
out any streams that are not contained in the timebox for
the timebox’s entire horizontal duration. This generalizes to
searching for similar streams: many timeboxes can be used,
perhaps one per pixel column, where the height of the time-
boxes determines the tolerance of the similarity search. Mr.
Plotter could process timeboxes efficiently: to determine if a
stream satisfies a timebox, Mr. Plotter would check whether
the aggregates for that stream, horizontally bounded by the
timebox, have “min” and “max” values within the vertical
range of the timebox. The implementation of timeboxes in
Mr. Plotter is left to future work.

A peculiarity of Mr. Plotter’s cache organization (see Sec-
tion 4.2.1) is that the aggregates for each resolution are
stored in separate tree-based maps, and are treated indepen-
dently during lookup. Due to the alignment of aggregates, it
is possible to compute the aggregates at resolution x (size of
aggregates = 2x) from the values of aggregates at resolution
y (size of aggregates = 2y) for the same time range, as long
as y < x. If a query for aggregates at resolution x misses
in the cache, but the aggregates at resolution y are present
for that time range, it may be more efficient, depending on
the value of x− y, to compute the aggregates at resolution
x on the client’s machine, rather than requesting them from
BTrDB. We leave the investigation and implementation of
this idea to future work.

A related question is whether it is worth spilling the cache
to disk, rather than evicting cache entries when the allotted
memory is full. This would be beneficial on a flaky network,
where querying BTrDB takes hundreds of milliseconds. It
gives the client an even bigger data management role, similar
to the Tableau Data Engine [37]. One option is to simply
allow the operating system’s paging mechanisms to handle
the transfer of data from memory to disk; however, existing
work suggests that this is unlikely to be successful [15]. An
investigation of this idea is left to future work.

Finally, Mr. Plotter may benefit from more sophisticated
prefetching strategies (e.g., ForeCache [8]). We relegate an
investigation of this idea to future work.

8. CONCLUSION
In order to cope with the growing appetite for data col-

lection and storage, the database community has developed
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various techniques for working with massive data sets, in-
cluding databases that quickly return statistical aggregates
or compute on samples of data. Meanwhile the visualization
community has turned to plotting samples or aggregates to
visualize large data sets, in order to solve the problem of
“squeezing a billion points into a million pixels” [32].

In this paper, we present Mr. Plotter, a visualization sys-
tem for large timeseries data sets. By unifying the data
reduction techniques used by databases with those used in
visualization, we can process queries with latency propor-
tional to the size of the final visualization, as opposed to the
size of the underlying raw data. This makes possible, for the
first time, a truly interactive visualization system. The user
starts with an overview visualization, and then explores the
data by clicking and dragging the plot and zooming in or
out with the mousewheel. The user does not explicitly ini-
tiate queries. Instead, the visualization client requests data
automatically, so that it is available for visualization by the
time it is needed.

Existing work has sought to support visualization of big
data by moving computation close to the data. For example,
M4 and ScalaR compute the aggregates at the database, to
avoid having to transfer all of the raw data to the client.
Our work extends this idea by pushing the computation of
aggregates even further back, into the data storage itself.
That way, only the aggregates, and not the underlying raw
data, must be read to process queries.

But our work also represents a fundamental departure
from existing designs, which generally decouple the visual-
ization client from the underlying database. By making the
client aware of the storage technology used by the backend
database, we create a system that fetches data at interac-
tive time scales, opening the opportunity for automatic data
management. This, in turn, introduces new challenges in the
client, to manage query results from the server, automati-
cally initiate queries, and cope with “fast data.”

The core principle of our design—a storage-aware client
that supports automatic data management—is applicable
beyond timeseries, to other types of data as well. This
opens a new direction for research on scalable information
visualization systems. We hope that the database and visu-
alization communities will take these ideas even further, to
support more effective visual data analytics and bring out
the full potential of big data.
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