
Classical Verification and Blind Delegation of Quantum
Computations

Urmila Mahadev

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-88
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-88.html

June 12, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Classical Verification and Blind Delegation of Quantum Computations

by

Urmila M. Mahadev

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Umesh Vazirani, Chair
Professor Satish Rao

Professor Nikhil Srivastava

Spring 2018

Classical Verification and Blind Delegation of Quantum Computations

Copyright 2018
by

Urmila M. Mahadev

1

Abstract

Classical Verification and Blind Delegation of Quantum Computations

by

Urmila M. Mahadev

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Umesh Vazirani, Chair

In this dissertation, we solve two open questions. First, can the output of a quantum
computation be verified classically? We give the first protocol for provable classical verifica-
tion of efficient quantum computations, depending only on the assumption that the learning
with errors problem is post-quantum secure.

The second question, which is related to verifiability and is often referred to as blind
computation, asks the following: can a classical client delegate a desired quantum compu-
tation to a remote quantum server while hiding all data from the server? This is especially
relevant to proposals for quantum computing in the cloud. For classical computations, this
task is achieved by the celebrated result of fully homomorphic encryption ([23]). We prove an
analogous result for quantum computations by showing that certain classical homomorphic
encryption schemes, when used in a different manner, are able to homomorphically evaluate
quantum circuits.

While we use entirely different techniques to construct the verification and homomorphic
encryption protocols, they both rely on the same underlying cryptographic primitive of
trapdoor claw-free functions.

i

Contents

Contents i

1 Introduction 1

2 Blind versus Verifiable Quantum Computing 5
2.1 Blind Quantum Computation with the Pauli One Time Pad 5

2.1.1 Blind Application of Pauli and Clifford Gates 7
2.1.2 Blind Application of the Toffoli Gate 7
2.1.3 Improving the Blind Computation Scheme 9

2.2 Verifiable Computation from Blind Computation 11
2.2.1 Classical Extension of Blind Computation to Verification 11
2.2.2 Obstacles in Extending Blind Quantum Computation to Verification . 12

3 Preliminaries 17
3.1 Notation . 17
3.2 Learning with Errors and Discrete Gaussians 18
3.3 Quantum Computation Preliminaries . 20

3.3.1 Quantum Operations . 20
3.3.2 Trace Distance . 20

4 Trapdoor Claw-Free Functions in Quantum Computation 22
4.1 Quantum Advantage . 22
4.2 Applications in Homomorphic Encryption and Verification 23

5 Homomorphic Encryption 25
5.1 Overview . 26

5.1.1 Reduction to the Encrypted CNOT Operation 26
5.1.2 Encrypted CNOT Operation . 29
5.1.3 Quantum Capable Classical Homomorphic Encryption Schemes . . . 31
5.1.4 Example of a Quantum Capable Classical Encryption Scheme 32
5.1.5 Extension to Quantum Leveled Fully Homomorphic Encryption . . . 33
5.1.6 Chapter Outline . 34

ii

5.2 Preliminaries . 34
5.2.1 Homomorphic Encryption . 34
5.2.2 Toffoli Gate Application . 35
5.2.3 Pauli Mixing . 36

5.3 Quantum Capable Classical Homomorphic Encryption Schemes 36
5.4 Example of a Quantum Capable Classical Encryption Scheme 39

5.4.1 Dual Encryption Scheme . 39
5.4.2 Leveled Fully Homomorphic Encryption Scheme from Dual 40
5.4.3 Quantum Capability of DualHE . 43

5.5 Extension to Quantum Leveled Fully Homomorphic Encryption 45
5.5.1 CPA Security . 46
5.5.2 Quantum Leveled FHE . 48

6 Verification 50
6.1 Overview . 51

6.1.1 Cryptographic Primitives . 52
6.1.2 Measurement Protocol . 54
6.1.3 Measurement Protocol Soundness . 55
6.1.4 Replacement of a General Attack with an X-Trivial Attack 58
6.1.5 Extension of Measurement Protocol to a Verification Protocol for BQP 62
6.1.6 Chapter Outline . 63

6.2 Preliminaries . 64
6.2.1 Pauli Twirl . 64
6.2.2 QPIP Definition . 66

6.3 Function Definitions . 66
6.3.1 Noisy Trapdoor Claw-Free Functions 66
6.3.2 Extended Trapdoor Claw-Free Functions 69

6.4 Measurement Protocol . 70
6.4.1 How to Commit Using a Noisy Trapdoor Claw-Free Family 71
6.4.2 Measurement Protocol . 72
6.4.3 Notation . 74
6.4.4 Completeness of Measurement Protocol 75
6.4.5 Prover Behavior . 76
6.4.6 Construction of Underlying Quantum State 78

6.5 Replacement of a General Attack with an X-Trivial Attack for Hadamard Basis 80
6.5.1 Indistinguishability of Diagonal Terms (Proof of Claim 6.5.3) 85
6.5.2 Indistinguishability of Cross Terms (Proof of Claim 6.5.4) 88
6.5.3 Reduction to Diagonal/Cross Terms (Proof of Claim 6.5.2) 90

6.6 Measurement Protocol Soundness . 92
6.6.1 General to Perfect Prover (Proof of Claim 6.6.2) 93
6.6.2 Perfect to Trivial Prover (Proof of Claim 6.6.3) 95

6.7 Extension of Measurement Protocol to a Verification Protocol for BQP . . . 97

iii

6.7.1 Morimae-Fitzsimons Protocol . 97
6.7.2 Extending the Measurement Protocol 99

6.8 Extended Trapdoor Claw-Free Family from LWE 103
6.8.1 Parameters . 103
6.8.2 Trapdoor Injective Family from LWE 103
6.8.3 Injective Invariance . 105
6.8.4 Extended Trapdoor Claw-Free Family 105

Bibliography 108

iv

Acknowledgments

I have been very happy throughout my time in graduate school, both to be at UC Berkeley
and to be working on the questions in this thesis. I owe thanks to many people, starting
with my advisor, Umesh Vazirani. There are many things to thank him for: for presenting
the problem of verifiability in a particularly nice and approachable way, for allowing me
to continue working on this problem while making very little progress, and for encouraging
me and offering me chocolate at the right times. There were never any logistical concerns
and I was free to spend all my time thinking about research, which may have been a bad
thing given how hard it will be to leave Berkeley. I can’t imagine a better graduate school
experience.

Thanks to Dorit Aharonov for many visits to Israel where I learned new techniques,
how to express my ideas, and was encouraged to continue working on the problems I cared
most about. Zeph Landau has been a constant source of support, humor, and different
perspectives. I thank Thomas Vidick for many useful conversations and feedback (and for
spending a lot of time parsing hard to read drafts). I am grateful to the researchers I have
worked with over the years and those who hosted me for productive visits, including Michael
Ben-Or, Zvika Brakerski, Paul Christiano, Sanjam Garg, Stacey Jeffery, Iordanis Kerenidis,
Mario Szegedy, and Ronald de Wolf. Going back a bit further, I thank Len Adleman and
Manoj Gopalkrishnan for getting me involved in research in the first place.

The theory group at Berkeley has been an amazing place to be a graduate student and
there were several people who made my days very entertaining, including Antonio, Ma’ayan,
Siu Man, James, Anindya, Sara, Seung Woo, Piyush, and Greg. The faculty members created
a wonderful culture and I thank Satish Rao in particular for many interesting conversations.

I thank my family: my parents for their unwavering support and for working so hard to
make my life easy, my brother and sister for keeping me focused on the bigger picture by
repeatedly asking me how my degree could help me change light bulbs or make the Christmas
lights work properly, and Tuhin for teaching me the key to success on analysis tests.

1

Chapter 1

Introduction

The exponential power of quantum computing brings with it a major challenge: how can
the output of such a computation be verified classically? The laws of quantum mechanics
appear to conspire to make this task particularly daunting, by severely limiting the amount
of classical information which can be obtained from a quantum system via measurement. Be-
sides being a fundamental practical consideration, the verification of quantum computations
has connections to deep philosophical questions about the viability of the scientific method
(predict and test) in the context of quantum mechanics ([2]). The issue is as follows: how can
one test a hypothesis about a theory in which predicting the results of an experiment take
exponential time? The verification of a quantum computation through interaction provides
a potential way forward.

Analogously to the result IP = PSPACE ([45]), is it possible for a prover who is restricted
to efficient quantum machines (a BQP prover) to convince a classical polynomial time verifier
(a BPP machine) about membership in any BQP language? This question was first raised by
Daniel Gottesman in 2004 ([28]). In the absence of any techniques for tackling this question,
two weaker formulations were considered. In the first, it was shown that if the verifier had
access to a small quantum computer, verification of all efficient quantum computations was
possible ([13], [21], [1], [3]). The second formulation considered a classical polynomial time
verifier interacting with two entangled, non communicating quantum provers (rather than
just one machine), and showed that in this setting it was possible to verify the result of
an arbitrary quantum computation ([44]). Although both lines of work initiated extensive
research efforts, the question of classical verification by interaction with a single quantum
computer has remained elusive.

In this dissertation, we answer this question affirmatively: we show that a classical poly-
nomial time verifier (a BPP machine) can interact with an efficient quantum prover (a BQP
machine) in order to verify BQP computations. We rely on the additional assumption that
the verifier may use post-quantum cryptography that the BQP prover cannot break. More
specifically, we rely on quantum secure classical encryption schemes, such as those based
on the learning with errors problem ([43]). These schemes can be used to encrypt classical
bits (or quantum states) in a way in which an efficient quantum machine cannot extract any

CHAPTER 1. INTRODUCTION 2

information.
This brings up a challenge related to verifiability, which is often referred to as blind

computation: can a classical client delegate a desired quantum computation to a remote
quantum server while hiding all data from the server? Quantum secure classical encryption
schemes do not immediately answer this question; they provide a way of hiding data, but not
of computing on the data. This question is particularly relevant to proposals for quantum
computing in the cloud.

The classical analogue of this task, in which the client is a weak classical machine and
the server is more powerful, was solved in 2009 with the celebrated construction of homo-
morphic encryption schemes ([23]). Unfortunately, these schemes are built only to handle
computations on the encrypted data involving classical operations; the prospect of applying
computations in superposition over encrypted bits seems to be much more difficult. This
difficulty arises from the fact that all classical homomorphic encryption schemes require (for
security) that each bit has many possible different encryptions. This property appears to
preclude the quantum property of interference: interference requires that elements of the
superposition representing the same bit string, but with opposite amplitudes, cancel out. If
these elements have different encryptions, interference cannot happen, thereby preventing
one of the key advantages of quantum algorithms.

Due to these obstacles, the question of quantum homomorphic encryption was weakened
by allowing a quantum client ([14]). This variant has been well studied in recent years
([14], [39], [47], [33], [38], [20]), but the model has a number of shortcomings. The principal
issue is that the quantum client relies on quantum encryption keys, which are not reusable;
the client must generate fresh keys each time he wishes to delegate a quantum computation.
Taken in conjunction with the fact that existing protocols ([20]) require the client to generate
a number of quantum keys proportional to the size of the quantum circuit being applied,
this means that the client’s total work is as large as actually running the desired quantum
computation himself.

The related question of blind quantum computation predated the question of quantum
homomorphic encryption and has also been extensively studied, beginning with [15]. Blind
quantum computation and quantum homomorphic encryption have the same goal of carrying
out a computation on encrypted data, but blind computation allows multiple rounds of
interaction between the client and server, while homomorphic encryption allows only one
round of interaction. Even in the weaker model of blind computation, a quantum client has
been a necessity so far (at a minimum, the client must be able to prepare certain single qubit
states [13]).

In this dissertation, we return to the original question of quantum homomorphic en-
cryption by providing (in Chapter 5) a homomorphic encryption scheme for quantum com-
putations with a classical client. To do this, we show that certain classical homomorphic
encryption schemes can be lifted to the quantum setting; they can be used in a different way
to allow for homomorphic evaluation of quantum circuits. It follows that all properties of
classical homomorphic encryption schemes (such as reusability of keys and circular security)
also hold in the quantum setting. This scheme is the first (and currently only) to allow

CHAPTER 1. INTRODUCTION 3

blind quantum computation between a classical client and a quantum server.1 Note that
the homomorphic encryption protocol does not imply the verifiability protocol, as it is cur-
rently unknown whether blind computation implies verifiable computation in the setting of
a classical verifier and a quantum prover. In Chapter 2, we discuss the relationship between
blind and verifiable computation in detail, and provide an introduction to techniques used
in blind and verifiable computing along the way.

Both results rely heavily on a classical cryptographic primitive called a trapdoor claw-free
function, which is a function f which is two to one, easy to invert with access to a trapdoor,
and for which it is computationally difficult to find any pair of preimages with the same
image. Such a pair of preimages is called a claw, hence the name claw-free. These functions
are particularly useful in the quantum setting, due to the fact that a quantum machine
can create a uniform superposition over a random claw (x0, x1):

1√
2
(|x0〉 + |x1〉). This

superposition can be used to obtain information which is conjectured to be hard to obtain
classically: the quantum machine can obtain a string d 6= 0 such that d · (x0 ⊕ x1) = 0. In
[11], this advantage was introduced and used to show how to generate information theoretic
randomness from a single quantum device. In this thesis, we describe this advantage in detail
in Chapter 4 and show how to use it to achieve both homomorphic encryption (Chapter 5)
and verifiability (Chapter 6) of quantum computations using only a classical computer.

For the homomorphic encryption result, we begin with the fact that blindly computing
a quantum circuit boils down to the ability of a quantum server to perform a CNOT gate (a
reversible XOR gate) controlled by classically encrypted data: we need a method in which a
quantum server holding a classically encrypted bit s can apply CNOTs to a quantum state
(i.e. apply the CNOT gate if and only if s = 1). This method must not leak information
about the bit s. This observation is not new to this thesis, and is in fact quite well known
([14], [20]). However, all previous results proposed quantum functions to enable the server
to perform such an operation (hence the need for a quantum client).

Here we propose a classical function, which we call an encrypted CNOT operation. Our
encrypted CNOT operation relies on a trapdoor claw-free function for which each claw
hides the bit s. We show that an approximation of such a function can be built given a
classical encryption of the bit s as long as the classical encryption scheme satisfies several
straightforward requirements; we call such schemes quantum capable encryption schemes.
Next, by combining two existing homomorphic encryption schemes based on learning with
errors ([24], [23]), we build a quantum capable homomorphic encryption scheme. The main
result of Chapter 5 is as follows (stated formally in Theorem 5.4.2 and Theorem 5.5.2):

Theorem 1.0.1 (Informal) Under the assumption that the learning with errors problem
with superpolynomial noise ratio is computationally intractable for an efficient quantum ma-

1There have been two papers ([34], [18]) proposing delegated blind quantum computation protocols
between a classical client and a quantum server. Both of these results differ from ours in that they do not
claim security (i.e. blindness) against a malicious quantum server for the delegation of general quantum
computations. Moreover, both results require interaction.

CHAPTER 1. INTRODUCTION 4

chine, there exists a quantum leveled fully homomorphic encryption scheme with classical
keys.

Our scheme shares the same properties as classical homomorphic encryption schemes, in-
cluding key reusability and the fact that the amount of work performed by the client is
proportional to the depth of the delegated circuit (rather than its size). Moreover, as in
classical homomorphic encryption schemes, this overhead can be made independent of the
circuit size with stronger assumptions regarding the circular security of the classical encryp-
tion scheme.

In the verifiability setting, we use trapdoor claw-free functions to allow the classical
verifier to force the quantum prover to encode a quantum state (chosen by the prover) in a
way which is unknown to the prover. By strengthening the claw-free property in two different
ways, this encoding can be used to randomize any operator applied by the prover which is
a deviation from the strategy of an honest prover, rendering the deviation of the prover
essentially useless. We provide the definition and construction of an extended trapdoor
claw-free family which satisfies the strengthened properties. This family is an extension
of the family given in [11]. Like the construction in [11], our construction relies on the
computational assumption that a BQP machine cannot solve the learning with errors problem
with superpolynomial noise ratio ([43]). The main result of Chapter 6 is stated informally
as follows (stated formally as Theorem 6.7.6):

Theorem 1.0.2 Assuming the existence of an extended trapdoor claw-free family, all deci-
sion problems which can be efficiently computed in quantum polynomial time (the class BQP)
can be verified by an efficient classical machine through interaction (formally, BQP= QPIP0).

In Section 6.8, we provide a learning with errors based construction of an extended trapdoor
family, providing a proof of the following theorem (stated formally as Theorem 6.8.1 in
Section 6.8):

Theorem 1.0.3 Under the assumption that the learning with errors problem with superpoly-
nomial noise ratio is computationally intractable for an efficient quantum machine, there
exists an extended trapdoor claw-free family.

5

Chapter 2

Blind versus Verifiable Quantum
Computing

The goal of this chapter is to discuss the difficulties in extending blind computation to veri-
fiable computation. While moving towards this goal, we also aim to provide an introduction
to some of the key methods used in blind and verifiable computing in order to make them
more accessible in later chapters. Throughout this section, we introduce preliminaries and
techniques as they are required. For a more thorough treatment of the preliminaries, refer
to Chapter 3.

As a rough outline of this chapter, we will begin by providing a particularly simple blind
quantum computation scheme1 (in the setting of a limited quantum client and a quantum
server). We then discuss the obstacles to making this scheme verifiable, and what these
obstacles imply for the case of extending classical client blind quantum computing to a
scheme for classical verification of quantum computations.

2.1 Blind Quantum Computation with the Pauli One

Time Pad

We begin with a simple encryption scheme for quantum states which is the analogue of the
classical one time pad. Recall the one time pad method of classical encryption: to encrypt a
string m, it is XORed with a random string r. Just as l classical bits suffice to hide an l bit
string m, 2l classical bits suffice to hide an l bit quantum state |ψ〉. This is done by using
the quantum version of the one time pad, called the Pauli one time pad (introduced in [5]).
To define this encryption scheme, we will require the X, Y and Z Pauli operators, which are
defined as follows:

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y = iXZ (2.1)

1To the best of our knowledge, this scheme has not been directly described in another paper, but it is
not original work: it was implicit in the protocol in [1], [3].

CHAPTER 2. BLIND VERSUS VERIFIABLE QUANTUM COMPUTING 6

The Pauli operators anti commute: ZX = −XZ. The l-qubits Pauli group consists of
all elements of the form P = P1 ⊗ P2⊗. . .⊗Pl where Pi ∈ {I, X, Y, Z}, together with the
multiplicative factors −1 and ±i. We will use a subset of this group, which we denote as Pl,
which includes all operators P = P1 ⊗ P2⊗. . .⊗Pl but not the multiplicative factors.

An l qubit quantum state |ψ〉 is one time padded by choosing z, x ∈ {0, 1}l at random
and applying ZzXx to |ψ〉, creating ZzXx |ψ〉. The bit strings z, x are called the Pauli keys
and are retained by the party who performs the encryption. A nice property is that, in the
case that |ψ〉 is a standard basis state |m〉, the quantum one time pad is the same as the
classical one time pad:

ZzXx |m〉 〈m|XxZz = |m⊕ x〉 〈m⊕ x| (2.2)

The key property of the Pauli one time pad used in blind computing is the fact that it
can be used hide a quantum state entirely: to a third party with no knowledge of the Pauli
keys, a Pauli one time padded quantum state is equal to the maximally mixed state (the
identity I), as seen in the following lemma (which is stated formally as Lemma 5.1.1 and
proven in Section 5.2.3).

Lemma 2.1.1 Pauli Mixing For a matrix ρ on l qubits

1

22l

∑
z,x∈{0,1}l

ZzXxρ(ZzXx)† =
1

2l
I⊗l

So far, we have seen that the Pauli one time pad can be used to hide quantum states.
Now we will show how to use the Pauli one time pad for a blind computing protocol. Recall
that the goal is for the client to delegate a quantum computation (specified by a unitary
V) on a quantum input state |ψ〉 to the server, who should learn nothing about the client’s
data (the state |ψ〉). We can assume without loss of generality that V is public knowledge
and does not need to be hidden (as is the case with the universal circuit).

To begin, the client hides the input state |ψ〉 by using the Pauli one time pad to create
ZzXx |ψ〉. The client sends ZzXx |ψ〉 to the server and stores z, x ∈ {0, 1}l as his Pauli keys.
We will show that for all efficiently computable circuits V , the blind computing protocol we
will describe allows the following mapping (the first line corresponds to the client’s classical
Pauli keys and the second to the server’s encrypted quantum state):

(z, x)→ (z′, x′) (2.3)

ZzXx |ψ〉 → Zz′Xx′V |ψ〉 (2.4)

To put it in words, at the end of the protocol, the client should hold the Pauli keys z′, x′

and the server should hold Zz′Xx′V |ψ〉.
For this section, we will require a few preliminaries about quantum gates (for more detail

see Section 3.3.1). First, the Clifford group Cl is a finite subgroup of unitaries, with the key
property that it maps the Pauli group Pl to itself, up to a phase α ∈ {±1,±i}:

∀C ∈ Cl, P ∈ Pl : αCPC† ∈ Pl

CHAPTER 2. BLIND VERSUS VERIFIABLE QUANTUM COMPUTING 7

We will also use the fact that a universal gate set for quantum computation consists of the
Clifford group in addition to the Toffoli gate T , which is the quantum multiplication gate:
for a, b, c ∈ {0, 1}, T maps |a, b, c〉 to |a, b, c⊕ ab〉.

2.1.1 Blind Application of Pauli and Clifford Gates

To achieve our goal, we simply need to show that the transformations in (2.3) can be com-
puted if V is a Clifford gate or a Toffoli gate. To provide intuition, we also include the case
in which V is a Pauli gate ZaXb. In this case, the server does not need to do anything, and
the client updates his Pauli keys from (z, x) to (z′ = z ⊕ a, x′ = x⊕ b). The client’s update
effectively applies ZaXb to the server’s one time padded state, since

ZzXx |ψ〉 = Zz′⊕aXx′⊕b |ψ〉 = Zz′Xx′ZaXb |ψ〉 (2.5)

The equality follows up to a global phase since Pauli operators anti commute.
We continue to the case in which V is equal to a Clifford gate C. Clifford gates are applied

by two parallel computations: a Pauli key update by the client and a quantum operation
by the server. The server applies the gate C to his one time padded state, resulting in
CZzXx |ψ〉. We now take advantage of the fact that the Clifford group preserves the Pauli
group by conjugation: for all z, x, there exist z′, x′ such that

CZzXx |ψ〉 = Zz′Xx′C |ψ〉 (2.6)

To complete the Clifford application, the client updates his Pauli keys (z, x) to (z′, x′).

2.1.2 Blind Application of the Toffoli Gate

The Toffoli gate is more complicated. It cannot be applied in parallel by the client and
server, as was done for Clifford gates. This is because it does not preserve Pauli operators
by conjugation; applying a Toffoli directly to a one time padded state yields:

TZzXx |ψ〉 = T (ZzXx)T †T |ψ〉 (2.7)

The correction T (ZzXx)T † is not a Pauli operator, as was the case for Clifford operators;
it is instead a Clifford operator which is dependent on the one time pad z, x. Since the
correction is a Clifford gate and not a Pauli gate, it cannot be removed by a simple Pauli key
update by the client. It follows that the server must participate in removing the correction.
On the other hand, we must also ensure that the server does not know z, x: recall that z, x
are the Pauli keys hiding the state |ψ〉, and therefore maintaining blindness.

Due to this difficulty, the server must use a different method to apply the Toffoli gate.
Luckily, there is a method called computation by teleportation ([29]) in which the Toffoli
gate can be applied using only Clifford gates (which are independent of the Pauli keys) and
measurements, at the cost of requiring an extra state called a magic state. We first describe
how this process works, and then plug it in to our blind computation protocol.

CHAPTER 2. BLIND VERSUS VERIFIABLE QUANTUM COMPUTING 8

The following text is depicted in Figure 2.1. To compute a Toffoli gate by teleportation,
the following magic state is required (|Φ+〉 = 1√

2
(|00〉+ |11〉) is a maximally entangled state

called a Bell pair):

(T ⊗ I)
∣∣Φ+

〉⊗3
(2.8)

The qubits of the Bell pair have been arranged so that T acts on the second qubit of each
pair. The goal is to use (2.8) to apply the Toffoli gate to a 3 qubit state |ψ〉. The first step is
to perform teleportation of |ψ〉, using the first half of (2.8). We will not cover teleportation
([50]) here - see lecture notes ([48]) for a simple description of this primitive. The only
difference of this setting in comparison to standard teleportation is that there is a Toffoli
gate applied to the second half of the Bell pair; this means that the resulting state after
teleportation will also have a Toffoli gate applied. If the measurement results resulting from
the teleportation procedure are a, b ∈ {0, 1}3, the resulting state is TXbZa |ψ〉.

Figure 2.1: Computation by teleportation

To complete the Toffoli application, the operator T (XbZa)†T † is applied (this operator
is a Clifford, as mentioned earlier). The result is T |ψ〉. Note that all operators applied in
this process are either Clifford gates or measurements.

We now revert back to our blind computation protocol. Since the computation by tele-
portation process required only Clifford gates and measurements, it can be carried out on
top of one time padded states as follows. First, the client one time pads the magic state
from (2.8) using Pauli keys ẑ1, ẑ2, x̂1, x̂2 ∈ {0, 1}3 and sends the resulting state to the server.
The server begins with the input

ZzXx |ψ〉 ⊗ (Z ẑ1X x̂1 ⊗ Z ẑ2X x̂2T)
∣∣Φ+

〉⊗3
(2.9)

Since the above state is one time padded, performing the teleportation process (which consists
of a Clifford operator followed by measurement) is done as described in Section 2.1.1: the
server performs the Clifford operator and measures (obtaining a′, b′ ∈ {0, 1}3) and the client
updates his Pauli keys accordingly.

CHAPTER 2. BLIND VERSUS VERIFIABLE QUANTUM COMPUTING 9

The measurement results a′, b′ come from a one time padded state; the one time pad
needs to be removed in order to obtain a, b in Figure 2.1. The server needs to know a, b in
order to apply the Clifford correction operator T (XbZa)†T †. To assist him, the client sends
him the one time pad needed to obtain a, b from a′, b′. The server sends the client a′, b′, and
the client and server can then jointly apply the correction operator (the client updates his
Pauli keys and the server applies the correction to the state).

We now describe why the revealed one time pad does not compromise blindness. It
suffices to show that the one time pad z, x is not leaked; then the state |ψ〉 remains hidden.
To prove this, we will rely on the following observation: one one time pad is enough to
fully hide a Bell pair; i.e., the following state is maximally mixed when randomized over
z′, x′ ∈ {0, 1}:

(Zz′Xx′ ⊗ I)
∣∣Φ+

〉
(2.10)

This is because of the entanglement of a Bell pair: if only one qubit of a Bell pair is considered
at a time, it is maximally mixed. Randomizing one qubit of a Bell pair separates this qubit
from the other (by turning it into a maximally mixed state), with the result that the other
qubit also becomes maximally mixed.

This observation tells us that the two one time pads in (2.9) are redundant: one (say
ẑ2, x̂2) can be used to turn the three Bell pairs into a maximally mixed state, and the
other (ẑ1, x̂1) is now independent randomness, entirely hidden from the server. Due to
the teleportation process, the revealed one time pad is a linear combination of z, x, ẑ1, x̂1.
Since ẑ1, x̂1 are now independently random bits, their randomness hides z, x from the server,
completing the proof sketch of blindness (for a full proof, this argument is applied inductively
for each magic state).

Note that this protocol can be optimized: the magic state can be reduced to 1 qubit (if
we use the π

8
gate rather than the Toffoli gate as the non Clifford gate). We have chosen the

above protocol due to its simplicity; it will be useful as we continue through this chapter.

2.1.3 Improving the Blind Computation Scheme

The key weakness of the above protocol is that the client must be quantum, and must create
some number of quantum states corresponding to the size of the circuit. Although the client
only requires a constant size quantum register, he is still running a polynomial size quantum
computation, and it is not optimal that the client has to do so each time he wishes to delegate
a quantum computation. Ideally, the client would be classical.

Chapter 5 of this thesis is dedicated to showing how to remove the need for a quantum
client. To do so, we first convert the information theoretic Pauli one time pad encryption
into a computationally secure encryption, as introduced in [14] and used in [20]. This is
done as follows. Recall that throughout the blind computing protocol, the client holds
the Pauli keys (z, x) and the server holds the encrypted state ZzXx |ψ〉. To convert to a
computational scheme, the client simply encrypts his classical keys (z, x) (using a classical
encryption scheme) and sends the encryption Enc(z, x) to the server at the start of the

CHAPTER 2. BLIND VERSUS VERIFIABLE QUANTUM COMPUTING 10

protocol. Recall that to apply a gate V in the blind computation protocol, each party
performs the following transformation (given in (2.3)):

(z, x)→ (z′, x′) (2.11)

ZzXx |ψ〉 → Zz′Xx′V |ψ〉 (2.12)

Since the server now holds the encrypted Pauli keys, the following transformation replaces
the above expression:

Enc(z, x)→ Enc(z′, x′) (2.13)

ZzXx |ψ〉 → Zz′Xx′V |ψ〉 (2.14)

For this to be possible, the client must encode his Pauli keys using a classical encryption
scheme which allows the server to apply an arbitrary classical circuit to the Pauli keys.
This requirement is satisfied if the client uses a classical homomorphic encryption scheme.
By definition, a homomorphic encryption scheme is a scheme which allows application of
arbitrary classical circuits to the encrypted bits; i.e., for an efficiently computable circuit C,
the server is able to compute the following mapping:

Enc(x)→ Enc(C(x)) (2.15)

Next, recall the difficulty in applying the Toffoli gate. The server could apply the Toffoli
gate directly to a one time padded state, but this would result in:

TZzXx |ψ〉 = T (ZzXx)T †T |ψ〉 (2.16)

Since the server did not know z, x, he could not apply the correction T (ZzXx)T †. In Chapter
5, we show that if the classical homomorphic encryption scheme used to encrypt the Pauli
keys has certain properties, the server is able to use the encryptions of z, x to apply the
operator T (ZzXx)T †, up to another Pauli correction. More precisely, if the server holds
Enc(z, x) and a state |φ〉, he can create

Zz′Xx′T (ZzXx)T † |φ〉 (2.17)

as well as Enc(z′, x′). The key is that the server can perform this transformation on his own;
he needs no additional help from the client, either in the form of a magic state or in terms of
classical interaction. The result is a 1 round protocol in which the client only needs to send
classical messages to the server (in the case that the input state is a standard basis state2).
If the input state is an arbitrary quantum state |ψ〉, the client only needs to send ZzXx |ψ〉
(and classical encryptions).

2Recall from (2.2) that if |ψ〉 is a standard basis state |m〉, the one time pad acts as the classical XOR
operation, and the encryption of |m〉 is therefore a classical string.

CHAPTER 2. BLIND VERSUS VERIFIABLE QUANTUM COMPUTING 11

2.2 Verifiable Computation from Blind Computation

In blind computation, the only concern is privacy: the server should not be able to learn
anything about the computation. In verifiable computation, the concern is verifiability: the
client (referred to as the verifier in this setting) should be able to check whether the server
(the prover) is performing the requested computation. In this chapter, we focus on the
following question: can we build a verifiable protocol from a blind protocol?

We show in this chapter that blind computing can be extended to verifiable computing,
but only if the encryption scheme underlying the blind computation is non-malleable: it must
be difficult to transform a valid encryption into another valid encryption which encrypts a
different value3. This property may seem to be incompatible with the fact that we are
running a blind computing protocol; after all, the prover must also be able to compute on
the ciphertexts. The key is to combine the two properties: the prover should be able to
compute, but only if instructed to do so by the verifier.

In the classical setting (described below), non-malleability is enforced by a simple check
on the verifier’s part and yields a verifiable scheme. In the quantum setting, this simple check
is no longer possible. However, in the case that the verifier is quantum, non-malleability can
be enforced and used in a different manner. Unfortunately, even these modified techniques
seem unlikely to work in the case of a classical verifier delegating a quantum computation.
To see this, we begin by describing the classical method and proceed to showing why these
techniques break down in the quantum setting.

2.2.1 Classical Extension of Blind Computation to Verification

In this setting, the verifier would like to verifiably delegate the computation of a function
F : {0, 1}n → {0, 1} on an input x ∈ {0, 1}n to the prover, meaning the verifier should
accept iff the prover returns F (x). The protocol described below was given in [16]. We
assume the verifier can compute F (0n) and would like the server to compute F (x), for some
input x ∈ {0, 1}n \ {0n}. Recall from Section 2.1.3 that a classical homomorphic encryption
scheme is an encryption scheme which allows gates to be applied to the encrypted bits.
The verifier encodes both 0 and x using a classical homomorphic encryption scheme and
sends the encryptions to the prover in a random order. The prover is instructed to apply the
function F homomorphically to each input encryption. Upon receiving the encrypted results,
the verifier decrypts, checks if the result corresponding to F (0) is correct, and accepts the
output of F (x) if so.

This protocol is not sound. The key reason is that the prover can homomorphically
compute any function which results in the correct decrypted output for F (0); there is nothing
forcing him to apply the function F . This class of functions includes functions which behave
as F on input 0 but compute other functions on all other inputs. More precisely, consider

3The standard definition of non-malleability is that it must be difficult to transform an encryption into
an encryption of a related value. Our notion of non-malleability is slightly stronger and is required for the
purpose of extending blind computation to verifiable computation.

CHAPTER 2. BLIND VERSUS VERIFIABLE QUANTUM COMPUTING 12

the function F ′, which is defined as follows: F ′(0) = 0 and for all x ∈ {0, 1} \ {0n}, F ′(x) =
F (x)⊕ 1.

The result of applying F ′ homomorphically to the encrypted inputs sent by the verifier
is a correct decrypted answer in the case that the input is 0n, and the incorrect decrypted
answer in the case that the input is x. This type of cheating is frequently referred to as
under the hood cheating : the prover is cheating by using a function which can distinguish
between the two inputs, but the prover himself cannot distinguish, since he is computing
homomorphically.

In the classical word, under the hood cheating can be avoided by enforcing non-malleability.
As stated at the start of this section, this means that a valid encryption cannot be converted
to another valid encryption which encrypts a different bit. In this setting, this means that
since the server is able to compute the honest answers (by computing the function F homo-
morphically), he cannot compute alternate valid encryptions by computing a function other
than F . If he could, this would imply that the server could break the non-malleability of
the encryption scheme.

To enforce non-malleability, the verifier alters his behavior slightly. For the input 0n, the
verifier computes the final ciphertext c = Enc(F (0n)) that the prover should have obtained.
Instead of decrypting the ciphertexts sent to him by the prover and checking if the output for
F (0n) is correct, he checks if the prover’s ciphertext output for this case is c. This is clearly
enforcing non-malleability for the input 0n. To see that this is also enforcing non-malleability
for the input x, note that the two inputs (0n and x) are computationally indistinguishable
to the prover; he receives only their encryptions. It follows that if the prover could cheat on
input x but not 0n, he could distinguish between the two inputs, completing the soundness
proof of the verification protocol.

2.2.2 Obstacles in Extending Blind Quantum Computation to
Verification

In this section, we discuss the obstacles which arise in attempting to extend blind quantum
computation schemes to verifiable schemes. First observe that there is a major difference
between the blind quantum computing protocol in Section 2.1 and a classical homomorphic
encryption scheme: the verifier in the quantum setting has more power, in the form of his role
in updating the Pauli keys. For each gate applied, the verifier must do his part; therefore, if
the prover tries to deviate from the protocol, the gates he applies will not have the intended
effect. Is this enough control to provide non-malleability, therefore preventing under the
hood attacks?

It turns out that a particularly simple cheating prover can succeed in under the hood
cheating. To do so, the prover behaves almost exactly as the honest prover, except he applies
a Pauli operator of his choice immediately prior to measurement (in the Toffoli teleportation
process in Section 2.1.2). We show below that even such a simple deviation results in under
the hood cheating. It follows that in order to ensure verifiability, we would have to ensure

CHAPTER 2. BLIND VERSUS VERIFIABLE QUANTUM COMPUTING 13

non-malleability of measurement results.
Unfortunately, the same trick used in Section 2.2.1 to enforce non-malleability cannot be

used with respect to the blind quantum computing protocol in Section 2.1: in this setting, it
does not suffice for the verifier to simply generate the outputs of an honest prover on his own
and check that the prover reports the same outputs. This is because these outputs include the
measurement results (from the Toffoli teleportation process in Section 2.1.2), which consist
of independent, uniformly random bits each time the protocol is performed honestly. If the
verifier tried to run this process on his own to obtain the measurement results, and compared
his results to the honest prover, the results would almost always differ. To get around this
difficulty, we show that non-malleability can be used in a different way, but the drawback
of this method is that it requires a quantum verifier. Finally, we discuss the implications of
these observations to the setting in which the verifier is classical and the prover is quantum.

2.2.2.1 Under the Hood Attacks

We now show that in the protocol presented in Section 2.1, a prover can cheat under the
hood by applying a Pauli operator of his choice prior to reporting measurement results (in
the Toffoli teleportation process in Section 2.1.2). For convenience, assume the circuit to be
applied consists of only one Toffoli gate and the 3 qubit state |ψ〉 as input. Assume the prover
behaves honestly, except he applies a Pauli operator X x̂1⊗X x̂2 (x̂1, x̂2 ∈ {0, 1}3) immediately
prior to measurement. The prover then reports his measurement results to the verifier, who
responds with the bit strings a, b ∈ {0, 1}3. This deviation results in the replacement of
Figure 2.1 with the following figure, which illustrates that shifting the measurement results
by x̂1, x̂2 has the same effect as shifting the correction operator applied to the state |ψ〉:

Figure 2.2: Cheating in computation by teleportation

Due to the anti commutation property of Pauli operators, the output state of Figure 2.2
is equal to:

TXb⊕x̂2Za⊕x̂1 |ψ〉 = TXbZaX x̂2Z x̂1 |ψ〉 = TXbZa |φ〉 (2.18)

CHAPTER 2. BLIND VERSUS VERIFIABLE QUANTUM COMPUTING 14

Next, the verifier and prover jointly apply the correction operator TXbZaT †. This operator
is meant to complete the computation by teleportation process for the Toffoli operation and
it does so, but with respect to the state |φ〉 = X x̂2Z x̂1 |ψ〉 rather than the state |ψ〉, resulting
in:

T |φ〉 = TX x̂2Z x̂1 |ψ〉 = TX x̂2Z x̂1T †T |ψ〉 (2.19)

The prover has succeeded in applying a Clifford attack TX x̂1Z x̂2T † directly to the state T |ψ〉
which would have resulted from the honest behavior. This is an under the hood cheating
attack, in which the server has control of the circuit applied to the unencrypted state, but
does not learn anything about the computation. This attack increases in complexity as the
rounds of the protocol progress; we do not know how to argue that the attack is less general
than an arbitrary BQP circuit. It follows that altering the measurement results, even by just
a Pauli operator, is an extremely powerful attack which we do not yet know how to handle.

2.2.2.2 Malleability in the Quantum Setting

The property of the blind quantum computing protocol in Section 2.1 which allows for
under the hood cheating is that the Pauli one time pad encryption scheme is malleable: all
measurement results must be accepted by the verifier, since an honest measurement result
is distributed uniformly at random. The clear solution is to use a non-malleable encryption
(rather than the Pauli one time pad) for all quantum states sent by the verifier to the prover.

Recall the notion of non-malleability: it must be difficult to map a valid encryption
to another valid encryption.4 If all states received by the prover are encrypted under a
non-malleable encryption, the prover will have no choice but to behave as directed by the
verifier. Put in another way, encrypting the input states of the prover with a non-malleable
quantum encryption scheme ensures that the space of measurements resulting from the Toffoli
teleportation protocol will become sparse (and unknown to the prover), therefore becoming
easy for the verifier to check.

The papers [1]/[3] provide an example of the solution described above: the authors
develop a verifiable protocol between a verifier (with a small quantum computer) and a
quantum prover by using the quantum signed polynomial code in addition to the Pauli one
time pad. To encode, the verifier first applies the signed polynomial code (the verifier must
be quantum) and then applies the Pauli one time pad. Blind computation can be performed
in almost the same manner as with the one time pad (the prover applies the gates on top of
the encoding, and the verifier updates the keys). To prove security, the authors show that
the combination of the quantum signed polynomial code and the Pauli one time pad forms
a quantum authentication scheme (in other words, it is non-malleable).

4In the quantum setting, non-malleability is often referred to in terms of quantum authentication schemes,
which achieve exactly the same guarantee.

CHAPTER 2. BLIND VERSUS VERIFIABLE QUANTUM COMPUTING 15

2.2.2.3 Classical Client Blind Quantum Computation to Verification

So far, we have seen that extending blind computation to verifiable computation can be
accomplished under certain conditions by relying on non-malleability. In the case of classical
computations, it is possible since the outputs are deterministic, and in the case of quantum
computations, it is possible by relying on a quantum verifier to perform a non-malleable
quantum encoding. We now show that these conditions are not satisfied in the case of blind
quantum computation with a classical client/verifier; in this setting, we do not know how to
extend blind quantum computation to verifiable computation. We then briefly discuss the
different path we took to develop a protocol which can classically verify quantum computa-
tions.

In the case that the verifier is classical but is delegating a quantum computation, as in
the homomorphic encryption scheme provided in Chapter 5, it turns out that under the
hood cheating is still possible. To understand this at a high level, we begin by recalling
(from Section 2.1.3) that the scheme in Chapter 5 follows the same rough outline of the
blind quantum computation protocol given in this chapter (in Section 2.1). The difference
is that, in Chapter 5, the server is provided with encryptions of the Pauli keys and can use
these to perform the Toffoli correction on his own; he does not require the assistance of a
magic state. However, as we will see in Chapter 5, the server’s procedure to apply the Toffoli
correction still produces measurement results drawn uniformly at random, and under the
hood cheating is again possible by deviating on these measurement results.

In this setting, the methods discussed above which rely on non-malleability are no longer
viable solutions to avoid under the hood cheating. The method outlined in Section 2.2.1, in
which the verifier computed the output of an honest prover, cannot be used for two reasons.
First, the verifier is classical, and therefore cannot compute the output of an honest prover.
Second, even if the verifier was quantum, the same issue stated at the start of Section 2.2.2
exists: the outputs of an honest prover are distributed uniformly at random, and therefore
cannot be predicted by the verifier.

The method of using non-malleable quantum encryption schemes outlined in Section
2.2.2.2, in the case of a quantum verifier, also cannot be used. For such schemes to serve
their purpose, it seems crucial that the verifier performs the encoding, and not the prover. It
may seem that the verifier could instead delegate the application of the encoding to the prover
(by using blind computing). However, in this case the verifier would have to be assured that
the encoding is applied correctly by the prover in order to use the non-malleability guarantees
later on. This is difficult for the same reason that it is difficult to verify a blind quantum
computation without using a non-malleable quantum encryption scheme.

Enforcing the Existence of Qubits There seems to be an inherent reason why the previ-
ously described techniques are difficult to extend to the setting of a classical verifier/quantum
prover. This is because the first step of non-malleability (and in turn, verification) is to en-
sure that the prover is respecting some type of qubit structure; when the prover is asked to
apply different operations on the same qubit, he must actually be applying these operations

CHAPTER 2. BLIND VERSUS VERIFIABLE QUANTUM COMPUTING 16

to the same qubit, rather than applying each operation to a different part of his space. In
this sense, verification must certify that the prover has a well defined space of qubits and is
using this space as requested by the verifier.

In previous verification protocols, the structure of the prover’s space was enforced in one
of two ways. In the case that the verifier has a small quantum computer, as discussed in
Section 2.2.2.2, he can simply send encoded qubits to the prover. The non-malleable encoding
ensures that the prover is in fact applying the operations requested to the specified qubits. If
the verifier is classical, but has access to two quantum computers, the task of enforcing qubit
structure is much more involved, but still possible ([44]). In order to do so, the verifier plays
a game (such as the CHSH game [17]) with the two provers, in which quantum provers have
a distinct advantage over classical provers. If the provers win the game with the optimal
advantage, it is possible to fully characterize the space of the two provers: it can be shown
that such provers share Bell pairs (maximally entangled states) and are performing the
operations requested by the verifier on these Bell pairs. This characterization of the space
of the provers allows the verifier to force the provers to carry out a computation.

In the setting of a classical verifier and a single quantum prover, we do not have the
option of using previous techniques. We rely on quantum secure cryptography in order to
develop an entirely new method in which a classical verifier can enforce that the quantum
prover holds qubits and is behaving as requested on them. In more detail, we construct a
classical encryption scheme which allows blind delegation of standard/Hadamard basis mea-
surements: given an encryption of the bit 0 (resp. 1), the prover can apply a standard (resp.
Hadamard) basis measurement to a state of his choice, without learning which measurement
he is applying. We show that our encryption scheme can be used to enforce the existence
of a well defined qubit on which the prover performs the measurement (either standard or
Hadamard) requested by the verifier.

This proof of existence rests on the fact that the prover does not fully understand the
cryptography used by the verifier, and any attempt at deviating from the protocol will
be randomized in a way which is unknown to him, rendering such deviations ineffective.
The randomization is derived from particularly strong security guarantees of our classical
encryption scheme. Note that the existence of a well defined qubit rules out under the hood
cheating: the prover must measure the same qubit, regardless of whether he is directed to
perform a standard or Hadamard basis measurement.

In conclusion, we were not able to extend our homomorphic encryption protocol (Chap-
ter 5) to a verifiable protocol. Instead, we build our verification protocol (Chapter 6) by
developing a new classical encryption scheme with strong security guarantees. We leave as
a (rather difficult) open question whether blind computation can be converted to verifiable
computation in the setting of a classical verifier/ quantum prover.

17

Chapter 3

Preliminaries

Throughout this thesis, we borrow notation and definitions from [1], [3] and [11]. Parts of
the following sections are also taken from these sources.

3.1 Notation

For all q ∈ N we let Zq denote the ring of integers modulo q. We represent elements in Zq
using numbers in the range (− q

2
, q
2
] ∩ Z. We denote by [x]q the unique integer y s.t. y = x

(mod q) and y ∈ (− q
2
, q
2
]. For x ∈ Zq we define |x| = |[x]q|. For a vector u ∈ Znq , we write

‖u‖∞ ≤ β if each entry ui in u satisfies |ui| ≤ β. Similarly, for a matrix U ∈ Zn×mq , we write
‖U‖∞ ≤ β if each entry ui,j in U satisfies |ui,j| ≤ β. When considering an s ∈ {0, 1}n we
sometimes also think of s as an element of Znq , in which case we write it as s.

We use the terminology of polynomially bounded, super-polynomial, and negligible func-
tions. A function n : N → R+ is polynomially bounded if there exists a polynomial p such
that n(λ) ≤ p(λ) for all λ ∈ N. A function n : N→ R+ is negligible (resp. super-polynomial)
if for every polynomial p, p(λ)n(λ)→λ→∞ 0 (resp. n(λ)/p(λ)→λ→∞ ∞).

We generally use the letter D to denote a distribution over a finite domain X, and f for
a density on X, i.e. a function f : X → [0, 1] such that

∑
x∈X f(x) = 1. We often use the

distribution and its density interchangeably. We write U for the uniform distribution. We
write x ← D to indicate that x is sampled from distribution D, and x ←U X to indicate
that x is sampled uniformly from the set X. We write DX for the set of all densities on X.
For any f ∈ DX , Supp(f) denotes the support of f ,

Supp(f) =
{
x ∈ X | f(x) > 0

}
.

For two densities f1 and f2 over the same finite domain X, the Hellinger distance between
f1 and f2 is

H2(f1, f2) = 1−
∑
x∈X

√
f1(x)f2(x) . (3.1)

CHAPTER 3. PRELIMINARIES 18

and the total variation distance between f1 and f2 is:

‖f1 − f2‖TV =
1

2

∑
x∈X

|f1(x)− f2(x)| . (3.2)

The following lemma will be useful:

Lemma 3.1.1 Let D0, D1 be distributions over a finite domain X. Let X ′ ⊆ X. Then:∣∣∣ Pr
x←D0

[x ∈ X ′]− Pr
x←D1

[x ∈ X ′]
∣∣∣ ≤ ‖D0 −D1‖TV (3.3)

We require the following definition:

Definition 3.1.2 Computational Indistinguishability of Distributions Two fami-
lies of distributions {D0,λ}λ∈N and {D1,λ}λ∈N (indexed by the security parameter λ) are
computationally indistinguishable if for all quantum polynomial-time attackers A there ex-
ists a negligible function µ(·) such that for all λ ∈ N∣∣∣ Pr

x←D0,λ

[A(x) = 0]− Pr
x←D1,λ

[A(x) = 0]
∣∣∣ ≤ µ(λ) . (3.4)

3.2 Learning with Errors and Discrete Gaussians

This background section on the learning with errors problem is taken directly from [11]. For
a positive real B and positive integers q, the truncated discrete Gaussian distribution over
Zq with parameter B is supported on {x ∈ Zq : ‖x‖ ≤ B} and has density

DZq ,B(x) =
e
−π‖x‖2

B2∑
x∈Zq , ‖x‖≤B

e
−π‖x‖2
B2

. (3.5)

We note that for any B > 0, the truncated and non-truncated distributions have statistical
distance that is exponentially small in B [6, Lemma 1.5]. For a positive integer m, the
truncated discrete Gaussian distribution over Zmq with parameter B is supported on {x ∈
Z
m
q : ‖x‖ ≤ B

√
m} and has density

∀x = (x1, . . . , xm) ∈ Zmq , DZmq ,B(x) = DZq ,B(x1) · · ·DZq ,B(xm) . (3.6)

Lemma 3.2.1 Let B be a positive real number and q,m be positive integers. Let e ∈ Zmq .
The Hellinger distance between the distribution D = DZmq ,B and the shifted distribution D+e
satisfies

H2(D,D + e) ≤ 1− e
−2π
√
m‖e‖
B , (3.7)

and the statistical distance between the two distributions satisfies∥∥D − (D + e)
∥∥2
TV
≤ 2

(
1− e

−2π
√
m‖e‖
B

)
. (3.8)

CHAPTER 3. PRELIMINARIES 19

Definition 3.2.2 For a security parameter λ, let n,m, q ∈ N be integer functions of λ. Let
χ = χ(λ) be a distribution over Z. The LWEn,m,q,χ problem is to distinguish between the
distributions (A,As+e (mod q)) and (A,u), where A is uniformly random in Zn×mq , s is a
uniformly random row vector in Znq , e is a row vector drawn at random from the distribution
χm, and u is a uniformly random vector in Zmq . Often we consider the hardness of solving
LWE for any function m such that m is at most a polynomial in n log q. This problem is
denoted LWEn,q,χ. When we write that we make the LWEn,q,χ assumption, our assumption is
that no quantum polynomial-time procedure can solve the LWEn,q,χ problem with more than
a negligible advantage in λ.

As shown in [43, 42], for any α > 0 such that σ = αq ≥ 2
√
n the LWEn,q,DZq,σ

problem,
where DZq ,σ is the discrete Gaussian distribution, is at least as hard as approximating the

shortest independent vector problem (SIVP) to within a factor of γ = Õ(n/α) in worst case
dimension n lattices. This is proven using a quantum reduction. Classical reductions (to a
slightly different problem) exist as well [41, 12] but with somewhat worse parameters. The

best known (classical or quantum) algorithm for these problems run in time 2Õ(n/ log γ). For
our construction we assume hardness of the problem against a quantum polynomial-time
adversary in the case that γ is a super polynomial function in n. This is a commonly used
assumption in cryptography (for e.g. homomorphic encryption schemes such as [24]).

We use two additional properties of the LWE problem. The first is that it is possible to
generate LWE samples (A,As + e) such that there is a trapdoor allowing recovery of s from
the samples.

Theorem 3.2.3 (Theorem 5.1 in [35]) Let n,m ≥ 1 and q ≥ 2 be such that m =
Ω(n log q). There is an efficient randomized algorithm GenTrap(1n, 1m, q) that returns
a matrix A ∈ Zm×nq and a trapdoor tA such that the distribution of A is negligibly (in n)
close to the uniform distribution. Moreover, there is an efficient algorithm Invert that, on
input A, tA and As + e where ‖e‖ ≤ q/(CT

√
n log q) and CT is a universal constant, returns

s and e with overwhelming probability over (A, tA)← GenTrap.

The second property is the existence of a “lossy mode” for LWE. The following definition
is Definition 3.1 in [4].

Definition 3.2.4 Let χ = χ(λ) be an efficiently sampleable distribution over Zq. Define a
lossy sampler Ã← lossy(1n, 1m, 1`, q, χ) by Ã = BC + F, where B←U Z

m×`
q , C←U Z

`×n
q ,

F← χm×n.

Theorem 3.2.5 (Lemma 3.2 in [4]) Under the LWE`,q,χ assumption, the distribution of
Ã← lossy(1n, 1m, 1`, q, χ) is computationally indistinguishable from A←U Z

m×n
q .

CHAPTER 3. PRELIMINARIES 20

3.3 Quantum Computation Preliminaries

3.3.1 Quantum Operations

We will use the X, Y and Z Pauli operators: X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
and Y = iXZ.

The l-qubits Pauli group consists of all elements of the form P = P1 ⊗ P2⊗. . .⊗Pl where
Pi ∈ {I, X, Y, Z}, together with the multiplicative factors −1 and ±i. We will use a subset
of this group, which we denote as Pl, which includes all operators P = P1 ⊗ P2⊗. . .⊗Pl
but not the multiplicative factors. We will use the fact that Pauli operators anti commute;
ZX = −XZ. The Pauli group Pl is a basis to the matrices acting on l qubits. We can write
any matrix U over a vector space A⊗B (where A is the space of l qubits) as

∑
P∈Pl P ⊗UP

where UP is some (not necessarily unitary) matrix on B.
Let Cl denote the l-qubit Clifford group. Recall that it is a finite subgroup of unitaries act-

ing on l qubits generated by the Hadamard matrix H = 1√
2

(
1 1
1 −1

)
, by K =

(
1 0
0 i

)
,

and by controlled-NOT (CNOT) which maps |a, b〉 to |a, a⊕ b〉 (for bits a, b). The Clifford
group is characterized by the property that it maps the Pauli group Pl to itself, up to a
phase α ∈ {±1,±i}. That is: ∀C ∈ Cl, P ∈ Pl : αCPC† ∈ Pl

The Toffoli gate T maps |a, b, c〉 to |a, b, c⊕ ab〉 (for a, b, c ∈ {0, 1}). We will use the fact
that the set consisting of the Toffoli gate and the Hadamard gate is a universal gate set for
quantum circuits ([46]).

We will use completely positive trace preserving (CPTP) maps to represent general quan-
tum operations. A CPTP map S can be represented by its Kraus operators, {Bτ}τ . The
result of applying S to a state ρ is:

S(ρ) =
∑
τ

BτρB
†
τ (3.9)

We say that two CPTP maps S and S ′ are equal if, for all density matrices ρ, S(ρ) = S ′(ρ).

3.3.2 Trace Distance

For density matrices ρ, σ, the trace distance ‖ρ− σ‖tr is equal to:

‖ρ− σ‖tr =
1

2
Tr(
√

(ρ− σ)2) (3.10)

We will use the following fact ([51]):

‖ρ− σ‖tr = max
P

Tr(P (ρ− σ)) (3.11)

where the maximization is carried over all projectors P . We will also use the fact that the
trace distance is contractive under completely positive trace preserving maps ([51]). The
following lemma relates the Hellinger distance as given in (3.1) and the trace distance of
superpositions:

CHAPTER 3. PRELIMINARIES 21

Lemma 3.3.1 Let X be a finite set and f1, f2 ∈ Dx. Let

|ψ1〉 =
∑
x∈X

√
f1(x) |x〉 and |ψ2〉 =

∑
x∈X

√
f2(x) |x〉 .

Then
‖|ψ1〉 〈ψ1| − |ψ2〉 〈ψ2|‖tr =

√
1− (1−H2(f1, f2))2 .

We require the following definition, which is analogous to Definition 3.1.2:

Definition 3.3.2 Computational Indistinguishability of Quantum States Two fam-
ilies of density matrices {ρ0,λ}λ∈N and {ρ1,λ}λ∈N (indexed by the security parameter λ) are
computationally indistinguishable if for all efficiently computable CPTP maps S there exists
a negligible function µ(·) such that for all λ ∈ N:∣∣∣Tr((|0〉 〈0| ⊗ I)S(ρ0,λ − ρ1,λ)

∣∣∣ ≤ µ(λ) . (3.12)

22

Chapter 4

Trapdoor Claw-Free Functions in
Quantum Computation

In this chapter, we introduce the primitive of trapdoor claw-free functions ([26],[25]), which
will be used in both results in this thesis. This primitive was first used in the context of
quantum computations in [11]. Here we describe why it is useful in the quantum setting (as
shown in [11]), and roughly how it will be used in Chapter 5 and Chapter 6.

Let X and Y be finite sets (assume that X = {0, 1}w). A trapdoor claw-free function
f : X → Y is a two to one function with two more properties. First, it has a trapdoor which
allows for efficient inversion: given a point y in the image of f , the trapdoor allows recovery
of the two preimages x0, x1 of y. Second, without the trapdoor it is computationally difficult
to find a pair of overlapping preimages x0, x1 (f(x0) = f(x1)); the pair (x0, x1) is referred to
as a claw (hence the name claw-free).

4.1 Quantum Advantage

As introduced in [11], the key reason trapdoor claw-free functions are useful in the quantum
setting is that a quantum algorithm can generate a superposition over a random claw:

1√
2

(|x0〉+ |x1〉) (4.1)

and use this superposition to generate a string d ∈ X \ {0} such that d · (x0 ⊕ x1) = 0. This
task is conjectured to be hard classically, and was used for randomness generation in [11].
We now show how this can be done.

First, the quantum machine creates a uniform superposition over the domain X = {0, 1}w
and applies the function f in superposition:

1√
|X |

∑
x∈X

|x〉 |f(x)〉 (4.2)

CHAPTER 4. TRAPDOOR CLAW-FREE FUNCTIONS IN QUANTUM
COMPUTATION 23

The final register is measured, resulting in a point y ∈ Y . The remaining state is a uniform
superposition over the claw (x0, x1) (f(x0) = f(x1) = y):

1√
2

(|x0〉+ |x1〉) (4.3)

Now, the Hadamard transform is applied to the state in (4.3), resulting in:

1√
|X |

∑
d∈X

((−1)d·x0 + (−1)d·x1) |d〉 (4.4)

The amplitude of a string d is non zero only when d · (x0 ⊕ x1) = 0. Therefore, when the
above state is measured, only such d are obtained.

Now assume a classical device (the verifier) wants to challenge a quantum device (the
prover). This can be done in two ways using the procedure above. For both challenges, the
verifier begins by sampling a trapdoor claw-free function f along with its trapdoor. The
verifier sends the prover f and asks the prover to create a superposition over a claw (as in
(4.3)) and send him y as the receipt. Note that at this point, the verifier has leverage over
the prover: the verifier can compute both inverses x0, x1 of y (using the trapdoor of f), but
it is computationally difficult for the prover to compute this information.

For the first challenge, the verifier asks the prover to return a preimage of y. If the prover
did as he was told, this is easy: he simply measures (4.3). For the second challenge, the
verifier asks the prover to return a string d 6= 0 such that d · (x0 ⊕ x1) = 0. Again, if the
prover behaved honestly, this is easy - he can measure (4.4) to obtain such a d.

In [11], these challenges are combined: the idea is that if the prover is able to pass
both challenges, he must be acting probabilistically (and therefore generating randomness).
To show this, the authors rely on a strengthened version of the claw-free property (called
a hardcore bit property) which states that it is computationally difficult for the prover to
compute both one member of a claw (x0, x1) and a string d 6= 0 such that d · (x0 ⊕ x1) = 0.
This implies that a deterministic prover cannot pass both challenges at once.

4.2 Applications in Homomorphic Encryption and

Verification

In this thesis, we require trapdoor claw-free functions with a bit more structure: we will
instead consider a pair of injective functions f0, f1 with the same images. The trapdoor
inversion algorithm takes as input a point y ∈ f0(·) and a bit b and returns f−1b (y). The
reason this structure is useful is because it allows a quantum machine to entangle a specific
state with a claw; the machine can begin with an arbitrary single qubit state:

|ψ〉 = α0 |0〉+ α1 |1〉 (4.5)

CHAPTER 4. TRAPDOOR CLAW-FREE FUNCTIONS IN QUANTUM
COMPUTATION 24

and, for a uniformly random claw (x0, x1) (f0(x0) = f1(x1)), create

α0 |0〉 |x0〉+ α1 |1〉 |x1〉 (4.6)

To do this, the quantum machine first creates a uniform superposition over the domain X
and then uses |ψ〉 to determine which of the two functions (f0, f1) to apply:

1√
|X |

∑
x∈X

∑
b∈{0,1}

αb |b〉 |x〉 |fb(x)〉 (4.7)

To complete the process, the last register is measured.
In Chapter 5, we show how to build an approximate trapdoor claw-free function pair

given a classical encryption of a bit s (if the encryption scheme satisfies certain properties).
The resulting function pair f0, f1 has the special property that for all claws (x0, x1), the first
bit of x0 ⊕ x1 is equal to s. As we will show in Chapter 5, this property is extremely useful
in blind quantum computation.

In Chapter 6, we use an extension of the trapdoor claw-free family built from learning
with errors in [11]. The trapdoor claw-free functions are not used for functionality, as in
Chapter 5, but for constraining the behavior of the prover in order to force the prover to
behave as directed by the verifier. To do this, we will need to strengthen the claw-free
property in two different ways. First, we require the hardcore bit property used in [11] and
mentioned above, which states that it is computationally difficult to hold both one member
of a claw (x0, x1) and a string d ∈ X \ {0} such that d · (x0 ⊕ x1) = 0. We also need a
variant of this statement, which states that there exists a string d ∈ X which satisfies two
conditions. First, d · (x0 ⊕ x1) is equal to the same fixed bit c for all claws (x0, x1). Second,
it is computationally difficult to guess the bit c with non negligible advantage.

25

Chapter 5

Homomorphic Encryption

In this chapter, we present a leveled fully homomorphic encryption scheme for quantum
circuits with classical keys. The scheme allows a classical client to blindly delegate a quantum
computation to a quantum server: an honest server is able to run the computation while a
malicious server is unable to learn any information about the computation.

Our scheme follows the outline of the Pauli one time pad blind computation scheme
presented in Section 2.1. The crux of this scheme was the blind application of the Toffoli
gate (Section 2.1.2), which was accomplished using a quantum state, thereby requiring a
quantum client. In this chapter, we remove the need for a quantum client by showing that
a classical encryption, rather than a quantum state, suffices to perform the same task. To
do so, we show that the server is able to convert a classical encryption of a bit s, denoted
as Enc(s), into the quantum operation CNOTs (i.e. the CNOT gate is applied if and only
if s = 1). In more detail, we construct an encrypted CNOT operation, a quantum operation
which takes as input Enc(s) and a 2 qubit state |ψ〉 and outputs the state ZzXxCNOTs |ψ〉
as well as classical encryptions of z, x ∈ {0, 1}2.1

We begin by showing that if Enc(s) has a specific structure, the encrypted CNOT oper-
ation can be constructed in a straightforward manner. This structure is as follows: Enc(s)
is equal to a trapdoor claw-free function pair f0, f1 with the special property that each claw
(x0, x1) hides s (the first bit of x0 ⊕ x1 is equal to s). If this structure exists, the opera-
tion CNOTs can be applied by relying on the fact that the server can efficiently create a
superposition over a uniformly random claw x0, x1, as described in Chapter 4.

To obtain a homomorphic encryption scheme for quantum circuits, the above idea must
be generalized: we must show how to perform the encrypted CNOT operation if Enc(s) is a
ciphertext of a classical homomorphic encryption scheme which may not have the trapdoor
claw-free structure described in the previous paragraph. This is less straightforward, and
we do so by showing that if the classical encryption scheme satisfies certain properties,
the function pair f0, f1 can be constructed given Enc(s). We call such classical encryption
schemes quantum capable. The two main results of this chapter are that a quantum capable

1Each application of the encrypted CNOT operation results in z, x ∈ {0, 1}2 sampled uniformly at
random.

CHAPTER 5. HOMOMORPHIC ENCRYPTION 26

scheme can be constructed from the learning with errors problem by combining two existing
classical encryption schemes (Theorem 5.4.2) and that quantum capable schemes can be used
for homomorphic evaluation of quantum circuits (Theorem 5.5.2). Combined, they provide
the following theorem (taken from Chapter 1):

Theorem 1.0.1 (Informal) Under the assumption that the learning with errors problem
with superpolynomial noise ratio is computationally intractable for an efficient quantum ma-
chine, there exists a quantum leveled fully homomorphic encryption scheme with classical
keys.

5.1 Overview

We now present an overview of the chapter, which proceeds as follows. We first recap
the blind computation scheme presented in Section 2.1, with the goal of reducing it to the
encrypted CNOT operation described above. We then describe how the encrypted CNOT
operation works, in the case that Enc(s) is equal to a trapdoor claw-free function pair
f0, f1 which hides the encrypted bit s. Next, we show how a classical encryption of a bit
s can be used to build f0, f1 if the encryption scheme has certain properties and we use
these properties to describe how such quantum capable homomorphic encryption schemes
are defined. We conclude by describing how to combine two existing classical homomorphic
encryption schemes ([23], [24]) to form a quantum capable scheme, and then showing how
a quantum capable scheme can be used to build a quantum leveled fully homomorphic
encryption scheme with classical keys. The chapter itself follows the outline of this overview
and provides full proofs of all of our results.

5.1.1 Reduction to the Encrypted CNOT Operation

Recall the Pauli one time pad, which is the analogue of the classical one time pad. The
classical one time pad encrypts a string m by XORing it with a random string r. Just as l
classical bits suffice to hide an l bit string m, 2l classical bits suffice to hide an l bit quantum
state |ψ〉. This is done by using the quantum version of the one time pad, called the Pauli
one time pad (introduced in [5]).

An l qubit quantum state |ψ〉 is Pauli one time padded by choosing z, x ∈ {0, 1}l at
random and applying ZzXx to |ψ〉, creating ZzXx |ψ〉. The bit strings z, x are called the
Pauli keys and are retained by the client. Once the client sends the encrypted state to the
server, the shared state held by the client and server is (the last register containing zx is
held by the client):

1

22l

∑
z,x∈{0,1}l

ZzXx |ψ〉 〈ψ| (ZzXx)† ⊗ |zx〉 〈zx| (5.1)

CHAPTER 5. HOMOMORPHIC ENCRYPTION 27

The client’s decoding process is simple: he simply uses the keys z, x to apply the Pauli
operator (ZzXx)† to the state he receives from the server. A nice property is that, in the
case that |ψ〉 is a standard basis state |m〉, the quantum one time pad is the same as the
classical one time pad:

ZzXx |m〉 〈m|XxZz = |m⊕ x〉 〈m⊕ x| (5.2)

It follows that the encoding and decoding of a standard basis state can be performed classi-
cally.

The key property of the Pauli one time pad used in blind computing is the fact that it
can be used hide a quantum state entirely: to the server, who has no knowledge of the Pauli
keys, a Pauli one time padded quantum state is equal to the maximally mixed state (the
identity I), as stated in the following lemma (which was stated informally as Lemma 2.1.1
and is proven in Section 5.2.3).

Lemma 5.1.1 (Pauli Mixing) For a matrix ρ on two spaces A,B

1

22l

∑
z,x∈{0,1}l

(ZzXx ⊗ IB)ρ(ZzXx ⊗ IB)† =
1

2l
IA ⊗ TrA(ρ)

As described in Section 2.1.3, the information theoretically secure Pauli one time pad en-
cryption scheme can be easily transformed into a computationally secure encryption scheme
([14]). To do so, the client simply encrypts his classical Pauli keys (z, x) (using a classical
homomorphic encryption scheme) and includes the encryption Enc(z, x) as part of the en-
cryption of the state |ψ〉; the encryption is now a two part encryption, containing classically
encrypted keys and the Pauli one time padded quantum state ZzXx |ψ〉. To decode, the
client requests both the Pauli key encryptions and the quantum state. He first decrypts the
Pauli key encryptions to obtain the Pauli keys, and then applies the inverse of the Pauli keys
to the quantum state.

5.1.1.1 Homomorphic Gate Application

In order to apply quantum gates homomorphically to the computationally secure Pauli en-
cryption scheme, the server will need to run two separate computations: a classical homo-
morphic computation on the Pauli keys and a quantum computation on the one time padded
state. In this section, we show how the server is able to perform the following transforma-
tions for all gates V in a universal set of gates (our universal set will be the Clifford group
along with the Toffoli gate):

Enc(z, x)→ Enc(z′, x′) (5.3)

ZzXx |ψ〉 → Zz′Xx′V |ψ〉 (5.4)

CHAPTER 5. HOMOMORPHIC ENCRYPTION 28

Homomorphic Application of Pauli and Clifford Gates To achieve our goal, we
simply need to show that the transformations in (5.3)/(5.4) can be computed if V is a
Clifford gate or a Toffoli gate. To provide intuition, we also include the case in which
V is a Pauli gate ZaXb. In this case, the server only performs the classical part of the
parallel computation (in (5.3)): he homomorphically updates his Pauli keys from Enc(z, x)
to Enc(z′, x′), for (z′ = z ⊕ a, x′ = x ⊕ b). The server has now effectively applied ZaXb to
his one time padded state, since

ZzXx |ψ〉 = Zz′⊕aXx′⊕b |ψ〉 = Zz′Xx′ZaXb |ψ〉 (5.5)

The equality follows up to a global phase since Pauli operators anti commute.
We continue to the case in which V is equal to a Clifford gate C. Clifford gates are applied

by two parallel computations: a homomorphic Pauli key update and a quantum operation
on the one time padded state. The server applies the gate C to his one time padded state,
resulting in CZzXx |ψ〉. We now take advantage of the fact that the Clifford group preserves
the Pauli group by conjugation: for all z, x, there exist z′, x′ such that

CZzXx |ψ〉 = Zz′Xx′C |ψ〉 (5.6)

To complete the Clifford application, the server homomorphically updates his Pauli keys
from Enc(z, x) to Enc(z′, x′).

Homomorphic Application of the Toffoli Gate The Toffoli gate is more complicated.
It cannot be applied by parallel quantum/classical operations by the server, as was done for
Clifford gates. This is because it does not preserve Pauli operators by conjugation; applying
a Toffoli directly to a 3 qubit one time padded state yields:

TZzXx |ψ〉 = T (ZzXx)T †T |ψ〉 (5.7)

The correction T (ZzXx)T † is not a Pauli operator, as was the case for Clifford operators;
it is instead a product of Pauli and Clifford operators, where the Clifford operator involves
Hadamard gates and gates of the form CNOTbzx (bzx is a bit which depends on the Pauli
keys z, x). For the exact form of this operator, see Section 5.2.2. Since the correction is a
Clifford gate and not a Pauli gate, it cannot be removed by a simple homomorphic Pauli key
update by the server.

In order to complete the application of the Toffoli gate, the server will need to remove the
operators CNOTbzx up to Pauli operators. Since the server holds the encrypted Pauli keys,
we can assume the server can compute an encryption of bzx. Therefore, we have reduced
the question of applying a Toffoli gate on top of a one time padded state to the following
question: can a BQP server use a ciphertext c encrypting a bit s to apply CNOTs to a
quantum state (up to Pauli operators)? In our setting specifically, s will be a function of the
Pauli keys of the one time padded state.

CHAPTER 5. HOMOMORPHIC ENCRYPTION 29

5.1.2 Encrypted CNOT Operation

We now present the key idea in this chapter: we show how a BQP server can apply CNOTs

if he holds a ciphertext c encrypting a bit s. We call this procedure an encrypted CNOT
operation. We first show how to perform this operation in an ideal scenario in which the
ciphertext c is a trapdoor claw-free function pair hiding the bit s. We then generalize to
the case in which c is a ciphertext from a classical homomorphic encryption scheme which
satisfies certain properties, which we will describe as they are used.

In our ideal scenario, there exists finite sets R,Y and the ciphertext c is equal to a
trapdoor claw-free function pair f0, f1 : {0, 1} × R → Y with one additional property. As
a reminder of trapdoor claw-free function pairs (introduced in Section 4.2), both f0, f1 are
injective and their images are equal. There also exists a trapdoor which allows inversion of
both functions. In this setting, we have introduced an extra bit in the domain; this bit of
the preimage will be used to hide the bit s. The property we require is as follows: for all
µ0, µ1 ∈ {0, 1} and r0, r1 ∈ R for which f0(µ0, r0) = f1(µ1, r1), µ0 ⊕ µ1 = s (s is the value
encrypted in the ciphertext c).

Our encrypted CNOT operation boils down to the ability to extract an encrypted bit
from a classical encryption and instead store it in superposition in a quantum state. The
claw-free function pair f0, f1 described above serves as a classical encryption for the bit s
which immediately allows this task. This is because, as described in Chapter 4 (we give a
reminder of how this is done in the next paragraph), it is possible for the server to compute
the following superposition, for a random claw (µ0, r0), (µ1, r1):

1√
2

∑
b∈{0,1}

|µb〉 |rb〉 (5.8)

Since µ0 ⊕ µ1 = s, the above state can be written as:

(Xµ0 ⊗ I)
1√
2

∑
b∈{0,1}

|b · s〉 |rb〉 (5.9)

Therefore, the server is able to easily convert a classical encryption of s (which is in the form
a trapdoor claw-free function pair) to a quantum superposition which contains s.

It is quite straightforward to use the above process to apply the encrypted CNOT oper-
ation: the superposition over the claw in (5.8) is simply entangled with the first qubit of the
quantum state on which the CNOT is to be applied. We now describe this process in detail.
Assume the server would like to apply CNOTs to a 2 qubit state |ψ〉 =

∑
a,b∈{0,1} αab |a, b〉.

The server begins by entangling the first qubit of the state |ψ〉 with a random claw of
f0, f1. This process was described in Section 4.2 and proceeds as follows. The server uses
the first qubit of |ψ〉 to choose between the functions f0, f1 in order to create the following
superposition:

1√
2|R|

∑
a,b,µ∈{0,1},r∈R

αab |a, b〉 |µ, r〉 |fa(µ, r)〉 (5.10)

CHAPTER 5. HOMOMORPHIC ENCRYPTION 30

Now the server measures the final register to obtain y ∈ Y . Let (µ0, r0), (µ1, r1) be the two
preimages of y (f0(µ0, r0) = f1(µ1, r1) = y). The remaining state is:∑

a,b∈{0,1}

αab |a, b〉 |µa〉 |ra〉 (5.11)

Recall that to apply CNOTs, the value a · s must be added to the register containing b. This
is where the structure in (5.9) (which relies on the fact that µ0 ⊕ µ1 = s) comes in to play:
to add a · s, the server XORs µa into the second register. This is equivalent to applying the
operation CNOTs:∑

a,b∈{0,1}

αab |a, b⊕ µa〉 |µa〉 |ra〉 =
∑

a,b∈{0,1}

αab(I ⊗Xµ0)CNOTs
1,2 |a, b〉 ⊗ |µa, ra〉 (5.12)

Finally, the server removes the interference by applying a Hadamard transform on the regis-
ters containing µa, ra and measuring to obtain d. If we let (µa, ra) denote the concatenation
of the two values, the resulting state (up to a global phase) is

(Zd·((µ0,r0)⊕(µ1,r1)) ⊗Xµ0)CNOTs
1,2

∑
a,b∈{0,1}

αab |a, b〉 (5.13)

In order to complete the encrypted CNOT operation, the server requires an encryption of
the trapdoor of the functions f0, f1. The server can then homomorphically compute the bits
µ0 and d · ((µ0, r0)⊕ (µ1, r1)) and use these bits to update his Pauli keys.

5.1.2.1 Trapdoor Claw-free Pair Construction

So far, we have shown how to apply the encrypted CNOT operation in the case that the
ciphertext c encrypting the bit s is a trapdoor claw-free function pair f0, f1 which hides
s. To build a homomorphic encryption scheme, we need to show how the encrypted CNOT
operation can be applied if c instead comes from a classical homomorphic encryption scheme,
which we call HE. We now show that if HE satisfies certain properties, the function pair f0, f1
hiding the bit s can be constructed (by the server) using c.

The function f0 will be the encryption function of HE. The function f1 is the function
f0 shifted by the homomorphic XOR of the ciphertext c encrypting the bit s: f0 = f1 ⊕H c
(⊕H is the homomorphic XOR operation). To ensure that f0, f1 are injective, we require
that HE has the property of randomness recoverability: there must exist a trapdoor which
allows recovery of µ0, r0 from a ciphertext Enc(µ0; r0) (Enc(µ0; r0) denotes the encryption
of a bit µ0 with randomness r0). We also require that the homomorphic XOR operation is
efficiently invertible using only the public key of HE.

Unfortunately, the images of the functions f0, f1 are not equal. We will instead require
the weaker (but still sufficient) condition that there exists a distribution D over the domain

CHAPTER 5. HOMOMORPHIC ENCRYPTION 31

of the functions such that f0(D) and f1(D) are statistically close. We replace (5.10) with
the corresponding weighted superposition:∑

a,b,µ∈{0,1},r

αab
√
D(µ, r) |a〉 |b〉 |µ, r〉 |fa(µ, r)〉 (5.14)

To do so, we require that the server can efficiently create the following superposition:∑
µ∈{0,1},r

√
D(µ, r) |µ, r〉 (5.15)

Due to the negligible statistical distance between f0(D) and f1(D), when the last register
of (5.14) is measured to obtain y, with high probability there exist µ0, r0, µ1, r1 such that
y = f0(µ0, r0) = f1(µ1, r1), which implies that the state collapses to (5.11) and that

Enc(µ0; r0) = Enc(µ1; r1)⊕H c (5.16)

Since ⊕H is the homomorphic XOR operation, µ0 ⊕ µ1 = s.
There is one remaining issue with the encrypted CNOT operation described above. The

requirements above must hold for a classical ciphertext c which occurs at any point during the
classical computation on the encrypted Pauli keys. However, in many classical homomorphic
encryption schemes, the format of the ciphertext c changes throughout the computation.
We know of several schemes for which the above requirements hold for a freshly encrypted
ciphertext, but we do not know of any schemes which satisfy the requirements during a later
stage of computation. The next section addresses this complication by sufficiently weakening
the above requirements while preserving the functionality of the encrypted CNOT operation.

5.1.3 Quantum Capable Classical Homomorphic Encryption
Schemes

In this section, we define quantum capable homomorphic encryption schemes, i.e. classical
leveled fully homomorphic encryption schemes which can be used to evaluate quantum cir-
cuits. To justify why we must weaken the requirements listed in Section 5.1.2, we begin with
a description of the ideal high level structure of a quantum capable homomorphic encryption
scheme. In many classical homomorphic encryption schemes, the encryption of a bit b can
be thought of as a random element of a subset Sb, perturbed by some noise term ε. As
the computation progresses, we will require that the structure of the ciphertext remains the
same; it must still be a random element of Sb, but the noise term may grow throughout the
computation. We will also require that the homomorphic XOR operation is natural, in the
sense that the noise of the output ciphertext is simply the addition of the two noise terms
of the input ciphertexts. If these two conditions hold (invariance of the ciphertext form and
the existence of a natural XOR operation), deriving a distribution f0(D) over ciphertexts
which remains roughly the same after shifting by the homomorphic XOR of the ciphertext

CHAPTER 5. HOMOMORPHIC ENCRYPTION 32

c (as needed in Section 5.1.2) is straightforward. We simply choose D to sample the noise
term from a discrete Gaussian distribution with width sufficiently larger than the magnitude
of the noise term of the ciphertext c.

Unfortunately, we do not know of a classical homomorphic encryption scheme which
satisfies both the conditions (ciphertext form and natural XOR operation) at once. To
account for this difficulty, we define a quantum capable homomorphic encryption schemes as
follows. We call a classical homomorphic encryption scheme HE quantum capable if there
exists an alternative encryption scheme AltHE which satisfies the following conditions. First,
given a ciphertext c under HE, it must be possible for the server to convert c to a ciphertext
ĉ under AltHE. The conversion process must maintain the decrypted value of the ciphertext.
Second, AltHE must have a natural homomorphic XOR operation (which is also efficiently
invertible). Third, there must exist a distribution f0(D) over encryptions under AltHE which
must remain almost the same after shifting by the homomorphic XOR of ĉ and must allow
efficient construction of the superposition in (5.15). In addition, it must be possible to both
decrypt and recover randomness from ciphertexts under AltHE given the appropriate secret
key and trapdoor information. This definition is formalized in Section 5.3.

Finally, we describe how to connect this weaker definition to the encrypted CNOT op-
eration given in Section 5.1.2. We begin with a quantum capable homomorphic encryption
scheme HE, which is used to encrypt the Pauli keys. HE satisfies the ciphertext form re-
quirement but may not have a natural XOR operation. Each time the server needs to apply
an encrypted CNOT operation (controlled by a ciphertext c encrypting a bit s under HE),
he will convert c to a ciphertext ĉ under AltHE, which does have a natural XOR operation.
Using AltHE (rather than HE) the server performs the operations described in Section 5.1.2.
Upon obtaining his measurement results (denoted as y and d), the server will encrypt both
ĉ and y, d under HE. The server will then use the secret key and trapdoor information of
AltHE, which are provided to him as encryptions under HE, to homomorphically recover the
randomness and decrypted values from both y and ĉ. This encrypted information can be
used to homomorphically compute the Pauli key updates. The entire classical homomorphic
computation is done under HE.

5.1.4 Example of a Quantum Capable Classical Encryption
Scheme

In Section 5.4 (Theorem 5.4.2), we show that an existing classical fully homomorphic en-
cryption scheme is quantum capable. We use the structure of the scheme from [24], which is
a leveled fully homomorphic encryption scheme built by extending the vector ciphertexts of
[43] to matrices. The resulting encryption scheme does satisfy the ciphertext form require-
ment (as described in Section 5.1.3), but since the underlying encryption scheme ([43]) does
not have the randomness recoverability property, neither does [24]. We therefore alter the
scheme from [24] to use the dual encryption scheme of [43], which was introduced in [23]
and allows randomness recovery, as the underlying encryption scheme. We call the resulting

CHAPTER 5. HOMOMORPHIC ENCRYPTION 33

scheme DualHE and the underlying scheme of [23] Dual.
We use the scheme DualHE as an instantiation of the scheme we called HE in Section

5.1.3. Although the underlying scheme Dual does have a natural XOR operation, the exten-
sion to matrices compromises the XOR operation; once the ciphertexts are matrices, addition
is performed over a larger field. Luckily, it is easy to convert a ciphertext of DualHE to a
ciphertext of Dual. We therefore use Dual as AltHE.

In Section 5.4, we first describe the scheme Dual from [23] and we then show how to
extend it to DualHE using [24]. Next, we show that DualHE satisfies the ciphertext form
requirement and that a ciphertext under DualHE can be converted to a ciphertext under
Dual. In Theorem 5.4.1, we use these properties to show that DualHE is a classical leveled
fully homomorphic encryption scheme. Finally, we show in Theorem 5.4.2 that DualHE is
quantum capable with only a small modification of parameters (the underlying assumption
for both the classical FHE and the quantum capable instantiation is the hardness of learning
with errors with a superpolynomial noise ratio).

5.1.5 Extension to Quantum Leveled Fully Homomorphic
Encryption

We have so far provided a quantum fully homomorphic encryption scheme with classical
keys under the assumption of circular security: the server must be provided the encrypted
secret key and trapdoor information in order to update his encrypted Pauli keys after each
encrypted CNOT operation. Our notion of circular security here will be slightly stronger
than the standard notion, due to the encryption of the trapdoor (instead of just the se-
cret key). As an alternative to assuming circular security, we can build a quantum leveled
fully homomorphic encryption scheme by employing a technique which is commonly used in
classical homomorphic encryption schemes (Section 4.1 in [22]): we will encrypt the secret
key and trapdoor information under a fresh public key. In other words, the ith level secret
key ski and its corresponding trapdoor information are encrypted under a fresh public key
pki+1 and given to the server as part of the evaluation key. The computation of the Pauli
key updates corresponding to the encrypted CNOT operations of level i is performed under
pki+1 (i.e. the corresponding ĉ, y and d from each encrypted CNOT operation in level i will
be encrypted, by the server, under pki+1 - see the last paragraph of Section 5.1.3).

Note that with the introduction of the leveled scheme, we can see the classical portion of
the quantum homomorphic computation as follows. Each level of the quantum computation
can be thought of as a series of Clifford gates followed by one layer of non intersecting Toffoli
gates, finishing with a layer of non intersecting encrypted CNOT operations. It follows that
the classical homomorphic computation of level i consists of first decrypting and recovering
randomness from the cipertexts corresponding to the encrypted CNOT operations from
level i − 1, then performing the Pauli key updates corresponding to the encrypted CNOT
operations from level i − 1 and finally performing the Pauli key updates corresponding to
the Clifford and Toffoli gates of level i. The ciphertexts which result from this computation

CHAPTER 5. HOMOMORPHIC ENCRYPTION 34

are then used as the control bits for the layer of encrypted CNOT operations of level i.
Intuitively, this leveled approach is secure since each secret key is protected by the seman-

tic security of the encryption scheme under an independent public key. To prove security,
we start with the final level of encryption. If there are L levels of the circuit, then there will
be no trapdoor or secret key information provided corresponding to pkL+1. It follows that
all encryptions under pkL+1 can be replaced by encryptions of 0; now there is no encrypted
information provided corresponding to skL. Then all encryptions under pkL can be replaced
by encryptions of 0, and we can continue in this manner until we reach pk1, which will imply
security of encryptions under the initial public key pk1. The scheme and proof of security are
presented in Section 5.5, proving that quantum capable classical encryption schemes can be
used to build a quantum leveled fully homomorphic encryption scheme (see Theorem 5.5.2
for a formal statement).

5.1.6 Chapter Outline

We begin with preliminaries in Section 5.2. In Section 5.3, we define quantum capable en-
cryption schemes by listing the requirements that a classical homomorphic encryption scheme
must satisfy in order to be used to evaluate quantum circuits, as described in Section 5.1.3.
We use this definition to formally prove the correctness (in Claim 5.3.3) of the encrypted
CNOT operation given in Section 5.1.2. Section 5.4 covers Section 5.1.4: we provide an ex-
ample of a classical homomorphic encryption scheme which is quantum capable. In Section
5.5, we formally show how to extend a quantum capable classical leveled fully homomorphic
encryption scheme to a quantum leveled fully homomorphic encryption scheme (as described
in Section 5.1.5).

5.2 Preliminaries

5.2.1 Homomorphic Encryption

The following definitions are modified versions of definitions from [9] and [10]. A homomor-
phic (public-key) encryption scheme HE = (HE.Keygen, HE.Enc, HE.Dec, HE.Eval) is a
quadruple of PPT algoritms which operate as follow:

• Key Generation. The algorithm (pk, evk, sk)← HE.Keygen(1λ) takes a unary rep-
resentation of the security parameter and outputs a public key encryption key pk, a
public evaluation key evk and a secret decryption key sk.

• Encryption. The algorithm c ← HE.Encpk(µ) takes the public key pk and a single
bit message µ ∈ {0, 1} and outputs a ciphertext c. The notation HE.Encpk(µ; r) will
be used to represent the encryption of a bit µ using randomness r.

• Decryption. The algorithm µ∗ ← HE.Decsk(c) takes the secret key sk and a cipher-
text c and outputs a message µ∗ ∈ {0, 1}.

CHAPTER 5. HOMOMORPHIC ENCRYPTION 35

• Homomorphic Evaluation The algorithm cf ← HE.Evalevk(f, c1, . . . , cl) takes the
evaluation key evk, a function f : {0, 1}l → {0, 1} and a set of l ciphertexts c1, . . . , cl,
and outputs a ciphertext cf . It must be the case that:

HE.Decsk(cf) = f(HE.Decsk(c1), . . . ,HE.Decsk(cl)) (5.17)

with all but negligible probability in λ.

A homomorphic encryption scheme is said to be secure if it meets the following notion of
semantic security:

Definition 5.2.1 (CPA Security) A scheme HE is IND-CPA secure if, for any polyno-
mial time adversary A, there exists a negligible function µ(·) such that

AdvCPA[A]
def
= |Pr[A(pk, evk,HE.Encpk(0)) = 1]− Pr[A(pk, evk,HE.Encpk(1)) = 1]| = µ(λ)

(5.18)
where (pk, evk, sk)← HE.Keygen(1λ).

We now define two desirable properties of homomorphic encryption schemes:

Definition 5.2.2 (Compactness and Full Homomorphism) A homomorphic encryption
scheme HE is compact if there exists a polynomial s in λ such that the output length of
HE.Eval is at most s bits long (regardless of f or the number of inputs). A compact scheme
is (pure) fully homomorphic if it can evaluate any efficiently computable boolean function.
A compact scheme is leveled fully homomorphic if it takes 1L as additional input in key
generation, and can only evaluate depth L Boolean circuits where L is polynomial in λ. A
scheme is quantum pure or leveled fully homomorphic if we refer to quantum circuits rather
than boolean circuits.

5.2.2 Toffoli Gate Application

A Toffoli operator maps Pauli operators to Clifford operators in the following way:

TZz1Xx1 ⊗ Zz2Xx2 ⊗ Zz3Xx3T † = CNOT x21,3CNOT
x1
2,3Ẑ

z3
1,2Z

z1+x2z3Xx1 ⊗ Zz2+x1z3Xx2 ⊗ Zz3Xx1x2+x3

= CzxPzx (5.19)

where Ẑ is the controlled phase gate:

Ẑ |a, b〉 = (−1)ab |a, b〉 (5.20)

Ẑz3 = (I ⊗H)CNOT z31,2(I ⊗H) (5.21)

Observe that Czx consists only of CNOT gates and 2 Hadamard gates. Only the CNOT
gates are dependent on the Pauli keys.

CHAPTER 5. HOMOMORPHIC ENCRYPTION 36

5.2.3 Pauli Mixing

Here we restate Lemma 5.1.1 and prove it:
Lemma 5.1.1 For a matrix ρ on two spaces A,B

1

22l

∑
z,x∈{0,1}l

(ZzXx ⊗ IB)ρ(ZzXx ⊗ IB)† =
1

2l
IA ⊗ TrA(ρ)

Proof of Lemma 5.1.1 : First, we write ρ as:∑
ij

|i〉 〈j|A ⊗ ρij

It follows that:
TrA(ρ) =

∑
i

ρii

Next, observe that:∑
z,x∈{0,1}l

ZzXx |i〉 〈j| (ZzXx)† =
∑

x∈{0,1}l
(
∑

z∈{0,1}l
(−1)z·(i⊕j))Xx |i〉 〈j| (Xx)† (5.22)

This expression is 0 if i 6= j. If i = j, we obtain 2lIA. Plugging in this observation to the
expression in the claim, we have:

1

22l

∑
z,x∈{0,1}l

(ZzXx ⊗ IB)ρ(ZzXx ⊗ IB)† =
1

22l

∑
ij

∑
z,x∈{0,1}l

ZzXx |i〉 〈j|A (ZzXx)† ⊗ ρij

=
1

22l

∑
i

∑
z,x∈{0,1}l

ZzXx |i〉 〈i|A (ZzXx)† ⊗ ρii

=
1

2l
IA ⊗ TrA(ρ) (5.23)

�

5.3 Quantum Capable Classical Homomorphic

Encryption Schemes

As described in Section 5.1.3, a classical leveled fully homomorphic encryption scheme is
quantum capable if an encrypted CNOT operation can be applied with respect to any ci-
phertext which occurs during the computation. We begin by formalizing the notion of such
a ciphertext. This definition is dependent on the depth parameter L (see Definition 5.2.2).
Let FL be the set of all functions which can be computed by circuits of depth L. Assume
for convenience that all such functions have domain {0, 1}l and range {0, 1}.

CHAPTER 5. HOMOMORPHIC ENCRYPTION 37

Definition 5.3.1 For a classical leveled fully homomorphic encryption scheme HE, let CHE

be the set of all ciphertexts which can occur during the computation:

CHE = {HE.Evalevk(f,HE.Encpk(µ1), . . . ,HE.Encpk(µl))|f ∈ FL, µ1, . . . µl ∈ {0, 1}} (5.24)

We now define quantum capable homomorphic encryption schemes:

Definition 5.3.2 (Quantum Capable Homomorphic Encryption Schemes) Let λ be
the security parameter. Let HE be a classical leveled fully homomorphic encryption scheme.
HE is quantum capable if there exists an encryption scheme AltHE such that the following
conditions hold for all ciphertexts c ∈ CHE.

1. There exists an algorithm HE.Convert which on input c produces an encryption ĉ under
AltHE, where both c and ĉ encrypt the same value.

2. AltHE allows the XOR operation to be performed homomorphically. Moreover, the
XOR operation is efficiently invertible using only the public key of AltHE.

3. There exists a distribution D which may depend on the parameters of HE and satisfies
the following conditions:

a) The Hellinger distance between the following two distributions is negligible in λ:

{AltHE.Encpk(µ; r)|(µ, r) $←− D} (5.25)

and
{AltHE.Encpk(µ; r)⊕H ĉ|(µ, r)

$←− D} (5.26)

where ⊕H represents the homomorphic XOR operation.

b) It is possible for a BQP server to create the following superposition given access
to the public key pk: ∑

µ∈{0,1},r

√
D(µ, r) |µ, r〉 (5.27)

c) Given y = AltHE.Encpk(µ0; r0) where (µ0, r0) is sampled from D, it must be
possible to compute µ0, r0 given the secret key and possibly additional trapdoor
information (which can be computed as part of the key generation procedure).

For convenience, we will assume that AltHE and HE have the same public/secret key; this is
the case in the example quantum capable scheme we provide in Section 5.4 and also simplifies
Section 5.5. However, this assumption is not necessary.

We prove the following claim, which formalizes the encrypted CNOT operation given in
Section 5.1.2:

CHAPTER 5. HOMOMORPHIC ENCRYPTION 38

Claim 5.3.3 Let HE be a quantum capable homomorphic encryption scheme and let c ∈ CHE

be a ciphertext encrypting a bit s. Consider a BQP machine with access to c and a state
|ψ〉 on two qubits. The BQP machine can compute a ciphertext y = AltHE.Encpk(µ0, r0), a
string d and a state within negligible trace distance of the following ideal state:

(Zd·((µ0,r0)⊕(µ1,r1)) ⊗Xµ0)CNOT s1,2 |ψ〉 (5.28)

for (⊕H is the homomorphic XOR operation)

AltHE.Encpk(µ0, r0) = AltHE.Encpk(µ1, r1)⊕H HE.Convert(c) (5.29)

Proof of Claim 5.3.3: The server first computes ĉ = HE.Convert(c). He then applies the
encrypted CNOT operation, as described in Section 5.1.2. Recall that in Section 5.1.2, we
used f0 to denote the encryption function of AltHE and f1 to denote the shift of f0 by the
homomorphic XOR (which we denote as ⊕H) of ĉ. At the stage of (5.14), the server holds
the following state: ∑

a,b,µ∈{0,1},r

αab
√
D(µ, r) |a〉 |b〉 |µ, r〉 |fa(r)〉 (5.30)

=
∑

a,b,µ∈{0,1},r

αab
√
D(µ, r) |a〉 |b〉 |µ, r〉 |AltHE.Encpk(µ; r)⊕H a · ĉ〉 (5.31)

Fix a = 1 and b and consider the resulting state:∑
µ0∈{0,1},r0

√
D(µ1, r1) |1, b〉 |µ1, r1〉 |AltHE.Encpk(µ0; r0)〉 (5.32)

where µ1, r1 are defined with respect to µ0, r0 and ĉ as in (5.29). We can now apply Lemma
3.3.1 with reference to the distributions in (5.25) and (5.26), which are negligibly close. As
a result, we obtain that the following state is within negligible trace distance of (5.32):∑

µ0∈{0,1},r0

√
D(µ0, r0) |1, b〉 |µ1, r1〉 |AltHE.Encpk(µ0; r0)〉 (5.33)

It follows immediately that the state in (5.31) is within negligible trace distance of the
following state: ∑

µ0∈{0,1},r0

∑
a,b∈{0,1}

αab
√
D(µ0, r0) |a, b〉 |µa, ra〉 |AltHE.Encpk(µ0; r0)〉 (5.34)

Observe that, when measured, the state in (5.34) collapses exactly to the state in (5.11).
The statement of Claim 5.3.3 follows.

�

CHAPTER 5. HOMOMORPHIC ENCRYPTION 39

5.4 Example of a Quantum Capable Classical

Encryption Scheme

This section is dedicated to showing that the dual of the fully homomorphic encryption
scheme in [24] is quantum capable. We begin by presenting a scheme called Dual in Section
5.4.1, which is the dual of the encryption scheme from [43]. In Section 5.4.2, we use the
framework of [24] to extend Dual to a scheme called DualHE, which we prove in Theorem
5.4.1 is a classical leveled fully homomorphic encryption scheme. Finally, in Section 5.4.3
(Theorem 5.4.2), we prove that DualHE is quantum capable .

We begin by listing our initial parameters. Let λ be the security parameter. All other
parameters are functions of λ. Let q ≥ 2 be a power of 2. Let n,m ≥ 1 be polynomially
bounded functions of λ, let N = (m + 1) log q and let βinit be a positive integer such that
the following conditions hold:

1. m = Ω(n log q) ,

2. 2
√
n ≤ βinit

(5.35)

5.4.1 Dual Encryption Scheme

We first describe the dual scheme of [43]. This scheme was originally given in [23], but the
presentation below is taken from Section 5.2.2 in [40]. This scheme will eventually serve as
the scheme AltHE in Definition 5.3.2.

Scheme 5.4.1 Dual Encryption Scheme [23]

• Dual.KeyGen: Choose esk ∈ {0, 1}m uniformly at random. Using the procedure
GenTrap(1n, 1m, q) from Theorem 3.2.3, sample a random trapdoor matrix A ∈
Z
m×n
q , together with the trapdoor information tA. The secret key is sk = (−esk, 1) ∈
Z
m+1
q and the trapdoor is tA. The public key is A′ ∈ Z(m+1)×n

q , which is the matrix
composed of A (the first m rows) and ATesk mod q (the last row).

• Dual.Encpk(µ): To encrypt a bit µ ∈ {0, 1}, choose s ∈ Znq uniformly and create
e ∈ Zm+1

q by sampling each entry from DZq ,βinit. Output A′s+e+(0, . . . , 0, µ· q
2
) ∈ Zm+1

q .

• Dual.Decsk(c): To decrypt, compute b′ = skTc ∈ Zq. Output 0 if b′ is closer to 0 than
to q

2
mod q, otherwise output 1.

We make a few observations:

• For a ciphertext c with error e such that ‖e‖ < q
4
√
m+1

, the decryption procedure will

operate correctly (since skTA′ = 0).

CHAPTER 5. HOMOMORPHIC ENCRYPTION 40

• The trapdoor tA can be used to recover the randomness s, e from a ciphertext. To see
this, note that the first m entries of the ciphertext can be written as As + e′, where
e′ ∈ Zmq . Therefore, the inversion algorithm Invert in Theorem 3.2.3 outputs s, e
on input As + e′ and tA as long as ‖e′‖ < q

CT
√
n log q

for CT the universal constant in
Theorem 3.2.3.

• This scheme is naturally additively homomorphic; adding two ciphertexts encrypting
µ0 and µ1 results in a ciphertext encrypting µ0 ⊕ µ1.

5.4.2 Leveled Fully Homomorphic Encryption Scheme from Dual

We can extend the scheme Dual into a leveled fully homomorphic encryption scheme DualHE
in the same way that the standard LWE scheme from [43] is extended in [24]. Namely, we
map the ciphertexts to matrices and encrypt the bit µ in a matrix (the key generation
procedure remains the same). We begin with the required preliminaries and then describe
the scheme DualHE. Next, we prove a property of DualHE which is crucial for quantum
capability: the ciphertexts retain the same form throughout the computation. Finally, we
show in Theorem 5.4.1 that for a strengthened version of the parameters in (5.35), DualHE
a leveled fully homomorphic encryption scheme.

To describe this scheme, we will require two operations used in [24]. The first is the linear

operator G ∈ Z(m+1)×N
q (N = (m + 1) log2 q), which converts a binary representation back

to the original representation in Zm+1
q . More precisely, consider the N dimensional vector

a = (a1,0, . . . , a1,l−1, . . . , am+1,0, . . . , am+1,l−1), where l = log2 q. G performs the following
mapping:

G(a) = (

log2 q−1∑
j=0

2j · a1,j, . . . ,
log2 q−1∑
j=0

2j · am+1,j) (5.36)

Observe that G is well defined even if a is not a 0/1 vector. We will call the non linear
inverse operation G−1, which converts a ∈ Zm+1

q to its binary representation (a vector in
Z
N
2). G−1 can also be applied to a matrix by converting each column. Note that GG−1

is the identity operation. In terms of homomorphic evaluation, we will only consider the
NAND gate, since we are only concerned with applying Boolean circuits. The scheme can
be extended to arithmetic circuits over Zq, as described in further detail in [24].

The description of the scheme given below is derived from talks ([8], [49]) describing the
scheme in [24]. It is equivalent to the description given in [24], but is more convenient for
our purposes.

Scheme 5.4.2 DualHE: Classical Leveled FHE Scheme from Dual

• DualHE.KeyGen: This procedure is the same as Dual.KeyGen.

CHAPTER 5. HOMOMORPHIC ENCRYPTION 41

• DualHE.Encpk(µ): To encrypt a bit µ ∈ {0, 1}, choose S ∈ Zn×Nq uniformly at random

and create E ∈ Z(m+1)×N
q by sampling each entry from DZq ,βinit. Output A′S+E+µG ∈

Z
(m+1)×N
q .

• DualHE.Eval(C0,C1): To apply the NAND gate, on input C0,C1 output G − C0 ·
G−1(C1).

For quantum capability, we will also require the following algorithm, which converts a cipher-
text under DualHE to a ciphertext under Dual:

• DualHE.Convert(C): Output column N of C

Given this algorithm, we can state decryption in terms of Dual2:

• DualHE.Decsk(C): Output Dual.Decsk(DualHE.Convert(C))

5.4.2.1 Ciphertext Form

We will rely on the fact that, throughout the computation of a Boolean circuit of depth L,
a ciphertext encrypting a bit µ can be written in the following form:

A′S + E + µG (5.37)

where ‖E‖∞ ≤ βinit(N+1)L. This is clearly the structure of the ciphertext immediately after
encryption and we now show that this ciphertext structure is maintained after the NAND
operation. The NAND operation is performed by computing:

G−C0 ·G−1(C1) (5.38)

Assume the ciphertexts we begin with are Cb = A′Sb + Eb + µbG for b ∈ {0, 1}. Using
the fact that GG−1 is the identity operation, it is easy to see that the result of the NAND
operation is:

A′S′ + E′ + (1− µ0µ1)G (5.39)

for

S′ = −S0 ·G−1(C1)− µ0S1 (5.40)

E′ = −E0 ·G−1(C1)− µ0E1 (5.41)

Note that if both ‖E0‖∞ and ‖E1‖∞ are at most β, then ‖E′‖∞ ≤ β(N + 1). It follows that
if the scheme DualHE is used to compute a circuit of depth L, ‖E‖∞ ≤ βinit(N + 1)L for all
ciphertexts throughout the computation.

2This is equivalent to the decryption algorithm of [24], which is as follows. Let u = (0, . . . , 0, 1) ∈ Zm+1
q .

To decrypt, compute b′ = skTCG−1(q
2u). Output 0 if b′ is closer to 0 than to q

2 mod q, otherwise output 1.

CHAPTER 5. HOMOMORPHIC ENCRYPTION 42

5.4.2.2 Encryption Conversion

We now use the above property to prove the correctness of DualHE.Convert. Assume we
begin with a ciphertext C = A′S + E + µG under DualHE. The ciphertext c (under Dual)
will be column N of C. To see why this is correct, first note that all individual columns
of A′S + E are of the form A′s + e. Second, observe that column N of µG is equal to
(0, . . . , 0, µ · q

2
).

5.4.2.3 Proof of Correctness and Security of Scheme 5.4.2

The above two sections allow us to easily prove the following theorem:

Theorem 5.4.1 Let λ be the security parameter. There exists a function ηc which is log-
arithmic in λ such that DualHE is IND-CPA secure and leveled fully homomorphic under
the hardness assumption LWEn,q,DZq,βinit

if the conditions in (5.35) as well as the following
condition are satisfied:

βinit(N + 1)ηc <
q

4(m+ 1)
. (5.42)

Proof: We prove that DualHE is IND-CPA secure by relying on the hardness of LWEn,m,q,DZq,βinit
(i.e. the hardness of LWE with a superpolynomial noise ratio), which implies that the ci-
phertext is computationally indistinguishable from a uniform string. We can use this LWE
assumption as long as the public key A′ is statistically indistinguishable from a uniformly
random matrix (see Section 3.2). Since A is selected from a distribution which is statisti-
cally indistinguishable from the uniform distribution and m = Ω(n log q), A′ is statistically
indistinguishable from uniform due to the leftover hash lemma in [31] (see [43] or [40] for
more details).

We now show that DualHE is leveled fully homomorphic. From Section 5.4.2.1, it is clear
that the evaluation of the NAND operation is correct and that DualHE is compact. Let
ηc be larger than the depth of the decryption circuit of DualHE, which is logarithmic in λ.
If we show that the decryption procedure operates correctly after evaluation of a circuit of
depth ηc, the standard bootstrapping technique3 of [22] can be used to turn DualHE into
a leveled fully homomorphic encryption scheme. Due to Section 5.4.2.1, we can assume
a ciphertext resulting from a circuit of depth ηc can be written as A′S + E + µG, where
‖E‖∞ ≤ βinit(N + 1)ηc . It is easy to check that the decryption procedure operates correctly
as long as

‖E‖∞ <
q

4(m+ 1)
(5.43)

The condition in (5.43) is implied by the condition in (5.42).
�

3A pure fully homomorphic encryption scheme can be obtained by assuming circular security. A leveled
fully homomorphic encryption scheme can be obtained by producing a string of public and secret keys and
encrypting each secret key under the next public key - see Section 4.1 of [22].

CHAPTER 5. HOMOMORPHIC ENCRYPTION 43

5.4.3 Quantum Capability of DualHE

We now prove the following theorem:

Theorem 5.4.2 Let λ be the security parameter, let ηc be the logarithmic function in Theo-
rem 5.4.1, and let η be an arbitrary logarithmic function in λ. Assume the choice of param-
eters satisfies the conditions in (5.35) as well as the following condition:

βinit(N + 1)η+ηc <
q

4(m+ 1)
. (5.44)

Under the hardness assumption of LWEn,q,DZq,βinit
, the scheme DualHE is quantum capable.

Observe that the only change in parameters involved in making DualHE quantum capa-
ble is increasing the circuit depth by an additive logarithmic factor; this does not change
the underlying computational assumption of the hardness of learning with errors with a
superpolynomial noise ratio.
Proof: To prove Theorem 5.4.2, we begin by noting that DualHE is leveled fully homo-
morphic by Theorem 5.4.1. We now show that DualHE is quantum capable, by listing the
requirements for quantum capability and proving that each holds. The scheme correspond-
ing to AltHE will be Dual (Section 5.4.1). Recall the definition of CDualHE from Definition
5.3.1. For all ciphertexts c ∈ CDualHE:

1. There exists an algorithm DualHE.Convertpk which on input c produces an encryption
ĉ under Dual, where both c and ĉ encrypt the same value.

See Section 5.4.2.2.

2. Dual allows the XOR operation to be performed homomorphically. Moreover, the XOR
operation is efficiently invertible using only the public key of AltHE.

See Section 5.4.1.

3. There exists a distribution D which satisfies the following conditions:

a) The Hellinger distance between the following two distributions is negligible in λ:

{Dual.Encpk(µ; r)|(µ, r) $←− D} (5.45)

and
{Dual.Encpk(µ; r)⊕H ĉ|(µ, r)

$←− D} (5.46)

where ⊕H represents the homomorphic XOR operation.

Let
βf = βinit(N + 1)ηc+η (5.47)

The distribution D will sample µ, s uniformly at random and will sample e from
the discrete Gaussian distributionD

Z
m+1
q ,βf

. Assume that ĉ = DualHE.Convert(c) =

CHAPTER 5. HOMOMORPHIC ENCRYPTION 44

A′s′ + e′ + (0, . . . , 0, s · q
2
) where ‖e′‖ ≤ βinit(N + 1)ηc

√
m+ 1. We can assume

this since we know the format of the ciphertext throughout the computation (see
Section 5.4.2.1). The two distributions corresponding to (5.45) and (5.46) are as
follows:

{A′s + e + (0, . . . , 0, µ · q
2

)|(µ, s, e)
$←− D} (5.48)

and
{A′(s + s′) + e + e′ + (0, . . . , 0, µ · q

2
)|(µ, s, e)

$←− D} (5.49)

The Hellinger distance between the distributions in (5.48) and (5.49) is equal to
the distance between the following two distributions:

{e|e $←− D
Z
m+1
q ,βf

} (5.50)

and
{e + e′|e $←− D

Z
m+1
q ,βf

} (5.51)

Since ‖e′‖ ≤ βinit(N + 1)ηc
√
m+ 1 and

βf
βinit(N+1)ηc

is equal to the superpolyno-

mial function (N + 1)η, Lemma 3.2.1 shows that the distance between the two
distributions is negligible.

b) It is possible for a BQP server to create the following superposition:∑
µ∈{0,1},r

√
D(µ, r) |µ, r〉 (5.52)

In this case, r = (s, e). D samples µ and s according to the uniform distribution
and samples e according to the discrete Gaussian distribution D

Z
m+1
q ,βf

. It is easy

for a BQP server to create a superposition over a discrete Gaussian (see Lemma
3.12 in [43]4).

c) Given y = AltHE.Encpk(µ0; r0) where (µ0, r0) is sampled from D, it must be
possible to compute µ0, r0 given the secret key and possibly additional trapdoor
information (which can be computed as part of the key generation procedure).

We first show that µ0, r0 can be recovered from y. Assume y has error e ∈ Zm+1
q .

Since e is sampled from D
Z
m+1
q ,βf

, ‖e‖ ≤
√
m+ 1βf . Therefore, it is possible to

compute µ0 as long as βf <
q

4(m+1)
(see Section 5.4.1). Second, it is possible to

recover the randomness r0 of y as long as the lattice trapdoor is applicable. As

4Taken from [11] - specifically, the state can be created using a technique by Grover and Rudolph ([30]),
who show that in order to create such a state, it suffices to have the ability to efficiently compute the sum
d∑

x=c
DZq,BP

(x) for any c, d ∈ {−b
√
BP c, . . . , d

√
BP e} ⊆ Zq and to within good precision. This can be done

using standard techniques used in sampling from the normal distribution.

CHAPTER 5. HOMOMORPHIC ENCRYPTION 45

stated in Theorem 3.2.3, the lattice trapdoor is applicable if βf <
q

CT
√
n(m+1) log q

.

Combining these two conditions, we require that:

βf < min(
q

CT
√
n(m+ 1) log q

,
q

4(m+ 1)
) =

q

4(m+ 1)
(5.53)

The equality follows since m = Ω(n log q). Given the definition of βf in (5.47),
this condition is satisfied by (5.44).

�

5.5 Extension to Quantum Leveled Fully

Homomorphic Encryption

We now present the construction of a quantum leveled fully homomorphic encryption scheme
from a quantum capable classical leveled fully homomorphic encryption scheme, as described
in Section 5.1.5. We first provide a full description of the scheme (Section 5.5.1) and then
proceed to proving that it is a quantum leveled FHE scheme. Correctness of evaluation
follows almost immediately from the correctness of the encrypted CNOT operation (see
Claim 5.3.3), while CPA security follows along the lines described in Section 5.1.5.

Assume there are L levels of the quantum circuit to be computed, where each level
consists of Clifford gates, followed by a layer of non intersecting Toffoli gates. Note that
this circuit arrangement increases the depth of the original circuit by a factor of at most
2. Let the depth of the classical circuit corresponding to each level of this circuit be Lc
(this includes decrypting and recovering randomness from ciphertexts corresponding to the
encrypted CNOT operations from the previous level, performing the Pauli key updates cor-
responding to the encrypted CNOT operations from the previous level, and performing the
Pauli key updates corresponding to the Clifford and Toffoli gates of the current level). See
Section 5.1.5 for a reminder of the above description.

The scheme is quite straightforward: the server initially receives a quantum standard
basis state encrypted under Pauli keys (which can be thought of as a one time padded
classical string), along with the Pauli keys encrypted under a quantum capable classical
homomorphic encryption scheme (which we call HE) and a string of evaluation keys (one for
each level). Each evaluation key consists of the evaluation key of HE, encrypted secret key/
trapdoor information and a fresh public key for each level. Recall that the evaluation key is
of this form since we need to use a fresh public/ secret key pair for each encrypted CNOT
operation; this allows encryption of the secret key/ trapdoor of each level under a new,
independent public key (see Section 5.1.5). The server then applies Toffoli and Hadamard
gates (which compose a universal gate set) as described in Section 5.1. Finally, the decryption
consists of the client first decrypting the encryptions of the Pauli keys, and then using the
Pauli keys to decrypt the final measurement result sent by the server.

CHAPTER 5. HOMOMORPHIC ENCRYPTION 46

Scheme 5.5.1 Quantum Leveled Fully Homomorphic Encryption Let HE be a clas-
sical leveled fully homomorphic encryption scheme which is quantum capable for depth Lc.

• QHE.KeyGen(1λ, 1L):

1. For 1 ≤ i ≤ L + 1, let (pki, evki, ski, tski) =HE.Keygen(1λ, 1Lc), where tski is the
trapdoor information required for randomness recovery from ciphertexts.

2. The public key pk is pk1 and the secret key sk is skL+1. The evaluation key evk
consists of (evk1, . . . , evkL+1) as well as (pki+1,HE.Encpki+1

(ski), HE.Encpki+1
(tski))

for 1 ≤ i ≤ L.

• QHE.Encpk(m): For a message m ∈ {0, 1}λ, the encryption is (ZzXx |m〉 ,HE.Encpk1(z, x))5,
where z, x ∈ {0, 1}λ are chosen at random. Note that ZzXx |m〉 can be represented as
the classical string x⊕m.

• QHE.Decsk: The input is a classical message m ∈ {0, 1}λ and encryptions of z, x ∈
{0, 1}λ under pkL+1. The encryptions are first decrypted using skL+1 to obtain z, x.
The decrypted message is ZzXx |m〉, which can be represented as x⊕m.

• QHE.Eval: Clifford gates and Toffoli gates are applied to an encrypted state as follows:

1. To apply a Clifford gate, the Clifford is applied to the Pauli one time padded
input state and the encrypted Pauli keys are homomorphically updated according
to which Clifford gate was applied.

2. To apply a Toffoli gate:

a) The Toffoli gate is applied to the Pauli one time padded state. Assume the
Toffoli is applied on top of the Pauli one time pad ZzXx ∈ P3.

b) The Pauli key encryptions are homomorphically updated according to Pzx.

c) Three encrypted CNOT operations are used to correct Czx (see Section 5.2.2
for details on Czx and Pzx). As part of each operation, the Pauli key encryp-
tions are homomorphically updated (see Claim 5.5.3 for a full description of
how this is done).

5.5.1 CPA Security

In this section, we prove the following theorem:

Theorem 5.5.1 The scheme presented in Section 5.5.1 is IND-CPA secure.

5Observe that this encryption can immediately be extended to quantum states by replacing m with a λ
qubit state |ψ〉. The decryption can also be extended in the same manner.

CHAPTER 5. HOMOMORPHIC ENCRYPTION 47

Proof: To prove CPA security as defined in Definition 5.2.1, we show that for any polynomial
time adversary A, there exists a negligible function µ(·) such that

AdvCPA[A] = |Pr[A(pk, evk,QHE.Encpk(0)) = 1]−Pr[A(pk, evk,QHE.Encpk(1)) = 1]| = µ(λ)
(5.54)

where (pk, evk, sk)← QHE.Keygen(1λ).
The only difficulty in proving (5.54) is that encryptions of sk1 and tsk1 are also given to

the attacker as part of the evaluation key; we need to prove that this information can be
replaced with encryptions of 0. This can be done via standard techniques in proving security
of leveled homomorphic encryption schemes (see Section 4.1 in [22]). We include the proof
for completeness.

We proceed through L hybrids. In the final hybrid, the attacker is given only the pub-
lic key pk1 and the evaluation key evk′ = (evk1, pk2, evk2, . . . , pkL+1, evkL+1) (along with
many encryptions of 0). CPA security at this point follows immediately (by replacing the
encryptions of z, x with 0 and then using Lemma 5.1.1). The hybrids are as follows:

HybL+1: The evaluation key is as described in Section 5.5.1.

For 1 ≤ i ≤ L, where i is decreasing:

Hybi: The evaluation key is the same as in Hybi+1, except HE.Encpki+1
(tski) and

HE.Encpki+1
(ski) are replaced with encryptions of 0.

Note that in Hybi, the evaluation key does not contain secret key or trapdoor information
corresponding to public keys pki, . . . , pkL+1. More specifically, the evaluation key in Hyb1 is
evk′ (all the encryptions of secret keys and trapdoors have been replaced by encryptions of
0).

First, HybL+1 is computationally indistinguishable from HybL due to the CPA security
of HE under pkL+1 (note that encryptions of skL+1 and tskL+1

were not provided as part of
the evaluation key). For all 1 ≤ i ≤ L − 1, Hybi+1 is indistinguishable from Hybi due to
the CPA security of HE under pki+1. This is because Hybi+1 has no secret key or trapdoor
information corresponding to pki+1.

It follows that there exists a negligible function µC such that the CPA security of QHE

|Pr[A(pk, evk,QHE.Encpk(0)) = 1]− Pr[A(pk, evk,QHE.Encpk(1)) = 1]| (5.55)

can be upper bounded as follows:

· · · ≤ µCL+ |Pr[A(pk, evk′,QHE.Encpk(0)) = 1]− Pr[A(pk, evk′,QHE.Encpk(1)) = 1]|
≤ µC(L+ 1) (5.56)

where (pk, evk, sk)← QHE.Keygen(1λ) and evk′ = (evk1, pk2, evk2, . . . , pkL+1, evkL+1).
�

CHAPTER 5. HOMOMORPHIC ENCRYPTION 48

5.5.2 Quantum Leveled FHE

In this section, we prove the following theorem:

Theorem 5.5.2 The scheme QHE presented in Section 5.5.1 is a quantum leveled fully
homomorphic encryption scheme.

Combining Theorem 5.5.2 with Theorem 5.4.2 provides the main result of this chapter (stated
informally in Theorem 1.0.1). To prove Theorem 5.5.2, we need to prove that QHE can
evaluate depth L quantum circuits. This is taken care of by the following claim:

Claim 5.5.3 Assume the underlying classical encryption scheme HE of QHE is quantum
capable for depth Lc. Then there exist z′, x′ ∈ {0, 1}2 such that a BQP machine with access
to a ciphertext c encrypting s under pki, a quantum state ZzXx |ψ〉 on two qubits, cipher-
texts encrypting z, x under pki, and the evaluation key of QHE can compute a state within
negligible trace distance of the following ideal state

CNOT s
1,2Z

z′Xx′ |ψ〉 〈ψ| (Zz′Xx′)†(CNOT s
1,2)
† (5.57)

as well as the encryptions of z′, x′ under pki+1.

Proof: Let cz,x,pki be the concatenation of four ciphertexts, each encrypting a single bit of
z, x under pki. The server applies the following operations:

1. As described in Section 5.1.2, the server applies the encrypted CNOT operation to the
two qubit state ZzXx |ψ〉 using the ciphertext ĉ =HE.Convert(c). According to Claim
5.3.3, the server will obtain a ciphertext y =AltHE.Encpk(µ0, r0), a string d ∈ {0, 1}m
and a state within negligible trace distance of the following ideal state:

(Zd·((µ0,r0)⊕(µ1,r1)) ⊗Xµ0)CNOTs
1,2 |ψ〉 (5.58)

where AltHE.Encpk(µ0; r0) = AltHE.Encpk(µ1; r1) ⊕H ĉ and ⊕H is the homomorphic
XOR operation.

2. The server uses pki+1 to compute HE.Encpki+1
(cz,x,pki) and HE.Encpki+1

(ĉ, y, d).

3. The server computes the encryption of z, x under pki+1 by homomorphically running
the decryption circuit on inputs HE.Encpki+1

(ski) and HE.Encpki+1
(cz,x,pki) .

4. The server homomorphically computes (µ0, r0) and (µ1, r1), using the ciphertexts en-
crypting tski , ski, ĉ, y, d (all encrypted with HE under public key pki+1). The server
then uses this result, along with the ciphertexts encrypting z, x, d, to homomorphically
compute z′ = z + (d · ((µ0, r0) ⊕ (µ1, r1)), 0) and x′ = x + (0, µ0). The result of this
computation is the encryption of z′, x′ with HE under pki+1.

CHAPTER 5. HOMOMORPHIC ENCRYPTION 49

�
Theorem 5.5.2 follows from Theorem 5.5.1 and Claim 5.5.3:

Proof of Theorem 5.5.2: Theorem 5.5.1 shows QHE is IND-CPA secure. From the
description of the scheme (Scheme 5.5.1), it is clear that QHE is compact. Since the number
of Toffoli gates is polynomial in λ, Claim 5.5.3 (along with the triangle inequality) implies
that the trace distance of the server’s final state from the ideal (correct) final state is at most
negligible in λ.

�

50

Chapter 6

Verification

In this chapter, we address the question of whether quantum computations can be classically
verified. We show that as long as efficient quantum computers cannot solve the learning with
errors problem, such verification is possible through interaction. In more detail, we provide a
method in which an efficient classical verifier (a BPP machine) can interact with an efficient
quantum prover (a BQP machine), and the prover is able to convince the verifier of the
correctness of the output of the desired quantum computation; the verifier rejects with high
probability if the prover returns an incorrect output.

To do so, we construct a measurement protocol between an efficient quantum prover and
a classical verifier. The goal of this protocol is to use interaction to force the prover to behave
as the verifier’s trusted measurement device. In our measurement protocol, an honest prover
constructs an n qubit quantum state ρ of his choice, and the verifier would like each qubit to
be measured in either the standard basis or the Hadamard basis. The soundness condition
of the protocol guarantees that, even in the case of a dishonest prover, the measurement
result m ∈ {0, 1}n obtained by the verifier is indeed the result of measuring some n qubit
quantum state in the desired basis. One of the features of the measurement protocol is that
the choice of basis is sent to the prover in an encrypted form, and the prover ends up with
no information about the measurement basis chosen by the verifier.

The goal of using the prover as the verifier’s trusted measurement device is formalized
in the completeness and soundness conditions of the measurement protocol, which we now
describe. Denote the choice of measurement basis by an n bit string h = (h1, . . . , hn). For
a prover P and a measurement basis choice h = (h1, . . . , hn), we define DP,h to be the
resulting distribution over the measurement result m ∈ {0, 1}n obtained by the verifier. For
an n qubit state ρ, we define Dρ,h to be the distribution obtained by measuring ρ in the
basis corresponding to h. Our measurement protocol is complete, in the following sense:
for all efficiently computable n qubit states ρ, there exists a prover P such that DP,h is
approximately equal to Dρ,h for all h. Moreover, P is accepted by the verifier with all but
negligible probability.

Our soundness notion for the measurement protocol is as follows. We will show that if
the prover P is accepted by the verifier with perfect probability, there exists an efficiently

CHAPTER 6. VERIFICATION 51

computable n qubit quantum state ρ underlying the distribution over m. More precisely,
for all h ∈ {0, 1}n, Dρ,h is computationally indistinguishable from DP,h. This statement can
easily be made robust: we will show that if a prover P is accepted by the verifier on basis
choice h with probability 1 − ph, there exists a prover P′ who is always accepted by the
verifier and the statistical distance between DP,h and DP′,h is approximately

√
ph for all h.

So far, we have described the goal of our measurement protocol, which is to force the
prover to behave as the verifier’s trusted measurement device. To link our measurement
protocol to verification, we simply need to show that a classical verifier who also has access
to a trusted standard/Hadamard basis measurement device can verify the result of BQP
computations.

To describe how such verification can be done, we briefly recall a method of verifying
classical computations. Assume that, for a language L ∈ BPP and an instance x, the verifier
wishes to check that x ∈ L. To do so, the verifier can reduce x to a 3-SAT instance, ask
the prover for a satisfying variable assignment, and verify that the assignment satisfies the
instance. There is an analogous setting for quantum computations, in which the language L ∈
BQP, the instance x can be reduced to a local Hamiltonian instance Hx, an n bit variable
assignment corresponds to an n qubit quantum state |ψ〉, and the fraction of unsatisfied
clauses corresponds to the energy of the Hamiltonian Hx with respect to the state |ψ〉 ([32]).
If x ∈ L, there exists a state with low energy with respect to Hx; if not, all states will have
sufficiently high energy. We will rely on the fact that the energy of |ψ〉 with respect to Hx

can be estimated by performing only standard/Hadamard basis measurements ([7]).
With this analogy, verification of a quantum computation can be performed by a classical

verifier with access to a trusted standard/Hadamard basis measurement device as follows
([36]): the verifier first reduces the instance x to be verified to a local Hamiltonian instance
Hx, then requests an n qubit state from the prover, and finally checks if the received state
has low energy with respect to Hx. If so, the verifier is assured that x ∈ L.

6.1 Overview

We now present an overview of this chapter, which proceeds as follows. Our measurement
protocol relies on two cryptographic primitives which give a BPP verifier some leverage
over a BQP prover. We begin by describing these primitives in Section 6.1.1. Using these
primitives, we can describe our measurement protocol in Section 6.1.2. In Sections 6.1.2 -
6.1.4, we show how the two cryptographic primitives can be used to guarantee soundness of
the measurement protocol, in the sense that all provers must essentially be creating a state
and measuring it in the basis chosen by the verifier. In Section 6.1.5, we show how to extend
our measurement protocol to a verification protocol for all of BQP.

CHAPTER 6. VERIFICATION 52

6.1.1 Cryptographic Primitives

6.1.1.1 Trapdoor Claw-Free Families

The first cryptographic primitive we will use is a function family F = {fk,b : X → Y} (for
b ∈ {0, 1}) called a trapdoor claw-free function family. For convenience, we will assume in
this overview that X = {0, 1}w. A trapdoor claw-free function family is a family of functions
which are two to one (both fk,0(·) and fk,1(·) are injective and their images are equal) and
for which it is computationally difficult to find a claw, i.e. a pair of points x0 and x1 which
have the same image (fk,0(x0) = fk,1(x1)). Given y in the image of fk,0 or fk,1, the trapdoor
tk of the functions fk,0, fk,1 allows recovery of both preimages of y. The trapdoor claw-free
family also satisfies two hardcore bit properties, which are stronger versions of the claw-free
property: roughly, they state that it is computationally difficult to find a string d and the
bit d · (x0⊕x1), where (x0, x1) form a claw. These two properties are specified as needed (in
Claim 6.1.1 and Claim 6.1.2).

In this overview, we will assume the existence of the function family described above for
simplicity. However, since we do not know how to construct such a family, in the rest of
the chapter we will instead rely on an approximate version of this family. We provide the
definition of the function family we will use, which we call an extended trapdoor claw-free
family, in Section 6.3, Definition 6.3.4. The construction of this family (from learning with
errors) is given in Section 6.8. Both the definition and construction are extensions of those
given in [11].

We now describe a BQP process we call state commitment, which requires a function key
k corresponding to functions fk,0, fk,1 ∈ F (we assume that the functions fk,0, fk,1 can be
computed given access to the function key k). The state commitment process is performed
with respect to an arbitrary single qubit state |ψ〉:

|ψ〉 =
∑

b∈{0,1}

αb |b〉 (6.1)

The commitment process consists of two steps. First, the functions fk,0, fk,1 are applied in su-
perposition, using |ψ〉 to determine whether to apply fk,0 or fk,1 and a uniform superposition
over x ∈ X as the input to fk,0 or fk,1:

1√
|X |

∑
b∈{0,1}

∑
x∈X

αb |b〉 |x〉 |fk,b(x)〉 (6.2)

Second, the final register of the resulting state is measured, obtaining y ∈ Y . At this point,
the state is: ∑

b∈{0,1}

αb |b〉 |xb,y〉 (6.3)

where x0,y and x1,y are the two preimages of y. We will call the qubit containing b the
committed qubit, the register containing xb,y the preimage register and the string y the

CHAPTER 6. VERIFICATION 53

commitment string. The crucial point here is that, due to the claw-free nature of the functions
fk,0, fk,1, it is computationally difficult for a BQP machine to compute both inverses x0,y and
x1,y given only y. However, with access to the trapdoor tk, both inverses can be computed
from y. If we think of the state commitment process in an interactive setting, in which
the verifier selects the function key and the trapdoor and the BQP prover performs the
commitment process (sending the commitment y to the verifier), the BQP prover cannot
compute both inverses, but the verifier can. This gives the verifier some leverage over the
prover’s state.

A key property of the committed state in (6.3) is that it allows a logical Hadamard
measurement up to an X Pauli operator, which is performed as follows. First, a Hadamard
transform is applied to both the committed qubit and preimage register of the state in (6.3):

1√
|X |

∑
d∈X

Xd·(x0,y⊕x1,y)H |ψ〉 ⊗ Zx0,y |d〉 (6.4)

The next step in applying the logical Hadamard measurement is to measure the second
(preimage) register, obtaining d ∈ X . The state at this point is:

Xd·(x0,y⊕x1,y)H |ψ〉 (6.5)

To obtain the Hadamard measurement of |ψ〉, the operator Xd·(x0,y⊕x1,y) (which we call
the decoding operator and requires the trapdoor) is first applied, followed by a standard
basis measurement of H |ψ〉. Note that these two operations commute: it is equivalent to
first perform a standard basis measurement of the state in (6.5) followed by applying the
X decoding operator. The X decoding operator applied after measurement is simply the
classical XOR operation.

We can again think of this logical Hadamard transform in the interactive setting, in
which the BQP prover applies the Hadamard transform to obtain the state in (6.4) and
then measures the committed qubit and preimage register, sending the measurement results
b′ ∈ {0, 1} and d ∈ {0, 1}w to the verifier. The verifier decodes the measurement b′ by
XORing it with d · (x0,y ⊕ x1,y) (which can be computed using the trapdoor) to obtain the
bit m, which the verifier stores as the result of the Hadamard basis measurement.

6.1.1.2 Trapdoor Injective Function Families

The second primitive is a function family G = {gk,b : X → Y} (for b ∈ {0, 1}) called a
trapdoor injective function family. A trapdoor injective function family is a family of injective
functions such that the images of gk,0(·) and gk,1(·) are disjoint. Given y = gk,b(xb,y), the
trapdoor tk of the functions gk,0, gk,1 allows recovery of b, xb,y. We will also require that the
trapdoor injective family is computationally indistinguishable from the trapdoor claw-free
family: given a function key k, it must be computationally difficult to determine whether
k belongs to an injective or claw-free family. As in the case of trapdoor claw-free families,
we will assume the existence of the function family described above for the purpose of this

CHAPTER 6. VERIFICATION 54

overview, but in the rest of the chapter we will rely on an approximate version of this function
family. We define the approximate version in Section 6.3 (Definition 6.3.2) and construct it
from learning with errors in Section 6.8.2.

The state commitment process described in Section 6.1.1.1 can also be performed with a
function key k corresponding to functions gk,0, gk,1 ∈ G. At the stage of (6.2), the following
state has been created:

1√
|X |

∑
b∈{0,1}

∑
x∈X

αb |b〉 |x〉 |gk,b(x)〉 (6.6)

However, in this case when the last register is measured to obtain y ∈ Y , the superposition
over b collapses. This is because the images of gk,0(·) and gk,1(·) are disjoint. It follows that
with probability |αb|2, y ∈ gk,b(·). In this case, the state after measurement of y is:

|b〉 |xb,y〉 (6.7)

where xb,y is the unique preimage of y.
If we think of this process in the interactive setting (in which the BQP prover performs

the commitment and sends the verifier y), the verifier can use the trapdoor tk to extract
(b, xb,y) from y. Therefore, the verifier can obtain b, which is the result of standard basis
measurement of the prover’s state, simply by asking for the commitment y.

6.1.2 Measurement Protocol

Given the two primitives described in Section 6.1.1, we can now describe our measurement
protocol (formally given in Protocol 6.4.1). Before the protocol begins, the verifier will select
the basis for which he would like a measurement result (either Hadamard or standard) for
each of n qubits. We will represent this basis choice by a string h ∈ {0, 1}n. If hi = 0, it
indicates that the standard basis was chosen for qubit i.

The protocol begins with the commitment round. For all i for which hi = 1, the verifier
samples a key ki and a trapdoor tki corresponding to a pair of trapdoor claw-free functions
fki,0, fki,1 ∈ F . For all i for which hi = 0, the verifier samples a key ki and a trapdoor tki
corresponding to a pair of trapdoor injective functions gki,0, gki,1 ∈ G. The verifier sends the
prover the function keys k1, . . . , kn. The honest prover first constructs an n qubit state of
his choice and then commits to each qubit of the state using the corresponding function key,
as described in Section 6.1.1. The verifier receives the measurement results y1, . . . , yn ∈ Y
from the prover.

Once the verifier receives y1, . . . , yn, he chooses at random either to run a test round
or a Hadamard round. In the case of a test round, the verifier requests standard basis
measurements of the committed qubit and preimage register for all n qubits. He receives
b′i ∈ {0, 1} and x′i ∈ X from the prover and checks if the measurement is a preimage of yi.

In the case of a Hadamard round, the verifier requests a Hadamard basis measurement of
the committed qubit and preimage register for all i. The verifier receives b′i ∈ {0, 1}, di ∈ X
for all i. For all i for which hi = 0, the verifier ignores the measurement results b′i and di

CHAPTER 6. VERIFICATION 55

and uses the trapdoor of gki to invert yi. The verifier stores the first bit of the inverted
value as the standard basis measurement result mi. For all i for which hi = 1, the verifier
first decodes b′i by XORing it with di · (x0,yi ⊕ x1,yi) (this can equivalently be thought of as
applying the decoding operator Xd·(x0,yi⊕x1,yi)- see the end of Section 6.1.1.1). The verifier
stores the result mi = b′i ⊕ di · (x0,yi ⊕ x1,yi) as the Hadamard basis measurement result.

Completeness of our measurement protocol (as defined at the start of Section 6.1) follows
immediately from the description of the state commitment process given in Sections 6.1.1.1
and 6.1.1.2.

6.1.3 Measurement Protocol Soundness

We now give an overview of our soundness guarantee: we describe how to show that for n = 1
and a prover P who passes the test round perfectly, there exists a quantum state underlying
the distribution over measurement results obtained by the verifier. The generalization to
arbitrary n (given in Section 6.6) follows easily due to the fact that all n function keys are
drawn independently. The generalization to provers P who do not pass perfectly (also given
in Section 6.6) is straightforward as well; it is done by conditioning P on acceptance in a test
round, thereby creating an efficient prover who passes the test round perfectly as long as P
is accepted with non negligible probability. In this section, we begin by characterizing the
behavior of a general prover. We then show that if this characterization satisfies a certain
requirement, we can prove the existence of an underlying quantum state. In Section 6.1.4
(which is the crux of this chapter), we show how to enforce this requirement on general
provers.

6.1.3.1 Prover Behavior

The analysis of the measurement protocol is based on understanding and characterizing the
prover’s Hilbert space and operations. We will rely on the following principle behind inter-
active proofs between a BQP prover and a BPP verifier. A round of the protocol begins with
the verifier’s message and ends with the prover’s message. A general prover is equivalent,
from the verifier’s perspective, to a prover who begins each round by applying an arbitrary
unitary operator to his space and then behaves exactly the same as an honest prover, culmi-
nating in a measurement (the result of which is sent to the verifier). This principle implies
that an arbitrary prover measures the same registers that an honest prover does in each
round, which will be particularly useful in our protocol.

Let P0 be an honest prover in our measurement protocol and assume the unitary operator
he applies in the commitment round is UC,0, after which he measures the commitment string
register in the standard basis. As described in Section 6.1.1, P0 has three designated registers:
the register containing the committed qubit, the preimage register, and the commitment
string register. Each message of P0 to the verifier is the result of the measurement of one of
these registers.

CHAPTER 6. VERIFICATION 56

It follows from the principle above that a general prover P has the same designated
registers as P0 and is characterized by 3 unitary operators: the unitary UC applied in the
commitment round, the unitary UT applied in the test round, and the unitary UH applied
in the Hadamard round. We assume that both UT and UH do not act on the commitment
string register, since it has already been measured; the measurement result could have been
copied into the auxiliary space, on which UT and UH can act.

We now use the structure of our protocol to simplify the general prover one step further.
There are only two possible messages of the verifier for the second round of our protocol: the
message indicates either a test or Hadamard round. Due to this property, we can assume that
the test round attack UT is equal to the identity operator. To see this, we only need to make
one observation: the attack UT applied in the test round commutes with the measurement
of the commitment string. Therefore, it could have been applied prior to reporting the
commitment string.

It follows that the general prover P described above is identical, from the perspective of
the verifier, to a prover who applies the unitary U0 = UTUC,0UC immediately prior to mea-

suring the commitment string register and applies U = UHU
†
T prior to performing Hadamard

basis measurements of the committed qubit and preimage register in the Hadamard round.
We will say that such a prover is characterized by (U0, U). For a formal statement and proof
of the above argument, see Claim 6.4.4.

The characterization of all provers by two unitary attacks allows us to use the test round
of the measurement protocol to enforce that the prover’s state has a specific structure, which
is derived from the cryptographic primitives in Section 6.1.1. Let P be a prover who passes
the test round perfectly. If h = 1, the state of P at the start of either the test or the
Hadamard round (i.e. immediately after reporting y) can be written as follows (the two
preimages of y are x0,y, x1,y): ∑

b∈{0,1}

|b〉 |xb,y〉
∣∣ψb,xb,y〉 (6.8)

where
∣∣ψb,xb,y〉 contains all additional qubits held by the prover. This is because the verifier

checks, in a test round, if he receives a valid pre-image from the prover. Since the prover
simply measures the requested registers when asked by the verifier in a test round (i.e. he
does not apply an attack in the test round), these registers must be in a superposition over
the two preimages of the reported measurement result y.

If h = 0 and P reports y, there is only one inverse of y. If we assume this inverse is xb,y
(i.e. gk,b(xb,y) = y), the state of P at the start of the test or Hadamard round can be written
as follows, due to the same reasoning used in (6.8):

|b〉 |xb,y〉
∣∣ψb,xb,y〉 (6.9)

This structure enforced by the test run is the key to proving the existence of an underlying
quantum state, as we will see shortly.

CHAPTER 6. VERIFICATION 57

6.1.3.2 Construction of Underlying Quantum State

We begin by using the characterization of general provers in Section 6.1.3.1 to define a
single qubit state ρ corresponding a prover P who is characterized by (U0, U). Recall that
P has a well defined committed qubit, which he measures when the verifier asks for the
measurement of a committed qubit. Let ρ′ be the state of the committed qubit prior to the
prover’s measurement in the Hadamard round in the case that h = 1. We can think of ρ′

as encoded by the operator Zd·(x0,y⊕x1,y), which is determined by the prover’s measurements
d and y. This Z operator is derived from the verifier’s X decoding operator applied in the
measurement protocol; we have used a Z operator here since the Hadamard measurement
has not yet been performed. The single qubit state ρ will be the result of applying the Z
decoding operator to the committed qubit ρ′.

Define X-trivial operators to be those which commute with standard basis measurement
of the committed qubit. We now show that if the prover’s Hadamard round attack U is an X-
trivial operator, the distribution DP,h obtained by the verifier in the measurement protocol
is computationally indistinguishable from the distribution which is obtained by measuring ρ
in basis specified by h.

Recall that Dρ,h is the distribution obtained by measuring ρ in the basis corresponding to
h. By construction, Dρ,1 = DP,1. If h = 0, there are two differences between the distribution
Dρ,h and the distribution DP,h. The first differences lies in the function sampling: in our
measurement protocol, an injective function is sampled if h = 0, but in the state ρ, a claw-free
function is sampled. The second difference comes from how the standard basis measurement
is obtained: in DP,h the standard basis measurement is obtained from the commitment string
y, but in Dρ,h the standard basis measurement is obtained by measuring ρ (the committed
qubit) in the standard basis.

We can handle the first difference by making two key observations. First, the Z decoding
operator has no effect if h = 0; in this case, the committed qubit will be measured in the
standard basis immediately after application of Z in order to obtain Dρ,h. Second, if the
Z decoding operator is not applied, the trapdoor tk is no longer needed to construct the
distribution Dρ,h. If Dρ,h is only dependent on the function key k (and not the trapdoor
tk), the function key k can be replaced with a function key which corresponds to a pair of
trapdoor injective functions, rather than a pair of trapdoor claw-free functions, to obtain
a computationally indistinguishable distribution. This is due to the computational indis-
tinguishability between keys drawn from the trapdoor claw-free family F and the trapdoor
claw-free family G.

Let ρ0 be the committed qubit of the prover prior to measurement in the Hadamard
round in the case that h = 0. Due to the argument above, the distribution Dρ,0 is compu-
tationally indistinguishable from Dρ0,0. To address the second difference, we now show that
measuring ρ0 in the standard basis produces the same distribution obtained from extracting
the standard basis measurement from the commitment string y. First, note that measuring
the committed qubit prior to application of U (i.e. at the start of the Hadamard round)
results in the same measurement obtained from y; as seen in (6.9), the value of the commit-

CHAPTER 6. VERIFICATION 58

ted qubit is equal to the value m extracted from y, since the prover passes the test round
perfectly. To complete our proof, recall that U is X-trivial with respect to the committed
qubit, and therefore commutes with standard basis measurement of the committed qubit.

To recap, the argument above shows that there exists a quantum state underlying the
distribution DP,h as long as the prover’s attack operator in the Hadamard round is an X-
trivial operator. For a formal statement and complete proof of this argument, see Claim
6.4.7.

6.1.4 Replacement of a General Attack with an X-Trivial Attack

We can now proceed to the crux of this chapter: assuming that n = 1 and P passes the test
round perfectly, we show that there exists a prover P′ such that DP,h is computationally
indistinguishable from DP′,h for both h and P′ attacks with an X-trivial operator in the
Hadamard round. By the argument in Section 6.1.3.2 and the triangle inequality, this implies
that there exists a state ρ for which DP,h and Dρ,h are computationally indistinguishable,
thereby proving our soundness guarantee.

Assume P is characterized by (U0, U). Then P′ is characterized by (U0, {Ux}x∈{0,1}),
where {Ux}x∈{0,1} is an X-trivial CPTP map:

U =
∑

x,z∈{0,1}

XxZz ⊗ Uxz (6.10)

Ux =
∑

z∈{0,1}

Zz ⊗ Uxz (6.11)

Observe that if h = 0, DP,h = DP′,h; this is simply because the standard basis measurement
is obtained from the commitment y, which is measured prior to the Hadamard round attack
U . This argument requires a bit more detail for n > 1 and is given formally in Claim
6.6.4. We proceed to describing how to replace the attack U in (6.10) with the CPTP map
{Ux}x∈{0,1} in (6.11) in the case that the verifier chooses the Hadamard basis (h = 1). We
will rely heavily on the structure of the prover’s state, as written in (6.8).

The replacement of U with {Ux}x∈{0,1} will be done by using the Z Pauli twirl (Corollary
6.2.2). The Z Pauli twirl is a technique which allows the replacement of U with the CPTP
map {Ux}x∈{0,1} by conjugating U by a random Z Pauli operator. More formally, Corollary
6.2.2 states that the following two CPTP maps are equivalent when followed by Hadamard
basis measurement:

{ 1√
2

(Zr ⊗ I)U(Zr ⊗ I)}r∈{0,1} (6.12)

{Ux}x∈{0,1} (6.13)

To apply the Z Pauli twirl in this setting, it suffices to show that replacing the prover’s attack
U with the unitary attack (Z ⊗ I)U(Z ⊗ I) results in a computationally indistinguishable
distribution.

CHAPTER 6. VERIFICATION 59

To prove this statement, we will rely on the fact that there is already computational
randomness, due to the trapdoor claw-free function, which is hiding both the Z operator
applied prior to U and the Z operator applied after. The computational randomness hiding
the posterior Z operator comes from the verifier’s decoding operator Xd·(x0,y⊕x1,y) applied at
the end of the measurement protocol (see Section 6.1.2); if this decoding operator is shifted
prior to the Hadamard transform on the committed qubit, it acts as a Z operator immediately
after the attack U . The computational randomness hiding the anterior Z operator results
from the format of the prover’s state. Recall that, since the prover is perfect, we can assume
the prover begins the Hadamard round with a state of the form in (6.8):

|φy〉 =
∑

b∈{0,1}

|b〉 |xb,y〉
∣∣ψb,xb,y〉 (6.14)

Applying a Hadamard transform to the preimage register of the state in (6.14) results in a
Z operator acting on the committed qubit:

(I ⊗H⊗w ⊗ I)
∑

b∈{0,1}

|b, xb,y〉
∣∣ψb,xb,y〉 =

1√
|X |

∑
d∈X ,b∈{0,1}

Zd·(x0,y⊕x1,y) |b〉 ⊗ Zx0,y |d〉 ⊗
∣∣ψb,xb,y〉

(6.15)
In order to use these two sources of computational randomness to hide the difference between
U and (Z ⊗ I)U(Z ⊗ I), it must be the case that the bit d · (x0,y ⊕ x1,y) is computationally
indistinguishable from a uniformly random bit. Formalizing this requirement is a bit tricky,
since d is sampled from the state created by the prover. In the next section, we show
how to prove computational indistinguishability between the distributions resulting from U
and (Z ⊗ I)U(Z ⊗ I). As part of this process, we formalize the computational randomness
requirement regarding d ·(x0,y⊕x1,y) as two different hardcore bit conditions for the function
pair fk,0, fk,1.

6.1.4.1 Computational Indistinguishability of Phase Flip

Let P be the prover characterized by (U0, U) and let P̂ be the prover characterized by
(U0, (Z⊗I)U(Z⊗I)). In this section, we will show that the distributions resulting from the
two provers (DP,h and DP̂,h) are computationally indistinguishable for all h. For convenience,
we will instead refer to these two distributions as mixed states; let σ0 be the mixed state
corresponding to DP,h and let σ1 be the mixed state corresponding to DP̂,h, i.e.

σ0 =
∑

m∈{0,1}

DP,h(m) |m〉 〈m| (6.16)

To prove the computational indistinguishability of σ0 and σ1, each state is split into two
terms (for r ∈ {0, 1}):

σr = σDr + σCr (6.17)

CHAPTER 6. VERIFICATION 60

By a straightforward application of the triangle inequality, we obtain that if σ0 is compu-
tationally distinguishable from σ1, either σD0 and σD1 are computationally distinguishable or
σC0 and σC1 are. Note that even if the terms are not quantum states, the notion of compu-
tational indistinguishability (Definition 3.3.2) is still well defined: to show that two terms,
for example σC0 and σC1 , are computationally indistinguishable, we need to show (informally)
that there does not exist an efficiently computable CPTP map S such that the following
expression is non negligible

|Tr((|0〉 〈0| ⊗ I)S(σC0 − σC1)| (6.18)

In more detail, the density matrices σ0 and σ1 are created by beginning with the state |φy〉
in (6.14) and applying the operations of both the prover and verifier in the Hadamard round,
followed by tracing out all but the first qubit. Therefore, to split σ0 and σ1 into two parts, we
can equivalently split the density matrix of |φy〉 into the following two parts, corresponding
to the diagonal and cross terms:∑

b∈{0,1}

|b〉 〈b| ⊗ |xb,y〉 〈xb,y| ⊗
∣∣ψb,xb,y〉 〈ψb,xb,y ∣∣ (6.19)

∑
b∈{0,1}

|b〉 〈b⊕ 1| ⊗ |xb,y〉 〈xb⊕1,y| ⊗
∣∣ψb,xb,y〉 〈ψb,xb⊕1,y

∣∣ (6.20)

Let σD0 and σD1 be the result of applying the operations of both the prover and the verifier
in the Hadamard round to (6.19), followed by tracing out all but the first qubit. Recall the
difference between σD0 and σD1 : in the latter, the prover’s attack U is conjugated by (Z⊗I).
Define σC0 and σC1 similarly, but replace (6.19) with (6.20). In the following two sections, we
show that both pairs of terms are computationally indistinguishable.

Diagonal Terms In this section, we will show that if there exists a BQP attacker A′ who
can distinguish between the terms σD0 and σD1 , then there exists a BQP attacker A who can
violate the following informal hardcore bit property of the function family F (the formal
statement is part of Definition 6.3.1):

Claim 6.1.1 Assume fk,0 and fk,1 are sampled from a trapdoor claw-free family F . Then
there does not exist an attacker who, on input k, can produce b ∈ {0, 1}, xb ∈ X , d ∈
{0, 1}w \ {0w} and c ∈ {0, 1} such that c = d · (x0 ⊕ x1) where fk,0(x0) = fk,1(x1).

We first describe the state σD0 , which is created by beginning with the state in (6.19), in
more detail. Note that the state in (6.19) can be efficiently created by following the prover’s
commitment process and then measuring the committed qubit and preimage register. To
create σD0 , the attack U is applied to the state in (6.19), followed by Hadamard measurement
of the committed qubit and preimage register and application of the verifier’s X decoding
operator. Finally, all qubits but the first are traced out. σD1 is almost the same as σD0 ,

CHAPTER 6. VERIFICATION 61

except the attack U is replaced with the attack (Z⊗I)U(Z⊗I). Note that the initial phase
operator has no effect, since it acts on the diagonal state in (6.19). The final phase flip, once
it is shifted past the Hadamard transform, is equivalent to flipping the decoding bit of the
verifier; it follows that σD1 = XσD0 X.

We now construct the BQP attacker A who will use A′ to violate Claim 6.1.1. Let σD be
the state σD0 except for the verifier’s decoding. Observe from the description in the previous
paragraph that this state can be efficiently created, and as part of creating the state, the
measurements b, xb,y and d are obtained. The attacker A creates the state σD. For the string
d obtained by A, the decoding bit d · (x0,y ⊕ x1,y) determines which of the two states σD0
and σD1 A has created; if d · (x0,y ⊕ x1,y) = r, A has created σDr . Now A can run A′ on the
resulting mixed state in order to learn d · (x0,y ⊕ x1,y). As a result, A holds the following
information: b, xb,y, d, and d · (x0 ⊕ x1), therefore violating Claim 6.1.1.

Cross Terms In this section, we will show that the cross terms σC0 and σC1 are compu-
tationally indistinguishable. Since the cross terms are not quantum states, we first show
below that if there exists a CPTP map S which distinguishes between σC0 and σC1 , i.e. if the
following expression is non negligible:

|Tr((|0〉 〈0| ⊗ I)S(σC0 − σC1)| (6.21)

then there exists an efficiently computable CPTP map S ′ such that the CPTP map SS ′
distinguishes between the quantum states σ̂0 and σ̂1, defined as follows. The density matrix
σ̂r corresponds to the following pure state (recall |φy〉 from (6.14)):

(Zr ⊗ I) |φy〉 = (Zr ⊗ I)(
∑

b∈{0,1}

|b〉 |xb,y〉
∣∣ψb,xb,y〉) (6.22)

To do this, it suffices to show that σC0 − σC1 = S ′(σ̂0 − σ̂1). This equality is straightforward
for two reasons. First, 1

2
(σ̂0 − σ̂1) is equal to the cross term in (6.20). Second, both σC0

and σC1 also begin with (6.20), but followed by a CPTP map which is inefficient due to the
verifier’s decoding. To prove the existence of S ′, we show that taking the difference between
σC0 and σC1 effectively removes the verifier’s decoding, creating an efficient CPTP map S ′.

Finally, we will show that an attacker who can distinguish between σ̂0 and σ̂1 can violate
the following informal hardcore bit property of the function family F (the formal statement
is part of Definition 6.3.4):

Claim 6.1.2 Assume fk,0 and fk,1 are sampled from a trapdoor claw-free family F . Then
there exists d ∈ {0, 1}w which satisfies two conditions. First, there exists a bit ck such that
d · (x0 ⊕ x1) = ck for all claws (x0, x1) (fk,0(x0) = fk,1(x1)). Second, there does not exist an
attacker who, on input k, can determine the bit ck.

We begin by describing the cross term σC0 (which is not a quantum state) in more detail. σC0
is created by beginning with the expression in (6.20), copied here for reference:∑

b∈{0,1}

|b〉 〈b⊕ 1| ⊗ |xb,y〉 〈xb⊕1,y| ⊗
∣∣ψb,xb,y〉 〈ψb,xb⊕1,y

∣∣ (6.23)

CHAPTER 6. VERIFICATION 62

then applying the attack U , followed by Hadamard measurement of the committed qubit and
preimage register and application of the verifier’s X decoding operator. Finally, all qubits
but the first are traced out. σC1 is almost the same, except the attack U is replaced with the
attack (Z ⊗ I)U(Z ⊗ I). As in Section 6.1.4.1, the phase flip acting after U is equivalent
to flipping the decoding operator of the verifier (i.e. applying an X operator to the matrix
σC0). The initial phase flip, which acts on the first qubit of (6.23), results in a phase of -1.
Combining these two observations yields the following equality:

σC1 = −XσC0 X (6.24)

Taking the difference between σC0 and σC1 results in a matrix which has a uniform X operator
applied:

σC0 − σC1 =
∑

r∈{0,1}

XrσC0 X
r (6.25)

Observe that the CPTP map applied to (6.23) to create σC0 is efficiently computable except
for the verifier’s X decoding operator. In (6.25), there is a uniform X operator acting on
σC0 , effectively replacing the verifier’s decoding operator. Let S ′ be the resulting efficiently
computable CPTP map. It follows immediately that σC0 − σC1 = S ′(σ̂0 − σ̂1).

We now proceed to showing that an attacker A′ who can distinguish between σ̂0 and σ̂1
can be used to violate Claim 6.1.2. Since the state σ̂r is the state |φy〉 from (6.14) with the
operator Zr applied to the committed qubit, an attacker who can distinguish between σ̂0
and σ̂1 can distinguish whether or not a Z operator is applied to the committed qubit of
|φy〉. The following equality (which holds up to a global phase) shows that a Z operator on
the preimage register is equivalent to a Z operator on the committed qubit:

(I ⊗ Zd ⊗ I)(
∑

b∈{0,1}

|b〉 |xb,y〉
∣∣ψb,xb,y〉) = (Zd·(x0,y⊕x1,y) ⊗ I)(

∑
b∈{0,1}

|b〉 |xb,y〉
∣∣ψb,xb,y〉) (6.26)

This equality, along with the attacker A′, can be used to construct a BQP attacker A who
can determine d · (x0,y ⊕ x1,y) for an arbitrary fixed string d. A first constructs |φy〉 (this is
simply the prover’s state after reporting the commitment string y, so it can be constructed
efficiently). Next, A applies Zd to the preimage register of |φy〉. Due to the equality in (6.26),
this is equivalent to instead applying Zd·(x0,y⊕x1,y) to the committed qubit. By running the
attacker A′, A can determine d · (x0,y ⊕ x1,y), therefore violating Claim 6.1.2.

6.1.5 Extension of Measurement Protocol to a Verification
Protocol for BQP

Our goal is to verify that an instance x ∈ L for a language L ∈ BQP. Recall that each
instance can be converted into a local Hamiltonian H with the following property: if x ∈ L,
H has ground state energy at most a and if x /∈ L, H has ground state energy at least b,
where the gap b − a is inverse polynomial. Therefore, to verify that an instance x ∈ L,

CHAPTER 6. VERIFICATION 63

a verifier with a quantum computer can simply ask the prover for the ground state and
estimate the energy of the received state with respect to the Hamiltonian H. The soundness
of such a protocol rests on the fact that if an instance x /∈ L, all possible states sent by the
prover will have energy ≥ b.

To use such a verification procedure in our setting, we need to rely on one more fact:
the Hamiltonian H can be written as a sum over terms which are each a product of X and
Z operators [7]. Therefore, when the verifier is estimating the energy of a state sent by
the prover, he only needs to perform Hadamard or standard basis measurements on each
individual qubit. In [36], the authors formalize the resulting protocol and use it to build
a protocol in which a verifier with access to a single qubit register can verify the result
of a BQP computation. Their protocol achieves a completeness/ soundness gap which is
negligibly close to 1 by performing polynomially many repetitions of the energy estimation
process described above.

In [36], the prover sends single qubits to the verifier, who performs either Hadamard or
standard basis measurements. To obtain a verification protocol for BQP, we simply replace
this step of their protocol with our measurement protocol. Completeness and soundness
follow, since our measurement protocol allows the verifier to collect standard and Hadamard
basis measurements of a given state, and our soundness claim guarantees that the distri-
bution over measurement results obtained by the verifier comes from the measurement of
an underlying quantum state. The extension of our measurement protocol to a verification
protocol is described in Section 6.7.

6.1.6 Chapter Outline

As noted in Section 6.1.1.1, the trapdoor function families we use in the rest of the chapter
are not the ideal families used so far in the overview. We instead use approximations of
these function families, which are defined in Section 6.3. The protocol as described used
several properties of the ideal families. We take care to define our approximate families to
make sure that they satisfy these required properties, at the expense of additional notation.
At the start of Section 6.3, there is a summary of the differences between the approximate
functions and the ideal functions (taken from [11]).

We begin with the definition of our extended trapdoor claw-free family in Section 6.3.
Section 6.4 covers Sections 6.1.1 to 6.1.3 of the overview. In Section 6.5, we present the
argument outlined in Section 6.1.4, in which we replace a general attack with an attack
which commutes with standard basis measurement. In Section 6.6, we prove the soundness
of the measurement protocol. Finally, the extension of the measurement protocol to a QPIP0

(described in Section 6.1.5) is given in Section 6.7, providing the main result of this chapter
(the following informal statement is taken from Chapter 1 and is stated formally as Theorem
6.7.6 in Section 6.7):

Theorem 1.0.2 (Informal) Assuming the existence of an extended trapdoor claw-free fam-
ily as defined in Definition 6.3.4, BQP = QPIP0.

CHAPTER 6. VERIFICATION 64

In Section 6.8, we provide a learning with errors based construction of an extended
trapdoor family, providing a proof of the following theorem (the following informal statement
is taken from Chapter 1 and is stated formally as Theorem 6.8.1 in Section 6.8):

Theorem 1.0.3 (Informal) Under the assumption that the learning with errors problem
with superpolynomial noise ratio is computationally intractable for an efficient quantum ma-
chine, there exists an extended trapdoor claw-free family.

6.2 Preliminaries

6.2.1 Pauli Twirl

We call the conjugation of a unitary operator (or a CPTP map) by a random Pauli a Pauli
twirl ([19]). The twirled version of a unitary U is the CPTP map {(XxZz)†U(XxZz)}x,z. If
the Pauli is a random X (or Z) Pauli operator, we call the conjugation an X (or Z) Pauli
twirl. A Z Pauli twirl has the following effect:

Lemma 6.2.1 Z Pauli Twirl For a CPTP map with Kraus operators {Bτ}τ , the following
two CPTP maps are equal:{

1√
2

(Zr ⊗ I)Bτ (Z
r ⊗ I)

}
r∈{0,1},τ

= {(Xx ⊗ I)B′x,τ}x∈{0,1},τ (6.27)

where Bτ =
∑

x,z∈{0,1}
XxZz ⊗ Bxzτ and the CPTP map {B′x,τ}x∈{0,1},τ is equal to B′x,τ =∑

z∈{0,1}
Zz ⊗Bxzτ .

Proof: To prove the lemma, we show that applying either of the two CPTP maps in equation
(6.27) on an arbitrary density matrix ρ results in the same state. We begin with the CPTP
map on the left of (6.27):

1

2

∑
r∈{0,1},τ

(Zr ⊗ I)Bτ (Z
r ⊗ I)ρ(Zr ⊗ I)B†τ (Z

r ⊗ I)† (6.28)

Using the fact that Bτ =
∑

x,z∈{0,1}
XxZz⊗Bxzτ , we can rewrite the expression from (6.28) as:

1

2

∑
r∈{0,1},τ

x,z,x′,z′∈{0,1}

(ZrXxZzZr ⊗Bxzτ)ρ(ZrXx′Zz′Zr ⊗Bx′z′τ)
† (6.29)

CHAPTER 6. VERIFICATION 65

Next, we use the anti commutation properties of Pauli operators (by commuting Zr with
both Xx and Xx′) to obtain the following state:

1

2

∑
r∈{0,1},τ

x,z,x′,z′∈{0,1}

(−1)r·(x⊕x
′)(XxZz ⊗Bxzτ)ρ(Xx′Zz′ ⊗Bx′z′τ)

† (6.30)

At this point, we can sum over r to obtain x = x′, resulting in the following expression:∑
τ

x,z,z′∈{0,1}

(XxZz ⊗Bxzτ)ρ(XxZz′ ⊗Bx′zτ)
† (6.31)

=
∑

x∈{0,1},τ

(Xx ⊗ I)B′x,τρ((Xx ⊗ I)B′x,τ)
† (6.32)

�
The following corollary follows from Lemma 6.2.1 and captures the effect of a Z Pauli

twirl followed by Hadamard basis measurement:

Corollary 6.2.2 Z Pauli Twirl with Measurement For a CPTP map with Kraus op-
erators {Bτ}τ , the following two CPTP maps are equal:{

1√
2

(|b〉 〈b|HZr ⊗ I)Bτ (Z
r ⊗ I)

}
b,r∈{0,1},τ

= {(|b〉 〈b|H ⊗ I)B′x,τ}b,x∈{0,1},τ (6.33)

where Bτ =
∑

x,z∈{0,1}
XxZz ⊗ Bxzτ and the CPTP map {B′x,τ}x∈{0,1},τ is equal to B′x,τ =∑

z∈{0,1}
Zz ⊗Bxzτ .

Proof: We begin by applying Lemma 6.2.1 to obtain the following equality:{
1√
2

(|b〉 〈b|HZr ⊗ I)Bτ (Z
r ⊗ I)

}
b,r∈{0,1},τ

= {(|b〉 〈b|HX ⊗ I)B′x,τ}b,x∈{0,1},τ (6.34)

To prove the corollary, we show that

{(|b〉 〈b|HX ⊗ I)B′x,τ}b,x∈{0,1},τ = {(|b〉 〈b|H ⊗ I)B′x,τ}x∈{0,1},τ (6.35)

This is straightforward and only requires one intermediate step:

{(|b〉 〈b|HX ⊗ I)B′x,τ}b,x∈{0,1},τ = {(|b〉 〈b|ZH ⊗ I)B′x,τ}x∈{0,1},τ (6.36)

The second CPTP map in (6.36) is equal to the second CPTP map in (6.35), since a Z
operator applied prior to standard basis measurement has no effect, and can be replaced
with the identity operator. �

CHAPTER 6. VERIFICATION 66

6.2.2 QPIP Definition

A QPIP is defined as follows (this definition is taken from [1]/ [3]):

Definition 6.2.3 A language L is said to have a Quantum Prover Interactive Proof (QPIPτ)
with completeness c and soundness s (where c − s is at least a constant) if there exists a
pair of algorithms (P,V), where P is the prover and V is the verifier, with the following
properties:

• The prover P is a BQP machine, which also has access to a quantum channel which
can transmit τ qubits.

• The verifier V is a hybrid quantum-classical machine. Its classical part is a BPP
machine. The quantum part is a register of τ qubits, on which the verifier can perform
arbitrary quantum operations and which has access to a quantum channel which can
transmit τ qubits. At any given time, the verifier is not allowed to possess more than
τ qubits. The interaction between the quantum and classical parts of the verifier is
the usual one: the classical part controls which operations are to be performed on the
quantum register, and outcomes of measurements of the quantum register can be used
as input to the classical machine.

• There is also a classical communication channel between the prover and the verifier,
which can transmit polynomially many bits at any step.

• At any given step, either the verifier or the prover perform computations on their
registers and send bits and qubits through the relevant channels to the other party.

We require:

• Completeness: if x ∈ L, then after interacting with P, V accepts with probability
≥ c.

• Soundness: if x /∈ L, then the verifier rejects with probability ≥ 1 − s regardless of
the prover P′ (who has the same description as P) with whom he is interacting.

Abusing notation, we denote the class of languages for which such a proof exists also by
QPIPτ .

6.3 Function Definitions

6.3.1 Noisy Trapdoor Claw-Free Functions

This section is taken directly from [11]. Let λ be a security parameter, and X and Y be
finite sets (depending on λ). For our purposes an ideal family of functions F would have the
following properties. For each public key k, there are two functions {fk,b : X → Y}b∈{0,1}

CHAPTER 6. VERIFICATION 67

that are both injective and have the same range (equivalently, (b, x) 7→ fk,b(x) is 2-to-1),
and are invertible given a suitable trapdoor tk (i.e. tk can be used to compute x given b
and y = fk,b(x)). Furthermore, the pair of functions should be claw-free: it must be hard
for an attacker to find two pre-images x0, x1 ∈ X such that fk,0(x0) = fk,1(x1). Finally,
the functions should satisfy an adaptive hardcore bit property, which is a stronger form
of the claw-free property: assuming for convenience that X = {0, 1}w, we would like that
it is computationally infeasible to simultaneously generate an (b, xb) ∈ {0, 1} × X and a
d ∈ {0, 1}w\{0w} such that with non-negligible advantage over 1

2
the equation d·(x0⊕x1) = 0,

where x1−b is defined as the unique element such that fk,1−b(x1−b) = fk,b(xb), holds.
Unfortunately, we do not know how to construct a function family that exactly satisfies

all these requirements under standard cryptographic assumptions. Instead, we construct a
family that satisfies slightly relaxed requirements, that we will show still suffices for our pur-
poses, based on the hardness of the learning with errors (LWE) problem. The requirements
are relaxed as follows. First, the range of the functions is no longer a set Y ; instead, it is
DY , the set of probability densities over Y . That is, each function returns a density, rather
than a point. The trapdoor injective pair property is then described in terms of the support
of the output densities: these supports should either be identical, for a colliding pair, or be
disjoint, in all other cases.

The consideration of functions that return densities gives rise to an additional require-
ment of efficiency: there should exist a quantum polynomial-time procedure that efficiently
prepares a superposition over the range of the function, i.e. for any key k and b ∈ {0, 1},
the procedure can prepare the state

1√
X

∑
x∈X ,y∈Y

√
fk,b(x)(y) |x〉 |y〉 . (6.37)

In our instantiation based on LWE, it is not possible to prepare (6.37) perfectly, but it is

possible to create a superposition with coefficients
√
f ′k,b(x) such that the resulting state

is within negligible trace distance of (6.37). The density f ′k,b(x) is required to satisfy two
properties used in our protocol. First, it must be easy to check, without the trapdoor, if an
element y ∈ Y lies in the support of f ′k,b(x). Second, the inversion algorithm should operate
correctly on all y in the support of f ′k,b(x).

We slightly modify the adaptive hardcore bit requirement as well. Since the set X may
not be a subset of binary strings, we first assume the existence of an injective, efficiently
invertible map J : X → {0, 1}w. Next, we only require the adaptive hardcore bit property to
hold for a subset of all nonzero strings, instead of the set {0, 1}w \{0w}. Finally, membership
in the appropriate set should be efficiently checkable, given access to the trapdoor.

A formal definition follows.

Definition 6.3.1 (NTCF Family) Let λ be a security parameter. Let X and Y be finite
sets. Let KF be a finite set of keys. A family of functions

F =
{
fk,b : X → DY

}
k∈KF ,b∈{0,1}

CHAPTER 6. VERIFICATION 68

is called a noisy trapdoor claw-free (NTCF) family if the following conditions hold:

1. Efficient Function Generation. There exists an efficient probabilistic algorithm
GENF which generates a key k ∈ KF together with a trapdoor tk:

(k, tk)← GENF(1λ) .

2. Trapdoor Injective Pair. For all keys k ∈ KF the following conditions hold.

a) Trapdoor: For all b ∈ {0, 1} and x 6= x′ ∈ X , Supp(fk,b(x)) ∩ Supp(fk,b(x
′)) = ∅.

Moreover, there exists an efficient deterministic algorithm INVF such that for all
b ∈ {0, 1}, x ∈ X and y ∈ Supp(fk,b(x)), INVF(tk, b, y) = x.

b) Injective pair: There exists a perfect matching Rk ⊆ X × X such that fk,0(x0) =
fk,1(x1) if and only if (x0, x1) ∈ Rk.

3. Efficient Range Superposition. For all keys k ∈ KF and b ∈ {0, 1} there exists a
function f ′k,b : X 7→ DY such that

a) For all (x0, x1) ∈ Rk and y ∈ Supp(f ′k,b(xb)), INVF(tk, b, y) = xb and INVF(tk, b⊕
1, y) = xb⊕1.

b) There exists an efficient deterministic procedure CHKF that, on input k, b ∈
{0, 1}, x ∈ X and y ∈ Y, returns 1 if y ∈ Supp(f ′k,b(x)) and 0 otherwise. Note
that CHKF is not provided the trapdoor tk.

c) For every k and b ∈ {0, 1},

Ex←UX
[
H2(fk,b(x), f ′k,b(x))

]
≤ µ(λ) ,

for some negligible function µ(·). Here H2 is the Hellinger distance; see (3.1).
Moreover, there exists an efficient procedure SAMPF that on input k and b ∈
{0, 1} prepares the state

1√
|X |

∑
x∈X ,y∈Y

√
(f ′k,b(x))(y) |x〉 |y〉 . (6.38)

4. Adaptive Hardcore Bit. For all keys k ∈ KF the following conditions hold, for
some integer w that is a polynomially bounded function of λ.

a) For all b ∈ {0, 1} and x ∈ X , there exists a set Gk,b,x ⊆ {0, 1}w such that
Prd←U{0,1}w [d /∈ Gk,b,x] is negligible, and moreover there exists an efficient al-
gorithm that checks for membership in Gk,b,x given k, b, x and the trapdoor tk.

CHAPTER 6. VERIFICATION 69

b) There is an efficiently computable injection J : X → {0, 1}w, such that J can be
inverted efficiently on its range, and such that the following holds. If

Hk =
{

(b, xb, d, d · (J(x0)⊕ J(x1))) | b ∈ {0, 1}, (x0, x1) ∈ Rk, d ∈ Gk,0,x0 ∩Gk,1,x1

}
, 1

Hk = {(b, xb, d, c) | (b, x, d, c⊕ 1) ∈ Hk

}
,

then for any quantum polynomial-time procedure A there exists a negligible func-
tion µ(·) such that∣∣∣ Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]− Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]

∣∣∣ ≤ µ(λ) . (6.39)

6.3.2 Extended Trapdoor Claw-Free Functions

In this section, we define the extended trapdoor claw-free family we will use in this chapter,
which is a NTCF family (Definition 6.3.1) with two additional properties. In order to define
an extended trapdoor claw-free family, we must first define a trapdoor injective family. A
trapdoor injective family differs from a NTCF family in two ways: the function pairs have
disjoint images (rather than perfectly overlapping images) and there is no adaptive hardcore
bit condition.

Definition 6.3.2 (Trapdoor Injective Function Family) Let λ be a security parame-
ter. Let X and Y be finite sets. Let KG be a finite set of keys. A family of functions

G =
{
gk,b : X → DY

}
b∈{0,1},k∈KG

is called a trapdoor injective family if the following conditions hold:

1. Efficient Function Generation. There exists an efficient probabilistic algorithm
GENG which generates a key k ∈ KG together with a trapdoor tk:

(k, tk)← GENG(1
λ) .

2. Disjoint Trapdoor Injective Pair. For all keys k ∈ KG, for all b, b′ ∈ {0, 1} and
x, x′ ∈ X , if (b, x) 6= (b′, x′), Supp(gk,b(x)) ∩ Supp(gk,b′(x

′)) = ∅. Moreover, there
exists an efficient deterministic algorithm INVF such that for all b ∈ {0, 1}, x ∈ X
and y ∈ Supp(gk,b(x)), INVG(tk, y) = (b, x).

3. Efficient Range Superposition. For all keys k ∈ KG and b ∈ {0, 1}

a) There exists an efficient deterministic procedure CHKG that, on input k, b ∈
{0, 1}, x ∈ X and y ∈ Y, outputs 1 if y ∈ Supp(gk,b(x)) and 0 otherwise. Note
that CHKG is not provided the trapdoor tk.

1Note that although both x0 and x1 are referred to to define the set Hk, only one of them, xb, is explicitly
specified in any 4-tuple that lies in Hk.

CHAPTER 6. VERIFICATION 70

b) There exists an efficient procedure SAMPG that on input k and b ∈ {0, 1} returns
the state

1√
|X |

∑
x∈X ,y∈Y

√
(gk,b(x))(y) |x〉 |y〉 . (6.40)

Definition 6.3.3 (Injective Invariance) A noisy trapdoor claw-free family F is injec-
tive invariant if there exists a trapdoor injective family G such that:

1. The algorithms CHKF and SAMPF are the same as the algorithms CHKG and SAMPG.

2. For all quantum polynomial-time procedures A, there exists a negligible function µ(·)
such that ∣∣∣ Pr

(k,tk)←GENF (1λ)
[A(k) = 0]− Pr

(k,tk)←GENG(1λ)
[A(k) = 0]

∣∣∣ ≤ µ(λ) (6.41)

Definition 6.3.4 (Extended Trapdoor Claw-Free Family) A noisy trapdoor claw-free
family F is an extended trapdoor claw-free family if:

1. It is injective invariant.

2. For all k ∈ KF and d ∈ {0, 1}w, let:

H ′k,d = {d · (J(x0)⊕ J(x1))|(x0, x1) ∈ Rk} (6.42)

For all quantum polynomial-time procedures A, there exists a negligible function µ(·)
and a string d ∈ {0, 1}w such that∣∣∣ Pr

(k,tk)←GENF (1λ)
[A(k) ∈ H ′k,d]−

1

2

∣∣∣ ≤ µ(λ) (6.43)

6.4 Measurement Protocol

We begin by introducing the state commitment process (described in Section 6.1.1) followed
by the measurement protocol (given in Section 6.1.2). The presentation below is slightly more
involved than the overview, since we are not using the perfect trapdoor claw-free/ injective
families used in the overview; we are instead using the families given in Definitions 6.3.1,
6.3.2 and 6.3.4. After presenting the measurement protocol, we provide notation which will
be used throughout the rest of the chapter. Next, we prove completeness of our measurement
protocol and characterize the behavior of general provers (as described in Section 6.1.3.1).
This section ends with the construction of the quantum state underlying the measurement
distribution obtained by the verifier (given in Section 6.1.3.2).

CHAPTER 6. VERIFICATION 71

6.4.1 How to Commit Using a Noisy Trapdoor Claw-Free Family

Here we describe the process of state commitment with a NTCF function (as defined in
Definition 6.3.1). The state commitment process requires a function key k ∈ KF (which
corresponds to functions fk,0, fk,1 ∈ F) and is performed with respect to the first qubit of
an arbitrary state |ψ〉:

|ψ〉 =
∑

b∈{0,1}

αb |b〉 |ψb〉 (6.44)

The first step of the commitment process is to apply the SAMPF procedure in superposition,
with k and the first qubit containing b as input:

1√
|X |

∑
b∈{0,1}
x∈X ,y∈Y

αb

√
f ′k,b(x)(y) |b〉 |x〉 |ψb〉 |y〉 (6.45)

By condition 3(c) of Definition 6.3.1 and Lemma 3.3.1 (6.45) is within negligible trace dis-
tance of the following state:

1√
|X |

∑
b∈{0,1}
x∈X ,y∈Y

αb

√
fk,b(x)(y) |b〉 |x〉 |ψb〉 |y〉 (6.46)

The second step of the commitment process is to measure the last register, obtaining the
commitment string y ∈ Y . Let xb,y = INVF(tk, b, y) (tk is the trapdoor corresponding to the
key k). The remaining state at this point is within negligible trace distance of the following
state ∑

b∈{0,1}

αb |b〉 |xb,y〉 |ψb〉 (6.47)

The fact that the superposition collapses in this manner is due to both the trapdoor and
injective pair conditions in Definition 6.3.1. The trapdoor condition implies that for each b,
there can be at most one remaining element x ∈ X in the superposition after measuring y.
The injective pair condition states that for all xb,y ∈ X , there exists exactly one xb⊕1,y ∈ X
such that (x0,y, x1,y) ∈ Rk (i.e. fk,b(xb) = fk,b(xb⊕1)). Therefore, if y ∈ Supp(fk,b(xb)), it
follows that y ∈ Supp(fk,b⊕1(xb⊕1)). We will call the first qubit of (6.47) the committed qubit
and the second register (containing xb,y) the preimage register.

6.4.1.1 Hadamard Measurement of a Committed State

The first step in measuring a committed state in the Hadamard basis is to apply the unitary
UJ , which uses the injective map J defined in condition 4(b) of Definition 6.3.1:

UJ(
∑

b∈{0,1}

αb |b〉 |xb,y〉 |ψb〉 |0〉eJ) =
∑

b∈{0,1}

αb |b〉 |J(xb,y)〉 |ψb〉 |0〉e
′
J (6.48)

CHAPTER 6. VERIFICATION 72

where the number of auxiliary qubits (eJ and e′J) is determined by the map J . The map UJ
is unitary since J is both efficiently computable and efficiently invertible. The second step
is to apply the Hadamard transform H⊗w+1 to the first two registers of the state in (6.48).
The resulting state is:

1√
2w

∑
d∈{0,1}w
b∈{0,1}

αbX
d·(J(x0,y)⊕J(x1,y))H |b〉 ⊗ (−1)d·J(x0,y) |d〉 ⊗ |ψb〉 ⊗ |0〉e

′
J (6.49)

The third step is measurement of the preimage register, obtaining a string d ∈ {0, 1}w and
resulting in the following state (recall the state |ψ〉 from (6.44)):

(Xd·(J(x0,y)⊕J(x1,y))H ⊗ I) |ψ〉 |0〉e
′
J (6.50)

The final step is measuring the committed qubit to obtain a bit b′. The Hadamard measure-
ment result of the first qubit of |ψ〉 is b′ ⊕ d · (J(x0,y) ⊕ J(x1,y)) ∈ {0, 1} (x0,y and x1,y can
be recovered from y using the trapdoor tk and the function INVF).

6.4.1.2 How to Commit Using a Trapdoor Injective Family

The commitment process described in Section 6.4.1 can also be performed using a key k ∈ KG
corresponding to trapdoor injective functions gk,0, gk,1 ∈ G (see Definition 6.3.2). Prior to
measuring y (at the stage of (6.45)), the state is:

1√
|X |

∑
b∈{0,1}
x∈X ,y∈Y

αb

√
gk,b(x)(y) |b〉 |x〉 |ψb〉 |y〉 (6.51)

Now the last register is measured to obtain y ∈ Y . Since the sets Supp(gk,b(x)) and
Supp(gk,b′(x

′)) are disjoint for all (b, x) 6= (b′, x′) (see the trapdoor condition of Defini-
tion 6.3.2), y ∈ ∪

x∈X
Supp(gk,b(x)) with probability |αb|2. Let (b, xb,y) = INVG(tk, y). The

remaining state after measurement is:

|b〉 |xb,y〉 |ψb〉 (6.52)

Therefore, measuring y acts as a standard basis measurement of the first qubit of the state
|ψ〉 in (6.44). The standard basis measurement b can be obtained (with access to only the
trapdoor tk of gk,0, gk,1 and y) by running the function INVG.

6.4.2 Measurement Protocol

We now use the commitment process in Section 6.4.1 to construct our measurement protocol
for n qubits, where n is polynomial in the security parameter λ. We require an extended
trapdoor claw-free family F (Definition 6.3.4) as well as its corresponding trapdoor injective

CHAPTER 6. VERIFICATION 73

family G (Definition 6.3.2). The measurement protocol depends on a string h ∈ {0, 1}n, called
the basis choice, which represents the basis for which the verifier would like measurement
results of the n qubits; hi = 0 indicates the standard basis and hi = 1 indicates the Hadamard
basis. We now provide the measurement protocol:

Protocol 6.4.1 Measurement Protocol (for h ∈ {0, 1}n)

1. The verifier performs the following operations for 1 ≤ i ≤ n:

a) If the standard basis is chosen for qubit i (i.e. hi = 0), the verifier runs GENG(1
λ)

to produce a function key ki ∈ KG and its corresponding trapdoor tki.

b) If the Hadamard basis is chosen for qubit i (hi = 1), the verifier runs GENF(1λ)
to produce a function key ki ∈ KF and its corresponding trapdoor tki.

Let k′ = (k1, . . . , kn). The verifier sends the function choice k′ to the prover.

2. The verifier receives y′ = (y1, . . . , yn) ∈ Yn from the prover.

3. The verifier chooses at random to run a test round or a Hadamard round (each is
chosen with probability 1

2
).

4. For a test round:

a) The verifier asks the prover for standard basis measurements of committed qubit
i and preimage register i, for 1 ≤ i ≤ n.

b) For 1 ≤ i ≤ n, the verifier receives a bit b′i and a string x′i ∈ X . For all i such that
hi = 0, the verifier rejects if CHKG(ki, b

′
i, x
′
i, yi) = 0. For all i such that hi = 1,

the verifier rejects if CHKF(ki, b
′
i, x
′
i, yi) = 0.

5. For a Hadamard round:

a) The verifier asks the prover for Hadamard measurements of committed qubit i and
preimage register i for 1 ≤ i ≤ n.

b) For 1 ≤ i ≤ n, the verifier receives a bit b′i and a string di ∈ {0, 1}w.

c) For qubits i for which hi = 0, the results (b′i, di) are ignored. The verifier computes

(mi, xmi,yi) = INVG(tki , yi) (6.53)

If the inverse does not exist, the verifier stores a random bit as the measurement
result and rejects. Otherwise the verifier stores mi as the standard basis measure-
ment result.

CHAPTER 6. VERIFICATION 74

d) For qubits i for which hi = 1, the verifier computes

x0,yi = INVF(tki , 0, yi) (6.54)

x1,yi = INVF(tki , 1, yi) (6.55)

If either of the inverses does not exist, the verifier stores a random bit as the
measurement result and rejects. The verifier uses tki to check if di ∈ Gki,0,x0,yi

∩
Gki,1,x1,yi

. If not, the verifier stores a random bit as the measurement result and
rejects. Otherwise, the verifier stores mi = b′i ⊕ di · (J(x0,yi) ⊕ J(x1,yi)) as the
Hadamard basis measurement result.

6.4.2.1 Honest Prover

We now provide an honest prover’s behavior in Protocol 6.4.1, assuming the prover would
like to report measurement results of an n qubit state ρ:

Protocol 6.4.2 Honest Prover in Measurement Protocol (for an efficiently com-
putable n qubit state ρ)

1. The prover creates the state ρ. Upon receipt of k′ from the verifier, the prover commits
to qubit i of ρ using ki as described in Section 6.4.1. The prover reports the mea-
surement results y′ = (y1, . . . , yn) ∈ Yn obtained from each commitment process to the
verifier.

2. For a test round:

a) The prover measures each of the n committed qubits and preimage registers in
the standard basis, sending the verifier the resulting bit b′i and string x′i ∈ X for
1 ≤ i ≤ n.

3. For a Hadamard round:

a) The prover first applies the unitary UJ to all n preimage registers. The prover then
measures each of the n committed qubits and preimage registers in the Hadamard
basis, sending the verifier the resulting bit b′i and string di ∈ {0, 1}w for 1 ≤ i ≤ n.

6.4.3 Notation

We now introduce some notation (and provide reminders of previously used notation) which
will be useful throughout the rest of the chapter.

1. The string h ∈ {0, 1}n is called the basis choice; hi = 0 indicates the standard basis
and hi = 1 indicates the Hadamard basis.

CHAPTER 6. VERIFICATION 75

2. We will call k′ (produced in step 1 of Protocol 6.4.1) the function choice of the verifier.
Let DV,h be the distribution which it is sampled from (this is the distribution produced
by GENF and GENG).

3. A perfect prover is a prover who is always accepted by the verifier on the test round.

4. For a density matrix ρ on n qubits and a string h ∈ {0, 1}n, let Dρ,h be the distribution
over {0, 1}n which results from measuring all qubits of ρ in the basis specified by h.

5. For every prover P and basis choice h ∈ {0, 1}n, let DP,h be the distribution over
measurement results m ∈ {0, 1}n obtained by the verifier when interacting with P on
basis choice h in a Hadamard round. LetDC

P,h be the same distribution, but conditioned
on acceptance by the verifier (in a Hadamard round). Let σP,h be the density matrix
corresponding to the distribution DP,h:

σP,h
def
=

∑
m∈{0,1}n

DP,h(m) |m〉 〈m| (6.56)

We will frequently use the fact that for provers P and P′, σP,h and σP′,h are compu-
tationally indistinguishable if and only if DP,h and DP′,h are computationally indistin-
guishable, by definition of computational indistinguishability of distributions (Defini-
tion 3.1.2) and of density matrices (Definition 3.3.2). Also note that by definition of
trace distance in (3.10) and total variation distance in (3.2):

‖σP,h − σP′,h‖tr = ‖DP,h −DP′,h‖TV (6.57)

6. As introduced in Section 6.4.1, a committed qubit is the qubit which is used to determine
whether to apply fk,0 or fk,1 (or gk,0 or gk,1) and the preimage register is the register
which contains the inverse after the measurement; i.e. in the following state from
(6.47): ∑

b

αb |b〉 |xb,y〉 |ψb〉 (6.58)

the first qubit is the committed qubit and the second register (containing xb,y) is the
preimage register. The commitment string is the string y ∈ Y .

6.4.4 Completeness of Measurement Protocol

Claim 6.4.3 Completeness of Measurement Protocol (Protocol 6.4.1) For all n
qubit states ρ and for all basis choices h ∈ {0, 1}n, the prover P described in Protocol 6.4.2
is a perfect prover (P is accepted by the verifier in a test round for basis choice h with perfect
probability). There exists a negligible function µ such that in the Hadamard round for basis
choice h, the verifier accepts P with probability ≥ 1− µ and

∥∥DC
P,h −Dρ,h

∥∥
TV
≤ µ.

CHAPTER 6. VERIFICATION 76

Proof of Claim 6.4.3: First, assume that the prover could produce the ideal states in
the commitment procedure, as written in (6.46) for the Hadamard basis and (6.51) for the
standard basis. Call such a prover P′. The distribution over measurement results obtained
by the verifier when interacting with P′ (prior to conditioning on acceptance) is equal to the
distribution over measurement results obtained by measuring ρ in the basis specified by h,
i.e.:

‖DP′,h −Dρ,h‖TV = 0 (6.59)

We now return to analyzing the prover P given in Protocol 6.4.2. First note that P is a perfect
prover: when measured, the superpositions created by P during the commitment process (in
(6.45) and (6.51)) pass the CHK procedure perfectly, by definition (see Definition 6.3.1 and
Definition 6.3.2). Moving on to the Hadamard round, P is rejected by the verifier only if
there exists an i such that the measurement result di is not in the set Gki,0,x0,yi

∩ Gki,1,x1,yi
(and hi = 1). The adaptive hardcore bit clause of Definition 6.3.1 (item 4(a)) implies that
since di is sampled uniformly (it is the result of a Hadamard transform), there exists a
negligible function µH such that the probability that the verifier rejects P in the Hadamard
round is at most µH : ∥∥DP,h −DC

P,h

∥∥
TV
≤ µH (6.60)

Next, observe that the prover P in Protocol 6.4.2 can produce the state in (6.51) (which is
used by the prover P′), but can only create a state within negligible trace distance of the
state in (6.46). It follows that there exists a negligible function µ′ such that:

‖DP,h −DP′,h‖TV ≤ µ′ (6.61)

Using the triangle inequality, we obtain:∥∥DC
P,h −Dρ,h

∥∥
TV
≤

∥∥DC
P,h −DP,h

∥∥
TV

+ ‖DP,h −DP′,h‖TV + ‖DP′,h −Dρ,h‖TV(6.62)

We complete the calculation by plugging in (6.59), (6.60) and (6.61):∥∥DC
P,h −Dρ,h

∥∥
TV
≤ µH + µ′ (6.63)

To complete the proof of the claim, set µ = µH + µ′. �

6.4.5 Prover Behavior

We now give a claim which characterizes the behavior of a general prover in Protocol 6.4.1
(the overview of this claim and its proof are given in Section 6.1.3.1). The only difference
between the following claim and the version given in the overview is the inclusion of the
operator UJ (as defined in (6.48)):

Claim 6.4.4 Prover Behavior For all BQP provers P in Protocol 6.4.1, there exist two
efficiently computable unitary operators U0, U and a prover P′ (described below) such that for
all basis choices h ∈ {0, 1}n, P and P′ are accepted by the verifier with the same probability

CHAPTER 6. VERIFICATION 77

in a test round and the distribution over measurement results DP,h produced by the prover
and verifier as a result of Protocol 6.4.1 is equal to the distribution DP′,h corresponding to
the prover P′. We say that P is characterized by (U0, U).

1. P′ designates his first n qubits as committed qubits, the next n registers as preimage
registers and the final n registers as commitment string registers. All other registers
contain auxiliary space.

2. Upon receipt of the function choice k′ from the verifier, the prover P′ applies U0 to his
initial state:

|0〉⊗e ⊗ |k′〉 (6.64)

where e is determined by U0, U and U0 uses the last register (containing k′) as a control
register; i.e. there exists a unitary U0,k′ such that

U0(|0〉⊗e ⊗ |k′〉) = U0,k′(|0〉⊗e)⊗ |k′〉 (6.65)

3. P′ measures the commitment string registers to obtain y′ = (y1, . . . , yn) ∈ Yn, which is
sent to the verifier.

4. For a Hadamard round:

a) P′ appends eJ · n auxiliary 0 qubits to his state and applies the unitary UJ to all
n preimage registers, followed by application of the unitary U to his entire state.

b) P′ measures the n committed qubits and preimage registers in the Hadamard basis.
P′ sends the verifier the resulting bit b′i and string di ∈ {0, 1}w for 1 ≤ i ≤ n.

5. For a test round, P′ measures each of the n committed qubits and preimage registers
in the standard basis, sending the verifier the resulting bit b′i and string x′i ∈ X for
1 ≤ i ≤ n.

Notation 6.4.5 We will also frequently say that a prover P is characterized by two CPTP
maps (S0,S). This means that for all basis choices h ∈ {0, 1}n, P and P′ are accepted with
the same probability in a test round and DP,h = DP′,h, and the prover P′ follows steps 1 - 5
in Claim 6.4.4, but uses the CPTP maps S0,S rather than the unitary operators U0, U .

Proof of Claim 6.4.4: We will follow the principle given in Section 6.1.3.1: a general
prover is equivalent from the verifier’s perspective to a prover P who begins each round by
applying an arbitrary unitary attack and then behaves honestly. The first implication of the
principle is that P measures the same registers as an honest prover; therefore, like the honest
prover, P designates the first n qubits as committed qubits, the next n registers as preimage
registers, and the final n registers as commitment string registers. All other registers of P
contain the auxiliary space.

CHAPTER 6. VERIFICATION 78

The second implication is that there exist unitary operators U ′, UT and UC such that
P acts as follows. P begins with the initial state |0〉⊗e ⊗ |k′〉 and then applies a unitary
operator U ′ to his state, followed by standard basis measurement of the commitment string
registers to obtain y′. If the verifier chooses a test round, the prover applies another unitary
UT followed by standard basis measurements of the committed qubit and preimage registers
to obtain the requested measurement results. If the verifier chooses a Hadamard round, the
prover first appends eJ · n auxiliary 0 qubits to his state. Next, the prover applies a unitary
UC to his state. He then applies the unitary UJ (see Section 6.4.1.1) to all n preimage
registers. Finally, the prover measures all n committed qubits and preimage registers in the
Hadamard basis to obtain the requested measurement results. We can assume both UT and
UC do not act on the register containing y′. This is because y′ could have been copied into
the prover’s auxiliary space prior to measurement, and UT and UC can instead act on this
space. It follows that both UT and UC commute with the measurement of y′.

To obtain the attacks U0 and U which characterize P, we make two changes. First, we use
the fact that UT commutes with measurement of y′ to shift it prior to the measurement. Due
to this change, we also need to append U †T to the start of the Hadamard round attack. Our
second change is to shift the unitary UJ so that it is prior to the Hadamard round attack;
this can be done by conjugating the attack by UJ . It follows that if we let U0 = UTU

′,
U = U⊗nJ UCU

†
T (U⊗nJ)† and consider the prover P′ described in the statement of Claim 6.4.4

(with respect to U0 and U), P and P′ are accepted with the same probability in a test round
and DP,h = DP′,h for all basis choices h.

�

6.4.6 Construction of Underlying Quantum State

We require the following definition:

Definition 6.4.6 Trivial Prover A perfect prover P in Protocol 6.4.1 characterized by
(U0,S) (where U0 is a unitary, S is a CPTP map and both are efficiently computable) is
called trivial if S commutes with standard basis measurement on the first n qubits.

In this section, we prove the following claim (the overview of this claim is given in Section
6.1.3.2):

Claim 6.4.7 For all trivial provers P, there exists an n qubit state ρ (which can be cre-
ated using a BQP circuit) such that for all h ∈ {0, 1}n, the distribution over measurement
results DP,h produced in Protocol 6.4.1 with respect to P for basis choice h is computation-
ally indistinguishable from the distribution Dρ,h which results from measuring ρ in the basis
determined by h.

Proof: For a unitary U0 and CPTP map S, let the prover P be characterized by (U0,S).
The state ρ is constructed as follows:

Protocol 6.4.8 Construction of ρ corresponding to P

CHAPTER 6. VERIFICATION 79

1. For 1 ≤ i ≤ n: sample (ki, tki)← GENF(1λ).

2. Follow steps 1-4(a) in Claim 6.4.4 (with respect to U0,S).

3. Measure all preimage registers in the Hadamard basis to obtain d1, . . . , dn ∈ {0, 1}w.

4. For 1 ≤ i ≤ n, use the trapdoor tki to apply Zdi·(x0,yi⊕x1,yi) to the ith committed qubit.

5. Trace out all qubits except n committed qubits.

We now argue that, for all h ∈ {0, 1}n, Dρ,h is computationally indistinguishable from DP,h.
We will proceed through two families of hybrid states which are dependent on the basis
choice h. In the first family {ρ(1)h }h∈{0,1}n , we simply remove the Z decoding operator (step
4 of Protocol 6.4.8) if hi = 0. This also eliminates the need for the trapdoor tki if hi = 0:

Protocol 6.4.9 Construction of ρ
(1)
h corresponding to P

1. For 1 ≤ i ≤ n: sample (ki, tki)← GENF(1λ). If hi = 0, discard the trapdoor tki.

2. Apply steps 2-3 of Protocol 6.4.8.

3. For 1 ≤ i ≤ n, if hi = 1, use the trapdoor tki to apply Zdi·(x0,yi⊕x1,yi) to the ith committed
qubit.

4. Trace out all qubits except the n committed qubits.

The distributions Dρ,h and D
ρ
(1)
h ,h

differ only on i for which hi = 0. To address this difference,

note that if hi = 0, the Z operator applied in step 4 of Protocol 6.4.8 has no effect on Dρ,h:
to obtain Dρ,h the ith committed qubit is measured in the standard basis immediately after
application of the Z operator. Therefore, Dρ,h = D

ρ
(1)
h ,h

for all h.

Our next hybrid is:

Protocol 6.4.10 Construction of ρ
(2)
h corresponding to P

1. For 1 ≤ i ≤ n: if hi = 1, sample (ki, tki) ← GENF(1λ). If hi = 0, sample (ki, tki) ←
GENG(1

λ) and discard the trapdoor tki.

2. Apply steps 2-4 of Protocol 6.4.9.

The computational indistinguishability of D
ρ
(1)
h ,h

and D
ρ
(2)
h ,h

follows due to the injective

invariance (Definition 6.3.3) of F with respect to G: as long as the trapdoor tki is unknown,
a key ki sampled from KF is computationally indistinguishable from a key ki sampled from
KG. We can apply this argument for all i such that hi = 0 since the trapdoor tki was
discarded for all such i in Protocols 6.4.9 and 6.4.10.

We have so far shown that Dρ,h is computationally indistinguishable from D
ρ
(2)
h ,h

for all

h ∈ {0, 1}n. To complete our proof, we now show that D
ρ
(2)
h ,h

= DP,h. The two distributions

CHAPTER 6. VERIFICATION 80

differ as follows: if hi = 0, the distribution of the ith bit of DP,h is obtained from the
commitment string yi (see step 5(c) of Protocol 6.4.1), but the distribution of the ith bit of

D
ρ
(2)
h ,h

is obtained from measuring the ith committed qubit of ρ
(2)
h in the standard basis.

To see that these two distributions are equal, we begin by observing that since the prover
P is perfect, if hi = 0, measuring the ith committed qubit prior to the attack S (i.e. at the
start of the Hadamard round) results in the same outcome as extracting the measurement
outcome from yi. To complete our proof, recall that since the prover is trivial, the attack S
commutes with standard basis measurement. �

6.5 Replacement of a General Attack with an

X-Trivial Attack for Hadamard Basis

In this section, we analyze Protocol 6.4.1 with a perfect prover (a prover who passes the test
round of Protocol 6.4.1 with perfect probability). We will rely on notation introduced in
Section 6.4.3. This section is dedicated to proving the following claim:

Claim 6.5.1 General to X-Trivial Attack for Hadamard Basis Let 1 ≤ j ≤ n.
Let S = {Bτ}τ and Sj = {B′j,x,τ}x∈{0,1},τ be CPTP maps written in terms of their Kraus
operators:

Bτ =
∑

x,z∈{0,1}

XxZz ⊗Bjxzτ (6.66)

B′j,x,τ =
∑

z∈{0,1}

Zz ⊗Bjxzτ (6.67)

where Bτ and B′j,x,τ have been rearranged so that XxZz and Zz act on the jth qubit. For a
unitary operator U0, let P be a perfect prover characterized by (U0,S) (see Claim 6.4.4 and
notation 6.4.5). Let Pj be a perfect prover characterized by (U0,Sj). If hj = 1, DP,h and
DPj ,h are computationally indistinguishable.

The overview of the proof of Claim 6.5.1 is given in Section 6.1.4. Claim 6.5.1 is slightly
more general than the statement in the overview: n does not have to be equal to 1, and we
are proving that we can replace the attack S with an attack which acts trivially on any one
of the committed qubits j for which hj = 1. We begin by writing out the state σP,h which
corresponds to the distribution DP,h (as defined in (6.56)). This requires some care, since
we need to go through the steps of Protocol 6.4.1 in order to construct σP,h. Once we write
down the state σP,h, we can proceed to proving computational indistinguishability between
σP,h and σPj ,h. As written below (6.56), proving computational indistinguishability between
σP,h and σP1,h is equivalent to proving indistinguishability between DP,h and DP1,h.
Proof of Claim 6.5.1: We will assume for convenience that j = 1; the proof for all other
values of j is equivalent. To analyze the state σP,h, we will assume that P follows steps 1-4

CHAPTER 6. VERIFICATION 81

in Claim 6.4.4. We can do this since P is characterized by U0,S; therefore, the state σP,h
can be obtained by following the steps in Claim 6.4.4.

We first provide some notation we will require. Let k = k1 ∈ KF be the first function key
received by the prover P in Protocol 6.4.1. Throughout this proof, we will only be focusing
on the first committed qubit (since j = 1). Therefore, for notational convenience, we will
drop the subscript of 1 for values pertaining to the first committed qubit (i.e. the basis
choice, function key, commitment string, etc.). Let h>1 = (h2, . . . , hn), let k>1 = (k2, . . . , kn)
and define tk>1 similarly. We will also require the following mixed state, which contains the
distribution over all function keys and trapdoors except the first (as sampled by the verifier).∑

k>1

DV,h>1 |k>1〉 〈k>1| ⊗ |tk>1〉 〈tk>1| (6.68)

This mixed state is required to create σP,h: the function keys are part of the prover’s input
and the trapdoors are used for the verifier’s decoding. For convenience, let |φk>1〉 be a
purification of the above state; when analyzing the state σP,h, we can consider a purification
since we will eventually be tracing out all but the committed qubits. For b ∈ {0, 1}, let
Tk,b = ∪

x∈X
Supp(fk,b(x)) (Supp(fk,b(x)) is the support of the probability density function

fk,b(x) - see Definition 6.3.1 for a reminder). Let Tk = Tk,0 ∪ Tk,1.
We begin by writing the state of P after application of U0. Recall from Claim 6.4.4 that

when the verifier requests test round measurement results from P, P simply measures the
requested registers in the standard basis and sends the results to the verifier. Since P is
a perfect prover, it follows that the state of P after applying U0 must yield measurement
results which pass the test round perfectly. The state of P after applying U0 can therefore
be written as:

U0 |0〉⊗e |k〉 |φk>1〉 =
∑

b∈{0,1}
y∈Tk,b

|b, xb,y〉 |ψb,y,k〉 |y〉 (6.69)

where xb,y is the output of INVF(tk, b, y). We have suppressed the dependence of xb,y on k
for convenience. The state in (6.69) can be written in this format since if the prover returns
y ∈ Y in the commitment stage (step 2 of Protocol 6.4.1), in the test round he must return
b ∈ {0, 1} and x ∈ X such that CHKF(tk, b, x, y) = 1. Conditions 3(a) and 3(b) of Definition
6.3.1 imply that only xb,y = INVF(tk, b, y) satisfies this condition. The auxiliary space
represented by |ψb,y,k〉 includes the remaining n − 1 committed qubits, preimage registers
and commitment strings as well as the state |φk>1〉.

For convenience, we will instead write the state in (6.69) as follows:

U0 |0〉⊗e |k〉 =
∑

b∈{0,1}
y∈Tk

|b, xb,y〉 |ψb,y,k〉 |y〉 (6.70)

The only change we have made is we have replaced the summation over y ∈ Tk,b with the
summation over y ∈ Tk = Tk,0 ∪ Tk,1. Note that the existence of two inverses of y (x0,y

CHAPTER 6. VERIFICATION 82

and x1,y) is guaranteed since y ∈ Tk - see Definition 6.3.1. For b, y for which y /∈ Tk,b, let
|ψb,y,k〉 = 0.

After the prover measures y and sends it to the verifier, the state shared between the
prover and verifier is:∑

y∈Tk

(
∑

b∈{0,1}

|b, xb,y〉 |ψb,y,k〉)(
∑

b∈{0,1}

|b, xb,y〉 |ψb,y,k〉)† ⊗ |y〉 〈y| (6.71)

and the last register (containing y) is held by the verifier. Next, the prover applies the
injective map UJ (see Section 6.4.1.1) to all n preimage registers along with auxiliary 0
qubits, which we assume have already been included in the extra space |ψb,y,k〉. At this
point, the state shared between the prover and verifier is:

ρk =
∑
y∈Tk

ρy,k (6.72)

where
ρy,k = (

∑
b∈{0,1}

|b, J(xb,y)〉
∣∣ψ′b,y,k〉)(∑

b∈{0,1}

|b, J(xb,y)〉
∣∣ψ′b,y,k〉)† ⊗ |y〉 〈y| (6.73)

The auxiliary space |ψb,y,k〉 has changed to
∣∣ψ′b,y,k〉 to account for the fact that the commit-

ment strings corresponding to indices i > 1 were measured and the unitary UJ was applied to
the corresponding preimage registers in the auxiliary space (we are considering a purification
of the auxiliary space for convenience).

The prover then applies his CPTP map S = {Bτ}τ followed by Hadamard basis mea-
surement of the first committed qubit and preimage register of the state in (6.72). The state
shared between the prover and verifier at this point is:∑
b′∈{0,1},τ
d∈{0,1}w

(|b′〉 〈b′| ⊗ |d〉 〈d| ⊗ I)(H⊗l+1 ⊗ I)BτρkB
†
τ (H

⊗l+1 ⊗ I)†(|b′〉 〈b′| ⊗ |d〉 〈d| ⊗ I)† (6.74)

Next, if the measurement result d ∈ Gk,0,x0,y ∩Gk,1,x1,y , the verifier decodes the first qubit by
applying the operator Xd·(J(x0,y)⊕J(x1,y)) (see step 5(d) of Protocol 6.4.1). If not, the verifier
stores a random bit as his measurement result; we can equivalently assume the verifier
decodes the first qubit by applying a random X operator. Note that the verifier’s decoding
(the application of the X operator) commutes with the prover’s measurement of the first
qubit. Therefore, the entire state, including the verifier’s decoding, can be written as:

σ0,k =
∑

b′,c∈{0,1},τ
d∈{0,1}w,y∈Rc,d,k

δd,y(|b′〉 〈b′|Xc⊗|d〉 〈d|⊗I)(H⊗l+1⊗I)Bτρy,kB
†
τ (H

⊗l+1⊗I)†(|b′〉 〈b′|Xc⊗|d〉 〈d|⊗I)†

(6.75)
where δd,y = 1

2
if d /∈ Gk,0,x0,y ∩Gk,1,x1,y and 1 if d ∈ Gk,0,x0,y ∩Gk,1,x1,y and

Rc,d,k = {y ∈ Tk|(d ∈ Gk,0,x0,y∩Gk,1,x1,y∧d ·(J(x0,y)⊕J(x1,y)) = c)∨(d /∈ Gk,0,x0,y∩Gk,1,x1,y)}
(6.76)

CHAPTER 6. VERIFICATION 83

For ease of notation, we will instead write the state in (6.75) as:

σ0,k =
∑

b′,c∈{0,1},τ
d∈{0,1}w,y∈Rc,d,k

δd,yOb′,c,d,τρy,kO
†
b′,c,d,τ (6.77)

where

Ob′,c,d,τ = (|b′〉 〈b′|Xc ⊗ |d〉 〈d| ⊗ I)(H⊗l+1 ⊗ I)Bτ (6.78)

Let S>1 be the CPTP map which contains all operations done on the remaining n − 1
committed qubits and preimage registers after application of the attack S: S>1 consists
of the Hadamard measurement of the remaining n − 1 committed qubits and preimage
registers as well as the verifier decoding of those committed qubits. S>1 is independent of
the function key k and trapdoor tk; it is only dependent on the remaining n − 1 function
keys and trapdoors, which are drawn independently and included in the auxiliary space of
σ0,k. Given this, the state σP,h is obtained by applying S>1, and then tracing out all but the
first n qubits (the committed qubits):

σP,h = Tr>n(S>1(
∑
k∈KF

DV,h(k)σ0,k)) (6.79)

where DV,h is the distribution over the set of function keys KF (since h = 1) produced by
GENF .

To prove the claim, we need to show that σP,h is computationally indistinguishable from
σP1,h. Let

σP,h,E =
∑
k∈KF

DV,h(k)σ0,k (6.80)

We will instead prove the stronger statement that σP,h,E is computationally indistinguishable
from σP1,h,E (to see why this is stronger, observe from (6.79) that σP,h can be obtained from
σP,h,E by applying the efficiently computable superoperator S>1 and tracing out all but the
first n qubits). Recall from the statement of the claim that P1 is characterized by (U0,S1).
Since S1 is followed by Hadamard basis measurement, Corollary 6.2.2 implies that P1 is also
characterized by (U0, { 1√

2
(Zr⊗I)S1(Zr⊗I)}r∈{0,1}). If we let P̂1 be the prover characterized

by (U0, (Z ⊗ I)S(Z ⊗ I)), it follows by linearity that

1

2
(σP,h,E + σP̂1,h,E

) = σP1,h,E (6.81)

Therefore, to complete the proof of Claim 6.5.1, we can instead show that σP,h,E is com-
putationally indistinguishable from σP̂1,h,E

, which implies that σP,h,E is computationally
indistinguishable from σP1,h,E.

Computational Indistinguishability For convenience, let σP,h,E = σ0 and σP̂1,h,E
= σ1.

CHAPTER 6. VERIFICATION 84

We now prove that σ0 and σ1 are computationally indistinguishable; our proof follows the
outline given in Section 6.1.4.1. As given in (6.80):

σr =
∑
k∈KF

DV,h(k)σr,k (6.82)

and using (6.77):

σr,k =
∑

b′,c∈{0,1},τ
d∈{0,1}w,y∈Rc,d,k

δd,yOb′,c⊕r,d,τ (Z
r ⊗ I)ρy,k(Z

r ⊗ I)O†b′,c⊕r,d,τ (6.83)

Note that, in the case that r = 1, the operator (Z ⊗ I) acting after Bτ was absorbed into
Ob′,c,d,τ to create Ob′,c⊕r,d,τ . Recall from (6.73) that:

ρy,k = (
∑

b∈{0,1}

|b, J(xb,y)〉
∣∣ψ′b,y,k〉)(∑

b∈{0,1}

|b, J(xb,y)〉
∣∣ψ′b,y,k〉)† ⊗ |y〉 〈y| (6.84)

We can break down the state ρy,k into two components:

ρy,k = ρDy,k + ρCy,k (6.85)

The components are as follows:

ρDy,k =
∑

b∈{0,1}

|b〉 〈b| ⊗ |J(xb,y)〉 〈J(xb,y)| ⊗
∣∣ψ′b,y,k〉 〈ψ′b,y,k∣∣⊗ |y〉 〈y| (6.86)

ρCy,k =
∑

b∈{0,1}

|b〉 〈b⊕ 1| ⊗ |J(xb,y)〉 〈J(xb⊕1,y)| ⊗
∣∣ψ′b,y,k〉 〈ψ′b⊕1,y∣∣⊗ |y〉 〈y| (6.87)

Since Z operators acting on the first qubit have no effect on (6.86) and add a phase of -1 to
(6.87), we can rewrite (6.83) as:

σr,k =
∑

b′,c∈{0,1},τ
d∈{0,1}w,y∈Rc,d,k

δd,yOb′,c⊕r,d,τ (Z
r ⊗ I)(ρDy,k + ρCy,k)(Z

r ⊗ I)O†b′,c⊕r,d,τ (6.88)

=
∑

b′,c∈{0,1},τ
d∈{0,1}w,y∈Rc,d,k

δd,yOb′,c⊕r,d,τ (ρ
D
y,k + (−1)rρCy,k)O

†
b′,c⊕r,d,τ (6.89)

To show that σ0 and σ1 are computationally indistinguishable, we reduce the problem to
showing that the components corresponding to the diagonal and cross terms of the committed
state ρy,k are computationally indistinguishable:

Claim 6.5.2 If σ0 is computationally distinguishable from σ1, then one of the following must
hold:

CHAPTER 6. VERIFICATION 85

1. Let

σDr
def
=

∑
k∈KF

DV,h(k)σDr,k (6.90)

σDr,k
def
=

∑
b′,c∈{0,1},τ

d∈{0,1}w,y∈Rc,d,k

δd,yOb′,c⊕r,d,τ (ρ
D
y,k)O

†
b′,c⊕r,d,τ (6.91)

The density matrices σD0 and σD1 are computationally distinguishable.

2. Let

σ̂r
def
=

∑
k∈KF

DV,h(k)σ̂r,k (6.92)

σ̂r,k
def
= (Zr ⊗ I)(

∑
y∈Tk

ρy,k)(Z
r ⊗ I) (6.93)

The density matrices σ̂0 and σ̂1 are computationally distinguishable.

The first pair of density matrices is equal to the terms of σ0 and σ1 resulting from the
diagonal term of the committed state and the second pair represents the cross terms. The
proof of Claim 6.5.2 is a simple application of the triangle inequality and is given in Section
6.5.3. We complete the proof of Claim 6.5.1 with the following two claims:

Claim 6.5.3 If σD0 is computationally distinguishable from σD1 , then there exists a BQP
attacker A who can violate the hardcore bit clause of Definition 6.3.1.

Claim 6.5.4 If σ̂0 is computationally distinguishable from σ̂1, then there exists a BQP at-
tacker A who can violate the hardcore bit clause of Definition 6.3.4.

We prove Claims 6.5.3 and 6.5.4 in the next two sections.
�

6.5.1 Indistinguishability of Diagonal Terms (Proof of Claim
6.5.3)

The overview of the following proof is given in Section 6.1.4.1.
Proof of Claim 6.5.3: Recall that we would like to show that the density matrices σD0
and σD1 are computationally indistinguishable. We will proceed by contradiction. Assume
σD0 and σD1 are distinguishable using an efficiently computable CPTP map S. It follows by
the definition of computational indistinguishability (Definition 3.3.2) and by the expression
for σDr in (6.90) that the following expression is non negligible:

|
∑
k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(
∑

r∈{0,1}

(−1)rσDr,k))| (6.94)

CHAPTER 6. VERIFICATION 86

We will use the CPTP map S to construct an attacker A who violates the hardcore bit
clause of Definition 6.3.1.

Let

RD
c,d,k = {y ∈ Tk|d ∈ Gk,0,x0,y ∩Gk,1,x1,y ∧ d · (J(x0,y)⊕ J(x1,y)) = c} (6.95)

We will require the unnormalized state σ̃Dr,k, which is the state σDr,k from (6.91) conditioned
on obtaining measurements y, d such that d ∈ Gk,0,x0,y ∩Gk,1,x1,y :

σ̃Dr,k =
∑

b′,c∈{0,1},τ
d∈{0,1}w,y∈RDc,d,k

Ob′,c⊕r,d,τ (ρ
D
y,k)O

†
b′,c⊕r,d,τ (6.96)

Observe that for all k ∈ KF ∑
r∈{0,1}

(−1)rσDr,k =
∑

r∈{0,1}

(−1)rσ̃Dr,k (6.97)

This is because σD0,k and σD1,k are identical when conditioned on d /∈ Gk,0,x0,y ∩Gk,1,x1,y (both
have a uniform X decoding operator applied). It follows that the expression in (6.94) is
equal to:

|
∑
k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(
∑

r∈{0,1}

(−1)rσ̃Dr,k))| (6.98)

The attacker A (on input k ∈ KF) first constructs the following state from (6.72):∑
y∈Tk

ρy,k (6.99)

He does this exactly as the BQP prover P would have: by applying the prover’s initial
operator U0 to the input state and measuring the last register to obtain y. Then A measures
both the committed qubit and preimage register, obtaining (b, xb,y). The resulting state is a
summation over the state in (6.86): ∑

y∈Tk

ρDy,k (6.100)

A now continues as P would have: he applies the CPTP map {Bτ}τ , followed by Hadamard
measurement of the committed qubit and preimage register, obtaining results b′ ∈ {0, 1} and
d ∈ {0, 1}w. A then chooses a bit c′ at random, stores the bit c′ in an auxiliary register,
and applies Xc′ to the committed qubit (this operation commutes with measurement of the
committed qubit). The unnormalized state created by A (conditioned on d, y such that
d ∈ Gk,0,x0,y ∩Gk,1,x1,y) is equal to:

1

2

∑
b′,c′∈{0,1},τ,y∈Tk

d∈Gk,0,x0,y∩Gk,1,x1,y

Ob′,c′,d,τ (ρ
D
y,k)O

†
b′,c′,d,τ ⊗ |c

′〉 〈c′| (6.101)

CHAPTER 6. VERIFICATION 87

We will partition the above state into components using the following projection (the set
RD
c,d,k is defined in (6.95)):

PD
c,k = I ⊗

∑
d∈{0,1}w,y∈RDc,d,k

|d〉 〈d| ⊗ I ⊗ |y〉 〈y| (6.102)

The state of A in (6.101) can now be written in terms of the state σ̃Dr,k, as defined in (6.96):

=
1

2

∑
c,c′∈{0,1}

PD
c,kσ̃

D
c⊕c′,kP

D
c,k ⊗ |c′〉 〈c′| (6.103)

Finally, A applies the efficiently computable CPTP map S (which is used to distinguish
between σD0 and σD1) to the state in (6.103) and measures the first qubit. If the result of the
measurement is r ∈ {0, 1}, A outputs b, xb,y, d, c

′ ⊕ r.
In order to violate the hardcore bit clause of Definition 6.3.1, A must output (b, xb, d, d ·

(J(x0)⊕J(x1))) with non negligible advantage (over outputting (b, xb, d, d ·(J(x0)⊕J(x1))⊕
1)). More formally, we need to show that the following advantage of A (taken from Definition
6.3.1) is non negligible:∣∣∣ Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]− Pr

(k,tk)←GENF (1λ)
[A(k) ∈ Hk]

∣∣∣ ≤ µ (6.104)

where

Hk = {(b, xb, d, d · (J(x0)⊕ J(x1)))|b ∈ {0, 1}, (x0, x1) ∈ Rk, d ∈ Gk,0,x0 ∩Gk,1,x1}
Hk = {(b, xb, d, c)|(b, xb, d, c⊕ 1) ∈ Hk}

A outputs a string in Hk if, on components PD
c,kσ̃

D
0,kP

D
c,k and PD

c,kσ̃
D
1,kP

D
c,k, the final bit of A’s

output is c. This occurs as long as the distinguishing operator S outputs r on components
PD
0,kσ̃

D
r,kP

D
0,k and PD

1,kσ̃
D
r,kP

D
1,k. It follows that the probability that A outputs a string in Hk is

equal to:

Pr
(k,tk)←GENF (1λ)

[A(k) ∈ Hk] =
1

2

∑
k∈KF
r∈{0,1}

DV,h(k) · Tr((|r〉 〈r| ⊗ I)S(
∑

c∈{0,1}

PD
c,kσ̃

D
r,kP

D
c,k))

=
1

2

∑
k∈KF
r∈{0,1}

DV,h(k) · Tr((|r〉 〈r| ⊗ I)S(σ̃Dr,k)) (6.105)

By similar reasoning,

Pr
(k,tk)←GENF (1λ)

[A(k) ∈ Hk] =
1

2

∑
k∈KF
r∈{0,1}

DV,h(k) · Tr((|r ⊕ 1〉 〈r ⊕ 1| ⊗ I)S(σ̃Dr,k)) (6.106)

CHAPTER 6. VERIFICATION 88

By combining (6.105) and (6.106) and then using the equality in (6.97), we obtain that the
advantage of A in (6.104) is equal to:∣∣∣ ∑
k∈KF

DV,h(k) ·Tr((|0〉 〈0|⊗I)S(σ̃D0,k− σ̃D1,k))
∣∣∣ =

∣∣∣ ∑
k∈KF

DV,h(k) ·Tr((|0〉 〈0|⊗I)S(σD0,k−σD1,k))
∣∣∣

(6.107)
The expression in (6.107) is non negligible, due to our initial assumption that the CPTP
map S can distinguish between σD0 and σD1 (see (6.94)).

�

6.5.2 Indistinguishability of Cross Terms (Proof of Claim 6.5.4)

The overview of the following proof is given in Section 6.1.4.1.
Proof of Claim 6.5.4: Recall that we would like to show that the density matrices σ̂0 and
σ̂1 are computationally indistinguishable. We will proceed by contradiction. Assume the
two matrices σ̂0 and σ̂1 are computationally distinguishable using the efficiently computable
CPTP map S. It follows by the definition of computational indistinguishability (Definition
3.3.2) and the expression for σ̂r in (6.92) that the following expression is non negligible:

|
∑
k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(
∑

r∈{0,1}

(−1)rσ̂r,k))| (6.108)

We will use the CPTP map S to construct a BQP attacker A who will violate the hardcore
bit clause of Definition 6.3.4.

Fix a string d ∈ {0, 1}w. The attacker A (on input k ∈ KF) first constructs the following
state from (6.72): ∑

y∈Tk

ρy,k (6.109)

He does this exactly as the BQP prover P would have: by applying the prover’s initial
operator U0 the to input state and measuring the last register to obtain y. Then A applies
Zd to the preimage register. The resulting state is:

(I ⊗ Zd ⊗ I)(
∑
y∈Tk

ρy,k)(I ⊗ Zd ⊗ I) =
∑
y∈Tk

(Zd·(J(x0,y)⊕J(x1,y)) ⊗ I)ρy,k(Z
d·(J(x0,y)⊕J(x1,y)) ⊗ I)

(6.110)
The equality is due to the format of the state ρy,k, as written in (6.73):

ρy,k = (
∑

b∈{0,1}

|b, J(xb,y)〉
∣∣ψ′b,y,k〉)(∑

b∈{0,1}

|b, J(xb,y)〉
∣∣ψ′b,y,k〉)† ⊗ |y〉 〈y| (6.111)

If we let
RC
c,d,k = {y ∈ Tk|d · (J(x0,y)⊕ J(x1,y)) = c} (6.112)

CHAPTER 6. VERIFICATION 89

the expression in (6.110) is equal to:∑
c∈{0,1},y∈RCc,d,k

(Zc ⊗ I)ρy,k(Z
c ⊗ I) (6.113)

Finally, A chooses a random bit c′, applies Zc′ to the committed qubit and stores c′ in an
auxiliary register. Continuing from (6.113), the state of A at this point is equal to:

1

2

∑
c,c′∈{0,1},y∈RCc,d,k

(Zc⊕c′ ⊗ I)ρy,k(Z
c⊕c′ ⊗ I)⊗ |c′〉 〈c′| (6.114)

We partition the state in (6.114) into components using the following projection:

PC
c,k = I ⊗

∑
y∈RCc,d,k

|y〉 〈y| (6.115)

The state in (6.114) can now be written in terms of σ̂r,k, as defined in (6.93)

σ̂r,k = (Zr ⊗ I)(
∑
y∈Tk

ρy,k)(Z
r ⊗ I) (6.116)

as follows:

=
1

2

∑
c,c′∈{0,1}

PC
c,k(Z

c⊕c′ ⊗ I)(
∑
y∈Tk

ρy,k)(Z
c⊕c′ ⊗ I)PC

c,k ⊗ |c′〉 〈c′| (6.117)

=
1

2

∑
c,c′∈{0,1}

PC
c,k(σ̂c⊕c′,k)P

C
c,k ⊗ |c′〉 〈c′| (6.118)

Finally, A applies the CPTP map S (which is used to distinguish between σ̂0 and σ̂1) to the
state in (6.118) and measures the first qubit. If the result of the measurement is r ∈ {0, 1},
A outputs c′ ⊕ r.

In order to violate the hardcore bit clause of Definition 6.3.4, A must guess the value of
d · (J(x0,y) ⊕ J(x1,y)) with non negligible advantage. More formally, we need to show that
the following advantage of A (taken from Definition 6.3.4) is non negligible:∣∣∣ Pr

(k,tk)←GENF (1λ)
[A(k) ∈ H ′k,d]−

1

2

∣∣∣ (6.119)

where

H ′k,d = {d · (J(x0)⊕ J(x1))|(x0, x1) ∈ Rk} (6.120)

CHAPTER 6. VERIFICATION 90

The bit output by A is in H ′k,d if, on components PC
c,kσ̂0,kP

C
c,k and PC

c,kσ̂1,kP
C
c,k, A outputs c.

This occurs as long as the distinguishing operator S outputs r on components PC
0,kσ̂r,kP

C
0,k

and PC
1,kσ̂r,kP

C
1,k. It follows that the probability that A outputs a value in H ′k,d is equal to:

Pr
(k,tk)←GENF (1λ)

[A(k, d) ∈ H ′k,d] =
1

2

∑
k∈KF
r∈{0,1}

DV,h(k) · Tr((|r〉 〈r| ⊗ I)S(
∑

c∈{0,1}

PC
c,kσ̂r,kP

C
c,k))

=
1

2

∑
k∈KF
r∈{0,1}

DV,h(k) · Tr((|r〉 〈r| ⊗ I)S(σ̂r,k))

=
1

2

∑
k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(σ̂0,k − σ̂1,k)) +
1

2

We can use the above expression to write the advantage of A from (6.119) as:

1

2

∣∣∣ ∑
k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(σ̂0,k − σ̂1,k))
∣∣∣ (6.121)

The expression in (6.121) is non negligible, due to our initial assumption that the CPTP
map S can distinguish between σ̂0 and σ̂1 (see (6.108)).

�

6.5.3 Reduction to Diagonal/Cross Terms (Proof of Claim 6.5.2)

Proof: If σ0 is computationally distinguishable from σ1, by Definition 3.3.2 and the ex-
pression for σr in (6.82) there exists an efficiently computable CPTP map S for which the
following expression is non negligible:∣∣∣ ∑

k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(
∑

r∈{0,1}

(−1)rσr,k))
∣∣∣ (6.122)

We use the expression for σr,k from (6.89) and the matrix σDr,k from (6.91) to define the
matrix σCr,k:

σr,k =
∑

b′,c∈{0,1},τ
d∈{0,1}w,y∈Rc,d,k

δd,yOb′,c⊕r,d,τ (ρ
D
y,k + (−1)rρCy,k)O

†
b′,c⊕r,d,τ (6.123)

= σDr,k + σCr,k (6.124)

By combining the following equality∑
r∈{0,1}

(−1)rσr,k =
∑

r∈{0,1}

(−1)rσDr,k +
∑

r∈{0,1}

(−1)rσCr,k (6.125)

CHAPTER 6. VERIFICATION 91

with the triangle inequality, it follows that if the quantity in (6.122) is non negligible, one of
the following two quantities must be non negligible:∣∣∣ ∑

k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(
∑

r∈{0,1}

(−1)rσDr,k))
∣∣∣ (6.126)∣∣∣ ∑

k∈KF

DV,h(k) · Tr((|0〉 〈0| ⊗ I)S(
∑

r∈{0,1}

(−1)rσCr,k))
∣∣∣ (6.127)

If the quantity in (6.126) is non negligible, σD0 is computationally distinguishable from σD1 .
To complete the proof of Claim 6.5.2, we will show that if the quantity in 6.127 is non
negligible, σ̂0 is computationally distinguishable from σ̂1 (σ̂r is defined in (6.93) and copied
below in (6.134)). To do this, we show below that for the efficiently computable CPTP map
S ′ = { 1√

2
Ob′,c,d,τ}b′,c,d (Ob′,c,d,τ is introduced in (6.78)):∑

r∈{0,1}

(−1)rσCr,k = S ′(
∑

r∈{0,1}

(−1)rσ̂r,k) (6.128)

Therefore, if the quantity in (6.127) is non negligible, σ̂0 is computationally distinguishable
from σ̂1 by using the CPTP map SS ′.

We now prove (6.128), beginning with the expression for σCr,k in (6.124). First, we observe
that

σC1,k = −(X ⊗ I)σC0,k(X ⊗ I) (6.129)

Therefore:

σC0,k − σC1,k =
∑

r∈{0,1}

(Xr ⊗ I)σC0,k(X
r ⊗ I) (6.130)

=
∑

b′,c,r∈{0,1},τ
d∈{0,1}w,y∈Rc,d,k

δd,yOb′,r,d,τ (ρ
C
y,k)O

†
b′,r,d,τ (6.131)

=
∑

b′,c∈{0,1},τ
d∈{0,1}w,y∈Tk

Ob′,c,d,τ (ρ
C
y,k)O

†
b′,c,d,τ (6.132)

The second inequality follows since δd,y = 1
2

if d /∈ Gk,0,x0,y ∩Gk,1,x1,y and 1 if d ∈ Gk,0,x0,y ∩
Gk,1,x1,y and (from (6.76))

Rc,d,k = {y ∈ Tk|(d ∈ Gk,0,x0,y∩Gk,1,x1,y∧d ·(J(x0,y)⊕J(x1,y)) = c)∨(d /∈ Gk,0,x0,y∩Gk,1,x1,y)}
(6.133)

Recall the state σ̂r,k from (6.93):

σ̂r,k = (Zr ⊗ I)(
∑
y∈Tk

ρy,k)(Z
r ⊗ I) (6.134)

CHAPTER 6. VERIFICATION 92

We use the equality ρy,k = ρDy,k + ρCy,k from (6.85):

σ̂0,k − σ̂1,k =
∑
y∈Tk

(ρDy,k + ρCy,k)− (Z ⊗ I)
∑
y∈Tk

(ρDy,k + ρCy,k)(Z ⊗ I) (6.135)

= 2
∑
y∈Tk

ρCy,k (6.136)

Plugging the equality in (6.136) into (6.132) yields (6.128).
�

6.6 Measurement Protocol Soundness

In this section, we prove soundness of the measurement protocol, as stated in the following
claim:

Claim 6.6.1 Soundness of Protocol 6.4.1 For a prover P in Protocol 6.4.1, let 1−ph,H
be the probability that the verifier accepts P on basis choice h in the Hadamard round and
1−ph,T be the probability that the verifier accepts P in the test round. There exists a state ρ, a
prover P′ and a negligible function µ such that for all h, ‖DP,h −DP′,h‖TV ≤ ph,H+

√
ph,T +µ

and DP′,h is computationally indistinguishable from the distribution Dρ,h which results from
measuring ρ in the basis determined by h.

Throughout this section, we will use notation introduced in Section 6.4.3. To prove Claim
6.6.1, we will proceed as follows. We begin by transitioning from a general prover to a perfect
prover, i.e. a prover who is always accepted in the test run by the verifier. We show in the
following claim (which we prove in Section 6.6.1) that for all provers P, there exists a perfect
prover P′ such that the statistical distance between the distributions DP,h and DP′,h is a
function of the probability of acceptance of the general prover.

Claim 6.6.2 For a prover P in Protocol 6.4.1, let 1−ph,H be the probability that the verifier
accepts P on basis choice h in the Hadamard round and 1 − ph,T be the probability that the
verifier accepts P on basis choice h in the test round. There exists a perfect prover P′ and a
negligible function µ such that for all h,

∥∥DC
P,h −DP′,h

∥∥
TV
≤ ph,H +

√
ph,T + µ.

P′ is created by conditioning P on acceptance in the test round. This argument is straight-
forward, but does have one delicate aspect: we need to ensure that the perfect prover is still
efficient, even though we have conditioned on acceptance in the test run. This is taken care
of by recalling that in the test round, the verifier computes the procedure CHKF or CHKG
(see Protocol 6.4.1). By definition (Definitions 6.3.1 and 6.3.2), both of these procedures
require only the function key and not the trapdoor, which implies that the procedures can
be computed efficiently by the prover.

CHAPTER 6. VERIFICATION 93

Next, we transition from a perfect prover to a trivial prover (as defined in Definition
6.4.6, a trivial prover’s Hadamard round attack commutes with standard basis measurement
on the n committed qubits):

Claim 6.6.3 For all perfect provers P, there exists a trivial prover P̂ such that for all h,
DP,h is computationally indistinguishable from DP̂,h.

We prove Claim 6.6.3 in Section 6.6.2 as follows. First, in Claim 6.6.4, we prove a statement
analogous to Claim 6.5.1 for the standard basis: we show that for an index j such that
hj = 0, we can replace the prover’s Hadamard round attack with an attack which acts X-
trivially on the jth committed qubit to obtain the same distribution over measurements. The
proof of Claim 6.6.4 is quite straightforward, since the prover’s Hadamard round attack has
no effect on the standard basis measurement obtained by the verifier; this measurement is
obtained from the commitment yj. To prove Claim 6.6.3, we sequentially apply Claim 6.5.1
and Claim 6.6.4 to each of the n committed qubits, ending with an attack which commutes
with standard basis measurement on all of the committed qubits.

Assuming Claim 6.6.2 and Claim 6.6.3, the proof of Claim 6.6.1 is straightforward:
Proof of Claim 6.6.1: We begin with a prover P and apply Claim 6.6.2 to transition to a
perfect prover P′ such that for all h,

∥∥DC
P,h −DP′,h

∥∥
TV
≤ ph,H +

√
ph,T + µ for a negligible

function µ. Combining Claim 6.6.3 and Claim 6.4.7 tells us that there exists a state ρ such
that for all h, DP′,h is computationally indistinguishable from Dρ,h. In more detail, Claim

6.6.3 shows that there exists a trivial prover P̂ such that for all h, DP′,h is computationally
indistinguishable from DP̂,h. Next, Claim 6.4.7 shows that there exists a state ρ such that
for all h, DP̂,h is computationally indistinguishable from Dρ,h.

�

6.6.1 General to Perfect Prover (Proof of Claim 6.6.2)

Proof: We begin by observing that by definition of total variation distance (see (3.2)):∥∥DC
P,h −DP,h

∥∥
TV

= ph,H (6.137)

It follows by (6.57) that
∥∥σCP,h − σP,h∥∥tr = ph,H . In the rest of this proof, we will show that

there exists a perfect prover P′ and a negligible function µ such that for all h for which
1− ph,T is non negligible, the trace distance between σP,h and σP′,h is ≤ √ph,T +µ. For all h
for which 1− ph,T is negligible, the trace distance bound of

√
ph,T +µ is trivial and therefore

satisfied. It follows by the triangle inequality that for all h, the trace distance between σCP,h
and σP′,h is ≤ ph,H +

√
ph,T + µ (to complete the proof of the claim, recall from (6.57) that∥∥σCP,h − σP′,h∥∥tr =

∥∥DC
P,h −DP′,h

∥∥
TV

).

Distance from perfect prover (between σP,h and σP′,h) By Claim 6.4.4, there exist
unitaries U0, U such that the prover P is characterized by (U0, U) and the state σP,h can be

CHAPTER 6. VERIFICATION 94

created by following steps 1-4 in the statement of the claim. The state after application of
U0 (step 1 of Claim 6.4.4) is:

σP,h,0 =
∑
k′

DV,h(k
′) · U0(|0〉 〈0|⊗e ⊗ |k′〉 〈k′|)U †0 (6.138)

The state above is a mixed state over the verifier’s choice of the function key k′, which is
sampled according to the distribution DV,h (see Section 6.4.3 for a notation reminder). To
create σP,h (i.e. the state resulting from the Hadamard round defined in (6.56)), the prover
will measure the second to last register (obtaining y′ ∈ Yn), apply his attack U , measure
all committed qubits and preimage registers in the Hadamard basis, send the results to the
verifier and discard all other qubits. The verifier will decode the appropriate registers and
discard all other measurement results (as described in Protocol 6.4.1). Note that for all
provers P,P′:

‖σP,h − σP′,h‖tr ≤ ‖σP,h,0 − σP′,h,0‖tr (6.139)

This is because the operators described above which are applied to σP,h,0 to create σP,h
represent a CPTP map.

We now construct a perfect prover P′ and provide an upper bound for ‖σP,h,0 − σP′,h,0‖tr.
We begin by partitioning the state σP,h,0 from (6.138) according to acceptance or rejection
by the verifier in the test round:

σP,h,0 =
∑
k′

DV,h(k
′) · (|ψACC,k′〉+ |ψREJ,k′〉)(〈ψACC,k′ |+ 〈ψREJ,k′|)⊗ |k′〉 〈k′| (6.140)

where
U0 |0〉⊗e |k′〉 = U0,k′(|0〉⊗e)⊗ |k′〉 = (|ψACC,k′〉+ |ψREJ,k′〉)⊗ |k′〉 (6.141)

The first equality in (6.141) is given in (6.65) in Claim 6.4.4, |ψACC,k′〉 (resp. |ψREJ,k′〉) is
the part of the state U0,k′(|0〉⊗e) which will be accepted (resp. rejected) by the verifier in the
test round for function choice k′, and 〈ψACC,k′ |ψREJ,k′〉 = 0. Consider the following state:

σperfect =
1

1− ph,T

∑
k′

DV,h(k
′) · (|ψACC,k′〉)(〈ψACC,k′|)⊗ 〈k′| 〈k′| (6.142)

The trace distance between σperfect and σP,h,0 is at most
√
ph,T . We show below that there

exists a CPTP map S0, a perfect prover P′ characterized by (S0, U) and a negligible function
µ such that for all h for which 1− ph,T is non negligible, ‖σP′,h,0 − σperfect‖tr ≤ µ. It follows
by the triangle inequality that:

‖σP,h,0 − σP′,h,0‖tr ≤ ‖σP,h,0 − σperfect‖tr + ‖σperfect − σP′,h,0‖tr (6.143)

≤ √
ph,T + µ (6.144)

It then follows by (6.139) that ‖σP,h − σP′,h‖tr ≤
√
ph,T + µ, which completes the proof of

Claim 6.6.2.

CHAPTER 6. VERIFICATION 95

We now describe the CPTP map S0. To do so, we will require the unitary V , which
consists of first applying U0, then applying the verifier’s test round check (the algorithm
CHKF) in superposition, and storing the result in an extra register. The result of applying
V is:

V (
∑
k′

DV,h(k
′) · |0〉 〈0|⊗e ⊗ |k′〉 〈k′|)V † (6.145)

=
∑
k′

DV,h(k
′) · (|1〉 |ψACC,k′〉+ |0〉 |ψREJ,k′〉)(|1〉 |ψACC,k′〉+ |0〉 |ψREJ,k′〉)†⊗ |k′〉 〈k′| (6.146)

where the first register contains the result of the algorithm CHKF . If the first register is
measured to obtain a bit b, the probability of obtaining b = 1 is 1− ph,T . Therefore, for all h
for which 1− ph,T is non negligible, there exists a polynomial n′h such that if V is applied n′h
times to the input state in (6.145) the probability of never obtaining b = 1 over n′h iterations
is negligible.

Let n′ = maxh n
′
h, where the maximum is taken over all h such that 1 − ph,T is non

negligible. The CPTP map S0 will apply the unitary V followed by measurement of the first
qubit to the input |0〉⊗e |k′〉 at most n′ times or until measuring b = 1. In the case that the
measurement result b = 1 is never obtained, the CPTP map S0 applies a unitary operator
which would be applied by an honest prover (described in Protocol 6.4.2). Since the prover
in Protocol 6.4.2 is perfect (see Claim 6.4.3), it follows that the prover P′ characterized by
(S0, U) is perfect.

Due to the choice of n′, it follows that there exists a negligible function µ such that for
all h for which 1− ph,T is non negligible

σP′,h,0 = S0(
∑
k′

DV,h(k
′) · (|0〉 〈0|⊗e ⊗ |k′〉 〈k′|)) = (1− µ)σperfect + µσfail (6.147)

where σfail is the state created in the case that all n′ applications of V do not yield 1 as the
measurement result. It follows by the convexity of trace distance that for all h for which
1− ph,T is non negligible the trace distance between σP′,h,0 in (6.147) and σperfect is ≤ µ.

�

6.6.2 Perfect to Trivial Prover (Proof of Claim 6.6.3)

We begin by proving a claim which is analogous to Claim 6.5.1, but for the standard basis
(i.e. if hj = 0):

Claim 6.6.4 Let 1 ≤ j ≤ n. Let S = {Bτ}τ and Sj = {B′j,x,τ}x∈{0,1},τ be CPTP maps
written in terms of their Kraus operators:

Bτ =
∑

x,z∈{0,1}

XxZz ⊗Bjxzτ (6.148)

CHAPTER 6. VERIFICATION 96

B′j,x,τ =
∑

z∈{0,1}

Zz ⊗Bjxzτ (6.149)

where Bτ and B′j,x,τ have been rearranged so that XxZz and Zz act on the jth qubit. For a
unitary operator U0, let P be a perfect prover characterized by (U0,S) (see Claim 6.4.4 and
notation 6.4.5). Let Pj be a perfect prover characterized by (U0,Sj). If hj = 0, DP,h = DPj ,h.

Proof of Claim 6.6.4: For convenience, we will assume that h1 = 0 and we will prove the
claim for j = 1. The proof is identical for all other values of j. The key observation is that
we can change the CPTP map S to act in an arbitrary way on the first qubit (which is also
the first committed qubit), as long as its action on the remaining qubits is unchanged. This
is because the measurement of the first committed qubit will be ignored by the verifier; the
verifier will obtain the standard basis measurement for the first qubit from the commitment
y1. In other words, the first committed qubit is traced out after application of S and standard
basis measurement (it is not part of the distribution DP,h).

To prove the claim, we will show that the distribution over measurement results remains
the same if S = {Bτ}τ is replaced with S1 = {B′1,x,τ}x∈{0,1},τ . Our first step is to replace

S with S(1) = { 1√
2
(Zr ⊗ I)Bτ}r∈{0,1},τ . As described above, this change has no impact

since the measurement of the first committed qubit is ignored. Therefore, if we let P(1)

be a perfect prover characterized by (U0,S(1)), DP,h = DP(1),h. Next, we replace S(1) with

S(2) = { 1√
2
(Zr ⊗ I)Bτ (Z

r ⊗ I)}r∈{0,1},τ . Observe that the added Z operator (acting prior

to Bτ) has no effect on the state of a perfect prover: it acts on the first committed qubit,
which must be in a standard basis state since h1 = 0 (the function key k1 corresponds to
a pair of injective functions gk,0, gk,1 for which there is only one valid preimage for each
commitment string y - see equation 6.9 for more details). It follows that if we let P(2) be
the prover characterized by (U0,S(2)), DP(1),h = DP(2),h. Finally, since S(2) is followed by

Hadamard basis measurement, we can apply Corollary 6.2.2 to replace S(2) with S1, showing
that DP(2),h = DP1,h (therefore DP,h = DP1,h). �

Using Claim 6.5.1 and Claim 6.6.4, we now prove Claim 6.6.3, which is copied here for
reference:

Claim 6.6.3 For all perfect provers P, there exists a trivial prover P̂ such that for all
h, DP,h is computationally indistinguishable from DP̂,h.

Proof of Claim 6.6.3: Fix a basis choice h ∈ {0, 1}n. Assume for convenience that for
indices 1 ≤ i ≤ t, hi = 1 and for indices t+ 1 ≤ i ≤ n, hi = 0. We apply Claim 6.5.1 t times,
beginning with the prover P (who is characterized by (U0, U)). Let P̂0 = P and let P̂j be

CHAPTER 6. VERIFICATION 97

the prover characterized by (U0, {Ux}x∈{0,1}j):

U =
∑

x,z∈{0,1}j
XxZz ⊗ U j

xz (6.150)

Ux =
∑

z∈{0,1}j
Zz ⊗ U j

xz (6.151)

where XxZz acts on qubits 1, . . . , j (which are also committed qubits 1, . . . , j). The ith

application of Claim 6.5.1 shows thatDP̂i−1,h
is computationally indistinguishable fromDP̂i,h.

It follows by the triangle inequality that DP,h is computationally indistinguishable from
DP̂t,h. We complete the proof of Claim 6.6.3 by applying Claim 6.6.4 n− t times, which tells

us that DP̂t,h = DP̂,h, where P̂ = P̂n is a trivial prover characterized by (U0, {Ux}x∈{0,1}n).
�

6.7 Extension of Measurement Protocol to a

Verification Protocol for BQP

To extend Protocol 6.4.1 to a QPIP0, we will use the QPIP1 protocol in [36]. We begin by
presenting this protocol.

6.7.1 Morimae-Fitzsimons Protocol

Most of this description is taken directly from [36]. Let L be a language in BQP. Since BQP
is contained in QMA, for all x ∈ L, there exists a local Hamiltonian H such that

1. if x ∈ L, then the ground energy of H is ≤ a

2. if x /∈ L, then the ground energy of H is ≥ b

where b− a ≥ 1
poly(|x|) . It is known that H can be a 2-local Hamiltonian with only X and Z

operators ([7]).
Let us write the 2-local Hamiltonian as H =

∑
S dSS, where dS is a real number and S

is a tensor product of Pauli operators, where only two operators are Z or X and others are
I. We define the rescaled Hamiltonian:

H ′ =
∑
S

πSPS, (6.152)

where πS = |dS |∑
S |dS |

≥ 0 and PS = I+sign(dS)S
2

.

We now present the protocol:

Protocol 6.7.1 [36] This protocol is used to verify that an instance x ∈ L for a language
L ∈ BQP. Let H be the Hamiltonian which corresponds to x, and define H ′ as in 6.152.

CHAPTER 6. VERIFICATION 98

1. The verifier randomly chooses S with probability πS.

2. The prover sends the verifier a state ρ, sending one qubit at a time.

3. The verifier measures S by performing single qubit measurements of only two qubits of
ρ in the X or Z basis, discarding all other qubits of ρ without measuring them.

4. The verifier computes the product of the measurement results. If the verifier obtains
the result −sign(dS) the verifier accepts.

An honest prover would simply send the ground state of H ′.

Theorem 6.7.2 [36] Protocol 6.7.1 is a QPIP1 for all languages in BQP with completeness
c and soundness s, where c− s is inverse polynomial in |x|.

Proof of Theorem 6.7.2: It was shown (in [37]) that the acceptance probability of each
round of Protocol 6.7.1 is

pacc = 1− 1∑
S 2|dS|

(Tr(Hρ) +
∑
S

|dS|) (6.153)

which is

pacc ≥
1

2
− a∑

S 2|dS|
(6.154)

when x ∈ L, and

pacc ≤
1

2
− b∑

S 2|dS|
(6.155)

when x /∈ L. Their difference is 1
poly(|x|) . �

We require the following version of Protocol 6.7.1 with an amplified completeness/ sound-
ness gap:

Protocol 6.7.3 [36] This protocol is used to verify that an instance x ∈ L for a language
L ∈ BQP. Let H be the Hamiltonian which corresponds to x, and define H ′ as in 6.152. Let
k′ be a polynomial in |x|.

1. The verifier randomly chooses S1, . . . , Sk′ independently, each with probability πSi.

2. The prover sends the verifier a state ρ′, sending one qubit at a time.

3. The verifier measures each Si (for 1 ≤ i ≤ k′) by performing single qubit measurements
of only two qubits of ρ′ in the X or Z basis, discarding all other qubits of ρ′ without
measuring them.

4. The verifier computes the product of the measurement results for each Si. If the verifier
obtains the result −sign(dSi) more than half of the time the verifier accepts.

CHAPTER 6. VERIFICATION 99

In Protocol 6.7.3, an honest prover would simply send k′ copies of the ground state of H ′.

Theorem 6.7.4 [36] Protocol 6.7.1 is a QPIP1 for all languages in BQP with completeness
1− µ and soundness µ, where µ is negligible in the size of the instance.

Proof: This theorem follows from Theorem 6.7.2; since c − s is 1
poly(|x|) the verifier can

distinguish the case where x ∈ L from the case where x /∈ L with probability of error
bounded to be exponentially small with only polynomially many repetitions. �

6.7.2 Extending the Measurement Protocol

We now present the extension of the measurement protocol (Protocol 6.4.1) to a QPIP0. To
do this, we use the structure of Protocol 6.7.3, but we replace the prover sending qubits to
the verifier to perform the measurement (i.e. steps 2 and 3 of Protocol 6.7.3) with Protocol
6.4.1. Assume that in Protocol 6.7.3, n qubits are sent from the prover to the verifier. The
QPIP protocol is as follows:

Protocol 6.7.5 Measurement Protocol QPIP This protocol is used to verify that an
instance x ∈ L for a language L ∈ BQP.

1. The verifier performs step 1 of Protocol 6.7.3, which partially defines a basis choice
h ∈ {0, 1}n. For all undefined hi, the verifier sets hi = 0.

2. The prover and verifier run Protocol 6.4.1 on basis choice h. The verifier accepts or
rejects as specified in Protocol 6.4.1.

3. In the case of a Hadamard round of Protocol 6.4.1, the verifier performs step 4 of
Protocol 6.7.3 using the measurement results obtained from Protocol 6.4.1.

We now prove the following theorem, which is the main result of this chapter (and was stated
earlier as Theorem 1.0.2):

Theorem 6.7.6 Protocol 6.7.5 is a QPIP0 for all languages in BQP with completeness neg-
ligibly close to 1 and soundness negligibly close to 3

4
.

We require the completeness and soundness guarantees of Protocol 6.4.1, copied below for
reference. Both claims use notation from Section 6.4.3.

Claim 6.4.3 Completeness of Protocol 6.4.1 For all n qubit states ρ and for all
basis choices h ∈ {0, 1}n, the prover P described in Protocol 6.4.2 is a perfect prover (P
is accepted by the verifier in a test run for basis choice h with perfect probability). There
exists a negligible function µ such that in the Hadamard round for basis choice h, the verifier
accepts P with probability ≥ 1− µ and

∥∥DC
P,h −Dρ,h

∥∥
TV
≤ µ.

CHAPTER 6. VERIFICATION 100

Claim 6.6.1 Soundness of Protocol 6.4.1 For a prover P in Protocol 6.4.1, let 1−ph,H
be the probability that the verifier accepts P on basis choice h in the Hadamard round and
1−ph,T be the probability that the verifier accepts P in the test round. There exists a state ρ, a
prover P′ and a negligible function µ such that for all h,

∥∥DC
P,h −DP′,h

∥∥
TV
≤ ph,H+

√
ph,T +µ

and DP′,h is computationally indistinguishable from the distribution Dρ,h which results from
measuring ρ in the basis determined by h.

Proof of Theorem 6.7.6: We will require some notation. For all provers P, let EH
P,h

be the event that the verifier accepts in a Hadamard round of Protocol 6.4.1 with basis
choice h while interacting with P, let ET

P,h be the same event in a test round, and let EP,h
be the event that the verifier accepts in step 3 of Protocol 6.7.5. Let vh be the probability
that the verifier chooses basis choice h in step 1 of Protocol 6.7.5. As a reminder, in step 3
of Protocol 6.7.5 (which is step 4 of Protocol 6.7.3), the verifier determines whether or not
to accept by computing the product of relevant measurement results; the verifier’s decision
is a function of the basis choice h, the measurement result and the BQP instance, but we
leave off the dependence on the BQP instance for convenience. For a distribution D over n
bit strings and a basis choice h, let p̃h(D) be the probability that the verifier rejects an n
bit string drawn from D for basis choice h in step 3 of Protocol 6.7.5.

Completeness Recall that in Protocol 6.7.3, an honest prover sends polynomially many
copies of the ground state for the Hamiltonian corresponding to an instance x ∈ L (where
L ∈ BQP). Let the entire state sent by the prover be ρ, and assume it contains n qubits.
To compute the completeness parameter of Protocol 6.7.5, we will consider the prover P for
the state ρ, as described in Protocol 6.4.2, and upper bound the probability that the verifier
rejects in Protocol 6.7.5. To do this, we need to upper bound the probability that the verifier
rejects in step 2 of Protocol 6.7.5 (i.e. in Protocol 6.4.1) or the verifier rejects in step 3 of
Protocol 6.7.5:

1− c =
1

2

∑
h∈{0,1}n

vh(Pr[ĒT
P,h] + Pr[ĒH

P,h ∪ ĒP,h]) (6.156)

≤ 1

2

∑
h∈{0,1}n

vh(Pr[ĒH
P,h] + Pr[ĒP,h]) (6.157)

≤ 1

2
µ+

1

2

∑
h∈{0,1}n

vh Pr[ĒP,h] (6.158)

The last two expressions follow due to Claim 6.4.3: we know that for all basis choices
h ∈ {0, 1}n, the prover P described in Protocol 6.4.2 is accepted by the verifier in a test
round with perfect probability and is accepted in a Hadamard round with probability ≥ 1−µ
for a negligible function µ. Pr[ĒP,h] is the probability that the verifier rejects the distribution
DC
P,h for basis choice h in step 3 of Protocol 6.7.5:

Pr[ĒP,h] = p̃h(D
C
P,h) (6.159)

CHAPTER 6. VERIFICATION 101

Recall from Section 6.4.3 that for a density matrix on n qubits and basis choice h, we let
Dρ,h be the distribution obtained by measuring ρ in the basis corresponding to h. It follows
by Lemma 3.1.1 and Claim 6.4.3 that

p̃h(D
C
P,h)− p̃h(Dρ,h) ≤

∥∥DC
P,h −Dρ,h

∥∥
TV
≤ µ (6.160)

Due to the completeness parameter of Protocol 6.7.3 (see Section 6.7.1), there exists a
negligible function µC such that: ∑

h

vhp̃h(Dρ,h) ≤ µC (6.161)

We now use (6.159), (6.160) and (6.161) to wrap up the calculation of the completeness
parameter c (continuing from (6.158)):

1− c ≤ 1

2
µ+

1

2

∑
h∈{0,1}n

vhp̃h(D
C
P,h) (6.162)

≤ µ+
1

2
µC (6.163)

Therefore, the completeness parameter c is negligibly close to 1.

Soundness To compute the soundness parameter, we will fix an arbitrary prover P and
upper bound the probability that the verifier accepts in Protocol 6.7.5 for an instance x /∈ L.
To do so, we need to upper bound the probability that the verifier accepts in step 2 of Pro-
tocol 6.7.5 (i.e. in Protocol 6.4.1) and the verifier accepts in step 3 of Protocol 6.7.5. The
intuition here is that as long as there exists a state ρ such that for all h, DC

P,h is close (com-
putationally) to Dρ,h, the soundness parameter should be close to the soundness parameter
of Protocol 6.7.3, which is negligible. We will rely on Claim 6.6.1 (we also use the same
notation used in Claim 6.6.1):

s =
∑

h∈{0,1}n
vh(

1

2
Pr[ET

P,h] +
1

2
Pr[EH

P,h ∩ EP,h]) (6.164)

=
∑

h∈{0,1}n
vh(

1

2
(1− ph,T) +

1

2
Pr[EH

P,h] Pr[EP,h|EH
P,h]) (6.165)

=
∑

h∈{0,1}n
vh(

1

2
(1− ph,T) +

1

2
(1− ph,H)(1− p̃h(DC

P,h))) (6.166)

where the last equality follows because Pr[EP,h|EH
P,h] is the probability that the verifier

accepts a string drawn from the distribution DC
P,h for basis choice h in step 3 of Protocol

6.7.5.

CHAPTER 6. VERIFICATION 102

Claim 6.6.1 guarantees the existence of a state ρ, a prover P′ and a negligible function
µ such that for all h,

∥∥DC
P,h −DP′,h

∥∥
TV
≤ ph,H +

√
ph,T + µ and DP′,h is computationally

indistinguishable from Dρ,h. By Lemma 3.1.1 and Claim 6.6.1:

p̃h(DP′,h)− p̃h(DC
P,h) ≤

∥∥DC
P,h −DP′,h

∥∥
TV
≤ ph,H +

√
ph,T + µ (6.167)

We now return to the calculation of the soundness parameter of Protocol 6.7.5 in (6.166):

s ≤
∑

h∈{0,1}n
vh(

1

2
(1− ph,T) +

1

2
(1− ph,H)(1− p̃h(DP′,h) + ph,H +

√
ph,T + µ)) (6.168)

≤ 1

2
µ+

1

2

∑
h∈{0,1}n

vh(1− ph,T + (1− ph,H)(ph,H +
√
ph,T)) +

1

2

∑
h∈{0,1}n

vh(1− p̃h(DP′,h))

≤ 1

2
µ+

3

4
+

1

2

∑
h∈{0,1}n

vh(1− p̃h(DP′,h)) (6.169)

Next, Claim 6.6.1 guarantees that for all h, DP′,h and Dρ,h are computationally indistin-
guishable. It follows that for all h:

p̃h(Dρ,h)− p̃h(DP′,h) ≤ µh (6.170)

To see this implication, assume there did exist an h ∈ {0, 1}n such that the difference
in (6.170) was non negligible. Then DP′,h and Dρ,h could be distinguished by computing
whether or not the verifier would reject for basis choice h in step 3 of Protocol 6.7.5, which
is step 4 of Protocol 6.7.3. This is because the computational indistinguishability of DP′,h
and Dρ,h holds even if h is known; the indistinguishability is due to the hardcore bit and
injective invariance properties of the extended trapdoor claw-free family (Definition 6.3.4).

Due to the soundness parameter of Protocol 6.7.3, we also know that there exists a
negligible function µS such that:∑

h∈{0,1}n
vh(1− p̃h(Dρ,h)) ≤ µS (6.171)

We return to calculating the soundness parameter of the QPIP (continuing from (6.169)):

s ≤ 1

2
µ+

3

4
+

1

2

∑
h∈{0,1}n

vh(µh + 1− p̃h(Dρ,h)) (6.172)

≤ 1

2
µ+

3

4
+

1

2
max

h∈{0,1}n
µh +

1

2
µS (6.173)

Therefore, the soundness parameter of Protocol 6.7.5 is negligibly close to 3
4
. �

CHAPTER 6. VERIFICATION 103

6.8 Extended Trapdoor Claw-Free Family from LWE

6.8.1 Parameters

We will use the same parameters used in [11]. Let λ be the security parameter. All other
parameters are functions of λ. Let q ≥ 2 be a prime integer. Let `, n,m,w ≥ 1 be polyno-
mially bounded functions of λ and BL, BV , BP be positive integers such that the following
conditions hold:

1. n = Ω(` log q) and m = Ω(n log q),

2. w = ndlog qe,

3. BP = q
2CT
√
mn log q

, for CT the universal constant in Theorem 3.2.3,

4. 2
√
n ≤ BL < BV < BP ,

5. The ratios BP
BV

and BV
BL

are both super-polynomial in λ.

(6.174)
Given a choice of parameters satisfying all conditions above, we describe the function family
FLWE (taken from [11]). Let X = Z

n
q and Y = Z

m
q . The key space is KFLWE

= Z
m×n
q × Zmq .

For b ∈ {0, 1}, x ∈ X and key k = (A,As + e), the density fk,b(x) is defined as

∀y ∈ Y , (fk,b(x))(y) = DZmq ,BP (y −Ax− b ·As) , (6.175)

where the definition of DZmq ,BP is given in (3.5). Note that fk,b is well-defined given k, as
for our choice of parameters k uniquely specifies s. The following theorem was proven in [11]:

Theorem 22 [11] For any choice of parameters satisfying the conditions (6.174), the
function family FLWE is a noisy trapdoor claw-free family under the hardness assumption
LWE`,q,DZq,BL

.

We will prove the following theorem:

Theorem 6.8.1 For any choice of parameters satisfying the conditions (6.174), the func-
tion family FLWE is an extended trapdoor claw-free family under the hardness assumption
LWE`,q,DZq,BL

.

We begin by providing a trapdoor injective family and then use this family to show that
FLWE is an extended trapdoor claw-free function family.

6.8.2 Trapdoor Injective Family from LWE

We now describe the trapdoor injective family GLWE. Let X = Z
n
q and Y = Z

m
q . The key

space is KGLWE
= Z

m×n
q × Zmq . For b ∈ {0, 1}, x ∈ X and key k = (A,u), the density gk,b(x)

CHAPTER 6. VERIFICATION 104

is defined as
∀y ∈ Y , (gk,b(x))(y) = DZmq ,BP (y −Ax− b · u) , (6.176)

where the definition of DZmq ,BP is given in (3.5). The three properties required for a trapdoor
injective family, as specified in Definition 6.3.2, are verified in the following subsections,
providing a proof of the following theorem.

Theorem 6.8.2 For any choice of parameters satisfying the conditions (6.174), the function
family GLWE is a trapdoor injective family under the hardness assumption LWE`,q,DZq,BL

.

6.8.2.1 Efficient Function Generation

GENGLWE
is defined as follows. First, the procedure samples a random A ∈ Zm×nq , together

with trapdoor information tA. This is done using the procedure GenTrap(1n, 1m, q) from
Theorem 3.2.3. The trapdoor allows the evaluation of an inversion algorithm Invert that,
on input A, tA and b = As + e returns s and e as long as ‖e‖ ≤ q

CT
√
n log q

. Moreover,
the distribution on matrices A returned by GenTrap is negligibly close to the uniform
distribution on Zm×nq .

Next, the sampling procedure selects u ∈ Zmq uniformly at random. By using the trapdoor
tA, the sampling procedures checks if there exist s, e such that ‖e‖ ≤ q

CT
√
n log q

and As+e =
u. If so, the sampling algorithm discards u and samples u again. Since u is discarded with
negligible probability, the distribution over u is negligibly close to the uniform distribution.
GENGLWE

returns k = (A,u) and tk = tA.

6.8.2.2 Trapdoor Injective Functions

It follows from (6.176) and the definition of the distribution DZmq ,BP in (3.5) that for any
key k = (A,u) ∈ KGLWE

and for all x ∈ X ,

Supp(gk,0(x)) =
{
y = Ax+ e0 | ‖e0‖ ≤ BP

√
m
}
, (6.177)

Supp(gk,1(x)) =
{
y = Ax+ e0 + u | ‖e0‖ ≤ BP

√
m
}
. (6.178)

Since there do not exist s, e such that ‖e‖ ≤ q
CT
√
n log q

and u = As + e, the intersection

Supp(gk,0(x)) ∩ Supp(gk,1(x)) is empty as long as

BP ≤
q

2CT
√
mn log q

. (6.179)

The procedure INVGLWE
takes as input the trapdoor tA and y ∈ Y . It first runs the algorithm

Invert on input y. If Invert outputs s0, e0 such that y = As0 + e0 and ‖e0‖ ≤ BP

√
m,

the procedure INVFLWE
outputs (0, s0). Otherwise, it runs the algorithm Invert on input

y − u to obtain s0, e0 and outputs (1, s0) if y − u = As0 + e0. Using Theorem 3.2.3, this
procedure returns the unique correct outcome provided y− b ·u = As0 + e0 for some e0 such
that ‖e0‖ ≤ q

CT
√
n log q

. Due to (6.179), this condition is satisfied for all y ∈ Supp(fk,b(x)).

CHAPTER 6. VERIFICATION 105

6.8.2.3 Efficient Range Superposition

The procedures CHKGLWE
and SAMPGLWE

are the same as the procedures CHKFLWE
and

SAMPFLWE
.

6.8.3 Injective Invariance

We now show that FLWE as given in (6.175) is injective invariant with respect to GLWE

(see Definition 6.3.3). To show this, we need to show that for all BQP attackers A, the
distributions produced by GENFLWE

and GENGLWE
are computationally indistinguishable.

This is equivalent to proving the hardness of LWE (as defined in Definition 3.2.2) with a
binary secret, as seen in the following lemma:

Lemma 6.8.3 Assume a choice of parameters satisfying the conditions (6.174). Assume
the hardness assumption LWE`,q,DZq,BL

holds. Then the distributions

D0 = ((A,As + e)← GENFLWE
(1λ)) (6.180)

and
D1 = ((A,u)← GENGLWE

(1λ)) (6.181)

are computationally indistinguishable.

The hardness of LWE with a binary secret is well studied, and the above lemma is implied by
several results, starting with [27] and improved in [12]. To be precise, it is also immediately
implied by Theorem B.5 of [4].

6.8.4 Extended Trapdoor Claw-Free Family

We have already shown that FLWE is injective invariant. To show that FLWE is an extended
trapdoor claw-free family, we now prove the second condition (the hardcore bit condition)
of Definition 6.3.4. First recall (from [11]) that X = Z

n
q , w = ndlog qe and J : X → {0, 1}w

is the map such that J(x) returns the binary representation of x ∈ X . The key point, which
we prove in Lemma 6.8.5, is that the inner product appearing in the definition of H ′k,d (in

condition 2 of Definition 6.3.4) is equal to the inner product d̂ ·s (for d̂ ∈ {0, 1}n) if d = J(d̂).
We first show in Lemma 6.8.4 that producing an inner product d̂·s is computationally difficult
given A,As+e. Next, in Lemma 6.8.5, we use Lemma 6.8.4 to prove condition 2 of Definition
6.3.4.

Lemma 6.8.4 Assume a choice of parameters satisfying the conditions (6.174). Assume
the hardness assumption LWE`,q,DZq,BL

holds. For all d̂ ∈ {0, 1}n \ {0n}, the distributions

D0 =
(
(A,As + e)← GENFLWE

(1λ), d̂ · s mod 2
)

(6.182)

CHAPTER 6. VERIFICATION 106

and

D1 =
(
(A,As + e)← GENFLWE

(1λ), r
)
, (6.183)

where r ←U {0, 1}, are computationally indistinguishable.

Proof: This proof is a simpler version of the proof of Lemma 27 in [11]. We first transition
from D0 to the following computationally indistinguishable distribution:

D(1) = (BC + F,BCs + e, d̂ · s mod 2) (6.184)

where Ã = BC + F ← lossy(1n, 1m, 1`, q,DZq ,BL) is sampled from a lossy sampler. The
transition from D0 to D(1) is the same as the transition from (47) to (50) in the proof
of Lemma 27 in [11]: the first step is to replace A with a lossy matrix Ã to obtain a
computationally indistinguishable distribution and the second step is to remove the term Fs
from the lossy LWE sample Ãs + e. Next, we apply Lemma 23 ([11]) to D(1) to replace d̂ · s
mod 2 with a uniformly random bit r, resulting in the following statistically indistinguishable
distribution:

D(2) = (BC + F,BCs + e, r) (6.185)

Computational indistinguishability between D(2) and D1 follows similarly to between D(1)

and D0. �
We now show that the second condition of Definition 6.3.4 holds:

Lemma 6.8.5 Assume a choice of parameters satisfying the conditions (6.174). Assume
the hardness assumption LWE`,q,DZq,BL

holds. Let s ∈ {0, 1}n and for d ∈ {0, 1}w let 2

H ′s,d =
{
d · (J(x)⊕ J(x− (−1)bs) | x ∈ X

}
, . (6.186)

Then for all d̂ ∈ {0, 1}n and for any quantum polynomial-time procedure

A : Zm×nq × Zmq → {0, 1}

there exists a negligible function µ(·) such that∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A,As + e) ∈ H ′

s,J(d̂)

]
− 1

2

∣∣∣ ≤ µ(λ) . (6.187)

Proof: This proof is very similar to the proof of Lemma 28 in [11]. The proof is by con-
tradiction. Assume that there exists d̂ ∈ {0, 1}n and a quantum polynomial-time procedure
A such that the left-hand side of (6.187) is at least some non-negligible function η(λ). We
derive a contradiction by showing that for d̂, the two distributions D0 and D1 in Lemma 6.8.4
are computationally distinguishable, giving a contradiction.

Let (A,As + e) ← GENFLWE
(1λ). To link A to the distributions in Lemma 6.8.4 we

relate the inner product condition in (6.186) to the inner product d̂ · s appearing in (6.182).
This is based on the following claim.

2We write the set as H ′s,d instead of H ′k,d to emphasize the dependence on s.

CHAPTER 6. VERIFICATION 107

Claim 6.8.6 For all b ∈ {0, 1}, x ∈ X , d̂ ∈ {0, 1}n and s ∈ {0, 1}n the following equality
holds:

J(d̂) · (J(x)⊕ J(x− (−1)bs)) = d̂ · s . (6.188)

Proof: We do the proof in case n = 1 and w = dlog qe, as the case of general n follows by
linearity. In this case s is a single bit. If s = 0 then both sides of (6.188) evaluate to zero,
so the equality holds trivially. If s = 1, then the least significant bit of J(x)⊕ J(x− (−1)bs)
is s and the least significant bit of J(d̂) = d̂. Since the remaining w − 1 bits of J(d̂) are 0,
the claim follows. �

To conclude we construct a distinguisher A′ between the distributions D0 and D1 in
Lemma 6.8.4. Consider two possible distinguishers, A′u for u ∈ {0, 1}. Given a sample
((A,As + e), t), A′u computes c = A(A,As + e) and returns 0 if c = t⊕ u, and 1 otherwise.
The sum of the advantages of A′0 and A′1 is:∑
u∈{0,1}

∣∣∣ Pr
((A,As+e),d̂·s)←D0

[
A′u((A,As + e), d̂ · s) = 0

]
− Pr

((A,As+e),r)←D1

[
A′u((A,As + e), r) = 0

]∣∣∣

=
∑

u∈{0,1}

∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A,As + e) = d̂ · s⊕ u

]
− Pr

((A,As+e),r)←D1

[
A(A,As + e) = r ⊕ u

]∣∣∣
=

∑
u∈{0,1}

∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A,As + e) = d̂ · s⊕ u

]
− 1

2

∣∣∣ (6.189)

≥
∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A,As + e) = d̂ · s

]
− Pr

(A,As+e)←GENFLWE
(1λ)

[
A(A,As + e) = d̂ · s⊕ 1

]∣∣∣
≥ 2

∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A,As + e) = d̂ · s

]
− 1

2

∣∣∣ (6.190)

By Claim 6.8.6, we can replace d̂ · s with J(d̂) · (J(x)⊕ J(x− (−1)bs)) to obtain:

= 2
∣∣∣ Pr
(A,As+e)←GENFLWE

(1λ)

[
A(A,As + e) ∈ H ′

s,J(d̂)

]
− 1

2

∣∣∣ (6.191)

≥ 2η(λ) (6.192)

Therefore, at least one of A′0 or A′1 must successfully distinguish between D0 and D1 with
advantage at least η, a contradiction with the statement of Lemma 6.8.4. �

108

Bibliography

[1] Dorit Aharonov, Michael Ben-Or, and Elad Eban. “Interactive Proofs For Quantum
Computations”. In: Arxiv preprint arXiv:0810.5375 (2008).

[2] Dorit Aharonov and Umesh Vazirani. “Is Quantum Mechanics Falsifiable? A compu-
tational perspective on the foundations of Quantum Mechanics”. In: Arxiv preprint
arXiv:1206.3686 (2012).

[3] Dorit Aharonov et al. “Interactive Proofs for Quantum Computations”. In: Arxiv
preprint 1704.04487 (2017).

[4] Joel Alwen et al. Learning with Rounding, Revisited: New Reduction, Properties and
Applications. Cryptology ePrint Archive, Report 2013/098. https://eprint.iacr.
org/2013/098. 2013.

[5] Andris Ambainis et al. “Private Quantum Channels”. In: Proceedings of the 41st An-
nual Symposium on Foundations of Computer Science. FOCS ’00. Washington, DC,
USA: IEEE Computer Society, 2000, pp. 547–. isbn: 0-7695-0850-2. url: http://dl.
acm.org/citation.cfm?id=795666.796592.

[6] Wojciech Banaszczyk. “New bounds in some transference theorems in the geometry of
numbers”. In: Mathematische Annalen 296.1 (1993), pp. 625–635.

[7] Jacob D. Biamonte and Peter J. Love. “Realizable Hamiltonians for universal adiabatic
quantum computers”. In: Phys. Rev. A 78 (1 July 2008), p. 012352. doi: 10.1103/
PhysRevA.78.012352. url: https://link.aps.org/doi/10.1103/PhysRevA.78.
012352.

[8] Zvika Brakerski. Fully Homomorphic Encryption. Simons Institute. https://www.

youtube.com/watch?v=O8IvJAIvGJo. 2015.

[9] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic Encryption
from (Standard) LWE. Siam Journal on Computing, Vol 43, No 2, pp. 831-871. http:
//epubs.siam.org/doi/pdf/10.1137/120868669. 2014.

[10] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-Based FHE as Secure as PKE.
Cryptology ePrint Archive, Report 2013/541. http://eprint.iacr.org/2013/541.
2013.

[11] Zvika Brakerski et al. “Certifiable Randomness from a Single Quantum Device”. In:
Arxiv preprint 1804.00640 (2018).

https://eprint.iacr.org/2013/098
https://eprint.iacr.org/2013/098
http://dl.acm.org/citation.cfm?id=795666.796592
http://dl.acm.org/citation.cfm?id=795666.796592
https://doi.org/10.1103/PhysRevA.78.012352
https://doi.org/10.1103/PhysRevA.78.012352
https://link.aps.org/doi/10.1103/PhysRevA.78.012352
https://link.aps.org/doi/10.1103/PhysRevA.78.012352
https://www.youtube.com/watch?v=O8IvJAIvGJo
https://www.youtube.com/watch?v=O8IvJAIvGJo
http://epubs.siam.org/doi/pdf/10.1137/120868669
http://epubs.siam.org/doi/pdf/10.1137/120868669
http://eprint.iacr.org/2013/541

BIBLIOGRAPHY 109

[12] Zvika Brakerski et al. “Classical hardness of learning with errors”. In: Symposium on
Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013.
2013, pp. 575–584.

[13] Anne Broadbent, Joseph F. Fitzsimons, and Elham Kashefi. “Universal blind quantum
computation”. In: Arxiv preprint arXiv:0807.4154 (2008).

[14] Anne Broadbent and Stacey Jeffery. Quantum homomorphic encryption for circuits of
low T -gate complexity. Cryptology ePrint Archive, Report 2015/551. http://eprint.
iacr.org/2015/551. 2015.

[15] Andrew M. Childs. “Secure Assisted Quantum Computation”. In: Quantum Info. Com-
put. 5.6 (Sept. 2005), pp. 456–466.

[16] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved Delegation of Computation
using Fully Homomorphic Encryption. Cryptology ePrint Archive, Report 2010/241.
https://eprint.iacr.org/2010/241. 2010.

[17] John F. Clauser et al. “Proposed Experiment to Test Local Hidden-Variable Theories”.
In: Phys. Rev. Lett. 23 (15 1969), pp. 880–884. doi: 10.1103/PhysRevLett.23.880.
url: https://link.aps.org/doi/10.1103/PhysRevLett.23.880.

[18] Alexandru Cojocaru et al. Delegated Pseudo-Secret Random Qubit Generator. 2018.

[19] Christoph Dankert et al. “Exact and approximate unitary 2-designs and their ap-
plication to fidelity estimation”. In: Phys. Rev. A 80 (1 July 2009), p. 012304. doi:
10.1103/PhysRevA.80.012304. url: https://link.aps.org/doi/10.1103/

PhysRevA.80.012304.

[20] Yfke Dulek, Christian Schaffner, and Florian Speelman. “Quantum Homomorphic En-
cryption for Polynomial-Sized Circuits”. In: Advances in Cryptology – CRYPTO 2016:
36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
14-18, 2016, Proceedings, Part III. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 3–32. isbn: 978-3-662-53015-3. doi: 10.1007/978- 3- 662- 53015- 3_1.
url: http://dx.doi.org/10.1007/978-3-662-53015-3_1.

[21] Joseph F. Fitzsimons and Elham Kashefi. “Unconditionally verifiable blind quantum
computation”. In: Phys. Rev. A 96 (1 July 2017), p. 012303. doi: 10.1103/PhysRevA.
96.012303. url: https://link.aps.org/doi/10.1103/PhysRevA.96.012303.

[22] Craig Gentry. “A fully homomorphic encryption scheme”. crypto.stanford.edu/
craig. PhD thesis. Stanford University, 2009.

[23] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for Hard Lattices
and New Cryptographic Constructions. Cryptology ePrint Archive, Report 2007/432.
http://eprint.iacr.org/2007/432. 2007.

[24] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption from Learn-
ing with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. Cryp-
tology ePrint Archive, Report 2013/340. http://eprint.iacr.org/2013/340. 2013.

http://eprint.iacr.org/2015/551
http://eprint.iacr.org/2015/551
https://eprint.iacr.org/2010/241
https://doi.org/10.1103/PhysRevLett.23.880
https://link.aps.org/doi/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.80.012304
https://link.aps.org/doi/10.1103/PhysRevA.80.012304
https://doi.org/10.1007/978-3-662-53015-3_1
http://dx.doi.org/10.1007/978-3-662-53015-3_1
https://doi.org/10.1103/PhysRevA.96.012303
https://doi.org/10.1103/PhysRevA.96.012303
https://link.aps.org/doi/10.1103/PhysRevA.96.012303
crypto.stanford.edu/craig
crypto.stanford.edu/craig
http://eprint.iacr.org/2007/432
http://eprint.iacr.org/2013/340

BIBLIOGRAPHY 110

[25] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Digital Signature Scheme
Secure Against Adaptive Chosen-message Attacks”. In: SIAM J. Comput. 17.2 (Apr.
1988), pp. 281–308. doi: 10.1137/0217017. url: http://dx.doi.org/10.1137/
0217017.

[26] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Paradoxical Solution to The
Signature Problem”. In: (1985), pp. 467–467.

[27] Shafi Goldwasser et al. “Robustness of the Learning with Errors Assumption”. In: ICS
(2010), pp. 230–240.

[28] Daniel Gottesman. As referenced in [http://www.scottaaronson.com/blog/?p=284;
accessed 13-Apr-2017]. 2004.

[29] Daniel Gottesman and Isaac L. Chuang. “Quantum Teleportation is a Universal Com-
putational Primitive”. In: Arxiv preprint arXiv:quant-ph/9908010 (1999).

[30] Lov Grover and Terry Rudolph. Creating superpositions that correspond to efficiently
integrable probability distributions. 2002.

[31] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. “Pseudo-random Generation
from One-way Functions”. In: Proceedings of the Twenty-first Annual ACM Symposium
on Theory of Computing. STOC ’89. New York, NY, USA: ACM, 1989, pp. 12–24.

[32] A.Y. Kitaev, A. Shen, and M.N. Vyalyi. Classical and Quantum Computation. Amer-
ican Mathematical Society, 2002.

[33] Ching-Yi Lai and Kai-Min Chung. On statistically-secure quantum homomorphic en-
cryption. 2017.

[34] Atul Mantri et al. “Flow Ambiguity: A Path Towards Classically Driven Blind Quan-
tum Computation”. In: Phys. Rev. X 7 (3 July 2017), p. 031004. doi: 10.1103/

PhysRevX.7.031004. url: https://link.aps.org/doi/10.1103/PhysRevX.7.
031004.

[35] Daniele Micciancio and Chris Peikert. Trapdoors for Lattices: Simpler, Tighter, Faster,
Smaller. Cryptology ePrint Archive, Report 2011/501. http://eprint.iacr.org/
2011/501. 2011.

[36] Tomoyuki Morimae and Joseph F. Fitzsimons. “Post hoc verification with a single
prover”. In: Arxiv preprint arXiv:1603.06046 (2016).

[37] Tomoyuki Morimae, Daniel Nagaj, and Norbert Schuch. Quantum proofs can be verified
using only single qubit measurements. 2015.

[38] Michael Newman and Yaoyun Shi. Limitations on Transversal Computation through
Quantum Homomorphic Encryption. 2017.

[39] Yingkai Ouyang, Si-Hui Tan, and Joseph F. Fitzsimons. Quantum homomorphic en-
cryption from quantum codes. 2015.

https://doi.org/10.1137/0217017
http://dx.doi.org/10.1137/0217017
http://dx.doi.org/10.1137/0217017
http://www.scottaaronson.com/blog/?p=284
https://doi.org/10.1103/PhysRevX.7.031004
https://doi.org/10.1103/PhysRevX.7.031004
https://link.aps.org/doi/10.1103/PhysRevX.7.031004
https://link.aps.org/doi/10.1103/PhysRevX.7.031004
http://eprint.iacr.org/2011/501
http://eprint.iacr.org/2011/501

BIBLIOGRAPHY 111

[40] Chris Peikert. A Decade of Lattice Cryptography. Cryptology ePrint Archive, Report
2015/939. http://eprint.iacr.org/2015/939. 2015.

[41] Chris Peikert. “Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract”. In: STOC. 2009, pp. 333–342.

[42] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. “Pseudorandomness of
ring-LWE for any ring and modulus”. In: Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-
23, 2017. Ed. by Hamed Hatami, Pierre McKenzie, and Valerie King. ACM, 2017,
pp. 461–473. isbn: 978-1-4503-4528-6. doi: 10.1145/3055399.3055489. url: http:
//doi.acm.org/10.1145/3055399.3055489.

[43] Oded Regev. “On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography”. In: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory
of Computing. STOC ’05. New York, NY, USA: ACM, 2005, pp. 84–93.

[44] B. Reichardt, F. Unger, and U. Vazirani. “A classical leash for a quantum system”. In:
Arxiv preprint arXiv:1209.0448 (2012).

[45] A. Shamir. “IP= PSPACE”. In: Journal of the ACM (JACM) 39.4 (1992), pp. 869–
877.

[46] Yaoyun Shi. “Both Toffoli and controlled-NOT Need Little Help to Do Universal Quan-
tum Computing”. In: Quantum Info. Comput. 3.1 (Jan. 2003), pp. 84–92. issn: 1533-
7146. url: http://dl.acm.org/citation.cfm?id=2011508.2011515.

[47] Si-Hui Tan et al. A quantum approach to homomorphic encryption. Scientific reports.
Scientific Reports, 6. 2016.

[48] Umesh Vazirani. CS 294 Lecture 1 Fall 2016. [https://people.eecs.berkeley.edu/

~vazirani/f16quantum/lec1.pdf; accessed 5-May-2018]. 2016.

[49] Daniel Wichs. Homomorphic Commitments and Signatures. Simons Institute. https:
//www.youtube.com/watch?v=1cQP1QYVjAI. 2015.

[50] Wikipedia. Quantum teleportation. [https://en.wikipedia.org/wiki/Quantum_
teleportation; accessed 5-May-2018]. 2018.

[51] Wikipedia. Trace Distance — Wikipedia, The Free Encyclopedia. [https://en.wikipedia.
org/wiki/Trace_distance; accessed 7-Jan-2018]. 2018.

http://eprint.iacr.org/2015/939
https://doi.org/10.1145/3055399.3055489
http://doi.acm.org/10.1145/3055399.3055489
http://doi.acm.org/10.1145/3055399.3055489
http://dl.acm.org/citation.cfm?id=2011508.2011515
https://people.eecs.berkeley.edu/~vazirani/f16quantum/lec1.pdf
https://people.eecs.berkeley.edu/~vazirani/f16quantum/lec1.pdf
https://www.youtube.com/watch?v=1cQP1QYVjAI
https://www.youtube.com/watch?v=1cQP1QYVjAI
https://en.wikipedia.org/wiki/Quantum_teleportation
https://en.wikipedia.org/wiki/Quantum_teleportation
https://en.wikipedia.org/wiki/Trace_distance
https://en.wikipedia.org/wiki/Trace_distance

	Contents
	Introduction
	Blind versus Verifiable Quantum Computing
	Blind Quantum Computation with the Pauli One Time Pad
	Blind Application of Pauli and Clifford Gates
	Blind Application of the Toffoli Gate
	Improving the Blind Computation Scheme

	Verifiable Computation from Blind Computation
	Classical Extension of Blind Computation to Verification
	Obstacles in Extending Blind Quantum Computation to Verification

	Preliminaries
	Notation
	Learning with Errors and Discrete Gaussians
	Quantum Computation Preliminaries
	Quantum Operations
	Trace Distance

	Trapdoor Claw-Free Functions in Quantum Computation
	Quantum Advantage
	Applications in Homomorphic Encryption and Verification

	Homomorphic Encryption
	Overview
	Reduction to the Encrypted CNOT Operation
	Encrypted CNOT Operation
	Quantum Capable Classical Homomorphic Encryption Schemes
	Example of a Quantum Capable Classical Encryption Scheme
	Extension to Quantum Leveled Fully Homomorphic Encryption
	Chapter Outline

	Preliminaries
	Homomorphic Encryption
	Toffoli Gate Application
	Pauli Mixing

	Quantum Capable Classical Homomorphic Encryption Schemes
	Example of a Quantum Capable Classical Encryption Scheme
	Dual Encryption Scheme
	Leveled Fully Homomorphic Encryption Scheme from Dual
	Quantum Capability of DualHE

	Extension to Quantum Leveled Fully Homomorphic Encryption
	CPA Security
	Quantum Leveled FHE

	Verification
	Overview
	Cryptographic Primitives
	Measurement Protocol
	Measurement Protocol Soundness
	Replacement of a General Attack with an X-Trivial Attack
	Extension of Measurement Protocol to a Verification Protocol for BQP
	Chapter Outline

	Preliminaries
	Pauli Twirl
	QPIP Definition

	Function Definitions
	Noisy Trapdoor Claw-Free Functions
	Extended Trapdoor Claw-Free Functions

	Measurement Protocol
	How to Commit Using a Noisy Trapdoor Claw-Free Family
	Measurement Protocol
	Notation
	Completeness of Measurement Protocol
	Prover Behavior
	Construction of Underlying Quantum State

	Replacement of a General Attack with an X-Trivial Attack for Hadamard Basis
	Indistinguishability of Diagonal Terms (Proof of Claim 6.5.3)
	Indistinguishability of Cross Terms (Proof of Claim 6.5.4)
	Reduction to Diagonal/Cross Terms (Proof of Claim 6.5.2)

	Measurement Protocol Soundness
	General to Perfect Prover (Proof of Claim 6.6.2)
	Perfect to Trivial Prover (Proof of Claim 6.6.3)

	Extension of Measurement Protocol to a Verification Protocol for BQP
	Morimae-Fitzsimons Protocol
	Extending the Measurement Protocol

	Extended Trapdoor Claw-Free Family from LWE
	Parameters
	Trapdoor Injective Family from LWE
	Injective Invariance
	Extended Trapdoor Claw-Free Family

	Bibliography

